
 

Coarse-to-fine partitioning of signals

Citation for published version (APA):
Florack, L. M. J. (2009). Coarse-to-fine partitioning of signals. (CASA-report; Vol. 0912). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/bea12f82-09b7-4330-a9fa-03d0c32643c7


Coarse-to-fine partitioning of signals

Luc Florack∗1

1 Eindhoven University of Technology, Department of Mathematics and Computer Science and Department of Biomedical
Engineering, Den Dolech 2, NL-5600 MB Eindhoven, The Netherlands.

An empirically acquired signal can be analyzed in a multi-scale framework. Its multi-scale structure induces a hierarchical
partitioning of the signal domain into topologically meaningful segments. A method is proposed to operationalize this using
elementary results from singularity theory for certain generic solutions of the one-dimensional heat equation.

1 Introduction

We define the multi-scale extension u(x, s) of a real-valued signal f(x), and the associated signal g(x, s), cf. Table 1, as

u(x, s) = exp
(
s d2/dx2

)
f(x) resp. g(x, s) =

1

2
u2

x(x, s) .

The s-parameterized families u(x, s) and g(x, s) represent information contained in the raw signal f(x) as a function of
resolution (inverse “inner scale”), [1, 2]. The inner scale for resolving structure along the x-axis equals σ ∝ √

s. We write
u

(k)
0 for a k-th order x-derivative at (x, s)=(0, 0), assuming u

(1)
0 =0 henceforth.
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Table 1 Relevant coefficients of 2g(x, s)=
P

pq
apqx

p
s

q, 0 ≤ p + 2q ≤ 4, with p as row index and q as column index.

We consider two partitioning methods, based on the spatial critical paths defined by ux(x, s)=0, respectively gx(x, s)=0.

1. ux(x, s)=0:

• u
(2)
0 �=0 corresponds to a regular critical path.

• u
(2)
0 =0 indicates an annihilation event. In Thom’s “List of the Seven Elementary Catastrophes” [4] this represents

a fold catastrophy, with control parameter s.

• Inflection paths defined by uxx(x, s)=0 provide separatrices in (x, s)-space, separating peaks (regions with a single
maximum), dales (containing a single minimum), and void regions. They connect in a similar annihilation event.

2. gx(x, s)=0: This captures two types of critical points.

(a) Type I: ux(x, s)=0:

• u
(2)
0 �=0 corresponds to a regular critical path.

• u
(2)
0 =0 corresponds to a “pitchfork”: 3 regular critical paths for s<0 meet at the origin, leaving 1 for s>0. In

Thom’s list this represents a fold catastrophy, with 1 control parameter, viz. s.

(b) Type II: uxx(x, s)=0:

• u
(2)
0 =0 corresponds to a regular critical path.

• u
(2)
0 =u

(3)
0 =0 indicates an annihilation event. The critical points involved are not critical points of u. In Thom’s

list this represents a cusp catastrophy with 2 control parameters, s and u
(1)
0 .
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Under very mild conditions on a positive compactly supported signal there exists a scale S > 0 such that there is only one
extremum for s>S, viz. a maximum. The relevant theorems are stated below. Proofs can be found in the literature [3].

Theorem 1.1 Let
∫

R
f(x) dx>0,

∫
R
x2 f(x) dx<∞, and r>0. Then ∃ δ>0 , s0>0 such that ∀ s>s0 the signal u( · , s) has

a unique critical point ξ(s) ∈ (−δ
√

s, δ
√

s), viz. a maximum. Furthermore,

lim
s→∞

ξ(s) =

∫
R

x f(x) dx
∫

R

f(x) dx

.

Theorem 1.2 Let f : R → R
+
0 be a nonnegative signal with support [a, b] ⊂ R, then the critical points of its multi-scale

signal, u(x, s) = exp(s∆)f(x), are spatially confined to [a, b] ⊂ R.

Theorem 1.3 Let f : R → R
+
0 be a nonnegative signal with support [a, b] ⊂ R, then all singularities of its multi-scale signal,

u(x, s) = exp(s∆)f(x), are contained in [a, b] × [0, S(f)] ⊂ R × R
+
0 , where S(f) = (b − a)2/8.

Thus under the stated conditions all singular points are confined to an operationally meaningful region of (x, s)-space, and all
critical paths can be tracked to the fiducial abscissa s=0. (Note that critical paths cannot form closed loops in (x, s)-space.)
Upon increasing scale, starting from an arbitrarily defined lowest scale, all regions as described previously (peaks, dales, and
void) will merge into an encompassing region.

2 Summary

A one-dimensional, empirically acquired signal admits a coarse-to-fine hierarchical partitioning. It is most natural to use the
singularity set and global morsification of the auxiliary signal g(x, s) associated with the original multi-scale signal, u(x, s),
in order to obtain a coarse-to-fine partitioning of the signal, since this not only yields the part labels (viz. certain critical points
uniquely attached to those parts) but also the part boundaries. This may help to establish a desired partitioning despite the
presence of noise inherent in any empirically acquired signal, and depending on one’s task. The hierarchies thus obtained are
completely characterized by the scale catastrophe spectrum for generic scale transitions.
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