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The problem of diffusion in a time-dependent �and generally inhomogeneous� external field is considered on
the basis of a generalized master equation with two times, introduced by Trigger and co-authors �S. A. Trigger,
G. J. F. van Heijst, and P. P. J. M. Schram, Physica A 347, 77 �2005�; J. Phys.: Conf. Ser. 11, 37 �2005��. We
consider the case of the quasi-Fokker-Planck approximation, when the probability transition function for
diffusion �PTD function� does not possess a long tail in coordinate space and can be expanded as a function of
instantaneous displacements. The more complicated case of long tails in the PTD will be discussed separately.
We also discuss diffusion on the basis of hydrodynamic and kinetic equations and show the validity of the
phenomenological approach. A type of “collision” integral is introduced for the description of diffusion in a
system of particles, which can transfer from a moving state to the rest state �with some waiting time distribu-
tion�. The solution of the appropriate kinetic equation in the external field also confirms the phenomenological
approach of the generalized master equation.

DOI: 10.1103/PhysRevE.77.011107 PACS number�s�: 05.60.Cd, 66.10.C-, 51.20.�d, 47.45.Ab

I. INTRODUCTION

Models of continuous time random walks �CTRW� �1�,
for objects that may jump from one point to another in a
generally inhomogeneous medium and which may stay in
these points for some time before the next usually stochastic
jump, are important for the solution of many physical,
chemical, and biological problems. Recently these models
have been applied also in economics and in social sciences
�see, e.g., �2–4��. Usually the stochastic motion of the par-
ticles leads to a second moment of the density distribution
that is linear in time �r2�t��� t. Such type of diffusion pro-
cesses play a crucial role in plasmas, including dusty plasma
�5�, in nuclear physics �6�, in neutral systems in various
phases �7�, and in many other problems. However, in many
systems the deviation from the linear time dependence of the
mean-square displacement have been experimentally ob-
served, in particular, under essentially nonequilibrium condi-
tions or for some disordered systems. The average square
separation of a pair of particles passively moving in a turbu-
lent flow grows, according to Richardson’s law, with the
third power of time �8�. For diffusion typical for glasses and
related complex systems �9� the observed time dependence is
slower than linear. These two types of anomalous diffusion
obviously are characterized as superdiffusion and subdiffu-
sion.

The generalized master equation for the density evolution,
which describes the various cases of normal and anomalous
diffusion has been formulated in �10,11� by the introduction
of the specific kernel function �PTD� W�r ,r� ,� , t−�� de-
pending on two times, which connects in a linear way the
density distributions f of the stochastic objects �or particles�
for the points r� at moment � and r at moment t. The ap-
proach suggested in �10,11� clearly demonstrates the relation
between the integral approach and the fractional differentia-

tion method �12� and permits one to extend �in comparison
with the fractional differentiation method� the class of sub-
and superdiffusion processes, which can be successfully de-
scribed. On this basis different examples of superdiffusive
and subdiffusive processes were considered in �11� for the
various kernels W and the mean-squared displacements have
been calculated. The idea of the generalized master equation
with two times �10,11� for diffusion in coordinate space has
been recently used in �13� for the calculation of average dis-
placements in the case of a time-dependent homogeneous
external field. In �13� the jumps of the particles are assumed
to be instantaneous, all particles are practically trapped and
the electric field does not act on the waiting probability,
which is independent of the external �electric� field. In these
conditions the characteristic time scale of the external field
has to be large �in comparison with the other time scales of
the problem� and the probability of jumps is connected lo-
cally in time with the external field. As a result, in the diffu-
sion equation the external field is placed outside of the inte-
gral on time.

It should be noted, however, that in the general case of the
problem of diffusion in a time-dependent external field the
force is placed under the integral over � �see the semiphe-
nomenological consideration in �14� and Eqs. �15� and �16�
below�.

The general phenomenological approach to this problem
has been formulated in �14�.

This paper is motivated by the necessity to describe in
more detail the influence of time-dependent and space-
dependent external fields on the continuous-time random
walks. The equation formulated in �10,11� is appropriate for
this purpose and offers the opportunity for consideration of
CTRW for both cases: long-tail space behavior of the PTD
function, as well as for the fast decay of PTD function in
coordinate space, when the Fokker-Planck-type expansion is
applicable. For simplicity we consider in this paper only the
last case.*strig@gmx.net
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II. GENERALIZED MASTER EQUATION

Let us start from the generalized master equation with two
times �10,11�,

f�r,t� = f�r,t = 0� + �
0

t

d�� dr�	W�r,r�,�,t − ��f�r�,��

− W�r�,r,�,t − ��f�r,��
 . �1�

Equation �1� can be represented in an equivalent form, more
similar to the structure of the Fokker-Planck equation, where
the initial condition is absent,

�f�r,t�
�t

=
d

dt
�

0

t

d�� dr�	W�r,r�,�,t − ��f�r�,��

− W�r�,r,�,t − ��f�r,��
 �2�

or

�f�r,t�
�t

= �
0

t

d�� dr�	P�r,r�,�,t − ��f�r�,��

− P�r�,r,�,t − ��f�r,��
 , �3�

where the PTD function P�r ,r� ,� , t−�� is given by

P�r,r�,�,t − �� � 2W�r�,r,�,t − ����t − ��

+
�

�t
W�r�,r,�,t − �� �4�

Apparently, different—but equivalent—forms of the master
equation exist with different kernels, although connected
analytically. The form �3� is more similar to the form intro-
duced in the papers �14–16�, where memory effects have
been considered in a very general form on the basis of a
master equation with one time argument t−�, which de-
scribes the retardation �or memory� effects. It should be
stressed, that in �16�, in particular, the straightforward con-
nection of the generalized master equation �GME� with the
usual CTRW model has been established. In the framework
of the specific multiplicative regime of the function

P�r ,r� , t−��= P̃�r ,r����t−�� the dependence of P�r ,r�� and
��t−�� on the waiting time distribution and the jump length
distribution is quite clear �see Eqs. �9� and �10� in �15� �. The
same applies to the function W, which is connected with P
by Eq. �4�. Similar problems for the kernel, depending on
one time variable, have been discussed in �17�. In our further
consideration we will derive the memory function as a func-
tion of the waiting time following the same line as in the
papers �14–16� and we find the additional retardation func-
tion, which is the retardation of the mobility under the action
of an external force �physically similar to dispersion of con-
ductivity after Fourier transformation in time�. A description
of this retardation function depends on the specific model for
the mobility and this will be considered in a separate paper.
The argument t−� describes the retardation �or memory� ef-
fects, which can be connected in the particular case of mul-

tiplicative PTD function W�r ,r� ,� , t−���W̃�r ,r� ,����t−��
with, for example, the probability for particles to stay during
some time at a fixed position before moving to the next

point. An equation with retardation, with the W function de-
pending only on one time argument t−�, has been suggested
in �15� and applied in �16� to the case of the multiplicative
representation of the PTD function. In general W is not a
multiplicative function in the sense mentioned above and,
what is more important, is a function of two times t and t
−� �10�. It should be mentioned that the closed form of the
equation for the density distribution is an approximation. In
some cases the exact solution for density distribution can be
found �see, e.g., �16–19��, when a closed equation for the
density distribution does not exist or gives a too rough ap-
proximate result. Nevertheless, in many practical situations
Eqs. �1� or �3� are sufficiently exact and permit to describe
various experimental data.

Let us consider the role of appearance of the two time
arguments in the generalized master equation, Eq. �1�, for the
case of a time-dependent external force F�r , t�. To simplify
the consideration we can investigate the case of fast decay of
the kernel W�r ,r� ,� , t−���W�u ,r ,� , t−�� as a function of
u=r−r�, when an expansion in the spirit of Fokker-Planck
can be applied. In this case Eq. �1� takes the form �10,11�

f�r,t� = f�r,t = 0� + �
0

t

d�
�

�r�
�A��r,�,t − ��f�r,��

+
�

�r�

�B���r,�,t − ��f�r,��� , �5�

where the functions A��r ,� , t−�� and B���r ,� , t−�� are the
functionals of the PTD function �the indices are equal � ,�
=xs in s-dimensional coordinate space�,

A��r,�,t − �� =� dsuu�W�u,r,�,t − �� �6�

and

B���r,�,t − �� =
1

2
� dsuu�u�W�u,r,�,t − �� . �7�

Equation �5� can be rewritten naturally in a form similar to
Eq. �2�, but now for the Fokker-Planck type approximation,

�f�r,t�
�t

=
d

dt
�

0

t

d�
�

�r�
�A��r,�,t − ��f�r,��

+
�

�r�

�B���r,�,t − ��f�r,��� . �8�

We suggest that the PTD function is independent of f�r , t�,
therefore the problem is linear.

III. INFLUENCE OF THE EXTERNAL FIELDS

One of the main sources of inhomogeneity is an external
field, which also provides the prescribed dependence of the
PTD function on �. In other words we can suggest, in the
particular case considered, that the dependence of
W�u ,r ,� , t−�� on the arguments r ,� is connected with a
functional dependence on the external field
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W�u,r,�,t − �� = W„u,t − �;F�r,��… . �9�

If an external field is absent the PTD function is a function of
the modulus u�u, which implies that A�=0 and B
=���B0�t−�� with

B0�t − �� =
1

2s
� dsuu2W0�u,t − �� . �10�

For relatively weak external fields the functional �9� can
be linearized as

W„u,t − �;F�r,��… = W0�u,t − �� + W1�u,t − ��„u · F�r,��… .

�11�

The functions W0�u , t−�� and W1�u , t−�� are equal to
W�u , t−� ;F=0� and the functional derivative �W(u , t
−� ;F�r ,��) /�(u ·F�r ,��)�F=0, respectively. Then the func-
tions A� and B�� take the form

A��r,�,t − �� =
1

s
F��r,�� � dsuu2W1�u,t − ��

� F��r,��L�t − �� , �12�

where L�t−�� is given by

L�t − �� =
1

s
� dsuu2W1�u,t − �� �13�

and

B���r,�,t − �� = ���B0�t − �� . �14�

The generalized diffusion equation, Eq. �8�, takes the form

�f�r,t�
�t

=
d

dt
�

0

t

d��L�t − �� � „F�r,��f�r,��…

+ B0�t − ���f�r,��� . �15�

In general this equation contains two different functions B0
and L depending on the argument t−�. For the case of a
time-independent inhomogeneous one-dimensional external
field and in the particular case of the kernel dependence on
time L�t−����t−��	−1 and B0�t−����t−��	−1 �0
	
1�
we arrive at the result, obtained in �20,21� for the fractional
Fokker-Planck equation. This kind of time dependence for
the kernel is typical for the subdiffusion processes.

The time-dependent mobility for the diffusion process �in
the particular case of exponentially oscillating time-
dependent external field and a time-independent diffusion
coefficient� has been introduced in �22�.

If the functional W(u , t−� ;F�r ,��) is multiplicative,

namely, W(u , t−� ;F�r ,��)=W̃(u ;F�r ,��)��t−��, Eq. �15�
can be simplified to

�f�r,t�
�t

=
d

dt
�

0

t

d���t − ���D�f�r,�� − b � „F�r,��f�r,��…� .

�16�

Here b and D are constants, determined by the relations

b = −
1

s
� dsuu2W̃1�u� �17�

with W̃1�u�=�W̃(u ;F�r ,��) /�(u ·F�r ,��)�F=0 and

D =
1

2s
� dsuu2W̃0�u� . �18�

As is easy to see for the external field F�r ,��, which change
slow in time �comparing with other characteristic time scales
of the problem, e.g., with the time scale of the retardation
function ��t−��� Eq. �16� coincides for the one-dimensional
case with the diffusion equation in �13�.

The physical meaning of the multiplicative structure of
the functional W is that the independence of the time delay of
the random walkers is independent of the external field. The
dimensionless function ��t� in this simple case is associated
with the hopping-distribution function ��t�=��*��t� intro-
duced in the master equation by Scher and Montroll �15�,
with ��1 /�0 ��0 is the characteristic waiting time for the
hopping distribution�. Laplace transformations of these func-
tions ��z� and �*�z� relate them as follows:

��z� =
�*�z�

1 − �*�z�
. �19�

For an exponential hopping-time distribution ��t�
=� exp�−�t�, where ��1 /�0, we have �*�z�=1 / �1+z�,
��z�=1 /z, and ��t�����t�=1. In this case Eq. �16� reduces
to the usual diffusion equation in an external field with dif-
fusion coefficient D and mobility b,

�f�r,t�
�t

= D�f�r,t� − b � „F�r,t�f�r,t�… . �20�

IV. HYDRODYNAMIC APPROACH

In order to better understand the situation on the basis of
a nonphenomenological approach, let us consider the
charged particles with an inhomogeneous density in the ex-
ternal electrical field in the hydrodynamic approximation.
The equation for the density n�x , t� reads

�

�t
n�x,t� + div j�x,t� = 0, �21�

where j�x , t�=n�x , t�v�x , t� and v�x , t� is the hydrodynamic
velocity. In the hydrodynamic approximation, when the
charged particles �with charge e and mass m� move in the
medium under the action of an external time-dependent elec-
trical field E�x , t� the equation of motion has �for constant
temperature T� the form

�

�t
�n�x,t�vi�x,t�� + �k�n�x,t�vi�x,t�vk�x,t��

= −
T

m
�in�x,t� +

e

m
Ei�x,t�n�x,t� − n�x,t�vi�x,t� .

�22�
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Here  is the effective frequency of collisions with the par-
ticles of the thermostat. In the linear by v approximation the
solution of Eq. �23� gives the closed expression for the flux j
via the density n�x , t�. This solution for time-independent 
has the form

j�x,t� = �
−�

t

dt� exp�− �t − t���� e

m
�n�x,t��E�x,t���

−
T

m
� n�x,t��� . �23�

Inserting this value of j�x , t� in Eq. �21� leads to the diffusion
equation

�n�x,t�
�t

= − �
−�

t

dt�	D�t − t���n�x,t��

− e��t − t�� � �n�x,t��E�x,t���
 , �24�

where in the case considered the “effective diffusion func-
tion” and “effective mobility function” are given by D�t�
�T exp�−t� /m and ��t��exp�−t� /m, respectively. If the
functions E�x , t� and n�x , t� change in time very slowly �the
characteristic time for its change ��1 /�, Eq. �24� reduces
to the standard form of the diffusion equation

�n�x,t�
�t

= D0�n�x,t� − e�0 � �n�x,t�E�x,t�� . �25�

Here we introduced the notations D0=T /m for the diffusion
coefficient and �0=1 /m for the mobility coefficient.

Equation �24� represents a particular case �in hydrody-
namic approximation� of the general relations between the
fluxes and acting thermodynamical and the external forces.
Of course, the time integration in Eq. �24� can be considered
in the normal hydrodynamical conditions as an excess of
accuracy due to the inequality ��1 /. For us, however, the
most important result is the general structure of Eq. �24�,
which demonstrates that the time integral includes the elec-
trical field E�x , t�. The structure of Eq. �24� confirms the
result of our consideration on the basis of the generalized
master equation for diffusion �14�, where the time-dependent
electric field is included in the time integration.

Since the equilibrium density in the external time-
independent potential ��x� has a form of the Boltzmann dis-
tribution n�x��exp�−��x� /T�, the diffusion and mobility co-
efficients satisfy the Einstein relation D0=�0T. In the
considered case the same statement is valid also for the ef-
fective diffusion and mobility functions D�t� and ��t�,
namely D�t�=T��t�. The general structure of the diffusion
equation �24� is similar to the phenomenological equation
�16� �with the appropriate renormalization of the kernel,
which eliminates the external derivative of the time integral�.

V. KINETIC APPROACH

Let us start with the kinetic equation for the distribution
function in an electric field

�f�p,x,t�
�t

+ v
�f�p,x,t�

�x
+ eE�x,t�

�f�p,x,t�
�p

= Ist�p,x,t� .

�26�

Here Ist is some kind of “collision integral,” which can de-
scribe in general, as we show below, not only real collisions
of particles, but also �for the appropriate problems, e.g.,
moving of the alive objects� the more complicated processes,
as the displacements with some pauses, etc.

For simplicity we consider the one-dimensional case s
=1, but the generalization for the cases s=2,3 is trivial. The
distribution function f�p ,x , t� is normalized to the density
n�x , t�,

� dpf�p,x,t� = n�x,t� . �27�

For the case when the collision integral conserves the total
number of particles, i.e.,

� dpIst�p,x,t� = 0, �28�

integration by p leads to the continuity equation

�n�x,t�
�t

+ div j�x,t� = 0. �29�

To calculate the flux j�x , t� let us use the Fokker-Planck
approximation for the collision integral Ist�p ,x , t� and rewrite
for this case Eq. �26� in the form

�f�p,x,t�
�t

+ v
�f�p,x,t�

�x
+ eE�x,t�

�f�p,x,t�
�p

=
�

�p
��pf�p,x,t� + m2D̃

�f�p,x,t�
�p

 . �30�

We suggest that the friction � and the diffusion D̃ coeffi-
cients in velocity space are the constants, which satisfies the

Einstein relation �T=mD̃. Integrating Eq. �30� by p leads to
the expression

�j�x,t�
�t

+
�

dx
�� dpv2f�p,x,t�� −

e

m
E�x,t�n�x,t� = − �j�x,t� .

�31�

If we assume that f�p ,x , t� has the quasiequilibrium form
f�p ,x , t�=n�x , t�f0�p�, then we arrive at the following solu-
tion of Eq. �31� similar to Eq. �23�,

j�x,t� = �
−�

t

dt� exp�− ��t − t���� e

m
�n�x,t��E�x,t���

− �v2� � n�x,t�� , �32�

where for the Maxwellian distribution f0�p�=FM�p� in the
one-dimensional �s=1� case �v2�=T /m. In this case the dif-
fusion equation is equivalent to Eq. �24� obtained in the hy-
drodynamic approach, but with the change →� in the func-
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tions D�t�, ��t�, as well as in the coefficients D0 and �0. The
function D�t� is naturally connected with the time-dependent
conductivity ��t�=e2n0��t�, where n0 is the average density
of the particles. In the simple case considered the respective
frequency-dependent conductivity ���� is

���� =
ie2n0

m�� + i�
. �33�

Let us now consider the alternative case of the kinetic
equation �26� when the collisions are negligible �Ist=
−�f�p ,x , t� with �→0�. We also suppose that the electric
field is weak and can be considered as a perturbation. To find
the evolution of the density we split the distribution function
in two parts: f�p ,x , t�= f0�p ,x , t�+ f1�p ,x , t�, where the per-
turbation f1 is proportional to the electric field E�x , t�. The
respective kinetic equations are

�f0�p,x,t�
�t

+ v
�f0�p,x,t�

�x
= 0, f0 = f0�x − vt,p� , �34�

�f1�p,x,t�
�t

+ v
�f1�p,x,t�

�x
+ eE�x,t�

�f0�p,x,t�
�p

= − �f1�p,x,t� .

�35�

The continuity equations follow from Eqs. �34� and �35�:

�n0�x,t�
�t

+ div j0�p,x,t� = 0, �36�

where j0�x , t� describes the flux without the electrical field
and

�n1�x,t�
�t

+ div j1�x,t� = 0, �37�

where j1�x , t� describes the perturbation of the flux in the
lowest order of the electric field.

The solution of Eq. �35� reads

f1�p,x,t� = − e�
−�

t

dt� exp�− ��t − t���
�f0�x − vt,p�

�p

�E�x − v�t − t��,t�� . �38�

Now we can calculate j�x , t�= j0�x , t�+ j1�x , t�,

j0�x,t� =� dpvf0�x − vt,p� , �39�

j1�x,t� =� dpvf1�p,x,t�

= − e�
−�

t

dt� exp�− ��t − t���

�� dpv
�f0�x − vt,p�

�p
E�x − v�t − t��,t�� . �40�

The latter equation can be rewritten as

j1�x,t� = − e�
−�

t

dt� exp�− ��t − t���

�� dx�� dpv
�f0�p,x� − vt��

�p

���x − x� − v�t − t���E�x�,t�� �41�

��
−�

t

dt� exp�− ��t − t���

�� dx���x,x�,t,t��E�x�,t�� . �42�

In Eq. �42� the function ��x ,x� , t , t�� is equal to

��x,x�,t,t�� = − e� dpv
�f0�x − vt,p�

�p
��x − x� − v�t − t��� ,

�43�

in which f0�x−vt , p� can also be written as f0�x�−vt� , p�.
The function ��x ,x� , t , t�� takes into account the processes of
space and time dispersion for the inhomogeneous and time-
dependent distribution f0= f0�x−vt , p�.

Let us choose the distribution function f0 in the natural
form f0�x−vt , p�=n0�x−vt�f0�p�. Then finally we arrive at
the expressions for the fluxes j0�x , t� and j1�x , t�,

j0�x,t� =� dpvn0�x − vt�f0�p� , �44�

j1�x,t� = − e�
−�

t

dt� exp�− ��t − t���

�� dx�� dpv
��f0�p�n0�x − vt��

�p

��x − x� − v�t − t���E�x�,t�� . �45�

The expression for ��x ,x� , t , t�� can be rewritten in the
form

��x,x�,t,t�� = − e� dpv�n0�x − vt�
�f0�p�

�p

−
t

m
f0�p� � n0�x − vt���x − x� − v�t − t��� .

�46�

Here and in what follows the operator �x acts only on the
function n0 placed behind it. After integration by v we find
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��x,x�,t,t�� = − em
x − x�

�t − t��2�n0��x�t − xt��/�t − t���

�� �f0�p�
�p

�
p=m�x−x��/�t−t��

−
t

m
�

� n0��x�t − xt��/�t − t���f0��p��p=m�x−x��/�t−t�� .

�47�

If E�x , t� is an oscillating function proportional to sin��t�
or cos��t� or a function damping in time, the argument x
−vt under the integral in Eq. �45� equals to �x�t−xt�� / �t
− t��. The expression of the particle density n0�x−vt� �due to
the presence of the � function� in the limit of large t can be
taken equal to x�. In this case the function � can then in good
approximation be written in the form

��x,x�,t,t�� = − em
x − x�

�t − t��2�n0�x��� �f0�p�
�p

�
p=m�x−x��/�t−t��

−
t

m
�f0�p��p=m�x−x��/�t−t��

��xn0�x��1 +
t�

t
 − x

t�

t
�� . �48�

Therefore, the current j1�x , t� for large t takes the form

j1�x,t� = − e�
−�

t

dt� exp�− ��t − t���

�� dx�� dpv�n0�x��
�f0�p�

�p

+
t�

m
��x�n0�x���f0�p� � ��x − x� − v�t

− t���E�x�,t�� . �49�

Then we arrive at the approximate expression of the “hy-
drodynamic” electrical flux in the collisionless case

j1�x,t� = − e�
t0

t

dt� exp�− ��t − t��� � dx�

� �n0�x�����x − x�,t − t�� +
t�

m
�x�n0�x��

����x − x�,t − t���E�x�,t�� , �50�

where the generalized mobilities are given by

���x,t� = −� dpv
�f0�p�

�p
��x − vt� �51�

and

���x,t� = −� dpvf0�p���x − vt� . �52�

We can also introduce the mobility operator �̃

j1�x,t� = e�
−�

t

dt�� dx� exp�− ��t − t���

�E�x�,t���̃�x,x�,t,t��n0�x�� , �53�

where �̃�x ,x� , t , t�� equals

�̃�x,x�,t,t�� = −� dpv��x − x� − v�t − t���

�� �f0�p�
�p

+ f0�p�
t�

m
�x� . �54�

Therefore, Eq. �37� for the flux perturbation associated
with the presence of the weak electrical field in the collision-
less limit has the form

�n1�x,t�
�t

+ e�x�
−�

t

dt�� dx� exp�− ��t − t���

�E�x�,t���̃�x,x�,t,t��n0�x�� = 0. �55�

If the space dispersion is negligible �̃�x ,x� , t , t�����x
−x�� and Eq. �55� transforms into

�n1�x,t�
�t

+ e�
−�

t

dt� exp�− ��t − t����̃�t,t��

��x�E�x,t��n0�x�� = 0. �56�

Finally, for the case of slow changing in space of the density
profile n0�x�, when the parameter �0�v� /L�1 ��v�, �0 and L
are the average velocity of the particles, the characteristic
time scale for the electric field and the characteristic space
scale for the density n0�x�, respectively� the second term in
brackets in Eq. �54� can be omitted and the operator �̃ modi-
fies to the function �51� ���x−x� , t− t��,

�̃�x − x�,t − t�� → ���x − x�,t − t��

= −� dpv��x − x� − v�t − t���
�f0�p�

�p
.

�57�

Then the diffusion equation �55� simplifies to the form typi-
cal for the case with an electric field present,

�n1�x,t�
�t

+ e�x�
−�

t

dt�� dx� exp�− ��t − t���E�x�,t��

����x − x�,t − t��n0�x�� = 0. �58�

Evidently the function ���x , t� is simply connected with
the conductivity ��x , t� �in the case considered with
the collisionless conductivity� by the equality ��x , t�
=en0�x����x , t�.

This consideration provides the evident answer on how
the time-dependent electrical field should be included in the
diffusion equation and permits us to make the choice be-
tween the different forms of the diffusion equations consid-
ered earlier �14�. The structure of Eqs. �24�, �32�, and �58�
confirms the result of the generalized diffusion equation, in-
troduced in the papers �10,11� �on the example of some par-
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ticular form of the kernel in the kinetic approximation con-
sidered above�.

VI. STOP-MOVE COLLISIONS

Now let us consider on the kinetic level the problem of
transport for the particles, which can move in a time-
dependent external electric filed as the quasifree particles,
but can be trapped and stay in the rest state during some
time. The similar problem has been consider for the time-
independent external field on the basis of the generalized
Fokker-Planck equation in �23�.

Let us introduce a “collision” integral I, that takes into
account the specific “jumps” of the particles,

I = − f�p,x,t� + �
t0

t

dt���t − t��f�p,x,t�� . �59�

Therefore the kinetic equation reads

�f�p,x,t�
�t

+ v
�f�p,x,t�

�x
+ eE�x,t�

�f�p,x,t�
�p

= − f�p,x,t� + �
t0

t

dt���t − t��f�p,x,t�� . �60�

This “stop-move” collision integral describes the moving
particles, which may change from a “moving” state to the
“rest” state and vice versa. We assume that the change from
the “rest” state to “moving” state takes place with the recov-
ering of the momentum distribution. The momentum distri-
bution of the moving particles which leave the phase volume
	dx ,dp
 at the moment t� at the point of the phase space x , p
is equivalent to the momentum distribution of the particles,
which arises from the “rest” state at the position x for t� t�,
with the delay time t− t�. More complicated situations will be
considered in a separate study. The function ��t� character-
izes the probability for the particles to stay in a state of rest
during a time span t− t�.

Let us consider the conservation laws for the kinetic equa-
tion with such jumps. The continuity equation reads

�nf�x,t�
�t

+ div j�x,t�

� � dpI�p,x,t�

= − nf�x,t� + �
t0

t

dt���t − t��nf�x,t�� .

�61�

We have distinguished between the “flying” particles and
the particles at “rest” state. The function f�p ,x , t� is the dis-
tribution of the “flying” particles �p�0�. We also introduce
the density of the “rest” �p=0� particles nr�x , t�. We use the
“stop-move collision” term for the process of transferring
between the “flying” and the “rest” states.

The conservation of the total number of particles reads

� dx�nf�x,t� + nr�x,t�� = N ,

N � Nf + Nr, �62�

where N is the constant. There is also the evident equality

�nr�x,t�
�t

= nf�x,t� − �
t0

t

dt���t − t��nf�x,t�� . �63�

From Eqs. �60� and �63�, it follows that

�nr�x,t�
�t

+
�nf�x,t�

�t
+ div j�x,t� = 0. �64�

Equations for the numbers of “free” and “rest” particles are

�Nf�t�
�t

= − Nf�t� + �
t0

t

dt���t − t��Nf�t�� , �65�

�Nr�t�
�t

= Nf�t� − �
t0

t

dt���t − t��Nf�x,t�� . �66�

Integration of Eq. �64� by x leads to Eq. �62�.
Now let us integrate the kinetic equation by p with the

multiplier p. The relevant equation of motion reads �dimen-
sion s=1�

�j�x,t�
�t

+� dpv2�f�p,x,t�
�x

−
eE�x,t�

m
nf�x,t�

= − j�x,t� + �
t0

t

dt���t − t��j�x,t�� . �67�

We will assume that the integral term with f�p ,x , t� in Eq.
�67� can be represented as d�t��nf�x , t� /�x. This representa-
tion is exact for such a form of the distribution function

f�p ,x , t�= f̃�p , t�nf�x , t�, for example. The function d�t� in
this case equals

d�t� = �� dpv2 f̃�p,t� . �68�

For the Maxwellian distribution d�t� is time independent
d�t�=d=T /m, where T is the temperature. In general d�t�
= �v2� is the average velocity of the “flying” particles. Equa-
tion �67� represents the integrodifferential connection of
j�x , t� and nf�x , t�,

�j�x,t�
�t

+ d�t�
�nf�x,t�

�x
−

eE�x,t�
m

nf�x,t�

= − j�x,t� + �
t0

t

dt���t − t��j�x,t�� . �69�

In order to solve this equation we use the adiabatic switched
process for “hopping collisions” �t0=−�� and the Fourier-
transform of Eq. �69� by time

	− i� + �1 − �����
j�x,�� = ��x,�� , �70�

where
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���� = �
0

�

d� exp�i������� , �71�

and we denote

��x,t� = − d�t�
�nf�x,t�

�x
+

eE�x,t�
m

nf�x,t� . �72�

The solution for the flux is then

j�x,t� =� d�

2�

exp�− i�t�
− i� + �1 − �����

��x,�� �73�

or

j�x,t� =� dt�� d�

2�

exp�− i��t − t���
i� − �1 − �����

��d�t��
�nf�x,t��

�x
−

eE�x,t��
m

nf�x,t��� . �74�

The flux can be rewritten by introducing the function ��t
− t��,

j�x,t� =� dt���t − t���d�t��
�nf�x,t��

�x
−

eE�x,t��
m

nf�x,t�� ,

�75�

where

��t − t�� � � d�

2�i

exp�− i��t − t���
� + i�1 − �����

. �76�

Inserting this flux into the continuity equation we find the
diffusion equation in the form

�nf�x,t�
�t

=� dt���t − t���d�t���nf�x,t��

−
e

m
� �E�x,t��nf�x,t��� , �77�

which, for time-independent d, is the particular case of Eq.
�24�, based on the general master equation for diffusion, in-
troduced in �1,2�. An essential feature of the diffusion pro-
cess is the character of the influence of the time-dependent
external field placed in Eq. �77� under the time integral. This
equation coincides formally with the hydrodynamic equation
�24� if ��t− t�� is the retarded function ���t− t��=0 for t
 t��.

VII. CONCLUSIONS

We show that the generalized master equation with two
times, which has been introduced in �10,11�, can describe the
influence of inhomogeneous and time-dependent external
fields on the diffusion processes. Linearization of the general
master equation in the external field leads to essential sim-
plifications. In this case the diffusion processes depend, in
general, on two different functions of time, which describe
retardation, or frequency-dependent mobility and diffusion,
in particular, due to the finite time of occupation and trans-
ferring particles in space in the presence of the external field.
Relations with simpler models are established. The rigorous
consideration on the basis of the hydrodynamic approach and
various kinetic equations confirms the results of the phenom-
enological approach of the generalized master equation. Of
course, the kernel functions W or P can only be defined in a
concrete way in the framework of particular physical models,
e.g., on the basis of kinetic theory with specific collision
integrals, describing the stochastic motion with retardation.
We also introduced the stop-move collision integral, which
describes the processes of diffusion with particles continu-
ously changing from moving to resting and back. The appro-
priate kinetic equation is solved for a time-dependent exter-
nal field, which also confirms the results of the diffusion
master equation approach. This type of motion is very com-
mon in Nature and the introduced collision integral can eas-
ily be generalized to more complex processes of stop-move
motion. The analysis presented in this paper opens up oppor-
tunities to consider a wide class of the problems of normal
and anomalous transport in external fields on the basis of the
generalized master equation with two times. The Einstein
relations in general are not applicable to the case of the non-
stationary external field, but in the particular cases can be
valid for the time-dependent diffusion and mobility func-
tions, as it was found above in the present paper.
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