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Abstract In this contribution we review our investiga-
tions of the effect of boundary slip by utilizing lattice
Boltzmann simulations in order to demonstrate the ap-
plicability of the method to treat fundamental questions
in microfluidics. We investigate fluid flow in hydropho-
bic and rough microchannels and show that a slip due
to hydrophobic interactions increases with increasing
hydrophobicity and is independent of the shear rate. A
particular focus of the paper is on the effect of surface
roughness. If surface roughness is not treated properly
while analysing experimental results, a large apparent
slip might be measured. We have shown that the no-slip
boundary condition holds in this case if an effective sur-
face position at an intermediate position between peaks
and valleys of the surface is considered. Further, we
have studied the effect of microbubbles present on a
surface and shown that gas bubbles can have a strong
impact on the flow properties. They can cause nega-
tive slip and due to their deformability, a shear rate
dependent slip might be detected in experiments.
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1 INTRODUCTION

During the last few decades the miniaturization of tech-
nical devices down to submicrometric sizes has made
considerable progress. In particular, during the 1980s,
so-called microelectro-mechanical systems (MEMS) be-
came available for chemical, biological and technical ap-
plications leading to the rise of a new discipline called
“microfluidics” in the 1990s [1]. A wide variety of mi-
crofluidic systems was built. These include gas chro-
matography systems, electrophoretic separation systems,
micromixers, DNA amplifiers, and chemical reactors.
Next to those “practical applications”, microfluidics was
used to answer fundamental questions in physics in-
cluding the behavior of single molecules or particles in
fluid flow or the validity of the no-slip boundary condi-
tion [1, 2]. The latter is the focus of the current review
and is investigated in detail by computer simulations.

Reynolds numbers in microfluidic systems are usu-
ally small, i.e., usually below 0.1. In addition, due to the
small scales of the channels, the surface to volume ratio
is high causing surface effects like wettability or surface
charges to be more important than in macroscopic sys-
tems. Also, the mean free path of a fluid molecule might
be of the same order as the characteristic length scale
of the system. For gas flows, this effect can be char-
acterized by the so-called Knudsen number [3]. While
the Knudsen number provides a good estimate for when
to expect rarefaction effects in gas flows, for liquids one
would naively assume that its velocity close to a surface
always corresponds to the actual velocity of the surface
itself. This assumption is called the no-slip boundary
condition and can be counted as one of the generally ac-
cepted fundamental concepts of fluid mechanics. How-
ever, this concept was not always well accepted. Some
centuries ago there were long debates about the veloc-
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ity of a Newtonian liquid close to a surface and the ac-
ceptance of the no-slip boundary condition was mostly
due to the fact that no experimental violations could
be found, i.e., a so-called boundary slip could not be
detected.

In recent years, it became possible to perform very
well controlled experiments that have shown a violation
of the no-slip boundary condition in sub-micron sized
geometries. Since then, mostly experimental [2, 4–10],
but also theoretical works [11, 12], as well as computer
simulations [13–16] have been performed to improve our
understanding of boundary slip. The topic is of funda-
mental interest because it has practical consequences
in the physical and engineering sciences as well as for
medical and industrial applications. Interestingly, also
for gas flows, often a slip length much larger than ex-
pected from classical theory can be observed. Extensive
reviews of the slip phenomenon have recently been pub-
lished by Lauga et al. [2] and Neto et al. [17].

The reason for such findings is that the behavior of
a fluid close to a solid interface is very complex and
involves the interplay of many physical and chemical
properties. These include the wettability of the solid,
the shear rate or flow velocity, the bulk pressure, the
surface charge, the surface roughness, as well as im-
purities and dissolved gas. Since all those quantities
have to be determined very precisely, it is not sur-
prising that our understanding of the phenomenon is
still very unsatisfactory. Due to the large number of
different parameters, a significant dispersion of the re-
sults can be observed for almost similar systems [2,17].
For example, observed slip lengths vary between a few
nanometres [18] and micrometers [5] and while some
authors find a dependence of the slip on the flow veloc-
ity [4, 7, 19], others do not [5, 6].

A boundary slip is typically quantified by the so-
called slip length β – a concept that was already pro-
posed by Navier in 1823. He introduced a boundary
condition where the fluid velocity at a surface is propor-
tional to the shear rate at the surface [20] (at x = x0),
i.e.,

vz(x0) = β
∂vz(x)
∂x

. (1)

In other words, the slip length β can be defined as the
distance from the surface where the relative flow veloc-
ity vanishes. Assuming a typical Poiseuille setup con-
sisting of a pressure driven flow of an incompressible
liquid between two infinite planes, the velocity in flow
direction (vz) at position x between the planes is given
by

vz(x) =
1

2µ
∂P

∂z

[
d2 − x2 − 2dβ

]
, (2)

where 2d is the distance between the planes, and µ the
dynamic viscosity. ∂P/∂z is the pressure gradient. In
contrast to a no-slip formulation, the last term in Eq. 2
linearly depends on the slip length β.

Most recent computer simulations apply molecu-
lar dynamics and report increasing slip with decreas-
ing liquid density [21] or liquid-solid interactions [15],
while slip decreases with increasing pressure [14]. These
simulations are usually limited to a few tens of thou-
sands of particles, length scales of a few nanometres and
time scales of nanoseconds. Also, shear rates are usually
some orders of magnitude higher than in any experi-
ment [2]. Due to the small accessible time and length
scales of molecular dynamics simulations, mesoscopic
simulation methods as the lattice Boltzmann method
are well applicable for the simulation of microfluidic
experiments.

The experimental investigation of apparent slip can
be based on different setups: either a fluid is pumped
through a microchannel and the measured mass flow
rate at the end of the channel is compared to the the-
oretical value with no slip boundary conditions. From
the deviation of the two values, the magnitude of slip
can be computed. Another possibility is to measure the
slip length directly using optical methods like particle
image velocimetry (PIV). Very popular is the modifica-
tion of an atomic force microscope (AFM) by adding a
silicon sphere to the tip of the cantilever. While moving
the sphere towards the boundary, the required force is
measured. It is possible to measure the amount of slip
at the wall by comparing the force needed to move the
sphere with its theoretical value [10,22].

During the last few years, the substantial scientific
research invested in the slip phenomenon has lead to a
more clear picture which can be summarized as follows:
one can argue that many surprising results published
were only due to artefacts or misinterpretation of ex-
periments. In general, there seems to be an agreement
within the community that slip lengths larger than a
few nanometers can usually be referred to as “apparent
slip” and are often caused by experimental artefacts.
Small slip lengths are experimentally even harder to
determine and require sophisticated setups such as the
modified atomic force microscopes as described above.
Here, small variations of the apparatus such as choos-
ing a different shape of the cantilever or modifying the
control circuit of the sample holder can lead to substan-
tial variation of the measurements. Also, the theoreti-
cal equations correlating the measured force to the slip
length are only valid for perfect surfaces and infinitely
slow oscillations of the sphere. Therefore, it is of impor-
tance to perform computer simulations which have the
advantage that most parameters can be changed inde-
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pendently without modifying anything else. Thus, the
influence of every single modification can be studied in
order to present estimates of expected slip lengths.

2 APPARENT SLIP IN HYDROPHOBIC
MICROCHANNELS

The simulation method used to study microfluidic de-
vices has to be chosen carefully. While Navier-Stokes
solvers are able to cover most problems in fluid dynam-
ics, they lack the possibility to include the influence
of molecular interactions as needed to model bound-
ary slip. Molecular dynamics simulations (MD) are the
best choice to simulate the fluid-wall interaction, but
the computer power today is not sufficient to simu-
late length and time scales necessary to achieve or-
ders of magnitude which are relevant for experiments.
However, boundary slip with a slip length β of the or-
der of many molecular diameters σ has been studied
with molecular dynamics simulations by various au-
thors [8, 15,16,23].

In this paper we use the lattice Boltzmann method,
where one discretizes the Boltzmann kinetic equation[
∂

∂t
+ v∇x +

1
m

F∇v
]
η(x,v, t) = Ω (3)

on a lattice. η(x,v, t) indicates the probability to find
a single particle with mass m, velocity v at the time
t at position x. The derivatives represent simple prop-
agation of a single particle in real and velocity space
whereas the collision operator Ω takes into account
molecular collisions in which a particle changes its mo-
mentum due to a collision with another particle. Exter-
nal forces F can be employed to implement the effect
of gravity or external fields. To represent the correct
physics, the collision operator should conserve mass and
momentum, and should be Galilei invariant. By per-
forming a Chapman Enskog procedure, it can be shown
that such a collision operator Ω reproduces the Navier-
Stokes equation [24]. In the lattice Boltzmann method
the time t, the position x, and the velocity v are dis-
cretized.

A few groups have applied the lattice Boltzmann
method for the simulation of microflows and to study
boundary slip. A popular approach is to introduce slip
by generalizing the no-slip bounce back boundary con-
ditions in order to allow specular reflections with a
given probability [13]. Another possibility is to mod-
ify the fluid’s viscosity, i.e., the fluid viscosity is mod-
ified due to local density variations in order to model
slip [25]. In both cases, the parameters determining the
properties at the boundaries are “artificial” parameters
and they do not have any obvious physical meaning.

Therefore, they are not easily mappable to experimen-
tally available values. We model the interaction between
hydrophobic channel walls and the fluid by means of
a multi-phase lattice Boltzmann model. Our approach
overcomes this problem by applying a mesoscopic force
between the walls and the fluid. This force can be linked
to the contact angle which is commonly used by exper-
imentalists to quantitatively describe the wettability of
a material [26]. A similar approach is used by Benzi et
al. [27].

The simulation method and our implementation of
boundary conditions are described as follows. A multi-
phase lattice Boltzmann system can be represented by
a set of equations

ηαi (x + ci, t+ 1)− ηαi (x, t) = Ωαi , i = 0, 1, . . . , b , (4)

where ηαi (x, t) is the single-particle distribution func-
tion, indicating the amount of species α with velocity
ci, at site x on a D-dimensional lattice of coordination
number b (D3Q19 in our implementation), at time-step
t. This is a discretized version of equation (3) without
external forces F for a number of species α. For the
collision operator Ωαi we choose the Bhatnagar-Gross-
Krook (BGK) form [28]

Ωαi = − 1
τα

(ηαi (x, t)− ηα eqi (uα(x, t), ηα(x, t))) , (5)

where τα is the mean collision time for component α
and determines the kinematic viscosity

να =
2τα − 1

6
. (6)

of the fluid. The system relaxes to an equilibrium distri-
bution ηα eqi which can be derived imposing restrictions
on the microscopic processes, such as explicit mass and
momentum conservation for each species. In our imple-
mentation we choose for the equilibrium distribution
function
ηeqi =

ζiη
α
[
1 + ci·u

c2s
+ (ci·u)2

2c4s
− u2

2c2s
+ (ci·u)3

6c6s
− u2(ci·u)

2c4s

]
,

(7)

which is a polynomial expansion of the Maxwell dis-
tribution. ci are the velocity vectors pointing to neigh-
bouring lattice sites. cs = 1/

√
3 is the speed of sound

for the D3Q19 lattice. The macroscopic values can be
derived from the single-particle distribution function
ηαi (x, t), i.e., the density ηα(x, t) of the species α at
lattice site x is the sum over the distribution functions
ηαi (x, t) for all lattice velocities ci,

ηα(x, t) ≡
∑
i

ηαi (x, t). (8)

uα(x, t) is the macroscopic velocity of the fluid, defined
as

ηα(x, t)uα(x, t) ≡
∑
i

ηαi (x, t)ci. (9)
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Interactions between different fluid species are intro-
duced following Shan and Chen as a mean field body
force between nearest neighbors [29,30],

Fα(x, t) ≡ −ψα(x, t)
∑
ᾱ

gαᾱ
∑
x′

ψᾱ(x′, t)(x′ − x) , (10)

where ψα(x, t) = (1−e−ηα(x,t)/η0) is the so-called effec-
tive mass with η0 being a reference density that is set
to 1 in our case [29]. gαᾱ is a force coupling constant,
whose magnitude controls the strength of the interac-
tion between component α and ᾱ. The dynamical effect
of the force is realized in the BGK collision operator (5)
by adding an increment δuα = ταFα/ηα to the veloc-
ity u in the equilibrium distribution function (7). For
the potential of the wall we attach the imaginary fluid
“density” ηwall to the first lattice site inside the wall.
The only difference between ηwall and any other fluid
packages on the lattice ηᾱ is that the fluid correspond-
ing to ηwall is only taken into account for in the collision
step, but not in the propagation step. Therefore, we can
adopt ηwall and the coupling constant gα,wall in order
to tune the fluid-wall interaction. gα,wall is kept at 0.08
throughout this paper if not mentioned otherwise and
all values are reported in lattice units. These parame-
ters allow to simulate a wide range of effective inter-
actions without compromising on numerical stability.
Additionally, we apply second order correct mid-grid
bounce back boundary conditions between the fluid and
the surface [24].

From molecular dynamics simulations it is known
that the fluid-wall interactions causing a slip phenomenon
usually take place within a few molecular layers of the
liquid along the boundary surface [8, 15, 16, 23]. Our
coarse-grained fluid wall interaction acts on the length
scale of one lattice constant and does not take the molec-
ular details into account. Therefore, our implementa-
tion is only able to reproduce an averaged effect of the
interaction and we cannot fully resolve the correct flow
profile very close to the wall and below the resolution of
a single lattice spacing. However, in order to understand
the influence of the hydrophobicity on experimentally
observed apparent slip, it is fully sufficient to investi-
gate the flow behavior on more macroscopic scales as
they are accessible for experimental investigation. Our
method could be improved by a direct mapping of data
obtained from MD simulations to our coupling constant
gα,wall allowing a direct comparison of the influence of
liquid-wall interactions on the detected slip [31].

The simulations in this work use a setup of two in-
finite planes separated by the distance 2d. We call the
direction between the two planes x and if not stated
otherwise 2d is set to 64 lattice sites. In y direction
we apply periodic boundary conditions. Here, 8 lattice
sites are sufficient to avoid finite size effects since there

is no propagation in this direction. z is the direction of
the flow with our channels being 512 lattice sites long.
At the beginning of the simulation (t = 0) the fluid is
at rest. We then apply a pressure gradient ∇P in the z-
direction to generate a planar Poiseuille flow. Assuming
Navier’s boundary condition, the slip length β is mea-
sured by fitting the theoretical velocity profile as given
by equation 2 in flow direction (vz) at position x, to the
simulated data via the slip length β. We validate this
approach by comparing the measured mass flow rate∫
ηv(x)dx to the theoretical mass flow without bound-

ary slip and find a very good agreement. The dynamic
viscosity µ as well as the pressure gradient ∂P

∂z needed to
fit equation (2) are obtained from our simulation data.

In [31], we show that this model creates a larger
slip β with stronger interaction, namely larger gα,wall

and larger ηwall. The relaxation time τα is kept con-
stant at 1.0 in this study and the maximum available
slip length measured is 5.0 in lattice units. For stronger
repulsive potentials, the density gradient at the fluid-
wall interface becomes too large, causing the simulation
to become unstable. At lower interactions the method
is very stable and the slip length β is independent of
the distance d between the two plates and therefore
independent of the resolution. We also show that the
slip decreases with increasing pressure since the rela-
tive strength of the repulsive potential compared to the
bulk pressure is weaker at high pressure. Therefore, the
pressure reduction near the wall is less in the high pres-
sure case than in the low pressure one. Furthermore, we
demonstrate that β can be fitted with a semi analytical
model based on a two viscosity model.

Fig. 1 Slip length β versus bulk velocity v for different fluid-

wall interactions ηwall. β is independent of v and only depends
on ηwall [31]. All units are expressed in lattice units throughout
this paper if not stated otherwise.

We study the dependence of the slip length β on the
flow velocity for a wide range of velocities of more than
three decades as it can be seen in Fig. 1 and in [31].
In the figure, we show data for different fluid-wall in-
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teractions 0 < ηwall < 2.0 and flow velocities from
10−4 < v < 10−1. Within this region we confirm the
findings of many steady state experiments [6], i.e., that
the slip length is independent of the flow velocity and
only depends on the wettability of the channel walls.
Some dynamic experiments, however, find a shear rate
dependent slip [19, 32]. These experiments often uti-
lize a modified AFM as described in the introduction
to detect boundary slippage. Since the slip length is
found to be constant in our simulations after sufficiently
long simulation times, we cannot confirm these results.
However, it has been proposed by various authors that
this velocity dependence is due to non-controlled effects
such as impurities or surface nanobubbles.

Our mesoscopic approach is able to reach the small
flow velocities of known experiments and reproduces
results from experiments and other computer simula-
tions, namely an increase of the slip with increasing
liquid-solid interactions, the slip being independent of
the flow velocity, and a decreasing slip with increasing
bulk pressure. In addition, within our model we develop
a semi-analytic approximation of the dependence of the
slip on the bulk pressure as described in [31].

3 ROUGHNESS INDUCED APPARENT SLIP

If typical length scales of the experimental system are
comparable to the scale of surface roughness, the ef-
fect of roughness cannot be neglected anymore. Fig-
ure 2 shows a typical example of a simulation setup:
Poiseuille flow between two rough surfaces. As can be
observed in the figure, the stream lines of the flow are
getting disturbed or trapped between the obstacles at
the surfaces. In this section we show that an appar-
ent boundary slip can have its origin in the misleading
assumption of perfectly smooth boundaries.

Fig. 2 A typical simulated system: Poiseuille flow between two

rough surfaces showing random surface variations. Streamlines
depict a two dimensional cut and illustrate the parabolic veloc-

ity profile. This profile is distorted in the vicinity of the rough
surfaces [33].

The influence of surface variations on the slip length
β has been investigated by numerous authors. On the
one hand roughness leads to higher drag forces and thus
to no-slip on macroscopic scales. Richardson showed
that even if on a rough surface a full-slip boundary
condition is applied, one can determine a flow speed re-
duction near the boundary resulting in a macroscopic
no-slip assumption [34]. Recently, we presented the idea
of an effective wall for rough channel surfaces [35]. Here,
we investigate the influence of different types of rough-
ness on the position of the effective boundary. Further,
we show how the effective boundary depends on the dis-
tribution of the roughness elements and how roughness
and hydrophobicity interact with each other [33]. Lecoq
and coworkers [36] performed experiments with well de-
fined roughness, and developed a theory to predict the
position of the effective boundary. In the experiments
they utilised a laser interferometer to measure the tra-
jectory of a colloidal sphere, and thereby determined
the lubrication force and an effective boundary position.
The used geometry consists of grooves with a triangu-
lar profile. For a theoretical description the boundary
is expressed in a Fourier series that gives the bound-
ary condition for the Laplace equation. From this an
effective boundary can be derived by a fast converting
series.

In this paper, we revise our previous achievements
and compare them with the theoretical and experimen-
tal results of Lecoq and coworkers [36].

Again, Poiseuille flow measurements are utilized to
investigate the effect of interest. The rough surfaces are
characterised by the highest point of one plane (hmax),
the position of the deepest valley (hmin) and the arith-
metic average of all surface heights giving the average
roughness Ra. In the case of symmetrical distributions
we get Ra = hmax/2.

The position of the effective boundary heff can be
found by fitting the parabolic flow profile via the dis-
tance 2d = 2deff . With β set to 0 we obtain the no-
slip case. To obtain an average value for the effective
distance between the planes deff , a sufficient number
of individual profiles at different positions z are taken
into account. The so found deff gives the position of the
effective boundary and the effective height heff of the
rough surface is then defined by dmax − deff .

We show that the position of the effective boundary
height is depending on the shape of the roughness ele-
ments, i.e., for strong surface distortions it is between
1.69 and 1.90 times the average height of the roughness
Ra = hmax/2 [35]. In Fig 3 we plot the effective bound-
ary positions of different geometries, i.e. randomly dis-
tributed grooves with a square profile and grooves with
a triangular profile. The results for the triangular ones
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match with the theoretical value of Lecoq et al. [36] for
a similar geometry.
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Fig. 3 Simulated effective height heff versus Ra for different

surface geometries. The triangular shape matches the theoretical

results of Lecoq et al. [36] for a similar geometry.

By adding an additional distance between roughness
elements, heff decreases slowly, so that the maximum
height is still the leading parameter. We are also able
to simulate flow over surfaces generated from AFM data
of gold coated glass used in microflow experiments by
O.I. Vinogradova and G.E. Yakubov [37]. We find that
the height distribution of such a surface is Gaussian
and that a randomly arranged surface with a similar
distribution gives the same result for the position of
the effective boundary although in this case the heights
are not correlated.

Fig. 4 Simulated effective height heff versus Ra for gold coated
glass surfaces and a randomly generated surface with Gaussian

distributed heights. The background image shows the gold sur-
face on the left and the artificially generated structure on the
right [35].

We can tune the width of the distribution σ and
the average height Ra. By scaling σ with Ra we ob-
tain geometrically similar geometries. This similarity is
important because the effective height heff scales with

the average roughness in the case of geometrical simi-
larity [35]. We investigate Gaussian distributed heights
with different widths σ and find that the height of the
effective wall depends linearly on σ in the observed
range [33]. Further, we find that the slip diverges as
the amplitude of the roughness increases and the flow
field gets more restricted which highlights the impor-
tance of a proper treatment of surface variations in very
confined geometries [35].

4 STRUCTURED SURFACES WITH
ENTRAPPED MICROBUBBLES

A natural continuation of our previous works on rough-
ness induced apparent boundary slip and the collab-
oration mentioned above is the analysis of flow along
superhydrophobic surfaces [38]. While in typical exper-
iments, slip lengths of a few tens of nanometers can be
observed, it would be preferable for technical applica-
tions to increase the throughput of fluid in a microchan-
nel, i.e., to obtain substantially larger slip. Superhy-
drophobic surfaces are promising in this context, since
it has been recently predicted [39] and experimentally
reported [40] that the so-called Fakir effect or Cassie
state considerably amplifies boundary slippage. Using
highly rough hydrophobic surfaces such a situation can
be achieved. Instead of entering the area between the
rough surface elements, the liquid remains at the top of
the roughness and traps air in the interstices. Thus, a
very small liquid-solid contact area is generated.

Steinberger et al. utilized surfaces patterned with a
square array of cylindrical holes to demonstrate that
gas bubbles present in the holes may cause a reduced
slip [41]. Numerically, they found even negative slip
lengths for flow over such bubble mattresses, i.e., the
effective no-slip plane is inside the channel and the bub-
bles increase the flow resistance. In this section we con-
sider negative slip lengths on bubble surfaces and also
discuss the question of shear-rate dependent slip. In
particular we show that microbubbles can generate a
shear-rate dependence.

Our simulations utilize the single component multi-
phase LB model by Shan and Chen [30] which enables
simulations of liquid-vapor systems with surface ten-
sion. The flow is confined between two parallel walls.
One of the walls is patterned with holes and vapor bub-
bles are trapped to these holes. The other wall is smooth
and moved with velocity u0. Steinberger et al. [41] pre-
sented finite-element simulations of flow over rigid “bub-
bles” by applying slip boundaries at static bubble sur-
faces. The LB method allows the bubbles to deform if
the viscous forces are high enough compared to the sur-
face tension. We are also interested in how surface pat-
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terning affects the slip properties of these surfaces, and
how bubbles could be utilized to develop surfaces with
special properties for microfluidic applications [38].
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Fig. 5 A visualisation of the simulation setup (left): the lower
surface is patterned with holes, while the upper surface is moved

with velocity u0. Right: the slip length β as a function of pro-

trusion angle ϕ. A unit cell of each array is shown in insets and
corresponding results are given by triangles (rhombic array), di-

amonds (rectangular array), and circles (square array). The inset

in the top-left corner shows the definition of ϕ [38].

The distance between walls is d = 1 µm (40 lattice
nodes) in all simulations, and the area fraction of holes
is 0.43. A unit cell of the regular array is included in
a simulation and periodic boundary condition are ap-
plied at domain boundaries. The bubbles are trapped
to holes by using different wettabilities for boundaries
in contact with the main channel and with the hole.
The protrusion angle ϕ (see Fig. 5 for definition) is var-
ied by changing the liquid’s bulk pressure. The effective
slip length is β = µu0/σ − d, where σ = µdv/dz is the
shear stress acting on the upper wall and µ the dynamic
viscosity of the liquid.

We investigate the effect of a modified protrusion
angle and different surface patterns by using square,
rectangular, and rhombic bubble arrays. The cylindri-
cal holes have a radius a = 500 nm and the area fraction
of the holes is equal in all cases. The shear rate is such
that the Capillary number Ca = µaGs/γ = 0.16. Here,
Gs and γ are the shear rate and surface tension, respec-
tively. A snapshot of a simulation is shown in the left
part of Fig. 5 and the slip lengths obtained are shown
in the right part. The observed behavior is similar to
that reported in [41], where a square array of holes was
studied. In particular, we observe that when ϕ is large
enough β becomes negative. Moreover, when the pro-
trusion angle equals zero, the slip length is maximised
and the highest possible throughput in a microchannel
is obtained. The behavior of the slip length can be ex-
plained by thinking of an increased surface roughness
if the protrusion angle is larger or smaller than zero.
Since the area fraction of the bubbles is the same in all
three cases, our results clearly indicate that slip proper-

ties of the surface can be tailored not only by changing
the protrusion angle but also by the array geometry.
In the presented study, the highest slip lengths are ob-
tained for the rhombic unit cell and it is current work
of progress to investigate the influence of the array ge-
ometry in more detail.

Next, the shear-rate dependence of the slip length
is investigated. As the shear rate and thus the viscous
stresses grow the bubbles are deformed (see Fig. 6, left)
and the flow field is modified. In the central part of
Fig. 6, we show the simulated slip length as a func-
tion of the Capillary number for three different pro-
trusion angles. The Capillary numbers chosen are in
higher end of the experimentally available range. Our
results show shear-rate dependent slip, but the behavior
is opposite to that found in some experiments: in fact,
the slip lengths measured by us decrease with increas-
ing shear due to a deformation of the bubbles. In the
experiments, surface force apparatuses are used (see,
e.g., Ref. [19]), where a strong increase in the slip is ob-
served after some critical shear rate. This shear-rate de-
pendence has been explained, e.g., with formation and
growth of bubbles [12, 42]. In our simulations, there is
no formation or growth of the bubbles as we only sim-
ulate a steady case for given bubbles. The experiments
on the other hand are dynamic. However, our results
indicate that the changes in the flow field which occur
due to the deformation of the bubbles cannot be an
explanation for the shear-rate dependence observed in
some experiments. Our results are consistent with [35]
and the previous section, where it is shown that smaller
roughness leads to smaller values of a detected slip. In
the present case, the shear reduces the average height of
the bubbles and thus the average scale of the roughness
decreases as well.

Finally, we consider a surface patterned with grooves.
Cylindrical bubbles protrude to the flow channel from
these holes with protrusion angle ϕ = 72◦, and the
area fraction of slots is 0.53. We apply shear both par-
allel and perpendicular to the slots. The slip length is
strongly dependent on the flow direction [38]. For par-
allel flow the slip length is positive, but for the perpen-
dicular case it becomes negative. Flow direction affects
also greatly on the shear-rate dependence (cf. Fig. 6,
right). When flow is parallel to the grooves no shear-
rate dependence is observed, but for the perpendicular
case this dependence is similar to that seen on hole ar-
rays. These results can be understood on the basis of
deforming bubbles. For perpendicular flow the bubbles
are able to deform, but for the parallel case the bubbles
retain their shape regardless of the shear rate.
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5 CONCLUSION

In this paper we present our applications of the lat-
tice Boltzmann method to microfluidic problems. The
focus of our research is laid on the validation of the
no-slip boundary condition. By introducing a model
for hydrophobic fluid-surface interactions and study-
ing pressure-driven flow in microchannels, we show that
an experimentally detected slip can have its origin in
hydrophobic interactions, but is constant with varied
shear rates and decreases with increasing pressure. An-
other effect that was not fully understood so far is the
influence of surfaces roughness. We are able to apply
our simulations to surface data obtained from AFM
measurements of experimental samples. We show that
ignoring roughness can lead to large errors in a detected
slip. In fact, we propose that roughness alone could of-
ten be the reason for apparent boundary slip.

Microscale bubbles at surfaces allow to tailor the
slip properties of a surface. Such a surface with bub-
bles may yield negative slip, i.e., increased resistance to
flow, if bubbles are strongly protruding to the channel.
Our simulations capture the deformability of bubbles
and thus allow to study the influence of the shear rate
on the deformation of the interface and it’s effect on
the measured slip. We find that the slip decreases with
increasing shear rate demonstrating that shear induced
bubble deformation cannot explain recent experimen-
tal findings where slip increases with increasing shear
rate [19].

In the current review, we also demonstrate the suit-
ability of the lattice Boltzmann method for modeling
microfluidic applications: in contrast to molecular dy-
namics, it is able to reach experimentally available time
and length scales. This allows us to compare our re-
sults to experimental data directly and to simulate flow
along surface data obtained from AFM measurements
of “real” samples. Additionally, multiphase lattice Boltz-
mann simulations inherently contain the possibility to
study dynamical experiments.
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Fig. 6 The left figure shows a snapshot of a bubble deformed by shear flow. In the centre, the slip length as a function of the capillary

number for a square array of bubbles with three different protrusion angles, ϕ = 63◦, 68◦, and 71◦ (from uppermost to lowermost) is
shown. The inset shows cross sections of liquid-gas interfaces for four capillary numbers [38]. The right figure shows the slip length as

a function of capillary number for a surface with cylindrical bubbles. Circles denotes the values for flow parallel to the bubbles and

diamonds for the perpendicular direction.


