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Bayesian estimation for quantification by real-time Polymerase
Chain Reaction

Nadia Lalam, EURANDOM
Christine Jacob, INRA

Abstract

The aim of the Quantitative Polymerase Chain Reaction is to determine
the initial amountX of specific nucleic acids from an observed trajectory
of the amplification process, the amplification being achieved through suc-
cessive replication cycles. This process depends on the effic{gngy, of
replication of the moleculegy,, being the probability that a molecule will
duplicate at replication cycle. Assumingp, = p for all n, we propose
to estimate the unknown parameter= (p, Xy) in a Bayesian framework
under a Bienaym@Galton-Watson branching model of the amplification pro-
cess. The Bayesian approach allows us to take into account some prior in-
formation on the parameter. We build and study Bayesian estimators and
sets of credibility of the parameter by Markov Chain Monte Carlo methods.

Key words and phrase8ranching processes; Population dynamics; Bayesian
inference; Markov Chain Monte Carlo; Quantitative Polymer@gain Reaction.
2000 Mathematics Subject Classificati@®J85; 62F10; 92B15; 92D25.

1 Introduction

The Polymerase Chain Reaction (PCR) first described by Saiki ¢1885)
is an in vitro enzymatic reaction capable of amplifying theniber of copies of a
specific DNA fragment. This technique is widely used in malacbiology since
it makes it possible to detect very low abundance of DNA. TheslRee Transcrip-
tion Polymerase Chain Reaction (RT-PCR) is a process in whiggevranscrip-
tion is done before the amplification (reverse transcriptonsists in producing a
DNA template from an RNA). The RT-PCR procedure allows theeetme to de-
tect low abundance of mMRNA. Protocols that not only deteet naicleic acids but
guantitate them as well are increasingly used. The mongasf DNA molecules
as they replicate during PCR is known as real-time or kineg@i®& PThe Quantita-
tive PCR (Q-PCR) which aims at determining the initial amourgpecific DNA
(the target) present in a sample has many applications @askésscreening, genes
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expression study or forensic medicine. For more detailgdiGgtions, see Fegr
(1998).

PCR is formed by the succession of typically 30 to 50 replacatycles. The
mechanism of a replication cycle is divided into three steps
1) The double-stranded DNA is separated into two singlendsan a step called
denaturation by heating (94);
2) The primers, which are short, synthetic sequences olesstganded DNA
complementary to the ends of the target DNA, bind to the tairgex step re-
ferred to as annealing step (53);
3) As the temperature is raised (7€), a Polymerase enzyme is used to repli-
cate the DNA strands beginning the synthesis process aethenr marked by
the primers. New double-stranded DNA molecules are syiabéshanks to the
activity of the enzyme which facilitates the binding andnjog of the comple-
mentary nucleotides (deoxy-nucleoside triphosphates\dR$) that are free in
solutions.
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Figure 1: The three steps of a PCR replication cycle (from:#itp/w.surrey-
diagnostics.co.uk).

The number of copies of the target DNA is doubled at most alh @aaplifi-
cation cycle, but in practice, the probability that a moleawill be successfully
duplicated after one cycle, known as the efficiency of thetresn, is less than
one. The beginning of PCR is characterized by an exponentie¢ase in target
amplification. Then, because of a depletion of reaction aomepts or because
of a decline in the Polymerase enzyme activity or becausetf (hiu and Saint
(2002)), the reaction efficiency slows down and eventuaBses leading to a sat-
uration phase decomposed into a linear phase and a plataaa.ph

In the literature, under the assumption of constant reafficiency, the the-



ory of Bienayné-Galton-Watson branching processes (Jagers (1975)%dnetie
time, the time step being a replication cycle, has beendnired to model the
exponential phase of the PCR for estimating replicationrsrobthe DNA Poly-
merase (Krawczak et al. (1989), Sun (1995), Weiss and Vorsélae (1995),
Piau (2004, 2005)). A simulation analysis using the co&ese theory has been
performed by Weiss and Von Haeseler (1997) providing theiMarm Likelihood
Estimator of the replication error rate. There also exigtexdensive literature in-
volving branching processes when ignoring the replicagtioars, that is assuming
that all the duplicated molecules are identical to the tateyaplate. In this setting
that we will consider henceforth, Stolovitzky and Cecchig@pstudied the num-
ber of cycles during which the amplification process undesgan exponential
phase and may therefore be modelled by a single-type sitiEicBienayne-
Galton-Watson branching process for which the reactiomrieffcy at cyclen,
denoted by, satisfieg,, = p for all n. Their approach relied on physical charac-
teristics of the reaction. They also proposed a method feriiimg the initial DNA
molecules numbek, when considering two sets of samplgsandSs, each with

a given number ofl identical preparations with unknown initial DNA molecules
numberX,. They considered observations of the molecule numberphbtagon
cyclen; (resp. ny) belonging to the exponential phase in all thpreparations
of sampleS; (resp. Sy) that they denoted by, ; in the sample preparation
(resp.X,, ). Computing the corresponding average= 5 Zle X, i (resp.iy),
they proposed to estimate the initial DNA molecules numkgiby the quantity
py /) /(=) and the reaction efficiengyby vy/ ™ ")y, VT2 g
Here and in the sequel, let us denoteXj)y the DNA molecules number present
at cyclek. Relying on a single trajectory of the PCR amplification pracies
its exponential phase modelled by a Bien&yfalton-Watson branching process,
Jacob and Peccoud (1998) built Conditional Least Squarenaists (CLSE) of
the reaction efficiency of the exponential phase basedor h consecutive ob-
servations ofX;, .1, ..., X,, with eitherh or n — h fixed asn tends to infinity.
They also built the Moment Estimator of the initial DNA molges numberX,
and constructed its asymptotic confidence interval. Otf42003) gave Max-
imum Likelihood Estimators of the quantitigsand X, using a censored Bien-
ayme-Galton-Watson process. Based on the enzymological agipadahe PCR
carried out by Schnell and Mendoza (1997), Jagers and Kél§a603) modelled
the amplification process using a near-critical size-ddpehbranching process
with efficiencyp,, = p(X,_1) = K/(K + X,,_1), whereK is a Michaelis-Menten
constant type of the reaction. The authors explained theordtically the exis-
tence of the linear part of the saturation phase observebgrinentalists on
real-time PCR data. Lalam et al. (2004) studied CLSE9f},, in the frame of
a size-dependent branching process with a reaction efficieodel generalizing



the one proposed by Jagers and Klebaner (2003) and takm@aabunt the sat-
uration phenomena of the amplification in the modellind @f},., as the size of
the amplified population increases.

The previous statistical analyses of Q-PCR were made in adrgcst setting.
The aim of the present paper is to perform a Bayesian analyeisler to estimate
the reaction efficiency of the exponential phasand the initial DNA molecules
numberX, from a single amplification trajectory. We will use some piir@for-
mation on the parametér= (p, X) and we will rely on the stochastic modelling
of the PCR amplification process during the exponential ph@ke model will
be a supercritical Bienay®@aGalton-Watson branching process for which the re-
action efficiency and the initial DNA molecules number aned@m variables.
We construct Bayesian estimators and sets of credibilitthefgarameteé by
Markov Chain Monte Carlo (MCMC) methods. MCMC techniques enabkto
carry out simulations from a distribution by embedding itaaémiting distribu-
tion of a Markov chain and simulating from the Markov chairiuihapproaches
equilibrium (Gamerman, 1997).

Recall that we will not take into account replication errowsidg the ampli-
fication process and assume therefore that, when the dtiphcaf a target DNA
molecule is successful, this creates two DNA moleculestidaito the target. We
will also consider that the DNA molecule numbers are obsewighout measure-
ment errors.

We introduce our Bayesian approach for real-time Q-PCR in@e& and
define it more precisely in section 3. Simulation resultsgaven in section 4. We
conclude with a discussion in section 5.

2 Bayesian approach

Denote byX, the DNA molecules number present at replication cygland
pi. the replication probability of a molecule at cydte During the exponential
phase, the reaction efficiency is assumed to satisfy p, for all k. With prob-
ability p, if the duplication has been successful, a DNA molecule gjivge to
two DNA molecules at the end of a replication cycle. Otheeygith probability
1—p, a DNA molecule remains unchanged. This may be modelled lbgreching
process

Xg-1

Xp=> Vi
=1

whereY ; is the number of descendants in cyélef the ith molecule from cy-
cle k — 1. The random variablé}, ; takes either the valug or 2. We assume
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that {Y;}r; are independent and identically distributed (i.i.d.) wilY;; =
2)=p=1-P(,; = 1), where0 < p < 1. Note that the casgs = 0 (the
molecules never replicate) apd= 1 (all the molecules always replicate) are ex-
cluded from the analysis since they never occur in praaticeal-time PCR exper-
iments. We therefore consider a supercritical Bieney@alton-Watson branching
process X} }r modelling the exponential phase of the PCR amplificationgssc
defined by

Xo
Xy = Xp—1 +Bin(Xp_1,p), k> 1

with unknown parametet = (p, X,), wherep is the reaction efficiency of the
exponential phase anll; is the initial DNA molecules number. The notation
Bin(V, p) stands for a random variable following a binomial distribotwith pa-
rametersV andp. Note that, experimentally, the exponential phase lasitadam
finite number of cycles and is followed by a saturation phdaat in this study,
we restrict our attention to the exponential phase only.

We consider a Bayesian framework and use prior informatieousihe model
paramete#f in the inference process. Bayesian inference is drawn bytreanisig
the probability distribution of the parametérbased on all that is known about
it, given the data. This knowledge incorporates previodisrmation about the
phenomena under study and it also relies on values of alaitdiserved quan-
tities. The information brought by the data is combined vgtlor information
specified by prior distribution yielding the posterior distition of the parameter.
We will determine the posterior distribution 6fand compute the posterior mean
as an estimate of the parameter. Bebe the parameter set in whidhtakes its
values. We will denote by, the realization of the random variahlg,. Let 7 (0)
denote the prior distribution of the parameteand letr (x4, . .., z,|6) denote the
likelihood conditionally tof based on the observatioqs, ..., z,). According
to Bayes'’ rule, the posterior distribution éfs given by

 m(O)w(w, ..., 2,]0)
fele@ (0w (2, ..., 2,]0")

The posterior mean, which is the Bayes estimator that we denss solution of
the minimization problem

1)

0|z, ..., xy,)

m(sin/ L(O,0)n(0)m (1, ...,x,]0)d0,

(S)

for quadratic losd.(6, ) = ||6 — §||>. We will construct the credibility set of
which is the confidence interval of the posterior distribatofd. Both Bayesians

and frequentists compute confidence intervals but thearpmétations are very
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different. The interpretation of the Bayesian confidencerial (credibility inter-
val, or highest density region) is that the probability tteg true parameter value
0 lies in the interval, given the particular data that are albyrobserved, is equal to
the integrated probability of the posterior distributioreothe interval. The inter-
pretation of the frequentist confidence interval is thediwlhg: one constructs a
100(1 — «)% confidence intervdl, b] for a given parameter valug wherea and

b are functions of the data. Then in the long runlif(1 — )% of the samples
the interval so constructed will contafin The frequentist confidence interval uses

therefore the variability of the data, given the parameter

3 Model specification

We compute the posterior distributionélefined by (1) after the introduction
of the prior distributions and the likelihood of the obsediwas given below.

3.1 Prior distributions

In the exponential phase, the reaction efficiemtgyassumed to be independent
of X,. This entails that the prior distribution fér = (p, X,) satisfiesr(0) =
7(p)m(Xo), wherern(p) (resp.w(Xy)) is the prior distribution op (resp.Xy).

3.1.1 Priorfor p

We choose a non-informative prior distributio(p) on the reaction efficiency
of the exponential phase. We will namely take into consitdienathe so-called
Jeffreys distribution which is based on the Fisher infororamatrix of the likeli-
hood. Such a distribution is motivated by the requirementwedriance property,
that is inference should not depend on how the model is pdeained. By defini-
tion, the Jeffreys prior distribution is proportional teetequare root of the Fisher
information. Itis more precisely proportional to the squavot of the determinant
of the Fisher information matrix, but here this matrix istjasreal number since
p €]0,1].

Let us determine the Jeffreys prior fprin the setting of the branching pro-
cess{ Xy}, modelling the PCR exponential phase, wh&gis given. The Fisher
information forp equals

dlogm(Xy,...,X,10).>
b Dl0)yy @

Let Z, = X, — Xj_, be distributed as BinX;_;,p) and letF; be the sigma-
algebra generated hy,, ..., X;. For givenp and X, the log-likelihood of the

I.(p) = Ep(]
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sample(Xy, ..., X,,)is 34, log f,(Zk| Fr-1), Wheref,(Z| Fir_1) = CZ= p? (1 —p)
(see subsection 3.2 for the detailed expression of thahiketl). Consequently
the Fisher information fop has the following expression, the prime being the
derivative with respect tp:

B ~ fo(Z| Fr1)
) = Ee([kz:: fp(Zk|~/Tk—1)])
R~ S (Z| Fie— 1) ’ S Zy| Fiee1) [ (Zi|Fi-1)
;Ee([fp(z | P 1) QZEQ Fo(Zi|Frr) fp( 2] Fioa)
where
FoZe|Fem1) X3 — (1 4+ p)Xsa
(Z| Fr-1) p(1—p)
First,
Ey(1Xe— 0+ )X ) = Bl Y (Vs — 1+ p)}])
= B(B(Y (s~ 1+ p)}] i)

= Fy(vanYi1) X 1)
= p(1-p)1 —&—p)kilXoa

SinceEg(Xk_l) = Eg(Eg(Xk_ﬂfk_g)) = (1 —|—p)Eg(Xk_2) and by iteration, one
getsEy(X,_1) = (14 p)" ' X,.
Second, folk < [,
Eo(Xy, — (1 +p)X3—1)(X; — (L + p) Xi1))
Eo((Xk — (1 +p)Xy—1)Eo(Xi — (1 + p)Xi1[Fi1))
= 0sinceEy(X; — (1 +p)X;1]|Fi-1) = 0.
Therefore
Yia (14p)" ' Xo  (14p)" -1
p(1—p) p*(1 —p)
Consequently, the Jeffreys prior fpiis proportional to

1+p —1
Xo '

Xk—1—2Zk



It would be interesting to determine the Jeffreys prior faxhen relying on
(Xh,...,X,), whereh > 2is a replication cycle such that, from this cycle on, the
noise inherent to the observatiofs,, ..., z,) is negligible. It is indeed well-
known that the early observations of real-time PCR trajéesoare extremely
noisy (Peirson et al. (2003)) and therefore unreliableHeribference. Fok > 2,
the likelihood reads

W(l‘h,.. xn|¢9 H C;: lxk 1Tk —Th— 1(1 _p)kaflfcck]ﬂ.(th)’

k=h+1

Wlth xh|9 Z HC;: IQTk 19Tk~ Th— 1(1 _p)kaflka‘

T1,...,Tph—1 k=2

This entails that the Fisher information fpbased o X,, ..., X,,) equals

GlogW(Xh,...,Xn|¢9)]2)
Ip

aloggéxhrm}g{;((l X;} {ZZ ixk}

N (12_ )810gg§)Xh|9)<Xn_Xh>

- Ep@logg}(j{hlﬁ) ;Xk

Inn(p) = Eo(|

= Ep({

Due to the complex expression%ﬁ"gg;ﬂ, the computation of;, ,,(p) for h > 2

is difficult. As a consequence, the Jeffreys prior fdvased on,/I; ,,(p) is not
straightforwardly obtainable.

In all that follows, we will restrict our analysis to the calse= 1 and we will
use all the available information from replication cyclesoI for inferring the
parameter.

3.1.2 Prior for X,

The initial DNA molecules numbeX is obtained by extraction of DNA from
a biological sample. This can be accounted for by a Poissirition (Nedel-
man et al. (1992)). We therefore propose a Poisson disoibwiith parameter
A, denoted by Poisson), for the prior distributionr(X,). The Jeffreys principle
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would lead to put a prior on proportional tol /+/), but this prior is improper.

We will rather assume here thatis a random variable with uniform distribu-
tion of fixed supporia, b]. The prior distributionr(X,) thus defined is called a
two-stage or hierarchical prior, that is a prior fokknown as hyper-prior) is put
on the parameter of the prior Poisgain The hyper-parametey represents the
mean ofX,. The choice of the suppoft, b], wherea andb are constants, has
to be selected by the experimenter based on some biologicaimation, e.g. a

preliminary approximate range in whicty is susceptible to lie.

3.2 Likelihood

We will consider successive observations from the expaalgotiase ranging
from replication cycled to n. As already indicated, we assume thaf, }, <<,
is observed with no measurement error.

Let us recall thatX; = X;_; + Bin(X;_1,p). Then, fork > 2,

P(Xy = v| Xpo1 = 25-1,0) = P(Xg = 25| Xpo1 = Tx-1,D)
= P(Xj_1+Bin(Xj_1,p) = x| X1 = -1, p)
= P(Bin(Xk 1,D ) =T — kal‘kal = ﬂCkfbp)
— Ok Th- lpxk Tp_ 1(1 _p)Qlk—lf‘rk‘

Tk—1

Hence the likelihood is equal to

n

T‘-(:Cl, e 7$TL|0) frnd [H C;;: lﬁCk 1pxk Th— 1(1 _ p>2$k,1—{ﬂk]
k=2
Cg?oonpxl—Xo(l . p)2X0—x1
En=1 Sp—
= H(Jmfl“ p} (1—p)"

-03? Hopr=Xo(1 — p)*Fomn
0 )

wheres,,_; = Zk | Tk

3.3 Posterior distribution

We deduce from subsections 3.1 and 3.2 the expression ob#terpr distri-
bution of# denoted byr(0|x4, ..., z,). This quantity combines information from
the priors and the sample. Recall that we consider the exgpiahphase withp
following a non-informative Jeffreys distribution based ¢/ I, (p)/X, and X,



following a Poisson distribution of parametgrwith A uniformly distributed over
[a, b]. In view of (1),

w(0)z1, ... x,) X ﬂ(@)w(xl,.. , T |0)
= m(xq, .. xnlé’)
,/ —AdA A - py
x Xo [ PO )

x1 —Xo acl Xo 2Xo— 2

—p)

Let J(Xy) = f AXoe=Ad\. Integration by parts yields the relationshipX,) =
F(X0)+X0J(X0— ), whereF' (X)) = a*ve 2—bX0e~?. By iteration, we deduce
that

J(Xo) = F(Xo) + XoF(Xo — 1) + Xo(Xo — 1)F(Xo — 2) + ... + Xo!F(1) + X! F(0).

Therefore, the posterior distribution éfatisfies

[n p ‘] X p Tn—T1 Sn—1
X Xo‘ 1 P

(L - p) (@)

70|z, ..., x,)

Oy p
The posterior distribution does not have a form belongingpime known dis-
tributions family. Due to the analytical intractability tife posterior distribution,
one needs to perform simulations (Chen et al. (2000)). THisow one to sam-
ple 6 from its posterior distribution and to determine the coomxling Bayesian
estimator based on the posterior distribution togethen wrigdibility intervals.
We will use the software WinBUGSn order to implement our simulation study.
WInBUGS approximates the posterior distributiondaby Markov Chain Monte
Carlo (MCMC) techniques which amount to simulate a Markov chadiose sta-
tionary distribution is the joint posterior probabilitystiiibution of the parameters
of the model. The parameters are first assigned arbitratiglinalues, and the
chain is simulated until it converges to the stationaryriiation. Observations
from the chain at stationarity are subsequently used tmaggi the joint posterior

3The software WinBUGS is publicly available at http://wwwa¥bsu.cam.ac.uk/bugs. Note
that the Jeffreys prior density defined in our study is notagital density present in the reference
list of the density distributions available from the softe’&VinBUGS. Therefore, we will follow
the "zeros trick” indicated in the WinBUGS user manual in fieetion "Tricks: advanced use of
the BUGS language” in order to specify this prior. We will malize\/I,,(p)/ X, so that Jeffreys

prior density integrates to 1. The normalizing const@ptsuch thatCL" fol VI (p)/Xodp = 1
will be obtained using the software Mathematica.
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probability of the parameters. This allows one to compugglitiility intervals of

6. The MCMC numerical integration technique is widely usedifigplementation

of the Bayes procedure (Gilks et al. (1996)). We will take aseB&gn estimators
of 6 the mean of the posterior distribution.

As emphasized by Gamerman (1997), one has to keep in minehohaiat-
ter how large the MCMC sample is, it only provides a partialssitbte for the
information contained in the posterior density, that is @praximation to the
posterior is constructed via the MCMC technique used whenbt possible to
extract information from the posterior analytically. Thetavare WinBUGS uses
the Gibbs sampling method as a means for stochastic simulating Markov
chains. Gibbs sampling is a MCMC scheme where the transigonek is con-
stituted by the full conditional distributions. Denote ttlistribution of interest
by £(6), whered = (6,,...,0;)". Consider that the full conditional distribu-
tionsL;(0;) = L(6;]01,...,0;_1,0;11,...,0,) are available. Gibbs sampling aims
at approximatingC when direct generation schemes are complicated or unavail-
able but when generations from tlfe are possible. It provides an alternative
generation scheme based on successive generations frduail @enditional dis-
tributions as follows:

Step 1. Set initial value&® = (8\*, ... 87,
Step 2. Obtain a new valw) = (6 ... 69T from #U~1) through successive
generation of values

07 ~ L£(:]097",....097Y)
05 ~ L(0,)0771 6571 097)

09 ~ L0097, ... 691,

Step 3. Return to step 2 until convergence is reached.

This scheme defines a Markov chain since the probabilisangé at iteration
depends only on chain values at iteratjon 1. When convergence is reached, the
resulting valued"?) is a draw from the stationary distributioch As the number
of iterations increases, the chain approaches its equitibrConvergence is then
assumed to hold approximately. See chapter 5 of Gamerm&y)YI8r more
detail on Gibbs sampling.

4 Simulation results

We run 20 000 MCMC cycles after a burn-in period of 30 000 cyctee
burn-in cycles being discarded from the analysis. We censadPCR trajectory
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consisting in 30 replication cycles for which the true valo¢ the parameters are
p =0.7and X, = 50.

The estimation summary of the posterior distribution thdt be provided
consists in the marginal posterior means and credibilitgrirals ofp and X,
based on the observations from cycles & t@nd based on the priors

7(p) ~ Jeffreys’ prior depending on
7(Xo) ~ PoissoriA) with A\ ~ Uniform(30, 70).
For different values of., we present the marginal posterior means, standard de-

viations and 95% credibility intervals forp (resp. X;) in table 1 (resp. table
2).

n Mean Standard deviation 25 97.5%

5 07111 0.01477 0.6814 0.7403
10 0.6973 0.003742 0.6899 0.7047
15 0.6997 9.9310* 0.6975 0.7014
20 0.7002 2.6330* 0.6996 0.7007
25 0.7001 6.910° 0.7 0.7002
30 0.7 1.817107° 0.6999 0.7

Table 1. Summary of the results for the parametaccording tan.

n Mean Standard deviation 25 97.5%

5 49.99 13.55 27 77
10 49.99 13.55 27 77
15 49.99 13.55 27 77
20 49.99 13.55 27 77
25 49.99 13.55 27 77
30 49.99 13.55 27 77

Table 2: Summary of the results for the parameéfgiaccording tan.

As expected, the more observations we consider, that isrésgegn, the bet-
ter the estimate gf since its standard deviation decreases and it§ @bedibility
interval becomes narrower around the true value.ofThis suggests a consis-
tency property of the Bayesian estimatorohsn increases analogous to the
strong consistency of the CLSE pproved in the frequentist setting by Jacob and
Peccoud (1998). The information for estimatings brought by the amplifica-
tion process Xy }1<k<n. Butn has no influence on the estimatef as can be
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viewed from formula (4) in which the marginal posterior dénsf X, does not
depend on the observations from cyclgs»]: the termp® —#1(1 — p)™ "ot
with s, ; = ZZ;} x from (4) does not depend oK, and therefore disappears
when computing the marginal posterior distributionaf. This remark is in ac-
cordance with the fact indicated by Jacob and Peccoud (1t9@8)there is no
consistent estimator of, as the number of observations— / tends to infinity
when considering observations &, .1, ..., X, in the frequentist setting. This
can also be noticed from the study of Olofsson (2003) whocaiéid that the
Maximum Likelihood Estimator oK, based on a censored procéss, . .., X,)

is of the order ofX./(1 + p)°. This entails that increasing does not have an
impact on the behavior of this estimator.

5 Concluding remarks

We used the classical modelling of the evolution in time ofAdDiolecule
numbers undergoing the PCR exponential phase by a supmatiitienayne-
Galton-Watson branching proce$X }o<x<,. Relying on this modelling, we
performed a Bayesian statistical analysis providing thestantion of Bayesian
estimators and credibility sets for the paraméter (p, X,). Our simulation study
suggests that the Bayesian estimatop &f consistent. This asymptotic behavior
would be similar to the strong consistency of the frequéQisSE of p proved by
Jacob and Peccoud (1998). Another remark coming from thdy sifitable 2 is
that the Bayesian estimator &f, is not consistent since the credibility set does
not improve as: increases. One can deduce this also from the marginal pwster
distribution of X, (see formula (4) for the joint posterior distribution @fwhich
does not depend on This is also analogous to the remark of Jacob and Peccoud
(1998) made in the frequentist approach that there is noistens estimator of
Xg.

The aim of Q-PCR is to determine the initial DNA molecules ditgnin a
frequentist framework, Jacob and Peccoud (1998) constiurt asymptotic con-
fidence interval ofX,, as the replication cycle tends to infinity. Simulations with
finite n were performed in Peccoud and Jacob (1996). Singg.., X, (1 +p) " =
W, p» WhereE(Wx, ,) = Xo anda?(Wy,,) = Xo(1 —p)/(1 + p), they con-
sidered the Moment Estimatd?o,as = X5./(1 +ﬁﬁs)ﬁ‘“, where the cycle, is
an estimator of the end of the exponential phase. DefirfingX,) = ()A(om —

XO)/a(WXOaP) with lim,, fn,p(XO) a.:S.Vf/XO,P' Wheremo/vXoyp: (WX()’P_XO)/O-(WXOJ’)’
they used the propertym,, .. P(fn,(Xo) €W x,pa) = 1 — a for building an
asymptotic confidence interval ofy: lim, .., P(Xo € f o %(UI0 ﬁ/x07ﬁ,a)) >

1 — a, wherep is the CLSE of p based on the exponential phase. The asymp-
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totic confidence interval at level is f;%(uxo MO/xO@a). It would be of interest
to compare this asymptotic confidence intervalXyf, when estimatingX, by
the frequentist Moment Estimator, with the credibilityentals when using our
Bayesian approach.

The Bayesian estimators ofand X, constructed in this simulation study
were based ok X} }i<x<, assumed to be observed without measurement errors.
In practice, the initial real-time PCR data are very noisyhst the statistical anal-
ysis of the process using real data should not include theofaservations which
are not reliable. For real-time PCR data whose noisy obsengsmare expressed
in fluorescence units, the observed fluorescdricat replication cyclé: may be
modelled by

F. = aX, +e¢ (5)

with unknown proportionality constantand disturbancey, as proposed by Pec-
coud and Jacob (1998) assuming normality of the nfigé,. Future work con-
sists in using a Bayesian approach to treat real-time PCR {dath using the
model defined by (5).

Another interesting axis of research concerns the extansiadhe present
Bayesian approach to observations from the saturation @isseThis would be
relevant since these data are relatively less noisy. Whesidenng observations
belonging to the saturation phase, the efficiepgydecreases as the replication
cyclen increases. Therefore, the unknown parameter woultlbe {p,, }., Xo),
wherep,, = p for cyclen from the exponential phase, apglis a decreasing func-
tion of n for cyclen from the saturation phase.
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