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Bayesian estimation for quantification by real-time Polymerase
Chain Reaction

Nadia Lalam, EURANDOM1

Christine Jacob, INRA2

Abstract

The aim of the Quantitative Polymerase Chain Reaction is to determine
the initial amountX0 of specific nucleic acids from an observed trajectory
of the amplification process, the amplification being achieved through suc-
cessive replication cycles. This process depends on the efficiency{pn}n of
replication of the molecules,pn being the probability that a molecule will
duplicate at replication cyclen. Assumingpn = p for all n, we propose
to estimate the unknown parameterθ = (p, X0) in a Bayesian framework
under a Bienayḿe-Galton-Watson branching model of the amplification pro-
cess. The Bayesian approach allows us to take into account some prior in-
formation on the parameter. We build and study Bayesian estimators and
sets of credibility of the parameter by Markov Chain Monte Carlo methods.

Key words and phrases: Branching processes; Population dynamics; Bayesian
inference; Markov Chain Monte Carlo; Quantitative Polymerase Chain Reaction.
2000 Mathematics Subject Classification: 60J85; 62F10; 92B15; 92D25.

1 Introduction

The Polymerase Chain Reaction (PCR) first described by Saiki et al. (1985)
is an in vitro enzymatic reaction capable of amplifying the number of copies of a
specific DNA fragment. This technique is widely used in molecular biology since
it makes it possible to detect very low abundance of DNA. The Reverse Transcrip-
tion Polymerase Chain Reaction (RT-PCR) is a process in which reverse transcrip-
tion is done before the amplification (reverse transcription consists in producing a
DNA template from an RNA). The RT-PCR procedure allows therefore one to de-
tect low abundance of mRNA. Protocols that not only detect rare nucleic acids but
quantitate them as well are increasingly used. The monitoring of DNA molecules
as they replicate during PCR is known as real-time or kinetic PCR. The Quantita-
tive PCR (Q-PCR) which aims at determining the initial amount ofspecific DNA
(the target) present in a sample has many applications in disease screening, genes
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expression study or forensic medicine. For more detailed applications, see Ferré
(1998).

PCR is formed by the succession of typically 30 to 50 replication cycles. The
mechanism of a replication cycle is divided into three steps:
1) The double-stranded DNA is separated into two single strands in a step called
denaturation by heating (94oC);
2) The primers, which are short, synthetic sequences of single-stranded DNA
complementary to the ends of the target DNA, bind to the target in a step re-
ferred to as annealing step (53oC);
3) As the temperature is raised (72oC), a Polymerase enzyme is used to repli-
cate the DNA strands beginning the synthesis process at the region marked by
the primers. New double-stranded DNA molecules are synthesized thanks to the
activity of the enzyme which facilitates the binding and joining of the comple-
mentary nucleotides (deoxy-nucleoside triphosphates or dNTPs) that are free in
solutions.

Figure 1: The three steps of a PCR replication cycle (from http://www.surrey-
diagnostics.co.uk).

The number of copies of the target DNA is doubled at most at each amplifi-
cation cycle, but in practice, the probability that a molecule will be successfully
duplicated after one cycle, known as the efficiency of the reaction, is less than
one. The beginning of PCR is characterized by an exponential increase in target
amplification. Then, because of a depletion of reaction components or because
of a decline in the Polymerase enzyme activity or because of both (Liu and Saint
(2002)), the reaction efficiency slows down and eventually ceases leading to a sat-
uration phase decomposed into a linear phase and a plateau phase.

In the literature, under the assumption of constant reaction efficiency, the the-
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ory of Bienayḿe-Galton-Watson branching processes (Jagers (1975)) in discrete
time, the time step being a replication cycle, has been introduced to model the
exponential phase of the PCR for estimating replication errors of the DNA Poly-
merase (Krawczak et al. (1989), Sun (1995), Weiss and Von Haeseler (1995),
Piau (2004, 2005)). A simulation analysis using the coalescence theory has been
performed by Weiss and Von Haeseler (1997) providing the Maximum Likelihood
Estimator of the replication error rate. There also exists an extensive literature in-
volving branching processes when ignoring the replicationerrors, that is assuming
that all the duplicated molecules are identical to the target template. In this setting
that we will consider henceforth, Stolovitzky and Cecchi (1996) studied the num-
ber of cycles during which the amplification process undergoes an exponential
phase and may therefore be modelled by a single-type supercritical Bienayḿe-
Galton-Watson branching process for which the reaction efficiency at cyclen,
denoted bypn, satisfiespn = p for all n. Their approach relied on physical charac-
teristics of the reaction. They also proposed a method for inferring the initial DNA
molecules numberX0 when considering two sets of samplesS1 andS2, each with
a given number ofd identical preparations with unknown initial DNA molecules
numberX0. They considered observations of the molecule numbers at replication
cycle n1 (resp. n2) belonging to the exponential phase in all thed preparations
of sampleS1 (resp. S2) that they denoted byXn1,i in the sample preparationi
(resp.Xn2,i). Computing the corresponding averageν1 = 1

d

∑d
i=1 Xn1,i (resp.ν2),

they proposed to estimate the initial DNA molecules numberX0 by the quantity
ν
−n2/(n1−n2)
1 ν

n1/(n1−n2)
2 and the reaction efficiencyp by ν

1/(n1−n2)
1 ν

−1/(n1−n2)
2 − 1.

Here and in the sequel, let us denote byXk the DNA molecules number present
at cyclek. Relying on a single trajectory of the PCR amplification process in
its exponential phase modelled by a Bienaymé-Galton-Watson branching process,
Jacob and Peccoud (1998) built Conditional Least Squares Estimators (CLSE) of
the reaction efficiencyp of the exponential phase based onn − h consecutive ob-
servations ofXh+1, . . . , Xn with eitherh or n − h fixed asn tends to infinity.
They also built the Moment Estimator of the initial DNA molecules numberX0

and constructed its asymptotic confidence interval. Olofsson (2003) gave Max-
imum Likelihood Estimators of the quantitiesp andX0 using a censored Bien-
aymé-Galton-Watson process. Based on the enzymological approach of the PCR
carried out by Schnell and Mendoza (1997), Jagers and Klebaner (2003) modelled
the amplification process using a near-critical size-dependent branching process
with efficiencypn = p(Xn−1) = K/(K +Xn−1), whereK is a Michaelis-Menten
constant type of the reaction. The authors explained then theoretically the exis-
tence of the linear part of the saturation phase observed by experimentalists on
real-time PCR data. Lalam et al. (2004) studied CLSE of{pn}n in the frame of
a size-dependent branching process with a reaction efficiency model generalizing
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the one proposed by Jagers and Klebaner (2003) and taking into account the sat-
uration phenomena of the amplification in the modelling of{pn}n, as the size of
the amplified population increases.

The previous statistical analyses of Q-PCR were made in a frequentist setting.
The aim of the present paper is to perform a Bayesian analysis in order to estimate
the reaction efficiency of the exponential phasep and the initial DNA molecules
numberX0 from a single amplification trajectory. We will use some prior infor-
mation on the parameterθ = (p,X0) and we will rely on the stochastic modelling
of the PCR amplification process during the exponential phase. The model will
be a supercritical Bienayḿe-Galton-Watson branching process for which the re-
action efficiency and the initial DNA molecules number are random variables.
We construct Bayesian estimators and sets of credibility of the parameterθ by
Markov Chain Monte Carlo (MCMC) methods. MCMC techniques enable one to
carry out simulations from a distribution by embedding it asa limiting distribu-
tion of a Markov chain and simulating from the Markov chain until it approaches
equilibrium (Gamerman, 1997).

Recall that we will not take into account replication errors during the ampli-
fication process and assume therefore that, when the duplication of a target DNA
molecule is successful, this creates two DNA molecules identical to the target. We
will also consider that the DNA molecule numbers are observed without measure-
ment errors.

We introduce our Bayesian approach for real-time Q-PCR in section 2 and
define it more precisely in section 3. Simulation results aregiven in section 4. We
conclude with a discussion in section 5.

2 Bayesian approach

Denote byXk the DNA molecules number present at replication cyclek, and
pk the replication probability of a molecule at cyclek. During the exponential
phase, the reaction efficiency is assumed to satisfypk = p, for all k. With prob-
ability p, if the duplication has been successful, a DNA molecule gives rise to
two DNA molecules at the end of a replication cycle. Otherwise, with probability
1−p, a DNA molecule remains unchanged. This may be modelled by a branching
process

Xk =

Xk−1∑

i=1

Yk,i,

whereYk,i is the number of descendants in cyclek of the ith molecule from cy-
cle k − 1. The random variableYk,i takes either the value1 or 2. We assume
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that {Yk,i}k,i are independent and identically distributed (i.i.d.) withP (Yk,i =
2) = p = 1 − P (Yk,i = 1), where0 < p < 1. Note that the casesp = 0 (the
molecules never replicate) andp = 1 (all the molecules always replicate) are ex-
cluded from the analysis since they never occur in practice in real-time PCR exper-
iments. We therefore consider a supercritical Bienaymé-Galton-Watson branching
process{Xk}k modelling the exponential phase of the PCR amplification process
defined by

{
X0

Xk = Xk−1 + Bin(Xk−1, p), k ≥ 1

with unknown parameterθ = (p,X0), wherep is the reaction efficiency of the
exponential phase andX0 is the initial DNA molecules number. The notation
Bin(N, p) stands for a random variable following a binomial distribution with pa-
rametersN andp. Note that, experimentally, the exponential phase lasts a random
finite number of cycles and is followed by a saturation phase.But in this study,
we restrict our attention to the exponential phase only.

We consider a Bayesian framework and use prior information about the model
parameterθ in the inference process. Bayesian inference is drawn by constructing
the probability distribution of the parameterθ, based on all that is known about
it, given the data. This knowledge incorporates previous information about the
phenomena under study and it also relies on values of available observed quan-
tities. The information brought by the data is combined withprior information
specified by prior distribution yielding the posterior distribution of the parameter.
We will determine the posterior distribution ofθ and compute the posterior mean
as an estimate of the parameter. LetΘ be the parameter set in whichθ takes its
values. We will denote byxk the realization of the random variableXk. Let π(θ)
denote the prior distribution of the parameterθ and letπ(x1, . . . , xn|θ) denote the
likelihood conditionally toθ based on the observations(x1, . . . , xn). According
to Bayes’ rule, the posterior distribution ofθ is given by

π(θ|x1, . . . , xn) =
π(θ)π(x1, . . . , xn|θ)∫

θ′∈Θ
π(θ′)π(x1, . . . , xn|θ′)

. (1)

The posterior mean, which is the Bayes estimator that we consider, is solution of
the minimization problem

min
δ

∫

Θ

L(θ, δ)π(θ)π(x1, . . . , xn|θ)dθ,

for quadratic lossL(θ, δ) = ||θ − δ||2. We will construct the credibility set ofθ
which is the confidence interval of the posterior distribution ofθ. Both Bayesians
and frequentists compute confidence intervals but their interpretations are very
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different. The interpretation of the Bayesian confidence interval (credibility inter-
val, or highest density region) is that the probability thatthe true parameter value
θ lies in the interval, given the particular data that are actually observed, is equal to
the integrated probability of the posterior distribution over the interval. The inter-
pretation of the frequentist confidence interval is the following: one constructs a
100(1−α)% confidence interval[â, b̂] for a given parameter valueθ, wherêa and
b̂ are functions of the data. Then in the long run, in100(1 − α)% of the samples
the interval so constructed will containθ. The frequentist confidence interval uses
therefore the variability of the data, given the parameterθ.

3 Model specification

We compute the posterior distribution ofθ defined by (1) after the introduction
of the prior distributions and the likelihood of the observations given below.

3.1 Prior distributions

In the exponential phase, the reaction efficiencyp is assumed to be independent
of X0. This entails that the prior distribution forθ = (p,X0) satisfiesπ(θ) =
π(p)π(X0), whereπ(p) (resp.π(X0)) is the prior distribution ofp (resp.X0).

3.1.1 Prior for p

We choose a non-informative prior distributionπ(p) on the reaction efficiency
of the exponential phase. We will namely take into consideration the so-called
Jeffreys distribution which is based on the Fisher information matrix of the likeli-
hood. Such a distribution is motivated by the requirement ofinvariance property,
that is inference should not depend on how the model is parameterized. By defini-
tion, the Jeffreys prior distribution is proportional to the square root of the Fisher
information. It is more precisely proportional to the square root of the determinant
of the Fisher information matrix, but here this matrix is just a real number since
p ∈]0, 1[.

Let us determine the Jeffreys prior forp in the setting of the branching pro-
cess{Xk}k modelling the PCR exponential phase, whereX0 is given. The Fisher
information forp equals

In(p) = Eθ([
∂ log π(X1, . . . , Xn|θ)

∂p
]
2

). (2)

Let Zk = Xk − Xk−1 be distributed as Bin(Xk−1, p) and letFk be the sigma-
algebra generated byX0, . . ., Xk. For givenp andX0, the log-likelihood of the
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sample(X1, . . . , Xn) is
∑n

k=1 log fp(Zk|Fk−1), wherefp(Zk|Fk−1) = CZk

Xk−1
pZk(1 − p)Xk−1−Zk

(see subsection 3.2 for the detailed expression of the likelihood). Consequently
the Fisher information forp has the following expression, the prime being the
derivative with respect top:

In(p) = Eθ([
n∑

k=1

f ′
p(Zk|Fk−1)

fp(Zk|Fk−1)
]

2

)

=
n∑

k=1

Eθ([
f ′

p(Zk|Fk−1)

fp(Zk|Fk−1)
]

2

) + 2
∑

k<l

Eθ(
f ′

p(Zk|Fk−1)

fp(Zk|Fk−1)

f ′
p(Zl|Fl−1)

fp(Zl|Fl−1)
),

where

f ′
p(Zk|Fk−1)

fp(Zk|Fk−1)
=

Xk − (1 + p)Xk−1

p(1 − p)
.

First,

Eθ([Xk − (1 + p)Xk−1]
2) = Eθ([

Xk−1∑

i=1

{Yk,i − (1 + p)}]
2

)

= Eθ(Eθ([

Xk−1∑

i=1

{Yk,i − (1 + p)}]
2

|Fk−1))

= Eθ(var(Y1,1)Xk−1)

= p(1 − p)(1 + p)k−1X0,

sinceEθ(Xk−1) = Eθ(Eθ(Xk−1|Fk−2)) = (1 + p)Eθ(Xk−2) and by iteration, one
getsEθ(Xk−1) = (1 + p)k−1X0.
Second, fork < l,

Eθ((Xk − (1 + p)Xk−1)(Xl − (1 + p)Xl−1))

= Eθ((Xk − (1 + p)Xk−1)Eθ(Xl − (1 + p)Xl−1|Fl−1))

= 0 sinceEθ(Xl − (1 + p)Xl−1|Fl−1) = 0.

Therefore

In(p) =

∑n
k=1 (1 + p)k−1X0

p(1 − p)
=

(1 + p)n − 1

p2(1 − p)
X0. (3)

Consequently, the Jeffreys prior forp is proportional to
√

In(p)

X0

=

√
(1 + p)n − 1

p2(1 − p)
.
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It would be interesting to determine the Jeffreys prior forp when relying on
(Xh, . . . , Xn), whereh ≥ 2 is a replication cycle such that, from this cycle on, the
noise inherent to the observations(xh, . . . , xn) is negligible. It is indeed well-
known that the early observations of real-time PCR trajectories are extremely
noisy (Peirson et al. (2003)) and therefore unreliable for the inference. Forh ≥ 2,
the likelihood reads

π(xh, . . . , xn|θ) = [
n∏

k=h+1

Cxk−xk−1

xk−1
pxk−xk−1(1 − p)2xk−1−xk ]π(xh|θ),

with π(xh|θ) =
∑

x1,...,xh−1

h∏

k=2

Cxk−xk−1

xk−1
pxk−xk−1(1 − p)2xk−1−xk .

This entails that the Fisher information forp based on(Xh, . . . , Xn) equals

Ih,n(p) = Eθ([
∂ log π(Xh, . . . , Xn|θ)

∂p
]
2

)

= Eθ({
∂ log π(Xh|θ)

∂p
}

2

+ {Xn − Xh

p(1 − p)
}

2

+ {
∑n−1

k=h Xk

1 − p
}

2

+
2

p(1 − p)

∂ log π(Xh|θ)
∂p

(Xn − Xh)

− 2

1 − p

∂ log π(Xh|θ)
∂p

n−1∑

k=h

Xk

− 2

p(1 − p)2 (Xn − Xn)
n−1∑

k=h

Xk).

Due to the complex expression of∂ log π(Xh|θ)
∂p

, the computation ofIh,n(p) for h ≥ 2

is difficult. As a consequence, the Jeffreys prior forp based on
√

Ih,n(p) is not
straightforwardly obtainable.

In all that follows, we will restrict our analysis to the caseh = 1 and we will
use all the available information from replication cycles 1to n for inferring the
parameter.

3.1.2 Prior for X0

The initial DNA molecules numberX0 is obtained by extraction of DNA from
a biological sample. This can be accounted for by a Poisson distribution (Nedel-
man et al. (1992)). We therefore propose a Poisson distribution with parameter
λ, denoted by Poisson(λ), for the prior distributionπ(X0). The Jeffreys principle
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would lead to put a prior onλ proportional to1/
√

λ, but this prior is improper.
We will rather assume here thatλ is a random variable with uniform distribu-
tion of fixed support[a, b]. The prior distributionπ(X0) thus defined is called a
two-stage or hierarchical prior, that is a prior forλ (known as hyper-prior) is put
on the parameter of the prior Poisson(λ). The hyper-parameterλ represents the
mean ofX0. The choice of the support[a, b], wherea andb are constants, has
to be selected by the experimenter based on some biological information, e.g. a
preliminary approximate range in whichX0 is susceptible to lie.

3.2 Likelihood

We will consider successive observations from the exponential phase ranging
from replication cycles1 to n. As already indicated, we assume that{Xk}1≤k≤n

is observed with no measurement error.
Let us recall thatXk = Xk−1 + Bin(Xk−1, p). Then, fork ≥ 2,

P (Xk = xk|Xk−1 = xk−1, θ) = P (Xk = xk|Xk−1 = xk−1, p)

= P (Xk−1 + Bin(Xk−1, p) = xk|Xk−1 = xk−1, p)

= P (Bin(Xk−1, p) = xk − Xk−1|Xk−1 = xk−1, p)

= Cxk−xk−1

xk−1
pxk−xk−1(1 − p)2xk−1−xk .

Hence the likelihood is equal to

π(x1, . . . , xn|θ) = [
n∏

k=2

Cxk−xk−1

xk−1
pxk−xk−1(1 − p)2xk−1−xk ]

.Cx1−X0

X0
px1−X0(1 − p)2X0−x1

= (
n∏

k=2

Cxk−xk−1

xk−1
)[

p

1 − p
]
xn−x1

(1 − p)sn−1

.Cx1−X0

X0
px1−X0(1 − p)2X0−x1 ,

wheresn−1 =
∑n−1

k=1 xk.

3.3 Posterior distribution

We deduce from subsections 3.1 and 3.2 the expression of the posterior distri-
bution ofθ denoted byπ(θ|x1, . . . , xn). This quantity combines information from
the priors and the sample. Recall that we consider the exponential phase withp
following a non-informative Jeffreys distribution based on

√
In(p)/X0 andX0
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following a Poisson distribution of parameterλ, with λ uniformly distributed over
[a, b]. In view of (1),

π(θ|x1, . . . , xn) ∝ π(θ)π(x1, . . . , xn|θ)
= π(p)π(X0)π(x1, . . . , xn|θ)

∝
√

In(p)

X0

∫
1a≤λ≤b

λX0

X0!
e−λdλ.[

p

1 − p
]
xn−x1

(1 − p)sn−1

.Cx1−X0

X0
px1−X0(1 − p)2X0−x1 .

Let J(X0) =
∫ b

a
λX0e−λdλ. Integration by parts yields the relationshipJ(X0) =

F (X0)+X0J(X0−1), whereF (X0) = aX0e−a−bX0e−b. By iteration, we deduce
that

J(X0) = F (X0) + X0F (X0 − 1) + X0(X0 − 1)F (X0 − 2) + . . . + X0!F (1) + X0!F (0).

Therefore, the posterior distribution ofθ satisfies

π(θ|x1, . . . , xn) ∝
√

In(p)

X0

J(X0)

X0!
[

p

1 − p
]
xn−x1

(1 − p)sn−1

.Cx1−X0

X0
px1−X0(1 − p)2X0−x1 . (4)

The posterior distribution does not have a form belonging tosome known dis-
tributions family. Due to the analytical intractability ofthe posterior distribution,
one needs to perform simulations (Chen et al. (2000)). This will allow one to sam-
ple θ from its posterior distribution and to determine the corresponding Bayesian
estimator based on the posterior distribution together with credibility intervals.
We will use the software WinBUGS3 in order to implement our simulation study.
WinBUGS approximates the posterior distribution ofθ by Markov Chain Monte
Carlo (MCMC) techniques which amount to simulate a Markov chainwhose sta-
tionary distribution is the joint posterior probability distribution of the parameters
of the model. The parameters are first assigned arbitrary initial values, and the
chain is simulated until it converges to the stationary distribution. Observations
from the chain at stationarity are subsequently used to estimate the joint posterior

3The software WinBUGS is publicly available at http://www.mrc-bsu.cam.ac.uk/bugs. Note
that the Jeffreys prior density defined in our study is not a classical density present in the reference
list of the density distributions available from the software WinBUGS. Therefore, we will follow
the ”zeros trick” indicated in the WinBUGS user manual in thesection ”Tricks: advanced use of
the BUGS language” in order to specify this prior. We will normalize

√
In(p)/X0 so that Jeffreys

prior density integrates to 1. The normalizing constantCn such that 1

Cn

∫
1

0

√
In(p)/X0dp = 1

will be obtained using the software Mathematica.
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probability of the parameters. This allows one to compute credibility intervals of
θ. The MCMC numerical integration technique is widely used forimplementation
of the Bayes procedure (Gilks et al. (1996)). We will take as Bayesian estimators
of θ the mean of the posterior distribution.

As emphasized by Gamerman (1997), one has to keep in mind thatno mat-
ter how large the MCMC sample is, it only provides a partial substitute for the
information contained in the posterior density, that is an approximation to the
posterior is constructed via the MCMC technique used when it is not possible to
extract information from the posterior analytically. The software WinBUGS uses
the Gibbs sampling method as a means for stochastic simulation using Markov
chains. Gibbs sampling is a MCMC scheme where the transition kernel is con-
stituted by the full conditional distributions. Denote thedistribution of interest
by L(θ), whereθ = (θ1, . . . , θd)

T . Consider that the full conditional distribu-
tionsLi(θi) = L(θi|θ1, . . . , θi−1, θi+1, . . . , θd) are available. Gibbs sampling aims
at approximatingL when direct generation schemes are complicated or unavail-
able but when generations from theLi are possible. It provides an alternative
generation scheme based on successive generations from thefull conditional dis-
tributions as follows:
Step 1. Set initial valuesθ(0) = (θ

(0)
1 , . . . , θ

(0)
d )T .

Step 2. Obtain a new valueθ(j) = (θ
(j)
1 , . . . , θ

(j)
d )T from θ(j−1) through successive

generation of values

θ
(j)
1 ∼ L(θ1|θ(j−1)

2 , . . . , θ
(j−1)
d )

θ
(j)
2 ∼ L(θ2|θ(j−1)

1 , θ
(j−1)
3 , . . . , θ

(j−1)
d )

...

θ
(j)
d ∼ L(θd|θ(j−1)

1 , . . . , θ
(j−1)
d−1 ).

Step 3. Return to step 2 until convergence is reached.
This scheme defines a Markov chain since the probabilistic change at iterationj
depends only on chain values at iterationj−1. When convergence is reached, the
resulting valueθ(j) is a draw from the stationary distributionL. As the number
of iterations increases, the chain approaches its equilibrium. Convergence is then
assumed to hold approximately. See chapter 5 of Gamerman (1997) for more
detail on Gibbs sampling.

4 Simulation results

We run 20 000 MCMC cycles after a burn-in period of 30 000 cycles, the
burn-in cycles being discarded from the analysis. We consider a PCR trajectory
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consisting in 30 replication cycles for which the true values of the parameters are
p = 0.7 andX0 = 50.

The estimation summary of the posterior distribution that will be provided
consists in the marginal posterior means and credibility intervals ofp and X0

based on the observations from cycles 1 ton and based on the priors

π(p) ∼ Jeffreys’ prior depending onn

π(X0) ∼ Poisson(λ) with λ ∼ Uniform(30, 70).

For different values ofn, we present the marginal posterior means, standard de-
viations and 95% credibility intervals forp (resp. X0) in table 1 (resp. table
2).

n Mean Standard deviation 2.5% 97.5%

5 0.7111 0.01477 0.6814 0.7403
10 0.6973 0.003742 0.6899 0.7047
15 0.6997 9.93110−4 0.6975 0.7014
20 0.7002 2.63310−4 0.6996 0.7007
25 0.7001 6.9110−5 0.7 0.7002
30 0.7 1.81710−5 0.6999 0.7

Table 1: Summary of the results for the parameterp according ton.

n Mean Standard deviation 2.5% 97.5%

5 49.99 13.55 27 77
10 49.99 13.55 27 77
15 49.99 13.55 27 77
20 49.99 13.55 27 77
25 49.99 13.55 27 77
30 49.99 13.55 27 77

Table 2: Summary of the results for the parameterX0 according ton.

As expected, the more observations we consider, that is the greatern, the bet-
ter the estimate ofp since its standard deviation decreases and its 95% credibility
interval becomes narrower around the true value ofp. This suggests a consis-
tency property of the Bayesian estimator ofp as n increases analogous to the
strong consistency of the CLSE ofp proved in the frequentist setting by Jacob and
Peccoud (1998). The information for estimatingp is brought by the amplifica-
tion process{Xk}1≤k≤n. But n has no influence on the estimate ofX0 as can be
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viewed from formula (4) in which the marginal posterior density of X0 does not
depend on the observations from cycles[2, n]: the termpxn−x1(1 − p)x1−xn+sn−1

with sn−1 =
∑n−1

k=1 xk from (4) does not depend onX0 and therefore disappears
when computing the marginal posterior distribution ofX0. This remark is in ac-
cordance with the fact indicated by Jacob and Peccoud (1998)that there is no
consistent estimator ofX0 as the number of observationsn − h tends to infinity
when considering observations ofXh+1, . . . , Xn in the frequentist setting. This
can also be noticed from the study of Olofsson (2003) who indicated that the
Maximum Likelihood Estimator ofX0 based on a censored process(Xc, . . . , Xn)
is of the order ofXc/(1 + p)c. This entails that increasingn does not have an
impact on the behavior of this estimator.

5 Concluding remarks

We used the classical modelling of the evolution in time of DNA molecule
numbers undergoing the PCR exponential phase by a supercritical Bienayḿe-
Galton-Watson branching process{Xk}0≤k≤n. Relying on this modelling, we
performed a Bayesian statistical analysis providing the construction of Bayesian
estimators and credibility sets for the parameterθ = (p,X0). Our simulation study
suggests that the Bayesian estimator ofp is consistent. This asymptotic behavior
would be similar to the strong consistency of the frequentist CLSE ofp proved by
Jacob and Peccoud (1998). Another remark coming from the study of table 2 is
that the Bayesian estimator ofX0 is not consistent since the credibility set does
not improve asn increases. One can deduce this also from the marginal posterior
distribution ofX0 (see formula (4) for the joint posterior distribution ofθ) which
does not depend onn. This is also analogous to the remark of Jacob and Peccoud
(1998) made in the frequentist approach that there is no consistent estimator of
X0.

The aim of Q-PCR is to determine the initial DNA molecules quantity. In a
frequentist framework, Jacob and Peccoud (1998) constructed an asymptotic con-
fidence interval ofX0, as the replication cyclen tends to infinity. Simulations with
finiten were performed in Peccoud and Jacob (1996). Sincelimn→∞ Xn(1 + p)−n a.s.

=
WX0,p, whereE(WX0,p) = X0 andσ2(WX0,p) = X0(1 − p)/(1 + p), they con-
sidered the Moment Estimator̂X0,bns

= Xbns
/(1 + p̂bns

)bns , where the cyclêns is
an estimator of the end of the exponential phase. Definingfn,p(X0) = (X̂0,n −
X0)/σ̂(WX0,p) with limn→∞ fn,p(X0)

a.s.
=

o

WX0,p, where
o

WX0,p= (WX0,p−X0)/σ(WX0,p),

they used the propertylimn→∞ P (fn,p(X0) ∈
o

WX0,p,α) = 1 − α for building an

asymptotic confidence interval ofX0: limn→∞ P (X0 ∈ f−1
n,bp(∪x0

o

W x0,bp,α)) ≥
1 − α, wherep̂ is the CLSE of p based on the exponential phase. The asymp-
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totic confidence interval at levelα is f−1
n,bp(∪x0

o

W x0,bp,α). It would be of interest
to compare this asymptotic confidence interval ofX0, when estimatingX0 by
the frequentist Moment Estimator, with the credibility intervals when using our
Bayesian approach.

The Bayesian estimators ofp and X0 constructed in this simulation study
were based on{Xk}1≤k≤n assumed to be observed without measurement errors.
In practice, the initial real-time PCR data are very noisy so that the statistical anal-
ysis of the process using real data should not include the first observations which
are not reliable. For real-time PCR data whose noisy observations are expressed
in fluorescence units, the observed fluorescenceFk at replication cyclek may be
modelled by

Fk = αXk + εk (5)

with unknown proportionality constantα and disturbanceεk, as proposed by Pec-
coud and Jacob (1998) assuming normality of the noise{εk}k. Future work con-
sists in using a Bayesian approach to treat real-time PCR data{Fk} using the
model defined by (5).

Another interesting axis of research concerns the extension of the present
Bayesian approach to observations from the saturation phasealso. This would be
relevant since these data are relatively less noisy. When considering observations
belonging to the saturation phase, the efficiencypn decreases as the replication
cyclen increases. Therefore, the unknown parameter would beθ = ({pn}n, X0),
wherepn = p for cyclen from the exponential phase, andpn is a decreasing func-
tion of n for cyclen from the saturation phase.
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