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1 Introduction 

Let X, Xl, X 2 , ••• be a strictly stationary sequence of (dependent) random variables. We say 
that Xi is an extreme value if Xi > u, where U = Un is "close" to the right end point of the 
distribution of the random variable X. 

Extreme value theory has important applications to insurance and finance (when the k
th largest element Xn ,k of the sample XI, ... , Xn represents the k-th largest claim or the k-th 
largest gain (loss) of a stock in a certain period of time), in flood prediction and prevention 
in hydrology, and in network modelling, meteorology, etc. (see Embrechts et al. (1997) and 
references therein). The basic information about extremes in the sample is collected in the 
number Mn,u of exceedances above the level u among the random variables XI, . .. ,Xn : 

n 

Mn,u = L l{xi>u} . 
i=1 

(1.1 ) 

The random variables Xn,k and Mn,u are closely related, since the events {Xn ,k ~ u} = 
{Mn,u < k}. 

If one is interested in more information about the joint distribution of the large val
ues Xn,k, then processes of exceedances must be introduced. A one-dimensional point process 
Nn ,u marks the indices where high level exceedances occur: 

n 

Nn,u(B) = L l{i/nEB,Xi>u}, 
i=! 

(1.2) 

for any Borel set B c [0, 1J. A two-dimensional point process ~n,j contains in addition the 
information about the heights of exceedances: 

n 

~n,j(A) = L l{(i/n,/-l(X;))EA}, (1.3) 
i=! 

for any Borel set A c [0,1 J x [0,00), where I is a strictly decreasing function from R+ = 
[0,00) to R, and interest is mainly concentrated on [0,1] X [0,1-1 (u)). 

The limiting behaviour of extremes under various asymptotic regimes has been well 
studied, and the books by Leadbetter et al. (1983) and Embrechts et al. (1997) give good 
accounts of the theory. Results particularly relevant to this paper are those of Hsing et 
at. (1988), who showed that the only possible limit laws for Nn,u are compound Poisson 
distributions, and of Novak (1998), who established necessary and sufficient conditions for 
the weak convergence of ~n,j to a compound Poisson point process. 

In this paper, we move away from the idea of a limit, and instead consider finite sam
ples: we investigate the distance between the distributions of the empirical processes of 
exceedances Nn,u and ~n,j from natural compound Poisson approximations, for any fixed 
choices of n, u and I; the approximation of Mn,u in this way was addressed in Novak (1998). 
Even in the case where sequences indexed by n are considered, and u = Un and I = In are 
chosen to ensure non-trivial limiting behaviour, the distance between the empirical processes 
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and their corresponding limit laws is still important, since a limit theorem is useless if the 
distance from the limit is not "small". 

Novak (1998) evaluated the total variation distance between £(Mn,u) and an appropriate 
compound Poisson distribution, where the total variation distance between the distributions 
of random elements P and Q with common domain B is defined by 

dTV(P, Q) = sup IP(B) - Q(B)I· 
BEB 

However, the points of the process Nn,u are concentrated on a subset n of rational numbers in 
[0,1], whereas the points of any distributional limit Noo hit n with probability 0. This makes 
the total variation distance unsuitable for measuring the accuracy of the approximation 
Nn,u ~ Noo , since it would always be the case that dTV(£(Nn,u),£(Noo )) took the value l. 
Hence we need weaker metrics for measuring the distance between the distributions of point 
processes. 

Let r be an interval [0 , a], and let Q be the O"-field generated by open sets in r. Define 

where Ci E Nand ox(-) is the Dirac measure at x: ox(B) = 1B(X). Then 1l is the space of 
finite, non-negative integer valued counting measures on (r, Q), and a realizaton of a point 
process on r is just an element ~ of 1l: for a = 1, Nn,u is an example. The interpretation is 
that ~ = I:£=l CjOt; consists of a configuration of a total of k = I:~1 Cj points, with Cj points 
located at ti, 1 ::; i ::; n; we denote the list of points of ~ by t = {ij, 1 ::; j ::; k}, where each 
of the ti appears Ci times in the list { More generally, one can take r to be a compact metric 
space with a metric do, and define 1l to be the family of all finite, non-negative integer 
valued counting measures on (r, Q). In Section 3, where we study the distribution of the 
process ~n,J, r is a rectangle. 

Now let X and Y be random elements of 1l, and set Qx = £(X) and Qy = £(Y). 
We use the class of Wasserstein metrics to measure the distance between the probability 
distributions Q x and Qy. These metrics are defined by setting 

d*(Qx,Qy) == d*(Qx,Qyld) = inf lEd(X',Y'), 
(X' ,y') 

(1.4) 

where d is any distance between elements in 1l, and the infimum ranges over all pairs (X', Y') 
with values in 112 and marginal distributions £(X') = Qx and £(Y') = Qy. This leaves 
great freedom of choice, since the distance d has still to be chosen; we restrict ourselves to 
those of the form 

if ~(r) i- 7](r), 
if ~(r) = 7](r) = k > 0, 

if ~(r) = 7](r) = 0, 

where ~ = I:~1 C~OYi (.) and 7] = I:~~ c~' OZi (.) are elements of 1l, do is a metric on r, and the 
minimum is taken over all possible permutations T of (1,2, ... , k). This distance minimises 
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the average do-distance between pairs of points, with respect to the choice of matching. 
Thus two configurations, one obtained from the other by a small shift in r, are at small d1 

distance one from another, whereas, with respect to total variation distance, they would be 
far apart. The metric d* on tl derived according to (1.4) from d = d1 we refer to as d2 • 

There remains the choice of metric do on r, which itself needs to be carefully considered. 
It is most natural to use choices of do which are based on Euclidean distance, but are also 
scale invariant, in the sense that expressing the locations of all points in new units should 
not change the distance of a configuration from a reference configuration; for reasons of 
robustness, we also require that do(x, y) :S 1. Scale invariance is achieved by implicitly taking 
typical configurations from the approximating compound Poisson process as references, and 
requiring that do be chosen so that this process has unit intensity. Thus, if r is an interval 
[0, a], we can take 

dO(Xl,X2) = min{clxl - x21, I}, 

where c is the intensity of the reference process with respect to Lebesgue measure (the 
average intensity, if c were not constant; but here we only consider stationary processes). In 
Section 2, we prefer to achieve this by scaling the point process Nn,v. to have unit intensity, 
so that then c = 1. For r a rectangle in R 2, we take 

where Cl C2 is the (average) intensity of the reference process with respect to two dimensional 
Lebesgue measure, and the ratio cd C2 can be chosen to reflect the relative importance of 
discrepancies in the x and y directions. 

Although the Wasserstein metric d2 is rather weaker than the total variation metric, a 
small value of d2 ( QI' Q2) still implies that the QI and Q2 distributions of many functionals 
of the random measures are close to one another. One such functional is the total number of 
points; another, more sophisticated functional is the empirical distribution function of the 
inter-point distances. As a further example, suppose that the function 9 is bounded and 
Lipschitz on r. Then the functional 

{ 
Ilgll if ~(r) = 0; 

h(O = Jrg(x)~(dx)/~(r), if ~(r) > 0, 

is dI-Lipschitz with constant max{21lgll, Ilg'II}, so that, for random elements X, Y of tl, 

IlEh(X) - lEh(Y)1 :S max{2I1gll, 11g'II}d2(£(X), £(Y)). 

Bounded functions of the pair (h(X), X(r)) which are Lipschitz in the first coordinate can 
also be considered. Thus the d2 metric provides a useful measure of the rate of convergence; 
as is shown below, it is effective in the current situation, whereas total variation distance is 
not. 

Our approximating distributions we define as follows. For a fixed interval [0, a], we use 
CP(Af.l, v) to denote the distribution of the compound Poisson process 

L ZsoYs (1.5) 
s:Y.E[O,aj 
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with intensity measure )../-l and multiplicity distribution v. Here /-l denotes Lebesgue measure, 
).. is the intensity coefficient, {Z, Z1, Z2, ... } are independent random variables (independent 
of the sequence {Ys}) with .c(Zs) = v, and {Ys} are the points of a Poisson process on 
R+ with intensity measure )../-l. The mean measure of CP()../-l, v) is then given by )../-llEZ. 
Expression (1.5) can equivalently be written as 2:::;==1 ZsOy., where the random variable 7r = 
#{s: 0::; Ys ::; a} has the Poisson Po(a)..) distribution. Such processes, with continuous 
intensity measures, are the natural approximations for the stationary processes Nn,u' 

For =:'n,j, we exchange Zs for a finite random measure in R+, which is used to approxi
mate not only the number of exceedances at indices i such that i/n is near a point t E [0, a], 
but also the (extreme) values j-1(Xi ) taken there. We use the notation PC ()../-l, v*) to de
note the corresponding Poisson cluster process, having intensity measure )../-l on [0, a] for the 
occurrence of clusters, and probability measure (multiplicity distribution) v* over the family 
of finite point measures in R+, which describes the distribution of the clusters. The two 
types of processes are linked, inasmuch as the measure v* induces the distribution v of the 
number of points in a cluster: 

v{j}:= v*{ry: ry{[0,j-1(U))} =j}. 

Hence the one-dimensional compound Poisson process CP()../-l, v) can be derived as a sum
mary of the process PC ()../-l, v*). The Poisson cluster process is a compound Poisson process 
on [0, a] x R+ when the probability measure v* is concentrated on the set of point measures 
which consist of a single atom, and is a Poisson process when these atoms are restricted to 
having mass 1. 

In the next two sections, we provide explicit bounds for the accuracy of compound 
Poisson approximation to the point processes Nn,u and =:'n,j, in terms of the Wasserstein 
metric d2 • 

2 Compound Poisson approximation to Nn,u 

The main result of the section, Theorem 2.1, bounds the d2- distance between the distribution 
of Nn,u and a compound Poisson process , whose mean measure is proportional to Lebesgue 
measure /-l. This latter stipulation is natural, in view of stationarity. In order to formulate the 
theorem, it is necessary to decide on the carrier space and on the metric do. The standard 
approach is to choose r = [0,1] and do(x, y) = Ix - YI, the Euclidean distance, but, as 
discussed in the previous section, this is not scale invariant . Our choice is therefore to modify 
the definition of Nn,u, retaining the usual Euclidean scale, and defining 

do(x,y):= min{lx - YI, 1}, X,Y E R. (2.1 ) 

Thus, suppressing the indices nand u, we write 

p = lP(X > u), 

and set 
n n 

N(B) = L l{ipEB ,xi>u} = L l{xi>u}oip(B) (2.2) 
i==1 i==1 
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for any Borel set B c r := [0, npj. 

In order to state the main theorem, and as a principal tool in the proof, we shall need 
the classical Bernstein's "blocks": see also Hsing et al. (1988). Fix any r E Z+, and divide 
{I, ... , n} into blocks of length r by putting 

Br(i) = {(i - l)r + 1, ... , (ir) 1\ n}. 

Define 
Tri = L l{xj >u} l~i~rn/rl, 

jEBr{i) 

and let ti, 1 ~ i ~ l n/r J be independent copies of Tr1 , noting that the Tri are also identically 
distri bu ted for 1 ~ i ~ l n / r J; the notation l x J denotes the greatest integer m ~ x, r x 1 the 
least integer m 2:: x. Then let Vr denote the conditional distribution of Trl given that Trl 2:: 1, 
and put 

vr[a, b) = vr{[a, b)}, qr = IP(Trl 2:: 1), Or = qr/rp. 

Note that qr and Or are functions of the level u, and that qr ~ rp 1\ l. If the limit 

0= lim Orn ' 
n---+oo 

exists for any sequences Un and rn such that np is bounded away from ° and 00 and 1 « rn « 
n, then it is called the extremal index of the sequence {Xi, i 2:: I} (O'Brien (1974), Leadbet
ter et at. (1983, Chapter 3.7), Novak (1996)). The compound Poisson process CP(Orj.l, V r) 
on [0, npj is the approximation that we use for the distribution of N. 

In the proof, the blocks are used essentially to show that the joint distribution of the Tri , 

1 ~ i ~ l n/r J, is close to that of ti, 1 ~ i ~ l njr J, under suitable mixing conditions. We 
consider two such. Let Fm,s be the O"-algebra generated by the events {Xi> u}, m ~ i ~ s. 
Set 

Then set 

where 

<p(l) 

a(l) 

max sup IIP(BIA) - IP(B)I , 
lS;mS;n AEF1,m ,BEFm+I,n 

max sup IIP(A n B) - IP(A)IP(B)I. 
1 S;mS;n AEF1,m ,BEFm+I,n 

c == c(l, r, M) = min {nr-l<p(l); Mnr-1o.(l) + 2nr- 1 IP(Trl 2:: M)} . 

Note that IP(T"l 2:: M) = qrvr[M, 00), and that 

r- 1 IP{Trl 2:: M) ~ r- 1 IETrd M = p/ M. (2.3) 

A better estimate is valid under additional assumptions. For instance, if C<p = 2; <pl/2(2 i
) < 00 

t 

and M > rp, then, using Utev's (1989) result, we get 

IP(Trl 2:: M) ~ Ct(rp)t(M - rpt2t , 
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where the constant Ct depends only on Ccp and t. 
We are now in a position to state our main theorem. 

Theorem 2.1 For any choices of M 2:: 1 and l, r such that 1 ::; 1 < r ::; n, we have 

(2.4) 

where both processes are restricted to the interval [0, np]. 

In order to establish the theorem, we first prove the following lemma, which quantifies 
the approximate independence of the block processes. Write 

Lemma 2.2 For any choices 1 ::; 1 ::; r ::; nand M 2:: 1, we have 

(2.5) 

Proof of Lemma 2.2. First of all, let T:P = LjEB~I)(i) l{x»u}, where B~l)(i) := {(i - l)r + 
1, ... ,ir-l} for 1::; i::; lnjrJ, so that B~l)(i) is obtained by deleting a sub-block of length 1 
at the right end of block Br(i), and B~I)(lnjrJ + 1) = Br(lnjrJ + 1). Then, since 

it follows that 

1P ( L l{xj>u} =I- 0) ::; lp, 
jEBr(i)\B~I)(i) 

Let (t,i, f:,L() be independent copies of (Tri' rX)) , which are also independent of Xl, ... , 
X n . Similarly to (2.6), 

(2.7) 

By Lindeberg's (1922) method of compositions (cf. Novak (1998) and Eberlein (1984)), we 
have 

Ln/r J 
L 6j(A) , (2.8) 
j=l 
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for any A C H, where 

It remains to estimate the individual terms in (2.8) , using the mixing coefficients c.p and Q'. 

The atoms of the measure LI~: oirpTr(P are at points in the set 

f* = {rp,2rp, ... ,(ln/rJ -1)rp}. 

Thus the corresponding space H = Hr is countable, so that we may write Hr = {hi,i 2: I}. 
Then 

lL'.j(A)1 < ~l lP (~O;"T;P = hm) 

x IP (hm + ojrpTr(? + ,lI:
J 

oirpT;P E A I I: oirpT;fl = hm) 
t=J+l t=l 

-lP (hm + l~j 0;,,1';;1 E A) 

< ~l lP (~O;"T;P = hm) '1'(1) = '1'(1). 

Substituting this estimate into (2.8), we get 

(2.10) 

Alternatively, for any set C C Z+, define 

{t. Oirpmi: (ms, ms+l,···, mt) E Ct-s+ 1
} , 

Hst(Z+) , H,:! = Hst([O, M - 1)). 

Then, for any MEN and A C Ht'ln/rJ' we have 
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and (2.8) implies that, for A C Ht1n/rJ ' 

(2.11) 

A standard argument now extends this to the bound 

IP C~J o,"pT;il E A) - IP C~J o,"pT;f1 E A) 

::s; Mnr-1a(l) + 1P ( max T;jl 2 M) + 1P ( max T;? 2 M) 
l~J~Ln/rJ l~J~Ln/rJ 

::s; Mnr-1a(l) + 2nr- 1 1P(Tr1 2 M), (2.12) 

valid for any A C llr = HI,ln/rJ' Combining these two bounds with (2.6) and (2.7), the 
lemma follows .• 

Proof of Theorem 2.1. The properties of d2 yield 

(2.13) 

the points of N each being moved at most a distance rp, and the last short block Br (l n / r J + 1) 
being omitted. By Lemma 2.2, 

Then, setting 'IT r = qr I:}~{r J 6irp, it follows that 

(2.14) 
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where the last inequality is from Xia (1997). Now note that 

and, from Brown and Xia (1995, Formula (2.8)), 

(2.15) 

Combining (2.14)-(2.15) with Lemma 2.2, the theorem follows .• 

In order to use Theorem 2.1 for limit asymptotics as n -+ 00, it is traditional to suppose 
that U = Un is chosen so that nPn -+ i E (0,00). A very weak mixing condition is then to 
suppose that (}:n (In) -+ 0 for some sequence In -+ 00 such that In = o( n). Choose Mn in such 
a way that Mn -+ 00 and that Mn(}:n(ln) -+ 0, and then choose Tn = o(n) SO that In/Tn -+ 0 
and that MnnT;;l(}:n(ln) -+ o. It then follows that the right hand side of (2.4) converges to o. 

Suppose now that the same mixing coefficients 'P and (}: are valid for all U = Un, and 
that nPn -+ i E (0,00). Then, taking the cp-mixing estimate, one can choose l = In so 

that l/cp(l) ~ t-In and then T = Tn SO that T = lnVcp(ln)/tJ. This makes the bound in 

Theorem 2.1 of order O( Vt'P(ln)). So if cp(l) :::; 1-{3 for some (3 > 0, take In = l(r1n)1/(1+{3) J to 

get a bound of order O(n-fJ/2(1+{3)); for an m-dependent sequence Xi, similar considerations 
give a rate of O(n- 1

/
2

). However, the same choices can also be used when nPn = in -+ 00, in 
which case the carrier space [0, t n ] for the point process becomes ever larger. For instance, 
if 'P(l) :::; l-{3 and tn = n'fJ for some TJ > 0, then the bound is of order O(n-S/2), where 
6 = ({3 - TJ(1 + 2(3))/(1 + (3), and is useful if TJ < (3/(1 + 2(3). 

Finally, in order to obtain a limit, it should also be the case that Vrn -+ v and Orn = 
qrn/TnPn -+ O. It is then easy to see that 

dTV(CP(O'p, v), CP(O"p, v)) < dTV(PO(O'p(r)), Po(O"p(r))) 

< 10' - O"lp(r) min { 1,1/ J'-f.1(-r-) m-ax-(O-' ,-O-")} 

and that 
dTV(CP(Ap, v'), CP(Ap, v")) :::; Ap(r)dTV(v', v"). 

Then the simple estimate 

(2.16) 

for the distance between the processes over the whole interval [0, np] enables one to complete 
a bound for the entire approximation. 

3 Compound Poisson approximation to =n,j 

The point process =:'n.J is defined on the two- dimensional space [0,1] x [0,00), and the 
choice of do should now reflect the typical two-dimensional distance between points. Here, 
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for convenience, we keep the first coordinate as in (1.3), and rescale the second, by choice 
of f, so as to make the average number of points in a unit rectangle approximately 1; then 
we take 

dO((Xl' yd, (X2, Y2)) = 1/\ [lXl - x21 + IYl - Y21]· 

This suggests taking f so that 

nIP(Xi > f(t)) ;:::: t, a ~ t ~ K < n, 

(3.1 ) 

(3.2) 

where u = f(K) is the lower limit of Xi-values that are considered to be extreme. In 
particular, if the Xi's have a continuous, strictly monotone distribution function F, take 

f(t) = F- l (1- tin), 0 ~ t ~ K. 

We then define the point process of interest on r = [0, 1] x [0, K] by the measure 

n 

~ = L l{Xi>u}O(i/n,j-l(X;)) . 
i=l 

(3.3) 

(3.4) 

We need appropriate mixing conditions. Let F:! be the sigma-field generated by the 
events {mKIM < f-l(Xj ) ~ (m + l)KIM} for 0 ~ m ~ M - 1 and s ~ j ~ t. Define 

'P[Ml(/) .- max sup IIP(BIA) -1P(B)I; 
l:Sm:Sn AEFM BEFM 

I,m' m+l,n 

max sup IIP(A n B) - IP(A)IP(B)I. 
l:Sm:Sn AEFM BEFM 

I,m' m+l,n 

Then set 

g(l,r, M) := max{nr-l'P[M)(l), eMnr-loJM1(1) + 2nr- l IP(Trl :::: M)}, (3.5) 

v; := .c ( L l{x]>u}o f-l(Xj) Trl :::: 1) . 
jEBr(l) 

Theorem 3.1 For any choices of M :::: 1 and l) r such that 1 ~ 1 < r ~ n) we have 

d2 (.c (~) ,PC(nr-lqr/-l,V;)) (3.6) 

~ 2(n- l r + M- l K) + 2nlr-lp + g(/, r, M) + (~ + eqr + 2) qr, 

on the rectangle [0, 1] x [0, K]. 

If the mixing coefficients decay fast enough then the right-hand side of (3.6) is of order 

; + ft + ~ + rp + g(l, r , M) ;:::: (~ + ~ + ;) K, where K may depend on n. This suggests 

choosing r = v:;J and M = .;;;Ji. If'P decays exponentially fast then we can put 1 = C In n 

with a large enough constant C, and the right-hand side of (3.6) becomes 0 (K vn-lln n ) . 
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Let 

For any fixed r, M E Z and 0 ::; m ::; M - 1, define 

T,·M r,tj ,m 

T(I) 
r ,'t; M,m 

L 1{mK/M<f-l(X))~(m+I)K/M}' 
iEBr(i) 

L 1{mK/M<f-I(X))~(m+I)K/M}· 
i EB~I) (i) 

( 
~ ~ ~ ~(I) ~ (I) ~ (I) ) 

(Tr,i;M,O, Tr,i;M,h···, Tr ,i;M,M-I), (Tr,i;M,O' Tr, i;M,I'···' Tr,i ;M,M-I) 

be independent copies of the pairs of vectors 

((Tr ,i;M,O, Tr,i;M,l, ... , Tr,i;M,M-I), (T/2M,O, T;,2M,1' ... ' T;,?;M,M-1)) , 

independent also of Xl, . .. , X n . Denote 

M-l 

::'r ,i;M:= L O(ri/n,(m+1)K/M)Tr,i;M,m (1 ::; i::; In/rJ + 1), 
m=O 

d k 1 dfi ·t· 1 f~(I)::::' d::::'(I) St an rna e ana ogous e III IOns a so 0 :::::'r,i;M' :::::'r,i;M an :::::'r,i;M. e 

V!Mj = £ C~: O(m+1)K/MTr,i;M,m I Tr,i ~ 1) , 
and let qr = lP (Tr,i ~ 1) be as before. 

(3.7) 

(3.8) 

(3.9) 

We can now formulate the analogue of the basic Lemma 2.2, relating the "blocks" process 
to the corresponding independent process. 

Lemma 3.2 For any choices 1 ::; I < r ::; nand M ~ 1, we have 

( (
Ln/rJ ) (Ln/rJ )) 

dTV £, ~ ::'r,i;M ,£' ~ ~r,i;M ::; 2nlr-
l
p+E(I,r,M). (3.10) 

Proof of Lemma 3.2. It follows as for (2.6) and (2.7) that 

( (
Ln/rJ ) (Ln/rJ )) 

dTV £ ~ ::'r,i;M , £, ~ ::'~~~;M (3.11) 

::::. ::::. (I) 

( (
Ln/rJ ) (Ln/rJ )) 

dTV £ ~ :::::'r,i;M , £, ~ :::::'r ,i;M (3.12) 

Using Lindeberg's device, we observe that 

(
Ln/rJ ) (Ln/rJ ) -:=(1) ';:(1) 

lP L ~r,i;M E B - lP ?= ~r,i;M E B 
1=1 1=1 

Ln/rJ { (i Ln/rJ ) (i-1 Ln/rJ ) } _ -:=(1) ';:(1) -:=(1) ';:(1) -?= lP L ~r,i;M + . ~ ~r,i;M E B - lP L ~r,ijM + ?= ~r,ijM E B 
)=1 1=1 1=)+1 1=1 1=) 
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for B C 1l. So, arguing essentially as for (2.10), we deduce the bound 

:;(1) ':;'(I)!!:. [MJ 
( (

lnJrJ ) (lnJrJ )) 
dTV £ ~ ~r,i;M ,£ ~ ~r,i;M ~ r c.p (l), (3.13) 

in terms of the coefficients c.p[M]. On the other hand, for a bound in terms of the coeffi
cients a[M], split 

( 
i lnJrJ ) (i-1 lnJrJ ) :;(1) ':;'(1) :;(1) ':;'(1) 

IP L ~r,i;M + . L ~r,i;M E B - IP L ~r,i ;M + ?= ~r,i;M E B 
,=1 ,=)+1 ,=1 ,=) 

according to all the possible values of the vector (Tr(,];M,o, Tr(,];M,l'" . ,T},];M,M-l) which are 

consistent with Tr(3 ~ M - 1, of which there are fewer than eM, and argue as for (2.11), 
obtaining 

IP C~J ~~~tM E B) - IP C~J 3~~l;M E B) <; eMnr-I"IM1(l) (3.14) 

for the corresponding events B. This implies that, for any B c 1l, 

(3.15) 

The proof is complete. _ 

Proof of Theorem 3.1. The theorem follows from Lemma 3.2 by much the same argument as 
is used to derive Theorem 2.1. Setting 71"; = qr I:J~~rJ is!..!., it follows that 

n 

(3.16) 

where the last inequality is again from Xia (1997). The properties of d2 yield 

(3.17) 

the points of §: each being moved at most a distance rn- 1 + K M-1
, and the last short block 

Br( l n/r J) being omitted, whereas, much as for (2.15), 

(3.18) 
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Combining (3.16)-(3.18) with Lemma 3.2, the theorem follows .• 

There are other kinds of ~mixing' which could be exploited. One condition is that, for 

each m ~ 1, it is possible to construct a process (Xi~i' i ~ 1) which is independent of 
X1, ... ,Xm , has the same distribution as (Xm+i, i ~ 1), and satisfies 

(3.19) 

for nondecreasing functions '1/;1 and '1/;2 such that limi-?oo i-1'l/;1 (i) = limk-?oo '1/;2 ( k) = 00. 
Here, we assume that (3.3) is in force. Such a condition is typically satisfied, for instance, by 
the stochastic time reversal of the sequence of iterates of a uniformly expanding piecewise 
smooth map of [0,1] -+ [0,1]: see Barbour, Gerrard and Reinert (1999). The bound (3.19) 
implies, using (3.3), that 

Using the "blocks" argument, with the discretization 

:=:r,i:= L 1{xj>u}6(ri/n,J-l(X))); 
iEBr(i) 

(3.20) 

it is easy to see that, for any function 9 : H -+ R such that Ig(~) - g(1]) 1 ::; dl(~' 1]), and for 
any 6 E H, we have 

,::,(1) ,::,(1) ,::,(1) e(l) 

(
i-1 ) (i- 1 

) 
IEg ~ ~r,i + -r,i + 6 - IEg ~ ~r,i + -r,i + 6 

1 nk 2rk 
::; 'l/;2(k) + 'l/;1(l) + 'l/;1(l)' 

where m = (j - l)r - land 

e(l)._ '" 1 6 
-r,i·- ~ {X;m»u} (ri/n,J-l(xt)))" 

iEB~I)(i) 

In the upper bound, the first term arises when the event 

occurs, the second when the event 
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occurs, and the last term comes when the remaining event occurs, which entails 

because F(Xj/) has the uniform distribution on [0,1]. This replaces (3.13) in the proof of 
Lemma 3.2, leading to the following result. 

Theorem 3.3 Suppose that {3.3} and (3.19) hold. Then) taking any choices of k 2:: 1 and 
L) r such that 1 ::; L < r ::; n) we have 

for the processes on [0,1] x [0, I<]. 

4 Applications 

Example 1. As a first application, take Xj := X(j), j E Z, where the stationary Markovian 
process X is Brownian motion reflected at zero, with drift -c, c > 0, and with infinitesimal 
variance cr 2

• This process arises as a typical heavy traffic limit in the analysis of queueing 
models: see Harrison (1985). The stationary distribution F of Xo is given by 

1 - F(x) = e-{3x, where (3 := 2c/o-2
• (4.1 ) 

Recalling (3.3), we take 

f( t) := _(3-1 log( t /n), ° < t < I< := nQ - - , (4.2) 

say, for any fixed ° ::; 0' < 1/2, corresponding to taking u = (3-1(1 - 0') log n as the lower 
limit of 'extreme' values among the Xj's, with an expected number of nQ extreme values on 
the interval 1 ::; j ::; n. 

In order to analyse the processes Nn,u and -:='nJ of extremes, we use a mixing condition 
of <p- type. This involves the future distribution of X conditional on any set A E :F1,m, 

which is easier to handle for the related bounded Markov process X = Xun(t) constructed 
by reflecting also at the upper boundary 3{3-1 log n. The processes Xj and Xi have almost 
identical distributions on 1 ::; j ::; n, as can be seen by the following coupling construction. 
Start X and X independently at time -in, where in := f9(cr/c)210gnl, and run them from 
then on with the same innovations. This coupling is monotone until the time Tn at which 
processes first meet, which occurs before the initially larger of the processes first hits zero; 
thereafter, they remain coupled until X next exceeds 3{3-110gn. Now, for any m E Z and 
T 2:: 1, we have 

1P ( max Xj > 3(3-1 log n) ::; T( 1 - F(3{3-1 log n)) rv Tn -3; (4.3) 
m~J~m+T-l 
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also, W (minm:Sj:Sm+T-1 Xj > 0 I Xo = x) is increasing in x, and satisfies 

W ( min X· > 0 I Xo = x) < W (N(x - cT T( 2) > 0) < e-(cT-x)2j2Ta
2 (4.4) 

m:Sj:Sm+T-1 J - , - , 

so that taking x = 3jJ-1 log nand T = -m = In gives 

(4.5) 

It thus follows, from (4.5) and from (4.3) with m = -In and T = n + 1 + In, that 

n 

dTV (£ ((Xj )j=l) ,£ ((XJ)j=l)) ::; W[U{Xj # Xj}] ::; (n + 2 + In)n-3 ::; 2n-2, (4.6) 
j=l 

whenever n is large enough that n 2: 2 + In. A similar coupling argument, now used with 
two realizations of X starting at time m, one with the stationary distribution of Xm (Har
rison (1985, p. 90)) and the other with any arbitrarily chosen distribution, then shows that 

(4.7) 

This enables Theorems 2.1 and 3.1 to be simply applied to the X -sequence. 

It also follows from (4.3) and (4.5) that 

dTV(£r, £r) ::; (r + 2 + In)n-3
, (4.8) 

where £r := £ (LjEBr(1) l{X
J
>u}Oj-l(x

j
)) , and the hat is used to denote quantities derived 

from the process X. This latter bound is useful for relating the approximations given in 
Theorems 2.1 and 3.1 for the X-sequence to those for the original X -sequence, because 

dTV(£r,£r) ~ {Iqr - qrl + Ilqrv; - qrv;ll} 
~ {Iqr - qrl + Ilqr(v; - v;) + (qr - qr)v;ll} 

> ~ {Iqr - qrl + qrll(v; - v;)II-lqr - qrlllv;ll} 
qrdTV(v;, v;) 2: qrdTV(vr, vr ); 

furthermore, much as for (4.8), Ip - pi::; (2 + In)n-3
. Hence it follows that, on [O,np}, 

dTV (CP(t1rfl,Vr),CP(Orfl,Vr)) < nplt1r -Orl +nt1rpdTV (vr,vr) 

< nr-1 lqr - qr I + nip - pi + nr-1dTV (£r, £r) 

( 4.9) 

O(n-2(1 + r-1 logn)), (4.10) 

with a further error of at most nip - pi to account for the difference between the intervals 
[0, np] and [0, np]; and, on [0,1], 

(4.11 ) 
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also. 

So taking I = in and r = rn = l(nlogn)1/2j, and noting that p = 1 - F(u) = na- 1
, we 

can apply Theorem 2.1 to the X-sequence, with an error which is of order O(na- 1
/
2Jlogn), 

and then convert the result to the approximation 

on [0 , npJ for the X -sequence, since the additional error is of smaller order. In a similar way, 
we obtain 

d2 (£ (~) , PC(nr- 1 qrJ-l, v;)) = 0 ( na-l/2Vlog n) , 

on [0, 1] x [0, n a
] for the X -sequence, since M can be chosen to be arbitrarily large. 

Example 2. Let the sequence (Xj; 1 :S j :S n) be defined by the deterministic 'tent map' 
recursion X j- 1 = hc(Xj) starting with Xn rv UfO, 1], where, for some 0 < c < 1, 

{ 
x/c 

hc(x) = (1 - x)/(l - c) 
if O:S x :S c; 
if c:S x :S 1. 

This process has the same joint distributions as the Markov chain on [0,1] with transition 
probabili ties 

with probability c; 
with probability 1 - c, 

which has stationary distribution F = UfO, 1] and satisfies (3.19) with 

~l(i) = (l/max{c, 1- c})i 

and ~2(M) = 00 for M > 1 (Barbour et al. (1999)). In accordance with (3.3), define 
f(t) = 1 - tin for 0 :S t :S na

, for any fixed 0 :S a < 1/2. Take 

r= l{nlognp/2j, i= f(3/10g[1/max{c,1-c}])lognl, 

and observe that p = na- 1 so np = cna --t 00; applying Theorem 3.3, it follows that 

In both examples, the approximation improves with increasing n for all values of a < 
1/2, so that the main problem that remains is to identify qr and the distribution v;. This 
is usually no easy matter. In the latter case, the simple form of the recursion shows that, 
if Xj > u, then the s consecutive preceding values Xjl, j - s :S j' :S j - 1, have to satisfy 
Xjl :S c, where s = l{(l - a)/log(l/c)}lognj - 1, and this event requires s consecutive 
choices of the first branch of h;;l, an event of probability at most c-2 n a - 1 = O(p). Thus 
the approximation is actually a Poisson process approximation, to an extra error of order 
at most O((n/r)rp2) = O(n2a- 1

), a relatively small adjustment. If, on the other hand, the 
same techniques were used for the small extremes, the process approximating Nn,u would be 
a compound Poisson process with vr{j} = (1-c)d- 1 , j ~ 1, a geometric random variable, to 
the same order of accuracy. In the former case, the distributions Vr and v; involve excursion 
theory for Brownian motion with negative drift. 
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