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This paper continues work on the application of algebraic geometry to the design of experi­
ments initiated in Pistone and Wynn (1996). It extends the theory of confounding to study 
the fan of design. This gives a fuller understanding of confounding/ aliasing and leads to the 
concepts of maximal fan and minimal fan designs. 

Some key words: Computer algebra; Design and analysis of experiments; Identifiability; Fan of an 
ideal. 

2 Introd uction 

In Pistone and Wynn (1996) two of the current authors introduce algebraic geometry ideas 
into experimental design and show how the theory of Grabner bases (G-bases) can be used 
to find a saturated estimable (identifiable) linear polynomial model for a given design. That 
paper shows how, given a design d = {X(l), . .. , x(n)} (x(i) all distinct) and a so-called mono­
mial ordering T, a unique reduced G-basis results and gives a unique set of monomial terms. 
This set is renamed Estd,r. Linear combinations of such terms over a suitable coefficient 
space give identifiable linear models. The size of Estd T is always equal to the sample size n , 
of distinct design points and hence Estd r is saturated in the usual statistical sense. , 

The elements of Estd T> of which the estimable models are linear combinations, satisfy a , 
divisibility condition (D) which is that if a term xQ = Xfl ... x~7n is in Estd,r then every term 
which divides xQ is also in Estd,r. That is to say that Estd,T is an order ideal. For example 
if XiX2 is in Estd,r then so are Xl,X2,XlX2,xi and the constant term, which we denote by 
1. Marginal functionality is the statistical notion corresponding to order ideal. Sometimes 
models with an order ideal property are called hierarchical models (see Rogantin, 1999). 
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Section 2 of this paper will revisit in summary form the basic theory. This arises from 
considering an experimental design as an algebraic variety, namely the solution of a set of 
algebraic equations. G-bases are special choices of such equations. If x = (Xl, ... ,Xm ) are 
the independent variables, f(x) any (multivariate) polynomial model and gl(X), ... ,gr(x) 
the polynomials forming the reduced G-basis with respect to a given term-ordering T for the 
design d, then 

r 

f(x) = L Sj(x)gj(x) + r(x) 
j=l 

where r(x) is unique and of lower order than gj(x) with respect to T (see Section 2). The 
polynomial r is a linear combination of elements in Est above and is identifiable by the design 
d. 

Since gj(x(i)) = 0 for all j = 1, ... ,r and all design points x(i) we have 

(i = 1, ... ,n) 

When observations, Yl , . .. ,Yn are taken (without error) so that for the response Yi = f(x(i)) 
then r(x) is a polynomial interpolatory of the (x(i), Yi) which is unique given the G-basis. 

A rough introduction to the general theory of confounding here is to say that two polyno­
mial models h(x) and h(x) are aliased relative to a design. if they have the same remainder 
r(x) with respect to the G-basis. Thus, the theory of confounding in Pistone and Wynn 
(1996) is essentially relative to the choice of monomial ordering and hence G-basis. 

This paper covers the description of the set of saturated models Estd,T identifiable with a 
given design d as we range over all monomial orderings T. This set of models is called here a 
fan after seminal work by Mora and Robbiano (1988). The paper will emphasise designs with 
a maximal fan that is designs for which there is a maximal number of saturated estimable 
models (subject to the divisibility condition (D)) and designs with a minimal fan. Designs 
with both kinds of fans always exist (see Sections 6 and 7). 

We clarify this with a simple example. Consider designs with 4 points in two factors, Xl 
and X2. For the classical 22 factorial design {(±1, ±1)} there is only one saturated estimable 
model subject to (D). It is 

with Estd,T = {I,Xl,X2,XlX2}. In this case every monomial ordering T gives the same 
saturated model. 

Now consider the design {(-I, -I), (-!, !), (!, -!), (1, I)}. One can check that it sepa­
rately identifies the following five saturated models {I, Xl , xi , x~ }, {I, Xl, xi, X2 }, {I, Xl, X2, Xl X2}, 
{l,Xl,X2,Xn and {1,x2,x~,xn. Moreover there are no other saturated models subject to 
(D) and identifiable by a 4-point design. In fact the collection of these five models is a 
maximal fan and the models are called the leaves of the fan. 

The set of all designs with n-distinct points in m-dimensions can be decomposed into 
a finite number of non-intersecting classes. Two designs belong to the same class if and 
only if they have the same fan. For example for 4 point designs in 2 dimensions there are 
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31 = (25 - 1) such possible fans. Table 1 gives the classification of all possible fans for three 
points in two dimensions. The last design has a maximal fan, in that every model with 
three terms subject to (D) is estimable. An interpretation is that such a design is in general 
position in an algebraic sense. In Sections 3 and 4 we summarize the algebraic theory for 
fans of ideals. 

It seems to be a major challenge to try to determine a design for each possible fan of 
n-term leaves in m-dimensions. This could be called the problem of generalized confounding 
which then becomes a problem of algebraic geometry in general. At present the authors are 
able to compute the fan of a particular design using G-basis methods (Section 4) or simply 
computing determinants (in the manner of Section 7) . As yet they have no comprehensive 
method of classifying all patterns which give the same fan. Our main results are included in 
the last three sections. The completeness of the algebraic method for identifiability is proved 
for models satisfying the (D) condition in Section 5. 

3 Basic Algebra 

In this section we summarize the basic theory. We refer to Pistone and Wynn (1996), Holliday, 
Pistone, Riccomagno and Wynn (1999) and Caboara and Riccomagno (1997). 

Let Q and JR represent the rational numbers and the real numbers respectively. The alge­
braic theory of identifiability assumes a finite set of distinct points with rational coordinates, 
that is a single replicate design d = {x(1), ... ,x(n)} c qn or JRm , and a term-ordering T on 
the terms in k[x] = k[XI' ... ,xm ], the ring of all polynomials in m indeterminates with coef­
ficients in k. In our case k is Q or JR. The terms or monomial terms of k[x] are the elements 
of k[x] of the form xO: = xr1 

••• x~rn where a = (al, ... ,am) is a vector of non-negative 
integers. 

Let d be a design. The set of all polynomials whose zeros include the design points is an 
ideal of k [x]. It is denoted by Ideal( d) and is called the design ideal associated to d. 

A term-ordering T is a totally ordering relation on the monomials satisfying the following 
conditions 

(i) if xO: <T xf3 then xo:+, <T xf3+, for all non-negative integer vectors a, (3, ,,/, that is T is 
compatible with the division and multiplication of monomials. 

(ii) T is a well-ordering, that is any set of terms has a smallest element with respect to T. 

For examples of term-orderings we refer the reader to Cox, Little and O-Shea (1996). 
Given a term-ordering T one can calculate the (unique) reduced G-basis, Gd,T of the design 
ideal, Ideal( d). A set of polynomials is a G-basis for a polynomial ideal J and with respect 
to the term ordering T if 

Ideal(LtT(g) : g E G) = Ideal(LtT(J) : f E J) 

where in general LtT(q) is the leading term of the polynomial q, that is the highest term in 
q with respect to T and IdealA indicates the ideal generated by the set of polynomials A. 
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Given a G-basis, G d,T = {gl, ... ,gr} of the ideal Ideal( d) every element f E Ideal( d) can 
be decomposed in a non-unique way as 

r 

f(x) = L gj(x)Sj(x) for some Sj(x) E k[x] for all j = 1, .. . ,r. 
j=l 

Moreover, and this is the main feature of G-bases, for any polynomial f in k[x] there exists 
a unique polynomial r in k[x], called the remainder, such that 

r 

f(x) = L gj(x)Sj(x) + r(x) for some Sj(x) E k[x] for all j = 1, ... ,r 
j=l 

and the terms in the remainder precedes the leading terms of the G-basis elements in the 
ordering T. That is LtT(r) <T LtT(gj) for all j = 1, ... ,r. A shortened notation for the 
remainder of f with respect to the G-basis, G (and the term-ordering T) is Rem(j, G). 

The set of all remainders is in one-to-one correspondence with the quotient ideal k[x]jIdeal(d) 
as k-vector space. The following is an important but unstated fact within experimental de­
sign (see Pistone and Wynn, 1996). Namely the dimension as a vector-space of k[x]j Jdeal(d) 
equals the number of design points regardless of the term-ordering in which the calculations 
are done. 

Once we have the G-basis, GT of the design ideal Ideal(d) , a vector-space basis of the 
remainder set k[x]jIdeal(d) is calculated as the set of terms not divisible by any leading term 
in GT • It follows that k[x]/Ideal(d) is the set of all models (subject to the (D) condition) 
identifiable by the design d with respect to the ordering T. In particular the elements of a 
vector space basis of k[x]/Ideal(d) give the terms of a saturated model identifiable using d. 
This is the set Estd,T and the remainder Rem(j, G) is a k-linear combination of elements of 
Estd,T. 

Definition 1 Given a design d and a term ordering T, the set of monomials Estd,T is the 
standard vector space basis of the quotient space k[x]j Ideal(d). It is computed as the set of 
monomials not divisible by the leading terms of the T-Grobner basis of Ideal(d). When clear 
by the context, one or both of the suffices in EstT,d are suppressed. Sometimes we write 
EstT(d) or Est(d). 

Note that Estd,T is an order ideal where E is an order ideal if (i) E is a finite set of 
monomials and (ii) if xQ E E and xf3 divides xQ then xf3 E E. In particular (ii) is the (D) 
condition which is the key condition for models in this paper. 

All of the above is summarised in the following function, I dd,T that associates (through 
the division operation among polynomials) an estimable model satisfying the (D) condition 
with a model f 

Idd,T k[x] ~ k[xJ/Ideal(d) 

f f---t Rem(j, G) 
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From this formulation we can infer other important facts. For example the polynomial model 
f E k[x] is aliased/confounded with the model 9 with respect to the design d and with respect 
to the term-ordering T if and only if Rem(j, Gd,r) = Rem(g, Gd,r). That is f and 9 are in 
the same equivalence class of the quotient space. 

Note at this point that the G-basis G carries all the information about the design. 

4 The Design-Est relationship 

Theorem 1 Let d1 and d2 be two designs such that d1 ~ d2. Let T be a term ordering and 
Estr(dd and Estr (d2) be the estimable set for d1 and d2 respectively. Then 

Proof. Let Ideal(di) be the design ideal for di (i = 1,2) and {Ltr(Ideal(di ))} the set of 
leading terms of Ideal(di ) with respect to T. The following relationships prove the theorem 

d1 ~ d2 ~ Ideal(d1 ) 2Ideal(d2 ) 

=} {Ltr(Ideal(dd)} 2 {Ltr(Ideal(d2))} 

~ Estr(dI) ~ Estr (d2) 

Note that the last step uses the fact that for a design d, Estr(d) is the complementary set 
of {Ltr(Ideal(di ))} equivalently of the set of leading terms of the Grabner basis of Ideal(di). 
The second implication follows from the definition of {Ltr(Ideal(di))}. • 

Theorem 1 implies that is we add points one by one to a design so we add terms to Est. 
This can be turned into an algorithm for computing the successive terms of Est which is 
statistical in flavour. 

Theorem 2 Let T be a term ordering. Let d1 be a design, P a design point distinct from d1 

and d2 = d1 uP. Then Est(d2) = Est(dd U xf3 where xf3 is 

1. one of the leading terms of the Grabner basis of Ideal(dI) with respect to T 

2. the smallest such term with respect to T for which the design matrix of Estr (d2) zs 
non-singular. 

Proof. Property 1 holds because the order ideal property of Est(d2) must be preserved. 
Now consider Property 2 and let Est(d2) = Est(dd Ux'Y and proceed by contradiction. Thus 
let f3 be defined as in the theorem and I =f. f3, xf3 <r x'Y. Now xf3 remains a leading term of 
some Grabner basis element g(x) of d2 which we can write 

g(x) = 8f3xf3 + L 8cxx
cx 

cxELU'Y 
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where Est(d1 ) = {xQ: c¥ E L}. But then since xf3 <T x, we must have 0, = 0. But since 
g(x) = ° on d2 and Est( dd U xf3 is invertible over d2 all the coefficients of g(x) must be zero, 
which is a contradiction. _ 

A graded monomial ordering T is one for which, in addition to the basic definition, 
L:~l C¥i < L:~1 f3i implies xQ <T xf3; tdeg and deglex are the common examples (see 
Cox, Little and O'Shea, 1996). We show that for a fixed design d and any graded monomial 
orderings T, EStT(d) has the same number of terms of a fixed degree. 

Theorem 3 Let d be a design and T any graded ordering then the number of terms in EstT(d) 
of a given order s is a function h(s) not depending (otherwise) on the ordering. 

Proof. This makes use of the idea of a Hilbert function HI(S) of an ideal I. The following 
equivalent computation of HI( s) is found in Proposition 3, Section 9.3 of Cox, Little and 
O'Shea (1996): (i) for all s 2:: 0, HI( s) is the number of monomials not in I of total degree 
less or equal to s. Specialising to IT(d) we see from the definition of Est that the Hilbert 
function of IT(D), HT,d(S) is the number of terms of EstT(d) of degree less or equal to s. 
But proposition 4 of the same section says that H[(s) is the same for all graded orderings. 
Setting hl(S) = H[(s) - HI(S - 1) we are done. _ 

4.1 Buchberger-Moller algorithm for design ideals 

Theorem 2 leads to a sequential algorithm for finding Estd,T' If dn = {x(1), ... ,x(n)} is the 
current design we can inspect the design matrix Xn +1 obtained by testing the addition of the 
point x(n+l) and candidate Est member xf3. The algorithm is easily understood in tableau 
from which represents X~+l' At each iteration a new column, for xn+1 and row for xf3 are 
added. Row reduction can be used to test the rank of X~+l ' 

Such a tableau representation aids the implementation of an algorithm to compute the 
Grobner basis of design ideals based on linear manipulation of matrices was introduced by 
Buchberger and Moller (1982). Abbott, Bigatti, Kreuzer and Robbiano (1999) represent it 
and extend it to projective spaces. 

The working object here is a matrix M whose columns represents design points and the 
rows represent monomials, the transpose of the design matrix in statistics. The idea is to 
perform a "row by row" LV decomposition of M = LU R where L is a square unit lower 
triangular matrix, U is a square upper triangular matrix and R is the unique reduced echelon 
form of M and to keep track of the various passages. This will be clear with an example. 

A finite set of points x(1), . .. ,x(n) in m dimension and a term-ordering T are assumed. 
The monomials xQ are ordered with respect to T, let us say 1 = XQl , XQl , ... ,xQ1 , .. .. Then 
the matrix M is built row by row. The first row is the evaluation of 1 in x(l), ... ,x(n) 
respectively. The second row is the evaluation of XQl in x(1), ... ,x(n). Next the second row 
is reduced with respect to the first one by a linear combination 
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Then construct the third row by evaluating XQ3 in x(1), ... ,x(n). and reduce it with 
respect to the previous two. At the k step one has 

k-1 

((x(1»)Qk, ... ,(x(n»)Qk ) - L ai ((x(1»)Q;, ... ,(x(n) )Q;) 
i=1 

If the resulting vector is zero, then the polynomial x(k) - 2::==-11 aix(i) is an element of the 
Grabner basis. If it is non zero, then consider the next monomial which is not divisible by 
any of the x(i) for i ~ k. The algorithm stops when all the remaining monomials are to be 
avoided, as we are considering design ideals. 

The reductions performed transform M as 

M=LUR 

where R the n x n upper part is the identity matrix and the remaining rows are all zeros. The 
identity part encodes the indicator functions of the points, and the zero part the Grabner 
basis. This is clarified by an example. 

Consider the design PI = (0,5,7), P2 = (3,0,2), P3 = (4,1,7) and the tdeg(z < y < x) 
term-ordering. The first two rows of Mare 

1 \ 1 1 1 
z 727 

which can be reduced to (7,2,7) - 7(1,1,1) to give 

Next 

with reduction 

1 \1 1 1 
1 - 7z 0 -5 0 

111 1 
z 727 
y 0 1 

111 1 
z - 7 0 -5 0 

Y - 5 - (z - 7) 0 0 -4 

Thus y - 5 - (z - 7) is the indicator function of P3. 
Next 

1 111 
z 7 2 7 
Y 5 0 1 
x 0 3 4 

the last row reduces to (0,0,0) by the transformation 19 z - i~ + i(x + y). This is an element 
of the sought Grabner basis, with leading term x. No multiple of x will be further considered. 
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Next 
1 1 1 1 
z 7 2 7 

Y 5 0 1 
x 0 3 4 
z2 49 4 49 

which is reduced to (0,0,0) by the transformation tz2 - 3z + 14. This is an element of the 
sought Grobner basis, with leading term z 2. No multiple of z2 will be further considered. 

Next 
1 1 1 1 
z 7 2 7 
y 5 0 1 
x 0 3 4 
z2 49 4 49 
y z 35 0 7 

which is reduced to (0,0,0) by the transformation yz - 7y. Thus no multiple of yz will be 
further considered. 

Next 
1 1 1 1 
z 7 2 7 
y 5 0 1 

M·-.- x 0 3 4 
z 2 49 4 49 
yz 35 0 7 
y2 25 0 1 

which is reduced to (0,0,0) by the transformation y2 - 6y + z - 2. Thus no multiple of y2 
will be further considered. 

All the remaining monomials are multiples of y2 , yz, z 2, x. Thus the algorithm terminates 
and the Grobner basis is y2 -6y+ z -2, y z -7y, tz2 -3z+14, 19 z- g +k(x+y). The indicator 
functions are Sep(P3) = y - z + 2, Sep(P2) = z - 7, Sep(P1 ) = x. The LU R decomposition 
of Mis 

1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 
7 2 7 7 1 0 0 0 0 0 0 -5 0 0 0 0 0 0 1 
5 0 1 5 1 1 0 0 0 0 0 0 -4 0 0 0 0 0 0 

M= 0 3 4 0 -3/5 -1 1 0 0 0 0 0 0 1 0 0 0 0 0 
49 4 49 49 9 0 0 1 0 0 0 0 0 0 1 0 0 0 0 
35 0 7 35 7 7 0 0 1 0 0 0 0 0 0 1 0 0 0 
25 0 1 25 5 6 0 0 0 1 0 0 0 0 0 0 1 0 0 
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5 The fan of a design 

We shall need the theory of a fan of a polynomial ideal first in a rather algebraic way, see 
Mora and Robbiano (1988) and Sturmfels (1995). Given a G-basis, G of the polynomial ideal 
I with respect to a term-ordering 7 the monomial ideal generated by the leading terms of G 
is called the initial ideal 

Init-r(G) = Ideal(Lt-r(g) : 9 E G) 

Notice that by the definition of a G-basis the following holds 

Init-r(G) = Ideal(Lt-r(g) : 9 E I) 

and thus we also write Init-r(I) . The set of all monomials not divisible by any of the Lt(g), 
9 E G, that is the monomials not in Init-r( G) is an order ideal. The following is proved 
for example in Sturmfels (1995): every ideal I C k[x] has only finitely many distinct initial 
ideals, equivalently order ideals. This allows us to define an equivalence relation splitting the 
infinite set of term-orderings into a finite number of classes, as mentioned in Section 1. Two 
orderings, 71 and 72 are equivalent with respect to an ideal I (and we shall say with respect 
to a design d) if and only if they have the same initial ideal 

Init-rl(I) = Ideal(Lt-rl(g): 9 E G-rl) = Ideal(Lt-r2(g): 9 E G-r2) = Init-r2(I) 

where G-rj is the G-basis of I with respect to 7j , j = 1,2. The partition so induced on the set 
of term-orderings is called the fan of the ideal I , in symbols F(1) or F(d) when I = Ideal(d) 
for some design d. Each one of these equivalence classes is called a leaf. In particular leaves 
are characterised by initial ideals, that is 71 and 72 belong to the same leaf, L if and only if 
I nit-rl (1) = I nit-r2 (1). Moreover to each leaf L of the fan one can associated an order ideal 
EL namely the set of terms which are not divisible by any of the elements in the initial ideal 
corresponding to the leaf. 

We specialise these ideas to the present context. Thus when I is a design ideal Ideal( d), 
EL is finite and it is precisely Estd,-r for all 7 E L. Consider as an example 

d = {( -1, -1), (-1/2, 1/2), (1/2, -1/2), (1, I)} 

With respect to the tdeg(xl > X2) term-ordering the G-basis is 

{-3XI + 8x~ - 5X2,xi - x~ , -5x~ + 2 + 3XIX2} 

the corresponding initial ideal is I nit(Ideal( d)) = {xi, x~, XIX2} and the corresponding leaf 
is Est = {I, Xl, X2, xD . These two sets are represented in Figure 1 with the symbols 0 and 
• respectively 

6 Computing the fan 

Ideally one would like to input all the information available on the term-ordering before 
starting the computation. Such information are generally not enough to determine a term­
ordering but only a pre-ordering on the variables, sometimes not even that. Some computer 
algebra packages allow the user to define a pre-ordering. 
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X2 

4 x x x 

3 x x x 

2 x x x 

1 0 x x 

0 
0 2 3 Xl 

Figure 1: An example of order ideal and initial ideal 

The algorithm to compute the fan of ideals receives as input a basis of the design ideal and 
a pre-ordering, if it is known. At each step it chooses the possible leading terms compatible 
with the known ordering information, applies the important S-polynomial test (see Cox, 
Little and O'Shea, 1992, Section 2.6 and below) to check whether a set of polynomials is a 
G-basis (with respect to the set of term-orderings satisfying the given condition) and creates 
new leaves of the fan. When the S-polynomial test is positive over one leaf it returns the 
G-basis associated with that leaf and the conditions which the term-orderings of that leaf 
must satisfy. This algorithm was first introduced in Mora and Robbiano (1988). The usual 
improvements to the Buchberger algorithm for reduced G-bases can be applied. 

Given a term-ordering T, the S-polynomial of the two polynomials f and 9 is defined as 

S- 01 (f ) = LCM(Lt(f), Lt(g)) f _ LCM(Lt(f), Lt(g)) 
P Y , 9 Lt(f)LC(f) Lt(g)LC(g) 9 

where LC is the coefficient of the leading term and LC M stands for least common multiple. 
The S-polynomial test states that a set G is a G-basis with respect to T if and only if 
Rem(S-poly(f, g), G) = 0 for all f,g E G. 

Let us show the details with an example. Consider the design d = {(O, 0), (1,2), (2, I)} 
from Table 1 and impose the condition Xl > X2 on the term ordering. The design d is the 
set of solution of the following system of polynomial equations 

f x~ - 3x~ + 2X2 

9 Xl + 3/2x~ - 7/2x2 

The possible leading terms of 9 (compatible with Xl > X2) are Xl and x~, and for f we have 
only x~. We create two leaves in the fan F(d) characterised by the conditions Xl > x~ and 
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X~ > Xl respectively. The S-polynomials are 

{ 
S-poly(J,g) = -3X~XI + 2XIX2 - 3/2x~ + 7/2x1 = 0 

S-poly(J,g) = -~x~ + 2X2 - ~X2XI = 0 

Their remainders with respect to f and 9 are 

p = Rem(S-poly(J,g),{j,g}) = 0 
h Rem(S-poly(J, g), {j,g}) = -~XIX2 + !XI + !X2 

for Xl > x~ 
for x~ > Xl 

for Xl > x~ 
for x~ > Xl 

Since p = 0, by the S-polynomial test we have that for all the orderings such that Xl > x~ 
the set {j, g} is a (reduced) G-basis which gives {I, X2 , xn as the estimable set. 

We have to continue the calculation for the orderings such that x~ > Xl. The new 
generating set is {j, g, h} and the only possible leading term of h is XIX2. Thus 

and 

S-poly(J, h) 

S-poly(g, h) 

Rem(S-poly(J, h), {j, g, h}) = -14/9xi + 98/27xI - 28/27x2 
m = Rem(S-poly(g,h) , {j,g,h}) = ~xi-194xI+!x2 

Because of the prior condition Xl > X2 on the ordering the only possible leading term of l 
and 9 is xi . The S-polynomial test shows that for the term-orderings such that x~ > Xl and 
xi> X2 the set {j,g,h,l,m} is a G-basis. The estimable set is {1, XI,X2} . In conclusion the 
fan of the design d with the constrained Xl> x2 is {{1,x2,xn, {l,XI,xd}· 

If no condition on the ordering is imposed the above algorithm returns the fan of the ideal 
given as input. 

Theorem 3 has implications for the nature of the sub-fan consisting of all leaves L,. for 
graded ordering T . We use the term graded fan for this sub-fan. It says, simply, that every 
such leaf has the same number of terms of degree s for s positive integer. With a slight abuse 
of notation we might write the number as hd( s), where d is the design. It is useful also to 
think of growing the design sequentially using the algorithmic version of Theorem 2. As we 
add points to the design for any graded ordering we jump to a higher degree of Est element 
at the same time. 

7 An example: star composite design 

Theorem 4 Let d be the star composite design with central point in m dimensions. To fix 
notation, assume that the central point is 0 = (0, ... ,0) , the levels of the 2m full factorial 
part are ±1} and that the arms are at levels ±2. Then the fan of d has m leaves. One leaf 
is (with respect to any term-ordering such that Xm < Xi for all i = 1, . . . , m - 1)) is 
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L = { I, 
2 

Xi' 
XiXI, (Jor all i = 1, ... , m) 

4 
Xl' 
fliEl Xi, (Jor all I with N elements and I C {I, ... , d} 

and N = 1, ... , m) } 

The other leaves are obtained by permutation of the variables. 

Proof. First notice that the design d and the model L have the same number of elements. 
Briefly the computation goes as follows: for d, 2d + 2d + 1 and for L, 1 + d + d -1 + L:t=l (~) = 
2d + 2d - l. 

To prove that L is identifiable by d simply run the algebraic procedure for identifiability 
with respect to any term-ordering for which Xl < Xi for example tdeg(xI < ... < xm). From 
the symmetry of d infer that all the models obtained from L by permuting the factors are 
identifiable. Thus the fan of d includes m! leaves at least. 

We are left to prove that there is no other leaf in the fan. A set of equations interpolating 
the design points is 

xi - 5xl + 4XI 

XiXI(xI - 1) 
XiXj(xI - 1) 
xl + 3XIX; - 4Xl 

xl + 3XI X i - 4Xi 

Xj(x; - xi) 

i = 2, ... ,m 
i =f=j,i,j = l, ... ,m 
i = 2, ... ,m 
i = 2, ... ,m 
i =f=j,i,j = 2, ... ,m 

Let us compute the fan of Ideal(d). By symmetry again we can assume Xl < Xi. Under 
such assumption each polynomial above has only one possible leading term, 

5 3 223 2 
Xl' XiX!, XiXjXl, XIXi , Xi' XjXi 

respectively. One can check that the equations above form a Grobner basis using the S­
polynomial test or running the algebraic procedure as above. The computation is here omit-
ted. That ends the proof. _ 

8 Interpolation and Statistical fan 

For a particular design d = {x(l), ... , x(n)} let EL be the order ideal corresponding to a 
particular leaf L of the fan of d and let xl:> for a = 1, ... ,n be the elements of EL, thus 

E { 1:>1 I:>n} L = X , ••• ,X 

Then the usual design matrix X(EL, d) for the model is 
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Since EL is estimable the matrix X(EL' d) is invertible and equivalently det (X(EL, d)) -=1= o. 
Now the maximal set of leaves of dimension n subject to the (D) condition is well defined and 
finite. For m = 2 dimensions each such model can be mapped into a partition of n where the 
models (order ideals EL) can be represented by solid dots on an integer grid. For example 
for m = 2, n = 5 the pattern 

o 0 

o 0 0 

corresponding to 5 = 2 + 2 + 1 gives the modell, Xl, xI, X2, Xl X2. There are 7 models hence 
the fan of a 5-point design in 2-dimension will have at most 7 leaves. In more than two 
dimension not much is know on the set of m dimensional order ideals with n terms. Some 
bounds are know on the cardinality of such sets (see e.g. Bhatia, Prasad and Arora, 1997) 
but the study of such sets is still an open problem in combinatorics. 

It will be shown in Section 7 that there is always a design of sample size n with which to 
estimate a model with n terms subject to the (D) condition. 

For a given number of factors m, £(d) be the set of models satisfying the (D)-condition 
and with n terms, where n is the size of the design d, and such that their design matrices at 
d are invertible. We say that the elements of £ (d) are identifiable in a statistical sense. Let 
F(d) be the fan of the design d calculated as in Section 4. Elements of F(d) are algebraically 
identifiable. By Pistone and Wynn (1996) we have that algebraic identifiability implies sta­
tistical identifiability, that is F(d) ~ £(d) and Caboara and Robbiano (1997) show with a 
counterexample that the inclusion may be strict: the model E = {I, Xl, xL X2, xU is statisti­
cally but not algebraically identifiable by the design d = {(O, 0), (0, -1), (1, 0), (1,1), ( -1,1)}. 
However notice that the k-vector space generated by any model E in £(d) is isomorphic to the 
quotient k[xl/Ideal(d). For details see Pistone and Wynn (1996), Section 4. Theorem 5 below 
shows that subject to an additional condition to avoid designs and models in £(d) \ F(d), 
there is a correspondence between interpolation and algebraic identifiability. 

Let d be a n-point design and E an element of £(d). With an abuse of notation we list 
the terms of the saturated estimable model in a vector as follows 

E( ) - ( Ck1 Ckn)t X - X , ... ,X 

Suppose that the usual n x n design matrix 

is invertible. We want to construct the initial ideal leading to E. 
First we observe that given a term-ordering every polynomial f E k[x] can be decomposed 

as a leading term Lt(f, x) = Lt(f) and a tail t(f, x) = Lt(f) - f in such a way that f(x) = 
Lt(f, x) - t(f, x). Let G be a reduced G-basis. Then for all h E G none of the terms in 
t(h,x) is divisible by any Lt(g,x) for all 9 E G. In other words for all j = 1, ... ,J there 
exist a vector of length n with scalar entries, 8 j such that the tail tj is a linear combination 
of elements in E(x) 
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where J is the number of elements in G. 
Next we observe that the complementary set of E(x) in the set of all monomial terms 

in the variables x is a monomial ideal and thus by the Dickson's Lemma (see Little, Cox, 
O'Shea, 1992) we can construct a unique minimal finite basis of monomials of such a set . 
Let us denote such a basis by Init = {Ltj(x)}f=l. By construction the elements of E(x) are 
those monomials not divisible by any of the Ltj(x), for j = 1, ... , J. Indeed let xn be an 
element of E(x). By definition xn ~ Init . Let us suppose that xn is divisible by one of the 
Ltk for a k in {I , ... , J}. Thus there exists a monomial xf3 such that xn = xf3 Ltk, that is 
xn E Ideal(Ltk) C Ideal(Ltj : j = 1, ... , J) = Init. This is a contradiction and we are done. 

Then we construct polynomials tj(x) which interpolate each of the terms in Init using 
the model based on E(x) at the design d, that is to say solve the following J linear systems 
of equations with respect to 8 j 

{ 

ttj(x(1») = E(x(1»)t8j = X8j 

Ltj(x(n») = E(x(n»)t8j = X8 j 

Thus the tj are uniquely determined because of the invertibility of X. Then define 

j = 1, ... ,J 

• 
(1) 

The following example clarifies the three steps of the proof. Consider the two-dimensional 
design d = {(O,O), (1,0), (0, 1), (2, I)} and the estimable model E = {1,XI,X2,Xi}. We check 
estimability simply by checking that the design matrix 

X= ( ~ ~ ~ ~) 
1 ° 1 ° 
1 2 1 4 

is invertible. The set ofleading terms giving E is Init = {xf, XIX2, xn = {Ltl (x), Lt2(X), Lt3(X)}. 
Note that the condition in Theorem 1 is satisfied. We have the interpolators of the elements 
of Init 

3xi - 2XI 

2 xl - Xl 

Theorem 5 It there exists a term-ordering T such that Ltj(x) is the leading term of gj(x) 
for all j = 1, .. . , J, then the set {gl, ... , 9 J} is the reduced Grabner bases of I deal( d) with 
respect to T. That is E E F( d). 
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Proof. The existence of T follows by the fact that the hypothesis in the theorem defines the 
leading terms of the gj(x)'s. That hypothesis is essential to avoid situations similar to the 
counterexample of Caboara and Robbiano (1997). We show that the ideal generated by the 
gj(x)'s namely Ideal(gj(x)) is the design ideal, Ideal(d). Certainly by construction the design 
ideal includes the ideal generated by the gj's. Conversely let p be a polynomial in the design 
ideal and expand it in the g/s by the division algorithm using the T in the statement of the 
theorem: 

J 

p(x) = L Sj(x)gj(x) + r(x) 
j=l 

Since p(x) belongs to the design ideal and gj(x(i») = 0 at all design points x(i) (i = 1, ... ,n) 
and for all j = 1, .. . , J we have 

Now the division algorithm always yields a remainder r(x) every monomial of which is dom­
inated by the leading terms of the gj(x), in this case the Ltj(x). But by the assumption in 
the theorem the monomials must be from E(x ). But the design matrix for E(x) at the design 
d is invertible and thus r(x) = 0 identically. This implies that p(x) E Ideal(gj(x)). 

Finally we show that the set G = {gj(x) : j = 1, ... ,J} is a (reduced) G-basis for the 
design ideal. We use the S-polynomial test. Consider a generic S-polynomial and proceed as 
above by expanding it on G 

J 

S-poly(g/, gk) = L Sj(x)gj(x) + r(x) 
j=l 

and by evaluating it at the design points. Since S-poly(g/,gk) E Ideal(gj(x)), it must be zero 
at the design points leading to r(x(i») = 0 for all design points. But again since r(x) is a 
linear combination of elements in E(x) which is estimable we must have r(x) = 0 identically. 
Notice that by construction {gj(x) : j = 1, . . . ,J} is reduced. _ 

For the previous example the G-basis is 

gl (x) 

g2(X) 

g3(X) 

xf - 3xr + 2XI 

2 = xlx2 - Xl + Xl 

2 = x2 - X2 

The leading term of g2 must be XIX2 and thus we require that XlX2 > xi which implies that 
the term-orderings such that X2 > Xl belong to the leaf of E(x). 

For the counterexample mentioned above the set of interpolating polynomials is as follows 

XIX2 -xi + xV2 + Xl + x2/2 

xf = Xl 

x~ = X2 
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The condition in Theorem 5 is not met since there does not exist a term-ordering such that 
XIX2 is leading term of the first polynomial. Indeed it should simultaneously be XIX2 > xi 
and XIX2 > x~, that is X2 > Xl and Xl > X2 which is not possible in a total ordering. 

Theorem 2 leads to a simple updating formula for interpolators. We change to the notation 
dn to indicate a n point design and dn +l to denote the same design with one more point. 

Corollary 1 Following the use of Est for interpolation let Pn(x) be the interpolator of val­
ues {(X(i) , Yi)}:l based on the design dn = {x(!), ... ,x(n)} and Est7"(dn) for some mono­

mial ordering. Let dn+l = dn U x(n+l) where x(n+l) is distinct from dn . Let Est7"(dn+d = 
Est7"(dn) U xfJ, and in Theorem 2 and let gn(x) be the element of the Grabner basis element 
of J( dn ) which has xfJ as leading term. Let Pn+l (x) be the interpolator of {x(i), Yi} ~=l then 

gn(x) 
Pn+I(X) = Pn(x) + (Yn+1 - Pn(x)) ( ) 

gn Xn+l 

Proof. Since gn(x) = ° on dn, Pn+l(X(i») = Pn(x(i») = Yi (i = 1, ... ,nO). But at x(n+l), 
Pn+l (x(n+1») = Yn+l provided that gn(Xn+l) i= 0. But this cannot happen because then 
gn(x) = ° on dn+l and the fact that Est7"(dn+d = xfJ U Est(dn) is non-singular on dn+l 
would force gn(x) = 0, similarly to the proof of Theorem-2. _ 

9 Minimal fan designs 

Definition 2 A minimal fan design is defined as a design whose fan has only one leaf. 

A special case of such designs are the full factorial, or product, designs. For example the 
fan of the design in ffi.2 {a, 1, 2, 3} x {a, 1, 2} which has as representation 

0 0 0 0 

0 0 0 0 

0 0 0 0 

has the single leaf 
{ 3 

x2' 
3 x2 XI, 

3 2 x2x I, 
3 3 

x2x I' 
2 

x2' 
2 x2 XI, 2 2 

x2x I' 
2 3 x2 XI, 

x2 ,x2x l, 2 
X2 x I' 

3 
X2 x l' 

1, Xl, 2 x3 } Xl' I 

The following fundamental class of designs generalises this remark. 

Definition 3 A design d C Z+ is called a generalised echelon design if for any design 
point (d l , ... ,dm) all points of the form (Yl,'" ,Ym) with ° ~ abs(Yj) ~ abs(dj), for all 
j = 1, ... ,m belong to the design d, where abs(x) is the absolute value of x. 
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Robbiano and Rogantin (1998) prove that an echelon design is a minimal fan designs. The 
associated (reduced) Grobner basis (the same with respect to any term ordering) consists of 
"distractions" of its leading terms. Let X O be a leading term then its distraction is the 
polynomial 

01 01 

II (Xl - al,i) ... II (xm - am,i) 
i=l i=l 

where ai,j are coordinates of the design points. 
Another interesting example of minimal fan designs is echelon designs. 

Definition 4 A design de Z+ is called an echelon design if for any design point (d l , ... , dm ) 
all points of the form (Yb . .. , Ym) with 0 :s Yj :s dj, for all j = 1, ... , m belong to the design 
d. 

For example consider the design 

d= {(O,O),(1,O) , (2,O),(3,O),(O,1),(1,1)(2,1),(O,2)} 

• 
• • • 
• • • • 

A (non reduced) G-basis for the design ideal is 

X2(X2 - 1)(x2 - 2) 
XlX2(X2 - 1) 
Xl(Xl - 1)x2(x2 - 1) 
Xl(Xl - l)(Xl - 2)X2 

Xl (Xl - l)(X l - 2)(Xl - 3) 

Echelon designs are examples of generalised echelon designs. The fan of an echelon design 
consists of a single echelon leaf whose elements are Xfl ... x'/nrn for all (db ... , dm ) in the 
echelon design. Thus the design and the model have the same patter. 

Definition 5 Let N be a positive integer. AN-mixture design is the variety defined by 

TIZ'=o(Xi - h) = 0 for i = 1, ... ,m 

2:1=1 Xi = N 

Note that one of the equations TIZ'=o(Xi-h) is superfluous and for example we can parametrise 
with respect to the m-factor. 

The projection on any factor of a mixture designs is an echelon design. In particular, 
with respect to any term-ordering for which Xd > Xi for all i the corresponding leaf is 

It follows that the fan of a mixture design has as many leaves as there are factors. And one 
moves between leaves by substituting Xj = N - 2:iij Xi. 
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9.1 Echelon designs and Newton finite difference formulae 

We now give an alternative proof in m dimensions more statistical in style of the minimality 
of the fan of an echelon design. The same argument applies to generalised echelon designs. 
For an integer r :2: 1 define the univariate polynomial 

p(r, z) = z(z - 1) .. · (z - r + 1) 

and for x = (Xl, ... , xm) and an integer vector /3 = (/31, ... , /3m) define 

m m {3j-l 

P(/3,x) = IIp(/3j,Xj) = II II (Xj - k) 
j=l j=l k=O 

Note first that the echelon design (and corresponding model) is defined via a unique set of 
leading terms (by the Dickson's lemma). These terms are defined by certain integer vectors 

a(l), .. . , a(K) 

where no XQ(i) divides an xQ(j) for all i i= j and i, j = 1, ... , K. Note that the corresponding 
echelon design is all points in Z+ not dominated by a(1), . .. , a(K). For the above example 
the leading terms are given by the crosses 

x 
x 

x 
x 

namely the points 
(4,0), (3, 1), (1,2), (0, 3) 

The corresponding leading terms are 

We first show that the X-matrix for the echelon design and corresponding model, X(E, d) 
is invertible. First list the design and the model in the same order in such a way that the 
monomial term xQU) of the model and the design point a(j) of the echelon design occupies the 

same position in the order. Next reparametrise replacing monomial xaU
) by the polynomials 

P( a(j), x) themselves. The mapping from the functional class xQ(j) to P( aU), x) is invertible 
and linear. For example for the model above we have 

1 1 0 0 0 0 0 0 0 1 
Xl 0 1 0 0 0 0 0 0 Xl 

Xl(XI -1) 0 -1 1 0 0 0 0 0 x2 
I 

Xl (Xl - 1)(XI - 2) 0 2 -3 1 0 0 0 0 x3 
1 

X2 0 0 0 0 1 0 0 0 X2 

XIX2 0 0 0 0 0 1 0 0 XIX2 

Xl(Xl -1)x2 0 0 0 0 0 -1 1 0 2 
XIX2 

X2(X2 - 1) 0 0 0 0 -1 0 0 1 x2 
2 
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The invertibility follows immediately from the lower triangular form of the transformation 
matrix, Q. If Z is the X-matrix for the {P(a/j),x)} and X = X(E,d) then 

Now from the structure of the echelon design Z is also invertible and lower triangular. For 
the example 

1 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 
1 2 2 0 0 0 0 0 

Z= 
1 3 6 6 0 0 0 0 
1 0 0 0 1 0 0 0 
1 1 0 0 1 1 0 0 
1 2 2 0 1 2 2 0 
1 0 0 0 2 0 0 2 

Now in general det( Q) = 1 and 

K 

det(X) = det(Z) II P(a(j), x) 
j=l 

K m 

= II II a~j)! > 0 
j=l i=l 

For the above example det(X) = 48. It is straightforward to show that the X matrix for any 
other model (of size N satisfying the D-condition) is singular. This then shows that in the 
statistical sense the fan of an echelon design has a single leaf. But from the discussion before 
Theorem 1 it must also be single leaf in the algebraic sense. 

The structure of Z is of some interest. Let < denote the partial order of the exponents 
vectors corresponding to divisibility. For the example we can draw the partial ordering 

(0,2) 
V 

(0,1) < (1,1) < (2,1) 
V 

(0,0) 

Then indexing Z by the a(j) 'sL 

V 

< (1,0) 
V 

< (2,0) < (3,0) 

{ 
P( (i) aU») h (i) (j) 

Z(a(i),a(j») = 0 a,x were a < a 
otherwise 

The theory of Mobius inversion (see for example Constantine, 1987, Chapter 9) can be invoked 
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to show that the inverse Z-1 has the same structure. For the example 

1 0 0 0 0 0 0 0 
-1 1 0 0 0 0 0 0 
1 -1 1 0 0 0 0 0 
21 1 21 1 0 0 0 0 Z-1= -6 2 -2 6 

-1 0 0 0 1 0 0 0 
-1 -1 0 0 -1 1 0 0 

1 1 1 0 1 -1 1 0 -1'2 -'2 2 2 
0 0 0 -1 0 0 1 

2 2 

It is clear that the value of any parameter <I> aU) (estimator in the statistical sense) in the 
interpolator based on the {P( (9), x)} namely 

K 

Y(x) = L <I> a(j)P(a(j), x) 
j=1 

depends only on the values of Y(x) at the special set of design points lower than a(j) in the 
set of conditions: 

{,e(i) : 1 :::; i :::; K, 0:::; ,e(i) :::; a(j)} 

An interpretation is that each <I> aU) depends only on the "product model" and design with 
corner at a(j). Thus for example the point (2,1) gives 

<I>(2,1) = -~Y((O, 0)) + Y((l, 0)) - ~Y((2, 0)) + ~Y((O, 1)) 

-Y((l, 1)) + ~Y((2, 1)) 

In the one-dimensional case interpolation using the univariate polynomials p(r, x) = x(x-
1) ... (x - r + 1) leads to Newton's divided difference formula. Thus from the structure of Z 
and Z-1 we have that the parameters are simply the divided differences. For example 

<I> 0 Y[zol = Y(zo) 

<I> 1 = Y[zo, z1l = Yhl - Y[zol 
Zl - Zo 

_ Y[ 1 - Y[Z1, ... , znl- Y[zo - zn-1l <I>n - zo, ... , Zn - ---'------'----'----....;. 
Zn - Zo 

in the case Zi = i (i = 1, ... , n - 1). 
Moreover, the fact that each parameter in the general case arise from the product de­

sign/model with corner at the corresponding site means that there is a generalisation of the 
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Newton formula in this case. Consider again <P(2,1) for the above example. Then the product 
design with corner at (2,1) is {(O, 0), (1,0), (2, 0), (0, 1), (1, 1), (2, I)} which is 

{O, 1, 2} ® {O, I}. 

The Z-matrix for this design and the model 

{1,X1,xi,x2,x1x2,xix2} = {1,X1,xi} ®{1,x2} 

IS 

1 0 0 0 0 0 
1 1 0 0 0 0 

Z(2,1) = 
1 2 2 0 0 0 
1 0 0 1 0 0 

-1 1 0 1 1 0 
1 2 2 1 2 2 

But 

Z(2,1) = Zl ® Z2 

where Z1 = [~ ~] and Z2 = are the Z-matrices for the one-dimensional 
[1

11 O~ O~l 
models {l,x} and {l,x,x(x -I)} respectively. Moreover 

Z-1 Z-1 !O. z-l 
(2,1) - 1 '<Y 2 

1 0 0 0 0 0 
-1 1 0 0 0 0 

1 -1 
= 2" 

1 0 0 0 2" 
-1 0 0 1 0 0 
1 -1 0 -1 1 0 

_1 1 1 1 -1 1 
222" 2 

The general formula, which is easily established, is that for a general monomial model term 
X

Q = xQ! xQ m 1 ... m 

i=l 

with obvious notation. This, then, leads to a natural generalisation of Newton's formula to 
m dimension for echelon designs. Thus, for example, 

<P(2,1) = Y(x1,x2)[0,1,2h,[0,ljz 

where [ lj means differencing in the j-th dimension. In general, again with obvious notation, 
for xQ the parameter is 

<PQ=Y(x)[O,l, ... ,0001h[0,1, . .. '0:'2jz ... [0,1, ... ,O:'mlm 

All the above extends to non equally spaced grids with distinct levels. A fuller development 
if given in Riccomagno and Wynn (1999). 
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10 Maximal fan designs 

A n-point design in m factors is maximal fan in the statistical sense if all the models with 
n-terms, in m factors and satisfying the (D) condition are identifiable. 

Theorem 6 A maximal fan design with n distinct points in m dimensions always exists. 

Proof. We give two proofs. 
(i) The condition det (X(E, d)) = 0 defines a variety in the n x m space of all coordinates 

of d = {x(i) : i = 1, . . . ,n} which is of dimension less than n x m. This follows from the 
linear independence of the monomials in any fan. Let F be the set of all models satisfying 
the (D) condition and with n terms. Then the set 

UEE.r {d : det (X(E, d)) = O} 

remains of dimension less then n x m since F is finite . Any design d whose coordinates do not 
lie on this variety (technically any point in the open set which is the union of the complement 
of the individual varieties det (X(E, d)) = 0) will have all det (X(E, d)) i- O. A statistical 
interpretation is that if d is chosen by any distribution which is continuous with respect to 
the Lebesgue measure then d will have a maximal fan with probability one. 

(ii) The second proof is constructive. Let {ql,'" ,qm} be the first m prime numbers 
{ ()}n {I, 2, ... }. Then define d = x ~ i=l where 

(j = 1, .. . ,m) 

Then consider the second row (i = 2) of a typical X(E, d) . The elements of this row are 
distinct because each entry represents a distinct primes power decomposition. Now all other 
rows of X(E, d) are distinct powers of this second row that is X(E, d) is of Vandermonde 
type and therefore has non zero determinant. _ 

For the example {1,Xl,xi,x2,XlX2} we have 

1 1 
1 2 

1 
4 

1 
3 

1 
6 

det (X(E, d)) - det 1 4 16 9 36 
1 8 64 27 216 
1 16 256 81 1296 

By an exhaustive search the authors found that in two dimensions there are 4 maxi­
mal fan designs with 3 points based on the integer grid {O, 1, 2}2, specifically the design 
{(O, 0), (1,2), (2, I)} and the designs obtained by rotating it anti-clockwise by 90, 180 and 
270 degrees. That there are 20 maximal fan designs with 4 points based on the integer grid 
{O, 1,2, 3}2, 68 maximal fan designs with 5 points based on the integer grid {O, 1, 2, 3, 4}2 and 
584 maximal fan designs with 6 points based on the integer grid {O, 1, 2, 3, 4, 5}2. 

Consider m = n = 3. Then the following simple argument shows that no maximal fan 
design exists on the integer grid {O, 1, 2}3. The full fan is this case consists of the six models: 

22 



{1,x1,xi}' {1,x2,xD, {1,x3,x~}, {1,x1,x2}, {l,X1,X3} and {1,X2,X3}. For a maximal fan 
design to exist everyone of the two dimensional projections would need to be maximal fan 
designs for the relevant two variables. That is an interpolating set of polynomials for a 
maximal fan design is of the type gl (xd, Xi - gi(X1) where i = 2, ... , m, the degree of the 
univariate polynomial g1 is n, the sample size and the value of gi at the sample points are all 
distinct, that is gi(X(j)) =I- gi(x(k)) for all pairs j, k of design points. In algebraic terminology 
we say that we are in the Shape Lemma structure (see Cohen, Cuypers, Sterk, 1999). 

It is clear from this example that equally spaced grids may not be the appropriate support 
and that more haphazard space-filling configurations are suitable, for example the Latin 
hypercube sampled designs used in computer experiments or a special constructed sequence 
in m dimensions as used in numerical integration. The use of prime numbers in (ii) above and 
in the construction of such sequences is a good omen for such a construction. Alternatively 
one may make a conjecture that for fixed m a maximal fan design exists on the nm grid for 
n sufficiently large. Further work on this is in progress. 

An alternative to seeking combinatorial type maximal fan designs is to appeal to the 
principals of optimal experimental design. For fixed sample size n one may seek to maximise 
through choice of d in some region 

II det (Xt(E, d)X(E, d)) = II [det (X(E, d))2] (2) 
EE9 EE9 

where 9 is the set of all models subject to (D), in m factors and with n terms. We call this 
fan-optimality (in this case fan D-optimality). Provided the design space for d is an open set 
in lR.nxm then such a design will always exist and be a maximal fan design. Optimal designs 
for such a weighted product of information matrices have a long history (see Atkinson and 
Cox, 1974 and Pukelsheim, 1993, Chapter 11). One can also weight different fan elements 
differently and maximise 

II [det (X(E, d))QE] (aE > 0) (3) 
EE9 

Since the sample size is fixed in the present discussion it is not appropriate to consider 
the continuous optimal design theory (Kiefer-Wolfowitz, 1959) because that theory does not 
restrict the support of the design. Figure 2 gives designs maximal with respect to (3) on 
integer grids for sample sizes n = 3, ... ,7. 

It should be noted that we have considered maximal fan designs in a statistical sense. Let 
us rename minimal and maximal fan design in the statistical and algebraic sense by ma, m s, 
Ma and Ms respectively. We have ms ~ ma ~ Ma ~ Ms and that echelon designs are both 
statistically and algebraically minimal fan. Recall however that there exists an isomorphism 
between models identifiable in a statistical sense and models identifiable in an algebraic 
sense, namely they belong to the same equivalence class in the quotient space and one can 
move between them by the division, Rem operator which acts linearly on the coefficients. It 
is certainly true that some designs are maximal fan design in both the statistical and the 
algebraic sense but it remains a conjecture that such designs exist for all sample sizes and 
dimensions. 
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pattern Example Fan 

CJ {(0,0),(1,0),(2,0)} {l, Xl, xi} 

0 {(0,0),(0,1),(0,2)} {1,X2,xD 

{(O, 0), (0, 1), (1,0)} {I, Xl, X2} 

{(O, 0), (0, 2), (1, I)} {1,XI,X2} and {1,X2,xD 

{(O, 0), (2,0), (1, I)} {I, Xl, X2} and {I, Xl, xi} 

{(0, 0),(2,2),(1,1)} {1,x2'x~} and {1,XI,Xi} 

{(O, 0), (1,2), (2, I)} {1,XI,X2} and {l,XI,Xi} and {1,x2,xD 

Table 1: Three points designs and corresponding fans. 
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Figure 2: Two dimensional maximal fan designs with n points based on the integer grid n x n 
(n = 3, ... ,7). 
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