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Abstract

We consider a continuous-review two-echelon distribution network with one central

warehouse and multiple local stock points, each facing independent Poisson demand

for one item. Demands are fulfilled from stock if possible and backordered otherwise.

We assume base stock control with one-for-one replenishments and the goal is to

minimize the inventory holding and backordering costs. Although this problem is

widely studied, only enumerative procedures are known for the exact optimization.

A number of heuristics exist, but they find solutions that are far from optimal in

some cases (over 20% error on realistic problem instances). We propose a heuristic

that is computationally efficient and finds solutions that are close to optimal: 0.1%

error on average and less than 3.0% error at maximum on realistic problem instances

in our computational experiment.
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distribution network
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1 Introduction

Capital goods are expensive, technologically advanced products or systems that are crit-

ical for the companies that are using them. Examples are mri-scanners in hospitals,

baggage handling systems at airports, or radar systems on board naval vessels. Since

the availability of these systems is so important, spare parts are generally located close

to the installed base. However, since spare parts are often expensive, also more central

stocking locations at higher echelon levels are used to use pooling effects. Although in

principle any number of echelon levels is possible, spare parts networks for capital goods

often have a two-echelon structure (Cohen et al., 1997). In such networks, many different

items are stocked: Gallego et al. (2007) give the example of General Motors’ spare parts

organization, which manages over four million stock-keeping units serving eight thousand

dealers and is resetting stock allocations daily. Because of the number of components

that is involved and the number of stock points in the network, efficient heuristics are

required to set stock levels. In this paper, we develop two such heuristics. Although this

work is motivated by problems in the area of spare parts networks for capital goods, this

work may be applied in any situation in which there is a distribution network in which

large numbers of low-demand items are stocked. If replenishment intervals are short, it

may even be applied in higher-demand settings.

Because of the practical relevance, there has been a lot of interest in distribution

networks, starting with the seminal papers by Clark and Scarf (1960) for serial (N -

echelon) networks, which are networks in which each stock point has at most one successor

and at most one predecessor, and Sherbrooke (1968) for general distribution networks,

which are networks in which each stock point has (at most) one predecessor and which

are the networks in which we are interested.

The paper by Clark and Scarf (1960) started the research on periodic-review models.

The optimal policy is not known for these models, but Eppen and Schrage (1981) intro-

duced the balance assumption which effectively means that the inventory position of a
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local stock point immediately after ordering is allowed to be lower than the inventory

position just before ordering. In other words, after ordering, the inventory is balanced

over the various stock points again, even if it was unbalanced before ordering. Using this

assumption, the optimal policy can be characterized under various circumstances, see,

e.g., Diks and de Kok (1998, 1999) or van der Heijden et al. (1997).

We, however, consider continuous-review and we assume base stock control and fcfs

allocation at the central warehouse, which means that no central information is required.

This stream of research started with the paper by Sherbrooke (1968). An overview can be

found in Sherbrooke (2004) or Muckstadt (2005). For a more general overview of literature

on multi-echelon inventory systems, we refer to van Houtum (2006).

Here, we only discuss the most relevant literature in more detail: the literature on

continuous-review distribution networks with Poisson demand processes, base stock con-

trol, and backordering, in which a penalty is paid for items that are on backorder (as

opposed to models in which there is a service constraint). First, we discuss two papers

in which the model that we use is evaluated exactly and second, we discuss a number of

papers in which heuristics are developed to optimize the base stock levels.

The model that we consider is identical to the model studied by Axsäter (1990). He

gives recursive formulas to evaluate the inventory holding and penalty costs. Furthermore,

he finds that the costs are convex in each of the local base stock levels, but not in the

central base stock level. Axsäter gives a lower and upper bound on the central stock level,

between which he enumerates all possible values to set optimal base stock levels in the

network. Because of his recursive formulas, this enumeration is still relatively fast, e.g.,

in comparison with the exact evaluation that Graves (1985) proposes.

Graves (1985) develops both an exact and approximate procedure to determine the

distribution of the items in inventory and on backorder at the local stock points. If

items are on backorder at the central warehouse, they delay the replenishments at the

local stock points. In the exact evaluation, Graves (1985) has to calculate a convolution

which is computationally intensive. In the approximate procedure, he fits a negative
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binomial distribution on the first two moments of the distribution of the number of

items on backorder at the central warehouse. Optimization of the base stock levels is not

considered.

Graves’ approximate evaluation procedure can be seen as an extension of Sherbrooke’s

(1968) metric method, since Sherbrooke approximates the number of components on

backorder at the central warehouse using a Poisson distribution, so using one moment

only (the Poisson distribution has the same mean and variance). The one-moment ap-

proximation by Sherbrooke and the two-moment approximation by Graves can both be

extended to the general multi-echelon (and multi-indenture) case.

Heuristics for this problem exist as well. They are important because exact optimiza-

tion is often not possible in practice due to the number of components and the size of

the networks involved. Gallego et al. (2007) compare fcfs allocation with other forms

of allocation in which central information is required. Although this is very relevant in

certain business situations, we are interested in fcfs allocation only here. Gallego et al.

(2007) develop the restriction-decomposition heuristic (RD), in which they restrict the

central base stock level to have one of three possible values: zero (‘cross-docking’), the

expected demand at the central warehouse (‘zero safety stock’), or the maximum value at

the central warehouse if each local stock point would hold no inventory (‘stock-pooling’).

Using each of these three values, the base stock levels at each of the local stock points

can be optimized independently using simple newsvendor equations.

Rong et al. (2010) propose two different heuristics for distribution systems with a

general number of echelon levels. In the recursive optimization (RO) heuristic, first the

base stock levels of all local stock points (lowest echelon level) are optimized assuming that

there are no delays at higher echelon levels. These problems reduce to simple newsvendor

equations. Then the next higher echelon’s base stock levels are optimized using the base

stock level at the lowest echelon level as an input. This cost function is convex and can

be solved easily. Then the next higher echelon level can be solved (if existent), etc.

In the second heuristic of Rong et al., the decomposition-aggregation (DA) heuristic,
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the problem is decomposed into one serial system per local stock point. Each of these

serial systems consists of the path from the most central location to (and including) the

local stock point. Such serial systems can be solved exactly, but for sake of optimization

time, Rong et al. (2010) use newsvendor approximations of Shang and Song (2003). Each

non-local stock point is part of a number of serial systems. The backorders at such a

stock point that result from the optimization of each of the serial systems are summed

(aggregated) and it is determined which base stock level is required at that stock point

to achieve the summation of the backorders. This is the final base stock level. Rong et al.

(2010) compare their heuristics with the heuristic by Gallego et al. (2007); we show this

comparison for the two-echelon case in Section 5, where we also compare our results with

the results of Rong et al..

Our main contribution is that we develop a heuristic that finds base stock levels

that lead to costs that are much closer to optimal and is still faster than most existing

heuristics. Recall that such a heuristic is useful in practice where one has to control large

numbers of components. A second contribution is that we derive new properties of the

total cost function.

The remainder of this paper is structured as follows. In Section 2, we give the math-

ematical problem formulation and in Section 3, we show some analytical properties of

the cost function. In Section 4, we explain the heuristics that we develop and we show

the results of our computational experiment in Section 5. We conclude in Section 6 with

conclusions and recommendations for further research.

2 Problem description and notation

We consider a two-echelon distribution network consisting of one central warehouse and

N local stock points. The central warehouse has index 0 and the local stock points are

indexed 1, . . . , N .

The demand process at local stock point i is a Poisson process with rate λi(> 0). A
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demand is backordered if it cannot be fulfilled immediately. Local stock point i uses a base

stock policy with basestock level Si(≥ 0). Hence, each demand at a local stock point is

immediately followed by a replenishment order at the central warehouse. As a result, the

demand process at the central warehouse is also a Poisson process, with rate λ0 =
∑N

i=1 λi.

Demands that cannot be fulfilled immediately at the central warehouse are backordered

and fulfilled first come first served (fcfs). The central warehouse uses a base stock policy

with basestock level S0(≥ 0).

The central warehouse orders components at an external supplier with infinite supply

or repairs components using an uncapacitated repair facility (this is equivalent). The

total lead time from the occurrence of a demand until the central warehouse has a new

or repaired component is an i.i.d. random variable with mean L0(> 0). Each shipment

from the warehouse to local stock point i takes Li(> 0) time units (deterministic).

We consider holding costs h0(> 0) at the central warehouse and hi(> 0) at each of the

local stock points i for the time that a spare part is in stock (considering holding costs for

spare parts in transit is straightforward since the average number of spare parts in transit

is a constant given the fact that we use backordering). Furthermore, we consider penalty

costs βi(> 0) per unit per time unit for backordered demand at local stock point i.

We need the following additional notation for the cost function that we want to

minimize and the analysis in Section 3. The number of items on order at the central

warehouse is X0. This number is Poisson-distributed with parameter λ0L0. The corre-

sponding number of backorders is B0(S0) = (X0−S0)
+ and the number of items on hand

is I0(S0) = (S0 − X0)
+. B

(i)
0 (S0) is the number of backorders at the central warehouse

that is due to local stock point i (
∑N

i=1B
(i)
0 (S0) = B0(S0)). The number of items on order

at local stock point i, Xi(S0), is equal to the number of demands over the leadtime, Yi,

which is Poisson-distributed with parameter λiLi, plus the number of backorders at the

central warehouse that are due to stock point i, B
(i)
0 (S0) (Yi and B

(i)
0 (S0) are mutually

independent). The corresponding number of backorders is Bi(S0, Si) = (Xi(S0) − Si)
+

and the number of items on hand is Ii(S0, Si) = (Si−Xi(S0))
+. Finally, Zi is a Bernoulli-
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distributed random variable for all i ∈ {1, . . . , N}: Zi = 1 with probability λi
λ0

and 0

otherwise. The interpretation is that Zi = 1 if the first backorder in the queue at the

central warehouse is due to local stock point i. However, it is also defined if there is no

queue at the central warehouse (although the interpretation is not clear then).

The goal of the optimization is to set the base stock levels Si for i ∈ {0, . . . , N} such

that total average costs per time unit in steady state are minimized:

C(S0, S1, . . . , SN) = h0EI0(S0) +
N∑
i=1

[hiEIi(S0, Si) + βiEBi(S0, Si)] (1)

3 Analytical properties

In this section, we give some properties of the cost function. However, these properties

are not strong enough to give an easy way to optimize this function. For example, the

cost function is not convex in S0 nor multi-modular in general. What we can show is as

follows:

Lemma 1. The cost function C(S0, S1, . . . , SN) is supermodular in (S0, Si) for all i ∈

{1, . . . , N}, which means that:

C(S0, S1, . . . , Si − 1, . . . , SN)− C(S0 + 1, S1, . . . , Si − 1, . . . , SN)

≥ C(S0, S1, . . . , Si, . . . , SN)− C(S0 + 1, S1, . . . , Si, . . . , SN)

Proof. See Axsäter (1990, p. 68, Equations (29) and (31); notice that he does not use the

term supermodularity).

This supermodularity property implies that if costs can be reduced by adding one

spare at the central warehouse for a given Si (right hand side), costs can certainly be

reduced by adding one spare at the central warehouse if Si is one lower (left hand side).

Before we can show that the cost function is convex in Si for all i ∈ {1, . . . , N}, we

need an additional lemma:
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Lemma 2. For i ∈ {1, . . . , N}, it holds that:

EIi(S0, Si + 1)− EIi(S0, Si) = P{Bi(S0, Si) = 0} (2)

EBi(S0, Si + 1)− EBi(S0, Si) = −P{Bi(S0, Si) > 0} (3)

Proof. Equation (2) can be proven as follows:

EIi(S0, Si + 1)− EIi(S0, Si)

=

Si∑
x=0

(Si + 1− x)P{Xi(S0) = x} −
Si−1∑
x=0

(Si − x)P{Xi(S0) = x}

=

Si∑
x=0

P{Xi(S0) = x} = P{Xi(S0) ≤ Si} = P{Bi(S0, Si) = 0}

The proof of Equation (3) is analogous.

Lemma 3. The cost function C(S0, S1, . . . , SN) is convex in Si for all i ∈ {1, . . . , N}.

Proof. This can be seen by looking at the difference function:

∆iC(S0, S1, . . . , SN)

= C(S0, S1, . . . , Si + 1, . . . , SN)− C(S0, S1, . . . , Si, . . . , SN)

= hi [EIi(S0, Si + 1)− EIi(S0, Si)] + βi [EBi(S0, Si + 1)− EBi(S0, Si)]

= hiP{Bi(S0, Si) = 0} − βiP{Bi(S0, Si) > 0}

= −βi + (βi + hi)P{Bi(S0, Si) = 0}

Since P{Bi(S0, Si) = 0} is strictly increasing in Si, ∆iC(S0, S1, . . . , SN) is strictly in-

creasing, so the cost function is convex in Si.

Axsäter (1990) mentions this result, without the deduction.
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Corollary 4. The optimal Si for a given S0, S∗
i (S0), is the smallest Si such that:

P{Bi(S0, Si) = 0} ≥ βi
βi + hi

(4)

Proof. This follows directly from Lemma 3.

Lemma 5. If S0 is increased by one, then for all i ∈ {1, . . . , N} the optimal Si, S
∗
i (S0),

stays the same or decreases by one:

S∗
i (S0)− 1 ≤ S∗

i (S0 + 1) ≤ S∗
i (S0)

Proof. The first inequality can be proven as follows. It is easily seen that B0(S0 + 1) ≥st

B0(S0)−1, where A ≥st Ã denotes that a random variable A is stochastically larger than

another random variable Ã. This implies that B
(i)
0 (S0 + 1) ≥st B

(i)
0 (S0) − 1, and thus

Yi +B
(i)
0 (S0 + 1) ≥st Yi +B

(i)
0 (S0)− 1, which is equivalent to Xi(S0 + 1) ≥st Xi(S0)− 1.

Hence, in particular P{Xi(S0 + 1) ≤ S∗
i (S0)− 2} ≤ P{Xi(S0)− 1 ≤ S∗

i (S0)− 2}, which

is equivalent to P{Xi(S0 + 1) ≤ S∗
i (S0) − 2} ≤ P{Xi(S0) ≤ S∗

i (S0) − 1}. Since S∗
i (S0)

is the smallest Si for which Equation (4) holds, we know that Equation (4) does not

hold for S∗
i (S0) − 1. In other words, P{Xi(S0) ≤ S∗

i (S0) − 1} < βi
βi+hi

, and therefore

P{Xi(S0 + 1) ≤ S∗
i (S0) − 2} < βi

βi+hi
. This means that S∗

i (S0 + 1) > S∗
i (S0) − 2 or,

equivalently, S∗
i (S0 + 1) ≥ S∗

i (S0)− 1.

The second inequality can be proven analogously, but follows also directly from the

supermodularity of the cost function.

The cost function C(S0, S1, . . . , SN) is not convex in S0 in general. For given values

of Si for all i ∈ {1, . . . , N}, the cost function generally decreases with an increasing S0

until a minimum is reached. It then increases such that the derivative becomes close to∑N
i=1

λi
λ0
hi after which the derivative converges to h0. Therefore, if h0 <

∑N
i=1

λi
λ0
hi, the

cost function is generally first convex in S0 and then concave in S0. This suggests that the

function C(S0, S1, . . . , SN) is unimodal in S0, but we are not able to prove this. However,
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lemmas 6 and 8 give two cases in which the cost function is convex in S0.

Lemma 6. If Si = 0 for all i ∈ {1, . . . , N}, then the cost function C(S0, S1, . . . , SN) is

convex in S0 and its corresponding difference function is as follows:

∆0C(S0, 0, . . . , 0) = h0P{B0(S0) = 0}+
N∑
i=1

λi
λ0

[−βi + βiP{B0(S0) = 0}] (5)

Proof. See Appendix A.

Corollary 7. The S0 that minimizes Equation (5) in Lemma 6, Su
0 , is the smallest S0

such that:

P{B0(S0) = 0} ≥
∑N

i=1
λi
λ0
βi∑N

i=1
λi
λ0
βi + h0

Su
0 is an upper bound for S0.

Proof. The first part follows directly from Lemma 6. Because of the supermodularity of

the cost function, Su
0 is an upper bound for S0.

The upper bound that we have thus derived is at least as high as the upper bound

that Axsäter (1990, p. 68) derives. However, the computational costs are lower and it

turns out that the upper bounds are not too far apart (a few percent on larger problem

instances).

Lemma 8. The cost function C(S0, S1, . . . , SN) is convex in S0 if h0 ≥
∑N

i=i
λi
λ0
hi.

Proof. See Appendix B.

Notice that this includes the important case that h0 = hi for all i ∈ {1, . . . , N}.

4 Heuristics

We propose two heuristics. The first heuristic, called Smart Enumeration (SE ) is not

very fast, but in a computational experiment (see Section 5), it always finds the optimal

solution. The second heuristic, called Step and Check (SC ) is very fast and will be shown

to be near-optimal via a computational experiment.
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4.1 Smart Enumeration

The basic idea of the SE heuristic is to start at an easily found upper bound for S0, use

the fact that S∗
i (S0) ≥ S∗

i (S0 +1) ≥ S∗
i (S0)−1, decrease S0 by one at a time, and assume

that the function C(S0, S
∗
1(S0), . . . , S

∗
N(S0)) is almost unimodal (although it is not) so

that we know when to stop.

In pseudo-code:

1. best S0 := S0 := Su
0 (using Corollary 7)

2. Si := S∗
i (S0) (for all i ∈ {1, . . . , N}, using Corollary 4)

3. best costs := C(S0, S1, . . . , SN) (using Equation (1))

4. counter := 0

5. S0 := S0 − 1

6. Si := S∗
i (S0) (for all i ∈ {1, . . . , N}, using Lemma 5 and Corollary 4)

7. new costs := C(S0, S1, . . . , SN) (using Equation (1))

8. Compare new costs with best costs:

• If new costs ≤ best costs:

– counter := 0

– best costs := new costs

– best S0 := S0

– Go to step 5

• Otherwise:

– If counter ≤ N + 1:

∗ counter := counter + 1

∗ Go to step 5

– Otherwise:

∗ Stop

The stopping criterion is the critical part of this heuristic. Stopping already when

counter ≤ N leads to a suboptimal solution in a few cases.
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4.2 Step and Check

The basic idea of the SC heuristic is to start at an upper bound for S0, decrease S0

in steps of size N and assume that the function C(S0, S
∗
1(S0), . . . , S

∗
N(S0)) is almost

unimodal (although it is not) so that we know when to stop. When we have found a

presumed local optimum, we perform a local search around this local optimum.

At each step we check the costs using the two-moments approximation of Graves

(1985). We could use another approximating distribution than the negative binomial

distribution, but our results are so satisfactory that we do not need to consider that. We

could also calculate the costs exactly using Graves (1985), but this is too time-consuming.

In pseudo-code:

1. step size := N

2. best costs := bigM

3. S0 := Su
0 (using Corollary 7)

4. Fit a negative binomial distribution to the first two moments of Xi(S0) (for all

i ∈ {1, . . . , N}, using Graves, 1985)

5. Si := S∗
i (S0) (for all i ∈ {1, . . . , N}, using Corollary 4)

6. new costs := C(S0, S1, . . . , SN) (using Equation (1))

7. Compare new costs with best costs:

• If new costs ≤ best costs:

– best costs := new costs

• Otherwise:

– S0 := S0 + step size

– Go to step 10

8. S0 := S0 − step size

9. Go to step 4

10. Check step-size:

• If step size > 1:

– step size := d step size
2
e:
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Otherwise:

– Stop

11. S0 := S0 + step size

12. Perform Steps 4, 5, and 6

13. Compare new costs with best costs:

• If new costs ≤ best costs:

– best costs := new costs

– Go to step 10

• Otherwise:

– Go to step 14

14. S0 := S0 − 2 · step size

15. Perform Steps 4, 5, and 6

16. Compare new costs with best costs:

• If new costs ≤ best costs:

– best costs := new costs

– Go to step 10

• Otherwise:

– S0 := S0 + step size

– Go to step 10

Steps 1 to 9 are used to find a local optimum. The ‘otherwise’ clause in Step 7 will

not be used in the first iteration of the algorithm (when S0 = Su
0 ). When the clause is

used, we have found a solution that is not as good as the local optimum. Therefore, we

add ‘step size’ to S0 so that it is the local optimum again.

In step 10, we divide the step size in half. We then check whether using S0 + step size

would lead to a better result than using S0 (our local optimum), and if so, we use S0 +

step size as the new local optimum and go back to step 10. Otherwise, we check whether

S0 − step size would lead to a better result. If so, this is the new local optimum. In both

cases, we go back to step 10.
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5 Computational experiment

We perform an extensive computational experiment to examine the performance of our

heuristics, both in terms of optimization time and quality of the solution. For the quality

of the solution, we use two indicators. The average error is defined as (using P problem

instances, numbered 1, . . . , P ):
∑P

p=1 Costsheuristic(p)−
∑P

p=1 Costsoptimal(p)∑P
p=1 Costsoptimal(p)

. The maximum error

is defined as: arg max
p

Costsheuristic(p)−Costsoptimal(p)

Costsoptimal(p)
. First, we use problem instances from the

literature to compare our heuristics with the optimal solution and existing heuristics

by Gallego et al. (2007) and Rong et al. (2010). Second, we perform more extensive

experiments in which we compare our heuristics with the optimal solution only. We use

these experiments to get more insights into the performance of our heuristics.

Rong et al. (2010) give a set of problem instances on which they compare their two

heuristics with the optimal solution and the RD heuristic of Gallego et al. (2007). To get

the optimal solution, Rong et al. enumerate all possible values for S0 between a lower

and an upper bound, determine the optimal Si that belong to that S0 value and use the

exact evaluation of Graves (1985) to determine the costs. The settings for the problem

instances that are used can be found in Table 1. Since for each local stock point i, Li and

βi are drawn from a uniform distribution, 200 problem instances are generated for each

combination of λi, L0, and h0, leading to 72,000 problem instances in total (notice that

in each problem instance it holds for all i, j ∈ {1, . . . , N} that λi = λj). The results that

Rong et al. (2010) report can be found in Table 2. Notice that the heuristics by Rong

et al. find base stock levels only; the corresponding costs are determined afterwards and

are not included in the computation time.

Since the RO heuristic is quite slow and the RD heuristic is relatively slow and leads

to a relatively high average error compared with the DA heuristic, we may see the DA

heuristic as the best heuristic. Hence, we compare our heuristics with the DA heuristic.

We implement the DA heuristic, our heuristics, and the algorithm of Axsäter (1990) in

Python and perform the experiments on a laptop computer running Windows XP on an
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Parameter Value(s)
N 4
Li U [0.1, 0.25]
L0 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
λi 4, 8, 16, 32
hi 1
h0 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
βi U [9, 39]

Table 1: Problem instances from Rong et al. (2010, page 11)

Rong et al. Gallego et al. Graves
RO DA RD Exact

Average error (%) 1.4 1.9 3.4 —
Maximum error (%) 22.2 23.6 12.7 —
Average time (s.) 0.548 0.015 0.176 4.012

Table 2: Results from Rong et al. (2010, Table 1, page 11)

Intel Core Duo P8600 2.40 GHz, 3.45 GB RAM. The results for the problem instances of

Rong et al. (2010) (see Table 1), solved using our implementation can be found in Table 3.

The most striking observation is that the error that we find for the DA heuristic is lower

than the error that Rong et al. report. The difference may be due to the randomness in

the problem instances. Notice further that our implementation is somewhat faster than

the original implementation (0.006 seconds on average compared with 0.015 seconds). The

key result is that the SC heuristic performs much better than the DA heuristic in terms of

solution quality, whereas the optimization time is still very low. Another important result

is that the SE heuristic always finds the optimal solution. Lastly, our results suggest that

the algorithm by Axsäter (1990) is faster than the algorithm of Graves (1985), although

we cannot conclude this with certainty from these results.

Rong et al. Our heuristics Axsäter
DA SE SC Exact

Average error (%) 1.60 0.00 0.11 —
Maximum error (%) 14.13 0.00 2.70 —
Average time (s.) 0.006 0.145 0.020 0.279
Maximum time (s.) 0.025 0.782 0.056 1.768

Table 3: Our results on the tests by Rong et al. (2010)
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Parameter Value(s)
N 2, 8, 32
L0 1, 2, 4
h0 1
Li 0.25, 1
λi 0.25, 1, 4
hi 1, 2, 4
βi 16, 64

Table 4: Additional problem instances

We perform a more extensive experiment which is quite different from the one by

Rong et al. (2010). We are interested in a broader range of local stock points and a long

lead time at the central warehouse relative to the lead time at the local stock points.

This better reflects the typical situation in the area of capital goods, and especially in

the military context. Furthermore, we are interested both in the setting in which the

holding costs at the local stock points are higher than those at the central warehouse and

in the setting in which holding costs are equal at all locations. Because the DA heuristic

cannot deal with the situation of equal holding costs at both echelon levels, we cannot

compare our results with those of that algorithm.

For the exact values that we use, see Table 4. The local stock points are divided into

two sets of equal size and we vary the relevant values (Li, λi, hi, and βi) in the two groups

independently from each other. So, there are three values for λi, which means that there

are nine combinations possible, three of which lead to ‘balanced’ networks in which all

local stock points have the same demand rate. In total, there are 9 settings at the central

warehouse. For each of these settings, there are 36 settings at the local stock points. Since

each of these settings in one half of the local stock points is combined with each of these

settings in the other half of the local stock points, there are 1,296 settings in total at the

local stock points, and 11,664 problem instances in total.

The results can be found in Table 5. The SE heuristic still always finds the optimal

solution. For the SC heuristic, the maximum error is 2.9% and only 270 (out of 11,664)

problem instances have an error of more than 1.0%. Notice that our heuristic does find a
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Our heuristics Axsäter
SE SC Exact

Average error (%) 0.00 0.11 0.00
Maximum error (%) 0.00 2.92 0.00
Average time (s.) 0.846 0.054 1.536
Maximum time (s.) 17.406 0.305 36.118

Table 5: Additional test results

N L0

2 8 32 1 2 4
Average time SE (s.) 0.014 0.168 2.356 0.396 0.737 1.405
Maximum time SE (s.) 0.085 1.224 17.406 4.554 8.598 17.406
Average error SC (%) 0.08 0.14 0.11 0.08 0.11 0.15
Maximum error SC (%) 1.66 2.92 2.60 2.71 2.11 2.92
Average time SC (s.) 0.006 0.027 0.130 0.051 0.054 0.059
Maximum time SC (s.) 0.020 0.070 0.305 0.290 0.274 0.305

Table 6: Detailed test results for our heuristics (1/3)

cost estimate, but we do not know the exact costs corresponding with the base stock levels

that we find; these costs are calculated after execution of our heuristic. The difference

between the cost estimate and the true costs is −0.5% on average and varies between

−7.6% and 2.3%.

We show more detailed results in Table 6, in which we vary N and L0, Table 7, in

which we vary λi and βi, and Table 8, in which we vary hi and Li. In the latter two tables,

we only show the results of the problem instances for which the relevant parameter (λi,

βi, hi, or Li) is equal for all local stock points. The most interesting things to notice are:

• The optimization time of the SC heuristic increases approximately linear with the

λi(∀i ∈ {1, . . . , N}) βi(∀i ∈ {1, . . . , N})
0.25 1 4 16 64

Average time SE (s.) 0.084 0.365 2.166 0.759 0.929
Maximum time SE (s.) 0.454 2.129 14.954 14.954 17.406
Average error SC (%) 0.04 0.06 0.06 0.08 0.13
Maximum error SC (%) 1.27 0.85 1.34 1.69 2.92
Average time SC (s.) 0.029 0.042 0.075 0.050 0.058
Maximum time SC (s.) 0.098 0.131 0.272 0.272 0.305

Table 7: Detailed test results for our heuristics (2/3)
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hi(∀i ∈ {1, . . . , N}) Li(∀i ∈ {1, . . . , N})
1 2 4 0.25 1

Average time SE (s.) 0.954 0.838 0.751 0.643 1.053
Maximum time SE (s.) 17.406 15.959 14.418 9.561 17.406
Average error SC (%) 0.24 0.13 0.05 0.13 0.11
Maximum error SC (%) 2.71 2.21 1.22 2.71 1.59
Average time SC (s.) 0.061 0.053 0.049 0.045 0.064
Maximum time SC (s.) 0.305 0.279 0.277 0.195 0.305

Table 8: Detailed test results for our heuristics (3/3)

number of local stock points (N), whereas the optimization time of the SE heuristic

increases much harder.

• The optimization time of the SC heuristic is almost independent of the lead time

at the central warehouse (L0), whereas the optimization time of the SE heuristic

increases approximately linear with L0. It is also interesting to see that the opti-

mization time of the exact algorithm by Axsäter (1990) increases even harder (for

L0 = 4, SE is on average 53% faster than the exact algorithm, whereas for L0 = 1,

it is only 18%).

• The optimization time of the SC heuristic increases less than linear with the demand

rate (λi), whereas the optimization time of the SE heuristic increases more than

linear with the demand rate. Again, the optimization time of the exact algorithm

increases even harder (for λi = 4, SE is on average 53% faster, whereas it is 1.5%

slower for λi = 0.25).

• Notice that the problem instances in which half of the local stock points have one

value for λi, whereas the other half of the problem instances have another value for

λi are excluded from the comparison in the previous bullet. Since the average errors

that we report in Table 7 are on average (over the three values for λi) lower than

those that we report in Table 5, we can conclude that in the ‘unbalanced’ problem

instances the error is higher on average than in the ‘balanced’ problem instances

(equal demand rate at all local stock points).
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• The quality of the SC solution depends heavily on the value of hi; the quality

increases with an increasing hi (notice that the problem instances in which half of

the local stock points have one value for hi, whereas the other half of the problem

instances have another value for hi are excluded from this comparison).

6 Conclusions and recommendations for further re-

search

We have studied two-echelon distribution networks. We have developed a fast heuristic

(Step and Check) that finds base stock levels that are close to optimal, and a heuristic

(Smart Enumeration) that always finds the optimal solution in our computational exper-

iment. In that experiment, we have shown that the former heuristic is faster than most

existing heuristics and gives a better solution than all existing heuristics.

It may be possible to extend the SC heuristic in a couple of ways. First, it is relatively

straightforward to extend our algorithm to the general multi-echelon case. This would be

useful since only two heuristics exist for this case so far (those of Rong et al., 2010).

Second, it may be possible to consider compound Poisson demand. The approximation

by Graves (1985) that we use in our heuristic can also be used as an approximation

for the compound Poisson demand (with some changes), although we do not know the

approximation quality. A comparison could be made with the exact algorithm that exists

for this case (with two echelon levels) by Forsberg (1995).

Third, it may be interesting to extend the (S − 1, S)-policies to (R,Q)-policies, espe-

cially at the central warehouse. The extension to (R,Q)-policies at all stock points may

be difficult. A comparison can be made with the exact algorithm by Forsberg (1996).

Combining (R,Q)-policies and compound Poisson demand may be even harder, but it

would lead to a model that fits many practical situations. Comparison in this case could

be made with the exact algorithm by Axsäter (2000).
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Appendix A: Proof of Lemma 6

Before we can go to the actual proof, we need two additional lemmas.

Lemma 9. It holds that:

EI0(S0 + 1)− EI0(S0) = P{B0(S0) = 0} (6)

and, for all i ∈ {1, . . . , N} it holds that:

E
(
Si − Yi −B(i)

0 (S0 + 1)
)
− E

(
Si − Yi −B(i)

0 (S0)
)

=
λi
λ0

P{B0(S0) > 0} (7)

EBi(S0 + 1, Si)− EBi(S0, Si) = −λi
λ0

P{B0(S0) > 0 ∩B(i)
0 (S0) + Yi > Si | Zi = 1} (8)

Proof. The proof of Equation (6) is analogous to the proof of Lemma 2.

Equation (7) can be proven as follows:

E
(
Si − Yi −B(i)

0 (S0 + 1)
)
− E

(
Si − Yi −B(i)

0 (S0)
)

= EB(i)
0 (S0 + 1)− EB(i)

0 (S0)

= P{B0(S0) > 0 ∩ Zi = 1}

=
λi
λ0

P{B0(S0) > 0}

The second equality is the crucial step in this derivation. Notice that there is a difference

between
(
Si − Yi −B(i)

0 (S0 + 1)
)

and
(
Si − Yi −B(i)

0 (S0)
)

if an increment of S0 by one

leads to a decrease in B
(i)
0 (S0). This occurs only if the following two statements hold:

• the number of backorders at the central warehouse decreases by adding a spare

part, so B0(S0) > 0, and

• the first backorder in the pipeline at the central warehouse is due to local stock

point i, so Zi = 1.
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The proof of Equation (8) is as follows:

EBi(S0 + 1, Si)− EBi(S0, Si) = E
(
Yi +B

(i)
0 (S0 + 1)− Si

)+
− E

(
Yi +B

(i)
0 (S0)− Si

)+
= −P{B0(S0) > 0 ∩B(i)

0 (S0) + Yi > Si ∩ Zi = 1}

= −λi
λ0

P{B0(S0) > 0 ∩B(i)
0 (S0) + Yi > Si | Zi = 1}

Again, the second equality is the crucial step in this derivation. Notice that there is

a difference between
(
Yi +B

(i)
0 (S0 + 1)− Si

)+
and

(
Yi +B

(i)
0 (S0)− Si

)+
if an incre-

ment of S0 by one leads to a decrease in B
(i)
0 (S0), which in turn leads to a decrease

in
(
Yi +B

(i)
0 (S0)− Si

)+
. This is a stronger requirement than we had in the proof of

Equation (7). Therefore, now three statements need to hold simultaneously:

• the number of backorders at the central warehouse decreases by adding a spare

part, so B0(S0) > 0,

• the first backorder in the pipeline at the central warehouse is due to local stock

point i, so Zi = 1, and

• the number of backorders at local stock point i decreases if the number of backorders

that it is due to stock point i at the central warehouse decreases, so B
(i)
0 (S0) +Yi >

Si.

Lemma 10. The difference function ∆0C(S0, S1, . . . , SN) is as follows:

∆0C(S0, S1, . . . , SN)

= C(S0 + 1, S1, . . . , SN)− C(S0, S1, . . . , SN)

= h0P{B0(S0) = 0}

+
N∑
i=1

λi
λ0

[
hiP{B0(S0) > 0} − (βi + hi)P{B0(S0) > 0 ∩B(i)

0 (S0) + Yi > Si | Zi = 1}
]
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Proof. The cost function, Equation (1), can be rewritten as follows:

C(S0, S1, . . . , SN)

= h0EI0(S0) +
N∑
i=1

[hiEIi(S0, Si) + βiEBi(S0, Si)]

= h0EI0(S0) +
N∑
i=1

[hi (EIi(S0, Si)− EBi(S0, Si)) + (βi + hi)EBi(S0, Si)]

= h0EI0(S0) +
N∑
i=1

[
hi

(
E
(
Si − Yi −B(i)

0 (S0)
)+
− E

(
Yi +B

(i)
0 (S0)− Si

)+)
− (βi + hi)EBi(S0, Si)

]
= h0EI0(S0) +

N∑
i=1

[
hiE

(
Si − Yi −B(i)

0 (S0)
)
− (βi + hi)EBi(S0, Si)

]

Next, we can derive the difference function, using Lemma 9:

∆0C(S0, S1, . . . , SN)

= h0(EI0(S0 + 1)− EI0(S0))

+
N∑
i=1

[
hi

[
E
(
Si − Yi −B(i)

0 (S0 + 1)
)
− E

(
Si − Yi −B(i)

0 (S0)
)]

+ (βi + hi) [EBi(S0 + 1, Si)− EBi(S0, Si)]

]
= h0P{B0(S0) = 0}

+
N∑
i=1

[
hi
λi
λ0

P{B0(S0) > 0} − (βi + hi)
λi
λ0

P{B0(S0) > 0 ∩B(i)
0 (S0) + Yi > Si | Zi = 1}

]
= h0P{B0(S0) = 0}

+
N∑
i=1

λi
λ0

[
hiP{B0(S0) > 0} − (βi + hi)P{B0(S0) > 0 ∩B(i)

0 (S0) + Yi > Si | Zi = 1}
]

Now we are ready to proof Lemma 6:

Proof. IfB0(S0) > 0 and Zi = 1 for some i ∈ {1, . . . , N}, thenB
(i)
0 (S0) > 0. If Si = 0, then

22



B
(i)
0 (S0) > 0 implies that B

(i)
0 (S0) + Yi > Si. Therefore, if Si = 0 for all i ∈ {1, . . . , N},

the difference function in Lemma 10 reduces to:

∆0C(S0, 0, . . . , 0) = h0P{B0(S0) = 0}+
N∑
i=i

λi
λ0

(−βi)P{B0(S0) > 0}

= h0P{B0(S0) = 0}+
N∑
i=i

λi
λ0

[−βi + βiP{B0(S0) = 0}]

Since P{B0(S0) = 0} is increasing in S0, the difference function is increasing in S0 as

well, so the cost function is convex in S0 (under the given conditions).

Appendix B: Proof of Lemma 8

Proof. To proof Lemma 8, we rearrange the terms of the difference function in Lemma 10

as follows:

∆0C(S0, S1, . . . , SN)

= h0 (1−P{B0(S0) > 0})

+
N∑
i=1

λi
λ0

[
hiP{B0(S0) > 0} − (βi + hi)P{B0(S0) > 0 ∩B(i)

0 (S0) + Yi > Si | Zi = 1}
]

= h0 − (h0 −
N∑
i=i

λi
λ0
hi)P{B0(S0) > 0}

−
N∑
i=i

λi
λ0

(βi + hi)P{B0(S0) > 0 ∩B(i)
0 (S0) + Yi > Si | Zi = 1}

If h0 ≥
∑N

i=i
λi
λ0
hi , then (h0 −

∑N
i=i

λi
λ0
hi)P{B0(S0) > 0} is decreasing in S0 (it is 0 if

h0 =
∑N

i=i
λi
λ0
hi). Furthermore,

∑N
i=i

λi
λ0

(βi+hi)P{B0(S0) > 0∩B(i)
0 (S0)+Yi > Si | Zi = 1}

is also decreasing in S0, so the difference function is increasing in S0 and the cost function

is convex in S0 (under the given conditions).
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Axsäter, S. (1990). Simple solution procedures for a class of two-echelon inventory prob-

lems. Operations Research, 38(1):64–69.
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