

Integration sequencing in complex manufacturing systems

Citation for published version (APA):
Boumen, R., Jong, de, I. S. M., Mestrom, J. M. G., Mortel - Fronczak, van de, J. M., & Rooda, J. E. (2006).
Integration sequencing in complex manufacturing systems. (SE report; Vol. 2006-02). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/50cbff37-696e-4735-8e2c-22003b3171f4

Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://seweb.se.wtb.tue.nl/

SE-Report: Nr. 2006-02

Integration sequencing in

complex manufacturing systems

R. Boumen, I.S.M. de Jong, J.M.G. Mestrom,
J.M. van de Mortel-Fronczak and J.E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2006-02
Eindhoven, October 2006

SE Reports are available via http://seweb.se.wtb.tue.nl/sereports

Abstract
The integration and test phase of complex manufacturing machines, like an ASML [1] litho-
graphic machine, are expensive and time consuming. The tests that can be performed at a
certain point within the integration phase depend on the modules that are integrated. There-
fore, the test sequence depends on the integration sequence. Thus, by optimizing the integra-
tion sequence of these modules, more tests can be done in parallel and valuable integration
and test time can be reduced. In this paper, we introduce a mathematical model to describe
an integration sequencing problem and we propose an algorithm to solve this problem opti-
mally. Furthermore, we propose two heuristics to solve large industrial problems in limited
computation time. Also, we show with a case study within the development of a lithographic
machine that the described method can be used to solve real-life problems.
TANGRAM, test strategy, test sequencing, manufacturing machines, semiconductor industry,
integration sequencing.

2

Chapter 1

Introduction
In today’s industry, time-to-market of systems is more and more important. Therefore, the
development of systems is done concurrently. During the integration phase of a system, the
different sub-systems are assembled into a system and tested. This integration and test phase
typically takes more than 45% of the total development time of a complex manufacturing
system. Reducing this time reduces the time-to-market of a new system.
An integration plan describes the integration actions and the test cases that are performed in
the integration and test phase of a system. For new ASML machines, this integration plan is
currently made by hand and is usually sub-optimal for time. Creating an optimal integration
plan could decrease integration and test time and planning effort.
In literature, integration plans for complex systems are seldom discussed. Generally, the
basic integration test phases identified are unit testing, integration testing, system testing
and acceptance testing as for example explained in [2]. However, this integration and test
plan does not define the sequence of integration: whichmodules are integrated when? It only
states that tests should be done before and after integration. More research is done within
the software discipline on integration strategies. The three basic strategies are: "big bang",
where all modules are integrated at once, "top-down" where stubs are used to simulate the
behavior of lower-level modules while testing the high-level modules first, and "bottom-up"
where first all lower level modules are tested and then the higher-level module is integrated [3].
The disadvantage of these three strategies is that none of them is optimal given a certain
integration problem: a combination of them is optimal. For object-oriented software, Hanh
et al. [4] developed a technique that tries to either minimize the number of stubs used or
the total test resource allocation (test effort). This is done using a test-dependance-graph
model describing the modules and their test dependencies. This approach tries to optimize
an integration strategy towards a combination of "big-bang", "bottom-up" and "top-down"
strategy. The disadvantage of this approach is that it has only been used for object-oriented
programming and that it does not take into account that certain modules are not physically
present at the start time of the integration phase. Furthermore, it only considers one single
system under test, while multiple sub-assemblies could be used as systems under test to test
in parallel.
Within the mechanical assembly disciplines, methods and algorithms do exist that take late
deliveries and parallel assemblies into account. For example De Mello et. al [5], [6] describes
how to represent and optimize mechanical assembly sequences such that robot assembly
actions are minimized. Also Boneschanscher [7] describes how to use these techniques to
optimize assembly plans. However, these methods have never been applied on integration

3

and test plans. The difference between assembly and integration is that the cost of an as-
sembly plan is dependant on the robot movements, while the cost of an integration plan is
dependant on the tests that are performed.
In this paper, we extend the mechanical assembly sequencing method and algorithm towards
an integration sequencing method. This is done by combining the assembly sequencing rep-
resentation with the test-dependency-graph model of Hanh and by extending the AND/OR
graph algorithms as described by De Mello et. al. We incorporate for certain tests that stubs
or simulation models can replace modules that are not yet available. This way, we can op-
timize an integration plan towards time while taking into account that certain models can
replace modules as is proposed by Braspenning et al. [8].
The paper is structured as follows. Section 0.2 explains system integration sequencing and
shows an example. Section 0.3 shows the formal definition of an integration sequencing
problem and the objective for solving this problem. Section 0.4 shows the solving algorithm
used to solve the integration sequencing problem. In Section 0.5 a case study is done to show
the benefits of applying this method on the development phase of a lithographic machine.
Section 0.6 discusses the conclusions. Appendix 0.7 shows the notations used in Appendix
0.8, which shows a formal and a step-by-step description of the algorithm.

4 Introduction

Chapter 2

System integration
System integration deals with assembling modules into a working system. To ensure that
the system works, tests have to be performed that test the functionality and performance
of the system. In the first subsection, we describe several system integration problems. In
the second subsection, we introduce an illustration of an integration problem which is used
throughout the paper.

2.1 Integration problem
Integration problems can be found in many different development phases of systems that all
have their specific properties. The three main integration problems during the development
and manufacturing of ASML lithographic machines are:

• Software integration

• First-of-a-kind machine integration

• Manufacturing integration

During software integration, multiple copies of the software are available and the assembly
of two software modules into one system does not take any (significant) time. Often, stubs
can be used to perform certain tests early, while modules are not yet available.
For the first-of-a-kind machine integration, the development cost of each module is extremely
high and only one or maybe two modules of (almost) the same type are available. Further-
more, the assembly of two modules into a single system takes a significant amount of time.
For manufacturing integration, a large number of machines is created which means that
multiple modules of the same type are available. Also, assembling modules takes time.
In general, an integration phase consists of assembling a number of modules, that are avail-
able at a certain time, into one system and performing a number of tests, each of which takes
some time to perform and requires a certain set of modules to be assembled. To reduce the
overal integration time, all development, assembly and test actions should be performed as
parallel as possible. The integration sequencing problem is defined as choosing an assembly
sequence of which the duration of the critical path is minimal which means that the devel-
opment, assembly and test actions are performed as parallel in time as possible. The critical
path is defined as the longest duration path in the integration sequence.

5 Integration problem

������������������i3

Reticle handler m1
Reticle stage m2

Wafer handler m3

Wafer stage m4

Illuminator m5

Laser m6

Lens m7

Figure 2.1: Scanner Illustration

2.2 Illustration
To illustrate an integration sequencing problem we use a simplified ASML wafer scanner. A
scanner performs the lithographic step within the manufacturing of a semiconductor or IC.
Two items are cycling through a scanner: a wafer that is the basis of the IC and contains a
photo resistant, and a reticle that contains a part of the negative of an IC [9]. Our example
scanner consists of 7 modules: a reticle handler (m1) that brings and takes reticles to the
reticle stage (m2) which holds the reticle during the lithographic process, a wafer handler
(m3) that brings and takes wafers to the wafer stage (m4) which holds the wafer during the
lithographic process, a laser (m6) that produces the light needed for the lithographic process,
an illuminator (m5) that uniforms the light produced by the laser and a lens (m7) that shrinks
and images the pattern from the reticle on the wafer. Reticles and wafers are not considered
part of the machine in this example. Within this machine 3 essential types of interfaces exist:
the light interfaces (i1, i2, i4, i5) which connect the laser to the illuminator to the reticle stage
to the lens to the wafer stage, the reticle flow interface (i3) which connects the reticle handler
to the reticle stage and the wafer flow interface (i6) which connects wafer handler to the wafer
stage.
This illustration of an integration sequencing problem deals with the integration phase of
a first type of a scanner. Besides the mentioned modules and interfaces, for this scanner, a
model of a lens (m8) is available which can be used for certain tests. This model also has
light interfaces (i7 and i8) with the reticle handler and the wafer handler. The development
time for each of the modules is known. For example, the development time of the lens
model is 5 time units, while the development time of the actual lens is 25 time units. Also,
the integration of two modules into a subsystem takes time. Furthermore, 25 tests have to
be performed that each require certain modules to be integrated and cost a certain time to
perform. The objective is to find an integration sequence that integrates each module into a
complete system such that the overal integration and test time is minimized.

6 Introduction

Chapter 3

Problem formulation
In this section, we formalize the integration sequencing problem. We define a model in the
first subsection, show an illustration model in the second subsection and define the objective
in the third subsection.

3.1 Integration model
The formal integration model consists of two parts: 1) the assembly part describing the sys-
tem based on models from De Mello et. al. [5, 6], and 2) the test part describing tests and the
required modules based on ideas from Hanh et al. [4]. The complete integration sequencing
model is an 8-tuple D: (M, I, T, Cm, Ci, Ct, Rim, Rtm), where:

• M is a finite set of kmodules.

• I is a finite set of l interfaces.

• T is a finite set of m tests.

• Cm : M → R+ gives for each module in M the associated cost in time units of develop-
ing that module.

• Ci : I → R+ gives for each interface in I the associated cost in time units of constructing
that interface.

• Ct : T → R+ gives for each test in T the associated cost in time units of performing
that test.

• Rim : I → M ×M gives for each interface in I the modules the interface is constructed
in between.

• Rtm : T → P(P(M)) gives for each test in T its essential assemblies; where an essential
assembly describes the modules that should be integrated with each other before the
test can be performed.

The assumptions for this integration model are:

• All modules inMmust be connected with each other, so there exists a path of interfaces
that connects every module in M with every other module in M.

7 Integration model

Cm = 20 Ci = 1 Cm = 15

Ci = 1

Cm = 15Cm = 10 Ci = 1

Ci = 1 Ci = 1

Cm = 5 Cm = 25

Ci = 1 Ci = 1

Cm = 10Ci = 1Cm = 10

t

m1 m2

m3 m4

m5m6

m7m8

i1

i2

i3

i4

i5

i6

i7

i8

Figure 3.1: Elements M, I, Cm, Ci and Rim of the integration model

• For every test in T , there exists a module that is present in all essential assemblies of
this test.

• Each test is performed exactly once at the moment that one of the essential assemblies
of this test is integrated.

Furthermore, we define that an assembly consists of one or more modules which are inte-
grated with each other and is therefore represented by an element of P(M) (except ∅). An
integration action is defined as instantiating all interfaces between exactly two assemblies
and is therefore represented by an element of P(I) (except ∅). A test phase consists of the set
of tests that can be performed on a subassembly, but could not be performed before the last
integration action. A test phase is therefore represented by an element of P(T) (except ∅).

3.2 Illustration
For the scanner illustration presented in Section 0.2, an integration model is created. Ele-
ments M, I, Cm, Ci and Rim are represented in Figure 2 (the integration part). In this figure,
a square node is a module and an edge is an interface between two modules. Elements T , Ct

and Rtm are shown in Table 1(the test part).

3.3 Objective
A solution to an integration sequencing problem is a sequence of test phases and integration
actions for each individual module. This solution can be represented by a function G : M →
(P(T)∪P(I))∗, (B∗ denotes a set of sequences over B), that gives for a subassembly consisting

8 Problem formulation

Table 3.1: Elements T , Ct and Rtm of the integration model
T Rtm Ct

t1 · · · t6 {{m1}} 1
t7 · · · t8 {{m1, m2}} 2
t9 · · · t11 {{m4}} 1
t12 · · · t13 {{m3, m4}} 2
t14 · · · t17 {{m5, m6, m7}, {m5, m6, m8}} 3
t18 · · · t20 {{m2, m4, m5, m6, m7}, {m2, m4, m5, m6, m8}} 3
t21 · · · t25 {{m1, m2, m3, m4, m5, m6, m7}} 5

of a single element of M, a sequence of integration actions (sets of interfaces P(I)) and test
phases (sets of tests P(T)) that integrates this single module subassembly into the completely
integrated and tested system. The total time of such a solution is:

J(G) = max
m∈M

(

Cm(m) +
∑

t∈G(m)↾T

Ct(t) +
∑

i∈G(m)↾I

Ci(i)
)

(3.1)

The objective is to find an optimal solution G∗ that has minimal expected test cost J∗, from
all possible solutions G:

J∗ = J(G∗) = min
G∈G

J(G) (3.2)

9 Objective

10 Problem formulation

Chapter 4

Solving algorithm
In this section, we propose an algorithm to solve the integration sequencing problem. This
algorithm is based on the "assembly by disassembly" approach suggested by Delchambre et
al. [10]. The approach takes the assembled, or in this case integrated, system as starting point
and evaluates all possible sequences in which the complete system can be disassembled. De
Mello et al. [5, 6], suggests to implement this approach in an algorithm that performs a search
through an AND/OR graph. In this AND/OR graph, an OR node represents a system state
and an AND node represents an assembly action.
To solve the integration sequencing problem we also propose an algorithm based on an
AND/OR graph search. However, different definitions of the AND and OR nodes are used as
opposed to De Mello. An OR node represents the system state x which is the set of integrated
modules, with the domain P(M). In a system state, tests are applied that are only possible in
that state and not in following states, according to the assumptions made in Section 0.3. The
initial system state is xinit = M. An AND node defines the integration action of two OR nodes
into one OR node and is denoted by the set of interfaces that are broken, which is an element
of P(I).
An example of an AND/OR graph is shown in Figure 3. Each square node in the graph
denotes an OR node, while each hexagonal node denotes an AND node, the edges denote
the search direction. This AND/OR graph is constructed for a very simple integration model
consisting of 3 modules (m1, m2, m3), which are all connected to each other with 3 interfaces
(i1 connects m1 and m2, i2 connects m1 and m3, i3 connects m2 and m3) and 4 tests that need
to be applied: 3 tests that each need one of the modules (t1 requires m1, t2 requires m2, t3
requiresm3) and one system test t4 that requires all modules. The graph in Figure 3 shows all
possibilities in which the system can be disassembled, and therefore contains all solutions
to the integration sequencing problem. In this example, there are three possible solutions
(G1, G2, G3) that can be distinguished at the root OR node where there are 3 AND nodes to
choose from. For each solution G the cost J(G) can be calculated, then the cheapest solution
is chosen.
The algorithm that constructs AND/OR graphs is a depth-first algorithm. The basics of the
AND/OR search algorithm are explained in this section. The complete algorithm is described
in Appendix 0.8. The search starts with the initial OR node that denotes the complete inte-
grated and tested system: xinit. The cost of this particular OR node is called Jx(xinit) and is
determined as follows.
First, the possible set of disassembly actions is determined. The set of all possible integration
actions Ax are all cut-sets that separate the integrated system with system state x into exactly

11

{m1,m2,m3}

{m1,m2} {m2,m3}{m1,m3}

{m1} {m2} {m3}
{t1} {t2} {t3}

{t4}

{i1, i2}{i2, i3} {i1, i3}

{i1} {i2} {i3}

AND nodeOR node

Figure 4.1: AND/OR graph illustration

two unique sub-systems (x1 and x2). For a given system state x, this can be determined as
follows:

Ax(x) =
{a : a ⊆ Ix :
∃(x1, x2) ⊆ x :
x1 ∩ x2 = ∅ ∧ x1 ∪ x2 = x
x1 6 = ∅ ∧ x2 6 = ∅ ∧ ∀(m′, m′′) ∈ x1 : connected(m

′, m′′, Ix \ a)
∧∀(m′, m′′) ∈ x2 : connected(m

′, m′′, Ix \ a)
∧∄m′ ∈ x1, m

′′ ∈ x2 : connected(m
′, m′′, Ix \ a)

}

(4.1)

where Ix(x) denotes all interfaces between themodules in system state x and function connected
checks whether two modules are connected, i.e. there exists a path of interfaces between
two modules. Cut-set algorithms exist in literature that determine all possible cut-sets of
a system in lineair time per cut-set. We use the algorithm as described by Tsukiyama [11].
For the simple system of which the AND/OR graph is shown in Figure 3, the cut-sets are:
({i1, i2}, {i2, i3}, {i1, i3}). For the system illustrated in Figure 2, the possible cut-sets are:
({i1}, {i2}, {i3}, {i4, i7}, {i8, i5}, {i6}, {i4, i5}, {i7, i8})
Then for all cut-sets a ∈ Ax(x) given system state x, an AND node is constructed. This
AND node represents the disassembly of a system state into two system states x1 and x2
(determined in equation 3), by breaking the interfaces in a. For each of the two system states,
x1 and x2, the tests that can still be performed, Tx(x1) and Tx(x2), can be calculated using:

Tx(x) = {t : t ∈ T : (∃M′ ∈ Rtm(t) : M′ ⊆ x)} (4.2)

Then, the required tests Tr(x) that have to be performed in system state x can be calculated
with:

Tr(x) = (Tx(x) \ (Tx(x1) ∪ Tx(x2)) (4.3)

The total cost of an AND node Ja(x, a) for a system state x and a disassembly action a ∈
Ax(x) which disassembles the system into two subsystems x1, x2, is defined as the maximal
integration and test cost of each formed system state x1 and x2, and the cost of the disassembly

12 Solving algorithm

of the system state x into the two system states, or:

Ja(x, a) =
∑

i∈a

Ci(i) + max(Jx(x1), Jx(x1)) (4.4)

Finally, the cost of the OR node is the minimal cost of each AND node that is constructed
and the cost of performing the required tests Tr(x), or the development cost of a module if
one module remains and the cost of the tests Tx(x) that can still be performed in system state
x:

Jx(x) =

Cm(m) +
∑

t∈Tx(x)

Ct(t) if x = {m}

min
a∈Ax(x)

(

Ja(x, a) +
∑

t∈Tr (x)

Ct(t)
)

else
(4.5)

where |x| denotes the size (number of elements) of x. If the root node is solved, which
means that Jx(xinit) is known, the complete solution is known and can be constructed. Then,
the integration tree is the reverse sequence of the disassembly tree, i.e. starting with the
separate modules and ending with the integrated system.

4.1 Illustration
With the presented algorithm the solution for the problem described in Section 0.3 has been
calculated. The solution for this problem is shown in Figure 4(a). This figure shows for
each module (square node), the integration steps (hexagonal node) which consist of creating
interfaces, and the test steps (circular node) that should be done. Note that this tree is the
reverse of the disassembly tree. The edges denote the precedence relations between the ac-
tions, and therefore show the sequence of integration action and test phases for each module.
The longest paths in this tree are the paths of modules m1, m2, and m6 which are all 70 time
units. Therefore the cost of this optimal solution is also 70. In this situation, the actual lens
(m7) is integrated late because it has a long development time, and the model of the lens (m8)
can be used to perform tests t14 through t17.
In the situation shown in Figure 4(b) it is assumed that the model of the lens (m8) is not
available during the integration phase of this new scanner. The cost of this solution is 73
time units. The longest path in the tree is now the path of the lens (m7), which is integrated
earlier to perform tests t14 through t17. For this illustration, we can conclude that the time-
to-market of the scanner is 3 time units less when the model of the lens (m8) is developed
and used. Therefore, one has to consider whether this time reduction is worth the effort of
building the model of the lens.

4.2 Computational reduction measures
The computational effort for searching an AND/OR graph is NP-hard:

Number of OR nodes investigations ≈ 2|M| − 1 (4.6)

according to De Mello in [5] for a strongly connected module graph with the check that only
feasible cut-sets remain. This means that problems of 20 modules need over 1 million OR
node investigations. Since industrial problems often have more than 20 modules, we need
some computational reductionmeasures to be able to solve them in a reasonable computation
time.
Two measures (heuristics) are proposed to reduce this computational effort. Both heuristics
try to reduce the computational effort by reducing the number of possible cut-sets (AND
nodes) per OR node. This is done by only investigating the most promising cut-sets.
The first heuristic is the ‘Early Time’ (ET) heuristic. The idea is that the cost for test and
integration should be spent as early as possible in the integration sequence to make the
sequence as parallel as possible. Thus, integration actions (cut-sets) are selected that have

13 Computational reduction measures

m1m2

m3

m4

m5m6

m7

m8

i1

i2

i3

i5

i6

i7

15

Stop

t1, t2, t3, t4, t5, t6

t7, t8

t9, t10, t11

t12, t13

t18, t19, t20, t21, t22, t23, t24, t25

t14, t15, t16, t17

i4, i8

(a) Using the lens model (m8), J
∗ = 70

m1

m2

m3

m4

m5m6

m7

i1

i2

i3

i4

i5

i6

10

Stop

t1, t2, t3, t4, t5, t6

t7, t8

t9, t10, t11

t12, t13

t18, t19, t20, t21, t22, t23, t24, t25

t14, t15, t16, t17

(b) Without using the lens model (m8), J
∗ = 73

Figure 4.2: Solutions of the scanner illustration

14 Solving algorithm

Table 4.1: Results heuristics experiment
Experiment J∗ OR nodes Time
Optimal 70 531 100%
ET(n = 1) 86 15 3,7%
ET(n = 2) 76 89 14,9%
ET(n = 3) 71 177 30,2%
ET(n = 5) 71 345 59,8%
PT(n = 1) 74 15 2,7 %
PT(n = 2) 70 65 8,7%
PT(n = 3) 70 113 17,4%
PT(n = 5) 70 235 43,0%

the lowest test and integration cost, such that more cost are spent in the lowest parts of the
AND/OR graph. The time spent on integration and test in an AND node a ∈ Ax(x) is:

ET(a, x) =
∑

i∈a

Ci(i) +
∑

t∈Tr (x)

Ct(t) (4.7)

Where Tr(x) denotes the tests that are applied on that subsystem, as calculated by equation
5. The ET heuristic selects the n cut-sets that have the lowest ET to be investigated further,
where n is a user-defined natural number.
The second heuristic is the ‘Parallel Time’ (PT) heuristic. The idea is that the more actions
(test and integration) are done in parallel, the more optimal the total integration plan is. This
is done by selecting cut-sets that disassemble a system state x into two system states x1 and
x2 that have (almost) the same total duration. Therefore, for each cut-set from a ∈ Ax(x),
the total duration of the two formed sub-systems Jtot(x1) and Jtot(x2) is calculated using the
following equation, for x′ = x1 ∨ x′ = x2:

Jtot(x
′) =

∑

m∈x′

Cm(m) +
∑

i∈Ix(x1)

Ci(i) +
∑

t∈Tx(x′)

Ct(t) (4.8)

Where Ix(x
′) denotes all interfaces that are present in system state x′. Furthermore, Tx can

be calculated with Equation 4. The total duration for a system state is the time that it takes
to develop all modules, create all interfaces and perform all tests sequentially, so the sum of
development actions, integration actions and tests. Then, the information gain approach is
used to determine to what extent the two total times are equal:

PT(a, x) = IG
(

Jtot(x1), Jtot(x2)
)

(4.9)

Where the IG is defined by [12]:

IG(x, y) = −

(

x

x + y
· log2(

x

x + y
) +

y

x + y
· log2(

y

x + y
)

)

(4.10)

The PT heuristic selects the n best cut-sets that have the highest PT to be investigated further,
where n is a user-defined number.
With the following experiments, the influence of the proposed heuristics is investigated. For
each experiment, different heuristics are used to calculate a solution for the Scanner illustra-
tion in Figure 2. As shown in Figure 4(a), the cost of the optimal solution is 70 time units.
In Table 2, the cost and computational effort, denoted in the number of OR node calculations
and in time (relative to the time needed to calculate the optimal solution), is shown for each
of the experiments. For the ET heuristic it is shown that for n = 1 the solution is far from
optimal, while for n = 5 the solution approaches the optimal one. For the PT heuristic it is
shown that for n = 1 the solution is better than the ET(n = 1) heuristic, and that for n = 2 the
solution is already optimal. For this illustration, it is best to use the PT heuristic.

15 Computational reduction measures

16 Solving algorithm

Chapter 5

Case study
The presented method has been applied to a case study within the development of a new
type of lithographic machine at ASML. The case study deals with the integration plan for the
development of a first-of-a-kind machine. The general approach of these integration plans is
that an old version lithographic machine is upgraded to the new version by integrating new
parts and testing these parts and the total performance of the machine.
The model properties of this case study are the following:

• 17 modules

• 20 interfaces

• 17 tests

Another interesting property of this case is that module m0 is always needed for each test
since it represents the initial old version of the machine. Therefore, no tests can be done in
parallel and all integration actions and test phases will occur sequentially. In this case study,
two integration sequences are calculated. The first sequence shown in Figure 5 gives the plan
at the beginning of the project. The second sequence shown in Figure 6 shows a re-plan
situation when it became clear that certain modules would arrive later than planned in the
first sequence.

5.1 Situation 1
For the case study the resulting integration plan is shown as a Gantt chart in Figure 5. This
Gantt chart displays each test phase consisting of a set of tests, each integration action con-
sisting of a set of interfaces and each development action as a task. Each task has a certain
duration and has a successor denoted with arrows between the tasks. The development tasks
are numbered: 1, 3, 5, 8, 11, 13, 15, 18, 20, 21, 24, 28, 31, 34, 37, 40, 43, while the integration
tasks are numbered: 4, 6, 9, 12, 14, 16, 19, 22, 23, 26, 29, 32, 35, 38, 41, 44, and the test tasks
are numbered: 2, 7, 10, 17, 25, 27, 30, 33, 36, 39, 42, 45. It can be seen that only development
actions run in parallel. The critical path (denoted in red) is formed by all integration actions
and test phases and the development of the module with task ID 5.

17 Situation 1

Figure 5.1: Gantt chart of solution 1 of the case

18 Solving algorithm

Figure 5.2: Gantt chart of solution 2 of the case

5.2 Situation 2
At a certain point in time, it appeared that the development times of 4 out of 17 modules
were longer than planned and of 1 module shorter than planned. Furthermore, 1 module was
removed from the system. Due to these large changes, a re-plan action was needed. A normal
re-plan action would take some manual effort, however with the proposed method, only the
model needs to be adapted and a new sequence can be calculated. The new plan is shown in
Figure 6, where the red vertical line denotes the time the re-plan action was performed. All
tasks that have a different arrival time are patterned. These patterns correspond to the same
tasks as shown in Figure 5. The development tasks are numbered: 1, 3, 5, 8, 10, 12, 15, 17, 20,
22, 25, 26, 30, 33, 36, 37, 38, while the integration tasks are numbered: 4, 6, 9, 13, 16, 18, 21,
23, 27, 28, 31, 34, 39, 40, 41, and the test tasks are numbered: 2, 7, 11, 14, 19, 24, 29, 32, 35, 42.
The critical path of this new plan is now formed by one of the late modules (task number 25).
Therefore, all tests that used to be performed in the tasks with numbers 30, 33, 36 and 39 in
the sequence shown in Figure 5, are now done at the end in the task with number 42. The
total duration of the new plan is delayed almost 30% because these 4 modules arrive late.

19 Situation 2

20 Solving algorithm

Chapter 6

Conclusions
In this paper, we proposed a method to calculate an optimal integration sequence. The opti-
mal integration sequence is the sequence with the shortest duration that develops, integrates
and tests modules into a system, and therefore tries to perform the development, integration
and test actions as much as possible in parallel. The method consists of defining a model
which is able to describe an integration sequencing problemmathematically and an AND/OR
algorithm which is able to determine the optimal solution.
The model consists of the modules or stubs/models to be integrated in the system and their
development times, the interfaces that denote the possible assemblies of modules and their
creation times, the tests that should be performed and the time it takes to perform them, for
each test the modules that need to be present before the test can be performed and for each
interface the modules it is cerated in between.
Furthermore, we introduce two heuristics for the algorithm to obtain a solution for large
problems within reasonable time limits. The PT heuristic can be used best when dealing
with a problem where many test and integration actions can be done in parallel. The ET
heuristic can be used best in a situation where this is not the case.
We performed a case within the development of a first-of-a-kind lithographic machine to op-
timize the integration plan. With this case study, we learned that feasible and good solutions
can be obtained using the model.
The benefits of this method are two-fold: 1) optimal integration plans can be calculated which
are usually better than manually created integration plans, and 2) re-planning the integration
plan when for example a module is delivered late takes less effort because only the model
needs to be adjusted.
Within this method we assumed that alle tests should be applied exactly once. However, in
previous work [13, 14] we have shown that not all tests must be applied, or that tests must be
applied multiple times. In our future work, we will combine both the test sequencing method
presented in previous work with the integration sequencing method such that optimal inte-
gration sequences with optimal test phases can be obtained.

21

22 Conclusions

Definitions and notations
In Table 3, the definitions and their descriptions used in this paper are shown.

23

Table 6.1: List of definitions
Definition Description
D Integration model:

(M, I, T, Cm, Ci, Ct, Rim, Rt,)
M set of kmodules.
I set of l interfaces.
T set of m tests.
Cm the cost in time units of developing amodule

m.
Ci the cost in time units of constructing an in-

terface i.
Ct the cost in time units of performing a test t.
Rim the modules where interface i is constructed

between.
Rtm the essential assemblies of test t.
m, i, t a single module, interface or test.
J, J∗ Cost and optimal cost of an integration se-

quencing problem.
G, G, G∗ All solutions, a solution and the optimal so-

lution of the integration sequencing prob-
lem.

X , x, xinit Domain of system states, a single system
state and the initial system state.

Ax, a All possible cut-sets of a system state x, and
a single cut-set.

Jx, Ja, Jtot Cost of an OR node denoted with system
state x and an AND node denoted with cut-
set a, and total cost-to-go for a system state
x.

Ix, Tx, Tr All interfaces that are constructed in a sys-
tem state x, all tests that can be performed
and all tests that are performed in a system
state x.

ET, PT ’Early time’ and ’Parallel time’ heuristics.
n User-defined variable.
IG Information Gain.
H, H,Hinit Domain, instantiation, and initial instantia-

tion of the function that returns the cost of
solved OR nodes.

24 Definitions and notations

Algorithm
This section describes the algorithm that performs the AND/OR graph search. The AND/OR
graph search is a recursive search over AND and OR nodes. Each OR node (except for the
leave nodes) has one or more following AND nodes, depending on the number of possible
cut-sets that are possible in that OR node. Each of those AND nodes has exactly two resulting
OR nodes for each of the created sub-systems, and so on. This appendix gives a formal, based
on recursion, functional style [15] description of the algorithm. A step-by-step description of
the algorithm that relates to the functions defined, is shown in Figure 7.
To prevent double calculations of the same OR nodes we introduceH : X → (R+ ×P(I))∪ {⊥}
which gives the optimal cost and the chosen cut-set for a solved OR node, or gives undefined
for an unsolved OR node. The functionH is an instantiation ofH.
To find the optimal integration cost J∗ for an integrationmodelD = (M, I, T, Cm, Ci, Ct, Rim, Rtm),
the following expression can be used:

(J∗, H) = OR(xinit, Ax(xinit), Hinit) (6.1)

where Hinit : P(M) → {⊥} is the initial function that gives the cost of a solved OR node.
Ax(xinit) are all cut-sets of the initial system state xinit, calculated using the algorithm pre-
sented in [11]. Here xinit = M, which denotes the initial state which is the complete integrated
system. We only calculate the cut-sets for the initial system state. The cut-sets that are needed
for the other system states (that are formed by disassembling the initial state) can be obtained
by taking the initial set of cut-sets and then remove the cut-sets that do not split that system
state into exactly two sub-assemblies. This prevents calculating the cut-sets for every system
state which reduced computation time.
The resulting H can be used to construct the optimal solution G. This calculation gives the
cost J∗ of the optimal solution according to equation 2. For each OR node, all cut-sets are
considered for the integration sequence except for the cut-sets that do not split the system
into exactly two sub-systems, which is not allowed. The best cut-set per OR node is chosen
based on the minimal integration and test cost per cut-set, starting from the last OR node. If
more cut-sets have the same minimal cost, one of them is chosen.
The function OR : X × P(P(I)) × H → R∗ × H calculates the cost of a system state x given
the possible disassembly actions and the initial H. The cost of such an OR node is denoted
by Equation 7. The OR function is defined as follows. If the state has already been solved
(i.e. ifH(x) 6 = ⊥), the solution of that solved state is taken fromH and returned. Otherwise,
several options are possible. If x consists of one module, the node is a leaf node and the

25

Step-by-step algorithm

Input: – System model D;

Output: – The optimal solution tree G;

– The cost of the solution;

Step 0: Initialize a graph G consisting of the root node xinit = M, i.e., all modules are integrated,
mark the node as unsolved.

Step 1: Repeat the following steps for the system state x = xinit to construct an AND/OR graph
until the root node is marked solved. Then exit with J = Jx(xinit) as expected test cost
and the solution graph G (these steps are performed by function OR).

Step 1.0 If x contains one element m mark x solved in G and assign the cost of the tests
that must still be performed Tr(x) and the development cost Cm(m) to x, then stop.
Else, continue with step 1.1

Step 1.1 Determine the possible cut-sets Ax(x) and perform for each cut-set a in Ax(x)
the following steps (these steps are performed by function AND):

Step 1.1.0 Initialize a subgraph G′ consisting of root node a

Step 1.1.0 Determine for a the new sub-system OR nodes x1 and x2,
insert them in G′ and draw an edge from a to both of them

Step 1.1.1 If x1 is not solved, mark x1 unsolved and perform
steps 1.0 through 1.2 for x replaced by x1; do the same for x2
(this is the recursion by function OR)

Step 1.1.2 Determine for a the cost of creating the interfaces in a,
the cost of tests that have to be performed Tr , and the maximal cost for x1 or x2,
and assign these cost to AND node a

Step 1.2 Select the cut-set a and the belonging subgraph G′ that has minimal cost.
Mark x solved and assign the cost Ja(a, x) to x. Merge graph G with subgraph G′,
create an edge from node x to the root node of G′ and exit.

Figure 6.1: Step-by-step algorithm description

26 Algorithm

resulting cost are the module development cost and the remaining test cost. If x consists of
multiple modules, one or more cut-sets are available which are evaluated and compared with
each other with the AND function:

OR(x, Ax, H) =

(H(x), H) ifH(x) 6 = ⊥
(J′, H(x/(J′, {}))) ifH(x) = ⊥ ∧ |x| = 1
(J′′, H′′(x/(J′′, a′′))) ifH(x) = ⊥ ∧ |x| > 1

(6.2)

where:

• J′ =
∑

m∈x
Cm(m) +

∑

t∈Tx(x)

Ct(t)

• (Ja(ai), Hi) =
AND(x, rmv(Ax, ai), ai, Hi−1) +

∑

t∈Tr (x)

Ct(t)

for i = 1, . . . , |Ax| (where H0 = H), are the minimal test cost and updated H for each
cut-set in Ax.

• J′′ = J(a′′) = min
a∈Ax

(Ja(a)), is the minimal cost of x, and a′′ is the cut-set from Ax for which

this holds.

• Function rmv removes all interfaces in the cut-set ai from all cut-sets in Ax while en-
suring that the resulting cut-sets still split the new system state into exactly two sub-
systems, and thus results in the new set of cut-sets ensuring that this set still satisfies
Equation 3.

The function AND : X × P(I) × P(P(I)) × H → R∗ × H takes a system state x as input and
applies the disassembly action a to that system. It returns the cost made by that disassembly
action and the path cost of the resulting subsystems.

AND(M, a, Ax, H) =
(
∑

i∈a

Ci(i) +max(J′, J′′), H′′) (6.3)

Where:

• x1 and x2 are defined as the new system states resulting from applying cut-set a on
system state x.

• (J′, H′) = OR(x1, Ax, H), calculates the cost of system state x1 and the updatedH′.

• (J′′, H′′) = OR(x2, Ax, H
′), calculates the cost of system state x2 and the updatedH′′.

This appendix gives a formal, based on recursion, functional style [15] description of the AO∗
σ

algorithm with inconclusive test and risk-based optimization.
The set of all possible OR nodes is defined as: Xm = P(P(S))×P(S×R+)×P(T). This notation
is adopted from the compact set notation as defined by Grunberg et al. [?].
Hm is redefined as a set of function: Xm → (R+ × {T} ∪ {⊤}) ∪ {⊥} and gives for a solved
multiple-fault OR node the minimal test cost and the next test, or the remaining risk cost and
a stop (⊤) node, or gives undefined (⊥) for an unsolved OR node.
The multiple-fault algorithm consists of two functions, ORm and ANDm, that are defined for
a system test problem D. Both functions are explained below.
To find the optimal expected test cost J′ for D, the following expression is used:

(J′, H) = ORm((∅, SEinit,∅), Hinit,∅) (6.4)

where:

• Hinit : X
m → {⊥} is the initial function that gives the cost of solved OR nodes.

27

• SEinit = {(s, 1.0)|s ∈ S}, is the excluded set of fault states which for all fault states in S
the uncertainty pu. The initial value of pu = 1.0 denotes that the fault state has not been
excluded, as explained before.

The resultingH ∈ Hm can be used to construct the optimal solutionG. This calculation gives
the cost J′ of the optimal solution according to Equation ??.
Let function ORm : Xm × Hm × P(T) → R+ × Hm be a function that calculates the minimal
expected test cost J′ of an OR node and updates the set of solved OR nodes, given the OR
node x, the current set of solved OR nodes H and the performed test set TP. J

′ is:

• 0.0 if x is terminated,

• derived fromH if x has already been solved,

• calculated with a fixed OR node if fault states are isolated,

• calculated with a diagnosed OR node if no fault states are isolated and further testing
is of no use,

• the current risk cost if this cost is less than the cost of each test from TC,

• calculated otherwise.

x is terminated if all fault states are excluded, x is solved if x is defined in H and fault states
are isolated if they are within a candidate set of size 1, and TP complies with Rst. The function
is defined as follows:

ORm(x,H, TP) =

(0.0, H) if {s|(s, r) ∈ x.1 ∧ r = 0.0} = S
(H(x).0, H) if {s|(s, r) ∈ x.1 ∧ r = 0.0} 6 = S

∧H(x) 6 =⊥
(JF, HF) if {s|(s, r) ∈ x.1 ∧ r = 0.0} 6 = S

∧H(x) =⊥
∧ (∃s : {s} ∈ x.0 : Rst(s) ∈ Tp)

(JD, HD) if {s|(s, r) ∈ x.1 ∧ r = 0.0} 6 = S
∧H(x) =⊥ ∧ TC = ∅

∧ (∄s : {s} ∈ x.0 : Rst(s) ∈ Tp)
(JR, H(x/(JR,⊤))) if {s|(s, r) ∈ x.1 ∧ r = 0.0} 6 = S

∧H(x) =⊥ ∧ TC 6 = ∅

∧ (∄s : {s} ∈ x.0 : Rst(s) ∈ Tp)
∧ (∀t : t ∈ TC : C(t) > jR)

(J,Hm(x/(J, tj))) if {s|(s, r) ∈ x.1 ∧ r = 0.0} 6 = S
∧H(x) =⊥ ∧ TC 6 = ∅

∧ (∄s : {s} ∈ x.0 : Rst(s) ∈ Tp)
∧ (∃t : t ∈ TC : C(t) ≤ jR)

(6.5)

Where:

• JF is the minimal expected test cost of the fixed OR node and HF is the updated H.

• JD is the minimal expected test cost of the diagnosed OR node and HD is the updated
H.

• JR is the cost of the current risk in the system.

• TC is the candidate test set consisting of the tests of which the test signature is no
subset of the excluded fault states of x (a certain pass), and none of the candidate sets
of x is a subset of the test signature (a certain fail), together with tests that must be
performed before fixing a candidate fault state. Also, non-repeatable tests in x.2 may
not be performed again.

28 Algorithm

• JT , is the minimal expected test cost of x, and tt is the test from TC for which this holds.

• J = min(JT , JR), and tj becomes tt if JT is the minimum or tj becomes ⊤ if JR is the
minimum.

Let function ANDm : Xm × T × Hm × P(T) → R+ × Hm be a function that determines the
minimal expected test cost J of an AND node and updates H, given the OR node x, applied
test t, the current H and the performed test set TP in the same way as in the single-fault
algorithm:

ANDm(x, t,H, TP) = (pp · cp + pf · cf , Hf) (6.6)

Where:

• cp is the minimal expected test cost of the pass OR node.

• cf is the minimal expected test cost of the failed OR node.

Hf is the updated set of solved OR nodes.

• pp is the pass probability of t calculated by dividing the sum of the fault probabilities
of the suspected sets in the pass OR node by the sum of the fault probabilities of the
suspected sets in x. The fault probability of a suspected set is calculated by multiplying
the fault probabilities of the suspected fault states by the pass probabilities of the not-
suspected, not-excluded fault states.

• pf = 1 − pp, is the fail probability of t.

29

30 Algorithm

Bibliography

[1] http://www.asml.com.

[2] R. D. Graig and S. P. Jaskiel, Systematic Software Testing. Artech House Publishers,
2002.

[3] B. Beizer, Software testing techniques. Van Norstrand Reinhold, 1990.

[4] V. L. Hanh, K. Akif, Y. L. Traon, and J.-M. Jézéquel, “Selecting an efficient oo integration
testing strategy: An experimental comparison of actual strategies,” Proceedings of ECOOP
2001, pp. 381–401, 2001.

[5] L. S. H. de Mello and A. C. Sanderson, “Representations of mechanical assembly se-
quences,” IEEE transactions on Robotics and Automation, vol. 7, no. 2, pp. 211–227, April
1991.

[6] ——, “A correct and complete algorithm for the generation of mechanical assembly se-
quences,” IEEE transactions on Robotics and Automation, vol. 7, no. 2, pp. 228–240, April
1991.

[7] N. Boneschanscher, “Plan generation for flexible assembly systems,” Ph.D. dissertation,
Delft University of Technology, 1993.

[8] N. Braspenning, J. van de Mortel-Fronczak, and J. Rooda, “A model-based integration
and testing approach to reduce lead time in system development,” Eindhoven Univer-
sity of Technology, Systems Engineering Group, Technical report SE 420459, December
2005.

[9] R. Z. Lita Shon-Roy, Allan Wiesnoski, Advanced Semiconductor Fabrication Handbook,
W. Philips, Ed. Integrated Circuit Engineering Corporation, 1998.

[10] A. W. A. Delchambre and P. Gaspart, “Knowledge based assembly by disassembly plan-
ning,” Proceedings of the International Conference on Expert Systems in Engineering Applica-
tions, October 1989.

[11] S. Tsukiyama, I. Shirakawa, and H. Ozaki, “An algorithm to enumerate all cutsets of
a graph in linear time per cutset,” Journal of the Association for Computing Machinery,
vol. 27, no. 4, pp. 619–632, October 1980.

[12] R. Johnson, “An information theory approach to diagnosis,” Proceedings of the 6th Sym-
posium on Reliability and Quality Control, pp. 102–109, 1960.

[13] R. Boumen, I. S. M. de Jong, J. W. H. Vermunt, J. M. van de Mortel-Fronczak, and
J. E. Rooda, “Test sequencing in complex manufacturing systems,” Accepted for IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2006.

[14] ——, “A risk-based stopping criterion for test sequencing,” Eindhoven University of
Technology, Internal Report SE 420460, Submitted to IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 2006.

[15] R. Bird, Introduction to Functional Programming using Haskell, 2nd ed. Prentice Hall
Press, 1998.

31

32 Bibliography

Biography

Roel Boumen received his M.Sc. degree in Mechanical Engineering from the Eindhoven
University of Technology, the Netherlands, in 2004. During his work as a master student
he worked in the field of supervisory machine control of lithographic machines. Since 2004
he is a Ph.D. student at the Eindhoven University of Technology. His research concerns test
strategy within the TANGRAM project.

I.S.M. de Jong has a B.Sc. in Laboratory Informatics and Automation from Breda Polytech-
nic. He has been a software engineer in various companies in the USA and The Netherlands.
Since 1996 he has worked with ASML in systems testing, integration, release and reliability
projects. His specialization is in the field of test strategy. Since 2003 he is an active member
in the TANGRAM project and a PhD student at the Eindhoven University of Technology.

J.M.G. Mestrom received his M.Sc. degree in Mechanical Engineering from the Eindhoven
University of Technology, the Netherlands, in 2006. During his work as a master student
he worked in the field of integration and testing of complex manufacturing systems. His
research within the TANGRAM project concerned strategies and algorithms for integration
and test sequencing.

J.M. van de Mortel-Fronczak graduated in computer science at the AGH University of Sci-
ence and Technology of Cracow, Poland, in 1982. In 1993, she received the Ph.D. degree in
computer science from the Eindhoven University of Technology, the Netherlands. Since 1997
she works as an assistant professor at the Department ofMechanical Engineering, Eindhoven
University of Technology. Her research interests include specification, design, analysis and
verification of supervisory machine control systems.

J.E. Rooda received the M.S. degree fromWageningen University of Agriculture Engineering
and the Ph.D. degree from Twente University of Technology, The Netherlands. Since 1985
he is Professor of (Manufacturing) Systems Engineering at the Department of Mechanical
Engineering of Eindhoven University of Technology, The Netherlands. His research fields of
interest are modelling and analysis of manufacturing systems. His interest is especially in
control of manufacturing lines and in supervisory control of manufacturing machines.

33

