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Abstract

In this paper, we build on the RANSAC method to de-
tect multiple instances of objects in an image, where the
objects are modeled as curvilinear segments with dis-
tinct endpoints. Our approach differs from previously
presented work in that it incorporates soft constraints,
based on a dense image representation, that guide the
estimation process in every step. This enables (1) bet-
ter correspondence with image content, (2) explicit end-
point detection and (3) a reduction in the number of it-
erations required for accurate estimation. In the case of
curvilinear objects examined in this paper, these con-
straints are formulated as binary image labels, where
the estimation proved to be robust to mislabeling, e.g.
in case of intersections. Results for both synthetic and
real data from medical X-ray images show the improve-
ment from incorporating soft image-based constraints.

1. Introduction

In this paper, we study model estimation, motivated
by the problem of object detection in medical X-ray
imaging. Many surgical instruments present in medi-
cal images can be described by simple one-dimensional
models, for example needles, catheters, guidewires, etc.
By making a sparse representation of the image in terms
of interest points, we can create the input points for
the model fitting, while the original dense data remain
available. In many cases, an unknown number of ob-
jects can be present in the image, while overlapping ob-
jects may make it difficult to assign a model to points at
the crossings. Finally, it is not sufficient to only detect
the instances of curvilinear objects, but it is clinically
relevant to localize their endpoints correctly.

Model fitting in outlier-rich data is an important task
in computer vision, especially useful in, e.g., geometry
estimation and object detection. A well-known method
to perform model estimation in cases of a high outlier

ratio is RANSAC [1]. The original RANSAC frame-
work by Fischler and Bolles has seen many modifica-
tions and improvements, e.g. [7, 6], aiming at selecting
one (the most prominent) model. For multiple model
estimation, the simplest approach is to sequentially es-
timate models and remove their inlier sets from the
data [2]. Zuliani et al. [8] proposed a parallel multi-
RANSAC algorithm that was reported to be more sta-
ble and perform better at the correct detection of inliers.
However, they used a fixed (known) number of mod-
els and assigned each point to exactly one model in a
greedy approach, which does not handle the case of in-
tersecting models.

Toldo and Fusiello [5] recently proposed a different
framework for multiple model estimation. In their ap-
proach, clustering of the hypotheses is used to fit mul-
tiple models by assigning a “preference set” to each
data point. This preference set expresses the models
to which each data point gives consensus. Clustering is
performed using the Jaccard distance between all pref-
erence sets to select the final models. This method han-
dles intersecting models in a natural way and does not
require a-priori knowledge of the number of models.

RANSAC was proposed as an improvement to least-
squares fitting of a model to sparse data in the presence
of outliers. Pre-processing steps, such as interest point
detection, generate the sparse data necessary to perform
the fitting. This pre-processing typically involves a loss
of information that influences the quality of the fitted
model. We observe that both the quality and the effi-
ciency of the fitting can be improved by exploiting the
available dense image data.

Given the unknown number of objects and the sparse
distribution of interest points, the object detection re-
quires a flexible and robust multi-model estimation,
which preferably exploits all available information.
We employ a RANSAC-based scheme that uses both
sparse and dense information, and term it sparse-plus-
dense(SPD)-RANSAC. The model generation step is
guided by a rough segmentation of the image into la-

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.608

2476

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.608

2488

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.608

2484

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.608

2484

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.608

2484



bels representing possible locations of elongated ob-
jects, which speeds up the selection of good candidate
models. To allow for multiple model assignments for
points on crossing segments, a double run of consen-
sus query is applied. The labels are also used to impose
correct endpoints on the segments.

Section 2 discusses the preprocessing to obtain the
sparse plus dense input. In Section 3 the multiple model
estimation method is described. Experimental results
are given on synthetic and real X-ray data in Section 4,
while a discussion of the results follows in Section 5.

2. Generation of sparse plus dense data

Sparse data: The considered images in our study are
medical X-ray images of curvilinear objects, e.g. nee-
dles or catheters, overlaid on the anatomy. The prepro-
cessing starts with a bothat filter to smooth out back-
ground variations. Afterwards, a Gaussian scale-space
is calculated and a ridgeness representationR of the im-
age is formed, as in [3]. The feature points are then se-
lected as maxima in the scale-space of R, and form the
sparse input to the model fitting.

Dense data: An additional output of this step is a
label image, indicating prominent elongated objects in
the image. This is formed in the following way. First,
an image of the rms second derivatives at the largest
scale ID2 =

√
Lxx2 + Lyy2 is created. This image

is morphologically reconstructed, using 0.5ID2 as the
marker, and thresholded using adaptive thresholding.
Connected-component labeling is then applied to this
binary image to obtain candidate curvilinear structures.
It is important to note that this label image does not need
to capture the topology entirely accurately, as will be
shown in the next section. The labels are rather used as
a soft constraint to guide the model fitting and assist the
correct endpoint detection. An example of these steps
can be seen in Figure 1.

3. Multiple model estimation

In the model estimation step, we can discriminate
between hypothesis generation and consensus query.
Additionally, we apply a second run for the consen-
sus query to allow multiple model assignments per data
point. The analysis is performed for the case of line-
segment estimation, but can be generalized to other 1D
curves such as polynomials or splines (see e.g. [4]), by
changing the estimation and cost functions. In the fol-
lowing, names in italics refer to function names of Al-
gorithm 1.

Hypothesis generation: The first sample is chosen
randomly among the input points that are lying on a

Figure 1. Example of input generation.
Left: original image with ridgeness max-
ima. Right: label image (color coded).

non-zero label. For the remaining samples, the prob-
ability of being selected varies with the distance of that
point to the skeleton of the label of the first point:

P (xj‖xi) =
1
Z

exp (−D(xj , skel(L(xi)))/σL), (1)

whereD(xj , L(xi)) denotes the (Euclidean) distance of
xj from the skeleton skel of the label L(xi) where xi

lies, obtained through morphological skeletonization of
L(xi), Z is a normalization constant, and σL expresses
the attraction range of the labels.

In the proximity criterion of [2, 8], the assumption
is made that the average inlier-inlier distance is smaller
than the average inlier-outlier distance and thus, sam-
pling probabilities should be weighted by a proxim-
ity distribution. In our sampling scheme, the sampling
probability is weighted by the distances of the points to
each label (procedure GetMSS). The assumption here is
that points with the same label have a higher probability
of belonging to the same model, so hypotheses should
be formed more frequently among these points.

The total number of iterations needed to form hy-
potheses for all models is equal to the sum of iterations
needed for each model k, so that Mtot =

∑
Mk. For

simplicity of the following analysis, we assume a uni-
form sampling distribution among all points for a given
label1. Let Nl be the total number of points on label
l = 1..L, Smin the smallest number of inliers and d the
cardinality of the minimal sample set (MSS), the min-
imum number of points required to estimate a model
(e.g. for lines it is 2). As in [5], the probability of pro-
ducing an outlier-free MSS from Nl in i samplings is:

P (Ei‖E1, E2, ..., Ei−1) =
Smin!(Nl − i)!
(Smin − i)!Nl!

. (2)

Then, p =
∏d

i=1 P (Ei‖E1, E2, ..., Ei−1) can be ap-
proximated as:

p ≈
∏
k

(Smin − d+ 1)e−α
2
L/σ

2
L

(Nl − Smin − d+ 1)e−ω
2
L
/σ2

L + (Smin− d+ 1)e−α
2
L
/σ2

L

,

(3)

1In fact, the sampling probability is weighted with the ridgeness
of each point to encourage earlier selection of stronger feature points.
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input : X (sparse data), L (dense data), Q (iteration
threshold), R (probability weight)

output : Multiple models theta, explaining X , and
their respective consensus sets CS

Xleft = X; k = 1;
while Xleft is not empty do

theta(k) = GetMSS(Xleft, L);
CS0 = GetCS(theta(k), Xleft);
CS1 = GetSegmentPoints(CS0, L)
Xleft = RemoveCSFromInput(Xleft, CS1);
CSx = ExtendCS(theta(k), X);
CS(k) = GetSegmentPoints(CSx, L)
for l← 1 to k do

theta(l), theta(k), k =
CheckMerge(theta(l),
theta(k), CS(l), CS(k));

end
if Xleft has not changed in last Q iterations then

break;
end
k = +1;

end
Procedure [theta, MSS] = GetMSS(X, L, R)
points on label = OnLabel(X, L); // Returns

points with non-zero label

sample1 = SampleWithProb(points on label, R);
// Samples with a given probability R

Li = L(sample1); // label on which sample1 lies

D = DistSkel(Li);// Distance transform from

skeleton of Li

P = DistanceProbability(D); // Equation 1

next samples = SampleWithProb(X−sample1, R);
MSS = Concatenate(sample1, next samples);
theta = EstimateModel(MSS)

Algorithm 1: The proposed multiple-model esti-
mation algorithm

where αL, ωL is the average distance of an inlier (re-
spectively outlier) to the label of the correct (respec-
tively false) model, and we set σL = 5 max(sigmaD),
the largest scale of the scale-space. In Mk iterations of
the sampling, the probability of obtaining J outlier-free
MSSs is:

ρ(Mk) = 1−
J−1∑
k=0

(
Mk

k

)
pk(1− p)Mk−k. (4)

In Figure 2, a synthetic example is given to show
the effect of this sampling scheme, compared to using
pairwise proximity. For the latter, σ =

√
α2 + ω2/6

was used, similar to the experiment of [5]2. For our
sampling scheme, Eq. 4 was run K times with J = 1

2In their experiment, α and ω were functions of σ; here they are
computed from the synthetic data, so that σ was chosen between the
values of [5].

Figure 2. Synthetic example forK = 1, 4, 8.
Left: original image. Middle: Result of
Eq. 1 with overlaid input points (for K = 8
two labels are shown). Right: ρ vs Mtot

using Eq. 1, compared to pairwise dis-
tances. X-axis in log scale.

and Mk was chosen as arg(ρ(Mk) = 0.999), to ob-
tain Mtot. The gain in the number of iterations using
dense information is apparent. This gain decreases as
the number of models increases. This is because the
label images, as defined in Section 2, may fail to give
unique labels to each model (and thus provide appropri-
ate weights to the correct points) in cases of many in-
tersecting models. This is an issue of the preprocessing
stage, which can be improved by an appropriate choice
of labeling function. However, even for K = 8 there is
a speed-up by a factor of two in our experiment, while
for K = 1 the gain is two orders of magnitude.

Consensus query: The first consensus set CS0 is
formed by all points with Euclidean distance below
the RANSAC threshold. To impose correct endpoints,
only points lying inside the corresponding label are kept
(procedure GetSegmentPoints). These points (CS1) are
then removed from the input for the next iteration, so
{Xleft} = {X} − {CS1} (see procedure RemoveCon-
sensusFromInput).

Extension of the consensus set: A second consen-
sus query is then performed in procedure ExtendCon-
sensus, using all original input points X to get CSx.
This allows points to be assigned more than one model.
Again, points outside the labels are rejected and the fi-
nal consensus set for this model, CS, is obtained. The
process is repeated for the remaining input points Xleft
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Figure 3. Results on star data. Top: 2000
iterations, Bottom: 3300 iterations

to estimate the next model, until no more new models
are found for at least Q iterations. For our data, Q = 3
was sufficient throughout our experiments.

Model merging: In case two detected models are
very similar, they may be referring to the same instance.
For each new model k created, possible merging with
a previous model l is checked. If the average error
of the consensus set of l, CSl given model k, as well
as the average error of CSk given model l, are below
the RANSAC error threshold, then a new model is esti-
mated using the union of CSk and CSl.

(a) (b) (c)
Figure 4. Clinical image results: (a)
Original, needles highlighted, (b) SPD-
RANSAC, (c) J-Linkage (both 1500 iter’s).

4 Experimental results

The synthetic star dataset of [5] was used to create
dense data, by fitting line segments of different contrasts
(9− 100%), blurring and adding both signal-dependent
and signal-independent noise to simulate the combina-
tion of photon and electronic noise present in X-ray im-
ages. The corruption of the image affects the quality
of the label image. To show the effect of using dense
information, we have compared (Figure 3) with the im-
plementation of [5], where only sparse points are used.
For the same number of iterations, it is seen that both
detection and localization of the models is better for
SPD-RANSAC, even in the case of K = 11. Merging
of similar models reduces the number of false positives,
while the localization of endpoints is explicit.

Results on a clinical dataset from a vertebroplasty
procedure are shown in Figure 4. The clinical image
contains two surgical needles of low contrast-to-noise
ratio, which are difficult to distinguish from the neigh-
boring anatomy. The soft constraints ensure better cor-
respondence with image content, while not allowing
false models to arise that are irrelevant to the image
structure. Moreover, this result demonstrates a case
were the correct endpoint detection achieved by the pro-
posed method is crucial.

5 Conclusions
We have presented a method to combine dense and

sparse image data for model fitting. Our approach
can be regarded as a fusion between segmentation and
model estimation, where the results of a rudimentary
image segmentation are used to guide the estimation.
An implementation of the approach was shown for the
problem of curve fitting in medical images, where the
high contrast-to-noise ratio and the complexity of the
content require robust model fitting. The RANSAC
principle is used for the model estimation, where each
step is guided by a dense feature representation. We
have shown that this leads to faster convergence to plau-
sible models and better correspondence with the image
structure. Additionally, it facilitates the correct detec-
tion of endpoints, which is a clinically important task.
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