

Implicit flow routing on terrains with applications to surface
networks and drainage structures
Citation for published version (APA):
Berg, de, M. T., Haverkort, H. J., & Tsirogiannis, K. (2011). Implicit flow routing on terrains with applications to
surface networks and drainage structures. In D. Randall (Ed.), Proceedings 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA'11, San Francisco CA, USA, January 23-25, 2011) (pp. 285-296).
Society for Industrial and Applied Mathematics (SIAM).

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/27c53c7b-2cc7-4f08-98f1-a84fb9d1cf53

Implicit Flow Routing on Terrains with Applications to Surface Networks and
Drainage Structures

Mark de Berg∗ Herman Haverkort† Constantinos Tsirogiannis‡

Abstract
Flow-related structures on terrains are defined in terms of
paths of steepest descent (or ascent). A steepest descent
path on a polyhedral terrain T with n vertices can have
Θ(n2) complexity. The watershed of a point p—the set
of points on T whose paths of steepest descent reach p—
can have complexity Θ(n3). We present a technique for
tracing a collection of n paths of steepest descent on T
implicitly in O(n log n) time. We then derive O(n log n)
time algorithms for: (i) computing for each local minimum
p of T the triangles contained in the watershed of p and (ii)
computing the surface network graph of T .

We also present an O(n2) time algorithm that computes

the watershed area for each local minimum of T .

1 Introduction

Background and motivation. In many applications
it is necessary to visualize, compute, or analyze flows
on a height function defined over some 2- or higher-
dimensional domain. Often the direction of flow is
given by the gradient and the domain is a region in R

2.
The flow of water in mountainous regions is a typical
example of this. Modeling and analyzing water flow
is important for predicting floods, planning dams, and
other water-management issues. Hence, flow modeling
and analysis has received ample attention in the gis

community [8, 9, 11, 13].
In gis, mountainous regions are usually modeled as

a dem or as a tin. A dem (digital elevation model)
is a uniform grid, where each grid cell is assigned an
elevation. Because of the discrete nature of dems, it
is hard to model flow in a natural and accurate way.
A tin (triangulated irregular network) is obtained by
assigning elevations to the vertices of a two-dimensional
triangulation; it is the model we adopt in this paper.
In computational geometry, a tin is usually referred to
as a (polyhedral) terrain. One advantage of polyhedral
terrains over dems is that one can use a non-uniform
resolution, using small triangles in rugged areas and
larger triangles in flat areas. Another advantage is that

∗TU Eindhoven, mdberg@win.tue.nl.
†TU Eindhoven, cs.herman@haverkort.net.
‡TU Eindhoven, ctsirogi@win.tue.nl. MdB and CPT were sup-

ported by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 639.023.301.

the surface defined by a polyhedral terrain is continuous,
which makes flow modeling more natural. Indeed, the
standard flow model on polyhedral terrains is simply
that water follows the direction of steepest descent. To
make the flow direction well defined, it is then often
assumed—and we will also make this assumption—that
the direction of steepest descent is unique for every point
on the terrain. For instance, the terrain should not
contain horizontal triangles.1

There are several important structures related to
the flow of water on a polyhedral terrain T . The
simplest structure is the path that water would follow
from a given point p on the terrain. This path is
called the trickle path and, as already mentioned, in our
model it is simply the path of steepest descent. Another
important structure is the watershed of a point p on T ,
which is the set of all points on T from which water flows
to p. In other words, it is the set of points whose trickle
path contains p. Unfortunately, the combinatorial
complexity of these structures can be quite high. For
instance, De Berg et al. [3] showed that there are
terrains of n triangles on which certain trickle paths
cross Θ(n) triangles each Θ(n) times, resulting in a
path of complexity Θ(n2). McAllister [1] and McAllister
and Snoeyink [2] showed that the total complexity of
the watershed boundaries of all local minima can be
Θ(n3). By slightly modifying the construction provided
by De Berg et al. we can in fact show that the boundary
of a single watershed can have Θ(n3) complexity. For
fat terrains, where the angles of the terrain triangles are
lower-bounded by a constant, the situation is somewhat
better: here the worst-case complexity of a single path
of steepest ascent/descent is Θ(n) [4]. The complexity
of a watershed, however, can still be Θ(n2).

It is not always necessary, however, to explicitly
compute the structure of interest. For example, it may
be sufficient to compute only the surface area of the
watershed of a given local minimum, rather than an

1This can of course be ensured by a small perturbation of the
elevations of the terrain vertices, but even small perturbations
may have undesirable effects on the water flow. How to deal with
horizontal triangles is therefore an important research topic in
itself.

285 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

explicit description of the boundary of watershed itself.
The question thus arises: is it possible to compute
the surface area of the watershed of a given local
minimum without explicitly computing the watershed
itself, thereby avoiding a worst-case running time of
Θ(n3)?

A closely related structure on a terrain is the
so-called surface network of T . This is the graph
whose nodes are the critical points (local minima and
maxima, and saddle points) of T and whose arcs
are obtained by tracing paths of steepest ascent and
descent from the saddle points to the local extrema [12,
6]. This graph has linear size, but explicitly tracing
the paths of steepest ascent and descent from the
saddle vertices results in a procedure that is very
inefficient in the worst case. The surface network is
related to the so-called Morse-Smale complex [10, 15],
which has not only been used in gis applications [6]
but also for example in molecular shape analysis [5]
(although here the domain is no longer in R

2). The
Morse-Smale complex has been originally defined for
smooth surfaces, and in fact transferring the concept
to the piecewise linear case—for example, to polyhedral
terrains—is not straightforward. (The main difficulty
lies in the fact that a path of steepest descent can
intersect a path of steepest ascent.) Several methods
have been proposed to define and compute Morse-Smale
complexes on piecewise linear surfaces; see the paper
by Čomić et al. [6] for an overview. In one way or
another, these methods are always based on following
certain paths of steepest descent/ascent. Sometimes an
approximation is computed: the watershed of a point p
(which is a cell of the unstable Morse-Smale complex),
for instance, would then be represented as the union
of a certain subset of the terrain triangles. Existing
algorithms of this type, however, are not exact: they
are not guaranteed to find exactly those triangles for
which all points have a trickle path containing p.
Our results. Inspired by the above, we study the
problem of implicitly tracing paths of steepest descent
or ascent on a polyhedral terrain T with n vertices.
First, in Section 2, we give an O(n log n) algorithm that
finds out where the trickle path of a given point p ends,
without constructing the actual path (which would
take Θ(n2) time in the worst case). Our algorithm
can also report all the triangles crossed by the path
in the same amount of time. Then, in Section 3,
we turn our attention to following multiple paths of
steepest descent (or steepest ascent) simultaneously.
We develop a mechanism for implicitly tracing n such
paths in O(n log n) time in total. Using our mechanism,
we can compute several of the flow-related structures
mentioned above. In particular, we can in O(n log n)

time:

• compute for each local minimum p of T the set of
terrain triangles that lie completely in the water-
shed of p;

• compute the surface network of T .

We also show how we can in O(n2) time compute the
exact surface area of all watersheds of T .
Terminology and notation. For a terrain T we
denote the set of its edges by E, and the set of its
vertices by V . Edges in E are defined to be open,
that is, they do not include their endpoints. For any
point p we denote its z-coordinate by z(p). For an edge
e ∈ E incident to a triangle t we call e an out-edge of
t if e receives water from the interior of t through the
direction of steepest descent. Otherwise we call e an
in-edge of t. We call e a valley edge if e is an out-edge
for both of its incident triangles, we call e a transfluent
edge if e is an out-edge for only one incident triangle,
and we call e a ridge edge if it is an in-edge for both of
its incident triangles.

2 Computing the triangles crossed by a trickle
path

Let T be a terrain with n triangles, and let p be
the point for which we want to compute the point
where trickle(p) ends. As we only want to find where
trickle(p) ends, we do not want to explicitly compute
all intersection points between trickle(p) and the terrain
edges. To avoid this, each time we encounter a sequence
of edges that we crossed before, we jump to the first
edge that we have not encountered so far. We can detect
features that we already crossed, because we mark them
the first time we hit them. Next we show how to do the
above.

Define an EV -sequence to be the (ordered) sequence
of terrain edges and vertices crossed by some path on T .
For a point q ∈ trickle(p), let S(q) denote the EV-
sequence crossed by the part of trickle(p) from p to
q. Consider a point q ∈ trickle(p) and let S(q) =
f1f2 · · · fk. Let j be the largest index such that the
feature fj occurs at least twice in S(q), and let i be
the largest index with i < j such that fi = fj . We call
fifi+1 · · · fj the last cycle of S(q), and we call fj+1 · · · fk

the last chain of S(q); see Fig. 1(i). We need the
following lemma.

Lemma 2.1. Let f be a feature in S(q) that only occurs
before the last cycle of S(q). Then trickle(q) cannot
cross f .

Proof. Let S(q) = f1, . . . , fk and let fi, . . . , fj be the
last cycle of S(q). Let e = fi = fj and let ri and

286 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

rj be the intersection points of trickle(p) with e that
correspond to fi and fj , respectively. Let π(p, ri) be
the part of trickle(p) from p to ri and let π(ri, rj) be
the part of trickle(p) between ri and rj . Note that
trickle(q) ⊂ trickle(rj). Define P := π(ri, rj) ∪ rirj .
Then P is the boundary of a simple polygon—see
Fig.1(i), where this polygon is depicted grey. Since
trickle-paths cannot self-intersect and e can be crossed
in only one direction by a trickle path, one of the paths
π(p, ri) and trickle(rj) lies completely inside P while
the other lies completely outside P . This implies that a
feature intersecting π(p, ri) can only intersect trickle(q)
if that feature intersects π(ri, rj) and, hence, occurs in
the last cycle.

Now imagine tracing trickle(p) and suppose we
reach an edge e that we already crossed before. Let
q be the point on which trickle(p) crosses e this time.
After crossing e again, we may cross many more edges
that we already encountered. Our goal is to skip these
edges and immediately jump to the next new edge on
the trickle path. By Lemma 2.1, the already crossed
edges are either in the last cycle or in the last chain of
S(q). In fact, since q lies on an already crossed edge,
the last chain is empty and so the edges we need to skip
are all in the last cycle. Thus we store the last cycle in
a data structure Tcycle—we call this structure the cycle
tree—that allows us to jump to the next new edge by
performing a query FindExit(Tcycle, q). More precisely,
if C = fi, . . . , fk denotes the cycle stored in Tcycle and q
is a point on fi, then FindExit(Tcycle, q) reports a pair
(fexit, qexit) such that fexit is the first feature crossed by
trickle(q) that is not one of the features in C and qexit

is the point where trickle(q) hits fexit. The cycle tree
stores the last cycle encountered so far in the trickle
path, thus we have to update this tree according to the
changes in the last cycle.

Besides the cycle tree we also maintain a list L
which stores the last chain of S(q); these edges may
have to be inserted into Tcycle later on. This leads to
the following algorithm.
Algorithm ExpandTricklePath(T , p)
Input: A triangulated terrain T and a point p on the surface

of T .
Output: The point where trickle(p) ends and the edges

crossed by this path.
1. Initialize an empty cycle tree Tcycle and an empty list

L, and set q := p. If q lies on a feature f , then insert f
into L.

2. while q is not a local minimum and flow from q does
not exit the terrain

3. do � Invariant: Tcycle stores the last cycle of S(q),
� and L stores its last chain.

4. Let f be the first feature that trickle(q) crosses
after leaving from q, and let q′ be the point where

trickle(q) hits f .
5. q := q′

6. if f is not marked
7. then Mark f and append f to L.
8. else Update Tcycle and empty L.
9. Set (fexit, qexit) := FindExit(Tcycle, q),

mark fexit, and set q := qexit.
10. Append fexit to L (which is currently

empty) and update Tcycle.
11. return q.

It is easy to see that the invariant holds after step 1
and that it is maintained correctly, assuming Tcycle is
updated correctly in steps 8 and 10. This implies the
correctness of the algorithm. Next we describe how to
implement the cycle tree.

Consider an EV-sequence S without cycles and
assume that there is some trickle path that crosses the
features in S in the given order. Let first(S) denote the
first feature of S and let last(S) denote its last feature.
We define the trickle function FS : first(S) → last(S)
of the sequence S as follows. If the trickle path of a
point q ∈ first(S) follows the sequence S all the way
up to last(S), then FS(q) is the point on last(S) where
trickle(q) hits last(S). If, on the other hand, trickle(q)
exits S before reaching last(S), then FS(q) is undefined.
We denote the domain of FS (the part of first(S) where
FS is defined) by Dom(FS), and we denote the image
of FS by Im(FS). Since we assumed there is a trickle
path crossing S, both Dom(FS) and Im(FS) are non-
empty. Fig. 1(ii) illustrates these definitions. Note that
Im(FS) is a single point when one of the features in S is
a vertex. The following lemma follows from elementary
geometry.

Lemma 2.2. (i) The function FS(q) is a linear func-
tion, and Dom(FS) and Im(FS) are intervals of first(S)
and last(S), respectively. (ii) Suppose an EV-sequence
S is the concatenation of EV-sequences S1 and S2.
Then FS can be computed from FS1 and FS2 in O(1)
time.

Now consider an EV-sequence S(q) = f1 · · · fk and let
C = fi, . . . , fj be the last cycle of S(q). The cycle tree
Tcycle for C is a balanced binary tree, defined as follows.

• The leaves of Tcycle store the features fi, . . . , fj−1

in order.

• For an internal node ν, let lc[ν] and rc[ν] denote its
left and right child, respectively. Let S[ν] denote
the subsequence of C consisting of the features
stored in the leaves below ν. Furthermore, let
first[ν] and last[ν] denote the features stored in the
leftmost and rightmost leaf below ν, respectively.

287 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Dom(FS)

Im(FS)

q

FS(q)

(ii)(i)

f1

fi = fj

fj+1 fk

ri

rj q

p

Figure 1: (i) The last cycle of the EV-sequence S(q) is fi, . . . , fj , and the last chain is fj+1, . . . , fk. (ii) The
trickle function.

Then ν stores the trickle function FS[ν], and the
trickle function FS′[ν], where S ′[ν] is the sequence
fνf ′ν with fν = last[lc[ν]] and f ′ν = first[rc[ν]].

Lemma 2.3. The function FindExit(Tcycle, q) can be
implemented to run in O(log |C|) time, where |C| is the
length of the cycle stored in Tcycle.

Proof. Imagine following trickle(q), starting at fi, the
first feature in C. We will cross a number of features of
C, until we exit the cycle. (We must exit the cycle before
returning to fi again, because a trickle path cannot cross
the same sequence twice without encountering another
feature in between [3].) Let f∗ be the feature of C that
we cross just before exiting. We can find f∗ in O(log |C|)
time by descending down Tcycle as follows.

Suppose we arrive at a node ν; initially ν is the
root of Tcycle. We will maintain the invariant that f∗

is stored in a leaf below ν. We will make sure that we
have the point qν where trickle(q) crosses first[ν] avail-
able; initially qν = q. When ν is a leaf we have found f∗,
otherwise we have to decide in which subtree to recurse.
The feature f∗ is stored in the right subtree of an inter-
nal node ν if and only if

(i) qν ∈ Dom(FS[lc[ν]]), which means trickle(qν) com-
pletely crosses S[lc[ν]], and
(ii) FS[lc[ν]](qν) ∈ Dom(FS′[ν]), meaning trickle(qν)
reaches first[rc[ν]] after crossing S[lc[ν]].

If these two conditions are met, we set ν := rc[ν] and
qν := FS′[ν] ◦ FS[ν](qν), otherwise we set ν := lc[ν].

Once we have found f∗ and the point q∗ where
trickle(q) crosses f∗, we can compute the exit edge
eexit and point qexit by inspecting the relevant triangle t
incident to f∗: we just have to compute where the path
of steepest descent from q∗ exits t.

It remains to explain how to update Tcycle. First
consider step 8 of ExpandTricklePath. Suppose that,
just before q reaches f , we have S(q) = f1 · · · fk. Let

fi · · · fj be the last cycle of S(q) (which is stored in
Tcycle) and fj+1 · · · fk its last chain (which is stored
in L). We know that f has been crossed before. By
Lemma 2.1 this implies f = fm for some m � i. We
distinguish two cases.

• If m > j, then f occurs in the last chain and,
hence, in L. Now after crossing f the last cycle
becomes fm · · · fkf . So updating Tcycle amounts to
first emptying Tcycle, and then constructing a new
cycle tree on fm · · · fkf , which can be done by a
bottom-up procedure in O(|L|) time.

• If i � m � j then f occurs in the last cy-
cle. Then after crossing f the last cycle becomes
fm · · · fjfj+1 · · · fkf . (In the special case that m =
j, we in fact have fi = fj = f and the last cycle be-
comes fjfj+1 · · · fkf .) We can now update Tcycle by
deleting the features f1 · · · fm−1, and inserting the
features fj+1 · · · fk. (Recall that the last feature
of a cycle is not stored in the cycle tree.) Inserting
and deleting elements from an augmented balanced
binary tree Tcycle can be done in logarithmic time
in a standard manner.

Next consider the updating of Tcycle in step 10. Let
fi · · · fj be the last cycle before step 9, where we jump to
the first new feature crossed by the trickle path. Let fm

be the last feature we cross before we exit the cycle, that
is, the feature f∗ in the proof of Lemma 2.3. Then after
the jump, the last cycle becomes fm · · · fj−1fi · · · fm.
(Essentially, the cycle does not change, but its starting
feature changes.) Thus, to update Tcycle we have to
split Tcycle between fm−1 and fm into two cycle trees
T 1

cycle and T 2
cycle, then merge these cycles trees again but

this time in the opposite order (that is, putting T 1
cycle

to the right of T 2
cycle instead of to its left). Splitting

and merging can be done in logarithmic time, if we use
a suitable underlying tree such as a red-black tree. We
obtain the following theorem.

288 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Theorem 2.1. Let T be a terrain with n triangles
and let p a point on the surface of T . Algorithm
ExpandTricklePath(T , p) traces the trickle path of p in
time O(n log Cmax), where Cmax is the length of the
longest cycle in the EV-sequence of trickle(p).

3 Expanding multiple paths simultaneously

Our main interest is to design an efficient algorithm that
can expand a collection of Θ(n) paths simultaneously.
Our next step towards this direction is to present how we
can expand efficiently a collection of paths that emanate
from the same point. We thus design a subroutine
that expands implicitly upnet(p), the up-network of
a terrain point p; this is the set of all points on T
reachable by a path of locally steepest ascent from p.
Here the directions of locally steepest ascent are defined
as follows. For a point q ∈ T , let Bε(q) be the ball of
infinitesimal radius centered at q. Let Mε be the set of
points of locally maximum elevation in Bε(q)∩T whose
elevation is greater than z(q). Then the directions of
locally steepest ascent at q are given by the vectors from
q to each point in Mε. We are interested in tracing
the up-network implicitly since it plays a key role in the
construction of the watershed of a given point [1].

Next we describe our subroutine that ex-
pands upnet(p). We assume that the point p for which
we want to compute the up-network is a terrain ver-
tex 2. An up-network is not necessarily a path; it can
split and rejoin at terrain vertices. If we remove all ter-
rain vertices from upnet(p), as well as all points that
lie on a ridge edge, then upnet(p) is broken into several
components which we call up-paths. We want our sub-
routine to compute the local maxima and/or the points
at the boundary of T where upnet(p) ends.

Our algorithm is a space-sweep algorithm. Let hz

be the horizontal plane at elevation z and let Pz denote
the set of up-paths intersecting hz. We will maintain Pz

as we move hz upwards from p, meanwhile marking all
the edges and triangles crossed by any of the up-paths.
The difficulty in doing so is that an edge can be crossed
by many up-paths and moreover that a single up-path
can cross an edge many times.

To overcome these problems we proceed as follows.
Let top(π) denote the point up to which we have traced
an up-path π ∈ Pz; the point top(π) lies on or above
hz, and it will always lie on an edge. We associate π
with the edge on which top(π) lies. We denote the set
of up-paths associated with an edge e when the sweep
plane is at elevation z by Pz(e). Let Pz(e) = π1, . . . , πk;
here and in the sequel we number the up-paths in Pz(e)

2If this is not the case we can just add p in V and re-triangulate
the terrain.

in increasing order of the z-coordinate of their tops.
During the algorithm we will maintain each set Pz(e)
in an augmented tree according to this order. How this
bundle tree is implemented will be discussed later. The
idea is now to jump with each πi to the first point where
it crosses a terrain feature that lies completely above hz.
This feature can be either an edge or a vertex and we
call it the exit feature of πi. There can be several up-
paths in Pz(e) with the same exit edge. We call the
collection of all such up-paths a bundle and we will make
sure that we can jump with an entire bundle to the
common exit edge. To facilitate the jumping, we store
the edges currently intersecting hz in a data structure
similar to the cycle tree of the previous section. We call
our new structure a contour structure and we denote it
by Dcontour. Later we will explain how to implement
Dcontour, but first we return to the overall algorithm.

We define an order on the terrain vertices and edges,
that specifies the order in which they are handled. Let
rank(v), the rank of a vertex v, be the z-coordinate
of v, and let rank(e), the rank of an edge e, be the
z-coordinate of the lower endpoint of e. This implies
that when we jump from an edge e, we jump to the
first feature with rank greater than the elevation of hz.
For two features f1, f2 we define f1 ≺ f2 if either
rank(f1) < rank(f2), or f1 is a vertex and f2 is an edge
and rank(f1) = rank(f2). We extend this partial order
to a total order in an arbitrary manner. An event queue
will store vertices and edges in ≺-order. The global
algorithm is now as follows. (When we write “insert
this feature into Q” we actually first check whether the
feature is already present in Q and only do the insertion
when this is not the case.)

Algorithm ExpandUpNetwork(T , p)
Input: A triangulated terrain T and a vertex p of T .
Output: The local maxima/boundary points on T where

upnet(p) ends and the edges crossed by upnet(p).
1. Set z := z(p), initialize Dcontour with all edges inter-

secting hz, and create an event queue Q storing only p.

2. while Q is not empty
3. do Remove from Q the feature f that is minimal in

the ≺-order.
4. Set z := rank(f) and update Dcontour.
5. if f is a vertex, v
6. then if v is a local maximum
7. then output v.
8. else � Expand v:
9. For each up-path π starting at

v, let eπ be the first edge hit
by π. If eπ is incident to v then
insert the other vertex w of eπ

into Q. If eπ is not incident to
v, then add π to P (eπ), insert
eπ into Q, and mark and report
eπ.

289 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

10. if f is an edge, e
11. then if e is an edge on the boundary of T
12. then Output the tops of the paths

stored in Pz(e).
13. else � Jump from e:
14. Split Pz(e) into bundles. For

each bundle b, proceed as fol-
lows: Let fexit(b) be the first
feature crossed by b that lies
completely above the sweep
plane hz. Mark and report any
unmarked edges crossed by b.
Insert fexit(b) into Q, and if
fexit(b) is an edge then add b
to Pz(fexit(b)).

The correctness of the algorithm can be seen as follows.
By induction we can argue that all up-paths are created.
When we trace the first link of an up-path (step 9)
we mark the crossed edge, and when we extend an up-
path as part of a bundle (step 14) we mark all newly
crossed edges. Furthermore, an up-path continues to
be extended until it ends. Hence, all edges crossed
by upnet(p) are marked and all reached local maxima
and boundary points are reported if the steps are
implemented correctly.

Before we explain the various steps of the algorithm
in more detail, we discuss some properties of the paths
and bundles generated by the algorithm. We start with
the next basic lemma.

Lemma 3.1. Let ein and eout be an in-edge and an out-
edge, respectively, of a terrain triangle t. Let p, q ∈ eout

with z(p) > z(q), and let p′, q′ ∈ ein be such that p′p
and q′q are parallel to the direction of steepest descent.
Then z(q′) > z(p′) if and only if the highest vertex of
eout is the lowest vertex of ein.

Proof. Since z(p) > z(q) we know that p lies closer
than q to the vertex incident to eout with the highest
elevation. Let v′ be this vertex.

Let v be the vertex incident to eout and ein. We
consider two cases:

v = v′: Since pp′ and qq′ are parallel, dist(p, v) < dist(q, v)
implies that dist(p′, v) < dist(q′, v). But then we
can only have z(q′) > z(p′) if v is the lowest vertex
of ein.

v 	= v′: Now q lies closer to v on eout and as pp′ and qq′
are parallel then q′ lies on ein closer to v than p′.
Let v′′ be the other vertex incident to ein. v′′ has
higher elevation than v′ otherwise v and v′′ are the
vertices of lowest elevation in t and ein cannot be
an in-edge. p′ lies on ein closer to v′′ than q′ so p′

has a higher elevation than q′.

Consider a point q on an up-path π. We denote the
part of π up to q by tailπ(q). We define rank(tailπ(q))
to be the maximum rank of any edge crossed by tailπ(q).

Lemma 3.2. Let π and π′ be two up-paths that cross the
same transfluent edge e, and let q and q′ be the points
where they cross e. If rank(tailπ(q)) > rank(tailπ′(q′))
then z(q) > z(q′).

Proof. Assume for a contradiction that z(q′) > z(q).
Imagine tracing tailπ(q) and tailπ′(q′) downwards as
long as they follow the same EV-sequence. Let S =
e1, . . . , ek be this EV-sequence. Note that e1 = e. Let
qi and q′i denote the points where tailπ(q) and tailπ′(q′)
cross ei, respectively—see Fig. 2(a).

Consider two consecutive edges ei and ei+1. Then
the lowest vertex incident to ei cannot be the highest
vertex incident to ei+1. Otherwise, ei has a higher
rank than any other edge following it, contradicting
rank(tailπ(q)) > rank(tailπ′(q′)). The assumption
z(q′) > z(q) thus implies by Lemma3.1 that z(q′i) >
z(qi) for all 1 � i � k.

Let t be the triangle entered by tailπ(q) and
tailπ′(q′) after crossing ek, and let v be the vertex of t
not incident to ek. We assume for simplicity that neither
tailπ(q) nor tailπ(q′) crosses v; adapting the argument
is straightforward. Let ek+1 be the edge of t incident to
the two lowest vertices of t. Note that v is one of these
two vertices. Since z(q′k) > z(qk), we know that tailπ(q)
crosses ek+1. Let qk+1 denote the point where this cross-
ing takes place. Since the endpoints of ek+1 are the two
lowest vertices of t, either ek or e′k+1 (the third edge of t)
lies strictly above the interior points of ek+1. But then
any edge crossed by tailπ(qk+1) has a lower rank than
either ek or e′k+1, and the latter two edges are crossed
by tailπ′(q′). Hence, rank(tailπ′(q′)) � rank(tailπ(q)),
and we reach a contradiction.

Lemma 3.2 is used to prove that bundles cannot
interleave, so that splitting a set Pz(e) into bundles
and adding these bundles to the sets Pz(fexit) of their
respective exit features can be done efficiently. Next we
make this non-interleaving property precise.

Suppose that the algorithm jumps from an edge e
in step 14. Note that two or more bundles in Pz(e)
may first follow the same edge sequence for some time
before they split. For an edge e′, we denote by BS(e, e′)
the set of bundles that follow the same edge-sequence S
from e to e′ when Pz(e) is processed. We call BS(e, e′)
a multi-bundle. The tops of the up-paths when they
reach e′ after traversing S are called the tops of the
multi-bundle.

290 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

v

q

q′tailπ(q)

tailπ′(q′)

qi

q′i

e2ek ei

e1

ek+1

(a)

π

t

e′

t′

e1

e2

e′′
B2e′′′

π′

q

q′

(b)

Figure 2: (a) Illustration for the proof of Lemma 3.2. (b) Illustration for the proof of Lemma 3.3.

Lemma 3.3. (i) Let b be a bundle of Pz(e). Then the
paths in b are consecutive in Pz(e).
(ii) Let B1 := BS1(e1, e

′) and B2 := BS2(e2, e
′) be

two multi-bundles crossing the same transfluent edge e′.
Then B1 and B2 do not interleave on e′, that is, there
is a point on e′ separating the tops of B1 from the tops
of B2.

Proof. To prove part (i), let π1 and π2 be the two
outermost up-paths in b. Since up-paths don’t cross,
any up-path starting in between π1 and π2 follows the
same edge-sequence as π1 and π2 up to fexit(b) and,
hence, is an up-path in b.

To prove part (ii), assume without loss of generality
that e1 was handled before e2. Thus rank(e1) �
rank(e2). We will show that no up-path π ∈ B1 can
separate B2, that is, top(π) cannot lie in between the
tops of the outermost paths π1 and π2 in B2. Showing
that no up-path in B2 can separate B1 can be done in
a similar, yet not symmetric, way.

If rank(e1) < rank(e2), then according to
Lemma 3.2 the tops of B2 lie above top(π), so π does
not separate B2.

Now consider the case3 rank(e1) = rank(e2). Let
z be the z-coordinate corresponding to this rank (so
hz is the plane through the lower endpoints of e1 and
e2). Since e′ is a transfluent edge, the paths in B2 and π
cross the same triangle t′ before encountering e′. We can
assume that B2 and π enter t′ through the same edge,
as in Fig. 2(b), otherwise π surely cannot separate B2.
Now imagine following π backwards from e′ as long as
it follows the same edge-sequence as B2. If π lies in
between π1 and π2, the path π must follow the same
edge sequence until either e1 or e2, whichever comes
first. In fact, we can argue that e2 must come first—
otherwise, when π jumped to e1 it would actually have
stopped at e2. We claim that π crosses e2 above any of

3The argument for the case rank(e1) = rank(e2) also applies
when e1 = e2. This special case may happen when an up-path
traverses some edges intersecting hz in a cyclic way. It is then
possible that some up-paths in Pz(e1) cross a sequence S′ of
edges before hitting e′, while others first traverse a cycle of all
edges intersecting hz , before crossing S′ and hitting e′.

the paths πi ∈ B2, which then implies part (ii) of the
lemma. Let t be the triangle that π and the paths in
B2 cross just before e2 and let e′′, e′′′ be the other two
edges incident to t. Suppose π enters t through e′′, as
in Fig. 2(b) . There are two cases.

• First consider a path π′ ∈ B2 that also crosses e′′

when it jumped to e2. Let q be the point where
π crosses e′′, and let q′ be the intersection point
between π′ and e′′. Since tailπ(q) crosses e1 and
tailπ′(q′) does not cross any edge with rank higher
or equal to rank(e2) we have that rank(tailπ(q)) >
rank(tailπ′(q′)). By Lemma 3.2 we get that q
lies above q′ on e′′. Thus the top of π on the
forthcoming encounter with e2 also lies above the
top of π′ on e2 according also to Lemma 3.1, as
claimed.

• Now consider a path π′ that did not reach e2

through e′′, but through edge e′′′. The lower vertex
of e2 is intersected by hz, and e′′ or a vertex of e′′

is intersected by hz since there is a path from e1

that crosses e′′, namely π, before hitting an exit
feature. Then e′′′ must either lie completely below
or above hz, otherwise t is horizontal. Since π′

crosses e′′′ before ever hitting e2 then e′′′ can only
lie below hz. The fact that e′′′ lies below hz and π
crosses e′′ above hz implies that top of π on e2 lies
above the top of π′ on e2, as claimed.

We now return to the algorithm, and show how it
can be implemented efficiently.
The contour structure. Consider a situation where
hz does not contain a vertex. Then hz ∩ T consists
of a number of simple, closed, polygonal curves, called
contours. Let C1, C2, . . . be the contours, and let Si

denote the (cyclic) edge sequence corresponding to Ci.
We give each edge e ∈ Si that can be hit in clockwise
direction by an up-path a label cw, and each edge that
can be hit in counterclockwise direction a label ccw.
Note that ridge edges get two labels, transfluent edges
get one label, and valley edges get no label. We partition
Si into maximal subsequences Sj

i of edges with the

291 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

same label; we call them cw-subsequences and ccw-
subsequences depending on their common label. A
ridge edge will be part of two subsequences (one cw-
subsequence, and one ccw-subsequence), a transfluent
edge will be part of one subsequence, and a valley edge
will not be part of any subsequence.

Each subsequence Sj
i will be stored in an augmented

tree D(Sj
i), which is the same as the cycle tree of

the previous section, except for the following. First,
the trickle functions should be reversed, meaning that
they should specify how an up-path (rather than a
trickle path) can traverse a sequence. Second, each
internal node ν ∈ D(Sj

i) stores a boolean unmarked [ν]
indicating whether any of the edges stored in the subtree
rooted at ν is still unmarked. This way, when we jump
over some edges of Sj

i to the first encountered edge
above the sweep plane, we can mark all unmarked edges
in logarithmic time per unmarked edge.

Inserting an edge or deleting an edge from the
contour can be done in logarithmic time. Moreover,
we can merge and split any of the structures D(Sj

i) in
logarithmic time; this is necessary when we hit a saddle
vertex, for instance, since then two contours split.
The bundle tree. Consider an edge e stored in the
event queue with Pz(e) = π1, . . . , πk. Let topsz(e) =
τ1, . . . , τk be the tops of these up-paths on e. The bundle
tree Tbundle(e) stored with e is a balanced binary tree
that we define as follows.

• The leaves of Tbundle(e) store the tops τ2, . . . , τk−1

in order. Let dist(τi, τj) denote the distance be-
tween the tops τi and τj . A leaf node ν that stores
the top τr also stores the ratio dist(τr,τr+1)

dist(τr−1,τr) . This
ratio remains the same when we expand the bun-
dle upwards as long as the two paths incident to πr

follow the same sequence of edges.

• For an internal node ν, let first[ν] and last[ν] denote
the tops stored in the leftmost and rightmost leaf
below ν, respectively. Let pred[ν] be the top
that comes before first[ν], and suc[ν] the top that
follows last[ν]. Then ν stores the ratios r1[ν] =
dist(first[ν],last[ν])
dist(pred[ν],first[ν]) and r2(ν) = dist(last[ν],suc[ν])

dist(pred[ν],first[ν]) .

• We store with Tbundle(e) the coordinates of τ1 and
τk, and dist(τ1, τ2) and dist(τk−1, τk).

Updates on a bundle tree, and merging and splitting,
can be done in logarithmic time.

Next we show how to compute, given a point p ∈ e,
which tops of Pz(e) lie on each side of p. In other
words, we have to determine the maximum j such
that τj ∈ Pz(e) lies below p. We start by setting
ν := root(Tbundle(e)). We maintain the invariant that

τj is stored in a leaf under ν, or j = 1, or j = k. Define
d := dist(pred[ν], p) and δ := dist(pred[ν],first[ν]).
Initially we have d = dist(τ1, p) and δ = dist(τ1, τ2).
Also define δ1 := dist(pred[ν], last[lc[ν]]) and δ2 :=
dist(pred[ν],first[rc[ν]]). Note that δ1 = δ ·(1+r1(lc[ν]))
and δ2 = δ1+δ·r2(lc[ν]). Using the information stored in
Tbundle(e), we can maintain d, δ, δ1, δ2 in constant time
as we descend in Tbundle(e). To determine to which child
to proceed, we distinguish three cases:

(i) if d < δ1 then τj is stored in a leaf below lc[ν] or it
is τ1, and so we set ν := lc[ν].

(ii) if δ1 < d < δ2 then τj is last(lc[ν]), and we are
done.

(iii) if δ2 < d then τj is stored in a leaf below rc[ν] or it
is τk, and so we set ν := rc[ν].

The process to find τj takes logarithmic time. After
finding τj , we can split Tbundle(e) in logarithmic time
into a bundle tree T 1

bundle for π1, . . . , πj and a bundle
tree T 2

bundle for πj+1, . . . , πk.

Details of the algorithm. Now that we have
described Dcontour and Tbundle, we can explain
steps 4, 9, and 14 of ExpandUpNetwork in more detail.

Step 4: Updating the contour structure. Whenever we
move the sweep plane hz upward to some new elevation
z∗, we have to update Dcontour: we must delete all edges
whose top endpoint now lies on or below hz, and we
must insert all edges whose bottom endpoint lies on hz.
Updates can be done in O(log n), so in total they take
O(n log n) time.

Step 9: expanding a vertex v. The number of up-paths
emanating from v is at most the degree of v. Each up-
path may require updating Q and then updating some
set Pz(eπ), which takes O(log n) time. Hence, the vertex
expansions take O(n log n) time in total.

Step 14: jumping from an edge e. To split Pz(e) into
bundles and jump with each bundle to its exit edge,
we proceed as follows. Let Pz(e) = π1, . . . , πk, let
τ1, . . . , τk ∈ e be the tops of these up-paths, and let Sj

i

denote the subsequence (in the current set of contours)
containing e. Recall that FindExit(D(Sj

i), q) reports,
given a point q on an edge e intersecting the sweep plane
hz, the first feature fexit crossed by q’s up-path that lies
completely above hz.

We first perform a query FindExit(D(Sj
i), τ1), giv-

ing us the exit feature fexit(π1). Let F1 : e → fexit(π1)
be the function that maps a point q ∈ Dom(F1) to the
point on fexit that we reach when we follow an up-path
from q. We modify FindExit(D(Sj

i), q) such that it also

292 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

returns F1 and Dom(F1). Let Tbundle(e) be the tree stor-
ing Pz(e). Using Tbundle(e) we determine the largest j
such that τj ∈ Dom(F1) and we split Tbundle(e) into
two bundle trees T 1

bundle and T 2
bundle, as describe above.

By Lemma 3.3(i) the paths π1, . . . , πj follow the same
edge sequence from e to fexit(π1), thus forming the first
bundle of Pz(e).

We repeat the process with the remainder of Pz(e),
now stored in T 2

bundle, until we have determined all the
bundles, and for each bundle b its exit feature fexit(b).
For each bundle we then mark all newly crossed egdes—
this will take O(log n) per marked edge—and if fexit(b)
is an edge we insert b into Pz(fexit(b)). The latter opera-
tion takes O(log n), since by Lemma 3.3(ii) b does not in-
terleave with the up-paths already stored in Pz(fexit(b)),
which means we can add T 1

bundle to Tbundle(fexit) by one
splitting and two merging operations. In the case that b
hits a ridge edge, we discard b and insert in Q the upper
vertex of this edge.

Theorem 3.1. Algorithm ExpandUpNetwork(T , p)
computes the up-network of a point p on a terrain with
n vertices in O(n log n) time.

Proof. To prove the time bound, it suffices to argue that
there are O(n) bundles generated. When handling an
edge e, a bundle is split off when the paths of Pz(e) enter
a triangle t through one edge e1, but leave t through
different edges e2 and e3. Let v be the common vertex
of e2 and e3. According to Lemma 3.3 the up-paths of
some other set Pz′(e′) do not interleave with Pz(e) on
e1, and thus only one multi-bundle can split around v.

Computing steepest descent/ascent paths be-
tween critical points, and assigning triangles to
watersheds. To construct the surface network graph
of T we need the following more general version of the
algorithm ExpandUpNetwork . Let Psaddle be the set of
the O(n) saddle points on T . Then we can compute
the edge-set of the surface network graph in O(n log n)
time; first we initialise the event queue Q in Step 1 of
ExpandUpNetwork with the points of Psaddle . At every
saddle point, we expand an up-path of steepest ascent
for each wedge in its upper star [7]. When we initiate
an up-path π, we associate π with the critical point v[π]
from which the path emanates. An up-path is termi-
nated when it hits a terrain feature that is a vertex or a
ridge edge. If this feature is a critical point u we add an
edge (v[π], u) in the surface network graph, otherwise
we propagate the tag v[π] to the path of steepest as-
cent that starts from this feature. To compute the rest
of the edges of the graph we use an algorithm Expand-
MultiTricklePath, which is essentially the same as Ex-
pandUpNetwork except that it traces paths downwards

instead of upwards. In the proof of the following the-
orem we also show how we can compute in O(n log n)
time the triangles contained in the watershed of each
local minimum on T .

Theorem 3.2. Let T be a terrain with n triangles and
let P be the set of local minima on T . We can compute
the surface network graph of T , and assign to each
minimum p ∈ P the triangles that are entirely contained
in the watershed of p in O(n log n) time.

Proof. Consider a local minimum p of T and let t be a
triangle that is entirely contained in the watershed of p.
That means that the trickle path from every point in the
interior of t ends in p. For this to happen it can only be
that these trickle paths (except maybe a discrete subset
of these paths) contain also one or more valley edges.
Hence, in order to compute the watershed of p we have
to find which valley edges send water to p and then find
the triangles that send water to these edges. Thus we
proceed as follows.

We use ExpandMultiTricklePath to compute for
each terrain vertex v the first valley edge hit
by trickle(v); the algorithm can also compute the points
where the trickle paths hit their first valley edge. Now
consider a valley edge e whose lowest endpoint sheds
water to a local minimum p, and suppose e is the first
valley edge hit by the trickle paths of vertices v1, . . . , vk.
Let qi ∈ e be the point where trickle(vi) hits e, and as-
sume z(q1) < z(q2) < . . . z(qk). Define q0 and qk+1 to
be the lowest and highest endpoints of e, respectively.
The points qi for 0 � i � k are the lowest vertices of the
strips [14] incident to the edge e. A strip is a maximal
subset of the terrain surface extending between a seg-
ment s of a valley edge and a segment of a ridge edge
such that all up-paths starting from s traverse the same
sequence of edges. For 0 � i � k, let pi ∈ e be a point
that we pick arbitrarily between qi and qi+1. Imagine
tracing an up-path from each pi, leaving in the direc-
tion where trickle(vi) comes from, until a ridge edge is
reached. It can be shown [14] that the triangles con-
taining a point q for which e is the first valley edge hit
by trickle(q), are precisely the triangles crossed by one
of these up-paths. We collect the points pi, qi over all
valley edges in a set Q, and then apply to Q a modified
version of ExpandUpNetworkTriangle. In this version of
the algorithm we associate each terrain edge e with a
tag that indicates if all the trickle paths starting from
points on e end at the same local minimum or not.

Let e be a valley edge and let v the lowest vertex
incident to e. We tag e with the local minimum where
trickle(e) ends. We tag each up-path in Q with the
same local minimum as the valley edge where it comes
from. A triangle t is contained in the watershed of a

293 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

local minimum p if and only if the valley and transfluent
edges of t are intersected only by up-paths in Q that are
tagged with p. If the valley and transfluent edges of t
are intersected by up-paths that have different tags then
t is a border triangle.

For each bundle tree Tbundle that is generated
during the sweep we maintain a tag tag [Tbundle] in the
following manner: if a bundle tree Tbundle stores up-
paths that are all tagged with the same local minimum
p then we have tag [Tbundle] = “p” otherwise this tag has
a symbolic value “Multiple”. We store also such a tag
for every node of Tbundle, maintaining this information
for each subtree of Tbundle. In this way, whenever a
new bundle tree T ′bundle is generated from splitting or
merging other bundle trees then the value of tag [T ′bundle]
can be computed in O(log n) time.

We also change the fields stored with each node ν
of a tree D(Sj

i) ∈ Dcontour slightly. Instead of a boolean
unmarked [ν], we store a tag tag [ν]. If ν is a leaf node,
then ν represents an edge crossed by hz. Let e[ν] be
this edge. The value stored in tag [ν] may be of three
possible kinds:

• If e[ν] has not been crossed so far by any up-path
then tag [ν] stores a symbolic value “None”.

• If e[ν] has been crossed only by up-paths that
were tagged to the same local minimum p then
tag [ν] =“p”.

• If e[ν] has been crossed by up-paths that
were tagged to different local minima then
tag [ν] =“Multiple”.

For an internal node ν ∈ D(Sj
i) let Tν be the

subtree of D(Sj
i) with root ν. If all the leaves in

Tν have the same tag value then tag [ν] is also set to
this value. Otherwise, we distinguish two more cases.
If the only tags that appear in the leaves of Tν are
“Multiple” and “p” for only one local minimum p,
then tag [ν] =“Multiple and p”. In any other case
tag [ν] =“Mixed”. Notice that tag [ν]=“Multiple”
means that each valley edge represented by a leaf node
in Tν has been crossed by up-paths that were tagged
with different local minima. However, tag [ν]=“Mixed”
implies that there are two or more leaf nodes in Tν that
have different flags with each other; for example there
may exist a leaf node ν′ with tag “p” and a leaf node
ν′′ with tag [ν′′]=“q” because e[ν′] was crossed only by
up-paths tagged with “p” while e[ν′′] was crossed only
by up-paths tagged with “q”.

Suppose that we execute a query Find-
Exit(D(Sj

i), τ) for some up-path τ and for some
tree D(Sj

i) ∈ Dcontour that stores a cw or ccw

subsequence. Let Tbundle be the bundle tree that is
generated after this query and which stores τ . Let ν ∈
D(Sj

i) be a node encountered during this query such
that τ was found to traverse symbolically all the edges
stored in the subtree with root ν. We distinguish the
following cases:

◦ If tag [ν]=“None” then we simply store at tag [ν]
the tag value of Tbundle and we do the same for all
the nodes in Tν .

◦ If tag [ν] = “Multiple” then we do not change
anything.

◦ If tag [ν] corresponds to a local minimum p then we
check the tag of Tbundle; If also tag [Tbundle] =“p”
then we do not change anything, otherwise we set
tag [ν] =“Multiple” for all the nodes in Tν .

◦ If tag [ν] =“Multiple and p” then if
tag [Tbundle] =“p” we do not change anything,
otherwise we set tag [ν] =“Multiple” and we
recurse with the children of ν.

◦ If tag [ν] =“Mixed” then if
tag [Tbundle] =“Multiple” we set to “Multi-

ple” the tag for all the nodes in the subtree with
root ν. Otherwise, if tag [Tbundle] =“p” for some
local minimum p we recurse with the children of ν.

According to the above, changing the values of the
tag [·] fields of the nodes takes in total O(log n) steps for
each leaf node that was updated. The tag of each leaf
node in the contour structure will be updated at most
twice during the execution of the algorithm which takes
O(n log n) time in total.

After executing the modified version of ExpandUp-
Network we check for each terrain triangle the tags of
its incident edges and accordingly assign this triangle
to a watershed of a local minimum or classify it as a
border triangle.

We can use a variant of ExpandMultiTricklePath to
compute the exact watershed area for each local minim
on T in O(n2) as explained in the following theorem.

Theorem 3.3. Let T be a terrain with n triangles and
let P be the set of local minima on T . The exact measure
of the area covered by the watershed of each point p ∈ P
can be computed in O(n2) time.

Proof. Let p, q be two points on the interior of an edge
e1 ∈ T and let πp and πq be the up-paths that start from
these points respectively. Suppose that these two up-
paths cross a common sequence of edges S = e1e2 . . . ek

and suppose S does not contain multiple elements. Let

294 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

p′, q′ be respectively the intersection points of πp and πq

with ek. Let L be the part of T that is bounded by pq,
p′q′, πp, and πq. The area of L can be expressed as a
quadratic function GS on the coordinates of p and q. We
call this function the area function of S. It is important
to note that the value of GS does not depend only on
the length of pq but on the exact position of p, q.

To compute the area of the watershed of each
local minimum in P we proceed as follows. We use
ExpandMultiTricklePath to compute for each valley
edge e the intersection points of e with the paths of
locally steepest descent that start from vertices of T .
Let q1(e), q2(e), . . . , qk(e) be the intersections points of
e with these paths. Assume z(q1(e)) < z(q2(e)) < . . . <
z(qk(e)), and let q0(e) and qk+1(e) to be the lowest
and highest endpoints of e respectively. The segments
qiqi+1 for every 0 � i � k bound from below the strips
[14] that are incident to e. As it is shown by Yu et
al [14], each strip is a region entirely contained to the
watershed of some local minimum. Our approach will be
to compute the area of each of the strips simultaneously
and then sum the computed values of the strips that are
associated with the same local minimum. For 0 � i � k,
let pi(e) be a point that we pick in an arbitrary way on
the interior of qi(e)qi+1(e).

For each valley edge e ∈ T we insert all the points
pi(e) that we constructed to an initially empty queue Q.
We maintain for each pi(e) a quadratic function G[pi(e)]
that is initially set to zero, and we apply a new version
of ExpandUpNetwork to Q.

For this version of the algorithm we store two
extra quadratic functions with each node ν of a tree
D(Sj

i) ∈ Dcontour that stores a cw/ccw subsequence.
In detail, node ν stores the quadratic function GS[ν]

and the quadratic function GS′[ν] with S[ν] and S ′[ν]
defined as in Section 2. The following formula shows
how we can compute GS[ν] in constant time given the
satellite data of the children of ν:

GS[ν] = GS[lc[ν]]+GS′[ν](FS[lc[ν]])+GS[rc[ν]](FS′[ν]◦FS[lc[ν]])

Consider a call FindExit(D(Sj
i), τ) for some tree

(D(Sj
i) ∈ Dcontour that stores a cw/ccw subsequence,

and some up-path τ . Let S be the sequence of edges
that τ traversed during this call. In this new version
of FindExit we compute also the area function GS
as a sum of quadratic functions stored with at most
O(log n) nodes in D(Sj

i). Let Tbundle be the bundle that
contains τ . At the the end of the call of FindExit we
add GS to G[pi(e)] for every pi(e) which is the starting
point of an up-path in Tbundle. This takes O(n) time for
each generated bundle instead of O(log n) which was the
case for the basic version of FindExit . Thus the overall

running time of ExpandUpNetwork becomes O(n2).
After the execution of ExpandUpNetwork we asso-

ciate with each local minimum p ∈ P a watershed area
value A[p] initially set to zero. We apply each function
G[pi(e)] to the points qi(e), qi+1(e) and then add the
computed value to A[p], where p is the local minimum
at which trickle(qi(e)) and trickle(qi+1(e)) end. The re-
sulting value A[p] is the exact watershed area of each
local minimum p ∈ T .

4 Concluding Remarks

We presented algorithms that compute efficiently cer-
tain flow-related structures on terrains and their char-
acteristics: the surface network, an approximation of
the watersheds of all local minima and the exact area
for the watersheds of all local minima on the terrain.
Our algorithms are much more efficient in the worst
case than previous approaches that involve computing
explicitly paths of steepest ascent/descent on the ter-
rain. The techniques we developed may also be use-
ful for computing approximate representations of other
flow-related structures. An interesting problem for fu-
ture research is to prove if it is possible to compute
in subquadratic time the exact area for the watersheds
of all local minima on the terrain. A positive solution
to this problem may then provide a general mechanism
to evaluate efficiently also other quantities related to
drainage structures.

References

[1] M. McAllister. A Watershed Algorithm for Triangu-
lated Terrains. In Proc. 11th Canadian Conference on
Computational Geometry, pages 103–106, 1999.

[2] M. McAllister and J. Snoeyink. Extracting Consistent
Watersheds From Digital River And Elevation Data.
Annual Conference of the American Society for Pho-
togrammetry and Remote Sensing, 1999.

[3] M. de Berg, P. Bose, K. Dobrint, M. van Kreveld,
M. Overmars, M. de Groot, T. Roos, J. Snoeyink
and S. Yu. The Complexity of Rivers in Triangulated
Terrains. In Proc. 8th Canadian Conference on
Computational Geometry, pages 325–330, 1996.

[4] M. de Berg, O. Cheong, H. Haverkort, J. Lim and
L. Toma. I/O-Efficient Flow Modeling on Fat Terrains.
In Proc. 10th Workshop on Algorithms and Data
Structures, pages 239–250, 2007.

[5] F. Cazals, F. Chazal, and T. Lewiner. Molecular shape
analysis based upon the morse-smale complex and the
connolly function. In Proc. 19th ACM Symposium on
Computational Geometry, pages 351–360, 2003.

[6] L. Čomić, L. De Floriani and L. Papaleo. Morse-Smale
Decompositions for Modeling Terrain Knowledge. In
Proc. 7th International Conference on Spatial Infor-
mation Theory, pages 426–444, 2005.

295 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[7] H. Edelsbrunner, J. Harer and A. Zomorodian. Hier-
archical MorseSmale Complexes for Piecewise Linear
2-Manifolds. Discrete & Computational Geometry,
30(1):87–107, 2003.

[8] A. Frank, B. Palmer and V. Robinson. Formal Meth-
ods for the Accurate Definition of Some Fundamental
Terms in Physical Geography. In Proc. 2nd Interna-
tional Symposium Spatial Data Handling, pages 585–
599, 1986.

[9] S. Mackay and L. Band. Extraction and Representa-
tion of Nested Catchment Areas from Digital Eleva-
tion Models in Lake-Dominated Topography. Water
Resources Research Journal, 34(4):897–901, 1998.

[10] J. Milnor. Morse Theory. Princeton University Press,
New Jersey, 1963.

[11] O. Palacios-Velez and B. Cuevas-Renaud. Automated
River-Course, Ridge and Basin Delineation from Digi-
tal Elevation Data. Journal of Hydrology, 86:299–314,
1986.

[12] J. Pfaltz. Surface Networks. Geographical Analysis
Journal, 8:77-93, 1976.

[13] D. Theobald and M. Goodchild. Artifacts of TIN-
Based Surface Flow Modeling. In Proc. of GIS/LIS’90,
pages 955–964, 1990.

[14] S. Yu, M. van Kreveld and J. Snoeyink. Drainage
Queries in TINs: From local to global and back again.
In Proc. 7th International Symposium on Spatial Data
Handling, pages 13–1, 1996.

[15] X. Zhu, R. Sarkar and J. Gao. Topological data pro-
cessing for distributed sensor networks with Morse-
Smale decomposition. In Proc. 28th Annual IEEE
Conference on Computer Communications (INFO-
COM09), mini-conference, pages 2911–2915, 2009.

296 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

