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CHAPTER 1

Introduction

Often, when reducing the number of spatial dimensions in a dynamical sys-
tem the involved mathematics is reduced while preserving the qualitative
dynamical behaviour of the system. In turbulence, this is not the case. In
three-dimensional (3D) turbulence energy tends to be (on average) trans-
ferred to smaller scales, where the kinetic energy is then removed by viscous
dissipation at the smallest scales of the flow. This break-up of large-scale
structures into smaller and smaller ones was first suggested by Richardson,
and is now known as the energy cascade (see, e.g., [50]). In two-dimensional
(2D) turbulence the opposite is observed: the energy is transferred from the
injection scale towards the larger scales, i.e., formation of larger structures
is expected. The phenomenology of 2D turbulence is therefore strikingly
different than its 3D counterpart.

There are several mechanisms that promote 2D behaviour of fluid mo-
tion, such as background rotation, density stratification, or geometrical
confinement. Rotation promotes two-dimensional flow, in the sense that the
velocity must be independent of the direction parallel to the background ro-
tation (Taylor-Proudman theorem). Density stratification introduces a sta-
bilising effect that promotes horizontal, so-called pancake-like structures.
Geometrical confinement suppresses motion in one spatial dimension. As
a consequence, the fluid motion is predominantly planar. Examples of sit-
uations where all of these three effects are simultaneously present are the
Earth’s atmosphere and oceans.

This introductory chapter begins with the background of 2D turbulence
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2 Introduction – Chapter 1

and introduces briefly some theoretical results of 2D turbulence. Numer-
ical simulations aimed at validating theoretical results on 2D turbulence
are discussed. Hereafter, laboratory studies on 2D or quasi-2D turbulence
are presented with particular attention to experiments utilising geometrical
confinement. Finally, the aim of this thesis is formulated and an outline is
given.

1.1 Two-dimensional turbulence

In this subsection a concise introduction to some theoretical descriptions
on 2D turbulence are given, together with a brief overview of numerical
studies on turbulence in two-dimensions.

1.1.1 From three to two spatial dimensions

Most flows in nature are three-dimensional and turbulent. The evolution
of an incompressible, homogeneous fluid is described by the Navier-Stokes
equation for Newtonian fluids [50], i.e.,

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p + ν∇2v +

1

ρ
f, (1.1)

and

∇ · v = 0, (1.2)

where v is the 3D velocity vector, p the pressure, ν the viscosity, ρ is the
mass density, and f any external body force. For the time being, an infinite
domain is considered. Later this assumption is reconsidered.

An indication of the complexity of the flow is given by the Reynolds
number defined as Re = UL/ν, where U and L are a typical velocity and
length scale, respectively. The Reynolds number is a measure of the relative
importance of advection to viscous dissipation. For low Reynolds numbers
[Re=O(1)] the flow is dominated by viscous effects, i.e., the fluid motion
is laminar. When increasing the Reynolds number the flow becomes more
complex and eventually the fluid motion exhibits an unpredictable, turbu-
lent nature. This turbulent state is characterized by the presence of a large
range of length and time scales.

An important result on 3D turbulence was derived by Kolmogorov in
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1941 regarding the scaling of the inertial range (see, e.g., [33]). He as-
sumed that the energy spectrum in the inertial range is determined by the
rate of energy transfer and the wavenumber k. The energy transfer rate
is the change in time of the total kinetic energy E (equal to 1

2

∫

D
v2dA).

The wavenumber is proportional to the inverse of the length scale ℓ, i.e.,
k ∼ ℓ−1. Kolmogorov assumed that in 3D turbulence the constant spectral
energy flux is balanced by the dissipation rate of kinetic energy per unit
mass ǫ. On dimensional grounds it can easily be shown that this implies

E(k) = C0ǫ
2/3k−5/3 for kf < k < kd, (1.3)

where C0 is the Kolmogorov constant, kf the forcing wavenumber, and kd

the dissipation wavenumber. The range for which this scaling holds is called
the inertial range. This five-thirds law is an important result of turbulence
theory, and is illustrated in Fig. 1.1(a). Energy is injected at the forcing

lo
g

E
(k

)

lo
g

E
(k

)

log klog k k0 kf kdkd

ǫ

ǫ
ηk−5/3

k−5/3

k−3

a) b)

k0 = kf

Figure 1.1 – (a) Schematic of the direct energy cascade in three-dimensional
turbulence. Energy is injected at wavenumber kf and subsequently transported
at rate ǫ to larger wavenumbers, with kd the dissipation wavenumber. (b) Dual
cascade of energy and enstrophy in two-dimensional turbulence. The injected en-
ergy is transported to smaller wavenumbers and enstrophy is transported to larger
wavenumbers at rate η, where it is eventually removed by viscous dissipation at
wavenumber kd.

wavenumber kf and is transported to larger wave numbers (i.e., small length
scales), where it is removed by viscous dissipation. A continuous feeding of
energy is required to maintain the flow in a turbulent state. This inertial
range scaling has been confirmed in many 3D turbulence experiments and
numerical simulations (see, e.g., [33] and references therein).

The pronounced difference between 2D and 3D turbulence is most con-
vincingly illustrated by considering the vorticity equation, where vorticity



4 Introduction – Chapter 1

ω is defined as the curl of the velocity field (i.e., ∇×v). Taking the curl of
Eq. (1.1) and applying several vector identities, the 3D vorticity equation
for barotropic flow follows:

∂ω

∂t
+ (v · ∇)ω − (ω · ∇)v = ν∇2

ω + ∇× f. (1.4)

The third term on the left-hand side represents the stretching and tilting
of vorticity present in 3D flows. In 2D flows, the vorticity vector is normal
to the plane of motion and can be represented by a scalar quantity, i.e.,
ω = (0, 0, ω). Then, by invoking the Taylor-Proudman theorem, the term
representing stretching and tilting of vorticity is absent. This absence causes
2D turbulence to behave strikingly different from 3D turbulence.

In a similar way as Kolmogorov, Kraichnan [49] obtained the shape of
the energy spectrum for 2D turbulence, based on the assumption that now
both energy and enstrophy are conserved. If it is assumed that the energy
and enstrophy are injected at a certain wavenumber kf , an inverse energy
cascade develops that transfers energy towards larger scales. In this inverse
energy cascade it is assumed that the transfer of enstrophy is negligible.
On dimensional grounds one derives

E(k) = C2ǫ
2/3k−5/3 for k < kf , (1.5)

where C2 is the Kraichnan-Kolmogorov constant. At the same time, a direct
cascade of enstrophy develops where the energy transfer is negligible and
the spectrum can be scaled with the down-scale enstrophy transfer rate η

E(k) = C3η
2/3k−3 for kf < k < kd, (1.6)

where kd represents the wavenumber that corresponds with the smallest
scales of motion. A schematic of the dual-cascade picture in 2D turbulence
is given in Fig. 1.1(b). The energy is transferred towards progressively larger
scales or lower wavenumbers, whereas the enstrophy is characterised by a
down-scale transfer to higher wavenumbers until viscous dissipation be-
comes dominant.

One striking difference between 3D turbulence and its 2D counterpart,
is the formation and persistence of large-scale structures in the latter. This
self-organisation can be explained with the schematic shown in Fig. 1.1. In
3D turbulent flows energy is injected and transported (by means of vortex
stretching and tilting) to the small scales, where it is dissipated eventually.
In 2D turbulence, the injected energy is transported to larger scales (small
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wavenumbers) and the formation of larger structures is anticipated. Viscos-
ity acts predominantly at the small scales, therefore these large-scale struc-
tures hardly experience dissipation and are able to persist for long times,
i.e., many eddy turnover times. Actually, the formation of such large-scale
structures was already predicted on theoretical grounds by Onsager [64] and
Fjørtoft [30]. This self-organisation is illustrated in Fig. 1.2, showing numer-
ically obtained vorticity snapshots of a 2D decaying turbulence simulation.
The flow is initialised with 100 vortices on a regular grid, and hereafter

a) b)

Figure 1.2 – Vorticity snapshots of a 2D turbulence simulation (a) just after onset
of simulation and (b) after many turnover times showing self-organisation. White
(black) corresponds to negative (positive) vorticity values. The flow is initialised
with a 10×10 array of vortices at onset of the simulation. Courtesy of G.H. Keetels
[44].

the flow is left to decay. In Fig. 1.2(a) many small vortices and vorticity
filaments are observed at the early stage of the evolution. These vortices
start to interact: formation of dipolar vortices which start to propagate and
merging of like-signed vortices into larger ones are seen. Eventually, long
after the onset of the simulation, large-scale structures can be appreciated
resulting from this self-organisation process as depicted in Fig. 1.2(b).

For some reasons one might object to the term “2D turbulence”. This is
particularly true when one considers vortex stretching and tilting as essen-
tial ingredients of turbulence. The energy cascade as described by Richard-
son, i.e., the break-up of large-scale structures into smaller and smaller
ones, is driven by this vortex stretching and tilting process, which is an
essentially 3D mechanism. Therefore, turbulence based on the mechanism
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described above can thus not exist in two spatial dimensions. Next to this
argument, we know that 2D flows do not exist in the real world. The concept
of 2D turbulence gives nevertheless insight in situations where the growth
of three-dimensional disturbances is prevented, such as in large-scale geo-
physical flows [55]. Figure 1.3 displays a satellite image of stratocumulus

Figure 1.3 – Satellite image of the formation of a von Kármán vortex street in
the wake of Jan Mayen island on June 6, 2001. The mean flow direction is from left
to right and is visualised by the clouds. Image is from NASA’s Earth Observatory
and spans approximately 360 by 160 km.

clouds near an island (Jan Mayen island, 650 km northeast of Iceland).
The flow (in the picture from left to right) is impeded by an obstacle, i.e., a
volcano of 2.2 km height. In the wake of this island the formation of large-
scale vortices is seen as visualised by the clouds, in the form of a so-called
von Kármán vortex street. Of course, this is a situation where the rotation
of the Earth, density stratification and geometrical confinement all play a
role in two-dimensionalising the flow.

1.1.2 Numerical simulations of 2D turbulence

Numerical simulations have been used to test the scaling exponents of 2D
turbulence as predicted by Kraichnan. A concise overview of these attempts
follows, as well as the utilisation of periodic boundary conditions in Fourier
spectral codes. For a recent and detailed review on 2D turbulence simula-
tions, the reader is referred to Clercx and van Heijst [19].

The first direct numerical simulations of forced 2D turbulence were
performed by Lilly [53] in 1969, aimed at confirming the existence of the
dual-cascade picture predicted by Kraichnan [49]. These simulations were
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performed with a Fourier spectral code on a square domain and periodic
boundary conditions were employed. Although the resolution of these nu-
merical simulation was rather low (i.e., consisting of just 642 grid points),
the results did hint at the presence of the dual cascade.

Almost twenty years later, Frisch and Sulem [34] obtained a clear in-
ertial range scaling of the inverse energy cascade with a resolution of 2562

grid points. Later this scaling was confirmed by Smith and Yakhot [82], who
increased the resolution even more, obtaining a clear scaling over 2 decades.
Furthermore, they observed the formation of a large-scale structure similar
to a Bose–Einstein condensate, as predicted by Kraichnan.

Only recently, Boffetta [7] reported on the simultaneous presence of the
inverse energy and enstrophy cascades in forced 2D turbulence simulations.
He also used a Fourier spectral code with periodic boundary conditions.
This dual-cascade scenario is in agreement with the predictions by Kraich-
nan [49].

The use of Fourier spectral codes dictates the utilisation of periodic
boundary conditions. Periodic boundary conditions mean that what flows
out at one side, enters the domain at the opposite side (or vice versa). It
was assumed that such a periodic domain represents, to some extent, the
flow on an infinite domain (e.g., large-scale atmospheric flow of the Earth)
where finite-size effects and the presence of boundaries are avoided. How-
ever, simulations on bounded 2D turbulence have revealed the influence of
the (no-slip) domain boundaries on the flow evolution in both decaying and
forced 2D turbulence [19,93]. The 2D vortices interact with the no-slip wall,
which leads to the formation of thin boundary layers that detach from the
lateral wall and roll up to form small vortices containing high-amplitude
vorticity. Another example of the influence of a lateral no-slip wall is the
spontaneous spin-up of the flow which has been observed for decaying 2D
turbulence confined to non-circular domains [95].

In 2D turbulence the injected energy is transported to the larger scales.
Newtonian viscosity predominantly removes energy at the smallest scales
of the flow. As a result of the inverse energy cascade the energy will thus
pile-up at the length scale comparable to the domain size. Different forms of
the dissipation have been proposed to provide an energy sink at the largest
scale. Together with the usual Newtonian dissipation ν∇2v a linear fric-
tion term is added to the 2D Navier-Stokes equations that is nonselective
with respect to length scales. The physical motivation for the use of linear
friction is that it represents a lowest order parameterisations of bottom
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friction, which is inevitable in laboratory experiments.

1.2 Experimental realisations of 2D turbulence

Besides the numerically sought confirmation of the characteristics of 2D
turbulence, corroboration has also been sought by laboratory experiments.
These laboratory experiments can be categorised by the way in which two-
dimensionality is enforced, i.e, background rotation, density stratification,
or geometrical confinement. Often, these mechanisms are studied separately
to investigate the individual effects on the two-dimensionality of the flow.
In this section, mainly laboratory experiments where geometrical confine-
ment is utilised to promote 2D flow behaviour are discussed. The shallow
fluid layer setup, which is employed in the investigation reported in this
thesis, fits in this framework.

1.2.1 General overview of experiments in thin fluid layers

One of the first experimental investigations on 2D turbulence was performed
by Sommeria [84]. The setup he used was a thin layer of mercury, where
besides the geometrical confinement, 3D motions were also suppressed by
a sufficiently strong vertical magnetic field. This additional suppression of
3D motion can be characterised by the Hartmann number Ha which is a
measure for the relative importance of magnetic to viscous forces. In such
flows (i.e., with Ha ≫ 1), the Lorentz force acts in a similar way as the
Coriolis force in (strongly) rotating flows. In the experiments by Sommeria,
an inverse energy cascade was found spanning about half a decade, as well
as the formation of large-scale structures, which are both characteristics of
2D turbulence.

In the early 90s of the last century, characteristics of 2D turbulence
were more convincingly validated with soap film experiments [22]. Film
thicknesses of approximately 10µm can easily be obtained, corresponding
to an extremely small aspect ratio (as compared to the horizontal length
scales). However, soap film experiments suffer from subtle effects such as
the influence of air drag and thickness variations influencing the 2D flow
behaviour (see, e.g., [45]). Couder [22] towed a grid of cylinders through
the soap film, and the decaying turbulent flow field showed merging of like-
singed vortices (self-organisation). In fact, it were (decaying) turbulence
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experiments in soap films that validated for the first time the predicted en-
strophy cascade scaling exponent, see [46]. Later, the simultaneous inverse
energy and direct enstrophy cascades were confirmed in similar soap film
experiments regarding forced turbulence [13, 61, 76]. For a detailed review
concerning (forced and decaying) soap film experiments, the reader is re-
ferred to Kellay and Goldburg [45].

Several methods to set the fluid into motion have been used in experi-
ments. Directly injecting fluid in the container (see, e.g., [54,85]), rotating
solid flaps (see, e.g., [1]), or towing a rake of cylinders through the fluid
(see, e.g., [59, 89]) have been used to initialize the flow. Electromagnetic
forcing, i.e., application of the Lorentz force resulting from the interaction
of a magnetic field (that permeates a fluid) and a current density (through
the fluid), can be used to generate fluid motion. Note that the use of elec-
tromagnetic forcing to drive the fluid was already suggested by Gak and
Rik in 1967 [35]. This electromagnetic forcing will be discussed in more de-
tail in the next section. The reader is referred to van Heijst and Clercx [92]
for a detailed overview on vortex generation techniques.

1.2.2 Electromagnetically-driven shallow fluid layers

In the late 1970s, a generic experimental setup to study 2D turbulence
was introduced by Dolzhansii and co-workers (see, e.g., [12]), generally
referred to as electromagnetically-driven shallow-fluid layer experiments.
Here, two-dimensionality is assumed to be promoted only by the limited
vertical dimension as compared to the horizontal length scales. The fluid
is conveniently set into motion by the Lorentz force that results from the
interaction of an electric current forced through an electrolyte and mag-
netic fields that originate from permanent magnets placed underneath the
electrolyte. Note that the electromagnetic forcing is used to set the fluid
in motion, not to two-dimensionalise the flow (i.e., in these electrolyte so-
lutions the so-called Hartmann number Ha ≪ 1). For a review on the
experimental attempts to investigate 2D turbulence the reader is referred
to Tabeling [87].

With this shallow fluid layer setup several characteristics of 2D turbu-
lence were confirmed. Tabeling and co-workers performed the first of such
experiments on decaying 2D turbulence [88]. They investigated the valid-
ity of the scaling predictions proposed by Carnevale et al. [14] on how the
vortex density, radius, vorticity extremum, and enstrophy should behave
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when the flow is 2D and turbulent.
From 2D numerical simulations it was already known that the bound-

edness of the flow domain affects the evolution of the flow, due to vorticity
production at a lateral no-slip wall and spontaneous spin-up of the flow
on non-circular domains (see, e.g., [95]). Besides this horizontal confine-
ment, laboratory setups are also limited in the vertical direction by a free
surface and a no-slip bottom. Often, it is assumed that this setup yields
flows that behave in a quasi-2D fashion, i.e., a horizontal motion with a
Poiseuille-like profile in the vertical direction (see, e.g., [20, 38, 67]). This
assumption allows one to replace the 3D diffusion term ν∇2v by the 2D
diffusion ν∇2v2D supplemented by a linear friction term αv2D, where α
denotes the bottom friction coefficient (see, e.g., [26]). Note that the linear
friction term is nonselective with respect to length scales, and is therefore
able to act as an energy sink at large scales in numerical simulations (as
opposed to the Newtonian viscosity, which predominantly removes energy
at the small scales).

A way to minimise the influence of bottom friction on the measurement
domain is to use a stably stratified two-layer setup instead of a single-layer
setup. The rationale behind the two-layer setup is that the measurement
layer (the top layer) is now shielded from the solid bottom by an extra layer
(the bottom layer) and therefore reduces the influence of the no-slip bottom
on the flow evolution in the measurement layer. The first reported study
utilising such a two-layer configuration was by Tabeling and co-workers [60],
again aimed at validating the scaling theory by Carnevale et al. [14]. The
inverse energy cascade was measured by Paret et al. [68] in such a setup
with two-layers, followed by the claim to have also measured the direct en-
strophy cascade [66]. The effect of bottom friction on the k−3 scaling of the
enstrophy cascade was investigated by Boffetta et al. [10], and they found
a correction based on the bottom friction coefficient. This correction on the
k−3 spectrum was later confirmed by Wells et al. [96] with 2D numerical
simulations.

A slightly different version of the above mentioned two-layer setup is
now commonly used. Here, the bottom layer is a dielectric fluid, immisci-
ble with water (see, e.g., [73, 81, 103]). This enables in principle to achieve
higher Reynolds numbers without destroying the stratification. With this
modified setup, condensation in 2D turbulence [103], suppression of turbu-
lence by mean flows [81], and pair dispersion in 2D turbulence have been
studied [73].
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1.2.3 Three-dimensionality in shallow-fluid experiments

Until recently, the assumption of 2D flow behaviour in shallow fluid layer
experiments was based on hand-waving arguments and has not been tested
directly. Based on the continuity of the velocity field it is expected that the
magnitude of the vertical motion is proportional to the magnitude of the
horizontal velocity multiplied by the aspect ratio. One of the few excep-
tions to this is the study of Paret et al. [67], in which momentum exchange
between different layers inside the fluid was considered for this purpose.
They conclude that the flow in a two-layer setup can be regarded as 2D.
However, this conclusion was based on a single experiment of which the
value of the Reynolds number is not mentioned.

Lin et al. [54] studied a single dipolar vortex in a homogeneous shallow
fluid layer, generated by an impulsively started jet. They found a horizontal
vortex structure, just in front of the primary dipolar vortex. This prevalent
structure was seen to contain vorticity exceeding the primary vorticity by
a factor of approximately two. The emergence of this structure was later
confirmed by Sous et al. [85,86] in similarly generated dipoles (laminar and
turbulent) for a homogeneous fluid layer, and by Akkermans et al. [2, 3]
in electromagnetically generated shallow flows (see also chapter 3 of this
thesis). Sous et al. [85, 86] relate the frontal circulation to the no-slip bot-
tom and state that this frontal circulation is not present in a two-fluid layer
setup based on their qualitative observations. Recent studies, however, have
revealed that this frontal circulation is also present in the two-layer config-
uration [4] (see chapter 4 of this thesis).

Obviously, the presence of a solid bottom plays an important role in the
evolution of the shallow fluid layer flow. Also, the way the flow is gener-
ated is important, e.g., impulsively started jet vs. electromagnetic forcing.
For instance, the Lorentz force has a vertical component and its effect on
the flow evolution is not yet clear. Only recently, accurate modelling of the
Lorentz force (i.e., by using the full 3D magnetic field) as in the experimen-
tal situation have appeared in publications [2, 3, 51, 74]. It was concluded
that 3D simulations are required to accurately simulate the 3D electro-
magnetic forcing, even if the flow remains quasi-2D in terms of the energy
distribution over the horizontal and vertical velocity components.

Furthermore, modelling bottom friction as a linear friction term has
been questioned recently [2, 3, 51].
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1.3 Aim and outline of this thesis

The objective of the study reported in this thesis is a deeper understand-
ing of the influence of boundary and initial conditions on the development
of 3D motion inside shallow fluid layers. Such thin-layer experiments are
often used to validate theoretical and numerical results on 2D turbulence.
However, in experimental realisations deviations from two-dimensionality
are inevitable due to, e.g., the finite vertical dimension, presence of rigid
boundaries such as lateral no-slip walls or the no-slip bottom, or the way
the flow is set into motion. For this purpose, one of the most elementary vor-
tex structures in 2D turbulence, an electromagnetically generated dipolar
vortex is studied in a single- and two-layer configuration, both experimen-
tally and numerically. The two-layer configuration was assumed to be an
improvement over the single-layer setup in the sense that the flow evolution
is less influenced by bottom friction.

Stereoscopic particle image velocimetry (SPIV) is used to experimen-
tally measure the flow field inside the fluid layer. With this technique, all
three velocity components are directly measured inside the fluid, offering
direct information concerning the two- or three-dimensionality of the flow.
Furthermore, fully 3D direct numerical simulations of the Navier-Stokes
equations are performed, enabling the possibility of a comparison with the
experiments, and, more important, allowing to investigate different initial
and boundary conditions, which may be even impossible to realise in the
laboratory experiment.

The third experimental configuration that is considered is a linear array
of vortices situated close to a lateral wall. As opposed to the previously de-
scribed single dipole in a one- or two-layer configuration, now particularly
vortex-wall interactions are investigated. To some extent, this mimics the
experimental configuration of 2D turbulence near rigid side walls. Further-
more, a numerical investigation into the influence of the 3D flow field and a
lateral wall on passive tracer transport in this configuration is performed.

In the second chapter of this thesis the experimental and numerical
tools are described. Chapter 3 presents the results of the dipolar vortex in
a shallow layer of fluid. The influence of some obvious sources of 3D motion,
such as free-surface deformations, bottom friction, and initialisation of the
flow are discussed. Hereafter, in chapter 4 the extension to a two-fluid layer
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setup is made, both experimentally and numerically. Chapter 5 focuses on
the 3D motions in a continuously forced linear array of vortices near a lat-
eral wall, as well as the possible influence of the three-dimensionality on
particle dispersion. Finally, the main conclusions are summarized in chap-
ter 6.





CHAPTER 2

Experimental and numerical techniques

This chapter describes the tools used to obtain the experimental and nu-
merical results presented in Chapters 3 to 5. The first section describes
the measurement technique, starting with introducing general concepts of
stereoscopic particle image velocimetry. Then, particle image velocimetry
(PIV) is briefly discussed. Subsequently, the used measurement technique,
i.e., stereoscopic particle image velocimetry (SPIV) is described as this is
an extension of the working principle of PIV. In the second section the
laboratory setup is explained together with the performed experiments. In
the last section the numerical method is discussed.

2.1 Measurement technique

2.1.1 Introduction

Stereoscopic particle image velocimetry is a popular measurement tech-
nique for the investigation of three-dimensional (3D) flows since it can
resolve all three components (3C) of the velocity field on a two-dimensional
(2D) plane. A SPIV setup typically consists of a light source illuminating
particles that are added to the flow. The scattered light from these particles
is recorded with two digital cameras. The displacements (and velocities) are
then subsequently determined by evaluation of these digital image record-
ings. SPIV is well-suited for application to complex flows (e.g., turbulent
flows) as it is a non-intrusive, whole-field technique that allows instanta-

15
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Figure 2.1 – Schematic illustrating the angular displacement method and
Scheimpflug condition (i.e., image, lens, and object plane coincide on a single
line). The stereoscopic angle θ is the angle between the two optical axes.

neous velocity field measurements.
The two cameras are arranged in the so-called angular displacement

setup of which a schematic is shown in Fig. 2.1. The angular displace-
ment method [70] is mostly employed nowadays as it generally provides
higher measurement accuracy for the third (out-of-plane) velocity compo-
nent [104], as opposed to the lateral translation method [71]. However, a
consequence of this is that the object and lens plane are not parallel any-
more. To maintain in-focus imaging, the image plane must be additionally
tilted according to the Scheimpflug criterion, stating that image, lens, and
object plane should coincide on a single line (see Fig. 2.1).

In order to correctly reconstruct a single 3C vector from two distinct
two-component (2C) vectors derived from different cameras, it is important
that both 2C vectors result from cross-correlation of the same physical in-
terrogation volume. Therefore, one of the most important parts of the SPIV
analysis involves establishing an accurate relationship between tracer par-
ticles in physical object space and their projections in image space (CCD
array of the cameras). This transformation is expressed mathematically in
terms of mapping functions, and various choices can be made, e.g., perspec-
tive equations (camera pinhole model) [31, 102], single-plane polynomial
functions [52, 100], or full-volume polynomial functions [83]. In the latter
case, the required coefficients can be determined by straightforward calibra-
tion procedures that often consist of recording a well-defined grid pattern
at several out-of-plane positions resolving the light sheet volume. The ad-
vantage of the empirical approach based on polynomial mapping functions,
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also referred to as in-situ calibration [52], is its straightforward numerical
implementation, yet able to correct (depending on the polynomial order)
for various optical distortions resulting from perspective projection, lens
aberrations, and index of refraction changes that are not due to turbulence
or sharp optical interfaces. Doing so, all relevant parameters are accounted
for without any knowledge of the system parameters (such as focal length,
lens plane position, etc.) which are often difficult to determine with suffi-
cient accuracy. A disadvantage of the empirical approach is the inevitable
misalignment between the calibration plane on the one hand, and the mea-
surement plane defined by the light sheet on the other hand, which is often
referred to as “light sheet misalignment” (LSM) [102]. Recently proposed
misalignment corrections, however, adjust the original mapping functions
based on mutual comparison of simultaneous particle recordings of distinct
cameras [23,78,101].

An important competitor of SPIV methods is 3D particle tracking ve-
locimetry (PTV), a measurement technique in which individual particle
positions in 3D physical space are accurately determined by calculating
the intersections of perspective rays associated with each recognised parti-
cle image (see e.g., [57, 65, 79]). Particle positions derived from subsequent
camera images can be matched in order to reconstruct particle trajectories
and the velocity along such trajectories, and 3D PTV is therefore extremely
suitable for Lagrangian measurements in fluid flows, in contrast with SPIV.
Reconstruction of the perspective rays requires calibration methods similar
to those used for SPIV, and although a line intersection is fully determined
by two perspective rays, often more than two such rays are desired in order
to minimise errors due to “particle hiding”. Modern 3D PTV techniques
such as the ones cited above, therefore use three to four cameras. In SPIV,
however, particle hiding is negligible as the imaged volume consists of a
sheet, so that two cameras are sufficient to calculate reliable intersections.

In the “Vortex Dynamics and Turbulence” group at Eindhoven Univer-
sity of Technology there are several measurement techniques available, e.g.,
(S)PIV and (3D)PTV. As the goal is to study the 3D structures in shallow
fluid layers, only SPIV and 3D-PTV are considered as suitable techniques
as they provide information of all three velocity components on a certain
domain. The major advantage of 3D-PTV with respect to SPIV is that it is
a genuine 3D method, providing information of the 3D velocity in the entire
measurement volume. However, this is strictly not necessary and SPIV (all
three velocity components on a 2D plane) is more than sufficient for shallow
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fluid-layer flows. Furthermore, in principle a higher spatial resolution can
be attained with SPIV as compared to 3D-PTV. For these reasons, SPIV
has been chosen as the measurement technique.

2.1.2 Particle image velocimetry

Particle image velocimetry is an indirect measurement technique that pro-
vides in-plane velocity components on a spatial domain, through the motion
of seeding particles. Of course, for this measurement to be useful these par-
ticles must follow the flow faithfully. The measurement domain is defined by
the light source used to illuminate the seeding particles in the flow. A digi-
tal camera, perpendicular to the plane defined by the light source, records
the particles at two instance of time, i.e., at t and t+∆t. These two particle
images (It and It+∆t) are subdivided into interrogation windows. The dis-
placement between the two corresponding windows is then determined with
the use of cross-correlation. The cross-correlation is similar in nature to the
convolution of two functions and therefore computationally expensive. For
this reason, the cross-correlation is computed in the Fourier space. As there
is only information on discrete integer values from the digital measurement
images (i.e., pixels), an improvement is obtained by using sub-pixel inter-
polation. The maximum in the Signal-to-Noise map gives the statistically
most probable displacement between the two interrogation windows. For
all windows of the measurement image this process is repeated so that the
displacement vectors are determined for the complete domain. As the time
between the two particle images ∆t is known, the velocity can be computed
with the relation v = ∆x/∆t (where v and ∆x are the in-plane velocity
and displacement, respectively).

Clearly, an important aspect of PIV is the use of seeding particles as the
flow is measured indirectly through the particle motion. This puts certain
restrictions to the particle material and diameter (the particle is assumed
to be spherical). The particles should be small enough to follow the flow
faithfully but large enough to sufficiently scatter light and avoid “peak-
locking” [71].

How well these particles follow the flow is characterized by the Stokes
number St = τp/τf , where τp = d2

pρp/18µf is the particle response time to
acceleration and τf the characteristic time scale of the flow (dp and ρp rep-
resent the particle diameter and density, µf denotes the dynamic viscosity
of the fluid). For a Stokes number St ≪ 1 these seeding particles follow
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the flow passively; the motion of the particles, which is measured, is then
representative for the fluid motion (see Sect. 2.2.1 for details).

2.1.3 Stereoscopic particle image velocimetry

By adding a second camera, where the two cameras view the region of
interest from different angles, SPIV is able to retrieve all three velocity
components. In fact, this depth-perception is similar to human vision [69].
The developed SPIV techniquei consists of a calibration procedure (includ-
ing a misalignment correction), measurement image evaluation, and finally
a 3C reconstruction. The description of the measurement technique in this
subsection is based on an internal report [91].

Mapping functions and in-situ calibration

Stereoscopy enables one to reconstruct a single 3C displacement vector
from two 2C displacement vectors. The 2C displacement vectors are ob-
tained from two separate PIV calculations, which in the present algorithm
are performed in physical space. This requires prior back-projection of the
original images to physical space, which is referred to as dewarping.

The back-projection is implemented using mapping functions. The dif-
ferent camera viewing angles, characteristic for the angular displacement
method, result in a perspective distortion that differs for each camera.
Therefore, mapping functions must be determined for the two individual
cameras. Assuming the light sheet coincides with the plane Z = Z0 =
constant, these mapping functions are given by

ML : xL → X0 , MR : xR → X0 , (2.1)

with subscripts ‘L’ and ‘R’ referring to the Left and Right camera, re-
spectively. Functions ML and MR map the image space coordinates
xL ≡ (x, y)L and xR ≡ (x, y)R, respectively, to the corresponding phys-
ical space coordinate X0 ≡ (X, Y, Z0). For reasons outlined in Sect 2.1.1,
multi-plane polynomial expressions are used for functions ML and MR.

iL.J.A. van Bokhoven is acknowledged for his contribution to the development of
the here presented SPIV measurement technique. The description of the measurement
technique in this Section is based on an internal report [91]: L.J.A. van Bokhoven, R.A.D.
Akkermans, H.J.H. Clercx, G.J.F. van Heijst, Triangulation based stereoscopic PIV with
misalignment correction, Technical Report R–1746–D, TU/e, 2009.
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The reader is referred to [47] for a detailed description of the multi-plane
polynomial expressions and its application.

The polynomial coefficients of transformation (2.1) are determined by a
straightforward in-situ calibration, with the aid of calibration images (see
Fig. 2.2). A well-defined grid pattern is used for the calibration, i.e., an

CL CR

ŶX̂

Ẑ

Z−

Z+

Z0 dc

Figure 2.2 – Schematic of the calibration procedure (side view). The calibration
grid is first recorded at Z−. Subsequently, it is uniformly shifted over dc in the
Ẑ-direction to Z+. Hereafter, a second recording is made.

equidistant pattern (in X− and Y −direction) of white dots on a black
background. Typically, this grid consists of more than 100 dots, three of
which are larger and define the origin and the X̂- and Ŷ-axes. The Ẑ-axis
is taken according to the right-hand-rule. Note that this coordinate system
is used “inside” the SPIV technique and does not necessarily coincide with
the coordinate system used to present the results in the following chapters.
The calibration grid pattern is then recorded at parallel planes Z− and
Z+ = Z− + dc, with dc the distance between the two planes. Subsequent
image analysis allows one to construct discrete mapping functions for both
calibration planes. Assuming that the light sheet coincides with the plane
Z0 (Z− ≤ Z0 ≤ Z+), the continuous mapping functions ML and MR

for plane Z0 can be easily computed from the discrete mapping functions
for planes Z− and Z+ using linear interpolation and least-squares fitting
procedure.

Besides determining the coefficients of the mapping functions ML and
MR, in-situ calibration is also required to reconstruct the perspective rays
that are essential for the light sheet misalignment correction (LSMC) and
3C reconstruction. Furthermore, in-situ calibration allows easy computa-
tion of the common area, defined as the physical space recorded by both
cameras. Clearly, in-situ calibration plays a crucial role in the present SPIV
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algorithm.
Finally, back-projection of deformed images also requires a suitable in-

terpolation scheme. Recent performance assessments by [5], and [48] have
shown that the accuracy of a PIV algorithm in terms of systematic and
total errors is strongly influenced by the type of interpolation scheme used
for this reconstruction. Based on the outcome of these studies a cubic B-
spline interpolation scheme is used, which is a good compromise between
speed and accuracy.

Light sheet misalignment correction

As already mentioned in Sect. 2.1.1, a disadvantage of the empirical ap-
proach is the inevitable misalignment between the calibration plane and the
measurement plane defined by the light sheet. In practice, a well-aligned
light sheet will still be both tilted and shifted with respect to plane Z0 so
that the assumption made in the previous Section is invalid (i.e., a perfect
alignment of measurement and calibration plane). This type of misalign-
ment will lead to erroneous 3C vectors since the 2C PIV vectors of the left
and right cameras are no longer obtained from the same physical interro-
gation volume.

Fortunately, this type of misalignment can be corrected for by using
the so-called disparity map and a procedure that is referred to as triangu-
lation [101]. A disparity map follows from cross-correlating simultaneous
particle recordings of the left and right camera. Each disparity vector rep-
resents the (X, Y )-displacement that maximises the correlation between
the corresponding interrogation windows of the dewarped images, and thus
quantifies the degree of misalignment. For instance, zero disparity reflects
the case of a light sheet that is perfectly aligned with the calibration plane
Z0. The disparity map was already used by [102] to correct the position
at which the corresponding 2C vectors for the left and right camera are
calculated. A more advanced approach for the case of normal lenses with
Scheimpflug adapters involved recomputing a corrected mapping function
from the disparity map, also referred to as self-calibration [32,101]. The mis-
alignment correction presented below is actually identical to that of [101],
and uses mapping functions based on empirical multi-plane polynomials.

The main ingredient of the misalignment correction is to construct a
relationship between the camera image spaces and the tilted light plane
in physical space. This transformation can be expressed in terms of the
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following mapping functions

M
s

L : xL → Xs , M
s

R : xR → Xs , (2.2)

which map the image space coordinates of the two cameras to the cor-
responding physical space coordinates within the light sheet, denoted by
Xs ≡ (Xs, Y s, Zs). Again, multi-plane polynomial expressions are used for
the mapping functions M

s

L
and M

s

R
. The polynomial expressions are cho-

sen such that LSM due to a slightly parabolic shape of the light sheet is
also corrected for. The coefficients of transformation (2.2) are determined
as explained below.

First, a simultaneous particle recording is made by both cameras. For
these images, one uses actual measurement images so that no extra im-
ages need to be taken for the LSMC. However, the (measurement) images
used during the LSMC are further referred to as “misalignment images”
to distinguish them from the particle images used for 3C reconstruction
(see Sect. 2.1.3). The mapping functions ML and MR, see (2.1), are then
used to back-project the misalignment images to the estimated light plane
Z = Z0. Next, the dewarped images are cross-correlated using a PIV algo-
rithm based on dynamic 2D Fast Fourier Transforms [98] with an in-plane
particle-loss correction [97]. Each disparity vector is then triangulated to
calculate the positional difference between the estimated light plane and
the true light plane, see Fig. 2.3. Triangulation requires exact knowledge of
the perspective rays through the initial and final points of each disparity
vector. Such information is retrieved from the inverse mapping functions

M
←

L : X0 → xL , M
←

R : X0 → xR , (2.3)

with polynomial expressions for M
←

L
and M

←

R
, the coefficients again ex-

tracted from the calibration data. The intersection points obtained from
triangulation are finally used in a least-squares fitting procedure to solve
the coefficients of the transformation functions of the true, tilted light plane,
M

s

L
and M

s

R
.

Following [101], ensemble-averaging is performed over a series of dispar-
ity maps computed from many image pairs [62] to improve the statistical
accuracy of the disparity map. Depending on the particle density and the
thickness of the light sheet, about 5 to 50 image pairs are typically needed
to compute an accurate disparity map from a well-shaped correlation peak.
The ensemble-averaged disparity map is subsequently analysed by a uni-
versal outlier detection algorithm [99] to detect and replace any remaining
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Figure 2.3 – Laser sheet misalignment correction based on triangulation of per-
spective rays. First, the 2C disparity vector R is determined at PIV node M in
physical space. Next, the image points xL and xR are determined for the initial
and final point, respectively, of the disparity vector R. Finally, perspective rays
l and n, corresponding to the image points xL and xR, respectively, are recon-
structed and triangulated to obtain the coordinates of the light sheet coordinate
Xs.

spurious disparity vectors. Doing so, a reliable disparity map is obtained
for the triangulation procedure, improving the accuracy of the mapping
functions (2.2).

Three-component reconstruction by triangulation

Above it was described how the required mapping functions are obtained
from the calibration. The next step is how to reconstruct a 2D3C dis-
placement field from simultaneous particle recordings made by the left
and right camera at times t and t + ∆t. First, consider the left camera.
The acquired particle recordings are dewarped using the mapping function
M

s

L
[see (2.2)]. The succeeding (dewarped) particle recordings are then

cross-correlated using the above-mentioned PIV algorithm to compute the
2D2C displacement map

{

D2C
L

}

— 2D2C because the PIV computations
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use a 2D orthogonal coordinate frame of which the base vectors span the
light plane in physical space. This raw 2D2C displacement map is analysed
by the universal outlier detection algorithm mentioned previously. The fil-
tered 2D2C displacement field is then transformed to the physical space
coordinate frame defined by the calibration procedure, yielding the 2D3C
displacement field

{

D3C
L

}

. A similar procedure is repeated for the right
camera (using M

s

R
instead of M

s

L
) to obtain the 2D3C displacement map

{

D3C
R

}

. The displacement maps of both cameras are associated with the
centres of the interrogation windows, Ms.

Finally, the physical space points Ms + D3C
L

and Ms + D3C
R

of a given
interrogation window are triangulated in the same way as the initial and
final point of a disparity vector are triangulated. The resulting intersection
points

{

X3C
}

are exactly the final points of the 3C displacement vectors
that we are interested in. The final 2D3C displacement field thus consists of
the 3C vectors

{

X3C − Ms
}

at corresponding coordinates {Ms}. This final
2D3C displacement map is generally post-processed to detect and replace
any spurious 3C displacement vectors.

2.2 Experimental setup

The laboratory experiments have been performed in a tank with two im-
portant characteristics. First, a shallow layer of electrolyte is used, where
shallow means that the geometry confines the motion predominantly to the
horizontal plane. Second, the motion of the fluid is driven by electromag-
netic forcing.

A disk-shaped magnet is placed underneath the fluid layer and an ap-
proximately uniformly distributed electrical current is running through the
fluid, between two electrode plates mounted along opposite side walls. The
interaction of the current density j and the magnetic field B induces a
Lorentz force that sets the fluid in motion. Our experimental setup is sim-
ilar to that used in several other studies by, e.g., Dolzhanskii et al. [26],
Danilov et al. [24], and Tabeling and co-workers [67, 68] (where the latter
authors use a stably stratified two-layer system). Note that the electromag-
netic forcing (i.e., the magnetic field) in the shallow flow setup is used to
set the fluid in motion, not to two-dimensionalise the flow.

Three types of experiments have been performed, i.e., (i) the evolution
of a dipolar vortex in a single fluid layer has been investigated (results
presented in Chapter 3), (ii) a similar study of the dipole evolution in a
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stably stratified two-layer system has been conducted (Chapter 4), and (iii)
the dynamics (and dispersion properties) of a line of vortices parallel to a
lateral wall in a single-fluid layer has been studied qualitatively (Chapter
5). First the setup used for the single layer dipole experiments will be pre-
sented as this is the most straightforward. Hereafter the extension to the
two-layer experiments will be elucidated, and finally the setup used for the
study of the line of vortices is given.

2.2.1 Dipolar vortex in a single-fluid layer

A schematic of the setup used for the dipolar vortex study in the single
fluid layer is depicted in Fig. 2.4. The left-hand side of this figure shows
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Figure 2.4 – (Colour online)ii Schematic of the experimental tank showing the
x, y, z-coordinate system; Left: top view, right: cross section. The electrical current
is denoted by I, the fluid depth with H, and B represents the magnetic field
produced by the magnet.

a top view of the 52 × 52 cm2 square tank with one disk-shaped perma-
nent magnet below the bottom. The bottom plate has a thickness of 1 mm.
Two rectangular-shaped electrodes are placed on opposite sides of the tank,
leading to a uniform current density in the x-direction. A single layer of
sodium chloride solution (NaCl, 15% Brix) serves as the conducting fluid
enabling the electromagnetic forcing. The magnet is placed approximately
in the middle of the tank to minimize the influence of the lateral walls and
non-uniformities in the current density.

We adopt a Cartesian coordinate frame, with the x- and y-axes span-
ning a plane parallel to the bottom of the tank, and the z-axis is taken
vertically upward. The origin of the coordinate system lies above the cen-

iiHere and in the remainder, “Colour online” refers to the digital record of this thesis
available from the website of the Eindhoven University of Technology Library.
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tre of the magnet on the bottom of the tank. The y-axis coincides with
the propagation direction of the dipole. The three velocity components in
the x-, y-, and z-direction are denoted by u, v, and w, respectively. The
cylindrical magnet (indicated in Fig. 2.4), with a diameter of 25 mm and
thickness of 5 mm, is assumed to be uniformly magnetized in its axial di-
rection and produces a magnetic field with a magnitude of the order of 1 T.

The forcing protocol to generate the dipolar vortex constitutes of a 1 s
pulse of constant current strength I. This protocol was determined em-
pirically, a very short pulse would need to be accompanied by a too high
current strength, a too long pulse would result in a jet-like flow. Time t
was set to zero at the onset of forcing for all the results in the remainder
of this thesis.

The right-hand side of Fig. 2.4 shows a cross-section of the experimental
set-up. Two cameras, placed at an angle, enable the use of SPIV [71] to
measure the full three-component velocity field in a horizontal plane inside
the fluid layer. The two cameras (Kodak Megaplus ES1.0 with sensor reso-
lution 1008× 1019 pixels, f# = 2.8) are mounted on Scheimpflug adaptors
to enable in-focus imaging of the entire field of view, as the stereoscopic
angle is approximately 80 degrees. The flow is illuminated with a dual pulse
Nd:Yag laser (Spectron Laser SL454, 200 mJ/pulse) to produce a horizon-
tal light sheet of 1 mm thickness. In order to limit the in-plane particle
loss [71] and for correct temporal sampling of the signal, a delay time be-
tween laser pulses of 10 ms is chosen. The cameras and the light source
are synchronized with a delay generator. With this setup, image pairs (and
finally velocity fields) are acquired at 15 Hz.

The typical field of view is approximately 8.5 × 7 cm2 in x- and y-
direction, respectively. The area covered by the cameras is indicated schemat-
ically in Fig. 2.4 by the two dashed rectangles. The rectangle around the
position of the magnet is our viewing area during the forcing phase. As
the dipole will be propagating in the positive y-direction, the upper rect-
angle represents the field of view used to study its evolution. During post-
processing, all images are sampled at a resolution of 8962 pixels based on the
common field of view of the two cameras; the PIV analysis involves square
interrogation windows of 322 pixels and 50% overlap between neighbouring
windows. After post-processing, these settings result in SPIV velocity fields
that are resolved on a 55 × 55 spatial grid, corresponding to physical grid
spacing of (1.55;1.25) mm in x- and y-direction, respectively. In a correla-
tion window of 322 pixels there are on average 16 seeding particles present.
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The fluid is seeded with polystyrene particles having a mean diame-
ter dp of 20µm and a specific density ρp of 1.03 · 103 kg/m3. The volume
fraction of the particles is of the order 10−5, so that the seeding particles
have a negligible influence on the flow properties. Settling of the seeding
particles is negligible as ρp ≈ ρf . The flow time scale τf is estimated as
1/ωz,max ≈ 0.08 s, yielding a Stokes number St = τp/τf of 2 · 10−4, indicat-
ing that the particles follow the flow passively.

As is to be expected, the influence of the flow on the magnetic field
is negligibly small, since the magnetic Reynolds number Rem, defined as
µσUL, is small [Rem ∼ O(10−7)]. Here µ and σ denote the magnetic per-
meability and electric conductivity, respectively.

The main goal of these experiments (together with the numerical sim-
ulations) is to understand (i) what causes the development of 3D motions
in shallow flows, (ii) how does the geometrical confinement influence this
development of 3D motions, and (iii) how can one quantify the deviation
from two-dimensionality. For this purpose, several experiments have been
performed where the fluid height (or importance of geometrical confine-
ment and bottom friction) and forcing strength are varied. Furthermore,
measurements were carried out at different levels inside the fluid layer. In
total 25 experiments were performed with different combinations of fluid
depth H (ranging from 11.4 mm to 6.0 mm) and current strength I (2.4 A
to 6.4 A). The details of these experiments are presented in Sect. 3.2.

2.2.2 Dipole in a two-layer fluid

The shortcomings of the single-layer setup have been recognized and nowa-
days the two-layer fluid setup, consisting of a lighter fluid layer on top of
a heavier bottom layer, has become quite standard [10, 67, 68, 73, 80]. The
rationale behind the two-layer setup is that the measurement layer (the
top layer) is now shielded from the no-slip bottom by an extra layer (the
bottom layer) to minimize the influence of the no-slip bottom on the flow
evolution.

The first study employing the two-layer configuration was by Tabel-
ing and co-workers [60] in 1995. They used a stable configuration of two
electrolytes. Basically there are three variations possible for the two-layer
configuration: (i) two layers of electrolyte in a stable configuration [40, 41,
60, 66–68], (ii) a layer of fresh water above an electrolyte [10], and (iii) an
electrolyte on top of a dielectric fluid (which is immiscible with the elec-
trolyte) [73,81,103]. Nowadays the latter configuration is commonly used as
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molecular diffusion of salt between the two layers is virtually absent. More
importantly, higher Reynolds numbers can be achieved without destroying
the stratification (due to absence of mixing between the two layers).

The experimental setup used for the two-layer experiments is identical
to the setup described in the previous Sect. 2.2.1, except a two-layer fluid
system is used, therefore a concise description follows.

The laboratory setup consists of a shallow two-layer fluid in a stably
stratified situation: a denser dielectric lower fluid layer and a lighter con-
ducting upper layer of thickness Hul. In all the experiments the bottom
fluid layer depth Hbl is kept constant at 3 mm, while the upper layer depth
Hul was varied between 3.5 mm and 9.0 mm. The density of the lower fluid
(3MTM NovecTM Engineered Fluid HFE-7100) is 1.52 · 103 kg/m3 (about
1.5 times the density of the electrolyte), and it is immiscible with top layer
(thereby excluding vertical mixing between the two layers). The upper layer
is a sodium chloride solution (NaCl, 10% Brix), which serves as the con-
ducting fluid enabling the electromagnetic forcing. Note that the forcing is
only active in the top layer. In all the two-layer experiments reported here,
the forcing protocol consisted of a 1 s pulse of approximately constant cur-
rent density (jx ≈ 0.13 A/cm2).

A schematic of the set-up is depicted in Fig. 2.5. SPIV [2] measure-
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Figure 2.5 – (Colour online) Schematic of the experimental tank showing the
x, y, z-coordinate system; Left: top view, right: cross section. The electrical current
is denoted by I, the fluid depth of the top layer with Hul, and B represents the
magnetic field produced by the magnet. The field of view is indicated by the dashed
rectangle.

ments are performed inside the top fluid layer, always at mid-depth of this
top layer. Images were acquired with two Kodak ES2020 cameras (different
from the single-layer experiments) having a resolution of 1200 × 1600 pix-
els. After post-processing, velocity fields were resolved on a 60× 79 spatial
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grid, corresponding to a grid spacing of approximately 1 mm in both x-
and y-direction. The area that is observed is illustrated schematically in
Fig. 2.5 by the dashed rectangle (approximately 5.5 × 7 cm2).

The goal of these experiments is to determine if the two-layer fluid is in-
deed an improvement over the traditional one-layer setup. For this purpose,
the 3D structures that develop in a shallow two-layer fluid are addressed,
and a comparison is made with the single-fluid layer experiment. The be-
haviour of the flow is discussed when decreasing the fluid height Hul in
steps down to almost 3 mm (i.e., 9, 7, 5, and 3.5 mm), the latter mimick-
ing the traditional fluid-layer height for 2D turbulence experiments (see,
e.g., [67, 68, 73, 80]). Further details of these experiments are presented in
Sect. 4.2.

2.2.3 Linear array of vortices

The two experimental setups described previously are aimed at studying the
3D structures and evolution of a single dipolar vortex in shallow fluid con-
figuration. This dipole is a generic vortex structure of 2D turbulence. How-
ever, when putting theoretical and numerical predictions on 2D turbulence
to a test with shallow laboratory experiments, one has to realise that many
dipoles are generated by using a chessboard of magnets (see, e.g., [88]). In
such a situation, both vortex-vortex and vortex-wall interactions may be-
come important in altering the (2D or 3D) flow evolution [16,17]. Note that
it was already known from 2D turbulence simulations that the boundedness
of the flow domain alters the evolution and spectral characteristics of 2D
turbulence significantly [18,19,90,93,95,96].

Turbulent dispersion of passive tracers has been studied in such elec-
tromagnetically forced shallow flows, motivated by the geophysical context.
Dispersion characteristics in shallow flow setups are often studied by “dye”
visualisations using one camera or single-camera PIV or PTV, viewing the
flow from above (see, e.g., [73]). However, this configuration neglects the
possible 3D flow structure, questioning the validity to experimentally ver-
ify theoretical and numerical results on 2D turbulent dispersion with these
approaches.

The third experimental configuration that has been considered in this
study is a linear array of vortices close to a wall. As opposed to the pre-
viously described single dipole in a one- or two-layer configuration, now
particularly vortex-wall interactions are present. This mimics the experi-
mental configuration used to study 2D turbulence (near rigid side walls).
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The goal of these experiments is to investigate the flow evolution in
a shallow fluid close to a lateral wall. The boundary layer that develops
at such a wall produces small-scale vorticity and alters the 2D or 3D flow
evolution. To study these processes, measurements are performed with and
without a lateral wall. Furthermore, a time dependent electromagnetic forc-
ing is used so that the activity of the small-scale vorticity production can
be varied in time.

In order to generate this line of vortices in the shallow fluid tank a
row of magnets is placed underneath the bottom (1 mm spacing between
adjacent magnets) with neighbouring magnets having reversed polarity. In
Fig. 2.6(a) a schematic (top view) is displayed of the experimental setup
without a lateral wall. With the x- and y-axes as indicated in this figure,
the z-axis is taken upward. A total of 14 magnets is used, where white
(gray) means “North” (“South”) pointing in the positive z-direction. In
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Figure 2.6 – (a) Schematic top view of the experimental tank showing the co-
ordinate system and magnet arrangement. (b) Close-up of the field of view. (c)
Close-up showing field of view and the position of the lateral wall.

Fig. 2.6(b) a close-up of the field of view is presented of the setup without
a lateral wall. The field of view (7× 7 cm2) is approximately in the middle
of the tank and spans about 2.5 magnets in the x-direction, as indicated by
the dashed rectangle. In Fig. 2.6(c) this close-up is shown with the lateral
wall. This wall is positioned such that the wall coincides with the centre
points of the magnets (and spans the full width of the tank). The moti-
vation for this positioning is that the maximum horizontal velocity in the
y-direction is expected near the magnet centres, and therefore the activity
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of the boundary layers at the lateral wall is intense. The field of view for
the situation with a wall is approximately 7 × 4 cm2.

For all experiments the tank was filled with a single 7.0 mm fluid layer,
where measurements are performed at mid-depth of this fluid layer with
SPIV. For the experiments where a lateral wall is present, a drop of deter-
gent is added to the fluid to decrease the concave meniscus of the fluid at
the lateral wall.

As opposed to the previous experiments, a continuous forcing is utilized
that changes in time. As the location and strength of the magnets are con-
stant, the variable forcing is accomplished by changing the applied current,
i.e, I = I(t). The shape of I(t) is chosen as a sinus function with mean value
a and amplitude b, as depicted in Fig. 2.7. Two different combinations were

t

I

a

b

Figure 2.7 – Schematic of the sinus forcing current I with mean a and amplitude
b. Note that only one period is shown.

used, viz. a = 0 and b 6= 0, or a = b. Typical values used (for both cases)
are b = 0.5 A and b = 2.5 A. It is expected that the combination a = 0 and
b = 0.5 A yields a low Reynolds number flow with no global mean flow.
As opposed to this, the combination a = 0 and b = 2.5 A is expected to
result in a flow that is dominated by advection. With an offset present, i.e.,
a 6= 0 a mean flow is introduced. The frequency of I(t) was kept constant
at 0.25 Hz. The motivation for this forcing frequency is that the flow is
altered most efficiently with a temporal period of the forcing of the same
order of magnitude as the characteristic time scale of the flow (i.e., the
eddy turnover time of the dipolar vortices). Measurements are performed
during 50 seconds, so that at least 10 forcing periods are recorded.

Note that specific choices have been made for the parameter regime
that is to be considered in the experiments with the linear array of vortices
(such as forcing protocol, magnet positions, and position of the lateral wall).
Therefore, the corresponding results chapter is a more qualitative study to
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explore the three-dimensionality and the transport properties of the flow.

2.3 Numerical method

The experiments, as described in the previous section, will be confronted
with numerical simulations obtained with the commercial software code
COMSOL Multiphysics [21]. These simulations are aimed at mimicking the
experimental ones. Furthermore, the influence of different boundary and
initial conditions can be investigated numerically whereas this would be
troublesome or even impossible in the experiments. This section is organ-
ised in a similar way as the previous one, i.e., the numerical setup used for
the single-layer dipole, the two-layer dipole, and the linear array of vortices
are presented.

2.3.1 Numerical setup single-layer dipole

The numerical simulations are based on the Navier-Stokes equation for an
incompressible fluid, i.e.,

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p + ν∇2v +

1

ρ
fL, (2.4)

complemented by the continuity equation for an incompressible fluid

∇ · v = 0, (2.5)

where v is the 3D velocity, p the pressure, ρ the mass density, ν the kine-
matic viscosity, and fL the external body force.

The Navier-Stokes equation is solved using a finite element method [21]
in the three spatial dimensions in conjunction with adaptive meshing and
error control. The external body force fL in (2.4) represents the electro-
magnetically generated Lorentz force, resulting from the interaction of the
magnetic field B with the current density j, i.e.,

fL = j × B. (2.6)

Here the current density is a uniform and constant pulse of 1 s duration in
the x-direction (j = j0ex for 0 < t ≤ 1 s and j = 0 for t > 1 s), similar to
the forcing applied in the experiments. Since the electromagnetic forcing
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inside the fluid layer does not take place in the so-called far field of the
permanent magnet, a point-dipole approximation of the magnetic field is
not justified here. Therefore we use exact expressions known in analytical
form for the magnet’s magnetic field, derived under the assumption that
the magnet’s magnetization current can be modelled as a stack of current-
carrying circular wires, the magnetic field of which can be written in terms
of elliptic integrals (see, e.g., [37]).

Note that although the magnetic field drives the fluid into motion,
this motion does not introduce an induced magnetic field, as the magnetic
Reynolds number Rem ≪ 1 (see Sect. 2.2.1). Hence, the magnetic field is
computed first and hereafter used as an input for (2.4) – there is no need
to solve them simultaneously.

As the magnet’s strength is not exactly known, it is adjusted in such a
way that the numerical simulation matches the corresponding laboratory
experiment at some arbitrary moment in time. For this matching one can
use different criteria, such as the maximum of the vertical vorticity com-
ponent or the “horizontal” kinetic energy, both at the end of the forcing
period. The former matching criterion is used for the numerical results pre-
sented in the remainder of this thesis, as the local magnitude of the vertical
vorticity determines the strength (and thus the speed) of the dipole at a
certain height inside the fluid.

The computational domain is identical to the experimental one with
the exception of the lateral (outer) domain boundary (see Fig. 2.8). This
is taken circular (for computational efficiency) with a diameter of 7 times
the magnet diameter, whereas the experimental setup has a square outer
boundary. It has been checked by simulations with a larger circular domain
that its size did not affect the result. The small, solid gray circle in Fig. 2.8
(top view) represents the domain above the magnet. The outer domain is
shifted in the positive y-direction as the dipole will be propagating in this
direction. The dashed circle represents the border between a fine meshed
domain (closer to the magnet) and a domain with a coarser mesh (outer
region). Furthermore, use was made of the symmetry in the domain, in-
dicated with the dashed line in Fig. 2.8, i.e., only the right part of the
domain was used. For some cases it was checked with a simulation of the
full domain that this imposition of symmetry did not affect the result.

To acquire the desired accuracy in a typical run, the computational
domain is discretized with approximately 50,000 mesh elements, with finer
elements being used near the bottom, near the free-surface, and close to the
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Figure 2.8 – Schematic top and side view of the computational domain for the
single fluid layer simulations. Magnet location is indicated by the gray circle. Note
that the thickness of the fluid layer H is not in scale with the magnet diameter D.

magnet (where the forcing is strongest) in order to resolve the gradients in
the local flow field. The resulting number of degrees of freedom solved for
is approximately 250,000. Convergence of the solution is checked with the
aid of δ given by

δ(t) =

√

∫∫

S(ω2
1 − ω2

2) dA
∫∫

S ω2
1 dA

, (2.7)

where ω1 and ω2 represent the vorticity vector obtained from the fine and
coarser mesh, respectively. Integration is performed over a horizontal plane
S. This error remains below a few percent for the complete duration of
temporal integration. The theoretical order of convergence is third-order
in space and time [21]. The time integration is started with a lower-order
method.

Two types of numerical simulations have been performed. In all runs the
upper free-surface was taken to be stress-free and flat. The latter implies
that the generation of surface gravity waves is excluded in the numerical
simulations. The first set of runs were aimed to simulate the experimental
results. For that purpose, a no-slip boundary condition is imposed at the
bottom of the computational domain. In order to examine how the bottom
boundary layer at a no-slip bottom is related to the 3D flow structures
found experimentally and numerically, a second set of simulations has been
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performed. In these runs the bottom, just like the upper surface of the fluid
layer, was taken to be stress-free rather than no-slip, leaving all other pa-
rameters and settings unchanged.

2.3.2 Numerical settings two-layer simulations

The two individual fluid layers of the two-layer simulation are subject to
the same governing equations as the single layer, i.e.,

∂vi

∂t
+ (vi · ∇)vi = − 1

ρi
∇pi + νi∇2vi +

1

ρi
f i in Di, i = 1, 2 (2.8)

complemented by ∇ · vi = 0, where vi is the 3D velocity vector, pi the
pressure, νi the viscosity, ρi is the mass density, and f i the external body
force in layer i. The subscript i = 1 in Eq. (2.8) refers to the top layer, and
in the remainder subscript i = 2 will be used to indicate the bottom layer.

For the upper layer, the external body force f1 constitutes of the Lorentz
force, which is given Eq. (2.6). The magnetic field is computed in the same
way and the same matching criterion (maximum of the vertical vorticity
component at t = 1 s) is used.

For the lower layer Eq. (2.8) is used, with i = 2. However, as in the
two-layer fluid experiments, the fluid is only forced in the upper-layer, so
that the external body force in this layer is f2 = 0.

The no-slip condition is used at the bottom and a rigid, stress-free
condition at the free surface. At the internal interface, where the two sets of
equations are coupled, kinematic boundary conditions are applied, dictating
that the velocity components should be continuous over this interface (u1 =
u2, v1 = v2, and w1 = w2), and besides it is assumed that the interface does
not deform (w1 = w2 = 0). Furthermore, a dynamic boundary condition at
this interface is applied, stating that the shear and normal stresses should
be continuous over the internal interface [50], i.e.,

ρ1ν1
∂v1

∂z
= ρ2ν2

∂v2

∂z
and ρ1ν1

∂u1

∂z
= ρ2ν2

∂u2

∂z
,

and

2ρ1ν1
∂w1

∂z
− p1 = 2ρ2ν2

∂w2

∂z
− p2,

respectively.
Note that the assumption of a non-deformable free surface and internal
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Figure 2.9 – Schematic top and side view of the computational domain used for
the two-layer simulations. D1 and D2 refer to the top (having fluid height Hul)
and bottom layer (Hbl), respectively. The internal interface is indicated with the
dotted line in the side view. Note that the vertical dimension of the computational
domain is exaggerated for clarity of presentation.

interface represents a qualitative difference between the numerical simula-
tions and the experiments, since in the latter case these surfaces are de-
formable. The possible effect of the rigid internal interface will be discussed
in the results section. Implementation of a deformable internal interface is
currently not feasible in the simulations.

The computational domain is built up in a similar way as was done for
the single fluid layer case, together with the use of symmetry. A schematic
of the computational domain is displayed in Fig. 2.9.

As a comparison, the 3D numerical simulation as described above is
confronted with a numerical simulation of the 2D Navier-Stokes equation
for the evolving dipolar vortex. In this 2D simulation the horizontal com-
ponent of the Lorentz force present at mid-depth of the top-fluid layer was
used to drive the fluid, and produces a dipole having approximately the
same Reynolds number at the end of the forcing. In order to account for
bottom friction, a linear friction term −αv was added to the 2D Navier-
Stokes equation with α the bottom friction coefficient and v the horizontal
velocity vector. The 2D computational domain (having zero thickness) is
identical to the top view of Fig. 2.9. A comparison of tracer transport in
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these 2D computations with transport in full 3D simulations is intended to
illustrate the important effect of 3D recirculating flows on the dispersion of
passive tracers at the free surface.

2.3.3 Numerical setup line of vortices

The numerical simulation of the linear array of vortices is based on the
same equations as the dipole in a single-fluid layer, i.e., equations (2.4) to
(2.6), although the Lorentz force fL is now computed for the present mag-
net arrangement.

For all these simulations, the free surface is taken to be rigid and stress-
free and a no-slip condition applies at the bottom. Similar to the experi-
ments, a continuous forcing that varies in time is utilised (see Sect. 2.2.3 for
details). Furthermore, simulations were performed with and without lateral
wall. Depending on the forcing and presence of the lateral wall, different
computational domains were used.

In Fig. 2.10 the first computational domain is shown. Here, the left and
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Figure 2.10 – Schematic top and side view of the computational domain used for
the line of vortices simulations typically when the flow is dominated by viscosity.
The magnet centred at the origin faces “North” upwards (indicated by white,
“South” upwards by gray). The dashed line indicates the position of the lateral
no-slip wall if present. Note that this drawing is not on scale.

right walls are taken stress-free, meaning that these boundaries are symme-
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try boundaries. However, this is only permitted when there is no symmetry
breaking with respect to x = 0, typically for cases where the forcing is
with the lower electrical current strength (i.e., a = 0 and b = 0.5 A). The
outer lateral walls at y = ±3D are taken no-slip. For the simulations with
a lateral wall present at y = 0, only the region y > 0 is used. Note that
the symmetry with respect to x = 0 is not used to its full extent. A similar
computational domain is used for the forcing case a = 0 and b = 2.5 A with
a lateral wall present, although the domain in the y-direction spans from 0
to 4D.

Symmetry breaking with respect to x = 0 occurs at higher Reynolds
numbers as a result of the finiteness of the number of magnets. The outer
magnets create dipolar vortices that propagate in an inward-curved direc-
tion. Therefore, the complete array is modelled consisting of 14 magnets
as is the case in the laboratory experiments. In Fig. 2.11 the used com-
putational domain is presented. All lateral (outer) side walls are no-slip

y

xD D

6D

Figure 2.11 – Schematic top view of the computational domain used for the line
of vortices simulations with strong forcing. The magnet facing “North” upwards
are indicated by white, “South” upwards by gray. The dashed line indicates the
position of the lateral no-slip wall if present.

boundaries. Note that, as in the experimental setup, a 1 mm spacing is
between adjacent magnets and between the outer magnets and (left and
right) side walls there is a gap of 25 mm (i.e., D). For the cases with a
lateral wall present at y = 0, the no-slip condition is applied at this wall
and only the domain where y > 0 is used. Typically, the domain depicted
in Fig. 2.11 is used for the forcing case with a = 0 and b = 2.5 A (without
lateral wall positioned on top of the magnets). For the forcing cases with a
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offset (a 6= 0) a mean flow is introduced (in the y-direction), and a domain
of a lower resolution is added at |y| > 3D.

To study the influence of 3D motion on the tracer transport, also 2D
simulations were performed. The computational domains of these 2D simu-
lations are identical to their 3D counterpart (see, e.g., Figs. 2.11 and 2.10),
of course with zero thickness. The horizontal component of the Lorentz
force present at mid-depth of the top-fluid layer was used to drive the fluid,
leading to a similar Reynolds number as the 3D simulations. Furthermore,
the influence of the bottom friction is accounted for by adding a linear
damping term (“Rayleigh friction”) to the 2D Navier-Stokes equation, i.e.,
a contribution of −αv. The bottom friction coefficient is denoted by α and
v represents the horizontal velocity field.

The simulations are intended to mimic the experimental ones, with em-
phasis on the flow structures. These results will be presented in Chapter 5.

2.3.4 Passive tracer transport

To investigate the transport behaviour of passive particles, the numerically
obtained velocity field is integrated in time. The position of a particle at
time t⋆ is given by

x(t⋆) = x0 +

∫ t⋆

0

vdt, (2.9)

where x0 is the initial particle position. Integration of (2.9) is performed
numerically using a fourth-order Runge-Kutta method.

For the 2D simulations, the numerically obtained 2D velocity field is
integrated in time with Eq. (2.9). When releasing particles on the free sur-
face for the 3D simulations, basically a 2D tracking of these particles is
performed as the vertical velocity component w is identical zero at the free
surface. The difference, however, is that the velocity field of the 2D simu-
lation is divergence-free as opposed to the horizontal velocity field at the
free surface obtained with the 3D simulation. When the particles are not
released at the surface, in the 3D simulations a genuine 3D tracking is per-
formed, i.e., integration of Eq. (2.9) with the 3D velocity field.

For the two-layer dipole simulation (as well as the corresponding 2D
simulation), the particles are only released at t = 0 on a spatially uniform
grid (consisting of several thousands of particles) at the free surface, where
w = 0.
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For the (3D) linear array of vortices simulations, particles are released
on the free surface and on a horizontal plane inside the fluid layer. Further-
more, the dispersion of particles periodically released at the lateral wall is
studied. Further details are presented in the corresponding chapters.



CHAPTER 3

The dipolar vortex in a shallow fluid layer

Many experiments have been performed in electromagnetically driven shal-
low fluid layers to study quasi-two-dimensional (Q2D) turbulence, the shal-
lowness of the layer commonly being assumed to ensure Q2D dynamics.
This chapteri reports on a detailed study of the vertical motions developing
in shallow-layer flows. For this purpose, one of the most elementary vortex
structures in 2D turbulence is studied, the dipolar vortex, in a non-rotating
homogeneous shallow fluid layer. Stereoscopic Particle Image Velocimetry
(SPIV) has been used for an experimental investigation of the flow, pro-
viding all three velocity components simultaneously in a horizontal plane
inside the fluid. Additionally, 3D numerical simulations are carried out,
which easily allow inclusion of different boundary and initial conditions,
and which provide the full 3D velocity and vorticity fields over the entire
flow domain.

The results indicate significant three-dimensionality of the shallow fluid
flow and the remarkably complex and non-trivial 3D structure of the dipole,
both during and after the forcing stage. In order to quantify deviations from
2D or Q2D flow behaviour, the flow evolution is analysed by adopting the
ratio of “horizontal” and “vertical” kinetic energies (being the kinetic en-

iThis chapter is to a large extent based on two papers [2, 3], i.e, R.A.D. Akkermans,
A.R. Cieslik, L.P.J. Kamp, R.R. Trieling, H.J.H. Clercx and G.J.F. van Heijst, “The
three-dimensional structure of an electromagnetically generated dipolar vortex in a shal-
low fluid layer,” Phys. Fluids (2008) and R.A.D. Akkermans, L.P.J. Kamp, H.J.H. Clercx
and G.J.F. van Heijst, “Intrinsic three-dimensionality in electromagnetically driven shal-
low flows,” Europhys. Lett. (2008).
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ergy associated with the horizontal and vertical fluid velocity components,
respectively) and the normalized horizontal divergence. Besides, the devia-
tion from a Poiseuille-like profile is investigated for decreasing fluid depth.

This chapter is organized as follows: Sec. 3.2 presents the experimental
and numerical details. The experimental and numerical results of the dipole
evolution during and after the forcing are then presented in Sec. 3.3. Ad-
ditional simulations are discussed in which different boundary and initial
conditions were applied in order to examine the influence of bottom fric-
tion, electromagnetic forcing, and initialization on the 3D motions. Based
on the laboratory experiments and numerical simulations with no-slip bot-
tom, three quantities are evaluated that could be used as criteria for the
degree of two-dimensionality of the flow. Finally, in Sec. 3.4 the results are
discussed and the conclusions are summarized.

3.1 Introduction

In order to validate theory on two-dimensional (2D) turbulence many in-
vestigators have performed laboratory experiments in, e.g., rotating fluids
[94], in stratified fluids [58], and in shallow (non-stratified) fluid layers
[20,24,26,84,88]. In the latter case it is commonly assumed that these shal-
low flows behave in a two-dimensional fashion when the vertical length scale
H is much smaller than the horizontal length scale L. The rationale behind
this thin-layer configuration is that although vertical three-dimensional
(3D) motions are present, their magnitude, assumed to be proportional to
H/L, is much smaller than the dominant (2D) horizontal flow speeds. More-
over, the effect of bottom friction can be parameterized by adding a linear
friction term −αvH to the 2D Navier-Stokes equation (usually referred to
as “Rayleigh friction”), under the assumption of a Poiseuille-like profile
in the vertical direction. Here α represents the bottom friction coefficient
and vH the local depth-averaged horizontal fluid velocity (see, e.g., [38]).
This thin-layer configuration has been applied in flowing soap film experi-
ments [22,46,72,76] and shallow fluid experiments [20,24,26,84,88]. In some
experiments a single fluid layer is utilized, see [20,24,26,84,88], while in the
investigations of Boffetta et al. [10], Shats et al. [80], Rivera and Ecke [73],
or Tabeling and co-workers [67,68] a stable two-layer stratification has been
used. Although slightly different flow forcing was applied in each of these
experimental studies, these studies all use the two-layer system to provide
an additional mechanism to inhibit vertical motions and to minimize the
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influence of bottom friction, which is predominantly present in the lower
layer.

Just as the ordinary Reynolds number Re (= UL/ν) expresses the rela-
tive importance of lateral diffusion with respect to nonlinear processes, one
can define an alternative Reynolds number Reα (= U/αL) based on the in-
fluence of the bottom friction [26]. Here, U denotes a characteristic velocity,
L a typical horizontal length scale and ν the viscosity, while the bottom
friction coefficient α is given by α = ν(π/2H)2, under the assumption of a
Poiseuille-like flow in the vertical. The ratio Reα/Re expresses the relative
importance of the bottom friction to the horizontal diffusion. In the case
Reα/Re ≪ 1 [or equivalently (2H/πL)2 ≪ 1] the flow is considered to be
dominated by bottom friction effects.

The linear friction term is non-selective with respect to length scales,
provided that this friction is not to small, it will therefore prevent the pile-
up of energy at length scales corresponding to the box size (and is for this
reason often used in numerical studies of 2D turbulence [8,9]). As opposed
to this linear friction, the “internal” viscous dissipation predominantly re-
moves energy at the smallest scales. However, in the review paper of Danilov
and Gurarie [25] it is argued that the influence of bottom friction can be
parameterized only in a qualitative sense in the form of Rayleigh damping.
Furthermore, these shallow fluid flows are (vertically) bounded by a no-slip
bottom and a free surface, and therefore possess a 3D structure due to the
shear in the vertical. This shear may lead to significant secondary circula-
tions, see, e.g., Satijn et al. [77] where this is numerically investigated for
a monopolar vortex.

Apart from the influence of the bottom boundary layer, the flow forc-
ing mechanism could also act as an additional source of vertical motion.
In some experiments a magnetic field is used to force an electrolyte fluid
through which an electric current flows. It is then the Lorentz force, result-
ing from the interaction of the current density and the magnetic field, that
drives the flow. However, this magnetic field decays over a limited verti-
cal distance and the forcing will therefore vary with height. In addition to
its horizontal component, the Lorentz force also has a vertical component,
whose effect on the flow generation has yet to be determined. The conse-
quences of the spatial non-uniformities in the electromagnetic forcing and
the vertical component of the Lorentz force are especially of interest for
electromagnetically forced shallow flows.

The above described assumptions on the behaviour of a flow in a shallow
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Table I – Experimental parameter values for the SPIV measurements: total fluid
depth H, measurement level hls, electrical current I, current density jx, and ratio
vertical/horizontal Reynolds numbers. The same parameter values are used for the
numerical simulations.

H (mm) hls (mm) I (A) jx (A/cm2)a Reα/Re (-)

6.0 2.0; 3.5 2.4; 3.7 0.08; 0.12 0.02
9.3b 2.0; 5.0; 9.0 2.4; 4.4b; 5.4 0.05; 0.09; 0.11 0.06
11.4 2.0; 5.0; 9.0; 10.0 2.4; 4.4; 6.4 0.04; 0.07; 0.11 0.08

aDue to an unfortunate typing error the reported values of jx in [2] are a factor 10
too high (fortunately, this typing error has no consequences for the experimental and
numerical results in [2]). The here presented values are correct.
bResults of this experimental (and numerical) case, i.e., H = 9.3 mm and I = 4.4 A,
presented in Sects. 3.3.1 and 3.3.2 are indicative for all the other cases.

fluid layer have never been verified accurately. Notable exceptions are the
numerical investigation by Satijn et al. [77] concerning a decaying monopole
in shallow fluid layers or the experimental study of a dipolar vortex by Lin et
al. [54].

3.2 Details of experiments and simulations

The experimental setup used for the investigation of the dipolar vortex in
a shallow flow was already presented in Chapter 2, together with the way
this dipole is generated. In this section the performed experiments will be
detailed, as well as additional information concerning the numerical sim-
ulations is given. Several experiments were performed with different fluid
depths H and electrical current strength I to investigate the influence of
these variables on the three dimensionality.

Table I provides an overview of the performed experiments. In this chap-
ter results are presented mainly for a fluid depth H = 9.3 mm and a forcing
protocol consisting of a single 1 s constant-current pulse of I = 4.4 A (see
Table I). It is stressed that the results for this case are indicative for all
the other fluid layer depths and forcing protocols. Measurements were per-
formed at several levels hls inside the different fluid depths. Time t was set
to zero at the onset of forcing for all the experiments.

By changing the fluid depth H and forcing current I we effectively
change the Reα-value and initial Re-value, respectively. Note that the cur-
rent density jx is a measure of the forcing strength. This current density
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is computed as the electrical current I divided by the cross-sectional area,
which equals H · Ltank (the tank width Ltank being 52 cm). The last col-
umn of Table I presents values of the quantity Reα/Re, or equivalently
(2H/πL)2, where the magnet diameter and fluid depth were taken as mea-
sures of the characteristic horizontal and vertical length scales, respectively.
The small values of the ratio Reα/Re indicate that all experiments are dom-
inated by bottom friction effects.

Note that the Reynolds number Re based on the maximum horizon-
tal velocity U at the end of the forcing period (forcing current strength
I = 4.4 A) measured approximately 1400. The Reynolds number based
on the bottom friction coefficient for this case equals approximately 75.
In the regime diagram of Satijn et al. (see Fig. 6 in [77]) this (Reα/Re)
combination lies outside the Q2D regime (note that their diagram is for a
monopole). However, as noted before, the results presented for this case,
i.e., H = 9.3 mm and I = 4.4 A are representative of the other fluid layer
depths and forcing strengths.

Various numerical simulations have been performed, which can broadly
be categorized in two parts. In all runs the upper free-surface was taken
to be stress-free and flat. The latter implies that the generation of surface
gravity waves is excluded in the numerical simulations. The first set of runs
were aimed to simulate the experimental results. For that purpose a no-
slip boundary condition was imposed at the bottom of the computational
domain. In order to examine how the bottom boundary layer at a no-slip
bottom is related to the 3D flow structures found numerically, a second
set of simulations has been performed. In these runs the bottom, just like
the upper surface of the fluid layer, was taken to be stress-free rather than
no-slip, leaving all other parameters and settings unchanged. Furthermore,
simulations were performed with (artificial) different initial conditions to
study the influence of the electromagnetic forcing on the dipole evolution.
For the numerical details the reader is referred to Chapter 2.

3.3 Experimental and numerical results

3.3.1 The generation and evolution of the dipolar vortex

In this subsection results for the case of a fluid depth H = 9.3 mm and elec-
trical current I = 4.4 A (see Table I) are presented, as the flow evolution of
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this case is indicative for all the other fluid depths and forcing strengths.
Figure 3.1 shows plots of the instantaneous vertical (shades/colours)

and horizontal (vectors) velocities in a horizontal cross-sectional plane at 5
mm above the bottom. For clarity of representation the vectors are under-
sampled: only every third vector is shown in the x- and in the y-direction,
so that (approximately) only 11% of the total set is shown. The disk-shaped
magnet (indicated by the circle) is centred at (x, y) = (0, 0). The left col-
umn of figures shows experimental results at three instances of time and
the right column shows numerically obtained results at the same times.
Since the total forcing time ∆t = 1 s and the forcing is started at t = 0,
Figs. 3.1(a,d) and 3.1(b,e) correspond to the mid-stage (t = 0.5 s) and to
the final stage (t = 0.96 s) of the forcing, while Figs. 3.1(c,f) show snap-
shots of the flow field 0.5 s after the forcing has stopped.

As can be seen in Fig. 3.1(a), two regions of downward flow have devel-
oped in the two vortex cores. At the late stage of the forcing [see Fig. 3.1(b)],
these regions of downward flow are still present inside the vortices, while up-
ward motion is observed at the tail of the dipole. During the entire forcing
phase, a build-up of downward motion is seen inside the vortices. Com-
parison of the numerical simulation results shown in Figs. 3.1(d,e) with
Figs. 3.1(a,b) reveals a striking resemblance, although the upward motion
at the tail side found in the simulations is not so clearly visible in the exper-
imental result shown in Fig. 3.1(b). It should be noted that the downwelling
in both vortex cores is not driven directly by the vertical component of the
Lorentz force, but can be understood as follows.

From the numerical simulations it is observed that the initial (linear)
flow evolution is governed by a magneto-hydrostatic balance between the
vertical component of the Lorentz force and the vertical pressure gradient.
This balance is described by

∂p

∂z
= fL · ez = j0B · ey = j0By. (3.1)

Since the magnet is circular and assumed to be axially symmetric, the
right-hand-side of this balance can also be written as

j0By = j0 sin ϕBr = −j0 sinϕ
∂Aϕ

∂z
, (3.2)

where cylindrical coordinates (r, ϕ, z) have been introduced. Aϕ is the az-
imuthal component of the vector potential A for the magnet’s magnetic
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Figure 3.1 – Instantaneous velocity fields of a dipolar vortex in a horizontal
plane at z = 5 mm (see Table I for the experimental and numerical parameters).
Vectors represent horizontal velocity components and shades/colours indicate the
magnitude of the vertical velocity. The circle denotes the position of the disk-
shaped magnet. Experimental results obtained with SPIV at (a) t = 0.50 s, (b)
t = 0.96 s, and (c) t = 1.50 s. Numerical results at (d) t = 0.50 s, (e) t = 0.96 s,
and (f) t = 1.50 s.
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field, B = ∇× A.
Integrating Eq. (3.1) with respect to z using (3.2) yields

p = −j0 sin ϕAϕ(r, z) + C(r, ϕ), (3.3)

where r =
√

x2 + y2.
It is easily verified from (2.4), keeping in mind that inside the fluid (i.e.,

outside of the permanent magnet) the magnetic field is curl-free, that the
pressure needs to satisfy Laplace’s equation in the initial (linear) regime
that we are considering here. Moreover, the integration “constant” C(r, ϕ)
must satisfy

∇2C = ∇2(j0 sinϕAϕ) = 0. (3.4)

Since C(r, ϕ) → 0 as r approaches infinity, the solution is C(r, ϕ) ≡ 0.
From the above we conclude that in the very beginning of the forcing

phase, the spatial pressure distribution inside the fluid is not yet governed
by dynamical effects but completely determined by the spatial structure of
the magnetic field that permeates the fluid, i.e.,

p(x, y, z, t) ∝ p0 = −j0
y

r
Aϕ(r, z), for t ↓ 0. (3.5)

The latter equation implies that the vertical component of the Lorentz force
does not drive the flow in the initial period when the electromagnetic forc-
ing is active.

Whilst the magnitude of the horizontal flow velocities gradually in-
creases during the forcing, a cyclostrophic balance between the horizontal
pressure gradient and the centrifugal force in both swirls is established. Due
to the stronger forcing close to the magnet the swirl is strongest close to
the bottom, implying a vertical pressure gradient along the vortex axes in
the positive z-direction. As a result, the initial magneto-hydrostatic balance
[see Eq. (3.5)] in each of the two vortex cores is gradually distorted by addi-
tional vertical pressure gradients that start to drive a downward motion in
both swirls during the whole forcing phase, as is observed in Figs. 3.1(a,b)
as well as in Figs. 3.1(d,e).

Figure 3.1(c) [or 3.1(f)] shows a snapshot of the experimentally (numer-
ically) observed flow field 0.5 s after the forcing has stopped. Comparison
with Fig. 3.1(b) [or 3.1(e)] reveals an essentially different flow distribu-
tion. One now observes well-defined upward motion in the vortex cores
surrounded by downwelling similar to the secondary circulation observed
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in a single monopolar vortex [77]. This upward motion appears shortly after
the forcing has stopped. In the monopolar vortex case the emergence of sec-
ondary circulation is driven by the interaction with the viscous boundary
layer at the bottom. Although this mechanism is also working in the dipolar
vortex case, it cannot explain the velocity magnitude observed. Estimation
of the vertical velocity based on the Bödewadt flow model (see, e.g., [6,36])
leads to a typical vertical velocity of 4 mm/s, whereas from Fig. 3.1(c) we
read a substantially larger velocity of approximately 10 mm/s. This differ-
ence suggests a relaxation of the flow after the forcing phase that has a
different origin than linear bottom friction. This questions the use of linear
friction to model the influence of the bottom in 2D turbulence simulations,
as this relaxation is not a bottom friction effect. The mechanism of this
relaxation will be discussed in more detail later in this section.

Figures 3.2(a)-(c) display three numerically obtained snapshots of the
vertical vorticity ωz at the same time instants as Figs. 3.1(d)-(f), and eval-
uated at 5 mm above the bottom. In these figures oppositely signed vor-
ticity patches are observed, characteristic for a 2D dipolar vortex. Initially,
these vorticity patches have a kidney shape, typical for the magnetic field
produced by a cylindrical magnet. This kidney-like shape becomes less pro-
nounced for later times and for larger vertical distances from the magnet.

To make a more quantitative comparison between experiment and nu-
merical simulation, vorticity profiles of ωz are displayed in Fig. 3.3 for the
same time instances as in Fig. 3.2. In general a good quantitative agreement
between the experimental and numerical results is seen. Figure 3.3(c) shows
the development of small-scale structures in the numerically obtained vor-
ticity. This fragmentation of vorticity becomes more pronounced at later
stages of the evolution. These regions of high gradients in the vorticity are
less well reproduced by the experiments due to the spatial averaging effect
of the cross-correlation by the SPIV technique.

In order to observe the evolution of the dipole after the forcing has
been switched off, the field of view is shifted in the positive y-direction
(i.e., the upper dashed rectangle in Fig. 2.4). Figure 3.4 shows plots of in-
stantaneous velocities in a horizontal cross-section 5 mm above the bottom
at t = 1.50 s, t = 2.00 s, and t = 2.60 s. The left column displays exper-
imentally obtained velocity fields and the right column shows the velocity
field obtained numerically. The meaning of the shades/colours and vectors
is the same as in Fig. 3.1.

After the electromagnetic forcing has stopped, one observes the appear-
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Figure 3.2 – Snapshots of the numerically simulated flow evolution, showing the
horizontal velocity components (vectors) and the vertical vorticity component ωz

(magnitude indicated by shades/colours) in the horizontal plane at z = 5 mm.
The circle indicates the position of the disk-shaped magnet. Snapshots taken at
(a) t = 0.50 s, (b) t = 0.96 s, and (c) t = 1.50 s.

−40 −30 −20 −10 0 10 20 30 40
−10

−5

0

5

10

x (mm)

ω
z (

1
/s

)

 

 

exp
num

−40 −30 −20 −10 0 10 20 30 40
−15

−10

−5

0

5

10

15

x (mm)

ω
z (

1
/s

)

 

 

exp
num

−40 −30 −20 −10 0 10 20 30 40
−15

−10

−5

0

5

10

15

x (mm)

ω
z (

1
/s

)

 

 

exp
num

(a) t = 0.50 s (b) t = 0.96 s (c) t = 1.50 s

Figure 3.3 – Comparison of experimental (open circles) and numerical (solid line)
vorticity profiles at (a) t = 0.50 s and y = 0 mm, (b) t = 0.96 s and y = 3 mm,
and (c) t = 1.50 s and y = 11 mm. The profiles are evaluated at height z = 5 mm
above the bottom.

ance of well-defined upward motion in the two vortex cores, surrounded by
bands of negative vertical velocity, as seen in Fig. 3.4(a). Although these 3D
motions are quite similar to the secondary circulation seen in the monopo-
lar vortex [77], as stated before, the driving mechanism is quite different,
i.e., the upwelling is not driven by a viscous boundary layer at the bottom.
This can be understood as follows.

In absence of forcing, no swirl is maintained in the lower part of the
fluid layer. The continuing down-flow and related outflow at the base of
the two vortex cores will then, in contrast to the forced case, rapidly re-
duce the vertical vorticity ωz close to the bottom. This is basically due to
conservation of angular momentum rvθ: the swirl velocity vθ of the radi-
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Figure 3.4 – Instantaneous velocity fields of a dipolar vortex, evaluated in the
horizontal plane at z = 5 mm above the bottom, during post-forcing phase (see
Table I for the experimental and numerical parameters). Meaning of vectors and
shades/colours: see caption Fig. 3.1. Experimental results at (a) t = 1.50 s, (b)
t = 2.00 s, and (c) t = 2.60 s. Snapshots of numerical simulation at (d) t = 1.50 s,
(e) t = 2.00 s, and (f) t = 2.60 s.

ally spreading fluid decreases. The experiments and simulations indicate
that this spin-down (as seen in the kinetic energy of the horizontal mo-
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tion) occurs on a much shorter time scale (approximately 1.5 s) than the

typical bottom friction time scale τE (= 2H2

π2ν
, here equal to approximately

18 s). The cyclostrophic balance then dictates an increase of the pressure
in the vortex core near the bottom, while no significant pressure change is
expected near the free-surface. Eventually, the axial pressure gradient in
the vortices is even reversed, resulting in a deceleration of the down-flow
and actually leading to an upward flow, as is seen in Fig. 3.4(a). Note that
this phenomenon is independent of viscosity but is a consequence of the
vertical confinement of the flow. The minor importance of bottom friction
was already hinted at before, where it appeared that the Bödewadt model
substantially underestimated the magnitude of this upward motion.

Besides this complex 3D motion, upward motion at the plane of sym-
metry of the dipole, and significant negative vertical motion at the front
of the dipole are observed. For example, in the region of strong downward
motion the vertical velocity turns out to be of the order 25% of the hor-
izontal velocity. At the front of the dipole one observes a feature referred
to by Sous et al. [85, 86] as “frontal circulation”, i.e., a roll-like flow struc-
ture with upward motion at the front of the dipole and a weaker downward
motion in front of that [see Figs. 3.4(b) and (c)]. Note that Lin et al. [54]
(who were, to our knowledge, the first to report on this feature) and Sous et
al. [85,86] did not use the electromagnetic forcing method, but their dipoles
were created by injecting a small amount of fluid horizontally in the tank.

As time progresses one observes an oscillating motion of the verti-
cal velocity component inside the two vortex cores. This is illustrated in
Fig. 3.4(c), where the emergence of oppositely signed vertical motion is
seen inside the individual vortex cores as compared to Fig. 3.4(a). These
oscillations are interpreted to be of inertial origin [75] and resulting from
an overshoot of the decelerated upwelling described above. Typically, two
to three oscillations are seen in both the experiments and the simulations,
depending on the forcing strength. These inertial oscillations were further
studied for the monopolar vortex case by Duran-Matute et al. [28].

Comparison of the numerically obtained Figs. 3.4(d,f) with Figs. 3.4(a,c)
reveals a striking resemblance, although the upward motion at the tail side
found in the simulations is not so clearly visible in the experimental result.
From this resemblance one can conclude that free-surface effects (through
surface gravity waves) are of minor importance in generating vertical mo-
tions in the laboratory experiments. In the laboratory experiments surface
deformations are present, such as the dimple on the free surface in the



3.3 – Experimental and numerical results 53

vortex core, whereas the generation of surface gravity waves is excluded in
the numerical simulations (the surface is not allowed to deform). One can
also estimate the phase speed c of a surface gravity wave in a shallow fluid
layer, see, e.g., [50]. The phase velocity of a surface gravity wave equals

c =
√

gλ
2π tanh(2πH

λ ), where g is the gravitational acceleration, λ the wave-

length, and H the fluid depth. Taking for the wavelength λ the magnet
diameter D as a characteristic horizontal length scale, one obtains a phase
speed c of 23 cm/s, which is much larger than the fluid velocities. Surface
tension can be neglected as the wavelength λ is larger than the wavelength
λcr for which surface tension σ becomes important, i.e., λcr = 2π

√

σ/(∆ρg)
(where ∆ρ = ρf − ρair). For an air-water interface λcr equals 1.6 cm.

To summarize, the necessary condition for the occurrence of the dy-
namical flow behaviour inside the dipolar vortex as discussed above is a
z-dependence of the vertical vorticity component, i.e., ωz = f(z). This con-
dition can be understood in the following way. When ωz is a function of the
vertical coordinate, the cyclostrophic balance dictates that the pressure p
must also vary with z. This vertical pressure gradient will drive a vertical
motion. In general, any z-variation in the vertical vorticity, as a result of
the forcing and/or dictated by boundary conditions, will lead to vertical
motions.

3.3.2 The structure of the dipole: stagnation points and

horizontal vorticity rolls

Figures 3.5(a)-(c) present numerically obtained distributions of the z-com-
ponent of the vorticity for the same three instances of time as in Figs. 3.4(d)-
(f). For t = 1.50 s, i.e., 0.5 s after the forcing has been stopped, Fig. 3.5(a)
shows two coherent, symmetrical patches of oppositely signed vorticity.
Moreover, one observes weak bands of vorticity at the locations of the
frontal circulation band. As time progresses, an increasing fragmentation of
the vorticity in Figs 3.5(b) and 3.5(c) is seen, as was also observed by Lin et
al. [54]. This fragmentation is most pronounced near the free-surface. Com-
parison of Figs. 3.5(c) and 3.4(f) reveals a correlation between the increased
magnitudes of ωz vorticity and vertical motion w, i.e., where ∇H · v 6= 0.
Due to conservation of angular momentum rvθ, increased (decreased) mag-
nitude of vertical vorticity is expected at region where the horizontal flow
field is converging (diverging). The fragmentation of ωz is thus directly re-
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Figure 3.5 – Numerically observed evolution of the vertical vorticity ωz at
z = 5 mm (see Table I for the numerical parameters). Meaning of vectors and
shades/colours: see caption of Fig. 3.2. Numerical snapshots at (a) t = 1.50 s, (b)
t = 2.00 s, and (c) t = 2.60 s.

lated with the 3D structure of the flow field.
To investigate the vertical flow structures at the front and tail side of the

dipolar vortex, the numerically obtained instantaneous flowline patternii for
the horizontal flow field vH = (u, v) at mid-depth and in a reference frame
that is co-moving is shown in Fig. 3.6. In this figure spiraling flowlines are
seen inside the individual vortex cores, inward or outward depending on
the net in- or outflux (i.e., on the sign of ∂w/∂z) at the specific evalua-
tion height. Furthermore, at the front and tail of the dipole two hyperbolic
points can be identified. It is found that these points coincide with re-
gions of significant vertical motion. Remarkable is that the band of the
upward motion in the frontal circulation structure delineates the instan-
taneous “separatrix” that is associated with the frontal stagnation point.
The separatrix is not closed at the rear of the dipole, implying advection
of fluid out of the dipole into the tail. This is directly associated with the
fluid entering this midplane near the vortex cores, as is evident from the
locally spiral-shaped flowlines. Regions of upwelling flow are observed near
the frontal and rear (hyperbolic) stagnation points. The elongated shape
of these regions is directly linked with the orientation of the flowlines near
these hyperbolic points.

Figure 3.7(a) shows a numerically obtained distribution of the y-com-
ponent of the vorticity (ωy) in a vertical slice approximately through the

iiInstantaneous flowlines are defined here as curves of which the tangent directions
indicate the direction of the horizontal component of the 3D flow velocity vector at some
z-level and for some fixed time instant. Since this horizontal part of the flow field does
not constitute an incompressible flow, these lines are not streamlines.
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instantaneous stagnation point at the tail of the dipole, i.e., y = 6.0 mm for
t = 2.60 s. Clearly visible are two vortical structures which are associated
with the up- and downwelling close to this hyperbolic point [see Fig. 3.6].
The magnitude of the vorticity component ωy in this (co-moving) verti-
cal slice turns out to evolve to significantly larger values than that of the
“primary” vorticity component ωz. In Fig. 3.7(b) the frontal circulation is
seen in front of the dipole indicated by the negative ωx, which originates
from the bottom boundary layer. Furthermore, a spanwise vortex with high
(positive) spanwise vorticity is seen.

To further illustrate the 3D structure inside the vortices during and af-
ter the forcing phase, the velocity distribution in a vertical slice defined by
the plane x = −12.5 mm is displayed in Fig. 3.8 for t = 0.50 s, t = 0.96 s,
t = 1.50 s, t = 2.00 s, and t = 2.60 s. Here vectors represent the v- and
w-velocity components. The magnitude of the vertical velocity component
w has also been indicated by shades/colours. The vertical plane defined by
x = −12.5 mm is chosen such that it cuts approximately through one of the
vortex cores. Figures 3.8(a)-(b) clearly illustrate the buildup of downward
motion inside the vortex core, located around y = 0, during the forcing
phase. For t = 0.96 s it is seen that a large recirculation cell is present in-
side the vortex, with the largest downward motion located near the axis of
the vortex at y = 0. Shortly after the forcing has stopped [see Fig. 3.8(c)], a
reversal of the vertical velocity just inside the vortex core is observed, i.e.,
upward motion at approximately y = 10 mm [cf. Fig. 3.4(d)]. Figures 3.8(c)-
(e) illustrate the complex flow motion in the vertical slice, which persists
after the forcing has been switched off. The second reversal of the vertical
velocity is only weakly visible (approximately at y = 26 mm) in Fig. 3.8(e)
as the slice x = −12.5 mm barely touches the region where this second re-
versal takes place [see Fig. 3.4(d)]. Clearly, in view of the vertical structure
of the flow field both during the forcing phase and during the post-forcing
phase, the flow does not behave as a quasi-2D flow, i.e., planar flow with
a Poiseuille-like vertical structure. The emergence of these significant 3D
structures during the forcing phase raises serious questions regarding the
use of electromagnetic forcing in a shallow fluid flow to study forced Q2D
turbulence.

3.3.3 Alternative initial and boundary conditions

As argued above, the no-slip boundary is not a necessary condition for the
3D structure of the dipolar vortex and its subsequent evolution. To sub-
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Figure 3.8 – (Colour online) Numerically obtained snapshots of vertical slice of
the plane x = −12.5 mm at (a) t = 0.50 s, (b) t = 0.96 s, (c) t = 1.50 s, (d)
t = 2.00 s, and (e) t = 2.60 s (see Table I for the numerical parameters). Vectors
represent the v- and w-velocity components, while shades/colours indicate the
magnitude of the vertical velocity w.

stantiate this, Figs. 3.9(a)-(c) and Fig. 3.10 display numerically calculated
velocity fields where the bottom and the free surface are both taken to be
stress-free, leaving all other parameters and settings unchanged. Comparing
Figs. 3.9(a)-(c) and Fig. 3.10 with the corresponding results in the previ-
ous subsection (with a no-slip bottom), one observes that the spatial and
temporal evolution of the flow is qualitatively the same except the frontal
circulation is not present. This frontal circulation does seem to be depen-
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Figure 3.9 – Numerically obtained snapshots of the velocity fields (5 mm measure-
ment height) with stress-free conditions at both the bottom and the free surface
(see Table I for the numerical parameters) at (a) t = 0.96 s, (b) t = 1.50 s, and
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Figure 3.10 – Numerically obtained snapshots of the velocity in the vertical slice
at x = −12.5 mm with stress-free conditions at both the bottom and the free-
surface (see Table I for the numerical parameters) for (a) t = 0.96 s, (b) t = 1.50 s,
and (c) t = 2.00 s. Meaning of vectors and shades/colours: see caption of Fig. 3.8.

dent on the no-slip condition. However, the spanwise vortex with strong
positive ωx, see Fig. 3.7(b), is still present. Furthermore, a higher propaga-
tion velocity of the dipole is observed as a consequence of the absence of
damping due to bottom friction. Obviously the no-slip bottom boundary
layer is not the only actor in the generation of three-dimensionality in the
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flow.
Also the vertical component of the (three-dimensional) Lorentz force

plays a negligible role in generating three-dimensionality and associated
vertical motion, which was confirmed by numerical simulations with the
vertical component of the Lorentz force (artificially) set to zero. It is rather
the non-uniformity in the vertical direction of the horizontal components of
the Lorentz force that results in the observed 3D motion, as this introduces
a z-dependence of the vertical vorticity ωz, or, equivalently, in the swirl
velocity vθ. Of course, during the forcing period, this non-uniformity is the
main driving mechanism of vertical motion, and explains why the numerical
simulations with no-slip and stress-free bottom condition show such close
resemblance [cf. Figs. 3.8(b) and 3.10(a)]. However, one should not con-
clude from this that the observed 3D structures in the post-forcing phase
are solely due to three-dimensionality introduced by the electromagnetic
forcing. Numerical simulations with the flow initialized in an alternative
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Figure 3.11 – (a) Numerically obtained snapshot of the velocity (5 mm measure-
ment height for t = 1.0 s) where colours indicate the magnitude of the vertical
velocity w resulting from a Lamb-like initialisation. (b) Vertical slice (x = 0 for
t = 1.0 s) of the numerically obtained ωx vorticity component resulting from a
Lamb-like initialisation.

way, e.g., by imposing a Lamb-like planar dipole structure with a purely
horizontal flow field that is divergence-free and that satisfies a no-slip bot-
tom boundary with a Poiseuille-like structure in the vertical, show that
such an initial dipolar flow evolves similar as observed in the laboratory
experiments, i.e., with qualitatively the same 3D flow structures as shown
in Figs. 3.1 and 3.4. Figure 3.11 displays numerically obtained snapshots
from such an artificial initialisation. In the horizontal slice presented in
Fig. 3.11(a) strong upwelling is seen inside the vortex cores caused by the
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vertical dependence dictated by the initial Poiseuille-like profile of the ve-
locity field. In Fig. 3.11(b) the frontal circulation is seen in front of the
dipole indicated by the negative ωx whose magnitude exceeds the magni-
tude of the primary vorticity ωz by a factor 2.5.

From the above it is concluded that not the no-slip boundary condition
is the main cause of three-dimensionality, but it is rather the vertical con-
finement of the shallow layer in combination with the vertical gradient in
the horizontal forcing that leads to the complicated 3D structures.

3.3.4 Quantifying two-dimensionality of the shallow flow

Three-dimensional effects in shallow fluid flows may be quantified in dif-
ferent ways. One possibility is to use the kinetic energy ratio q = EV /EH ,
where the instantaneous kinetic energies EH and EV associated with the
horizontal and vertical flow components, respectively, are computed as

EH =
1

2
H

∫∫

S
ρ(u2 + v2) dxdy, (3.6a)

EV =
1

2
H

∫∫

S
ρw2 dxdy. (3.6b)

Note that EH and EV defined in this way represent the kinetic energy eval-
uated in a horizontal plane S at z = h. The fluid depth H will be used as
a measure of the vertical length scale H.

Figures 3.12(a)-(c) present the numerically obtained “horizontal” ki-
netic energy EH (solid line) and “vertical” kinetic energy EV (dashed line)
for a fluid depth of 9.3 mm, evaluated at three different levels z = h above
the (no-slip) bottom, i.e., at h = 2.00, 5.00, and 9.00 mm. The second col-
umn of figures [Figs. 3.12(d)-(f)] shows the energies EH and EV as measured
in an experiment carried out under the same conditions, i.e., with a no-slip
bottom. Since the total fluid depth H = 9.3 mm, Figs. 3.12(a) and 3.12(d)
show the evolution as evaluated just above the bottom, Figs. 3.12(b) and
3.12(e) at approximately mid-depth of the fluid layer, and Figs. 3.12(c) and
3.12(f) just below the free-surface.

In Figs. 3.12(a)-(c) one observes an increase of EH during the forcing
phase for all three evaluation levels. A global maximum is attained at t = 1
s [for Fig. 3.12(c) a little bit later] when the forcing stops, after which de-
cay sets in. For the vertical component of the kinetic energy EV (note the
different scaling of the left and right axes in the figures), it is seen that
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Figure 3.12 – Evolution of the horizontal kinetic energy EH (left axis) and vertical
kinetic energy EV (right axis) at different levels z = h inside the fluid. Numerical
results evaluated at (a) h = 2.00 mm, (b) h = 5.00 mm, and (c) h = 9.00 mm
above the bottom. Experimental results measured at (d) hls = 2.00 mm, (e) hls =
5.00 mm, and (f) hls = 9.00 mm, for fluid depth H = 9.3 mm and current strength
I = 4.4 A.
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the maximum is reached some time after the forcing has stopped, roughly
at t = 1.7 s. As is to be expected, EV is largest at mid-depth and smaller
near the bottom and the free-surface. For early times, it is seen that EV

remains small, consistent with the fact that initially the vertical component
of the Lorentz force does not drive the flow, as discussed in the previous
subsection.

Comparison of the numerical simulation results [Figs. 3.12(a)-(c)] with
the corresponding experimentally obtained results [Figs. 3.12(d)-(f)], re-
veals a good qualitative agreement. Quantitatively, differences are seen
which we attribute to the matching of the numerical simulations to the
experiments, as discussed in Sect. 2.3. Besides these differences, the initial
time behaviour of EV and the time at which EV attains its maximum is
nicely captured [except for Fig 3.12(f) where the measurement was per-
formed close to the free surface].

Figure 3.13 shows the evolution of the kinetic energy ratio q = EV /EH

for three cases to illustrate the influence of (i) the evaluation level [see
Fig. 3.13(a)], (ii) the forcing strength [Fig. 3.13(b)], and (iii) the fluid depth
[Fig. 3.13(c)].

(i) Figure 3.13(a) reveals that the energy ratio q is highly dependent on
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Figure 3.13 – Numerically obtained evolution of the kinetic energy ratio q. (a)
Varying evaluation level h, whereas fluid depth (H = 9.3 mm) and forcing strength
(jx = 0.09 A/cm2) are kept constant. (b) Varying forcing strength jx, whereas
fluid depth (H = 9.3 mm) and evaluation level (h = 5.0 mm) are kept constant.
(c) Varying fluid depth H, whereas forcing strength (jx ≈ 0.09 A/cm2) is kept
constant and evaluated at mid-depth of the fluid (i.e., h/H ≈ 0.5).

the evaluation level. Near the free-surface and no-slip bottom the q-value
is minimal due to the impermeability condition, leading to small values
of w, whereas the kinetic energy ratio attains a maximum at mid-depth,
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where w approximately attains its maximum magnitude. Clearly, based on
the kinetic energy ratio q, the free-surface is not representative of the two-
dimensionality inside the bulk of the fluid. The ratio q attains a maximum
after the forcing has been switched off (approximately at t = 1.7 s) as EV

attains its maximum there [see, e.g., Fig. 3.12(e)].
(ii) Figure 3.13(b) demonstrates the effect of changes in strength of the

forcing: an increase of the forcing strength corresponds with an increase of
the kinetic energy ratio q.

(iii) Figure 3.13(c) shows the numerically obtained evolution of the q-
ratio for varying fluid depth H. Apparently, the flow behaves more 2D-like
with decreasing fluid depth. However, it should be noted that experimen-
tally there exists a practical lower bound for the fluid depth, as the damping
of the flow (due to the bottom friction) becomes stronger for decreasing fluid
depth.

Figure 3.14 displays the numerically obtained ratio Q of the vertical
and horizontal kinetic energies contained in the entire 3D fluid volume, for
decreasing values of the fluid depth H. Since one expects a scaling of the
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Figure 3.14 – Numerically simulated evolution of the kinetic energy ratio
Q · D2/H2 for 5 different fluid depths H. Note that the vertical and horizontal
kinetic energy components are computed through an integration over the entire
3D domain.

kinetic energy ratio Q with H2/D2, the scaled version Q·D2/H2 is depicted
in Fig. 3.14. Qualitatively, similar behaviour is seen as the q-ratio displayed
in Fig. 3.13(c). Clearly, for the H = 1 mm fluid depth Q ≈ 0, the flow is
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very close to two-dimensionality. However, a strong increase of the Q-value
is seen when increasing the fluid depth. This increase is stronger than ex-
pected from the scaling, which might be due to the inertial oscillations.

An alternative quantity that can be used to characterize the deviation
from two-dimensionality in the flow is the normalized horizontal divergence
Λ, which is computed in a horizontal plane as

Λ =
H

∫∫

S | ∇H · u | dxdy

L
∫∫

S | ωz | dxdy
, (3.7)

where ∇H denotes the divergence with respect to only the horizontal com-
ponents. In the expression for Λ, ωz is the vertical component of the vor-
ticity, and the magnet diameter is taken as a measure of the horizontal
length scale L. The normalization factor is a measure of the characteristic
horizontal velocity.

Figure 3.15 displays the numerically calculated evolution of Λ at three
different levels, i.e., at h = 2.0, 5.0, and 9.0 mm for the same fluid depth
(H = 9.3 mm) and current strength (I = 4.4 A) as in Fig. 3.12. Obviously,

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

t (s)

Λ
 (

−
)

 

 

h = 2.0 mm
h = 5.0 mm
h = 9.0 mm

Figure 3.15 – Numerically calculated evolution of the normalized horizontal di-
vergence Λ at three different evaluation levels (2.0, 5.0, and 9.0 A). For all cases
H = 9.3 mm and I = 4.4 A [same settings as Figs. 3.12(a)-(c)].

the normalized horizontal divergence Λ is non-zero at all three measure-
ment planes, whereas in pure 2D flow it should be zero. The highest Λ-
values (maximum over 40%) are observed at the level closest to the surface
(h = 9.0 mm).
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It is remarkable that the behaviour of the normalized horizontal diver-
gence Λ suggests deviations from Q2D behaviour in a different way than
revealed by the kinetic energy ratio q: while q approaches zero at the free-
surface (where w becomes zero) and attains a maximum at mid-depth of
the fluid layer, Λ reaches a minimum at mid-depth and maximum at the
free-surface.

To investigate the tendency of relaxation to a Poiseuille-like profile of
the (3D) velocity field with decreasing fluid depth H, a quantity is derived
which is a measure of the difference between the actual 3D velocity field
and a velocity field with a Poiseuille-like structure in the vertical direc-
tion. The numerically obtained 3D velocity field v can be compared with a
Poiseuille-like profile in the following way. First considering the 3D velocity
field, i.e.,

v = v(x, y, z, t) = uex + vey + wez, (3.8)

one can then define the Poiseuille-like profile vp in the following way

vp = v(x, y, z = H, t) sin
( πz

2H

)

. (3.9)

The Poiseuille-like flow vp is thus the 3D velocity field, taken at the sur-
face with a sine-like dependence in the vertical direction. Eqs. (3.8) and
(3.9) satisfy v(x, y, z = H, t) = vp(x, y, z = H, t) and v(x, y, z = 0, t) =
vp(x, y, z = 0, t) = 0.

Now consider the rms value as a measure of the difference between the
3D velocity field and the Poiseuille-like profile, i.e.,

F (t, H) =
√

〈(u − up)2 + (v − vp)2〉, (3.10)

which is a function of time t and the fluid depth H under consideration.
A spatial averaging is implied by the angular brackets. Substitution of the
planar components of Eqs. (3.8) and (3.9) in (3.10) leads to

F 2 =
1

V

∫∫∫

V

{[

u(x, y, z, t) − u(x, y, z = H, t) · sin
( πz

2H

)

]2

+

+

[

v(x, y, z, t) − v(x, y, z = H, t) · sin
( πz

2H

)

]2}

dxdy dz, (3.11)

where V is the volume of the computational domain. The latter equation
is normalized with the rms value of the horizontal components of the 3D
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Figure 3.16 – Numerically obtained temporal evolution of the quantity P [see
Eq. (3.13)], which expresses the deviation from a Poiseuille-like profile, for different
values of the fluid depth H. The current density jx is kept constant at 0.09 A/cm2.

velocity field

F 2
norm =

1

V

∫∫∫

V

[

u2(x, y, z, t) + v2(x, y, z, t)

]

dxdy dz. (3.12)

A measure P of the relative difference between the 3D velocity field and
the Poiseuille-like flow is defined according to

P =
F

Fnorm
. (3.13)

If P ≈ 0, the flow is very close to a flow with a Poiseuille-like vertical
structure. Figure 3.16 shows the numerically obtained temporal evolution
of P for several fluid depths. The non-zero P value at t = 0 is artificial due
to division of two numerically very small numbers (there is no fluid motion
at t = 0). The graph displays a sharp decrease of P during the forcing
phase, i.e., 0 < t ≤ 1 s. As soon as the forcing stops, a relaxation process
sets in (except for H=1 mm, which is due to the strong bottom friction).
The oscillatory behaviour visible in Fig. 3.16 during this relaxation phase is
related to the previously mentioned inertial oscillations. For large times an
exponential decay of P is observed whose time scale is comparable to the
bottom friction time scale τE , whereas one would like to see the relaxation
towards Poiseuille-like profile to be much faster than the bottom friction
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time scale. This illustrates, as seen before, that bottom friction is merely
one of the mechanisms generating 3D motions, not the main actor. The
deviation from the Poiseuille-like vertical structure decreases with decreas-
ing fluid depth, although one has to bear in mind that the damping due
to bottom friction becomes stronger with decreasing fluid depth (and may
therefore become experimentally unpractical).

3.4 Conclusions and Discussion

Many experiments on 2D or quasi-2D turbulence have been performed in
shallow layers of fluid, under the assumption that the shallowness assures
sufficient suppression of vertical motions. Moreover, vertical dependence
due to the no-slip bottom is commonly modelled through the introduction
of Rayleigh damping, which is presumed to be justified by a Poiseuille-like
flow profile in the vertical.

In this chapter, the validity of these assumptions have been examined
by studying experimentally as well as numerically the 3D structure of a
generic vortex structure in Q2D turbulence, i.e., a dipolar flow in a single
shallow layer of electrolyte. Our results show that significant and remark-
ably complex 3D structures and vertical motions occur throughout the flow
evolution, i.e., during and after the forcing.

The development of vertical motion in the dipole is directly linked with
the horizontal flow field varying with depth. The cyclostrophic balance then
dictates a pressure that also varies with height, which subsequently drives
a vertical motion. Moreover, since free-surface deformation is absent in the
numerical model, the close resemblance of the simulations and laboratory
experiments implies that surface gravity waves are of minor importance in
generating this vertical motion in the laboratory experiments.

Due to the type of boundary conditions, vertical confinement or z-
dependent forcing, vertical variations in the horizontal flow field are in-
evitable in every experimental realization of one- and two-layer shallow
flows. The only situation in which these 3D flow features with vertical ve-
locities will not develop is a flow with: (i) stress-free bottom and surface
boundary conditions, and (ii) a forcing mechanism that has no vertical
component, with its horizontal components uniform over the fluid depth
and which generates a horizontal divergence-free velocity field. This is a
situation that is certainly hard to achieve in practice with the current ex-
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perimental set-up (although these conditions might be more closely met in
soap-film experiments).

Moreover, based on the criteria introduced in Sect 3.3.4 it is shown that
the vertical structure of such shallow flows relaxes towards a Poiseuille-like
profile on a timescale that is comparable to the bottom friction time scale.
The latter result questions the use of a linear (Rayleigh) friction model to
model a no-slip bottom. Since the vortex dipole can be considered as a pro-
totype flow structure in 2D turbulence, the conclusions of the present study
may apply more generally to experimental realizations of 2D turbulence,
both for the decaying and the forced case.



CHAPTER 4

The dipole in two-layer fluids

The experiments on a freely evolving dipolar vortex in a homogeneous shal-
low fluid layer, as described in the previous chapter, have clearly shown
its complex 3D structures and subsequent evolution. The present chap-
teri focuses on the 3D structures of a dipolar vortex in a stable two-layer
fluid setup, which was believed to be a significant improvement over the
single-layer setup in the sense of shielding the upper layer from the bottom,
and hence suppressing any vertical motion. Remarkably, the experimental
results, supported by numerical simulations, show to a large extent the
same 3D structures and evolution as in the single-layer case. The so-called
“frontal circulation” is also observed in the two-layer experiments and is
shown to be related to deformations of the internal interface.

The rest of this chapter is organized as follows: Sect. 4.2 outlines the
experimental and numerical details. The experimental and numerical re-
sults of the dipole evolution during the forcing and the subsequent free-
evolution phase are then presented in Sec. 4.3. Furthermore, the influence
of the deformable internal interface on the 3D flow, the effects of decreas-
ing upper fluid-layer thickness, the degree of two-dimensionality of the flow,
and tracer transport at the free surface are discussed. Finally, in Sec. 4.4
the conclusions are summarized.

iThis chapter is to a large extent based on two papers [3, 4], i.e, R.A.D. Akkermans,
L.P.J. Kamp, H.J.H. Clercx and G.J.F. van Heijst, “Three-dimensional flow in electro-
magnetically driven two-layer fluids,” Phys. Rev. E (submitted, 2009) and R.A.D. Akker-
mans, L.P.J. Kamp, H.J.H. Clercx and G.J.F. van Heijst, “Intrinsic three-dimensionality
in electromagnetically driven shallow flows,” Europhys. Lett. (2008).
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4.1 Introduction

Large-scale geophysical flows such as the Earth’s atmosphere and oceans
can be considered as quasi-two-dimensional due to the combined action of
background rotation, density stratification, and the limited vertical dimen-
sion as compared to the horizontal ones [50]. On smaller scales, the effects of
background rotation and stratification do not play an important role. How-
ever, the limited vertical dimension H as compared to the horizontal length
scale L suppresses vertical motions, and the flow is predominantly planar.
Examples where the shallowness alone promotes quasi-two-dimensional flow
behavior are rivers, channels, and estuaries (see, e.g., [39,89]). Furthermore,
two-dimensional (2D) turbulence can be seen as an extremely shallow flow
configuration. Therefore, many experiments have been performed in shal-
low fluid layers to investigate the dynamics of vortices and 2D turbulence,
see Refs. [2, 3, 12, 26,27,84,88] and [19] for a review.

Despite the shallowness of the flow, deviations from two-dimensionality
occur. This is due to the way the flow is generated but also due to friction
at the solid bottom, which induces vertical gradients of the velocity field [2].
In shallow fluid layer experiments the interaction of the flow with the no-
slip bottom boundary is usually modelled by adding a linear friction term
(Rayleigh friction) to the 2D Navier-Stokes equations under the assump-
tion that the vertical variation of a predominantly horizontal flow field is
Poiseuille-like [20,38,67]. However, several studies have recently shown that
this vertical Poiseuille-like profile is questionable [2, 3,51].

In the last years the 3D flow structure of elementary vortices in a shal-
low fluid layer has received considerable attention [2,3,51,54,77,85,86]. For
the monopolar vortex without background rotation, numerical studies by
Satijn et al. [77] revealed the presence of a secondary circulation as a result
of the Bödewadt flow (see, e.g., [6, 36]).

Similar secondary flows are also expected within the vortices consti-
tuting the dipole. However, several other 3D flow structures have been
found for propagating dipoles in shallow fluids. Lin et al. [54] showed the
emergence of a vortex orthogonal to, and just in front of the propagating
dipole. This roll-like vortical structure is referred to as the “frontal circu-
lation” [85, 86]. In both the experiments by Lin et al. [54] and those by
Sous et al. [85, 86] the dipole was created by injecting horizontally a small
amount of fluid in the fluid layer. Furthermore, Sous et al. report that the
frontal circulation was not present in experiments carried out in a two-layer
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fluid (based on qualitative observations).
Recently, Akkermans et al. [2, 3] confirmed the presence of this frontal

circulation in experiments (and numerical simulations) of electromagneti-
cally forced vortex dipoles in a shallow fluid layer. The importance of this
roll-like structure was quantified by the magnitude of the horizontal vor-
ticity component of the frontal circulation cell. This horizontal vorticity
exceeded the magnitude of the primary vorticity by at least a factor two
during its evolution. In addition to the frontal circulation, strong upwelling
in the wake of the dipole and axial motion inside the two individual vortex
cores of the dipole are present, the latter even oscillating in time [2].

The above mentioned studies concerned flow structures far away from
lateral walls. Cieslik et al. [16] studied the influence of a lateral wall on
the three-dimensionality of the flow for the canonical case of a dipole-wall
collision. Remarkably, the influence of the wall on the vertical motion inside
the dipolar vortex becomes stronger for decreasing fluid depths, which was
attributed to the role of the frontal circulation [16].

The shortcomings of the single layer setup have been recognized and
nowadays the two-layer fluid setup, consisting of a light fluid layer on top
of a heavier bottom layer, has become quite standard [10, 67, 68, 73, 80].
These experiments focus on the motion in the top layer, which is less in-
fluenced by bottom friction. Whether this two-layer setup is a significant
improvement over the single-layer setup remains an open question.

4.2 Details of experiments and simulations

The experimental setup was already outlined in Sect. 2.2.2. In order to
study the influence of different fluid-layer depths on the flow behaviour,
the top-layer thickness Hul has been decreased in steps down to almost
3 mm, i.e., 9.0, 7.0, 5.0, and 3.5 mm. The latter fluid-layer thickness mim-
ics the traditional fluid-layer configuration for 2D turbulence experiments
(see, e.g., [67, 68, 73, 81]). Table I provides an overview of the performed
experiments. Note that the Reynolds number Re is based on the maximum
horizontal velocity U at the end of the forcing, while the magnet diam-
eter is taken as a measure of L. The densimetric Froude number Fr′ is
defined as U/

√
g′Hul. The reduced gravity g′ is computed as g∆ρ/ρ1, with

∆ρ = ρ2 − ρ1 (subscript 1 and 2 refer to the top and bottom layer, respec-
tively) and g denotes the gravitational acceleration.
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Table I – Experimental parameter values for the SPIV measurements in the two-
layer flow: upper fluid-layer depth Hul, measurement level hls, current density jx,
Reynolds number Re, and densimetric Froude number Fr′. Note that the bottom
layer thickness Hbl is kept constant at 3 mm for all experiments.

Hul (mm) hls (mm) jx (A/cm2) Re (-) Fr′ (-)

9.0 7.5 0.13 1200 0.23
7.0 6.5 0.12 1250 0.28
5.0 5.5 0.13 1700 0.43
3.5 4.5 0.14 2000 0.64

All measurements have been performed in a horizontal cross-sectional
plane at mid-depth of the top fluid layer. In Sect. 4.3 results are presented
mainly for the experiments with Hul = 7.0 mm, as the flow evolution ob-
served in these experiments is indicative for the experiments with different
fluid-layer depths.

In all the two-layer simulations the upper free-surface was set to be
stress-free and flat, while the bottom was taken to be no-slip, as in the
experimental situation. In the previous chapter, free-surface deformations
were shown to be of minor importance in generating vertical motions for
the single-layer dipole.

At the (nondeformable) internal interface the following conditions are
imposed: continuity of the 3D velocity vector and (shear and normal)
stresses, and zero vertical velocity. The latter condition means that the gen-
eration of interfacial waves is excluded. This is the only difference between
the simulations and experiments; the possible effect of this rigid internal
interface will be discussed in the results section.

4.3 Experimental and numerical results

In this section the experimental and numerical results are presented. First,
the experimental results for the case Hul = 7.0 mm are discussed, together
with the corresponding numerical results (although obtained for the case
of a rigid internal interface). Next, the effect of a decreasing upper fluid
layer depth is considered. Finally, the structure of tracer transport at the
free surface is illustrated.
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4.3.1 The 3D flow evolution of a dipole in a two-layer fluid

Figure 4.1 shows plots of the instantaneous vertical (shades/colours) and
horizontal (vectors) velocities in a horizontal plane at mid-depth of the up-
per layer. For clarity of presentation the vectors are under-sampled: only
every fourth vector is shown in the x- and in the y-direction, so that ap-
proximately only 6% of the total set is shown. Since the total forcing time
∆t = 1 s and the forcing is started at t = 0, Figs. 4.1(a,c) correspond to
the end-stage of the forcing, while Figs. 4.1(b,d) show the flow field after
the forcing has stopped.

During the entire forcing phase, a buildup of downward motion is
seen inside the two vortex cores, as is illustrated in Fig. 4.1(a), as well
as strong upwelling in the tail of the dipole. After the forcing has stopped,
see Fig. 4.1(b), the dipole starts to propagate and soon upward motion is
seen inside the vortex cores, surrounded by an area with downward motion.
Comparison of the numerical simulation results shown in Figs. 4.1(c,d) with
the corresponding experimental observations [Figs. 4.1(a,b)] reveals a close
resemblance with respect to the flow structures and their evolution.

At a later stage of the flow evolution, the vertical motion inside the vor-
tices is seen to change in a downward one [delineated by the dashed circles
in Fig. 4.2(b)]. Furthermore, bands of upward and downward motion are
observed at the front side of the moving dipole, representing the frontal
circulation roll. Surprisingly, the 3D structures and evolution as depicted
in Figs. 4.1(a,b) and Figs. 4.2(a,b) show a remarkable resemblance with the
ones already seen in the single-layer dipole (see Chapter 3).

In Chapter 3 the development of vertical motion was related to vertical
gradients in the horizontal flow field. Apparently, the horizontal flow field
in the top layer has a z-dependence that is similar to the one present in the
single-layer case, which explains the close similarity of the 3D structures
and evolution in the two-layer fluid. This z-dependence is introduced by
the magnetic field whose strength varies with height and also by the shear
stress exerted by the bottom layer.

Comparison of the numerical simulation results shown in Figs. 4.2(c,d)
with the corresponding experimental observations [Figs. 4.2(a,b)] reveals a
striking resemblance with respect to the flow structures and their evolution.
However, there is a slight phase shift present, e.g., the second sign change of
the vertical velocity inside the individual vortex cores in the experiment [see
Fig. 4.2(b)] is not yet seen in the numerical snapshot shown in Fig. 4.2(d);
this occurs after approximately t = 2.5 s in the simulation. Furthermore,
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(a) experimental, t = 1.00 s (b) experimental, t = 1.50 s
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(c) numerical, t = 1.00 s (d) numerical, t = 1.50 s

Figure 4.1 – Instantaneous velocity fields of a dipolar vortex in a two-layer system
observed in a horizontal plane at mid-depth of the top fluid layer (Hul = 7.0 mm).
Vectors represent horizontal velocity components and colour/gray levels indicate
the magnitude of the vertical velocity. Experimental results obtained with SPIV
at (a) t = 1.00 s and (b) t = 1.50 s. Numerical snapshots obtained with a rigid
internal interface at (c) t = 1.00 s and (d) t = 1.50 s.
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(a) experimental, t = 1.80 s (b) experimental, t = 2.10 s
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(c) numerical, t = 1.80 s (d) numerical, t = 2.10 s

Figure 4.2 – Same as Fig. 4.1, except left column represents flow field at t = 1.80 s
and right column at t = 2.10 s. The dashed circles in (b) indicate the region
of downwelling inside the vortex cores and the elongated dashed contour points
toward the region of downwelling associated with the frontal circulation.

the frontal circulation is not seen in the top layer of the numerical sim-
ulation [compare Fig. 4.2(d) with Fig. 4.2(b)], the region of rather weak
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downward motion associated with the frontal circulation [as delineated by
the dashed contour in Fig. 4.2(b)] is not present in the numerical simula-
tion. This absence is attributed to the rigid internal interface used in this
simulation, as will be explained next.

4.3.2 Development of the frontal circulation

This absence of the frontal circulation is illustrated in more detail in the
vertical slice presented in Fig. 4.3(a). The negative vorticity ωx in the lower
fluid layer is associated with the viscous boundary layer at the no-slip bot-
tom. At later stages in the evolution this negative vorticity patch detaches
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Figure 4.3 – (Colour online) Numerically obtained snapshots of vertical slices
through the symmetry plane of the dipole (x = 0) at time t = 2.60 s showing
the ωx vorticity distribution, with vectors representing the flow in the yz-plane.
Snapshot of (a) two-layer setup, illustrating the absence of the frontal circulation
in the top layer (the white dashed line indicates the internal interface between
the fluid layers) and (b) single-layer setup with frontal circulation present. The
solid and dashed circles indicate the positive and negative ωx vorticity patches,
respectively.

from the bottom and forms the frontal circulation, in a way similar to
what happens in the single layer situation [see Fig. 4.3(b)]. However, in
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the two-layer case this negative vorticity ωx does not penetrate through
the internal interface [indicated with the dashed white line in Fig. 4.3(a)],
and is therefore absent in the top layer. The positive vorticity ωx is associ-
ated with the downwelling initiated during the forcing phase (the magnetic
field decays with height, which results in a pressure gradient that drives a
downward motion). This downward and subsequently horizontal motion is
deflected upward at the instantaneous separatrix, the latter is delineated
by the band of upward motion in front of the dipole [see, e.g., Fig. 4.1(d)].
This results in the positive ωx vorticity patch seen in both the single- and
two-layer simulations as indicated by the solid circles in Fig. 4.3. However,
in the two-layer simulation only the upper fluid layer is forced, therefore
the positive vorticity patch is only present in the upper layer. Note that
the magnitude of the (positive) vorticity component ωx in the vertical slice
of Fig. 4.3(a) turns out to evolve to significantly larger values than that
of the “primary” vorticity component ωz, similar to what was seen for the
single-layer dipole.

In the numerical simulation the interface is taken flat, whereas in the
experiment the interface will most likely deform, as the density of the two
fluids is comparable (∆ρ/ρ1 ≈ 0.5). In the present two-layer experiments
the formation of the frontal circulation has presumably a different origin
than in the one-layer experiments (as discussed Chapter 3), as it is to be
directly linked with the interface deformation. Interface deformation im-
plies baroclinic vorticity production, which is described by a source term
of the form 1

ρ2∇ρ × ∇p in the vorticity equation. The sharp internal in-
terface implies locally a strong density gradient. As soon as the interface
deforms, the pressure gradient and density gradient are no longer aligned
(∇ρ ×∇p 6= 0), which leads to vorticity production. This is schematically
depicted in Fig. 4.4, showing the interface deformation at the front side of
the dipole (in the symmetry plane of the dipole, i.e., x = 0). Based on the
simulation, the interface will be displaced upwards at the front and down-
ward closer to the dipole [cf. Fig. 4.1(h)], resulting in the interfacial shape as
depicted in Fig. 4.4. Locally, the density gradient ∇ρ is directed downwards,
perpendicular to the interface. Together with a vertical pressure gradient
as shown in the schematic, this leads to a production of negative vorticity
ωx in the top layer. This negative vorticity patch is then advected upward
in a way similar to what is seen in the single-layer case [cf. Fig. 4.3(b)].



78 The dipole in two-layer fluids – Chapter 4

ρ1
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z
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ωx < 0

Figure 4.4 – Schematic illustration of the baroclinic vorticity production resulting
from interfacial deformation in a stably stratified two-layer system. The position
of the dipole is schematically illustrated in gray.

4.3.3 The 3D structure of the dipole with decreasing upper

fluid layer depth

Figure 4.5 shows snapshots of the dipolar flow structure for different upper
fluid-layer depths: the panels show the structure of the horizontal and ver-
tical fluid motion in a horizontal cross-section at mid-depth of the top
layer for the case of an upper layer thickness (a) Hul = 9.0 mm, (b)
Hul = 7.0 mm, (c) Hul = 5.0 mm, and (d) Hul = 3.5 mm. For all cases one
observes a similar pattern of vertical motion, as was also seen for the case
Hul = 7.0 mm [see Fig. 4.5(b)] that was discussed in Sect. 4.3.1: strong up-
ward motion in the tail of the dipole, together with the frontal circulation.
In contrast to the qualitative observation by Sous et al. [85,86], the frontal
circulation is observed in the here reported two-fluid layer experiments.
Also, in all four snapshots the second sign change of the vertical velocity
inside the individual vortices can be seen. These features are also present for
the case Hul = 5.0 mm, although less pronounced. Clearly, the observed 3D
structures in the Hul = 7.0 mm case are indeed representative for the other
upper fluid depths. The same applies for the evolution in time. The mag-
nitude of the vertical velocity component remains approximately constant
with decreasing Hul, whereas the horizontal velocity magnitude increases
with decreasing upper fluid layer thickness. This increase is expected as
the measurement height becomes more close to the magnet for decreasing
Hul, where the Lorentz force effectively drives a stronger horizontal velocity
field. In the next section, numerical simulations are discussed where this
effect is studied.

The shallowness of the fluid layers in our experimental setup is often
used as a justification for quasi-2D flow behaviour. Although the snapshots
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Hul(a)       = 9.0 mm  Hul(b)       = 7.0 mm  
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(c)       = 5.0 mm  (d)       = 3.5 mm  

Figure 4.5 – Experimentally obtained velocity fields of a dipolar vortex in a
horizontal plane at mid-depth of the top fluid layer having a thickness of (a)
Hul = 9.0 mm, (b) Hul = 7.0 mm, (c) Hul = 5.0 mm, and (d) Hul = 3.50 mm.
The time instants have been chosen such that the second change in vertical velocity
inside the vortex cores can bee seen as well as the frontal circulation. Meaning of
vectors, shades/colours, and dashed contours: see caption Fig. 4.1.
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of the velocity field indicate that the magnitude is almost independent
of the fluid depth Hul, it is useful to introduce dimensionless numbers to
quantify the shallowness of the flow and to compare these with data from
the literature. When the flow is electromagnetically generated, the magnet
dimension is a measure of the horizontal length scale L. The geometrical
aspect ratio γ is then defined as H/L, where H is a measure of the vertical
length scale. In Table II the γ-range for the performed experiments is pre-
sented, as well as some typical literature values. Clearly, the aspect ratio of

Table II – Geometrical aspect ratio γ (=H/L) for the performed two-layer experi-
ments together with literature values. Unless stated otherwise, the cited references
employ a stable two-layer fluid setup, with a heavy (dielectric) bottom fluid layer
and a lighter conducting top layer.

Refs. H (mm) L (mm) γ (-) Re (-)

Present study 9.0 ∼ 3.5 25 0.36 ∼ 0.14 1150 ∼ 2000
Tabeling et al. [40, 42]a 3 8 0.375 200 ∼ 400b

Rivera and Ecke [73] 3 12.7 0.24 1200c

Shats et al. [81] 4 5 0.8 100d

aThe Refs [40,42] utilize a two-layer setup of NaCl solutions with different densities in a
stable configuration, i.e., both fluid layers are electromagnetically driven.
bIndirectly estimated from references in [40,42].
cThe authors provide a Reynolds number of approximately 500 based on the rms
velocity fluctuations and injection length scale. Furthermore, they explicitly mention
that this rms Reynolds number is four to five times larger than that of Jullien et al. [42].
We have therefore conservatively estimated the Reynolds number based on the velocity
magnitude for the experiments by Rivera and Ecke to be of the order of 1200.
dObtained through personal communications with H. Punzmann (ANU, Australia).

cases Hul = 9.0 mm (γ = 0.36) and 7.0 mm (γ = 0.28) are consistent with
the γ-values of Tabeling and co-workers [40, 42] and Rivera and Ecke [73].
Furthermore, the case Hul = 3.5 mm (γ = 0.14) corresponds to a shallower
fluid-layer geometry than those reported in the literature. The Reynolds
numbers based on a characteristic horizontal velocity scale are presented in
the last column of Table II. In the present study, the value of the Reynolds
number is approximately five times larger than the cited literature val-
ues, therefore the dipole experiences less viscous dissipation. The Reynolds
numbers of the present experiments are comparable or slightly higher than
that of Rivera and Ecke [73]. Note that Rivera and Ecke [73] explicitly
mention that, although their Reynolds number is four to five times higher
than that of Jullien et al. [42], considerable finite Reynolds number effects
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remain that result in deviations from the expectations of theory. Similar
concerns were also expressed by Boffetta and Sokolov [11] and recently by
Lindborg [56].

4.3.4 Degree of two-dimensionality of shallow dipoles

Qualitatively the 3D structure of the dipolar vortex in the two-layer fluid
shows a great resemblance with that seen in the single-layer configuration.
Figs. 4.6(a) and 4.6(b) display the numerically and experimentally obtained
kinetic energy ratios q, respectively, in order to make a more quantitative
comparison of the importance of the 3D flow structure of the coherent vor-
tices between the single and two-layer fluids. The kinetic energy ratio q is
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Figure 4.6 – (a) Numerically obtained evolution of the kinetic energy ratio q with
varying upper fluid-layer depth Hul. This q-ratio is evaluated at a horizontal plane
at mid-depth of the upper layer. (b) Same as (a) except now for the experiments.

defined as the ratio of the kinetic energy contained in the vertical motion
to that in the horizontal motionii, evaluated at a horizontal plane at mid-
depth in the upper layer. It is observed that the ratio q increases during the
forcing (i.e., for 0 < t ≤ 1 s), attains a global maximum at around t = 2.0 s,
long after the forcing has been switched off, and then decays gradually. An
exception to this is the case Hul = 3.5 mm (dotted line) for which a global

iiNote that for fully developed isotropic turbulence, i.e., u, v, and w-velocity compo-
nents are of the same order, this ratio q [=EV /EH , see Eq. (3.6)] would have a value of
0.5.
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maximum is attained during the forcing. Clearly, the kinetic energy ratio q
decreases with decreasing Hul. For the aspect ratios consistent with Tabel-
ing and co-workers [40, 42] and Rivera and Ecke [73], typical values of the
vertical velocity w amount to 30 or 45% of the horizontal velocity magni-
tude U . Surprisingly, the typical maximum value of q corresponds with that
for the single-layer fluid [i.e., Fig. 3.13(b) in Sect. 3.3.4 shows a maximum
q value of approximately 0.13 for H = 9.3 mm and jx = 0.11 A/cm2].
Based on the comparison of the ratio q, the two-layer setup does not offer
a significant improvement over the single layer setup, in the sense that the
vertical flow component contains a substantial amount of kinetic energy.

In Fig. 4.6(b) the experimentally obtained ratio q is presented. Qualita-
tively, a decrease of kinetic energy ratio q with decreasing Hul is seen and
q attains its maximum around t = 2.0 s. Apart from the initial time be-
haviour (where the noise in the vertical velocity distribution is corrupting
the ratio q), a fairly good qualitative agreement is seen with Fig. 4.6(a).
Here, w ∼ 20% of U for the corresponding literature values of the aspect
ratio γ.

Quantitatively, the difference between the experimentally and numer-
ically obtained kinetic energy ratio q is substantial, which is mainly at-
tributed to the generation of interfacial deformations as indicated in Fig. 4.4.
These interface deformations are intimately linked with the local vertical
motion and they extract energy from the dipole, most efficiently when the
interface Froude number is of order unity, which is the case in our experi-
ments. The potential energy per unit area contained in such an interfacial
deformation is of the order g∆ρA2, where A is the amplitude of the de-
formation [50]. With the area taken as the dipole area, i.e., π(2D)2, and a
deformation amplitude estimated of the order of 1 mm, this potential en-
ergy turns out to be of the same order as the kinetic energy contained in the
vertical motion of the complete upper-fluid layer domain. Therefore, when
interface deformations are present, the EV will most likely be substantially
lower than in a simulation without interface deformation, thereby reducing
the ratio q in the experiment as compared to the simulations.

As discussed in Sec. 4.3.3, the magnitude of the vertical velocity remains
approximately constant while the magnitude of the horizontal velocity com-
ponents increase with decreasing Hul (see Fig. 4.5), thereby reducing the
ratio q (=EV /EH). Additional simulations have been performed for de-
creasing upper fluid-layer depths while keeping the magnitude of the hor-
izontal velocity field approximately constant (Re-value at the end of the
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forcing phase was kept constant at 1250). It turns out that the ratio q
obtained from these simulations shows approximately the same magnitude
and evolution as depicted in Fig. 4.6(a). Therefore, the kinetic energy ratio
q depicted in Fig. 4.6(a) was not biased by the stronger electromagnetic
forcing closer to the magnets for decreasing Hul.

In Fig. 4.7 the numerically obtained normalized divergence Λ is dis-
played for three different evaluation heights inside the upper layer (with
depth Hul = 7.0 mm). This quantity Λ is computed as

Λ =
Hul

∫∫

S | ∇H · u | dxdy

D
∫∫

S | ωz | dxdy
, (4.1)

where ∇H denotes the divergence with respect to the horizontal components
and D the magnet diameter. The normalization factor D

∫∫

S | ωz | dxdy
is a measure of the characteristic horizontal velocity. The normalized hor-
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Figure 4.7 – Numerically calculated evolution of the normalized horizontal di-
vergence Λ at three different evaluation levels (3.5, 6.5, and 9.5 mm) inside the
upper fluid layer (with depth Hul = 7.0 mm). Note that Hbl = 3 mm, thus the
evaluation levels 3.5, 6.5, and 9.5 mm correspond to positions 0.5 mm above the
internal interface, 3.5 mm above the internal interface (mid-depth of the top layer),
and 0.5 mm below the free surface, respectively.

izontal divergence Λ depicted in Fig. 4.7 is non-zero at all three measure-
ment planes, whereas in purely 2D (incompressible) flow it is by definition
zero. The highest Λ-values are observed at the level closest to the surface
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(h = 9.5 mm) and the internal interface (h = 3.5 mm) as |∂w/∂z| attains
its maximum there. At approximately mid-depth of the upper fluid layer
∂w/∂z is approximately zero, leading to low values of the normalized hor-
izontal divergence. After the forcing phase, the magnitude of Λ is smaller
than that of the single-layer case [cf. Fig. 3.15].

4.3.5 Tracer transport at the free surface

To illustrate the effect of the 3D structures inside the shallow fluid layer
on motion at the free surface, the transport of massless passive particles is
numerically studied. These particles are released at t = 0 on a uniformly
distributed spatial grid (consisting of 9800 particles in total) at the free
surface. Although the vertical velocity is identically zero at the free sur-
face, vertical motions inside the flow do influence tracer transport on this
surface, since in general ∇H · v 6= 0 at the free surface.

In Fig. 4.8(a) the numerically obtained tracer distribution is shown at
t = 3.75 s for the 3D simulation, where colours indicate the magnitude
of the vertical velocity just below the surface and particle positions by the
black dots. As w = 0 at the free surface, the tracer particles are bounded to
the surface and therefore may accumulate locally. It is clearly seen that the
particles become concentrated in narrow bands coinciding with the pres-
ence of downward vertical motion below the surface, both at the front and
tail side of the dipole. Higher particle concentrations are thus observed in
regions where the horizontal flow field is convergent, whereas lower con-
centration corresponds to locally ∇H · v < 0. Note that the normalized
horizontal divergence Λ (see Fig. 4.7) attains its maximum close to the free
surface.

The horizontal velocity field of an incompressible 2D flow is by definition
divergence-free and narrow bands of accumulated particles will therefore
not form in this case. This is illustrated by the 2D simulation in Fig. 4.8(b),
where a fairly uniform particle distribution is observed. Clearly, caution is
needed when interpreting passive tracer transport and dispersion at the
free surface of these shallow two-layer setups.
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4.4 Conclusions and Discussion

The canonical laboratory setup to study non-rotating 2D turbulence is the
electromagnetically driven flow in shallow fluid layers. In the last years,
this standard laboratory setup utilized a stable two-fluid layer configura-
tion, with the flow measurements performed at the free surface of the upper
layer. This top layer is shielded from the no-slip bottom by a denser fluid
layer, thus attempting to minimize the influence of the no-slip bottom on
the development of the flow. The question whether this two-layer setup is
a significant improvement over the single layer setup has hardly received
any attention.

In this chapter, the 3D structures developing in the top layer of a two-
fluid layer setup have been examined, both experimentally and with numer-
ical simulations for the generic case of a dipolar flow in a two-layer fluid.
Remarkably, these 3D structures and their evolution show a close resem-
blance with those observed in a single fluid layer. Even for the smallest
upper fluid layer thickness (whose geometrical aspect ratio is significantly
lower than values of previously reported experimental studies on 2D tur-
bulence utilizing a two-layer fluid) the same 3D structures emerge as in the
single-layer fluid.

With the aid of the numerical simulations it is indirectly shown that
the development of the frontal circulation is related to deformations of the
internal interface. In contrast to reports in literature, the frontal circulation
is observed in all the performed two-fluid layer experiments.

Quantities used as indicators for quasi-2D flow behaviour, i.e., the ratio
(q) of kinetic energy contained in the vertical motion to horizontal motion
and the normalized horizontal divergence (Λ), show a similar evolution and
quantitative behaviour as that was previously seen for the same dipolar
flow in a shallow single fluid-layer. Based on our observations of the kinetic
energy ratio q, the two-layer configuration does not provide a significant
improvement over the single-layer setup. Furthermore, passive tracer trans-
port at the free surface shows the emergence of distinct narrow bands of
particles, which are related to the non-zero horizontal divergence. As 2D
flow is by definition horizontally divergence-free, such narrow bands do not
develop in the purely 2D case.

Since the vortex dipole can be considered as a generic flow structure in
2D turbulence, the conclusions of the present study may apply more gen-
erally to experimental realizations of 2D turbulence, both for the decaying
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Figure 4.8 – (a) Distribution of tracer particles (black dots) on the free surface of
the Hul = 7.0 mm simulation at t = 3.75 s. Colours indicate the magnitude of the
vertical velocity w just below the free surface (at z = 9.5 mm). (b) Distribution of
tracer particles at t = 3.75 s obtained with a 2D simulation, where colours indicate
the magnitude of the vorticity ωz.

and the forced case.



CHAPTER 5

Linear array of vortices

The previous two chapters were focussed on the three-dimensional (3D)
structure of a single dipole in a shallow one- and two-layer fluid. The present
chapteri is devoted to a qualitative study of the dynamics of a linear array
of vortices that interact with a lateral no-slip wall. Our aim is an explo-
ration of the influence of the forcing protocol and the presence of a lateral
wall on the three-dimensionality of the flow dynamics and associated pas-
sive tracer transport.

The parameter regime to be considered is quite large. It includes as-
pects like fluid layer depth, forcing length scales (magnet size, inter-magnet
distance, magnet-wall distance), and forcing protocols (with a range of am-
plitudes and frequencies). Therefore the choice is made to consider only a
few forcing protocols and to explore the three-dimensionality of the flow
and the transport properties on a qualitative level only to map out a lim-
ited part of the parameter space by laboratory experiments and numerical
simulations. The influence of the 3D flow field (with and without a lateral
wall present) on particle dispersion is numerically investigated and a com-
parison is made of particle dispersion resulting from a purely 2D numerical
simulation.

This chapter is organized as follows: Section 5.2 outlines the experimen-
tal and numerical details. In Section 5.3 the results of the flow structures

iThe contents of this chapter is to a large extent based on: R.A.D. Akkermans, L.P.J.
Kamp, H.J.H. Clercx and G.J.F. van Heijst, “3D Structures and tracer transport by a
linear array of vortices near a lateral wall,” (in preparation, 2010).
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are presented, focussing on three reference cases. Hereafter, the influence
of these 3D flow structures and presence of a lateral wall on tracer trans-
port are presented in Section 5.4. In the final Section 5.5 the results are
discussed and the conclusions are summarized.

5.1 Introduction

The properties of quasi-two-dimensional (quasi-2D) multi-vortex systems
have been studied extensively, as they exhibit elementary processes tak-
ing place in two-dimensional (2D) turbulent flow (see, e.g., [12, 88]). In
the laboratory, these quasi-2D flows can be enforced by rapidly rotating
homogeneous fluids, fluids with density stratification, and geometrical con-
finement in shallow fluid layers (or soap films). A review of such quasi-2D
vortex systems and ways to generate them in the laboratory environment
is presented by van Heijst and Clercx [92].

Most numerical studies on 2D turbulence have been carried out on
a square domain (subject to double-periodic boundary conditions) with
pseudo-spectral codes [19]. However, simulations on bounded 2D turbu-
lence have revealed the influence of the (no-slip) domain boundaries on the
flow evolution in both decaying and forced 2D turbulence [19,93]. The 2D
vortices interact with the no-slip wall, which leads to the formation of thin
boundary layers that detach from the lateral wall and roll up to form small
vortices containing high-amplitude vorticity. Another example of the influ-
ence of a lateral wall is the spontaneous spin-up on non-circular domains
(see, e.g., [95]).

Since the early 1980s many of the theoretical and numerical predictions
on (unbounded) 2D turbulence have been put to test with laboratory ex-
periments (see, e.g., [66, 68]). However, these laboratory experiments are
horizontally bounded by lateral walls and in the vertical direction by a
no-slip bottom and a free-surface. For example, Cieslik et al. [16] have in-
vestigated the collision of a dipolar vortex against a solid vertical lateral
boundary, both experimentally and numerically. This work revealed that
the lateral domain boundaries further contribute to deviations from 2D be-
haviour.

In the previous chapters, the single dipolar vortex was studied while far
away from lateral walls and therefore dipole-dipole and dipole-wall interac-
tions are absent. Such interactions may affect the 3D motion and dispersion
properties of the flow, and is something that needs to be investigated fur-
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ther. Therefore, in this chapter a linear array of vortices generated close to
a lateral wall is studied.

5.2 Details of laboratory experiments and numer-

ical simulations

The experiments were carried out in the setup outlined in Sect. 2.2.3. As
opposed to the previous chapters, a linear array of magnets is now used to
generate multiple vortices. The reader is referred to Fig. 2.6 for a schematic
of the experimental setup.

The goal of these experiments is to study qualitatively the influence
of 3D motions and the presence of a lateral wall on the dispersion prop-
erties of the flow. For this purpose, the forcing strength I was varied in
time, creating a flow that is dominated by viscous effects or a flow domi-
nated by advection. In the latter case, strong interaction between vortices
is expected. Furthermore, experiments are performed with and without a
lateral wall present. In Table I the different forcing protocols are presented,
together with the Reynolds numbers resulting from these forcing protocols.
The Reynolds number Re (= UL/ν) is defined by taking the magnitude of

Table I – Parameter values of the applied current I(t) for the experiments with
a linear array of vortices together with the Reynolds number Re, the Reynolds
number Reα based on the bottom friction coefficient α, and the Strouhal number
Sr for the case with and without a lateral wall present. The magnet diameter D
(equal to 25 mm) is taken as a measure of the horizontal length scale L. The period
of the forcing signal is denoted by T and kept constant at 4 s.

without wall with wall

Case I(t) (A) Re Reα Sr Re Reα Sr

I 0.5 sin(2πt/T ) 350 11 0.44 180 6 0.78
II 0.5 + 0.5 sin(2πt/T ) 900 29 0.17 600 18 0.26
III 2.5 sin(2πt/T ) 1350 43 0.11 800 25 0.20
IV 2.5 + 2.5 sin(2πt/T ) 3400 100 0.05 1600 50 0.10

the maximum horizontal velocity as a measure of the characteristic veloc-
ity U and the diameter of the magnet D as the characteristic length scale
L. The viscosity of the fluid is denoted by ν. The Reynolds number Reα,
based on the bottom friction coefficient α, is defined as U/αL. This bottom
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friction coefficient α is given by α = ν(π/2H)2, under the assumption of
a Poiseuille-like flow in the vertical. The Strouhal number Sr is defined as
fL/U where f denotes the forcing frequency. Time is set to zero at the on-
set of forcing throughout the remainder of this chapter. Depending on the
Reynolds number, the flow can exhibit a quasi-periodic response to the flow
forcing. When appropriate, the forcing phase will be indicated as depicted

(n + 1)T

I

nT t

phase 0

phase 1

phase 2

phase 3

Figure 5.1 – Schematic of the forcing by the sinusoidal current I with indication
of 4 different phases within one forcing period T .

in Fig. 5.1, i.e., with phase 0, 1, 2, or 3 when presenting the results.
In the results section three different flow regimes will be studied. These

regimes are denoted by case I, III, and IIIw. The latter case is identical to
case III with the exception that a lateral no-slip wall is placed on top of
the magnets (hence the addition of “w”). For the remaining cases, char-
acteristic snapshots are presented in Appendix A together with a concise
explanation. In the following results section only the major differences are
stated between the cases presented in the results section and in the ap-
pendix.

The fluid layer thickness H has been kept constant at 7 mm for all the
experimental results presented in this chapter. In the previous chapters it
was shown that qualitatively the 3D flow structures do not change with dif-
ferent fluid depths. Measurements are performed at mid-depth of the fluid
layer with the SPIV technique.

In the numerical simulations the free-surface was set to be stress-free
and flat, while the bottom was taken to be no-slip, as in the experimen-
tal situation. A no-slip boundary condition is applied when a lateral wall is
present. These numerical simulations are intended to mimic the experimen-
tal configuration. However, to study the influence of the no-slip condition
of the lateral wall, additional simulations have been performed where this
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wall boundary condition was set to stress-free. For the numerical setup the
reader is referred to Chapter 2.

The influence of the 3D flow structure and presence of a lateral wall on
the dispersion of particles will be studied only numerically. The particles
will be released in different configurations, i.e., on a spatially uniform grid
at the free surface or mid-depth of the fluid layer, or periodically released at
the wall (if present). Furthermore, the influence of the 3D motions on par-
ticle dispersion is illustrated by a comparison with tracer dispersion studies
from purely 2D numerical simulations.

5.3 Flow structure of the linear array of vortices

5.3.1 Weak forcing without wall: Case I

Figure 5.2(a) shows plots of the instantaneous vertical (shades/colours)
and horizontal (vectors) velocities in a horizontal cross-sectional plane at
3.5 mm above the bottom for t = 26.0 s (at phase 1, see Fig. 5.1). In
Fig. 5.2(b) the corresponding vertical vorticity component ωz is displayed.
For clarity of presentation the vectors are under-sampled: only one out of
three vectors is shown in the x- and in the y-direction, so that approximately
10% of the total set is shown. The position of the magnets is indicated by
the dashed circles.

In Fig. 5.2(a) one can recognise counter-rotating vortices in the hori-
zontal velocity vectors as well as dipolar structures in the oppositely-signed
patches of vorticity ωz [as can be recognised in Fig. 5.2(b)]. Downwelling
is concentrated inside the vortex cores [see Fig. 5.2(a)], whereas weaker re-
gions of upwelling are present in the tails of the dipoles, similar to what can
be observed in Fig. 3.1(a,b) for the single dipole. The downward motion
inside the vortex cores is related z-dependent horizontal velocity field (in
this situation due to the decay of the magnetic field with height), which
introduces a vertical pressure gradient that drives a downward motion (as
discussed in Chapter 3). In the early stages after the onset of forcing, the
velocity field lags behind the applied current due to the fluid inertia. This
time-lag remains hereafter constant at approximately 1 s.

The vertical component of the vorticity ωz is depicted in Fig. 5.2(b).
Patches of alternating vorticity ωz are seen. As the magnets are positioned
in an alternating order, a linear array of vortices is created that is “chained”
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Figure 5.2 – The top panels show experimentally obtained snapshots of case I
at t = 26.0 s (phase 1) showing (a) the vertical velocity w in colour/shade and
(b) the vertical vorticity ωz in colour/shade at z = 3.5 mm. Vectors indicate the
horizontal velocity field. The magnet locations are denoted by the dashed circles.
The second row of figures represents the situation at t = 28.0 s (at phase 3, i.e.,
half a forcing period later than the first row).

together. The dipoles that are created do not propagate due to the combined
effect that the vortices are chained together and the rather low Reynolds
number.

The flow field at half a forcing period later is depicted in the second row
of Fig. 5.2. The flow and vorticity distribution are approximately reversed
as compared to the upper row of Fig. 5.2, except for the vertical velocity
component w. The vertical dependence of the horizontal velocity field (and
therefore the vertical velocity) remains the same half a forcing period later.
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As a comparison, the numerically obtained snapshots are displayed in
Fig. 5.3 for the same time instant as the upper row of Fig. 5.2. A good quan-
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Figure 5.3 – Numerically obtained snapshots of case I at t = 26.0 s showing
(a) the vertical velocity w in colour/shade and (b) the vertical vorticity ωz in
colour/shade at z = 3.5 mm. See Fig. 5.2 for meaning of vectors and colours.

titative similarity is seen between the numerical and experimental snap-
shots, although the regions of upward motions at the edges of the magnet
are less pronounced in the experiments [cf. Figs. 5.3(a) and 5.2(a)]. Also
the numerically obtained flow evolution during a forcing period shows good
agreement with the experiments.

The global response of the flow to the varying electromagnetic forcing
is illustrated in Fig. 5.4, which shows the time evolution of kinetic energies
EH and EV , defined as

EH =
1

2
H

∫∫

S
ρ(u2 + v2) dxdy and EV =

1

2
H

∫∫

S
ρw2 dxdy. (5.1)

Integration is performed over a horizontal plane S, in this case the mea-
surement plane z = 3.5 mm and the fluid depth H is used as a measure of
the vertical length scale. Since one expects a scaling of the vertical kinetic
energy EV with (H/D)2 (i.e., w ∼ uH/D), the scaled version (D/H)2EV is
depicted in Fig. 5.4. Both EH and EV are in phase, and after an initial tran-
sient period a quasi-periodic response of the kinetic energies is seen. The
observed frequency of EH and EV (0.5 Hz) is twice the forcing frequency.
It turns out that the velocity field shows a frequency response equal to
the forcing frequency, and due to the definition of EH and EV a doubling
results. Furthermore, the large quantitative difference between EH and EV
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Figure 5.4 – Experimentally (a) and numerically (b) obtained time evolution of
the kinetic energies EH and EV for case I.

contradicts the common assumption that the vertical motion scales with
the horizontal motion proportional to the aspect ratio H/D, as was already
seen for the dipolar vortex in a single fluid layer (see Chapter 3). Recently,
Duran-Matute et al. [29] came to a similar conclusion for the case of a
decaying axisymmetric monopole. Comparison of the experimentally ob-
tained kinetic energy components EH and EV with the numerical ones [see
Fig. 5.4(b)] reveals an excellent quantitative agreement.

Case Iw, i.e., identical to case I but with a lateral wall present, shows
similar results as case I (see Appendix A for experimentally obtained snap-
shots). The influence of the lateral wall is mainly seen in the ωz vorticity,
where near the wall the emergence of oppositely singed vorticity with re-
spect to the sign of ωz in the vortex cores is seen. Also the flow velocities
are lower, which is the result of the presence of a lateral no-slip wall that
introduces extra dissipation.

For the weak forcing case with offset, i.e., case II with I = 0.5 +
0.5 sin(2πt/T ) A, characteristic snapshots of the flow evolution are given
in App. A. A consistent mean flow is created as a result of the forcing
offset, and a jet-like flow is observed with superimposed dipolar vortices.
The dipoles propagate and dipole-dipole interaction can be observed. After
approximately 10 s, the flow loses its temporal periodicity.

When a wall is present, i.e., case IIw (see characteristic snapshots in
App. A), the flow remains periodic in time, although slight distortions are
seen at later times.
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5.3.2 Strong forcing without wall: Case III

In Fig. 5.5 the flow evolution of case III is shown with the velocity field
(left column) and the vertical component of the vorticity ωz (right column).
The first, second, and third row correspond to time instances t = 1.7 s,
t = 28.0 s, and t = 44.0 s, respectively.

In Fig. 5.5(a) the flow structure is displayed 1.7 s after the forcing has
been switched on. Clearly seen are the multiple dipolar structures, which
show a striking resemblance with the flow field already observed in the case
of a single dipole in a homogeneous shallow fluid layer (see Chapter 3).
Compared to case I, the magnitudes of the velocities are higher (as the
forcing is stronger) and the dipoles start to propagate. After some time,
the quasi-periodicity that was present in Case I is broken, as observed in
Fig. 5.5(c). At an even later stage in the evolution, the temporal periodicity
of the flow field remains broken. However, dipolar vortex structures can still
be recognised [see Fig. 5.5 (e)]. Furthermore, multiple band-like structures
are seen in the left column of Fig. 5.5. Adjacent bands of up- and downward
motion suggest the presence of numerous horizontal roll-like structures hav-
ing significant horizontal vorticity. Note that locally the magnitude of the
vertical velocity far exceeds the magnitude of the horizontal velocity com-
ponents (with approximately a factor of two). Figures 5.5(b), (d), and (f)
show the evolution of the vertical vorticity ωz. During the evolution, the
formation of thin filaments of high-amplitude ωz vorticity is seen.

The numerically obtained flow evolution of case III is presented in
Fig. 5.6 at the same time instants as for the experimentally obtained snap-
shots shown in Fig. 5.5. Clearly, a good qualitative agreement exists be-
tween the velocity and vorticity distribution of the numerical simulation
(as seen in Fig. 5.6) and the experimentally obtained snapshots shown in
Fig. 5.5. In Fig. 5.6(c) the snapshot is depicted after the temporal symme-
try is broken in the field of view, which happens around t = 25, slightly
earlier than in the experiments. Although quantitatively some differences
are present, qualitatively the same flow evolution is seen in the numerical
simulations and the experiments.

Figure 5.7 shows numerically obtained vertical slices of the horizontal
vorticity component ωx in the plane defined by x = 0, for the same three
time instances as Fig. 5.6. In Fig. 5.7(a), the bottom boundary layer is
clearly seen as well as the patch of positive ωx associated with the down-
welling inside the vortex core. At the front side of the dipole (around
y = 28 mm), the detachment of the bottom boundary layer can be seen,
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Figure 5.5 – Experimentally obtained snapshots for case III. Vectors indicate
the horizontal velocity field. Vertical velocity w (a) and vorticity ωz (b) in
colour/shades at t = 1.7 s. The second and third row: same as (a) and (b) ex-
cept now for t = 28.0 s and t = 44.1 s, respectively.
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Figure 5.6 – Numerically obtained snapshots of case III. Vectors indicate the hori-
zontal velocity field. Vertical velocity w (a) and vorticity ωz (b) in colour/shades at
t = 1.7 s. The second and third row: same as (a) and (b) except now for t = 28.0 s
and t = 44.1 s, respectively.
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Figure 5.7 – Numerically obtained vertical slices (at x = 0) of the horizontal
vorticity component ωx (colour) and in-plane velocity vectors for case III at (a)
t = 1.7 s, (b) t = 28.0 s, and (c) t = 44.1 s. The magnet is centred at y = 0 and
has a diameter of 25 mm.

which at later times during the evolution will form the frontal circulation
(see Chapter 3). In the second snapshot, several horizontal vorticity (ωx)
patches are observed. Furthermore, the vertical structure of the in-plane
velocity can hardly be assumed to have a Poiseuille-like profile in the verti-
cal direction. In the last vertical slice, see Fig. 5.7(c), significant ωx patches
are seen near the boundaries and inside the fluid layer. During the complete
evolution, the maximum of the magnitude of the horizontal vorticity com-
ponent ωx is comparable to or even exceeds that of the “primary” vorticity
component ωz (i.e., ωx ≈ 2ωz). Furthermore, comparison of Fig. 5.7 with
Fig. 5.6 indeed confirms that adjacent bands of up- and downward motion
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coincide with roll-like structures containing significant horizontal vorticity
ωx.

In chapter 3, the development of 3D motion inside the dipole was related
to a vertical dependence of the horizontal flow field. The type of boundary
conditions, vertical confinement of the flow, and vertical gradients in the
forcing inevitably lead to such vertical variations in experimentally realised
shallow flows. For the linear array of vortices configuration subject to a
strong forcing (case III), the combined effect of vertical confinement and
magnetic field are the cause of a z-dependent horizontal velocity field which
results in the development of 3D motionsii.

The experimentally and numerically obtained time evolution of the hor-
izontal and vertical kinetic energy for case III are displayed in Figs. 5.8(a)
and (b), respectively. In Fig. 5.8(a), a buildup of EH is seen (after an initial
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Figure 5.8 – Experimentally (a) and numerically (b) obtained time evolution of
the kinetic energies EH and EV for case III.

peak) until approximately t = 30 s, after which a substantially lower value
is observed, which remains approximately constant. A quasi-periodicity of
EH and EV is seen with a period of 2 s (the flow field has a temporal
response equal to the forcing period, due to the definition of EH and EV

this becomes 2 s). The energy contained in the vertical motion remains
approximately constant. Comparison of these experimentally obtained hor-
izontal and vertical kinetic energies with the numerically obtained ones, i.e.,

iiThe previously considered case I (weak forcing), represents an anomaly in the sense
that the dipolar vortices do not propagate (and therefore remain above the magnets)
and are continuously subjected to the influence of the electromagnetic forcing which
introduces the downwelling inside the vortex cores.
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Figs. 5.8(a) and (b) reveals a good resemblance, although the second peak
value in EH occurs slightly earlier in time for the simulation, at around
t = 25 s. The magnetic field (and thus the Lorentz force) is known up to a
multiplicative factor in the numerical simulations. This factor is determined
by matching the numerically observed maximum vorticity at a certain time
instant with the corresponding experimental one (see Section 2.3.1). As this
matching is not exact, such minor differences between the experimental and
numerical kinetic energy evolution result.

One could be tempted to conclude that the flow behaviour is quite
two-dimensional based on the small amount of energy contained in the
vertical motion as compared to the horizontal ones. Locally, however, the
magnitude of the vertical motion exceeds the horizontal one significantly
(approximately a factor of two). This locality is lost in global quantities
such as EV and EH .

Case IV, which is identical to case III but with an offset in the time-
periodic forcing [i.e., I = 2.5 + 2.5 sin(2πt/T ) A] shows a similar flow be-
haviour as case III. The flow is dominated by advection, and a consistent
mean flow is present (see App. A for characteristic snapshots of case IV).

5.3.3 Strong forcing with wall: Case IIIw

Case IIIw corresponds to the same situation as previously discussed ex-
cept now a lateral wall is present. Characteristic snapshots of this case are
presented in Fig. 5.9. A periodic generation of dipoles is seen, which prop-
agate away from the lateral wall, as illustrated in Fig. 5.9(a). Exactly half
a forcing period later, this pattern is repeated at the adjacent magnet po-
sition. Production of oppositely signed vorticity at the no-slip wall is seen
in Figs. 5.9(b) and (d). Note that the dipoles do not propagate out of the
field of view, as they decay quite rapidly.

When comparing this case IIIw with the corresponding case without
a lateral wall, it is seen that the horizontal length scale is reduced with
approximately a factor of two [cf. Figs. 5.9(a) and 5.5(a)]. The production
of vorticity during the initial flow evolution is proportional to ∂Bz/∂x,
where Bz is the vertical component of the magnetic field. Vorticity is there-
fore produced predominantly at the edges of the disk-shaped magnet where
|∂Bz/∂x| attains its maximum. With a lateral wall present, the vorticity
is no longer generated at the edges of the magnet ±0.5D at y = 0, but at
some value y > 0 where these edges are closer together, thus reducing the
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Figure 5.9 – Experimentally obtained snapshots of case IIIw showing (a) the ver-
tical velocity w in colour/shades and (b) the vertical vorticity ωz in colour/shades
at t = 10.5 s (phase 2). Vectors indicate the horizontal velocity field. The magnet
locations are denoted by the dashed semi-circles. The lateral no-slip wall is located
at y = 0. (c,d) same as (a,b) except now for t = 12.5 s (phase 0).

size of the dipole. A second effect that may also play a role in the smaller

Figure 5.10 – Schematic of the influence of the lateral wall on the size of the
dipolar vortex: a converging flow near the lateral wall which causes the smaller
dipole size. Magnets are denoted by the gray semi-circles, the induced flow is
indicated with blue arrows.

dipole size is that because of the presence of the lateral wall, locally a con-
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verging flow is created, which squeezes the dipole, hence reducing its size
[see Fig. 5.10]. When a lateral wall is absent, the locally converging flow is
not present.

The numerically obtained velocity and vertical vorticity for case IIIw are
presented in Fig. 5.11(a) and 5.11(b), respectively. A striking resemblance
is seen with the upper row of Fig. 5.9. However, the vertical vorticity gener-
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Figure 5.11 – Numerically obtained snapshots of case IIIw showing (a) the ver-
tical velocity w in colour/shades and (b) the vertical vorticity ωz in colour/shades
at t = 10.5 s. Vectors indicate the horizontal velocity field. The magnet locations
are denoted by the dashed semi-circles. The lateral no-slip wall is located at y = 0.

ated near the lateral wall is much more pronounced and significantly larger
than in the experiment. This is attributed to the averaging effect of gradi-
ents in the velocity field (and therefore also vorticity ωz) inside correlation
windows by the SPIV technique [71]. A qualitative difference between the
experiment and simulation is the presence of a concave meniscus of the
fluid at the lateral wall in the former. The influence of this meniscus was
tested with an experiment where no detergent was added to the fluid: this
resulted in no appreciable difference with the experiments where detergent
was added.

In Fig. 5.12 two vertical slices are displayed of the in-plane ωx vortic-
ity component for case IIIw. The vertical plane defined by x = 5 mm is
chosen such that it cuts approximately through one of the vortex cores.
The two snapshots correspond to two succeeding extrema in the forcing,
as then there is locally strong forcing near the wall. In Fig. 5.12(a) the
vorticity distribution is shown when the forcing is directed in the positive
y-direction. The bottom boundary layer and the positive ωx patch at the
front side of the dipole (at y ≈ 18 mm) are clearly visible. Furthermore,
near the lateral wall (the blue patch at y ≈ 4 mm) a vorticity patch of
high-amplitude ωx can be recognised, indicating strong motion away from
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Figure 5.12 – Numerically obtained snapshots of vertical slices (defined by x =
5 mm) of the horizontal vorticity component ωx (colour) and in-plane velocity
vectors of case IIIw for (a) t = 13.5 s (phase 1) and (b) t = 15.5 s (phase 3).

the wall at the surface. In the second snapshot of Fig. 5.12, the flow field
is presented when the forcing is directed in the negative y-direction, i.e.,
towards the lateral wall. A negative ωx vorticity patch (blue) is observed
at approximately y = 4 mm, once again indicating motion away from the
lateral wall at the surface. It turns out that locally near the wall, a diverg-
ing flow field is present at the surface. Furthermore, a thin patch of high
amplitude is present almost at the wall at y = 0.

Additional simulations, where the lateral wall was set to a stress-free
boundary condition as opposed to the above described no-slip lateral wall,
returned quantitatively similar results. However, thin high-amplitude ωx

vorticity patches at the lateral wall resulting from the no-slip boundary
condition are not seen anymore in the stress-free wall simulation.

In Fig. 5.13 the time evolution of the kinetic energies contained in the
vertical and horizontal flow components are presented. Contrary to the nu-
merical result, the experimentally obtained EH slightly decays in time. The
simulations where the lateral wall was set to be stress-free resulted in a sim-
ilar quantitative evolution of these kinetic energies (not shown) as obtained
with a lateral no-slip wall.

Case IVw (see App. A for characteristic snapshots), which is identical to
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Figure 5.13 – Experimentally (a) and numerically (b) obtained time evolution of
the kinetic energies EH and EV for case IIIw.

case IIIw but with an offset in the forcing [i.e., I = 2.5+2.5 sin(2πt/T ) A],
shows initially a jet-like flow with dipolar vortices superimposed. Already
after the second forcing the temporal periodicity is lost for this case and
vortex-vortex and vortex-wall interactions are observed (see second row of
Fig. A.5 in App. A).

5.3.4 Influence of the lateral wall: averaged kinetic energy

To study the influence of the lateral wall in a more quantitative way, an
“average” kinetic energy e is considered, i.e,

e(y) =
1

(Tend − Tbegin)
·
∫ Tend

Tbegin

1

L

∫ L

0

1

2
(u2 + v2 + w2) dxdt, (5.2)

evaluated at mid-depth of the fluid layer (z = 3.5 mm). This kinetic energy
is spatially averaged in the x-direction (i.e., parallel to the lateral wall in
case IIIw) and temporally averaged over the entire recording time Tend (in
most practical situations Tbegin can be set to zero). This kinetic energy
e thus provides information on how the kinetic energy is distributed as a
function of the y-direction. In Fig. 5.14 the quantity e is plotted for (a) case I
and (b) case III. For the lower forcing situation [case I, see Fig. 5.14(a)] e is
symmetrically distributed around y = 0 and confined to the region |y| < D.
In Fig. 5.14(b) the average kinetic energy e for case III is presented, which is
fairly symmetric around y ≈ 0. The peak value emax is significantly higher,
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Figure 5.14 – Experimentally obtained average kinetic energy e(y) for (a) Case I,
(b) case III.

i.e., 25 times as compared to case I, which corresponds to the squared ratio
of the maximum current strength of case III and case I.

With the lateral wall present a significant reduction of emax is observed
[cf. Fig. 5.15(a) and Fig. 5.14(b)] as a result of the dissipation near the
lateral no-slip wall. Furthermore, e(y) now shows two distinct peaks. The
first peak results from the strong boundary-layer motion near the lateral
wall and the second from the dipole that propagates away from this wall.
In Fig. 5.15(b) the phased average kinetic energy e′ is presented, i.e., taking
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Figure 5.15 – Experimentally obtained (a) average kinetic energy e for case IIIw
and (b) phase-averaged kinetic energy e′ for case IIIw. In the latter figure, the
solid and dashed line indicate phase 1 and phase 0, respectively.

into account the phase of the forcing current I. This phase average kinetic
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energy e′ is computed as

e′(y) =
1

Nph

∑

i

[

1

L

∫ L

0

1

2
(u2

i + v2
i + w2

i ) dx

]

i = 1, . . . , Nph, (5.3)

where Nph denotes the number of sample sets of the considered phase. The
generation of the dipole near the wall is indicated by the solid line (phase
1, see Fig. 5.1), afterwards the dipole starts to propagate away from the
wall. The dashed line illustrates the transport of kinetic energy away from
the wall (during phase 0). Numerically obtained averaged kinetic energies
e′ (not shown) showed quantitative similar results.

For case IIIw, the dipole dissipates before it propagates out of the field
of view. Therefore, the dissipation length is smaller than 35 mm. Also a
theoretical estimate can be made of the dissipation length ℓα, based on the
bottom friction coefficient α and the characteristic advection speed of the
dipole Uadv, i.e., ℓα = Uadv/α. This theoretical dissipation length (≈ 50 cm)
turns out to be much larger than the experimentally observed dissipation
length. It is assumed that 3D motions and the continuously time-varying
forcing are the cause of this lower value of the dissipation length in the
experiments and numerical simulations, thus once again underlining the
substantially more complex 3D flow dynamics in the thin fluid layer.

5.3.5 Degree of two-dimensionality for the linear array of

vortices

In a similar way as in the previous chapters, the ratio q (=EV /EH) is used to
quantify the importance of vertical motion. In Fig. 5.16 the experimentally
obtained q-ratios are presented for the different cases. For the cases I and Iw,
q is displayed in Fig. 5.16(a). Besides the average low value of q, peaks with
a period of 2 s are present in the evolution which correspond to the instants
where EH attains its minima. Apart from the peaks, it is seen that the ki-
netic energy ratio is higher when a lateral wall is present. In Fig. 5.16(b)
the q-ratio is presented for case II and case IIw. With a mean flow present,
resulting from the electrical current offset [I = 0.5 + 0.5 sin(2πt/T )], the
average value of the q-ratio is slightly below the corresponding ones in
Fig. 5.16(a). Only at later stages of the evolution an oscillatory response
of the kinetic energy ratio q is seen. Figure 5.16(c) shows the results for
case III and IIIw. Noticeable is that the situation with the presence of a
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Figure 5.16 – Experimentally obtained evolution of the kinetic energy ra-
tio q for (a) cases I and Iw [I=0.5 sin(2πt/T ) A], (b) cases II and IIw [I =
0.5 + 0.5 sin(2πt/T ) A], (c) cases III and IIIw [I = 2.5 sin(2πt/T ) A], and (d)
cases IV and IVw [I = 2.5 + 2.5 sin(2πt/T ) A].

lateral wall (case IIIw) is much more 3D than without a wall. A periodic
response of 2 s is observed of the flow in the q-ratio. For the case with the
high forcing with offset, i.e., case IV and IVw, the q-ratio is depicted in
Fig. 5.16(d). With a wall present the q-ratio is slightly higher than without
wall.

Generally, it can be concluded that for the cases without a forcing offset
(the left column of Fig. 5.16), there is a significant increase of the kinetic en-
ergy ratio q when a lateral wall is present. When a forcing offset is present,
as shown in the right column of Fig. 5.16, there is no significant difference
between the situation with or without a lateral wall. The forcing offset cre-
ates a consistent mean flow (EH ≫ 0) which dominates over the (local)
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influence of the lateral wall. Due to the presence of a mean flow, also the
average values of q are lower than without a forcing offset. However, for
the cases without a forcing offset (left column of Fig. 5.16), a significant
increase of the kinetic energy ratio q is observed for the cases with and with-
out a lateral wall (i.e., approximately 4 times higher with a wall present).

5.4 Tracer transport by a linear array of vortices

In the preceding section, it was seen that inside the fluid (locally) strong
vertical motions are present in all of the considered cases. In this section
the effect of this three-dimensionality on the transport of tracers is studied
numerically. Special attention is paid to the influence of a lateral wall on
the dispersion behaviour of the near-wall flow.

5.4.1 Dispersion at low Reynolds number; case I

In order to study the transport properties of the linear array of vortices,
passive tracer particles were released at t = 0 on a uniform planar grid
(i.e., −25 ≤ x ≤ 25 mm and −25 ≤ y ≤ 25 mm comprising of 10,600
particles) at the free surface of the fluid layer. Note that the particles are
bound to this free surface as there the vertical velocity is identically zero.
Figure 5.17 displays snapshots of the tracers distribution for case I (i.e., a
weakly forced flow dominated by viscosity). Bands of higher concentration
of particles are seen to be formed in regions where the surface flow is con-
vergent, see Fig. 5.17(a). During the early stages of the flow evolution, there
is on average a diverging flow inside the vortex cores, as can be observed
by a depletion of particles. However, at later stages of the flow evolution,
the flow inside the vortex cores is (on average in time) converging due to
the local downwelling of the fluid and a large part of the particles thus
concentrate there. This is illustrated in Fig. 5.17(b), where approximately
88% of the initially released particles is now concentrated in the two vortex
cores. Despite the low Reynolds number of the flow and small magnitude of
the vertical velocity component, a drastic effect is seen of the 3D structure
of the flow on tracer transport at the surface.

The origin of this depletion or agglomeration of particles is illustrated
in Fig. 5.18. This figure shows a side view of the flow near the free sur-
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face. When there is downwelling underneath the free surface, the flow field
at the surface must be convergent (note that the full 3D velocity field is
incompressible and therefore divergence-free, however, at the surface the
horizontal velocity field is in general not divergence-free). Particles are ad-
vected by this locally converging flow, however, the particles are bound to
the surface as w is identically zero there. Therefore, an accumulation of
particles is expected in regions where ∇H · v < 0. The opposite happens
in diverging flow regions, where ∇H ·v > 0, particles are transported away
from diverging regions an typically a depletion is observed there.

5.4.2 Influence of 3D motion; case III

In Fig. 5.19 the numerically obtained distribution of particles that were
initially released at the free surface is presented for case III at t = 12.5 s.
These particles were released at the free surface on a uniform grid (i.e.,
−52 ≤ x ≤ 52 mm and −50 ≤ y ≤ 50 mm consisting of 21,200 particles),
and subsequently advected by the velocity field at the surface. Already dur-
ing the first forcing period, the formation of band-like structures is seen,
which coincide with regions of converging flow (∇H · v < 0). After the first
forcing period the majority of the particles is concentrated in these band-
like structures, which align with the propagation direction of the dipoles
(i.e., in the y-direction). At later stages of the evolution, there is also con-
siderable advection of these band-like structures in the x-direction. Com-
parison of Fig. 5.19 with Fig. 5.17(b) reveals a striking influence of the
forcing protocol on the dispersion of particles at the surface.

Figure 5.20 shows numerically obtained snapshots of particles which
are initially released at mid-depth of the fluid layer for case III; these par-
ticles are thus advected by all three-components of the velocity field. In
the snapshot of Fig. 5.20(a), taken just after the onset of the forcing, one
clearly sees the positions of the two vortex cores as these are characterized
by downward motion. Soon after, the particles are dispersed over the entire
height of the fluid layer, as illustrated in Fig. 5.20(b). Later in time, also
considerable transport in the x- and y-directions is observed.

This rapid vertical mixing of the particles is quantified in Fig. 5.21.
Here, the standard deviation of the particle z-locations, denoted by σz, is



110 Linear array of vortices – Chapter 5

−25 0 25
−25

0

25

x (mm)

y 
(m

m
)

 

 

∇
H

 u (1/s):

−1.5

−1

−0.5

0

0.5

1

1.5

−25 0 25
−25

0

25

x (mm)

y 
(m

m
)

 

 

∇
H

 u (1/s):

−1.5

−1

−0.5

0

0.5

1

1.5

b)a)

Figure 5.17 – Numerically obtained snapshots of the tracer distribution at (a)
t = 4.0 s (i.e., t = T ) and (b) t = 26.0 s (i.e., t = 6.5T ) for case I. Colours represent
the divergence of the horizontal components of the velocity field at the free-surface
and black dots indicate the positions of the tracer particles.

∇H · v < 0 ∇H · v > 0

Figure 5.18 – Schematic sideview of the flow near the free surface. With black
arrows the flow field underneath the surface is indicated and black dots represent
passive particles. Diverging regions (∇H · v > 0) are characterized by depletion of
particles whereas converging regions (∇H ·v < 0) by a agglomeration of particles.

defined as

σz =

[

1

N

N
∑

i=1

(zi − z)2
]1/2

. (5.4)

The arithmetic mean is implied by z and N denotes the total number of
particles. This standard deviation σz is a measure of the vertical disper-
sion of the initial horizontal plane of particles. Note that zi and z in (5.4)
are made non-dimensional with the fluid depth H. All particles are ini-
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Figure 5.19 – Numerically obtained snapshot of the tracer distribution released
on the free surface at t = 12.5 s (i.e., t = 3.125T ) for case III. Colours represent
the divergence of the horizontal components of the velocity field at the free-surface
and black dots indicate the positions of the passive massless particles.
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Figure 5.20 – Numerically obtained snapshots of the tracer distribution at (a)
t = 1.0 s and (b) t = 10.0 s resulting from case III. The particles (indicated
with red dots) are initially released on a uniform grid (−25 ≤ x ≤ 25 mm and
−25 ≤ y ≤ 25 mm consisting of 10,600 particles) at mid-depth of the fluid layer,
i.e., z = 3.5 mm.

tially at mid-depth of the fluid layer; the standard deviation is thus zero
at t = 0. A sharp increase of σz is seen hereafter, indicating strong ver-
tical displacement of these particles with respect to their initial position.
It can easily be shown that randomly distributed particles (over the com-
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Figure 5.21 – Numerically obtained (normalised) standard deviation of the ver-
tical particle position σz for case III, initially release at mid-depth of the fluid
layer. Time t is made nondimensional with the forcing period T . The dashed line
indicates the value of the standard deviation for a random particle distribution in
the vertical direction:

√

1/12 (≈ 0.29).

plete fluid height) have a standard deviation value of
√

1/12 (≈ 0.29).
Already after one forcing period, the particles have experienced such sub-
stantial vertical advection that σz has (approximately) an std-value of a
random distribution. This value of

√

1/12 is even exceeded, and σz seems
to asymptotically approach a value of approximately 0.36. At later times
of the evolution, particles approach the bottom and free surface and some
higher particle concentrations are observed near these boundaries (e.g., at
the symmetry plane of a dipole some particles are deposited close to the
bottom and surface, where w is very small), leading to higher values of σz

than that of a random distribution. Note that an upper bound of σz is 0.5,
corresponding to the situation that half of the particles are at the bottom
and the remaining at the surface.

To investigate the influence of the 3D structures inside the shallow fluid
layer on motion at the free surface, tracers advected by a purely 2D flow are
also considered. This 2D simulation is similar to case III with zero thickness
of the fluid layer. The Lorentz force at mid-depth of the fluid layer is used
to drive the flow and a linear friction term −αv is added in order to account
for bottom friction (the value of the bottom friction coefficient α was based
on the theoretical value for a fluid height of 7 mm). In a similar way as
before, the particles are initially released on a uniform grid, now spanning
the complete domain. In Fig. 5.22 the particle distribution obtained from
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this 2D simulation is presented at t = 18.0 s. Clearly, the passive particle
distribution is homogeneous and, during advection of the particles by this
purely 2D flow, remains homogeneous for the complete time integration.
This is in sharp contrast to the (surface) particles advected by the 3D flow
field, where band-like structures were seen to rapidly develop (see, e.g.,
Fig. 5.19). The origin of this difference in particle distribution is obviously
related to the divergence of the (horizontal) velocity field, which is by def-
inition zero in the 2D case and non-zero in the 3D case. Note that in the
regions of high vorticity of the 2D simulation, the particle concentration is
slightly less than outside these high vorticity regions. This is due to a slight
inaccuracy associated with the numerical integration of the particle paths
(in rotation-dominated regions). It does not result from the flow dynamics.
Figure 5.23 shows a schematic of an axisymmetric vortex, illustrated by
the circular streamlines. Exact integration of a particle path should result
in closed circular paths as by definition the velocity is the tangent of the
streamline. Numerical integration of the velocity field yields the particle
path, for simplicity here, obtained as xt+1 = xt + v∆t. In contrast to the
exact integration, the new position lies on a different streamline (the ra-
dius increased), where in general the velocity is smaller when considering
a vortex. After many integration steps an outward spiralling particle path
thus results. This numerical inaccuracy can be minimised by decreasing the
integration time steps (assuming that the spatial resolution is sufficient).
It was checked that further decreasing the numerical time steps resulted in
minor differences in the obtained particle paths. Note that this effect can be
significant in the purely 2D flow simulations where the streamlines should
be closed. In the 3D simulations this error is negligible (as compared to,
e.g., ∇H · v 6= 0 at the surface).

Another qualitative difference between the 2D simulation and the cor-
responding 3D one, is the lower dissipation experienced by the flow in the
2D simulation. This is visible when comparing, e.g., the maximum vorticity
of the 2D simulation is approximately 20 s−1 and for the 3D simulation a
value of approximately 15 s−1 is observed. Apparently, the vertical profile
of the 3D flow is more complex than that of a simple Poiseuille-like vertical
structure, as was assumed with the bottom friction coefficient in the 2D
simulation.
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Figure 5.22 – Numerically obtained snapshot of the tracer distribution (initially
released on a uniform grid) at t = 18.0 s for the 2D simulation. Colours represent
the magnitude of the vorticity and black dots indicate the positions of the passive
massless particles.

∆xt

∆xt+1

Figure 5.23 – Schematic illustration of a vortex and the outward spiralling motion
as a result of a numerical inaccuracy in the particle-path integration.

5.4.3 Influence of the lateral wall; case IIIw

To investigate the influence of the lateral wall on near-wall mixing, case IIIw
is now considered. Figure 5.24 shows two snapshots of the tracer distribu-
tion advected by this flow. These particles are released at t = 0 on a uniform
grid at the surface. Already at t = 2.0 s, almost all particles are removed
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Figure 5.24 – Numerically obtained snapshots of the tracer distribution at (a)
t = 2.0 s (i.e., t = 0.5T ) and (b) t = 14.0 s (i.e., t = 3.5T ) for case IIIw. Colours
represent the divergence of the horizontal components of the velocity field at free-
surface and black dots indicate the positions of the passive massless particles at
the surface.

from the region near the lateral wall [see Fig. 5.24(a)] due to the locally
diverging flow ∇H · v > 0 near the wall. This effect was already hinted
at by the negative ωx vorticity patch (near the surface) at approximately
y = 4 mm in the snapshots of Fig. 5.12. Again, bands of enhanced particle
concentrations are seen in converging regions. The two vortex patches are
demarcated by closed loops of particles. Already after a few forcing periods,
see Fig. 5.24(b), elongated filament-like structures where particles agglom-
erate can be recognised.

Figure 5.25 presents the particles distribution at (a) t = 1.3 s and (b)
t = 20.0 s, initially released at mid-depth of the fluid layer. Soon after the
forcing is switched on, strong vertical motions are created locally near the
lateral wall. In less than one forcing period, particles close to the wall are
displaced almost over the complete height of the fluid layer, whereas further
away from the lateral wall the particles remain unaffected [see Fig. 5.25(a)].
This is caused by the locally strong vertical motion near the lateral wall,
but also because the characteristic horizontal size of the dipole is smaller
when a lateral wall is present (as explained in Sect. 5.3.3). Soon afterwards,
the initial horizontal plane of particles has been advected over the complete
height with enhanced particle concentrations near the bottom which coin-
cide with the symmetry axis of the generated dipoles (i.e., at x ≈ −25 mm,
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Figure 5.25 – (Colour online) Numerically obtained snapshots of the tracer dis-
tribution at (a) t = 1.3 s (i.e., t = 0.325T ) and (b) t = 20.0 s (i.e., t = 5T )
resulting from case IIIw. The particles (indicated with red dots) are initially re-
lease on a uniform grid (−25 ≤ x ≤ 25 mm and 0 ≤ y ≤ 50 mm consisting of
10,600 particles) at mid-depth of the fluid layer, i.e., z = 3.5 mm.

x = 0, and x ≈ 25 mm). Near the free surface, such higher concentrations
are less pronounced as the magnitude of the horizontal velocity components
does not approach zero there (in contrast to the situation at the bottom).

For the simulation where the lateral wall was set to a stress-free bound-
ary condition, the particles evolution turns out to be qualitatively similar
to that seen for the case of a no-slip wall, as depicted in Fig. 5.25. A quan-
titative difference is that the particles near the lateral wall are advected
even faster in the vertical direction in the stress-free wall case (i.e., the
enhanced tangential velocities near the lateral wall as opposed to a no-slip
wall where the velocity goes to zero). This close similarity suggests that it
is the impermeability of the lateral wall that is important in the advection
of passive tracers.

As the wall affects the particle transport close to the wall, it is inter-
esting to see what happens when particles are released close to this lateral
wall. For this purpose, particles are periodically released near the wall (at
y = 0.5 mm) at discrete timestepsiii, i.e., every 1.5 s at mid-depth of the
fluid layer. In Fig. 5.26 two snapshots are presented of the particle distribu-
tion when released at the wall. Figure 5.26(a) shows a snapshot at t = 1.5 s,
revealing a line of newly released particles at z = 3.5 mm, together with
the particles that were released at t = 0. The latter particles have clearly

iiiThe choice of 1.5 s was empirical determined: shorter than the forcing period of 4 s,
however, not releasing the particles continuously at the same phase of the forcing.
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Figure 5.26 – (Colour online) Numerically obtained snapshots of the tracer dis-
tribution at (a) t = 1.5 s (i.e., t = 0.375T ) and (b) t = 20.0 s (i.e., t = 5T )
resulting from release of particles at the lateral wall. The particles (indicated with
red dots) are released every 1.5 s at mid-depth of the fluid layer.

experienced significant advection in the vertical direction. Near the bottom
and the free surface, these particles are subsequently advected away from
the wall. At later times, see Fig. 5.26(b), a fairly homogeneous distribution
over the fluid depth is seen together with some regions near the bottom of
higher particle concentrations.

To quantify the tendency of the particles to quickly homogenise in the
vertical direction, the σz of the particle z-locations is considered. The time
evolution of σz for case IIIw (i.e., with the no-slip wall boundary condi-
tion) is shown graphically in Fig. 5.27(a). Qualitatively, a similar evolution
is seen as for case III (cf. Fig. 5.21). However, a slightly lower increase of σz

is seen in the initial stage for t/T < 1.0 as further away from the wall the
particles remain at their initial position. Moreover, σz approximately at-
tains its asymptotic value of 0.36 already at t/T = 4.0. This value, higher
than the value for random vertically dispersed particle positions, results
from the enhanced particle concentrations near the bottom and surface,
which sets in more rapidly with a lateral wall present.

Figure 5.27(b) displays the standard deviation σz when the particles are
released at the no-slip wall (solid line) and stress-free wall (dashed black
line). Well before t/T = 1.0, the σz attains a value indicating significant
vertical displacement from the initial position. Every 1.5 s a jump in σz is
seen, resulting from a new release of particles. Furthermore, qualitatively
the same evolution is seen for the no-slip wall and stress-free wall, although
a slightly higher value of σz is attained for the stress-free wall case. This
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Figure 5.27 – Numerically obtained (normalised) standard deviation σz of the
vertical particle positions of case IIIw for (a) initially released at mid-depth of the
fluid layer on a horizontal plane, and (b) released very close to the lateral wall. In
this second figure the dashed black line corresponds to case IIIw where the lateral
wall was set to a stress-free boundary condition. Time t is made nondimensional
with the forcing period T . The gray dashed line indicates the value of the standard
deviation for a random particle distribution (in the vertical direction).

close resemblance confirms again that the impermeability of the lateral
wall is more important rather than the no-slip condition. Comparison of
Fig. 5.27(b) with 5.27(a) shows that indeed the influence of the lateral wall
is limited to the region close to this wall.

In a similar way as was done for the case without wall, also 2D sim-
ulations were performed for the case with a lateral wall present. When
the particles were released initially on a uniform grid, their distribution re-
mained approximately homogeneous in time as was already seen for case III
(see Fig. 5.22). For the case where the particles were released periodically
near the wall (every 1.5 s), the resulting particle distribution at t = 8.0 s
is shown in Fig. 5.28(a). The particles are stripped from the wall, advected
in between the two vortices that form dipoles, and subsequently wrapped
around these dipole. Hereafter, these particles are transported back towards
the wall in the tails of the dipoles, i.e., the particles are approximately con-
fined to the region y < 3D. Moreover, it is noticeable that the outer dipoles
have started to influence the system. In the second snapshot of Fig. 5.28,
the particle distribution is displayed at t = 29.0 s. The majority of the
particles remain close to the wall. For the 3D case, it was seen that close to
the wall the flow field is diverging (see Fig. 5.24) and no particles were seen
in the region near the wall. Furthermore, the time-periodic response that
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Figure 5.28 – Numerically obtained snapshot of the tracer distribution (periodi-
cally released at y = 0.5 mm near the lateral wall) at (a) t = 8.0 s (i.e., t = 2T ) and
at (b) t = 29.0 s (i.e., t = 7.25T ) for the 2D simulation. For clarity, only 50% of
the particles are shown in the latter snapshot. Colours represent the magnitude of
the vorticity and black dots indicate the positions of the passive massless particles.

was seen for the complete 3D simulation of case IIIw is not seen in the 2D
simulation. As was already noted before, the 2D simulation experience less
dissipation due to the oversimplified linear friction term enabling the outer
dipoles to propagate further and subsequently influence the complete flow
system.
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5.5 Conclusions

The 3D structure of a linear array of vortices has been investigated. Con-
trary to the investigation of a single dipole, now also vortex-vortex and
vortex-wall interaction are present. Emphasis was put on the qualitative
influence of the continuous time-varying forcing to generate the flow and
the consequence of the presence of a lateral wall on the flow dynamics and
dispersion properties. Specific choices were made for the parameter regime
that was considered in these experiments (such as forcing protocol, mag-
net positions, and position of the lateral wall). Therefore, this chapter was
more of a exploratory, qualitative nature.

For the weak forcing case I, the flow responded periodically to the ex-
ternal forcing. Due to the magnet arrangement an array of dipolar vortices
was created that was chained together, and in combination with the rather
low Reynolds number these dipoles did not propagate. Increasing the forc-
ing strength resulted in an advection-dominated flow (case III) and the
periodic response of the flow was broken. With a lateral wall situated on
top of the magnets (case IIIw), a substantially lower Reynolds number was
observed and the flow response was again periodic. As was also observed in
the previous chapters, the vertical motions are very localized and can even
significantly exceed the magnitude of the horizontal components (approxi-
mately a factor of two).

The development of 3D motion can be related to a vertical dependence
of the horizontal flow field, as explained in chapter 3. The type of bound-
ary conditions, vertical confinement of the flow, and vertical gradients in
the forcing inevitably lead to such vertical variations in the experiments.
Furthermore, the 2D flow simulations with linear friction term experienced
less dissipation than the simulations of the corresponding 3D flow. The ver-
tical profile of the 3D flow field was more complex than that of a simple
Poiseuille-like vertical structure, as was assumed with the linear friction
term in the 2D simulations.

The influence of the 3D motions and the presence of a lateral wall on
the transport of tracers was investigated numerically. For lower Reynolds
number values (case I), it was seen that, despite weak vertical motions, the
tracer transport at the free surface was drastically influenced. After just a
few forcing periods, approximately 90% of the particles agglomerate in the
vortex cores. When the forcing strength was increased (case III), the flow
was dominated by advection and the formation of elongated filament-like
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structures where particles congregate was observed. This is furthermore in
sharp contrast to the purely 2D case, where an approximately homogeneous
distribution of particle pertains throughout the flow evolution. Releasing
particles at a horizontal plane at mid-depth of the fluid revealed rapid ver-
tical mixing of the 3D flow. Already after one forcing period the particles
were almost mixed homogeneously over the full depth of the fluid layer.

Releasing particles at the free surface with a lateral wall present, re-
sulted in patch-like regions that were depleted of particles as well as long
elongated filament-like regions where particles agglomerate. Locally the
wall introduces strong vertical motions, which affect the transport of par-
ticles. To illustrate this, particles were periodically released very close to
the lateral wall. Well within the first forcing period, such released parti-
cles were dispersed over the complete fluid depth. Furthermore, additional
numerical simulations with the lateral wall set to be stress-free were per-
formed. The close resemblance of the particle transport with a no-slip and
stress-free wall suggests that it is not the no-slip condition but rather the
impermeability of this wall that is important in this rapid dispersion near
the lateral wall.





CHAPTER 6

Conclusions

The work described in this thesis is part of a larger research program “Two-
Dimensional Turbulence” of the “Stichting voor Fundamenteel Onderzoek
der Materie (FOM)”. Within this research program specific aspects of two-
dimensional (2D) turbulence were investigated, like the spectral properties
of 2D turbulence [63], the influence of lateral confinement on the evolu-
tion of 2D flows [43], the three-dimensionality during dipole-wall collisions
as well as the development of meandering streams in decaying quasi-2D
turbulence [15]. These previous studies comprise of both numerical and ex-
perimental investigations.

The canonical laboratory setup to validate theoretical and numerical
results on 2D turbulence is the shallow fluid layer setup. It is commonly
assumed that the limited fluid depth restricts the flow to behave quasi-
2D. However, contrary to the theory and numerical simulations on 2D
turbulence, the experimental realisations are never quasi-2D but contain
rather strong three-dimensional (3D) circulating flows. The causes of 3D
motions and the influence of deviations from two-dimensionality in such
flows remains a surprisingly much neglected issue in the relevant literature
on (quasi) two-dimensional turbulence experiments.

The aim of this thesis was to investigate the influence of boundary and
initial conditions on the development of 3D motion inside shallow fluid lay-
ers. This was studied by means of detailed experimental investigations on
shallow fluid layers and complemented by 3D numerical simulations of the
Navier-Stokes equation describing flows in such layers. The numerical sim-
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ulations include a realistic modelling of the magnetic field to simulate the
electromagnetic forcing.

The first experimental configuration that was considered is a dipolar
vortex in a single shallow-fluid layer. A dipolar vortex was chosen as it is
one of the most fundamental vortex structures in 2D turbulence and it can
be conveniently created utilising electromagnetic forcing. The experimen-
tal results showed that significant and remarkably complex 3D structures
and vertical motions occur throughout the flow evolution, i.e., during and
after the forcing. Examples of such 3D motions are the frontal circulation
structure and the oscillating up- and downward motion inside the vortex
cores. The numerical simulations were shown to be in excellent agreement
with the experimental results.

Based on the experimental and numerical results, several possible sourc-
es for the generation of 3D motion have been considered, e.g., surface de-
formations, bottom friction, and the way the flow is generated (i.e., elec-
tromagnetic forcing). Surface deformations were shown to be of minor im-
portance in the experiments (based on the smallness of the Froude num-
ber), which was confirmed by simulations where the generation of surface
deformations was excluded. Furthermore, additional simulations, with the
bottom taken stress-free instead of the no-slip boundary condition, have
demonstrated that the no-slip bottom is not the primary actor in gener-
ating 3D motion in a shallow layer of fluid. Lastly, the influence of the
electromagnetic generation of the dipole was studied using an artificial ini-
tialisation of the numerical simulations with a columnar Lamb-like dipole
structure (having a purely horizontal flow field that is divergence-free, with
a Poiseuille-like vertical structure). The result showed that a thus initialised
flow evolved with qualitatively similar 3D flow structures as observed in the
laboratory experiments. Therefore, the observed three-dimensionality is not
a result of the 3D electromagnetic forcing but rather due to the flow dy-
namics itself.

The development of 3D motion inside the dipole was related to a vertical
dependence of the horizontal flow field. The type of boundary conditions,
vertical confinement of the flow, and vertical gradients in the forcing in-
evitably lead to such vertical variations in experimentally realised shallow
flows.

The quasi-two-dimensionality of the flow was quantified by adopting the
ratio of “horizontal” to “vertical” kinetic energies, the normalized horizon-
tal divergence, and a measure of the relaxation to a Poiseuille-like profile.
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An important observation was that, although the relative magnitude of the
vertical velocity as compared to the horizontal flow components decreases
for decreasing fluid depth, the vertical profile of the horizontal flow relaxes
rather slowly to a Poiseuille-like profile, i.e., not faster than the bottom
friction time scale. Furthermore, the vertical motions are very localized in
space and can even significantly exceed the magnitude of the horizontal
components.

The second experimental configuration that was investigated, focused
on the 3D structures of a dipolar vortex in a stable two-layer fluid setup.
This two-layer configuration was believed to be a significant improvement
over the single-layer setup in the sense of shielding the upper layer from
the bottom, and hence suppressing any bottom friction-induced vertical
motion. Remarkably, the experimental results, supported by the numerical
simulations, showed to a large extent the same 3D structures and evolu-
tion as observed for the single-layer dipole. With the aid of the numerical
simulations it was indirectly shown that the development of the frontal
circulation is related to deformations of the internal interface, in contrast
with the single-layer dipole where the development of the frontal circula-
tion structure is directly related to the no-slip boundary condition at the
bottom wall.

Indicators for quasi-2D flow behaviour, i.e., the ratio of kinetic energy
contained in the vertical motion to that contained in the horizontal motion
and the normalized horizontal divergence, showed a similar evolution and
quantitative behaviour as that observed for the same dipolar flow in a shal-
low single fluid-layer. Based on the observations of the kinetic energy ratio,
the two-layer configuration does not provide a significant improvement over
the single-layer setup.

Dispersion characteristics in shallow flow setups have often been stud-
ied by following tracer particles at the free surface. However, such measure-
ment configurations neglect the possible 3D flow structure and its influence
on the dispersion of particles at the free surface. Therefore, passive tracer
transported on the free surface of the two-layer dipole configuration was in-
vestigated. The tracer dispersion at the free surface showed the emergence
of distinct narrow bands of particles, which are related to the non-zero di-
vergence of the horizontal velocity field. As incompressible 2D flow is by
definition divergence-free, such narrow bands do not develop in the purely
2D case.

The last experimental configuration that was considered was a linear
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array of vortices near a lateral wall. As opposed to the previous two exper-
imental configurations, now also dipole-dipole and dipole-wall interactions
may take place. Furthermore, in this experimental configuration several
continuously time-periodic forcing protocols were utilised. For the strong
forcing cases, the flow was dominated by advection and dipole-dipole inter-
actions were present whereas for weak forcing the dipoles did not propagate
due to the combined effect that the dipoles are chained together and the
rather low Reynolds number.

The influence of 3D motions and the presence of a lateral wall on the
dispersion of particles was investigated numerically. In general, when the
particles are released at the free surface they tend to agglomerate in re-
gions where the horizontal flow field is convergent. For the weak forcing
cases the majority of the particles concentrated in the vortex cores. When
the forcing strength was increased, the formation of elongated filament-like
structures where particles congregate was observed. This behaviour is in
sharp contrast to the performed numerical simulations of purely 2D flows,
which by definition are divergence-free. Releasing particles on a horizontal
plane at mid-depth of the fluid revealed rapid vertical mixing due to the
3D flow. Already after one forcing period the particles were almost mixed
homogeneously over the height of the fluid layer.

For the situation with a lateral wall present, enhanced vertical motions
were observed near this wall. As the influence of the wall is very local, the
dispersion of particles that were periodically released close to the wall was
studied. Well within the first forcing period, such released particles were
dispersed over the entire fluid column. Furthermore, additional numerical
simulations with the lateral wall set to be stress-free were performed. The
close resemblance of the particle transport with a no-slip and stress-free
wall suggests that not the no-slip condition but rather the impermeability
of the wall is relevant in this rapid vertical dispersion near the lateral wall.

Since the vortex dipole can be considered as a generic flow structure in
2D turbulence, the conclusions of the present study may apply more gen-
erally to experimental realizations of 2D turbulence, both for the decaying
and the forced case. It is generally assumed that a shallow fluid layer be-
haves 2D solely based on the small aspect ratio. The results described in
this thesis clearly indicate that caution is needed when interpreting such
experimental realisations to validate theory and numerical simulations on
2D turbulence.

Although the shallow fluid layer configuration considered in this thesis
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and geophysical flows have geometrical confinement in common as an ac-
tor in quasi-two-dimensionalising the flow, extrapolation of the results to
geophysical flows is not straightforward. The large-scale dynamics of geo-
physical flows like the Earth’s atmosphere and oceans are highly influenced
by background rotation (and to a lesser extent by vertical stratification),
whereas background rotation is absent in the shallow fluid configuration
that was considered in this thesis. However, on smaller scales where back-
ground rotation is not dominant and also density stratification is not im-
portant, the results might contribute to our understanding of the dynamics
of quasi-2D coherent structures emerging in rivers or estuarine flows. The
dynamics of such large-scale structures, whose dimensions are much larger
than the thickness of the fluid layer but small so that background rotation
is not important, is an interesting topic for future research.





APPENDIX A

Experiments on linear array of vortices

This appendix contains snapshots obtained from experiments of the linear
array of vortices not explicitly presented in Chapter 5. The snapshots are
chosen such that some of the characteristic flow phenomena can be seen.
For the experimental details the reader is referred to Sect. 5.2.

129



130 Appendix A– Experiments on linear array of vortices

Case Iw: weak forcing with lateral wall
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Figure A.1 – Experimentally obtained snapshots of case Iw showing (a) the ver-
tical velocity w in colour/shades and (b) the vertical vorticity ωz in colour/shades
at t = 26.0 s. Vectors indicate the horizontal velocity field. The magnet locations
are denoted with the dashed semi-circles. The lateral no-slip wall is located at
y = 0. (c,d) same as (a,b) except now for t = 28.0 s. A quasi-periodic response is
observed, with weak downward motion inside the vortex cores. At the lateral wall,
oppositely signed vorticity ωz is produced.
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Case II: weak forcing with offset
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Figure A.2 – Experimentally obtained snapshots of case II. Vectors indicate
the horizontal velocity field. The magnet locations are denoted with the (dashed)
circles. Vertical velocity (a) and ωz vorticity (b) in colour/shades at t = 27.0 s. (c)
and (d) same as (a) and (b) but now for t = 35.5 s. As a result of the forcing offset,
a mean flow is created which at approximately t = 10.0 s loses its time periodicity
(in the field of view). Hereafter, the generation of dipolar-like structures is seen
above the magnets.
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Case IIw: weak forcing with offset and lateral wall
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Figure A.3 – Experimentally obtained snapshots of case IIw showing (a) the ver-
tical velocity w in colour/shades and (b) the vertical vorticity ωz in colour/shades
at t = 10.1 s. Vectors indicate the horizontal velocity field. The magnet locations
are denoted with the dashed semi-circles. The lateral no-slip wall is located at
y = 0. (c,d) same as (a,b) except now for t = 26.8 s. As a result of the forcing
offset, a jet-like flow develops where, superimposed, the generation of dipoles is ob-
served. After approximately t = 20.0 s slight distortions are present, which persist
until the end of the measurement
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Case IV: strong forcing with offset
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Figure A.4 – Experimentally obtained snapshots of case IV. Vectors indicate the
horizontal velocity field. The magnet locations are denoted with the dashed circles.
Vertical velocity (a) and ωz vorticity (b) in colour/shades at t = 7.0 s. (c) and (d)
same as (a) and (b) but now for t = 32.0 s. Already during the first forcing period,
the symmetry of the flow breaks. Despite the offset on the forcing, no jet-like flow
structure can be recognised. Occasionally the generation of dipolar-like vortices
is observed near the magnets, as well as band-like structures being rapidly swept
through the field of view.
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Case IVw: strong forcing with offset and lateral wall
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Figure A.5 – Experimentally obtained snapshots of case IVw showing (a) the ver-
tical velocity w in colour/shades and (b) the vertical vorticity ωz in colour/shades
at t = 6.3 s. Vectors indicate the horizontal velocity field. The magnet locations are
denoted with the dashed semi-circles. The lateral no-slip wall is located at y = 0.
(c,d) same as (a,b) except now for t = 34.3 s. The formation of jet-like structures
with superimposed on that dipolar structures can be recognised. Already during
the second forcing period, the symmetry of the flow breaks. Hereafter, occasionally
dipolar structures can observed, that propagate away from the wall.
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Summary

3D Structures and dispersion

in shallow fluid layers

Many experiments have been performed in electromagnetically driven shal-
low fluid layers to study two-dimensional (2D) turbulence. The shallowness
of the fluid layer is commonly assumed to ensure 2D dynamics. However,
contrary to the theory and numerical simulations on 2D turbulence, the ex-
perimental realisations are never purely 2D. For example, laboratory setups
are bounded by a no-slip bottom and stress-free surface, which implies a
vertical gradient. Surprisingly, deviations from two-dimensionality in such
shallow fluid setups have hardly received any attention.

The aim of this thesis was to investigate the influence of boundary and
initial condition on the development of three-dimensional (3D) motion in-
side shallow fluid layers. For this purpose, a dipolar vortex was considered
as the canonical coherent structure in the shallow fluid layer. The dipolar
vortex is one of the most elementary vortex structures in 2D turbulence.
Such a vortex structure can be conveniently created by electromagnetic
forcing. The first two configurations that have been investigated are the
dipolar vortex in a shallow one- and two-fluid layer situation. The latter
(stably stratified) two-layer setup was assumed to be an improvement with
respect to the single layer configuration. Finally, the following shallow-fluid
layer experiment has been considered: a periodically forced linear array of
vortices near a lateral wall. All measurements have been performed with
Stereoscopic Particle Image Velocimetry, providing the three-component
velocity field on a horizontal plane inside the fluid layer. Furthermore, all
these experiments were complemented by 3D numerical simulations of the
Navier-Stokes equation.

Based on the experimental and numerical results, the necessary condi-
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tion for development of 3D motion in such shallow fluids was determined
to be a vertical variation of the horizontal velocity field. Inside the two in-
dividual vortex cores an oscillating up- and downward motion was seen, as
well as a spanwise vortex in front of the dipole. Free-surface deformations
were proven to be of minor importance in generating 3D motions. Further-
more, friction exerted by the no-slip bottom and the flow initialisations
were shown not to be primary actors in generating the observed complex
and persistent 3D motions. Surprisingly, the 3D flow evolution of the dipole
in the two-layer configuration evolved in a similar way as already seen in
the single-layer setup. Contrary to statements in literature, the so-called
frontal circulation was also observed in the two-layer configuration. The
emergence of this structure has a different origin, however, it resulted from
baroclinic vorticity production at the internal interface in stead of a prop-
agating motion over the solid bottom of the single-layer dipole. Based on
the comparison of the ratio of kinetic energy (contained in the vertical and
horizontal flow components) between the single- and two-layer fluid, the
two-layer fluid is not an improvement over the single-layer configuration.

For the linear array of vortices, the influence of 3D motion and the pres-
ence of a lateral wall on the passive tracer transport was investigated. It
was observed that particles released at the free surface form long filament-
like structures related to the surface flow being convergent, in contrast with
the purely 2D numerical simulations where the velocity field is by defini-
tion divergence-free and a more homogeneous particle distribution remained
throughout the time evolution. Particles released at mid-depth of the fluid
illustrated the efficient vertical mixing: already after one forcing period the
particles were almost dispersed homogeneously over the full depth of the
fluid layer. With the presence of a lateral wall this rapid vertical dispersion
is even further enhanced in the near-wall region.

In summary, this thesis reveals the intrinsic three-dimensional flow be-
haviour of shallow fluid layers. Furthermore, experiments with a linear array
of vortices illustrate the influence of the three-dimensional flow field and
lateral walls on the dispersion of passive tracers. All the experimental and
numerical results indicate that the interpretation of such experiments as
two-dimensional realisations should be done with caution.
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Samenvatting

Om tweedimensionale (2D) turbulentie te bestuderen zijn er door diverse
onderzoeksgroepen experimenten verricht in horizontale, ondiepe vloeistof-
lagen. Hierbij wordt vaak verondersteld dat als gevolg van de geringe laag-
dikte de verticale snelheden veel kleiner zijn dan de horizontale snelheids-
componenten en de beweging dus hoofdzakelijk horizontaal is. Echter, in
tegenstelling tot theorie en numerieke simulaties van 2D turbulentie zijn
experimentele realisaties nooit exact 2D. Verrassend genoeg hebben deze
afwijkingen van tweedimensionaliteit in deze laboratorium experimenten
nauwelijks aandacht gekregen in de literatuur.

Het doel van dit onderzoek is het bestuderen van de invloed van rand-
en beginvoorwaarden op de ontwikkeling van drie-dimensionaliteit in dunne
vloeistoflagen. Hiervoor is een enkele dipolaire wervel beschouwd omdat
deze één van de meest elementaire wervelstructuren vormt van 2D turbu-
lentie. De stroming kan hierbij worden opgewekt door middel van elektro-
magnetische forcering: de interactie van een door de elektrolytische vloeistof
lopende elektrische stroom en een magneet veld (van een permanente mag-
neet) resulteert in een Lorentz-kracht die de vloeistof in beweging brengt.
Bij toepassing van een enkele schijfvormige magneet kan men eenvoudig
een dipolaire wervelstructuur genereren. Drie typen experimenten zijn uit-
gevoerd. De eerste twee bestaan uit een enkele dipolaire wervel in een
vloeistof bestaande uit een enkele of dubbele vloeistoflaag. Van de twee-
lagen configuratie werd aangenomen dat deze een verbetering zou zijn ten
opzichte van de configuratie met een enkele laag. Het derde experiment is
een lineaire rij van wervels nabij een laterale wand. Snelheidsmetingen zijn
uitgevoerd met stereoscopische Particle Image Velocimetry welke de drie
snelheidscomponenten in een horizontaal vlak binnen in de vloeistoflaag
kan meten. De experimenten zijn gecomplementeerd met driedimensionale
(3D) numerieke simulaties van de Navier-Stokes vergelijking.
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De noodzakelijke conditie voor het ontstaan van 3D stroming in dunne
horizontale vloeistoflagen is bepaald met behulp van de experimenten en
simulaties: een verticale gradiënt van het horizontale snelheidsveld. Een
oscillerende op- en neergaande beweging werd waargenomen in de twee in-
dividuele wervel kernen van de dipool, alsmede een rolstructuur aan de
voorzijde van de dipool. Een aantal aspecten kon worden uitgesloten als
zijnde primaire oorzaken voor de ontwikkeling van drie-dimensionaliteit,
te weten: deformaties van het vrije-oppervlak, bodemwrijving, en initia-
lisatie van de vloeistofstroming. De 3D structuur van de stroming in de
twee-lagen vloeistof blijkt een verrassend hoge gelijkenis te vertonen met
de stroming in een enkele vloeistoflaag. In tegenstelling tot observaties in de
literatuur, is de rolstructuur aan de voorzijde van de dipool ook aanwezig in
de twee-lagen experimenten. Echter, het ontstaan van deze structuur heeft
een andere oorsprong: deze resulteert als gevolg van barocliene vorticiteits-
productie in tegenstelling tot een translerende beweging van de dipool over
de bodem in de enkele vloeistoflaag. Als men de ratio van kinetische ener-
gie van de verticale en horizontale beweging beschouwt, is de twee-lagen
configuratie geen verbetering ten opzichte van de enkele vloeistoflaag.

Voor de lineaire rij van wervels is de invloed van 3D stroming en de
aanwezigheid van een laterale wand op het transport van passieve deeltjes
onderzocht. Deeltjes losgelaten aan het vrije oppervlak vertonen de nei-
ging om lange filament-achtige structuren te ontwikkelen als gevolg van het
niet divergentie-vrij zijn van het horizontale stromingsveld aan het vrije
oppervlak. Voor het zuiver 2D geval ziet men daarentegen een min of meer
homogene verdeling van de deeltjes tijdens de volledige tijdsevolutie. Deel-
tjes losgelaten op halve hoogte in de vloeistoflaag illustreren de efficiëntie
van verticale dispersie: na een forceringsperiode zijn de deeltjes over de
volledige vloeistofhoogte gemengd. De aanwezigheid van een laterale wand
versnelt dit mengproces in de regio nabij de wand.

Samenvattend, dit proefschrift toont de intrinsieke 3D structuur van
de stroming in dunne vloeistoflagen aan. Laboratoriumexperimenten met
een lineaire rij van wervels nabij de wand illustreren de invloed van drie-
dimensionaliteit van de stroming en de aanwezigheid van een laterale wand
op dispersie van passieve deeltjes. De laboratoriumexperimenten en nu-
merieke simulaties geven aan dat voorzichtigheid geboden is bij de inter-
pretatie van deze experimenten als tweedimensionale realisaties.
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