

Computing push plans for disk-shaped robots

Citation for published version (APA):
Berg, de, M. T., & Gerrits, D. H. P. (2009). Computing push plans for disk-shaped robots. In Abstracts 25th
European Workshop on Computational Geometry (EuroCG'09, Brussels, Belgium, March 16-18, 2009) (pp. 49-
52)

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/cffb5aa0-5278-4611-8bc2-6c23a4c683e2

Computing Push Plans for Disk-Shaped Robots

Mark de Berg∗ Dirk H.P. Gerrits∗

Abstract

Suppose we want to move a passive object along a
given path, among obstacles in the plane, by pushing
it with an active robot. We present two algorithms to
compute a push plan for the case that the obstacles
are non-intersecting line segments, and the object and
robot are disks. The first algorithm assumes that the
robot must maintain contact with the object at all
times, and produces a shortest path. There are also
situations, however, where the robot has no choice but
to let go of the object occasionally. Our second algo-
rithm handles such cases, but no longer guarantees
that the produced path is the shortest possible.

1 Introduction

A fundamental problem in robotics is path plan-
ning [9], in which a robot has to find ways to navigate
through its environment from its initial configuration
to a certain destination configuration, without bump-
ing into obstacles. Many variants of this problem have
been studied, involving widely differing models for the
environment, and for the robot and its movement. In
manipulation path planning [7] the robot’s goal is to
make a passive object, rather than the robot itself,
reach a certain destination. Several different kinds
of manipulation have been studied, including grasp-
ing [7], squeezing [5], rolling [2], and even throwing [8].

The manipulation path planning problem studied
here involves pushing [7]. In particular, we want a
disk-shaped robot to push a disk-shaped object to a
given destination in the plane among polygonal ob-
stacles. Nieuwenhuisen et al. [9, 11, 12] developed a
probabilistically complete algorithm for this based on
the Rapidly-exploring Random Trees path-planning
algorithm [6]. This builds a tree of reachable posi-
tions by repeatedly generating object paths and try-
ing whether the pusher can make the object follow
such a path. Thus a subroutine is needed to push the
object along a given path.

Problem statement. In the plane, let P be a disk-
shaped robot (of radius rp) called the pusher, let O
be a disk-shaped object (of radius ro > rp), and let
Γ = {γ1, . . . , γn} be a set of non-intersecting line seg-
ments called the obstacles. We’re given a collision-

∗Dept. of Computer Science, TU Eindhoven, the Nether-
lands, mdberg@win.tue.nl, dirk@dirkgerrits.com

free path τ for O consisting of k constant-complexity
curves τ1, . . . , τk called the path sections. We then
want to compute a collision-free path σ for P such
that P pushes O along τ when P moves along σ.
We allow P and O to slide along obstacles, which
is called a compliant motion. The computed path σ
will be called a push plan. We distinguish two kinds
of push plans: contact-preserving push plans in which
the pusher maintains contact with the object at all
times, and unrestricted push plans in which the pusher
can occasionally let go of the object.

Related work. Along with the algorithm described
above, Nieuwenhuisen et al. [9, 10] also developed a
subroutine needed by the algorithm that solves the
problem just described. They assume the object path
consists of line segments and circular arcs only, and
after preprocessing the n obstacles in O(n2 log n) time
into an O(n2)-space data structure, they can compute
a contact-preserving push plan in O(kn log n) time. It
is not guaranteed that the constructed push plan is
optimal in any way.

Agarwal et al. [1] considered the problem where
only the final destination of the object is given, and
not its path τ . For this they give an algorithm for
finding a contact-preserving push plan for a point-size
pusher and a unit-disk object. The algorithm dis-
cretizes the problem in two ways: the angle at which
the pusher can push is constrained to 1/ε different
values, and the combined boundary of the obstacles
is sampled at m locations to give potential intermedi-
ate positions for the object. The algorithm then runs
in O((1/ε)m(m + n) log n) time, but is only guaran-
teed to find a solution if 1/ε and m are large enough.
The algorithm assumes the pusher can get to any po-
sition around the object at all times, which is true for
their point-sized pusher but not for our disk-shaped
pusher: there may be obstacles in the way.

Our results. We present a new algorithm for com-
puting contact-preserving push plans for a given ob-
ject path. It matches the O(kn log n) time needed
by Nieuwenhuisen’s approach, while handling path
sections other than line segments and circular arcs,
and without needing a O(n2 log n)-time and O(n2)-
space preprocessing step. We also present the first
algorithms to compute shortest contact-preserving
push plans, in O(k2n2 log(kn)) time and O(k2n2)
space, and to to compute unrestricted push plans, in
O(kn log(kn) + kn2 log n) time and O(kn2) space.

1

Computing Push Plans for Disk-Shaped Robots

49

If we assume the obstacles aren’t too densely
packed, these time and space bounds can be greatly
improved. Both Nieuwenhuisen’s and our approach
for computing contact-preserving push plans then
take O((k + n) log(k + n)) time and O(k + n) space,
but the former still needs its expensive preprocessing
step. For shortest contact-preserving push plans our
approach takes O((k + n) log(k + n) + k2 log k) time
and O(k+n) space, and for unrestricted push plans it
takes O((k+n) log(k+n)+kn) time and O(kn) space.
For lack of space we only present the high-obstacle-
density results here, and omit some proofs. Details
can be found in Gerrits’s MSc thesis [4].

2 Preliminaries

In the problem statement we’ve been deliberately
vague about what pushing the object along a path
entails. Before discussing our algorithms we fill in
some of the details.

The push range. As mentioned before, compliant
motions are motions where the object slides along an
obstacle. Such motions are more robust in the pres-
ence of sensor inaccuracies, because the obstacle will
act as a guide for the object. More importantly, this
allows the pusher to achieve the same motion for the
object from a continuous range of different pushing
positions, called the push range. The pusher can then
swerve around the object to avoid obstacles while still
pushing the object in the desired direction. (See Fig-
ure 1(a).) With a non-compliant motion, the push
range is a single pushing position depending only on
the desired direction of motion for the object. If any
obstacles are in the way, there simply exists no push
plan for that object motion. (See Figure 1(b).)

P
O P O

(a) (b)

Figure 1: The push range for (a) a compliant motion,
and (b) a non-compliant motion.

Friction. The exact size of the push range for com-
pliant motions depends on the friction characteristics
of the two disks and the obstacles. Nieuwenhuisen [9]
describes how to compute the push range, given the
friction coefficients between the disks and between
the object and obstacles. Friction also affects how
pushing works for non-compliant motions. Agarwal
et al. [1] studied the motion of the object resulting
from pushing in a straight line under simple friction
assumptions.

We abstract away from compliance and friction by
assuming that we can compute the push range for any
position of the object along its path. We assume (as
do Nieuwenhuisen and Agarwal et al.) that pushing
is quasi-static [13], i.e. when pushing stops, the object
also stops instantly. (This will never be the case in
reality, but it can be closely approximated by pushing
slowly, or having very high friction between the disks
and the floor.)

Assumptions about the input path. We assume the
given path τ : [0, 1] → R2 for the object does not
take it through any of the obstacles. Furthermore, we
assume that τ is made up of k constant-complexity
curves τ1, . . . , τk. We further assume that the path
sections are “well-behaved” (in a technical sense ex-
plained in Gerrits’s MSc thesis [4]). The line segments
and circular arcs used as path sections by Nieuwen-
huisen are all well-behaved.

3 Pushing while maintaining contact

A general-purpose technique for path-planning is to
translate the problem from the work space into the
configuration space. The work space is the environ-
ment in which the robot has to find a path, and a
configuration is one specific placement of the robot in
this space. Each point in the configuration space cor-
responds to a configuration in the work space. Some
configurations are invalid because the robot would in-
tersect an obstacle and these form the forbidden (con-
figuration) space. The remainder is the free (configu-
ration) space, and a path through it translates back
to a solution to the original path-planning problem in
the work space.

To apply this technique to our problem, we first
discuss what our configuration space looks like, then
how to compute it and how to find a path through it.

Shape of the configuration space. In our case, a
configuration is a placement of both the pusher and
the object in the work space. Since the object is
restricted to the path τ , and we assume that the
pusher and object can maintain contact at all times
(for now; we will lift this restriction in Section 4),
the configuration space is two-dimensional. The point
(s, θ) ∈ [0, 1]×S1 in the configuration space will rep-
resent the configuration with the object’s center at
τ(s) and with θ being the pushing angle: the angle
that the line from the pusher’s center to the object’s
center makes with the positive x-axis. (Note that the
configuration space is cylindrical, but for clarity we
will depict it “flattened” as a rectangle.)

We assume that path τ does not take the object
through any obstacles, so a configuration can be in-
valid for only two reasons: either the pusher intersects
an obstacle, or the pusher is outside of the push range.

2

EuroCG’09 - Brussels, Belgium

50

We therefore consider the forbidden space to be the
union of two kinds of shapes. A configuration-space
obstacle Cγ consists of the configurations where the
pusher intersects obstacle γ. A forbidden push range
FPRi consists of the configurations where the object
is on the interior of path section τi and the pusher is
outside the push range. By Cγ,i we’ll mean the restric-
tion of Cγ to configurations with the object on path
section τi. The forbidden space is then the union of
these k(n + 1) shapes (n obstacles and 1 forbidden
push range per path section). An example is shown
in Figure 2.

P O

0

0 1

+π

−π

Figure 2: An example work space and its configura-
tion space. The s-axis is horizontal, the θ-axis is verti-
cal. Configuration-space obstacles are drawn dashed
in light gray, the forbidden push range is drawn in
dark gray.

Theorem 1 The configuration space has complexity
O(kn), i.e. the boundary of the forbidden space con-
sists of O(kn) vertices and constant-complexity curves
between them.

Proof. Since a path section τi has constant complex-
ity, so do FPRi and Cγ,i for all γ ∈ Γ. We will
prove that

⋃
γ∈Γ Cγ,i has complexity O(n). It then

follows that FPRi ∪
⋃
γ∈Γ Cγ,i, the forbidden space

for one path section, also has complexity O(n), yield-
ing O(kn) in total.

The boundary of Cγ corresponds to configurations
where the pusher is compliant with γ. Such pusher
positions all lie at distance rp from γ and thus form
a “capsule.” A point of intersection of Cγ1,i and Cγ2,i
corresponds to a configuration where the pusher is
compliant with both γ1 and γ2, and that pusher posi-
tion must thus be the intersection of the correspond-
ing capsules. These capsules form a collection of pseu-
dodisks [3, Chapter 13], and therefore have a union
complexity of O(n). Thus there can only be O(n)
positions where the pusher would be compliant with
more than one obstacle. Each of these pusher posi-
tions could show up in the configuration space more
than once, since path τi could take the object past
this point multiple times. However, this cannot hap-
pen more than O(1) times, since τi is well-behaved.
Thus

⋃
γ∈Γ Cγ,i has complexity O(n). �

Computing the configuration space. To compute
the configuration space in a form that allows us to
easily compute a push plan we perform the following
steps:

1. Compute Cγ,i for all γ ∈ Γ, and all τi ∈ τ .
2. Compute FPRi for all τi ∈ τ .
3. Take the union of these shapes to get the forbid-

den space.
4. Divide the free space into cells by a vertical de-

composition.
5. Create the cell graph by directing an edge from

cell c1 to c2 iff c1’s right boundary touches c2’s
left boundary.

The running time of this approach is expressed by the
following theorem:

Theorem 2 The configuration space can be com-
puted in O(kn log2 n) time worst-case, or O(kn log n)
expected time, both using O(kn) space.

Computing a shortest contact-preserving push plan.
Not every path through the free space actually yields
a push plan. If a path through the configuration space
is not s-monotone then the pusher would have to pull
the object on occasion. To prevent this we remove
from the cell graph all cells that are not reachable
from the starting configuration by a valid contact-
preserving push plan. It’s then fairly simple to find an
arbitrary s-monotone path in linear time, resulting in
a contact-preserving push plan in the time and space
bounds of Theorem 2.

It is tempting to instead compute a Euclidean
shortest path through the reachable cells. The
cells themselves are s-monotone, so a shortest path
through the remaining cells must yield a push plan.
Unfortunately, a shortest path in configuration space
does not necessarily minimize the pusher’s movement
in the work space. We can circumvent this problem by
performing our computations in the work space. Each
cell of the free space decomposition corresponds to a
contiguous subset of the valid configurations. The
pusher positions of these configurations also form a
contiguous region in the work space. We could call
this region the corresponding work-space cell. All
work-space cells together form the region that P may
move in to accomplish O’s desired motion. Comput-
ing a shortest path [14] through this region then yields
a shortest contact-preserving push plan.

Theorem 3 Given the configuration space a short-
est contact-preserving push plan can be computed in
O(k2n2 log(kn)) time and O(k2n2) space.

3

Computing Push Plans for Disk-Shaped Robots

51

4 Pushing and releasing

Until now we’ve assumed the pusher can maintain
contact with the object at all times. However, the sit-
uation that was depicted in Figure 2 does not admit
such contact-preserving push plans. (In fact, we’ve
proven [4] that this is the case for any object path
with the same start and end point.) It does admit an
unrestricted push plan, as can be seen in Figure 3.

r

0

0 1

+π

−π
r

Figure 3: An unrestricted push plan for the example
of Figure 2, doing one release at position r.

Canonical releasing positions. Whenever the push
range is split into multiple contiguous ranges by ob-
stacles, it may make sense for P to let go of O and
try to reach one of these other positions. In the con-
figuration space this situation corresponds to a ver-
tical line intersecting multiple cells. In general there
are infinitely many such potential releasing positions,
thus it’s infeasible to try them all. Instead we consider
only vertical lines that go through a vertex of a cell or
configuration-space obstacle. We call the resulting set
of O(kn) positions the canonical releasing positions.
We’ve proved that if an unrestricted push plan exists,
then there is also an unrestricted push plan where P
only releases O at canonical releasing positions [4].

Computing an unrestricted push plan. Restricting
ourselves to canonical releasing positions, we cannot
guarantee a shortest push plan anymore. Thus we
can abandon the work-space-cell approach and in-
stead proceed as follows:

1. Compute a road map [3, Chapter 13] S for P
among the obstacles.

2. At each canonical releasing point r, determine
the set of cells intersected by the vertical line
through r. Add O as an extra obstacle in S to
get S ′, and determine for each intersected cell in
which component of S ′ its pusher positions lie.
Add edges in the cell graph between cells sharing
a component of S ′.

3. Compute a path through this extended cell
graph.

4. Convert the path into a push plan. For edges of
the original cell graph this is straightforward, for
the extra edges use S ′ to find a path for P .

The running time of this approach is expressed by the
following theorem:

Theorem 4 Given the configuration space an unre-
stricted push plan can be computed in O(kn log(kn)+
kn2 log n) time and O(kn2) space.

References

[1] P. Agarwal, J. Latombe, R. Motwani, and P. Ragha-
van. Nonholonomic path planning for pushing a disk
among obstacles. In Proc. IEEE Int. Conf. Robotics
& Automation, volume 4, pages 3124–3129, 1997.

[2] H. Arai and O. Khatib. Experiments with dynamic
skills. In Proc. Japan-USA Symp. Flexible Automa-
tion, pages 81–84, 1994.

[3] M. de Berg, M. van Kreveld, M. Overmars, and
O. Cheong. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 3rd edition, 2008.

[4] D. Gerrits. Designing push plans for disk-shaped
robots. Master’s thesis, Technische Universiteit Eind-
hoven, The Netherlands, 2008.

[5] K. Goldberg. Orienting polygonal parts without sen-
sors. Algorithmica, 10(2–4):210–225, 1993.

[6] S. LaValle and J. Kuffner. Rapidly-exploring random
trees. In B. Donald, K. Lynch, and D. Rus, editors,
Algorithmic and Computational Robotics: New Di-
rections, pages 293–308, 2001.

[7] M. Mason. Mechanics of Robotic Manipulation. In-
telligent Robots & Autonomous Agents. MIT Press,
2001.

[8] M. Mason and K. Lynch. Dynamic manipulation.
In Proc. IEEE/RSJ Int. Conf. Intelligent Robots &
Systems, pages 152–159, 1993.

[9] D. Nieuwenhuisen. Path Planning in Changeable En-
vironments. PhD thesis, Universiteit Utrecht, The
Netherlands, 2007.

[10] D. Nieuwenhuisen, A. van der Stappen, and M. Over-
mars. Path planning for pushing a disk using com-
pliance. In Proc. IEEE/RSJ Int. Conf. Intelligent
Robots & Systems, pages 4061–4067, 2005.

[11] D. Nieuwenhuisen, A. van der Stappen, and M. Over-
mars. Pushing using compliance. In Proc. IEEE
Int. Conf. Robotics & Automation, pages 2010–2016,
2006.

[12] D. Nieuwenhuisen, A. van der Stappen, and M. Over-
mars. Pushing a disk using compliance. IEEE Trans-
actions on Robotics, 23(3):431–442, 2007.

[13] M. Peshkin and A. Sanderson. Minimization of en-
ergy in quasi-static manipulation. IEEE Transactions
on Robotics & Automation, 5(1):53–60, 1989.

[14] M. Pocchiola and G. Vegter. Computing the visibility
graph via pseudo-triangulations. In Proc. 12th ACM
Symp. Comput. Geom., pages 248–257, 1995.

4

EuroCG’09 - Brussels, Belgium

52

