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1
Introduction

1.1 Background and Motivation

Consider a set of parties who do not trust each other. Nevertheless the parties wish
to correctly compute some given function of their local inputs, while keeping their local
inputs as private as possible. A popular example is the millionaires’ problem [Yao82]. In
this problem, there are two millionaires who wish to find out who is richer in such a way
that their own fortunes remain private, but the correctness of the result can be checked by
both of them. Another well-known example is from the love game (also known as dating
problem) [CDG87]: Alice and Bob are very shy and would like to find out whether they
are interested in each other. However, if only Alice is interested, then she does not want
to let Bob know that she is interested in him. The same holds if only Bob is interested.
In other words, if a party is not interested then it should not be possible to find out the
other party’s decision. The study of these kinds of problems belongs to the research area
of secure multiparty computation.

It is easy to solve the problem if we assume the existence of a trusted third party which
collects the inputs, computes the function and distributes the result to all participating
parties. However, the problem becomes very challenging if we assume that there is no
trusted third party available and parties can misbehave arbitrarily, i.e., they can send
wrong messages or fail to send messages at all. Even then, the parties must be ensured
that the protocol correctly and securely computes the function “as if” a trusted third party
were available.

The concept of secure multiparty computation was first introduced by Andrew Yao in
the early 1980s. Since then, many secure cryptographic protocols have been developed to
provide various solutions for secure multiparty computation problems. Some well-known
examples of such problems are: electronic voting, electronic auctions, contract signing,
and private information retrieval schemes. Consider, for now, just the voting and auctions
schemes. The requirements for a voting protocol ensure that no parties learn anything
about the individual votes of other parties and no coalition of parties can influence the
outcome of the election beyond just voting for their preferred candidate. In the same way,
in an auction protocol, the requirements ensure that only the winning bid is revealed,
and the highest bidder is indeed the party to win (and so the auctioneer, or any other
party, cannot influence the outcome in an unfair way). This thesis will be concerned
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1.1 Background and Motivation

with arbitrary functions instead of a particular function like those examples, and the main
motivation of the thesis is thus to contribute to improve the existing solutions for general
secure multiparty computation problems.

In general, a party involved in an execution of a secure multiparty protocol is considered
to be either honest, semi-honest, or malicious. Honest parties always follow the protocol
specifications and do nothing else. A semi-honest party also follows the protocol specifi-
cations without deviation, except for maintaining records of the entire internal messages
during the flow of the protocol in order to later derive additional information. A malicious
party, on the other hand, may deviate arbitrarily from the protocol at any time. The
protocols explored in this thesis are all secure within either the semi-honest model or the
malicious model, provided that the parties are computationally bounded.

The protocol by Yao [Yao82] only considers semi-honest parties. Goldreich, Micali
and Wigderson [GMW87] generalized Yao’s description to secure multiparty computation
by allowing malicious parties. They show that for all multiparty problems there exists a
secure protocol, when assuming an honest majority. In its most general form, there are n
parties who wish to compute an agreed task on their private inputs without revealing these
inputs, even if some of the parties are malicious. Secure multiparty computation can be
obtained when any collection of parties is malicious as long as a majority is honest. Hence,
the protocols for secure multiparty computation do not work if at least half the parties
are malicious or trying to get information [Cle86]. The case when there are two parties
is called secure two-party computation [Yao86]. In this thesis, we mainly focus on secure
two-party computation, instead of general secure multiparty computation. In secure two-
party computation at most one party is assumed to be malicious which is not a majority.
Therefore, one of the major points for secure two-party computation is that fairness is a
special property that one must either consider or ignore. Intuitively, fairness means that,
if one party obtains its desired output, then the other party should also receive his desired
output. In this thesis, fairness will be one of the major goals. In fact, the point for fairness
is that one can weaken the requirements a bit (like using gradual release, or use trusted
parties) to make fairness possible in a certain sense.

When designing a protocol, the main issues are the security the protocol and its com-
plexity. That is, does the protocol maintain the security requirements? or, how is the
running-time of the protocol? Protocol security measures the amount of information that
can be gained during the protocol by any party. Complexity is a measure of efficiency
which is often analyzed by three measures of complexity: communication complexity, com-
putational complexity, and round complexity. Firstly, communication complexity of the
protocol is the number of bits that needs to be exchanged between the two parties. Sec-
ondly, computational complexity is a measure of the amount of computational work that
is necessary in order to complete the execution of the protocol. Finally, round complexity
is the minimum number of rounds of interaction required to complete the protocol.

In the general case, the goal of a two-party protocol (for computing a function) is to
compute a circuit, which is a representation of the function, as securely and as efficient
as possible. A circuit can be an arithmetic or a Boolean circuit. The complexity of
protocols depend on the size of the circuit. The depth of a circuit is also another important
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1.1 Background and Motivation

characteristic for secure multi-party computation. Clearly, if the size of a circuit for the
function is very large (or, if the depth is very large), the circuit evaluation protocols could
not be efficient and hence not be practical. However, if the function is simple enough,
using the circuit evaluation protocols can be practical. Since a circuit is by far not uniquely
determined for a given function, and depending on the method of secure computation used,
one may use different circuits.

The general secure multiparty computation problem (for any function) is solvable using
circuit evaluation protocols. The following two types of circuit evaluation protocols are
common in the literature [Yao82, GMW87, Gol04].

• Protocols with interaction at the gate level (gate by gate): In this case,
there is an interaction between two parties where the evaluation of an arithmetic (or
a Boolean) circuit is performed gate by gate, from input gates to output gates. When
entering each step, the parties hold encrypted (or shared) values of the input wires of
the circuit, and when the step is completed they hold encrypted values of the output
wires of the circuit. And, during the evaluation of any basic step, no information is
disclosed except at the final step. In the final step, the parties decrypt their encrypted
values of the output wires together to compute the final results. Therefore, privacy
of the input is achieved.

• Protocols with interaction at the circuit level only: This type of protocols
is based on the garbled circuit (also called circuit-scrambling) technique introduced
by Yao in [Yao82]. In this paper, Yao presented the first general protocol for secure
two-party computation considering only the semi-honest model. And later it has
been extended to the malicious case [Lin01, Pin03, MNPS04, FM06, Woo06, LP07].
Yao’s protocol uses the underlying primitives (pseudorandom generator and oblivious
transfer) as black-boxes which leads to efficient results in the computational setting,
where Alice and Bob are assumed to be bounded to polynomial-time computation.
Let Alice have private input x and Bob have private input y, and let f be the function
that they wish to compute. For the sake of simplicity, let f(x, y) be public output.
In Yao’s protocol, the function f(x, y) is first represented by a Boolean circuit. Next,
one party (say Bob) is the constructor who “encrypts” this circuit, and sends it to
the other party Alice. This encrypted circuit is usually known as garbled circuit.
Alice is the evaluator who is going to “decrypt” it.

In this thesis, we will improve upon existing protocols for secure two-party computation
based on Yao’s garbled circuits. Note that the garbled circuit is constructed in such a way
that it reveals no information in its encrypted form and therefore Alice learns nothing from
this stage. However, Alice can obtain the output f(x, y) by “decrypting” the circuit. In
order to ensure that nothing is learned beyond the output itself, this decryption must be
privately performed by Alice who must only reveal the result f(x, y). Without going into
details, this is achieved by Alice obtaining a series of keys corresponding to her input x
such that, given these keys and the circuit, the output value f(x, y) (and only this value) is
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1.2 Overview of This Thesis

obtained. Of course, Alice must obtain these keys without revealing anything about x, and
this can be done by running a secure 1-out-of-2 oblivious transfer protocol for each input
bit (e.g., [EGL85]). Yao’s approach is attractive since it is viable and leads to potentially
practical protocols. The existing protocols in this category are already quite good (but
with room for improvement).

1.2 Overview of This Thesis

After the brief introduction of the context and motivation of the thesis we are ready to
give an overview of the thesis and our contributions.

Overview of the research:

This thesis presents efficient and secure two-party computation protocols that are secure
in the semi-honest and the malicious models. Yao’s garbled circuit is used as a main
building block in the design of our protocols. The simplest secure two-party protocol
with respect to semi-honest behavior was first considered in [Yao82]. The security of this
protocol was proved formally by Lindell and Pinkas [LP04]. Therefore, in this thesis, we
mainly concentrate on problems with respect to malicious behavior and construct a two-
party protocol in the malicious case using suitable building blocks, and finally expand it
to achieve an efficient fair and secure protocol.

Yao’s garbled circuit is described in detail in this thesis, and it is first followed by a
protocol in the semi-honest model which has a slight modification to Yao’s original protocol.
Yao’s protocol is modified for the following reasons. Firstly, it gives a clear insight into
our protocols for the malicious case, and it will be easily expanded to the malicious case in
a modular fashion. Secondly, the modified version is analyzed according to the real/ideal
simulation-based definition. When considering the protocols in each model all the necessary
building blocks are described. For the malicious case, the possible weaknesses are discussed
when the composition of such blocks are performed. In particular, we show that the
protocols [Pin03, MNPS04, FM06] are vulnerable to a certain type of attack with the use
of Oblivious Transfer (OT) in the malicious case. We discuss how this attack works, and
how to modify the scheme to make it more secure. In this thesis, we also consider fairness
for a two-party protocol using Yao’s garbled circuit. The protocol by Pinkas [Pin03] is
the only protocol in the literature which is based Yao’s garbled circuit discussing fairness.
In this thesis, we will show another subtle problem in [Pin03] which is in fact related to
the fairness. We also describe this problem in detail, and finally propose a more efficient
scheme that achieves fairness.

All the protocols in this thesis are analyzed according to the simulation-based definition.
The security analysis is based on the results of [LP07]. We also present an improvement
on the security proof of [LP07] by presenting a slight modification to the circuit so that
the failure probability of the simulator in [LP07] is reduced.

Throughout this study, we will review a number of cryptographic primitives that are
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1.2 Overview of This Thesis

used to solve secure two-party computation problems. For the sake of completeness, we also
cover briefly several well-known approaches to secure two-party computation problems.

Apart from presenting two-party protocols based on Yao’s garbled circuit approach, we
also present an efficient and secure protocol for a primitive known as Committed Oblivious
Transfer, which is a variation of OT that uses commitments for inputs and outputs. Our
protocol is different for the following reasons. All the protocols implementing committed
OT functionality in the literature allows transferring only bits rather than bit-strings, and
therefore our protocol is the first one that allows transferring bit-strings. On the other
hand, it is still comparable to the most efficient protocol in the literature when bits are
transferred. Finally, we show that our protocol is very useful since it can also fix some
subtle flaws like the attack described above with the use of OT.

Roadmap of the thesis and our main contributions:

Chapter 2: Preliminaries

In this chapter, we present notation, definitions and basic cryptographic primitives that
will be used throughout the thesis.

Chapter 3: Secure Two-Party Computation

We outline secure two-party computation in general. Before we present the protocols using
Yao’s garbled circuit in the next chapters, we give an overview of several known approaches
here to solve secure two-party computation problems.

Chapter 4: Combining Oblivious Transfer and Commitments

We present an efficient protocol for committed OT of bit strings. There are several proto-
cols which use OT in the semi-honest model transferring bit-strings. We note that we may
not achieve security when extending the same protocols simply to the malicious model,
even if OT is secure in this model. We show that committed OT solves this problem im-
mediately. However, there are several protocols for committed OT which transfer only bits
whereas we consider the transfer of an arbitrary string of bit while the efficiency remains
comparable to when bits are transferred. Our protocol is the first one that is efficient and
transfers bit-strings. Also, we present a new variant of OT and commitments, the so-called
Committing Oblivious Transfer which is a weaker version of committed OT—but may lead
to more efficient schemes.

Parts of this chapter are based on [KSV07] (joint work with Berry Schoenmakers and José
Villegas)
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1.2 Overview of This Thesis

Chapter 5: Secure Two-Party Computation in the Semi-Honest Model

We give a detailed description of Yao’s garbled circuit [Yao82] in order to use it later for
our protocols. We start by presenting a protocol using Yao’s garbled circuit on the basic
level of security, namely in the semi-honest model. This protocol is a slight modification
of Yao’s protocol in order to be able to simulate according the real/ideal simulation-based
definition, and to be able to extend it to resist the malicious behaviors of the malicious
party in a modular way. We conclude this chapter by analyzing the security of this protocol
and its complexity.

Parts of this chapter are based on [KS06b] (joint work with Berry Schoenmakers).

Chapter 6: Secure Two-Party Computation in the Malicious Model

Here, we look in detail at the malicious case, which is the situation where a malicious party
exists. We describe a number of building blocks which are needed for the malicious case
like cut-and-choose techniques, commitment schemes, the equality-checker scheme [FM06]
and majority circuit computation [Pin03, LP07].

We address specific problems with previous protocols in this chapter. In this respect,
we show a protocol issue with the use of OT in some of the protocols in the literature
(e.g., [Pin03, MNPS04, FM06]). The protocol issue is rather serious since it is possible for
a malicious party to learn the input of the honest party which compromises the overall
protocol. We show that this issue can be fixed efficiently using a committing OT protocol.
We also describe a problem related to “majority circuit” with a previous version of our
protocols [KS06b, KS08] which is an observation by Pinkas [Pin08]. We note that this
problem also appears for the protocol [Pin03]. We finally present a protocol which fixes
these problems for the malicious case borrowing some well-known techniques. We note
that the protocol which is presented in the semi-honest model (in Chapter 5) is extended
to the malicious case in this chapter. We analyze the security of our protocol according
to the ideal/real simulation-based definition and analyze its performance. The security
analysis is similar to the one of [LP07]. Also, we show how to slightly modify the circuit
such that the failure probability of the simulator in [LP07] is reduced.

Parts of this chapter are based on [KS06a, KS06b, KS08] (joint work with Berry Schoen-
makers). Other parts of the chapter are based on [KSV07] (joint work with Berry Schoen-
makers and José Villegas).

Chapter 7: Fair Secure Two-Party Computation

In this chapter, we present a fair and secure two-party protocol. There are not many pa-
pers based on Yao’s garbled circuit discussing the fairness issue, and in fact the protocol by
Pinkas [Pin03] is the only one up to now. However, we show that there is a subtle problem
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with this protocol, compromising the overall protocol. Furthermore, Pinkas’ protocol uses
blind signatures in order to achieve fairness which makes the protocol rather complex and
inefficient. We provide an alternative solution using OR-Proofs of Cramer et al.[CDS94]
which leads to a more efficient design. While the security analysis of Pinkas’ protocol is
rather informal, ours is analyzed according to the real/ideal simulation-based definition.
We finally analyze its performance.

Parts of this chapter are based on [KS06a, KS06b, KS08] (joint work with Berry Schoen-
makers).

Chapter 8: Conclusions

We conclude with a summary of our work and suggestions for future research.
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2
Preliminaries

In this chapter, we present the notation and the definitions that will be used throughout
the thesis. We also review the basic cryptographic primitives needed to develop our two-
party protocols. Additional definitions and preliminaries, which are specific to some parts
of the thesis, appear within the following chapters.

2.1 Indistinguishability

For ease of reference, we include the three standard notions of indistinguishability,
which are defined in terms of negligible functions and probability ensembles. Denote by N
the set of integers.

Definition 2.1 (Negligible function) A function

ε : N 7→ [0, 1]

k 7→ ε(k)

is negligible if, for all positive polynomials p(·), there exists k0 ∈ N such that, for any k > k0

ε(k) < 1
p(k) .

A very common example of a negligible function is the inverse exponential ε(k) = 2−k.
We will define security against any feasible adversary and require that the probability it
gets any information is a negligible function in a security parameter k. We note that
nowadays for most applications, a value of about k = 80 should provide an adequate level
of security. We can also say that if an event occurs with overwhelming probability if the
probability that it does not happen is negligible.

Definition 2.2 (Probability ensemble) Let Xw be a random variable on the set of
strings of length polynomial in |w| for w ∈ {0, 1}∗. A probability ensemble X = {Xw}w∈{0,1}∗
is an infinite set of random variables which ranges over strings of length polynomial in |w|.

In general, there exists three standard variants of indistinguishability, namely perfect,
statistical and computational. The security is referred to unconditional and computational
according to the notion of one of these variants being achieved. For example, unconditional
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2.2 Σ-Protocols

security is considered if either perfect or statistical indistinguishability is achieved, and
computational security is considered if computational indistinguishability is achieved.

First of all, two ensembles are called computationally indistinguishable if, given a sam-
ple from a probability distribution from the ensemble, no probabilistic polynomial-time
algorithm can tell which ensemble that sample came from. More formally,

Definition 2.3 (Computational indistinguishability) Two probability ensembles
X = {Xw}w∈{0,1}∗ and Y = {Yw}w∈{0,1}∗ are called computationally indistinguishable if, for
every probabilistic polynomial-time algorithm A (called the “the Distinguisher”),

|Pr[A(Xw) = 1]− Pr[A(Yw) = 1]| is a negligible function in |w|.

If X and Y are computationally indistinguishable then we write X
C≡ Y .

We note here that, the computational security generally relies on certain unproved assump-
tions about the hardness of some computational problem, like the hardness of factoring or
discrete logarithm problem. In order to compute a function f correctly using a two-party
protocol, we will compare different output distributions of this function.

Next, two ensembles are called statistically indistinguishable if, given a sample, there
is no algorithm (even with unbounded computational power) which can tell with non-
negligible probability to which ensemble that sample belongs. More formally,

Definition 2.4 (Statistical indistinguishability) Let {Xw}w∈{0,1}∗ and {Yw}w∈{0,1}∗ be
two ensembles of probability distributions, where for each w both Xw and Yw are defined
over the same range D. We say that two probability ensembles Xw and Yw are statistically
indistinguishable if the statistical distance between them is a negligible function in |w|, i.e.

4(Xw, Yw) =
1
2
·
∑
α∈D
|Pr([Xw = α])− Pr([Yw = α])| < ε

where ε = ε(|w|) is a negligible function.

Definition 2.5 (Identical distribution) We say that two probability ensembles
X = {Xw}w∈{0,1}∗ and Y = {Yw}w∈{0,1}∗ are identically distributed if, for every w,
4(Xw, Yw) = 0. We write X ≡ Y to denote identical distributions.

We note that identical distributions are statistical indistinguishable, and statistical
indistinguishability implies computational indistinguishability. The converse is not true in
general.

2.2 Σ-Protocols

In this section we present Σ-protocols which are introduced by Cramer, Damg̊ard and
Schoenmakers in [CDS94, Cra97]. These protocols are used throughout the protocols in
the malicious model in order to ensure the honest parties that the malicious parties cannot
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violate during the protocol execution in order to gain advantage over the parties. Roughly
speaking, in these protocols a prover convinces a verifier that a statement is true or on the
knowledge of something, without revealing any additional information. For example, for
homomorphic ElGamal encryptions and for Paillier encryptions [Pai99], there are efficient
Σ-protocols for the relation Renc = {(e; m, r) : e = Enc(m, r)}, proving knowledge of the
message m and randomness r for a given encryption e = Enc(m, r) [CDS94].

Given access to a random oracle, a Σ-protocol can be transformed into a non-interactive
Σ-protocol by using the Fiat-Shamir heuristic where the verifier does not need an interac-
tion to achieve a proof of knowledge [FS86].

2.3 Non-Interactive Commitment Schemes

We next give an informal definition of a non-interactive commitment scheme. Roughly
speaking, a commitment scheme between a committer and a receiver is a protocol in two
phases, a commit phase and a reveal phase. In the commit phase, the committer chooses
a private value m (a bit or a bit string) and computes c = commit(m; r) where r is some
randomness, and sends c to the receiver. In the reveal phase, the committer reveals the
values m and r, where m is the bit string in the commitment c and r is the randomness
used to form the commitment c. The receiver checks whether c is a valid commitment to m
using the randomness r. In this thesis, we shall use the notation commitP (m; r) to denote
a commitment to a message m using a random number r generated by the party P , and
leave out P (or r) when this is clear.

A commitment scheme must satisfy the following security properties. Firstly, the com-
mitment scheme must be hiding which means that a receiver cannot learn any information
from the commitment c before the reveal phase. Next, the commitment scheme must be
binding which means that it should be impossible for a committer to change the underly-
ing value of the commitment c, i.e. find a way to open the commitment to another value
which is different from m. To summarize, the hiding property protects against a malicious
receiver while the binding property protects against a malicious committer.

Depending on the cryptographic protocols, the binding and the hiding properties can
be required with either information-theoretic or computational security. It is well-known
that a commitment scheme cannot be both perfectly binding and perfectly hiding. Typi-
cal commitment schemes in the literature are either information-theoretically binding and
computationally hiding, or computationally binding and information-theoretically hiding.
For example, efficient information-theoretic binding commitment schemes are described by
Naor in [Nao91] where they are based on pseudo-randomness (no public key operations).
Efficient information-theoretic hiding commitment schemes can be based on number theo-
retic assumptions, and use O(1) exponentiations (see, e.g., [GMR88, Ped91]). For simplic-
ity, non-interactive commitment schemes will be called commitments throughout the rest
of the thesis.
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2.4 Oblivious Transfer

In this section we examine Oblivious Transfer (OT). OT was first introduced by Ra-
bin [Rab81] and later many papers discuss possible extensions, variants and applications.
Intuitively, Rabin’s OT is an efficient protocol in which two parties, the sender (Bob) and
the chooser (Alice) want to achieve the following. Bob has a private bit, and sends it to
Alice who receives the bit with probability 1/2 while Bob does not know whether the secret
has been received or not. Later, Even, Goldreich and Lempel [EGL85] presented 1-out-of-2
OT, where Alice has a private bit b, and Bob has two private bits s0 and s1. The protocol
is correct when Alice and Bob follow the protocol, Alice outputs sb with probability close
to 1. Bob, on the other hand, does not output anything.

Crépeau [Cre87] later showed that Rabin’s OT is actually equivalent to 1-out-of-2 OT.
Namely, he showed that 1-out-of-2 OT can be implemented from Rabin’s OT in polynomial
number of steps. We note that today there are several OT protocols (e.g. [EGL85, NP01])
in the literature which can transfer not only bits but also bit strings which are profitable
for many applications.

Note that 1-out-of-2 OT can also be generalized to 1-out-of-n OT where the sender has
n messages s1, . . . , sn ∈ {0, 1} and the chooser has a value t ∈ {1, . . . , n}. At the end of
1-out-of-n OT the chooser obtains only st, and the sender does not know which one has
been chosen. In this thesis, we are also interested in 1-out-of-2 OT which transfers bit
strings. Unless stated, for notational simplicity we use the term OT instead of 1-out-of-2
OT throughout the rest of the thesis.

In general OT protocols require “public key” operations like one-way trapdoor permu-
tations which are implemented using modular exponentiations. To give some examples,
the security of Rabin’s protocol for OT is based on the factoring problem, the security of
the OT protocol by Even, Goldreich and Lempel is based on one-way trapdoor permuta-
tions [EGL85], and the security of the protocol by Naor and Pinkas [NP01] is based on the
Decision Diffie-Hellman (known as DDH) assumption.

2.5 Threshold Homomorphic Cryptosystems

A threshold homomorphic cryptosystem is a specific type of public key cryptosystem,
combining the properties of threshold cryptosystems and homomorphic cryptosystems,
which we will briefly introduce below. A threshold scheme enables a private key to be
shared among a set of n parties providing each party with a private key share. The scheme
has a threshold t if combining the shares of i parties, t ≤ i ≤ n, enables the private key
to be recovered and less than t parties can not uniquely determine the private key. We
will use the notation (t, n) to refer to such a scheme. Let M (resp., C) denote the set of
the plaintexts (resp., ciphertexts). A (t, n)-threshold cryptosystem consists of the following
components.

• A distributed key generation protocol allows parties P1, . . . , Pn to, respectively, gen-
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erate private key shares sk1, . . . , skn, and a public key pk.

• An encryption algorithm takes as input the public key pk and a plaintext m ∈M; it
outputs an encryption c = Encpk(m) where c ∈ C and Encpk is an encryption function
under public key pk.

• Based on the inputs public key pk, private key share ski and a ciphertext c, a decryp-
tion protocol allows parties P1, . . . , Pn to, respectively, output a decryption share ci

with a proof of validity. Based on the ciphertext c and a list c1, . . . , cn of decryption
shares, each party i then outputs either a plaintext m or “fails”.

In the initialization phase of a (t, n)-threshold cryptosystem, the distributed key gener-
ation protocol is used to generate a public/private key pair (pk, sk) in such a way that the
i-th party holds a private key share ski of the overall private key sk where 1 ≤ i ≤ n. As
in the basic public-key cryptosystem the public key pk allows anyone to encrypt plaintexts
by running the encryption algorithm. For decryption of a ciphertext c, at least t parties
must cooperate to jointly decrypt a ciphertext, whereas any collusion of less than t parties
cannot get any information about the plaintext. To decrypt a ciphertext c, using their
secret keys ski, each party runs the decryption protocol and outputs a decryption share
ci with a proof of validity. Finally, the parties recover the plaintext if enough decryptions
are valid. An encryption scheme is said to be homomorphic if there exists an algorithm,
which is the encryption function Encpk under a public key pk satisfies

∀m1, m2 ∈M, Encpk(m1 ⊕M m2) = Encpk(m1)⊗C Encpk(m2)

for some operators ⊕M in M and ⊗C in C. If (M, ⊕M) and (C, ⊗C) are groups, we have
a group homomorphism. A scheme is called additively homomorphic if ⊕M is addition,
and multiplicatively homomorphic if ⊕M is multiplication. If the homomorphic encryption
scheme satisfies the above threshold properties then it is called threshold homomorphic
encryption. Homomorphic encryption schemes can be very useful because it allows a third
party to operate on encrypted plaintexts x, y based on the encryptions Encpk(x), Encpk(y)
without the knowledge of the plaintexts x, y or the decryption key. As a consequence,
if the encryption scheme is additively homomorphic, given Encpk(m) and any constant c,
encryption of cm can be efficiently computed as Encpk(m)c.

There are various instances of threshold homomorphic cryptosystems. The most widely
used are (based on) ElGamal or Paillier. Threshold additively homomorphic ElGamal has
the drawback of only allowing decryption of values belonging to a relatively small set, for
which it is feasible to compute discrete logs. On the other hand, Paillier does not have
this problem and allows decryption of encrypted values in an arbitrarily large set (e.g.,
1024-bit integers). However, the distributed key generation protocol for threshold Paillier
is computationally very expensive compared to threshold ElGamal.
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3
Secure Two-Party Computation

In this chapter, we study the basic definitions for secure two-party computation. For the
sake of completeness, we review several approaches for secure multiparty (in particular,
two-party) computation. We refer to the textbook of Goldreich [Gol04] for a broader
introduction to secure two-party computation.

3.1 Introduction

A polynomial-time algorithm is one that can be executed by a Turing machine in
polynomial-time, proportional to the size of the input. The number of computational
steps of a polynomial-time algorithm is always bounded by a polynomial function of the
size of the input which is usually represented in binary.

A party executing a two-party protocol is modeled by an interactive Turing machine
[GMR89]. Informally speaking, an interactive Turing machine is a probabilistic Turing
machine with a communication tape that runs in polynomial-time in the length of its input.
In general, running time is measured in terms of the number of elementary computations
required as a function of input length. Therefore, it is independent of the platform.

A party which is involved in an execution of a protocol may be honest or dishonest.
Honest parties always follow the protocol exactly as what is prescribed by the protocol
and do nothing else. A dishonest party in a protocol, however, is modeled by assuming
a central adversary who may corrupt a party, and get all the information known to this
party. The computational power of the adversary is modeled by a probabilistic polynomial-
time machine, namely an interactive Turing machine whose running time is bounded by
a polynomial in a security parameter. Such a machine uses a source of randomness, such
as a coin-flip, to basically determine the next move by randomly choosing one of the two
possible alternatives. (Running such a machine multiple times on the same input may
result in different outputs.)

An adversary can be either passive (also known as semi-honest) or active (also known
as malicious). If an adversary is semi-honest then corrupted parties follow exactly the
protocol specifications but attempt to learn extra information by examining the transcript
of messages that it received during the protocol execution. If an adversary is malicious
then he takes full control over corrupted parties. These corrupted parties behave arbitrarily
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according to the instructions of the adversary. In other words, a malicious adversary may
follow an arbitrary “feasible” strategy; that is, any strategy implementable by probabilistic
polynomial-time algorithms.

Also, an adversary may be static or adaptive (dynamic). A static adversary has to
determine which parties to corrupt before the execution of the protocol starts, and these
corrupted parties remain the same through the protocol execution. Adaptive adversaries
on the other hand can choose the parties dynamically during the execution of the protocol,
namely at any point during the computation. This may depend on the information it
records before deciding which party it is going to corrupt. In this thesis, we only consider
static adversaries which can corrupt only one party.

In this thesis, we express complexity of our protocols in terms of the input length and
a security parameter n (which is usually defined as a function of n rather than log n). And
the efficiency will be measured by considering communication, computational and round
complexity. The communication complexity of the protocol is the number of bits sent to
each other. That is, it is the total number of bits the parties exchange. One of the goals
of the parties is to compute a public function with a two-party protocol with the least
amount of communication between them. The computational complexity is a measure of
the amount of computational work that is necessary in order to complete the execution
of the protocol. As a computational complexity measure, we use the number of modular
exponentiations (or public key operations) necessary for a protocol to be executed for all
the parties. By the round complexity we mean the number of exchanged messages, or
rounds of interaction in a protocol 1. A very important note to keep in mind is that if
some tasks can be performed in parallel by parties, then they can decrease the overall
number of rounds. In this thesis, we give a comparison of our proposed solutions with the
existing solutions to secure two-party computation considering these above measurements.

We are now ready to review the required background knowledge on secure two-party
computation.

3.2 Secure Two-Party Computation

In secure two-party computation, there are two parties, Alice and Bob, where Alice
holds a private input x and Bob holds a private input y. Both Alice and Bob wish to
jointly and securely perform a computation based on their inputs that maps pairs of inputs
(one input for each party) to pairs of outputs (one output for each party). Such a process
is called as the desired functionality, and denoted

f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ where f = (f1, f2).

Note that the term functionality is used rather than function, since the parties of a protocol
have separate inputs, and, in general, wish to compute different functions of the common

1We call each sending of a message by a party a round. In some works it is called a move, and two
consecutive moves are said to make a round. So, according to this terminology, our two-round protocol
would be a two-move or one-round protocol.
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input. At the end of the computation, both parties should know the output of f . That
is, for every pair of inputs (x, y), the desired output-pair is (f1(x, y), f2(x, y)) ranging over
pairs of strings. Alice holds an input x, wishing to obtain f1(x, y) and Bob holds an input y,
wishing to obtain f2(x, y) (but there might be only a common output (f1(x, y) = f2(x, y)),
or only one party that has a private output).

In this setting, a two-party protocol is considered to implement f , and an adversary (a
semi-honest, or a malicious) is only allowed to corrupt Alice or Bob, and cannot corrupt
both Alice and Bob simultaneously. Let (x, y) be an input, f be as above and Π be a
two-party protocol computing f . By saying Π for computing f we mean that Π correctly
computes f when both parties honestly follow the protocol specifications. The protocol Π
is a secure two-party protocol if the following security properties hold:

• Correctness. The output that the parties receive is guaranteed to be correct. In other
words, no party can influence the output of the computation other than by changing
its own input.

• Privacy. No party should learn anything more than what is implied by the function
f and its own input. In other words, no party can obtain information about the
honest party’s input and what it sees from the protocol execution except what it can
derive from its own input and the output.

• Fairness. A corrupted party should receive its output if and only if the honest party
also receives its output. In general, if a party is corrupted, then the adversary may
learn the output before the honest party obtains it and then may decide to abort the
protocol. This may result in an unfair situation.

Note that we consider f(x, y) to be a deterministic function in this thesis, rather than
probabilistic, for each input (x, y). For the more general setting in which f(·, ·) is a
probabilistic function, please see [Gol04].

3.3 Formal Definitions

The security definition for two-party computation varies depending on whether the adver-
sary is semi-honest, or malicious. The security definition we present refers to the stand-
alone setting where only a single protocol execution is run in isolation. We note that
security in this setting does not imply security in the setting of arbitrary or concurrent
composition, where many protocol executions take place simultaneously. Such a definition
of security in a composable setting is known as the Universally Composable (UC) Security
paradigm of Canetti [Can01]. In this thesis, we will not cover UC framework, rather we
only analyze the security of protocols in the stand-alone setting.

The security of a protocol is analyzed by comparing the adversarial behavior in a real
protocol and in the ideal world that is secure by definition. In the ideal world an incor-
ruptible trusted third party to whom the parties send their inputs computes the function
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on the inputs and returns to each party their respective output. Informally speaking, a
protocol is secure if any adversarial behavior in the real protocol (where no trusted third
party exists) can be carried out in the ideal world. Demonstrating the provable security
of a cryptographic protocol against a malicious adversary is usually a difficult task since
some malicious behavior cannot be prevented like refusing to participate in the protocol
or entering a different input. These kinds of behavior are also included in the ideal model.

We shall now discuss this in greater detail. Without loss of generality, we assume that
the inputs x and y are both of the same length. If this is not the case, padding may be
applied. This assumption allows us to use the input length as a security parameter (see
discussion in [Gol04, Section 7.2]).

3.3.1 Execution in the Ideal Model

Ideally, each party sends its input to a trusted third party over a private channel,
who will compute the result and send it to both parties. The goal of a secure two-party
computation is to eliminate the need for a trusted third party, while preserving the security
as in the ideal scenario even in the presence of malicious parties.

Ideal scenario in the semi-honest model.

We first describe the ideal scenario in the semi-honest model. Let Alice and Bob be two
parties with private inputs x and y respectively. Let A be an adversary with auxiliary
input z, and F be the trusted third party. More formally,

• Inputs: Each party has an input, say x for Alice, and y for Bob. A party always
sends its input to F .

• Trusted party answers back: F (for computing f), replies to both parties with f1(x, y)
and f2(x, y), respectively.

• Outputs: An honest party always outputs the message received from F . A corrupted
party may output an arbitrary (polynomial-time computable) function of its initial
input and the message received from F .

Note that the adversary here attempts to learn something from the party’s view which
consists only of its local input and output.

Ideal scenario in the malicious model.

Next we describe the ideal scenario in the malicious model. Note that there are three
things we cannot avoid for no matter what protocol we use. First of all, the definition
below does not preserve fairness (early aborting) since this cannot be prevented because
of the impossibility result of Cleve [Cle86]. Secondly, we cannot avoid parties refusing
to participate in the protocol when the protocol is first invoked. Thirdly, substituting a
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different input rather than their local input is also unavoidable. Therefore, the ability
of the adversary for these three actions is also included into the definition of the ideal
scenario.

• Inputs: Each party has an input, denoted ω (ω = x for an honest Alice, and ω = y
for an honest Bob).

• Sending inputs to the trusted party: An honest party always sends ω to the trusted
party F (for computing f). A corrupted party may, depending on ω, either abort or
send some ω′ ∈ {0, 1}|ω| to F 2.

• Trusted party answers first party: In case F (for computing f) has obtained an input
pair (x, y), it first replies to the first party with f1(x, y). Otherwise (i.e., in case it
receives only one valid input), F replies to both parties with a special symbol ⊥.

• Trusted party answers second party: In case the first party is malicious it may, de-
pending on its input and F ’s answer, decide to “stop” F by sending it ⊥ (which
denotes an error symbol) after receiving its output. In this case F sends ⊥ to the
second party. Otherwise (i.e., if not stopped), F sends f2(x, y) to the second party.

• Outputs: An honest party always outputs the message received from F . A corrupted
party may output an arbitrary (polynomial-time computable) function of its initial
input (auxiliary input and random-tape) and the message received from F .

3.3.2 Execution in the Real Model

We now consider the real model in which a real two-party protocol is executed where
there exists no trusted third party. Let f be as above and let Π be a two-party protocol for
computing f . Furthermore, let M = (M1, M2) be a pair of probabilistic polynomial-time
algorithms (representing the two parties in the real model). Such a pair M = (M1, M2)
is admissible (for the real semi-honest or malicious model) if for at least one i ∈ {1, 2} we
have that Mi is honest (i.e., follows the strategy specified by Π). Then, the execution of
Π under M in the real model (on input pair (x, y)), denoted REALΠ,M(x, y), is defined as
the output pair of M1 and M2 resulting from the protocol interaction between M1 and M2.

3.3.3 Security as Emulation of a Real Execution in the Ideal
Model

Having defined the ideal and the real models, we can now present security definitions of
protocols in the semi-honest and in the malicious models. Loosely speaking, the definition

2Note that this restriction is done between w and w′ because the trusted party is assumed to accept
the length of w.
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states that a secure two-party protocol (in the real model) emulates the ideal model (in
which a trusted party exists). This is formulated by saying that admissible adversaries
in the ideal model are able to simulate admissible adversaries in an execution of a secure
protocol in the real model.

The term perfect security is used if the view of the adversary in the real world and the
simulated view of the adversary in the ideal world are equally distributed, the term statis-
tical security is used if they are statistically indistinguishable, and the term computational
security is used if they are computationally indistinguishable.

Security in the semi-honest model.

We first present the security definition in the semi-honest model. We begin with the
following notation: let f = (f1, f2) be a function and let Π be a two-party protocol for
computing f .

Definition 3.1 (Security in the Semi-Honest Model.) Let f and Π be as above. The
protocol Π is said to be statistically (computationally) secure in the semi-honest model if,
for every probabilistic polynomial-time pair of algorithms R = (R1, R2) that is admissible
for the real model (of Section 3.3.2, Semi-honest), there exists a probabilistic polynomial-
time pair of algorithms S = (S1, S2) (called simulator) that is admissible for the ideal model
(of Section 3.3.1, Semi-honest), such that

{IDEALf,S(x, y)}x,y with |x|=|y|
S≡ {REALΠ,R(x, y)}x,y with |x|=|y|

holds (in case of statistical security), or

{IDEALf,S(x, y)}x,y with |x|=|y|
C≡ {REALΠ,R(x, y)}x,y with |x|=|y|

holds (in case of computational security).

Note that the above definition implies that the parties already know the input lengths
(by the requirement that |x| = |y|). Observe that the difference between honest and semi-
honest parties is simply in their actions on the corresponding local views. An honest party
outputs only the output part of the view, whereas a semi-honest party may output an
arbitrary (“feasible” computable) function of the view.

Security in the malicious model.

We now consider the security definition in the in the malicious model. In the real model,
a two-party protocol is executed, and there exists no trusted third party. In this case,
a corrupted party may follow an arbitrary feasible strategy, that is, any strategy imple-
mentable by a probabilistic polynomial-time algorithm (which gets an auxiliary input). In
particular, the malicious party may abort the execution at any point in time, and when
this happens prematurely, the other party is left with no output.
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The security definition in the malicious model is similar to Definition 3.1, where the
polynomial-time pair of algorithms R = (R1, R2) that is admissible for the real model are
defined as in the malicious case of Section 3.3.2, and the pair of algorithms S = (S1, S2)
that is admissible for the ideal model are defined as in the malicious case of Section 3.3.1.

3.3.4 Hybrid Model

In the hybrid model, parties run an arbitrary protocol like in the real model, but have
access to a trusted party that computes some function like in the ideal model. Namely, the
hybrid model is a straightforward mix of the real and ideal models. It is exactly the same
as the real model except that all parties also have access to an ideal function f . Inputs
for the function can be influenced by the surrounding protocol. Hence, a protocol that is
designed for a hybrid model contains two types of messages: real messages that are sent
directly between the parties, and ideal messages that are sent between the parties and the
trusted third party. In the real model, parties run an arbitrary protocol simultaneously
instead of using the trusted party. A protocol is secure if any attack on the real model can
be carried out in the hybrid model.

The protocols in Chapter 5, 6 and 7 use a secure oblivious transfer (OT) protocol as
a subprotocol. In [Can01, AL07] it is shown that it is sufficient to analyze the security
of such a protocol in a hybrid model in which the parties interact with each other and
assumed to have access to a trusted party that computes an OT protocol for them. Thus,
in the security analysis of our protocol the simulator will play the role of the trusted party
for the OT functionality when simulating the corrupted party.

3.4 Fairness

In this section, we review the fairness property of secure two-party computation proto-
cols. We refer to [Pin03] for a list of references on fairness.

3.4.1 Complete Fairness

A two-party protocol (computing a function f) is said to be fair if either both parties
learn the output of f , or no party learns the output. That is, whenever a party aborts the
protocol prematurely, it should not gain any advantage on the output over the other party.
This is also called complete fairness- in the sense of both parties obtaining the outputs at
the same time. It is an important requirement for secure two-party computation problems
since aborting a protocol prematurely is an unavoidable issue in the presence of malicious
behavior.

It is shown by Cleve [Cle86] that complete fairness is actually impossible to achieve
for any two-party protocol. The reason of this impossibility result is roughly as follows.
Assume that in a protocol parties start exchanging messages back-and-forth to get their
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outputs. Observe that whenever a party sends the last piece of critical secret information
and since he is not going to receive any critical secret information anymore at this time,
he must already have received his secret information. He may not complete the protocol
by not sending his last piece of critical private information to the other party which leads
to an unfair situation.

3.4.2 Relaxed Fairness

Because of the impossibility result of Cleve for complete fairness, researchers are in-
terested to achieve alternative (relaxed) solutions. In this thesis, we will be interested in
the so-called gradual release approach to achieve fairness in which no trusted third party
is involved to complete the protocol. In this approach, two parties interactively run a
protocol to control the unfair situation. The parties take turns to release their secrets in a
gradual fashion. Assume that the secrets are from a uniform distribution, so that any party
does not know more information about the secret than what has been already revealed.
By gradually releasing the secrets, the computational effort to reconstruct the respective
message without help of the other party decreases. For example, suppose there are two
parties, each possessing a secret. Suppose further that both secrets are important contents
to the other party, and that they are therefore willing to “trade” the secrets against each
other. If the two secrets are represented as bit strings of the same length, this can be
solved by exchanging the secrets bit by bit; if this is done honestly, no party will be more
than one bit ahead of the other at any time during the exchange. Therefore, if one party
aborts the protocol, this party will have only a limited computational advantage over the
other party. Informally speaking, early aborting gives only a negligible advantage to the
corrupted party, and the honest party in a fair protocol may run longer than a corrupted
one. Because of the impossibility result of Cleve this advantage is unavoidable. We note
that an honest party may have given away its secret correctly and that, in return, he has
been given “garbage” instead of correct bits of the secret. Hence, it is also necessary that
the other party can verify for each part of the released secrets that it has been given correct
information.

One of the main ideas of a secure two-party protocol to achieve fairness is to compute
commitments (or encryptions, shared values) to output values. Basically, Alice will hold
commitments for Bob’s output, and, vice versa, Bob will hold commitments for Alice’s
output. Finally, the parties gradually open the commitments. Note that these commit-
ments (or encryptions, shared values) are of special type in order to apply gradual release.
That is, not any commitment scheme is applicable to a gradual release approach. For
example, in the protocol by Pinkas [Pin03, Appendix A], timed commitment of Boneh and
Naor [BN00] is used. Informally speaking, a timed commitment is a commitment that,
in addition, the receiver of the commitment can find the committed value by running a
computation of 2k steps where k is a security parameter (i.e. called “forced opening“). If
the parties interactively run the opening of the timed commitments, then they can open
in only k steps. However, if at some point a corrupted party aborts then the honest party
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has to invest at most twice computationally effort than the corrupted party in order to
obtain its output.

The crucial and necessary point is now that both parties are convinced of the correctness
of the values contained in the commitments held by the other party. For this we need some
special protocol techniques. For example, in [Pin03], blind signatures are used as a building
block to achieve correctness of these commitments.

3.4.3 How to Prove Fairness

Recently, Garay et al. [GMPY06] presented the notion of resource-fair protocols which
is a relaxation of fairness. Informally speaking, it states that if one party learns the output
of the protocol, then so can all other parties, as long as they use roughly the same amount of
resources. Their definition follows the standard simulation paradigm in the UC framework
of Canetti [Can01], and works in a model that allows any party to request additional
resources to deal with malicious parties that may prematurely abort.

The authors in [GMPY06] start by presenting a complete fair function Ff for computing
a function f . A critical part of Ff is that there are certain messages that Ff sends
to both parties such that both of them must receive the message in the same round of
communication. (For this it is necessary that the adversary in the ideal model cannot block
messages from Ff to the honest parties.) However, in order to define fairness formally, the
authors in [GMPY06] provided a relaxation of Ff that can be realized in terms of resource
fairness (in their work, the resource is defined as time). Omitting details, the authors used
a fairly “wrapped” version of Ff (which they call wrapper functionality denoted byW(Ff ))
in order to fairly send the messages to each party. Namely, both parties will not receive the
outputs in the same round (in case one party aborts prematurely) but it will be quantified
such that the honest party is ensured to receive its output. In the real model, the wrapper
functionality is in fact implemented using the gradual release approach.

We remark that the wrapper functionality is what makes actually a protocol resource-
fair. Roughly speaking, the wrapper functionality allows the adversary to make “deals”
of the following kind: even if Ff requires a message to be simultaneously delivered to all
parties, the adversary can “invest” computational resources and obtain the message from
W(Ff ) in an earlier communication round. However, in this case, W(Ff ) will offer a “fair
deal” to the honest parties: each of them will be given the option of obtaining its message
by investing (at most) the same amount of computational resources as invested by the
adversary.

In the same paper, they later define a particular functionality called commit-prove-fair-
open functionality (FCPFO), which allows each party to commit to a value, prove relations
about the committed value, and more importantly, open all committed values simulta-
neously to all parties. They then design an efficient resource-fair protocol that securely
realizes it with (the fairly “wrapped” version of) this functionality. The wrapped version
of this functionality (W(FCPFO)) takes care of the opening phase, and makes it fair.

The authors in [GMPY06] finally show that by using the FCPFO functionality, many
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existing secure protocols can be transformed into resource-fair protocols while preserving
their security. For a particular example, they showed how to use it to add fairness to
the result of the “gate-by-gate” approach in the setting of [CDN01]. For the protocol
in [CDN01], they first modified the cryptosystem to (n, n)-threshold scheme so that all
parties must cooperate in order to decrypt the encrypted message. As we said in Section
2.5, the protocol in [CDN01] contain an “output” phase, in which every party broadcasts
its decryption share with a proof of validity, and once all shares are broadcasted, each party
performs the last steps of the decryption on its own. Finally, [GMPY06] modified the joint
decryption phase in order to achieve fairness. That is, instead of the parties revealing
their secrets directly in the output phase, the parties invoke the wrapper functionality
W(FCPFO) to receive their secrets fairly, i.e. the parties first commit to their decryption
shares and prove the correctness of them. Once the correctness of the commitments is
guaranteed, parties will gradually open these commitments.

A consequence of [GMPY06] is that, the resulting fair protocol is simulatable. The
protocol of [GMPY06] is attractive since it is also secure against parallel attacks: having
many more computers does not give any advantage to the malicious parties over having a
single computer.

In line with this, to show that our protocol in Chapter 7 is fair we propose to use as a
subroutine the protocol of [GMPY06]. The main idea of our protocol is first to show the
correctness of the commitments to outputs at the end, and then apply the gradually release
phase to achieve directly fairness. For this gradual release phase, we will use the protocol
of [GMPY06] implementing the wrapper functionalityW(FCPFO), which is actually shown
to be simulatable. We will use the results of [GMPY06] in a black-box way (in the hybrid
model).

3.5 Probabilistic vs. Deterministic Functions

In this section, we discuss some issues related to probabilistic and deterministic functions.

Deterministic functions.

In our thesis, we only show how to securely compute deterministic functions . Having
secure protocols for deterministic functions suffices to obtain secure protocols for arbitrary
probabilistic functions. We show this in the following theorem of [Gol04].

Let x, y ∈ {0, 1}∗ be input of Alice and Bob respectively, and f be a probabilistic function.
Let f((x, y), r) denote the value of f(x, y) when random bit strings r of length polynomial
in |x| are used. In other words, f(x, y) is a probabilistic function consisting of select-
ing random bit strings r polynomial in |x|, and deterministically computing f((x, y), r).

Next, define a deterministic function f̂((x, r1), (y, r2))
def
= f((x, y), (r1 ⊕ r2)) where r1, r2

are random bit strings polynomial in |x|.

Theorem 3.2 ([Gol04]) Let f be a probabilistic function, and f̂ be a deterministic func-
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tion as defined above. If, for any f̂ , there is a secure protocol Π̂ which securely computes
it then it is possible to construct a secure protocol Π for computing any f .

Intuitively, assume that we have a secure protocol Π̂ for computing f̂ . Now, the following
is a secure protocol Π for computing the function f . Alice and Bob choose bit strings r1

and r2 uniformly at random, respectively. They then invoke the protocol Π̂ for securely
computing f̂ in order to obtain f̂((x, r1), (y, r2)) = f((x, y), (r1 ⊕ r2)).

The formal proof that the protocol Π securely computes the probabilistic function f is
given in [Gol04, Section 7.3]. Note that the size of the circuit computing f is of the same
order as the size of the circuit computing f̂ . The only difference is that the circuit for f̂
has |r| additional exclusive-or gates, where |r| is the length of f ’s randomness.

Therefore, for the sake of simplicity we present two-party protocols only for deterministic
functions in this thesis.

A simpler definition for deterministic functions.

As we said before, to analyze the security of a protocol we have to construct a simulator
in such a way that the view of a corrupted party in the real model can be simulated by
a probabilistic polynomial-time algorithm in the ideal model. We here note that it is
not sufficient for a simulator to generate a transcript indistinguishable from view of the
corrupted party in the case that the function f is probabilistic. The joint distribution
of the simulator’s output and the function output f(x, y) should also be considered, and
that must be indistinguishable from view of the corrupted party and the output of the
protocol. On the other hand, if the function f is deterministic, it is sufficient to show that
a simulator generates the view of a party, without considering the joint distribution with
the output. The reason is that when f is deterministic the output of the protocol must be
equal to f(x, y).

3.6 Approaches to Secure Computation

All the current solutions to general secure two-party computation problems are either
based on arithmetic circuits or Boolean circuits implementing the function f . In this
section, we review the most common approaches for secure-two party computation.

3.6.1 The Gate-by-Gate Approach

Most protocols for general secure multiparty computation (in particular, secure two-party
computation) are based on the “gate-by-gate” approach where each gate of the circuit Cf is
computed securely by performing a secure protocol. In this section, we review some of the
main solutions using the “gate-by-gate” approach for solving secure two-party computation
problems.
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Using Oblivious Transfer.

OT is a powerful primitive for secure multiparty computation since it has been shown
by Kilian [Kil88] to be complete for multiparty computation problems. That is, it is
possible to securely evaluate any polynomial-time computable function based only on an
implementation of OT.

We now show that using any 1-out-of-4 OT protocol every function f , which has
polynomial-size circuits, one can construct a secure computation protocol. We describe
only the two-party protocol in detail, and explain briefly how this protocol can be easily
extended to the case where the number of parties is more than 2.

The function f that the parties wish to compute is first represented as a Boolean circuit
Cf which consists of only AND and XOR gates. We here note that any Boolean circuit
can be rewritten using only AND and XOR gates. Next, we show how the parties compute
AND and XOR gates.

Before the computation starts the parties share the values of each wire. More precisely,
let xA, yA be shares of Alice and xB, yB be shares of Bob where x = xA⊕xB and y = yA⊕yB

where they want to compute x∧ y and x⊕ y respectively as follows. Observe that AND is
the multiplication and XOR is the addition modulo 2.

• AND gate. We first show how the parties securely compute an AND gate, i.e. they
wish to compute the value z = x · y mod 2. Alice first chooses zA randomly.

She then prepares a four-tuple by computing for each pair of values xB and yB a
value zB by means of

zB = ((xA + xB) · (yA + yB)) + zA mod 2. (see Table 3.1)

(xB, yB) (0,0) (0,1) (1,0) (1,1)

zB xAyA + zA xA(yA + 1) + zA (xA + 1)yA + zA (xA + 1)(yA + 1) + zA

Table 3.1: 1-out-of-4 OT Input/output

Alice and Bob then run a 1-out-of-4 OT protocol where Bob chooses the zB value
based on his private shares xB and yB. From the security of the OT protocol, Bob
learns no additional information about Alice’s shares xA, yA, zA, and similarly Alice
learns nothing about Bob’s shares xB, yB, and zB.

• XOR gate. We next show how the parties securely compute an XOR gate where they
wish to compute the value z = x + y mod 2. In this case, Alice computes zA =
xA + yA mod 2 and Bob computes zB = xB + yB mod 2 without any interaction.
It is easy to see that zA, zB are already shares of the XOR gate’s output, and since
there is no interaction a corrupted party cannot learn any extra information from
the other party.
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At the end, each party holds a share of each output wire. To obtain the desired output,
every party sends its share of each output wire to all parties. Then each party sums up all
the shares to obtain the desired output.

As we mentioned earlier, the above solution can be easily extended to secure multiparty
computation. In short, it is given as follows. Suppose that there are n parties and let xi

and yi denote the shares of the i-th party where x = x1 ⊕ . . .⊕ xn and y = y1 ⊕ . . .⊕ yn.
To compute the XOR of bit x and y, each party i where 1 ≤ i ≤ n simply computes
zi = xi ⊕ yi as in the two-party case. To compute the AND of bit x and y, we follow the
approach in [Gol04]:

(x1, y1), . . . , (xn, yn)→ (z1, . . . , zn) where
n∑

i=1

zi =

(
n∑

i=1

xi

)
·

(
n∑

i=1

yi

)
mod 2

Actually, the solution comes from the following observation:(
n∑

i=1

xi

)
·

(
n∑

i=1

yi

)
= n ·

n∑
i=1

xi · yi +
∑

1≤i<j≤n

(xi + xj) · (yi + yj) mod 2

(see [Gol04, Section 7.5.2] for the proof of this equality). Therefore, each party i can
compute n · xi · yi without any interaction, and parties i and j can jointly compute (xi+xj)
· (yi + yj) mod 2 as in the two-party case described above using a 1-out-of-4 OT.

Using threshold homomorphic cryptosystems.

We now review the use of threshold homomorphic cryptosystems for secure two-party com-
putation. There are several protocols in the literature that use this setting based on using
an arithmetic circuit or a Boolean circuit. In the case of arithmetic circuits, the evaluation
is performed from the input gates to output gates. We note that the addition gates can
be computed without any interaction and without decrypting any value due to the homo-
morphic property of the cryptosystem. Addition gates can be evaluated without having to
decrypt any value because of the homomorphic property of the underlying cryptosystem.
Multiplication gates, however, are computed via a secure multiplication protocol by an
interaction where decryption is required even in the semi-honest model. In the malicious
model, multiplication gates additionally require the use of zero-knowledge proofs (e.g.,
[CDN01, ST04]).

Jakobsson and Juels [JJ00] also presented a protocol for secure multiparty computa-
tion. It is based on homomorphic ElGamal cryptosystem, using a so called mix-and-match
scheme. In this protocol, the function that the parties wish to compute is first repre-
sented as a Boolean circuit. Each party encrypts the entries of the standard truth table
for every gate using a homomorphic ElGamal cryptosystem, replaces the entries with the
corresponding ciphertexts and randomly permutes rows of the table. In general, the mix-
ing uses the homomorphic property that allows a party to change the encryption without
knowing the correct decryption. For each gate, the parties compare the encrypted values
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they hold with the encrypted values in the blinded permuted truth table to determine the
correct row. When the correct row in the table is found, the parties obtain an output
ciphertext from the third column. Since the values are encrypted and permuted by each
party, nobody learns the plaintext corresponding to the output value. The ciphertext for
the output of the gate is used as input to the truth table of the next gate. The parties
do this computation from input gates to output gates. After the truth table of the output
gate is computed parties decrypt the final ciphertext. We note that this construction is
similar to Yao’s garbled circuit except that the evaluation of the circuit is done gate by
gate based on threshold cryptosystems.

3.6.2 Yao’s Garbled Circuit Approach

A well-known alternative solution to the “gate-by-gate” approach, is Yao’s garbled
circuit approach. In his seminal paper, Yao [Yao86] designs a method for generating an
encrypted circuit and uses it to obtain a general secure two-party protocol which is secure
in the presence of semi-honest adversaries. In this protocol, there is a constructor (Bob)
and an evaluator (Alice). On a very high level, the method consists of three procedures:

1. The function f is first represented as a Boolean circuit. Bob uses an algorithm to
“encrypt” this circuit. The encrypted circuit is called as garbled circuit.

2. An interactive protocol is run between Alice and Bob in order to send the correct
decryption keys to Alice.

3. Based on the decryption keys Alice uses an algorithm to “decrypt” the garbled circuit.

The original implementation of the protocol, due to Yao [Yao86], makes a black-box
use of the underlying primitives a pseudorandom generator and OT. As we said, to decrypt
the garbled circuit Alice needs to learn the decryption keys. To do so, a 1-out-of-2 OT is
run to receive the correct decryption keys. Alice then decrypts the garbled circuit with no
further interaction with Bob and sends his output back.

Yao’s garbled circuit approach is quite different than the “gate-by-gate” approach. In
the garbled circuit approach, the “encryption” of the whole logical circuit is done by Bob,
and the “decryption” of the whole logical circuit is done by Alice (with no interaction).
Additionally, by using the garbled circuit approach it is always possible to achieve a con-
stant number of rounds (only a few rounds). However, in the “gate-by-gate” approach
the parties evaluate the circuit which describes the function to be evaluated gate by gate
which in general results in polynomial number of rounds depending on the depth of the
circuit. Another difference is that the computational setting. Any secure private-key en-
cryption scheme can be used to construct a garbled circuit, and in this way the garbled
circuit is efficiently “encrypted” and “decrypted”. However, the only additional (major)
computational cost is needed for OT protocol.

Yao’s garbled circuit is usually limited to two parties, but has been extended to han-
dle multiparty inputs using similar settings. For example, Chaum, Damg̊ard and van de
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Graaf [CDG87] presented a circuit scrambling technique that is similar to Yao’s garbled
circuit to achieve secure multiparty computation. However, this protocol does not run in
constant number of rounds and the rounds depend on the size of the circuit. Also, Beaver,
Micali and Rogaway later [BMR90] generalized Yao’s original protocol [Yao86] to the case
of multiparty computation with an honest majority while preserving the constant round
complexity. In the construction of [BMR90] the circuit encryption process can be done
in parallel for every gate in the circuit which yields a constant-round protocol for secure
multiparty computation. At a very high level, the idea is to construct a common garbled
circuit interactively. Then, each individual party evaluates the garbled circuit, without
interacting with other parties. The intermediate information that this garbled circuit does
not reveal any information to the parties except the output of the circuit and is guaran-
teed to be correct. Recently, Damg̊ard and Ishai [DI05] observed a problem in [BMR90]
with the encryption scheme for the garbled circuit technique. Briefly, the parties need to
provide zero-knowledge proofs for statements that involve the computation of a pseudoran-
dom generator for computing encryptions on which Yao’s protocol relies. In general, this
requires generic zero-knowledge techniques, which means we no longer make a black-box
use of a pseudorandom generator, and also this leads to very inefficient result. In [DI05],
the authors propose a new protocol using a different encryption scheme as a solution for
secure multiparty computation.

In this thesis, we will focus on the use of Yao’s garbled circuit which will be described
in detail in Chapter 5. We will present new protocols for secure two-party computation
based on Yao’s garbled circuit considering different security levels.
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4
Combining Oblivious Transfer and

Commitments

There are several ways of combining oblivious transfer with commitments. One of the
strongest known combinations is Committed Oblivious Transfer. Known protocols for com-
mitted oblivious transfer, however, only cover the transfer of single bits (one bit per execu-
tion of the protocol). We present committed oblivious transfer protocols for transferring bit
strings. Our constructions work for are any (2,2)-threshold homomorphic cryptosystem,
and perform favorably in comparison to the most efficient committed oblivious transfer
protocols for single bits. We also introduce Committing Oblivious Transfer, which is a
somewhat weaker combination than committed oblivious transfer, and therefore allows for
potentially more efficient protocols (see Chapter 6).

Parts of this chapter are based on [KSV07] (joint work with Berry Schoenmakers and
José Villegas) and based on [KS06a] (joint work with Berry Schoenmakers).

4.1 Introduction

Oblivious transfer (OT) is a powerful primitive in modern cryptography. As we said
in Section 2.4, in a 1-out-of-2 OT protocol, the sender has two messages s0 and s1, and
the chooser has a bit b, and the chooser wishes to receive sb, without the sender learning
b, while the sender wants to ensure that the chooser receives only one of the two messages
(see Figure 4.1 for 1-out-of-2 OT functionality).

Sender

Private Input: s0, s1

Private Output: ⊥

1-out-of-2 OT

←→
Chooser

Private Input: b

Private Output: sb

Figure 4.1: 1-out-of-2 oblivious transfer

OT protocols are usually used in the semi-honest model. Now suppose that we are in
the malicious model and the inputs s0, s1 are critical messages that actually come from
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some previous constructions, or the chosen output sb will again be used in some further con-
structions. Therefore, we want to be sure whether the parties will use their inputs/outputs
correctly. How do we ensure that both parties are using the correct inputs/outputs? In
general, in order to solve these kinds problems, commitments to inputs or to outputs are
used. Namely, the cases where not only s0 and s1 are committed before the protocol starts
but also a commitment to sb is committed at the of the protocol. In the next section, we
discuss several variants of combinations of OT with commitments.

4.2 Variants of Oblivious Transfer with Commitments

Committed oblivious transfer is obtained as a natural combination of OT and bit com-
mitments. This notion was first introduced by Crépeau [Cre90] under the name Verifiable
Oblivious Transfer . In short, at the start of committed OT, the sender is committed to
bits s0 and s1 and the chooser is committed to bit b; at the end of computation the chooser
learns sb and is committed to sb, and knows nothing about s1−b, while the sender learns
nothing about b. Later, Crépeau, Graaf and Tapp [CGT95] presented a more efficient com-
mitted OT protocol and showed that from committed OT one can construct a protocol for
general secure multi-party computation in the malicious model. Garay, MacKenzie and
Yang [GMY04] present the most efficient committed OT protocol to date realizing com-
mitted OT functionality in the universal composable (UC) framework of Canetti [Can01].
However, this protocol also works only for bits. In this chapter, we will present an efficient
protocol for committed OT which allows transferring arbitrary bit strings. We will only
consider a stand-alone setting, noting that the efficiency of our protocols improves the effi-
ciency of the UC-protocols of [GMY04] when reduced to a stand-alone setting (replacing,
e.g., the use of Ω-protocols [GMY06] by Σ-protocols).

Sender

Private Input: s0, s1, r0, r1

Private Output: ⊥

Common Input: commitC(b; r),
commitS(s0; r0), commitS(s1; r1)

Committed OT←→
Common Output: commitC(sb;u)

Chooser

Private Input: b, r

Private Output:
sb, u

Figure 4.2: Committed oblivious transfer

We are now ready to present a formal definition of committed OT.

Definition 4.1 (Committed OT protocol) A committed OT protocol is run between
the sender S and the chooser C. S has as private input the bits or strings s0 and s1

and also randomly chosen strings r0 and r1, and C has as private input bit b and also
randomly chosen string r. Both have public commitments commitS(s0; r0), commitS(s1, r1),
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and commitC(b, r) as common input. At the end of the protocol, C receives sb and a fresh
commitment commitC(sb, u) becomes publicly available. S learns nothing about b while C
has no information about s1−b. (See Figure 4.2)

If the parties are committed to the inputs of the OT protocol but there is no commit-
ment to chooser’s output we refer to this variant as verifiable OT (see Figure 4.3). In this
direction, Cachin and Camenisch [CC00] as well as Jarecki and Shmatikov [JS07] present
protocols for verifiable OT in 2 rounds. These protocols can be converted into committed
OT by requesting the chooser to recommit to its received value and to prove the validity
of this commitment with respect to the commitments for the inputs. In general, this leads
to one extra communication round.

Sender

Private Input: s0, s1, r0, r1

Private Output: ⊥

Common Input: commitC(b; r),
commitS(s0; r0), commitS(s1; r1)

Verifiable OT←→

Chooser

Private Input: b, r

Private Output: sb

Figure 4.3: Verifiable oblivious transfer

Now we point out the difference between committed OT and verifiable OT in more
detail. Committed OT and verifiable OT are identical except that in verifiable OT the
commitment by the chooser to its selected value sb is not required. Keeping this in mind,
we notice that [Cre90, CGT95, CD97, GMY04] are papers that present committed OT
(of bits). Instead, in [CC00, JS07] only verifiable OT protocols are presented. However,
the different use of these terms causes some confusion in the literature: Crépeau [Cre90]
introduces committed OT under the name of verifiable OT, Jarecki and Shmatikov [JS07]
present protocols for verifiable OT, while they use the term committed OT. In the latter
paper, they present a UC-secure verifiable OT protocol (which for them is a committed
OT), modifying the definition of the ideal functionality for committed OT by Garay et
al. [GMY04] to make it into verifiable OT. It is straightforward to see that in line with our
definitions committed OT implies verifiable OT by just ignoring the output commitment.

As a final variation, assume now that the inputs are not committed in the beginning
of the protocol. Let’s now commit to the inputs and invoke committed OT functionality.
In this respect, we introduce a new notion called Committing Oblivious Transfer. Namely,
the sender and the chooser start as in a plain oblivious transfer (without any commitments
for their inputs). Upon completion of a committing OT protocol, however, the sender and
the chooser are committed to (some of) the actual inputs used by them in the protocol
run. Possibly, the receiver is committed to its output as well. More formally,

Definition 4.2 (Committing OT protocol) Committing OT is a protocol between two
parties, the sender S and the chooser C. The private input of S consists of bit strings s0

and s1 and the private input of C is a bit b. The private output for S consists of bit strings

37



4.3 Basic Concepts and Definitions

r0 and r1, the private output for C consists of the bit string sb, and the common output for
S and C is commitC(sb; u),commitS(s0; r0) and commitS(s1; r1) (see Figure 4.4).

Sender
Private Input: (s0, s1)

Private Output: r0, r1

Committing OT←→
Common Output: commitC(sb;u),

commitS(s0; r0), commitS(s1; r1)

Chooser
Private Input: b

Private Output: sb, u

Figure 4.4: Committing oblivious transfer

An OT protocol in the literature that fits with committing OT is presented by Lipmaa
in [Lip03]. That protocol is presented under the name Verifiable Homomorphic Oblivious
Transfer. Here, homomorphic means that it is based on homomorphic encryption and
commitment schemes, and verifiability is defined in the sense that at the end of the protocol
there will be some commitments to all inputs of OT. Also, the OT protocol by Bellare and
Micali based on ElGamal encryption [BM90] can also be seen as an instance of committing
OT, as the sender outputs two encryptions for his respective inputs. Another instance of
committing OT is presented by Naor and Pinkas which is the first two-round efficient OT
without using random oracles [NP01]. Note that in all these examples, the chooser is not
committed to its output (i.e., sb).

In Section 4.5, for the sake of completeness, we will propose a concrete protocol for
committing OT which is a derived protocol that is close to our committed OT protocol.
We remark that committing OT will be used in Chapter 6 to allow more efficient protocols
than using committed OT.

4.3 Basic Concepts and Definitions

Before we present our protocol for committed OT, we discuss in this section some
important properties of the cryptographic tools that we are going to use.

4.3.1 (Non-Interactive) Public and Private Threshold Decryp-
tion

In a (t, n)-threshold cryptosystem, given a ciphertext, any combination of at least
t parties can decrypt and produce shares of the decryption, based on their respective
shares of the secret key. These shares are broadcasted and with this, everyone can simply
recover the plaintext by using a reconstruction algorithm. Putting this more formally,
given a ciphertext c=Enc(m) where Enc denotes the encryption algorithm, at least t parties
broadcast mi=Decski

(c), where Dec denotes the decryption algorithm under the secret key

38



4.3 Basic Concepts and Definitions

share ski for the i-th party. Afterwards, everyone can reconstruct m as m = R(m1, . . . ,mt)
where R denotes the public reconstruction algorithm.

In order to withstand malicious adversaries, parties have to prove that the decryption
share mi is correctly computed. For this, they use a Σ-protocol for the relation

Rtdec = {(mi, c; ski) : mi = Decski
(c)}.

For the security of this process, and for later use in our security analysis, we assume
that if t− 1 parties are corrupted, then there is a simulator that on inputs e=Enc(m), the
message m, and the t− 1 shares of the private key for the corrupted parties, the simulator
can produce a statistically indistinguishable view of the decryption protocol. The concrete
details on how to do this depend on the specific threshold encryption scheme used. To
give some examples, see [ST04] for the homomorphic threshold ElGamal, and [DJ01] for
the threshold Paillier cryptosystem.

In our protocol, we consider a variant of the threshold decryption protocol: the so-
called private threshold decryption [CDN01] where only one of the t parties will recover the
secret. This is easily achieved: all t − 1 other parties follow the protocol, and broadcast
their shares (along with the proofs of correctness). The party who will learn the plaintext
proceeds with the decryption process privately, collects all decryption shares from the t−1
other parties, and privately reconstructs the message. The remaining parties will not get
any information about this message by the threshold construction.

4.3.2 Encryptions as Commitments

We note that a probabilistic public-key encryption scheme can be used as a non-
interactive commitment scheme. One party commits to a message by encrypting it. The
opening is done by disclosing the message and the randomness used. However, in this
scenario we have to be careful: the holder of the private key can always see the contents
of any commitment of this type and, depending on the encryption scheme used, this party
might recover the randomness and therefore virtually open any commitment.1 This com-
promises the hiding property for the committers that do not know the secret key. We can
resolve this issue with the following two possible actions: using the encryption scheme as a
commitment without allowing any of the parties to know the secret key; another suitable
alternative could be to set up a threshold encryption scenario. In this way, the ability to
decrypt can be distributed in a threshold fashion (possibly letting the threshold be the
total number of parties).

Given a commitment e=Enc(m, r), its committer in this scenario is the party that
knows both the message m and the randomness r. Note that each party can perform
private threshold homomorphic decryption with respect to one party to retrieve the message
behind e, but this does not always allow the recipient to obtain the randomness used in e

1For Paillier encryptions, one is able to recover both the plaintext and the randomness used if one
knows the private key. Whereas, for ElGamal encryptions recovering the randomness is impossible under
the DL assumption.
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(e.g., ElGamal), and therefore this party will not be able to open e as a commitment. If
party P is the committer of e=Enc(m, r) we denote it by e = commitP (m, r).

4.3.3 Security Definitions

The security analysis of our committed OT protocol is done by means of the simulation
paradigm which guarantees privacy following the lines by Lipmaa in [Lip03]. Note that
the definition in [Lip03] is a weaker form than the fully simulatable ideal/real simulation
paradigm. Although the privacy for both parties is computational (as the commitments
in our protocol are public key encryptions), we show a simulation which produces a sta-
tistically indistinguishable view of the committed OT protocol for both parties. Hence,
the committed OT protocol does not divulge any information beyond what can be inferred
from the encryptions (which are used as computationally hiding commitments).

The main security requirement is to show that our protocol achieves the privacy require-
ments for committed OT. There are protocols in the literature that achieve unconditional
privacy for one of the parties (e.g., [NP01, Tze02, Lip03]) while the privacy for the other
party relies on a computational assumption. As our commitments are encryptions of the
underlying threshold public key cryptosystem, only computational privacy is achieved for
both parties. However, our protocol achieves more than computational privacy: we show
that for any corrupted party (the sender or the chooser) there exists a simulator that pro-
duces a view of the protocol which is statistically indistinguishable from the view of the
corrupted party executing a real instance of the protocol. This has clear consequences in
the framework of [CDN01]: a successful attacker to our protocol is an attacker to the secu-
rity of underlying cryptosystem without loss in its success probability. This allows modular
security proofs of higher level protocols that use our committed OT as a subroutine.

To carry out such simulations, we proceed as follows. Assuming that one party is
corrupted, we build an efficient simulator that has access to the public input, private
secret shares of secret key and, as done in [Lip03], the private output in the case that the
chooser is corrupted. Besides, the simulator knows the public output.

4.4 A Committed Oblivious Transfer Protocol

In this section, we will present our committed OT protocol which is based on a (2,2)-
threshold homomorphic cryptosystem. We assume that the cryptosystem has already been
set up (see 4.4.2). This implies that the parties must run a multiparty computation to get
a public key and their shares of the private key. Although this require some work from the
two parties involved, it may pay off if the committed oblivious transfer protocol has to be
run multiple times. Let Enc denote the encryption algorithm of this cryptosystem, and as
explained above we also use Enc as a non-interactive commitment scheme.

Let e0=Enc(s0, r0) and e1=Enc(s1, r1) be the commitments to the sender’s input strings
s0 and s1, and e=Enc(b, r) be the commitment to the chooser’s selection bit b.

We note that if a message m1 is private to one of the parties, this party can compute
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e′ as e′ = (e2)
m1 · Enc(0, r′) where e2 is an encryption of a message m2 and r′ is some

randomness, and is able to generate a proof that e′ is correctly computed. This is called a
private-multiplier gate (see, e.g., [ST04]). In this case, e clearly encrypts m1m2 because of
homomorphic properties.

For later use, the relation for the proof given in the private-multiplier gate is denoted
by Rpm = {(e1, e2, e

′; m1, r1, r
′) : e1 = Enc(m1, r1) ∧ e′ = (e2)

m1 · Enc(0, r′)}. Also, for
later use in the simulation of our protocols, given Enc(m1), Enc(m2) and Enc(m1m2), the
private-multiplier gate can be statistically simulated when there are at most t−1 corrupted
parties in a (t, n)-threshold homomorphic cryptosystem. For details, see [CDN01, DJ01,
ST04, DN03].

Using the general approach to secure multiparty computation of [CDN01], the com-
mitted OT protocol corresponds to the secure evaluation of an arithmetic circuit given by
t = b(s1 − s0) + s0 which clearly returns s0 if b = 0 and s1 when b = 1. This approach is
so general that even s0, s1 and b need not be known to any party. Note that the output of
the evaluation will be an encryption e′ = Enc(t) = Enc(sb). If inputs (s0, s1) and/or b are
known to the respective parties then one can securely compute e′ using a private-multiplier
gate (instead of a secure multiplication gate), resulting in a more efficient protocol.

Once e′ is obtained, according to one of the committed OT requirements, only the
chooser must be able to recover the plaintext. For this, we use private decryption, where
the chooser is the one who will learn the plaintext inside e′.

To complete the committed OT protocol, the chooser needs to commit to the received
value sb, and prove that she does so correctly. In principle, this can be done using proofs
of knowledge. However, we will use the fact that our commitments are encryptions for a
threshold cryptosystem: to prove that a fresh commitment e′′ to output sb is correct, we
observe that this proof is equivalent to showing that e′′/e′ is an encryption of 0. The latter
statement is proved by actually decrypting e′′/e′.

As a final remark, we see that if the chooser starts the protocol by producing e′, it
turns out that she has to wait for the decryption share of e′ from the sender, so that
she later can produce the fresh commitment as just explained. This results in at least 3
rounds of communication. However, if the sender starts, he produces e′ and, at the same
time the decryption share for e′, which reduces the overall strategy to at least 2 rounds
of communication. In both cases, the computational cost is actually the same. For this
reason, we only go into the details of this second approach, as it results in a committed
OT with one round less.

We are now ready to present our protocol for committed OT in full detail. This protocol
has two rounds and it is quite efficient compared to the state of the art. In the beginning of
the protocol, we take advantage of the fact that the values for the commitments e0, e1 and
e are known to the respective parties. The protocol is as follows ( see also in Figure 4.5).

Step 1. The sender produces e′ = Enc(b(s1 − s0) + s0) = e(s1−s0) · e0 · Enc(0, r′) and a
Σ-proof (see Section 2.2) for relation Rpm on (e, e1/e0, e

′/e0; s1 − s0, r1 − r0, r
′). The

sender also produces its decryption share sS of e′, along with a Σ-proof for relation
Rtdec on (e′, sS; skS).
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Committed OT of bit strings

Sender Chooser
Private Input: Common Input: e = Enc(b, r), Private Input:
s0, s1, r0, r1, skS e0 = Enc(s0, r0), e1 = Enc(s1, r1) b, r, skC

e′ = es1−s0 · e0 · Enc(0)
sS = DecskS

(e′)

−−−−−−
e′, sS + proofs
−−−−−−−−−−−−−−→

sC = DecskC
(e′), sb = R(sS, sC),

e′′ = Enc(sb, u) for random u,
ŝC = DecskC

(e′′/e′)

←−−−−−−
e′′, ŝC + proof
−−−−−−−−−−−−−−

ŝS = DecskS
(e′′/e′)

0
?
= R(ŝS, ŝC)

Private Output: ⊥ Common Output: e′′ Private Output: sb, u

Figure 4.5: The committed OT protocol

Step 2. After checking the two proofs given by the sender, the chooser produces the
corresponding decryption share for e′, denoted here by sC . Combining sS and sC , the
chooser gets sb. Immediately, the chooser produces a fresh encryption e′′ = Enc(sb, u)
for a fresh random u, and generates her decryption share for e′′/e′, denoted by ŝC .
Then, e′′ and ŝC are sent along with Σ-proofs for Renc and Rtdec on inputs (e′′; sb, u)
and (e′′/e′, ŝC ; skC) respectively.

Step 3. Finally, upon receiving e′′, the sender produces its decryption share for e′′/e′,
denoted by ŝS. This is combined with ŝC to check whether the resulting decrypted
value is 0. If so, the sender accepts e′′ as a valid commitment for the chooser’s output.
Otherwise, the sender rejects.

The value sb denotes the output of the chooser after privately decrypting e′. When this
value has been computed, a fresh commitment to sb (denoted as e′′) by the chooser has to
be sent in order to fulfill the committed OT requirement that the chooser’s output must
be committed. Notice here that without the fresh commitment to sb the protocol fulfills
the verifiable OT requirement in one round only.
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4.4.1 Security Analysis

For the security analysis, we are going to prove that this protocol fulfills the privacy
requirements for committed OT. We are going to show that given a corrupted party, there
exists a simulator that can produce a view which is statistically indistinguishable from the
view of that party interacting with the other honest party.

As we mentioned earlier, before the simulation is run the simulator already knows the
shares of the secret key of the corrupted party. The reason is that the threshold cryp-
tosystem is set up before the protocol starts, and therefore we assume that the simulator
extracts this information when the distributed key generation protocol is run (see Section
2.5).

Also, in case the chooser is corrupted, we use the approach in [Lip03]: the simulator
will be given access to the value received by the chooser. From this and available public
information, we construct a simulator that produces an indistinguishable view for the
adversary with respect to the view in the real execution.

Finally, we recall that the protocol gives computational privacy to both parties, the
sender and the chooser, because of the semantic security of the underlying cryptosystem.
But, as we said before, in the next theorem we are going further than computational privacy,
namely we show that the protocol is simulatable for both parties and those simulations
produce views which are statistically indistinguishable from the views in the real protocol
execution.

Theorem 4.3 On the sender’s inputs s0, s1 (and randomness r0 and r1) and the chooser’s
private selection bit b (and randomness r), where public commitments to the parties’ inputs
e0 = Enc(s0, r0), e1 = Enc(s1, r1), and e = Enc(b, r) are available, the committed OT
protocol privately gives sb (and a fresh randomness u) to the chooser, along with a public
commitment e′′ = Enc(sb, u).

Proof. We will separately consider the case that the chooser is corrupted, and the
case that the sender is corrupted. Based on public information and the corrupted party’s
private decryption share, we show a simulation which produces a view to the adversary
that is statistically indistinguishable from the view in the real protocol execution.

In both cases, a set of valid public inputs is available: e is a commitment to the
chooser’s selection bit, and e0, e1 are respective commitments to the sender’s inputs. Also,
the simulator is assumed to get the public output commitment e′′ which is a “valid”
commitment to the value received by the chooser.

Case 1- The chooser is corrupted.

We first analyze the security for the case that the chooser is corrupted. The simulator
has the chooser’s private key share skC , and received value sb, apart from the public
commitments. From this information, the simulator constructs a view for the chooser
which is statistically close to the one when interacting with the honest sender, as follows:
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1. The simulator computes e′ = e′′ · Enc(0), and generates a simulation of the private-
multiplier gate (over multiplicands e and e1/e0 and result e′/e0).

2. At the same time, the decryption share sS can be simulated given e′, the plaintext
of e′ (which is sb) and the share of private key skC of the chooser. All proofs at this
stage are also simulated.

This completes the simulation for the malicious chooser. The simulated transcript is
consistent with the view of the chooser and statistically indistinguishable when interacting
with the honest sender.

Case 2- The sender is corrupted.

We next analyze the security for the case that the sender is corrupted. The simulator has
only sender’s private key share skS and all public information as described above. From
this information, the simulator constructs a view for the sender which is statistically close
to the one when interacting with the honest chooser, as follows:

1. The simulator waits until the sender produces the encryption e′ and the decryption
share for e′. The simulator checks all the proofs as if the honest chooser would
check in the real protocol execution. If all proofs are passed, the simulator goes on,
otherwise it aborts.

2. Now, simulator prepares e′′ as e′ ·Enc(0) and outputs it along with a simulated proof
of knowledge. Also, it simulates ŝC calling the simulator to the decryption process
on inputs e′′/e′, plaintext 0 and the sender’s secret key share skS.

This completes the simulation for the malicious sender. The transcript is consistent and
statistically indistinguishable from the sender’s view when interacting with the honest
chooser. 2

4.4.2 Complexity Analysis and Comparison

Our protocol involves only a constant number of computational, communication and
round complexities. We remark that our protocol, unlike previous protocols, allows trans-
ferring arbitrary bit strings. When studied in similar frameworks where only bits are trans-
ferred, our protocols are as efficient as the committed OT protocol by Garay et al. [GMY04]
which is the most efficient up to now. We note that the protocol of Garay et al. works in
a stronger model, namely in the universal composability (UC) framework in the common
reference string (CRS) model. We will adapt their protocol to our framework to be able
to carry out a comparison.

In the following, we present the precise description for the complexity of our protocol.
For a concrete result we use the (2,2)-threshold ElGamal cryptosystem by considering
offline computations. The protocol by Garay et al. needs a special type of zero-knowledge
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protocols for the proofs of knowledge, namely, Ω-protocols [GMY06], which are variants of
the Σ-protocols. For simplicity, we reduce them to the simpler Σ-protocols. This is done
to be able to make a reasonable comparison.

Committed OT protocol by Garay et al.

We first give a global description of their protocol. The CRS consists of the pair (g, h),
where nobody knows the discrete log x of h to the base g, i.e. h = gx. The protocol
uses Pedersen commitments. Therefore, let E0 = gr0hs0 and E1 = gr1hs1 denote the
commitments to sender’s inputs s0 and s1. Let also E = grhb denote the commitment to
chooser’s input b. The protocol has the following two main steps:

1. The sender “re-encrypts” E0 and E1 under the ‘keys’ E and E/h respectively. Let
E ′

0 and E ′
1 denote the resulting encryptions. Note that Eb will be re-encrypted with

the key gr. The sender also proves that this is done correctly.

2. The chooser can “decrypt” the message in E ′
b as she knows the secret exponent

r, recovering sb. On the other hand, the chooser cannot decrypt E ′
1−b unless the

discrete-log of h to the base g is known. To finish, the chooser has to recommit to
the received value sb and prove that this is correctly computed.

See [GMY04] for more details. In the first step, for the reencryption, 4 exponentiations
are computed by the sender (2 of them can be done off-line). The proofs at that step cost 16
exponentiations (8 of them can be done off-line). As for the second step, the chooser needs
only 1 on-line exponentiation to retrieve the chosen value. To finish, the chooser computes
a fresh commitment which costs 1 off-line exponentiation. The proof of knowledge at the
end costs 8 exponentiations (4 can be off-line). In total, there are 15 on-line and 15 off-line
exponentiations.

Verifiable OT by Jarecki and Shmatikov.

We now sketch the verifiable OT protocol in [JS07]. The input commitments are encryp-
tions under a homomorphic public key cryptosystem (the public key is part of the CRS).
The chooser first sends a new public key together with the encryption of its selection bit
under this new cryptosystem, proving that this is done correctly. Later, the sender encrypts
its inputs under this new public key, combining them with the encryption for the selection
bit. Finally, the chooser can decrypt both ciphertexts, but only one of them contains the
selected value, and the other one is random.

To convert it into committed OT, the chooser must recommit to its received value,
producing a proof that the value encrypted is consistent with previous commitments. This
protocol results in 3 rounds.

This scheme virtually works for any homomorphic encryption. When instantiated to
additively homomorphic ElGamal, for the sake of our comparison, the protocol is slightly
less efficient than that of [GMY04]: around 17 on-line and 16 off-line exponentiations
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Online Offline
Private-multiplier gate 3 5
Private threshold decryption 4 2
Recommitment 1 3

Table 4.1: Number of exponentiations of building blocks used in our committed OT pro-
tocol for (2,2)-threshold ElGamal setting

(mainly due to the generation of the new cryptosystem, the recommitment of the selection
bit and the respective proofs of knowledge). Meanwhile, for the verifiable OT protocol,
the cost is 13 on-line and 10 off-line exponentiations.

Our committed OT protocol.

Now we present the computational cost for our protocol in the case of (2,2)-threshold
ElGamal. In Table 4.1 we summarize the computational complexity of the building blocks
used in our protocol. For the private-multiplier gate, we include the costs of producing the
output and the Σ-proof for relation Rpm. In the case of the private threshold decryption,
we include the costs for generating the decryption shares and for the Σ-proof for Rtdec. We
conclude by considering the recommitment at the last step. In the case of e′′, the chooser
has to encrypt the received value and the Σ-proof for the knowledge of the randomness used
in that encryption. This suffices and if the chooser passes this proof and e′/e′′ decrypts to
0, it implies that she knows the plaintext in e′′. We divide the complexities analysis again
into on-line and off-line computations.

To get the total number of exponentiations, we note that our protocol requires one
private-multiplier gate at the first step (to produce e′), two private threshold decryptions
(for decrypting e′ and e′′/e′) and one encryption at the last step (to generate e′′). Therefore,
we have in total 12 on-line and 12 off-line exponentiations.

Observe that the way of proving that the fresh commitment is correct in our protocol is
different from, yet equally efficient as in the proof in [GMY04]. The protocol in [GMY04]
needs 9 exponentiations to recommit and prove. Ours needs 9 exponentiations as well:
produces e′′ and one threshold decryption.

If we restrict ourselves to a verifiable OT protocol, removing the recommitment step,
we can see that our protocol is really much more efficient than the current the state-of-the-
art protocols. It requires 7 on-line and 7 off-line exponentiations (against 11 and 10 resp.
for Garay et al.’s protocol) and also involves only one round of interaction. Ours easily
generalizes to any (2,2)-threshold homomorphic cryptosystem at the cost of a distributed
key generation protocol at the beginning.
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4.5 A Committing Oblivious Transfer Protocol

In this section, we will present a two-round protocol for committing OT which is a de-
rived version of the protocol presented in Section 4.4. Let e0 = Enc(s0, r0), e1 = Enc(s1, r1)
and e = Enc(b, r) be as above.

As a remark, if the sender starts the protocol by producing e0 and e1 then the chooser
blinds one of e0 and e1 and sends to the sender so that the sender can produce a share
for the blinded commitment. The chooser also compute its share and later can obtain sb.
The common output would be e0 and e1. This results in three rounds of communication.
However, if the chooser starts, he produces e, which reduces the overall strategy to two-
rounds of communication. We only go into the details of the two-round protocol.

We are now ready to present our protocol for committing OT in full detail. The protocol
is as follows (see also in Figure 4.6).

Committing OT

Sender Chooser
Private Input: Private Input:

s0, s1, skS b, skC

e = Enc(b, r) for random r

←−−−−−
e + proof
−−−−−−−−−−

e0 = Enc(s0, r0), e1 = Enc(s1, r1) for random r0, r1

e′ = es1−s0 · e0 · Enc(0)
sS = DecskS

(e′)

−−
e0, e1, e

′, sS + proofs
−−−−−−−−−−−−−−→

sC = DecskC
(e′),

sb = R(sS, sC)

Private Output: ⊥ Common Output: e0, e1 Private Output: sb

Figure 4.6: A committing OT protocol

Step 1. The chooser produces e = Enc(b, r) for a random r and a Σ-proof (see Section
2.2) for relation R = {(e; b, r) : e = Enc(m, r)}.

Step 2. After checking the proof given by the chooser the sender generates e0 = Enc(s0, r0)
and e1 = Enc(s1, r1) for random r0, r1, produces a fresh encryption e′ = e(s1−s0) · e0 ·
Enc(0), and generates the corresponding decryption share for e′. Then, e0, e1, e

′ and
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sS are sent along with Σ-proofs for Renc and Rtdec on inputs (e0, e1, e
′; s0, s1) and

(e′, sS; skS) respectively.

Step 3. Finally, upon receiving e0, e1, e
′ and sS, the chooser also produces its decryption

share for e′, denoted by sC . Combining sS and sC , the chooser gets sb. The common
output is e0 and e1.

Note that as a further computation if the chooser also committed to sb at Step 3 then
our committing OT protocol would be its most general case as defined in Section 4.2.
However, it is not necessary to have the final commitment step in order to fix the protocol
issue which will be presented in Chapter 6.

4.5.1 Security Analysis

The security analysis of the committing OT protocol is similar to the one for the
committed OT protocol. We note that we prove the security in the ideal/real simulation
paradigm. As before the protocol is run there is a setup phase (to get public keys, and
shares of the secret key), we will work in the hybrid model assuming that this setup phase
in securely computed. Therefore, we will assume that the simulator has access to the
corrupted party’s share of the private key. With this, we show a simulation which produces
a view that is computationally indistinguishable to the view of a real life execution.

In the case that the chooser is corrupted, the simulator extracts the bit b from the given
proof in the first round. Once the simulator learns b it sends to the ideal functionality that
implements committing OT, and receives sb back. From the information chooser’s private
key share skC and received value sb, the simulator constructs a view for the chooser which
is indistinguishable to the one when interacting with the honest sender, as follows: the
simulator chooses a random s1−b and computes eb = Enc(sb, rb) and e′ = Enc(sb, r

∗
b ), and

e1−b = Enc(s1−b, r1−b). Then the simulator generates a real proof for the private-multiplier
gate. At the same time, the decryption share sS can be simulated given e′, the plaintext of
e′ (which is sb) and the share of private key skC of the chooser. All proofs at this stage are
also simulated which completes the simulation for the corrupted chooser. The simulated
transcript is consistent with the view of the chooser and computationally indistinguishable
when interacting with the honest sender.

In the case that the sender is corrupted, the simulator has the sender’s private key
share skS. From this information, the simulator constructs a view for the chooser which is
computationally close to the one when interacting with the honest sender, as follows: the
simulator chooses an arbitrary bit b and computes e = E(b, r) for random r, and generates
a real proof of knowledge of b. The simulated view is computationally indistinguishable
when interacting with the honest sender. Note that the views are computationally indis-
tinguishable since the contents inside e cannot be known by the simulator as it happens in
the committed OT protocol above.
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5
Secure Two-Party Computation in the

Semi-Honest Model

Yao’s protocol for secure two-party computation based on garbled circuits was already
introduced at the end of Chapter 3. In this chapter we present and analyze protocols
for secure two-party protocol assuming semi-honest adversaries, following the same line
as Yao’s original protocol. The security analysis is performed according to the ideal/real
simulation paradigm. Furthermore, our protocol can be extended to the malicious case in
a modular fashion, as will be shown in Chapter 6.

Parts of this chapter are based on [KS08] (joint work with Berry Schoenmakers).

5.1 Yao’s Garbled Circuit

In this section, we describe Yao’s garbled circuit in full detail. Informally speaking, a
garbled circuit is an encrypted version of a Boolean circuit in which the Boolean values are
replaced by encrypted values. In this section we will describe Yao’s garbled circuit con-
struction, opening and evaluation steps in detail (see also, e.g., [Yao86, GMW87, Rog91]).

5.1.1 Preparation of a Garbled Circuit

Bob generates a circuit Cf that computes a function f . A circuit consists of gates and
wires. A wire is either an internal wire, an input wire or an output wire. Each internal
wire connects two gates.

As we mentioned earlier, Bob is the constructor who generates the garbled circuit and
Alice is the evaluator who evaluates it. Bob garbles the circuit in two phases. Let k be the
security parameter.

• Phase 1: For each wire in Cf , say wire Wi, Bob generates two random k-bit strings
vi,0, vi,1 ∈R {0, 1}k, and a random bit pi ∈R {0, 1}, and computes wi,0 and wi,1 as
follows:
wi,0 = vi,0 ‖ (0⊕ pi), wi,1 = vi,1 ‖ (1⊕ pi). In our setting, the values wi,0 and wi,1 will
be called the garbled values for the i-th wire. The garbled value wi,0 will correspond
to the bit 0, and wi,1 will correspond to the bit 1.
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• Phase 2:

Let bi′′ = gi′′(bi, bi′) ∈ {0, 1} where bi and bi′ ∈ {0, 1}. Let a 4-tuple of bits <
gi′′(0, 0), gi′′(0, 1), gi′′(1, 0), gi′′(1, 1) > represent the logical table of a gate gi′′ , with
input wires Wi, Wi′ and output wire Wi′′ (see Figure 5.1).

Wi′′

Wi Wi′

gi′′(0, 0)

bi bi′ bi′′

0

0

1

1

0

1

0

1

gi′′(0, 1)

gi′′(1, 0)

gi′′(1, 1)

Figure 5.1: Truth table of a gate gi′′

Then for each gate gi′′ , Bob performs the following transformations on this logical
table.

– Garbling Phase:
Bob replaces gi′′(bi, bi′) with wi′,bi′′

for bi, bi′ , bi′′ ∈ {0, 1}. The result is the
garbled-4-tuple 〈wi′′,gi′′ (0,0), wi′′,gi′′ (0,1), wi′′,gi′′ (1,0), wi′′,gi′′ (1,1)〉.

– Encryption Phase:
Bob replaces wi′′,gi′′ (bi,bi′ )

of the garbled-4-tuple by its encryption
Encwi,bi

,wi′,bi′
,i′′(wi′′,gi′′ (bi,bi′ )

) using the encryption key (wi,bi
, wi′,bi′

, i′′) where Enc

is a private-key encryption function. The result is the encrypted-garbled-4-tuple
〈Encwi,0,wi′,0,i′′(wi′,gi′′ (0,0)), Encwi,0,wi′,1,i′′(wi′′,gi′′ (0,1)),
Encwi,1,wi′,0,i′′(wi′′,gi′′ (1,0)), Encwi,1,wi′,1,i′′(wi′′,gi′′ (1,1))〉. For notational simplicity,
let 〈Ei,0,0, Ei,0,1, Ei,1,0, Ei,1,1〉 represent the encrypted-garbled-4-tuple for a gate
gi.

– Permutation Phase:
Let π0,0 = id denote the identity permutation of {1, 2, 3, 4}. Let us define the
permutation functions π0,1, π1,0 and π1,1 as follows:

π0,1 = (1, 2)(3, 4) , π1,0 = (1, 3)(2, 4) , π1,1 = π0,1 ◦ π1,0 = (1, 4)(2, 3) .
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5.1 Yao’s Garbled Circuit

Bob applies permutation πpi,pi′
to the components of encrypted-garbled-4-tuple,

resulting in the permuted-encrypted-garbled-4-tuple

〈Ei′′,0⊕pi,0⊕pi′
, Ei′′,0⊕pi,1⊕pi′

, Ei′′,1⊕pi,0⊕pi′
, Ei′′,1⊕pi,1⊕pi′

〉.

The garbled circuit GCf for the function f then consists of:

• The permuted-encrypted-garbled-4-tuples (PEG-4-Tuple) for all gates,

• The ordered pairs OPi′′ = (wi′′,0, wi′′,1) for each output wires Wi′′ .

This garbled circuit GCf is sent to Alice.

5.1.2 Opening of a Garbled Circuit

The opening of a garbled circuit as follows: For each wire Wi in the circuit, Bob sends
Alice the garbled strings vi,0, vi,1 and the bits pi. For each gate gi′′ Alice generates a
PEG-4-Tuple using the generated garbled strings. She also prepares the ordered pairs for
her output wires. Then she verifies that all PEG-4-Tuples and ordered pairs are the same
as the values Bob already sent to her.

5.1.3 Evaluation of a Garbled Circuit

In this section, we describe how Alice is going to evaluate a garbled circuit. To be able
to evaluate the garbled circuit the garbled input values for all input gates must be known.
Here, Bob with private input y simply sends his garbled values for each of his input wires
to Alice. Alice, on the other hand, receives her garbled input values via oblivious transfer
(OT) [Rab81, GM86]. To be more precise, Alice and Bob run a single OT for every bit of
Alice’s input bit to make them garbled. Bob is the sender and Alice is the chooser. In the
beginning, Alice has input bits xi where x = x1 . . . x`. and Bob has garbled string values.
For each of Alice’s i-th input wires the protocol runs as follows:

1. Bob knows two garbled values wi,0, wi,1 where wi,0 is the garbled value corresponding
to the input bit 0 and wi,1 is the garbled value corresponding to the input bit 1. Alice
has input bit xi.

2. The protocol runs in such a way that Alice chooses wi,xi
and she does not learn

anything about wi,1−xi
and Bob learns no information about xi.

Knowing the garbled inputs and with the help of a PEG-4-Tuple for every gate it is
possible to evaluate the circuit gate by gate and to produce a garbled output for each
output wire without learning any information about the input, including the intermediate
values. The circuit is evaluated on a gate level, namely from the input wires to the output
wires. More precisely, for each gate gi′′ she does the following:
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1. Let the right-most bits of wi,bi
and wi′,bi′

be bi ⊕ pi and bi′ ⊕ pi′ , respectively. Alice
uses bi ⊕ pi and bi′ ⊕ pi′ to find out the right position in the PEG-4-Tuple. In this
way, Alice determines the correct and unique intended decryption corresponding to
the output bi and bi′ .

2. The decryption key is computed by the knowledge of wi,bi
, wi′,bi′

and i′′.

3. Alice computes wi′′,bi′′
= Decwi,bi

,wi′,bi′
,i′′(Encwi,bi

,wi′,bi′
,i′′(wi′′,gi′′ (bi,bi′ )

)) where bi′′ =

gi′′(bi, bi′) and finds out the garbled output value of the gate gi′′ .

After evaluation of all gates, Alice computes the garbled values of all the output wires.
She uses ordered pairs to find out her actual output bits of the output wires. She also
has Bob’s garbled output values and sends them back to Bob. Finally, Bob computes his
actual output bits which he can do because he knows how he had made them garbled.

Note that Yao’s garbled circuit uses a private-key encryption scheme that has indis-
tinguishable encryptions for multiple messages, i.e. that are secure for multiple messages.
This means that, for every (possibly known) messages m0 and m1 if an encryption of a mes-
sage m0 and an encryption of a message m1 are given then no polynomial-time adversary
can distinguish the encryption of m0 from the encryption of m1. For example, in [LP04]
they present a simple construction based on using a pseudorandom generator [Nao91].

5.2 An Example: AND Gate

For a better understanding, we shall demonstrate the construction, opening and evalu-
ation of a garbled circuit for an AND gate. We shall use the one-time pad as example for
the private-key encryption. The secret key is a uniformly chosen sequence of t bits, and
an t-bit ciphertext is produced by XORing the plaintext with the key. The plaintext is
computed from the ciphertext in the same way.

In principle, given a hash function it is possible to construct a one-time pad, and XOR
the one-time pad with the message. Let pk be the private key and m be the message to be
encrypted. The encryption is done by first computing Hash(pk) using SHA-1 and XORing
the outcome with the message m where we assume that the length of Hash(pk) and m
are equal (so the outcome is Hash(pk)⊕m). The decryption can be performed only with
knowledge of the key pk. In our setting, we use symmetric encryption scheme that first
hashes the garbled inputs, and then XORes the computed hash values with the garbled
output values.

Assume Bob is the constructor who generates a garbled circuit that only consists of
one AND gate with two input wires Wi, Wi′ and one output wire Wi′′ where i, i′ and i′′

denotes the indices of the wires (see Table 5.1).

Garbling an AND gate.

Bob generates two random values for each of wires. Let vi,0, vi,1 denote the garbled
values for wire Wi, vi′,0, vi′,1 for wire Wi′ , and vi′′,0, vi′′,1 for wire Wi′′ where vi,0, vi′,0, vi′′,0
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Wi Wi′ Wi′′

0 0 0
0 1 0
1 0 0
1 1 1

Table 5.1: Logical table representing an AND gate

corresponds to 0 and vi,1, vi′,1, vi′′,1 corresponds to 1, respectively. For each wire, Bob
also generates random bits, say pi, pi′ and pi′′ for the wires Wi, Wi′ and Wi′′ respectively.
Suppose for instance that pi = 0, pi′ = 1 and pi′′ = 1. Then he puts

wi,0 = vi,0||0, wi,1 = vi,1||1,
wi′,0 = vi′,0||1, wi′,1 = vi′,1||0,
wi′′,0 = vi′′,0||1, wi′′,1 = vi′′,1||0.

Bob replaces all four entries of the logical table of the AND gate by the corresponding
garbled values input (see Table 5.2).

x y z

wi,0 wi′,0 wi′′,0

wi,0 wi′,1 wi′′,0

wi,1 wi′,0 wi′′,0

wi,1 wi′,1 wi′′,1

Table 5.2: Garbled AND gate

Next, Bob encrypts the garbled values for the output wire Wi′′ as follows. The encryp-
tion is done by hashing vi,x||i′′||(x⊕pi)||(y⊕pi′) and vi′,y||i′′||(x⊕pi)||(y⊕pi′) using SHA-1
for each entry x, y ∈ {0, 1}, and XORing them with the corresponding garbled output
values wi′′,0 and wi′′,1, and the encrypted-garbled-4-tuple (E00, E01, E10, E11) is computed
is as follows (see Table 5.3).

E00 = Hash(vi,0||i′′||0||1||vi′,0||i′′||0||1)⊕ wi′′,0

E01 = Hash(vi,0||i′′||0||0||vi′,1||i′′||0||0)⊕ wi′′,0

E10 = Hash(vi,1||i′′||1||1||vi′,0||i′′||1||1)⊕ wi′′,0

E11 = Hash(vi,1||i′′||1||0||vi′,1||i′′||1||0)⊕ wi′′,1.
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Wi Wi′ Wi′′

wi,0 wi′,0 Hash(vi,0||i′′||0||1||vi′,0||i′′||0||1)⊕ wi′′,0

wi,0 wi′,1 Hash(vi,0||i′′||0||0||vi′,1||i′′||0||0)⊕ wi′′,0

wi,1 wi′,0 Hash(vi,1||i′′||1||1||vi′,0||i′′||1||1)⊕ wi′′,0

wi,1 wi′,1 Hash(vi,1||i′′||1||0||vi′,0||i′′||1||0)⊕ wi′′,1

Table 5.3: Encrypted garbled AND gate

Next, Bob permutes the order of the encrypted-garbled-4-tuple so that Alice cannot
learn the order of the logical table. Since

π0,1 =

(
1 2 3 4
2 1 4 3

)
,

the PEG-4-Tuple is 〈E01, E00, E11, E10〉. Then the resulting garbled circuit for the AND
gate is as follows:

GCAND = {〈E01, E00, E11, E10〉, OPi′′} where OPi′′ = (wi′,0, wi′,1).

Evaluating an AND gate.

Bob sends GCAND to Alice for evaluation. Suppose that Bob has input 1 and Alice has
input 0. Therefore, he sends his garbled input wi′,1 to her. For reasons of simplicity, at the
end of the computation we consider the case that only Alice is going to learn the desired
output.

Alice and Bob run OT so that Alice will get the garbled input value corresponding to
her input bit. Namely, Alice has input bit 0 and Bob has two garbled values wi,0 and wi,1.
At the end of OT Alice learns only wi,0 and obtains no information about wi,1. Bob does
not know which value is chosen by Alice.

Now, Alice has wi,0 and wi′,1 which are of the form wi,0 = vi,1||0 and wi′,1 = vi′,1||0.
Since she sees the last bit of wi,0 and wi′,1, namely 0 and 0 respectively, she decrypts the
first value of 〈E01, E00, E11, E10〉, namely E01. That is, Alice computes

Hash(vi,0||i′′||1||1||vi′,0||i′′||1||1)⊕ E01 which results in wi′′,0.

She matches with the ordered pair OPi′′= (wi′′,0, wi′′,1) and learns her output as 0. Notice
that she cannot conclude whether Bob’s input is 0 or 1 when her input is 0.

54



5.3 A Two-Party Protocol in the Semi-Honest Model

5.3 A Two-Party Protocol in the Semi-Honest Model

In this section, we present a two-party protocol in the semi-honest model which is a
slight modification of Yao’s original protocol. We slightly modify Yao’s protocol in order
to analyze its security following the real/ideal simulation paradigm.

We note that the security analysis we present is in the ideal/real simulation paradigm.
However, in the case of semi-honest adversaries, the ideal/real simulation definition is
equivalent to the (simpler) definition used in [LP04]. In fact, we give such a proof for only
consistency and completeness of the thesis.

We also highlight that this modified protocol will allow private output for both parties,
just like its extended version for the malicious model in Chapter 6 and in Chapter 7. We
note that this modified protocol will be easily extended to the malicious case (see Chap-
ter 6).

Let the function f that Alice and Bob want to compute be represented by a circuit Cf .
Let also IA, OA denote the sets of Alice’s input/output wires, and IB, OB denote the sets
of Bob’s input/output wires.

Bob then computes the garbled circuit GCf denoted by

GCf = 〈〈PEG-4-Tuplei : 1 ≤ i ≤ |Cf |〉, 〈OPi : i ∈ OA〉〉
= 〈〈ti : 1 ≤ i ≤ |Cf |〉, 〈ui : i ∈ OA〉〉 ,

where ti denotes i-th PEG-4-Tuple, |Cf | denotes the number of gates in the circuit Cf

and ui denotes the ordered pair for Alice’s output wires OA. Note that ordered pairs for
Bob are not included in GCf , since in that case Alice could evaluate GCf and could learn
Bob’s output bits once she has computed the garbled circuit. This should not be possible.

We now describe a two-party protocol, which we will denote by Πf . See Figure 5.2 for
the illustration and notation of the protocol Πf . On a high level, there are four phases
in the protocol Πf . We now describe the protocol Πf in full detail. Let k be a security
parameter which denotes the length of the garbled string.

1. Bob generates garbled strings wi,b ∈R {0, 1}k for i ∈ IA and b ∈ {0, 1}. These garbled
input strings are for Alice’s input wires and are generated to be able to perform OT.

2. OT is run in order for Alice to learn her garbled input values. Bob is the sender with
private input wi,0, wi,1 for i ∈ IA which are generated in Phase 1, and Alice is the
chooser with private input xi ∈ {0, 1}. At the end of OT Alice receives wi,xi

for her
input bit xi and Bob gets no information about which one is chosen.

3. In this phase Bob prepares the garbled circuit GCf such that the garbled strings
wi,0, wi,1 for i ∈ IA which are generated in Phase 1 are used for the corresponding
wires. He sends the circuit and his garbled inputs to Alice.

4. Alice evaluates the circuit GCf and computes the garbled output values. She sends
the garbled output values for Bob’s output wires back. Note that neglecting this
round allows only one private output.
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A Secure Two-Party Protocol

Notation:

• IA, OA denote the sets of Alice’s input/output wires. Similarly, IB, OB denote the sets of
Bob’s input/output wires. Cf is the Boolean circuit which computes the function f . |Cf |
denotes the number of gates in circuit Cf .

• Alice’s ordered pair is denoted by OPi = (wi,0, wi,1) for i ∈ OA. The garbled circuit is
denoted by GCf = 〈〈PEG-4-Tuplei : 1 ≤ i ≤ |Cf |〉, 〈OPi : i ∈ OA〉〉.

Common Input: f
Compute: f(x, y) = (f1(x, y), f2(x, y))

Alice Bob

Private Input: x = 〈xi ∈ {0, 1}, i ∈ IA〉 Private Input: y = 〈yi ∈ {0, 1}, i ∈ IB〉

Phase 1: Generation of bit-strings.

Generate wi,b ∈R {0, 1}k, i ∈ IA, b ∈ {0, 1}

Phase 2: OT Run in parallel, for i ∈ IA.

Receiver Sender
Private Input: xi Private Input: 〈wi,0, wi,1〉

OT subprotocol←→
Private Output: 〈wi,xi〉 Private Output: ⊥

Phase 3: Construction.
Compute GCf s.t. for all i ∈ IA

〈wi,0, wi,1〉 are used for the
corresponding wires in GCf

←−−−−
GCf , 〈wi,yi : i ∈ IB〉
−−−−−−−−−−−−−−−

Phase 4: Evaluation.

Evaluate GCf

−
〈wi′ : i′ ∈ OB〉

−−−−−−−−−−−−−−−−−−→
Match wi with OPi for i ∈ OA

Private Output: f1(x, y)
Match wi′ with OPi′ for i′ ∈ OB

Private Output: f2(x, y)

Figure 5.2: A secure two-party protocol in the semi-honest model
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5.4 Additional Modifications for the Security Analysis

Before we analyze the security of the protocol Πf in the next section we present the
following two additional modifications over the circuit GCf . They are necessary to be able
to simulate the protocol Πf in the real/ideal simulation paradigm. We want to point out
that the following modifications are also going to be used for the protocols in malicious
model, namely in Chapter 6 and in Chapter 7.

• Modification 1. We modify the input wires of Bob in circuit Cf in the following
way: for each input wire of Bob (say WB), we add an AND and an OR gate as shown
in Figure 5.3 in such a way that the AND gate has one new input wire for Alice
(say WA) and the original input wire from Bob (WB). This composition of gates
always reproduces the value of the wire WB independently of the value of WA (i.e.
(WA ∧WB) ∨WB = WB).

This modification is applied so that the simulator is able to learn the input of the
corrupted Bob. This will be used in the security analysis. On a higher level, if
the simulator knows the garbled circuit, two garbled values for each of Alice’s input
wires (together with their corresponding bit values) and a garbled value for each of
Bob’s input wires (of which he does not know the corresponding bit value) then it is
possible to compute the bit value of the garbled value for each of Bob’s input wires.

W ′
B = (WA ∧WB) ∨WB

W ′
B = WB

W ′
B

Alice’s new input wireBob’s input wire

WAWB

∧

∨

Figure 5.3: Additional gates for each of Bob’s input wires

We now proceed with the details. Let wA,i,0 and wA,i,1 denote Alice’s garbled input
values (for 0 and 1) for i ∈ IA, and wB,i,b Bob’s garbled input value for i ∈ IB and for
some b ∈ {0, 1}. If the garbled values wA,i,0, wA,i,1, wB,i,b and the garbled circuit are
given then by evaluating the garbled AND gate with the garbled inputs (wA,i,0, wB,i,b)
and (wA,i,1, wB,i,b) it is possible to decide on the bit value of wB,i,b (i.e. learn the bit
value b). Namely, if after these two evaluations the same garbled string is obtained,
then this means that Bob’s garbled input corresponds to bit 0; otherwise, Bob’s input
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bit is 1. We note that this deduction process does not work for an arbitrary Boolean
gate, and this is the reason why we modified the circuit in such a way that the input
gates are AND gates. For example, evaluation of an XOR gate (has Alice’s input
wire and Bob’s input wire) using (wA,i,0, wB,i,b) and (wA,i,1, wB,i,b) would always result
in two different garbled values from which one cannot conclude the input bit of the
corrupted Bob. Note that for efficiency reasons WA could be the same for all WB

wires.

• Modification 2. We modify the output wires of Bob in circuit Cf in the following
way: for each output wire of Bob, we add the construction presented in Modification
1 and add two XOR gates as shown in Figure 5.4 in such a way that a new input wire
for Alice is added. This composition of gates always reproduces the original output
bit of Bob in the garbled circuit independently of the value of Alice’s additional input
(i.e. the bit value of wires (i), (ii), (iii) in Figure 5.4 is the same regardless of Alice’s
input.). The simulator has to learn the garbled output values of the corrupted Bob
together with their corresponding bit (we discuss this more in the security analysis),
and by this modification the simulator would be able to learn them.

RCf

(iii)

(ii)

(iii) (WB ⊕WA)⊕WA = WB

(ii) (WB ∧WA) ∨WB = WB

(i)
WB

WA

Alice’s new input wire

∧

∨

⊕

⊕

Bob’s output wire

Bob’s output wire

Figure 5.4: Additional gates for each of Bob’s output wires

If the garbled values wA,i,0, wA,i,1, wB,i,b and the garbled circuit are given then by
evaluating the modification in Figure 5.4 it is possible to compute the garbled values
for each of Bob’s output wires together with their corresponding bit. More precisely,
as described above, by evaluating the garbled AND gate with the garbled inputs
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(wA,i,0, wB,i,b) and (wA,i,1, wB,i,b) it is possible to compute the output bit value of
Bob’s garbled output value wB,i,b for wire (i) in Figure 5.4 (i.e. learn the bit value
b). We here note that the bit value of (ii) is the same as the bit value of (i), so the
bit value of (ii) is also known.

We next show that it is possible to compute both garbled output values for the
output wires of XOR gates from the second construction (for the wires (ii) and (iii)
in Figure 5.4), together with their corresponding bit. Let ŵ be the evaluated garbled
output value of the OR gate for the wire (ii). By evaluating the garbled XOR gate
with the garbled inputs (wA,i,0, ŵ) and (wA,i,1, ŵ) where the bit value of ŵ is known
one can learn both garbled values for the output wires of XOR gates ((ii) and (iii)),
and the corresponding bit values. Namely, these two evaluations always result in two
different garbled strings from which it is easy to learn the corresponding bits.

We stress that the protocol Πf is applied to this final modified circuit together with
the above modifications.

5.5 Security Analysis

We are now ready to analyze the security of the protocol Πf . The security analysis of
the protocol Πf is done according on the real/ideal simulation paradigm which is similar
to the one in [LP07] (see Section 3.3.3 for a definition of security). Since we only consider
the semi-honest model, any OT protocol that is secure in the presence of semi-honest ad-
versaries is suitable to be used as a black-box in Πf . To analyze the security of Πf we show
a simulation by assuming the cases where either Bob or Alice is corrupted. Informally
speaking, to see that Πf is secure when Alice is corrupted, we observe that without the
knowledge of the garbled values of the input wires of a gate, the garbled output values of
the gate look random. Therefore, the knowledge of one garbled value of each of the input
wires of a gate discloses only a single garbled value of the output wire of the gate and she
cannot distinguish the other garbled output value from random. Also, the OT protocol
ensures that Alice learns only a single garbled value for each input wire. Therefore, induc-
tively, Alice can compute only a single garbled output value of each gate, and in particular
of the garbled output values of the output wires of the circuit. As for the security when
Bob is corrupted, we note that Bob receives messages only during the OT protocol, and
by definition of OT, he does not learn any information from the OT phase.

We now show a simulation by considering the cases where either party is corrupted. In
both cases, we construct a simulator that has internal simulated communication with the
adversary, and external communication with the trusted party of its ideal model.
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Assume Bob is corrupted.

On a high level, Alice receives her garbled input values from OT where Bob does not learn
which of the garbled strings has been received. Then she computes the circuit where she
can decrypt only one value, and computes only one garbled string for each output wire.
Since the circuit and the input are correct, correctness is ensured.

Let RB be an adversary corrupting Bob. We shall now construct a simulator SB for RB.
Since we assume that the OT protocol is secure, we analyze the security of the protocol
Πf in the hybrid model with a trusted party computing the OT functionality (see Section
3.3.4).

The simulator.

1. The simulator SB chooses a fixed input x′ = 0 for Alice and uses it only in the
beginning of the protocol Πf to be able to start the protocol (namely, to run the OT
phase) but it is not used later on.

2. SB invokes RB and extracts the garbled input values wi,0 and wi,1 for i ∈ IA from
the OT subprotocol. Note that SB can extract this information since we analyze the
security of the protocol in the hybrid model with a trusted party computing the OT
functionality. Namely, Bob sends the garbled input values wi,0, wi,1 to the trusted
party, and so the simulator SB obtains them directly.

3. SB receives the garbled circuit GCf from RB together with its garbled input values
to SB.

4. Now the input of RB will be extracted as follows. The simulator SB receives the
garbled values that correspond to Bob’s input. Let wi be Bob’s garbled input value
for i ∈ IB.

SB obtains the input for Bob because of Modification 1. More precisely, the simulator
knows wi,0, wi,1 for i ∈ IA and wi for i ∈ IB, and by Modification 1 the simulator
can learn the input bit of Bob for each wi for i ∈ IB. (In the real case, this does
not happen since Alice learns only one garbled input value from OT for each of her
input wires.) Then, SB sets y to be the value and sends it to the trusted party. The
trusted party replies with f2(x, y) to SB.

Now the simulator knows the private output of the corrupted party from the trusted
party but it has to convert the output into the corresponding garbled values 1. The
garbled values of the corrupted Bob together with the corresponding bits are achieved
as follows.

The simulator SB first computes the circuit as in the real protocol Πf and obtains
garbled output values. We know that once the simulator computes the circuit it
can compute a single garbled value per output wire. However, the evaluated garbled

1Note that in the real case Alice sends Bob’s garbled output values for the output wires.
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output values are not necessarily the correct ones since the simulator computes the
garbled circuit in the case that x′ = 0. Therefore, Modification 2 has been applied in
order to learn both garbled output values of Bob, and the corresponding bits. As we
described above, the simulator learns the output bit of wi for i ∈ IB from the AND
gate in Figure 5.4 (for wire (i)). This bit value is the same as the bit value for wire
(ii) in Figure 5.4. Then, by decrypting the XOR gates, the simulator learns both
garbled values, and their corresponding bits. As we mentioned before, this does not
happen in the real case since Alice learns only one garbled input value from OT for
each of her input wire.

Hence, since the simulator knows the private output of the corrupted party and the
corresponding garbled output values it can send the correct garbled outputs to RB.

Analysis. We claim that the view of RB with SB is statistically close to its view in
a hybrid execution of the protocol Πf with a trusted party computing the OT protocol.
(Note that the protocol Πf is not statistically secure since the simulation is in the hybrid
model for OT functionality, and it depends on the implementation of the OT subprotocol).

We know that the circuit and the garbled values that Bob sends are correct since we
are in the semi-honest model. We now show that the simulated view of RB is identically
distributed to its view in an execution of the protocol Πf . Actually, they are identical since
SB just runs the honest Alice’s instructions when interacting with the corrupted Bob. Since
SB follows Alice’s instructions each time, the above process results in a distribution that
is identical to the view of RB in a real execution with Alice.

Assume Alice is corrupted.

The security analysis when Alice is corrupted is very similar to the one of [LP07]. During
the protocol Πf Alice sees the circuit and they run a secure OT where she gets only the
garbled values corresponding to her input bits. On a high level, the simulator first extracts
the input of Alice from OT functionality in the hybrid model and sends it to the trusted
party and learns the output value. Based on the output value, the simulator constructs
a new garbled circuit which always outputs the output value which is received from the
trusted party. We refer to [LP07] for details.

5.6 Performance Analysis

The protocol Πf is efficient for several reasons. Firstly, it has only a constant number of
rounds (in fact only a few rounds) and it is independent of the size of the circuit. Secondly,
since we are in the semi-honest model it is sufficient for Bob to construct only a single
garbled circuit and for each input wire only one OT is sufficient to run.

The computational complexity of Πf consists of running an OT subprotocol for every
input wire of the circuit and computing a pseudorandom function for every gate in the
circuit. The communication complexity is dominated by sending a garbled circuit GCf .
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More precisely, GCf consists of an ordered pair, and for every gate the output of the
pseudorandom function is linear in the security parameter. Therefore, the communication
complexity is linear in the size of the circuit. Thus, Yao’s protocol is efficient if and only
if the circuit representation of f and the input of one of the parties are not very large.
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6
Secure Two-Party Computation in the

Malicious Model

In this chapter, we present a two-party protocol in the presence of malicious adversaries.
We start by describing the necessary building blocks to be able to construct our protocol.
Furthermore, we also address a protocol issue in the malicious model that arises with the
use of oblivious transfer. We explain this issue for the case of several two-party computa-
tion protocols based on garbled circuits. The security of our protocol is analyzed according
to the real/ideal simulation paradigm, as Lindell and Pinkas did for the malicious case.
We end this chapter by discussing how to reduce the failure probability of the simulator in
one part of their proof by applying Modification 1, presented in Section 5.4. We remark
that in Chapter 7 we will add fairness to this protocol in a modular way.

Parts of this chapter are based on [KS06a, KS06b, KS08] (joint work with Berry Schoen-
makers) and based on [KSV07] (joint work with Berry Schoenmakers and José Villegas).

6.1 Introduction

In general, constructing a protocol against malicious adversaries is more difficult than
against semi-honest adversaries since a malicious adversary may deviate from the protocol
in an arbitrary way. The overall goal of a protocol in the presence of malicious adversaries
is to enforce the malicious adversary to follow the protocol specifications like in the semi-
honest model. Any malicious behavior should not be successful without being detected.

Typically, a secure two-party protocol which is constructed in the semi-honest model can
be transformed into a secure two-party protocol against malicious adversaries by applying
some standard modular expansion. This transformation can often be implemented using
generic zero-knowledge techniques [GMW86], however, this approach is usually highly in-
efficient and impractical to use. In this chapter, we use several special protocol techniques
to avoid these expensive proofs.

As mentioned earlier, Yao’s garbled circuit approach originally dealt with passive ad-
versaries [Yao86]. Now consider what happens if Yao’s protocol is run when the adversary
is malicious. To start with, we have no guarantee that the constructor (Bob) generated
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the garbled circuit correctly. Namely, the circuit may not implement the function f . This
may clearly affect the privacy of the evaluator’s (Alice’s) inputs and the correctness of its
outputs. Secondly, the OT protocol must satisfy the requirements for secure two-party
computation in the case of malicious adversaries, and must also preserve its security when
run in parallel. We discuss these kinds of misbehavior in greater detail in the next section.
In this chapter, we also show a protocol issue that arises when using OT in the malicious
case. We describe this issue for a protocol by Pinkas [Pin03] and for the Fairplay pro-
tocol [MNPS04], and we discuss why this issue still persists for a suggested modification
of the Fairplay protocol [FM06]. We propose a solution which uses committed oblivious
transfer (OT) instead of (plain) OT. We also propose using committing OT which leads
to an alternative and more efficient solution.

6.2 Building Blocks for Malicious Model

6.2.1 The Cut-and-Choose Technique

The cut-and-choose technique is an interactive proof technique which was first in-
troduced by Rabin [Rab78]. As we said before, when considering malicious behavior
the garbled circuit may not have been constructed correctly by Bob (the constructor).
To gain efficiency, the correctness of the garbled circuit is often proved by using the
cut-and-choose technique instead of using generic the expensive zero knowledge proofs
(e.g., [Pin03, MNPS04, FM06, LP07]).

Malkhi et al. [MNPS04] presented a two-party protocol based on Yao’s garbled cir-
cuit technique, which is the first implemented application for secure two-party computa-
tion. This protocol uses a basic cut-and-choose technique called the 1-out-of-m technique.
Roughly speaking, Bob constructs m garbled circuits where m is a security parameter, and
sends them to Alice. Alice chooses one circuit at random for evaluation. Bob then opens all
the remaining m− 1 circuits to assure Alice that the circuits are correctly prepared. Alice
verifies that these m− 1 circuits were correctly prepared. Then, an OT protocol is run in
order for Alice to receive her garbled input values for the evaluation-circuits. After Bob
sends his garbled input values to Alice she computes the chosen circuit without further
interaction with Bob. She computes all the garbled output values of the chosen circuit
and sends only Bob’s garbled output values to him. Finally, they compute their respective
output. Thus, security comes from the fact that Bob does not know which garbled circuit
will be evaluated. Note that with this technique Bob has the capability to cheat with the
construction of the garbled circuit with probability at most 1/m.

Pinkas [Pin03] presented a more advanced protocol against malicious behavior. It uses
the m/2-out-of-m technique to achieve exponentially small cheating probability. The m/2-
out-of-m technique can be briefly described as follows: Bob constructs m garbled circuits
as usual and sends them to Alice. Alice chooses m/2 circuits at random for evaluation and
tells Bob to open the remaining ones. Let the evaluated circuits be called evaluation-circuits
and the opened circuits be called check-circuits. She verifies whether the check-circuits were
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correctly prepared. If so, they run an OT protocol. Bob also sends his garbled input values
to Alice. She evaluates the evaluation-circuits and computes a garbled value per output
wire. As we said before, with this technique Bob cannot cheat successfully except with
exponentially small probability (in m). The reason is that if there are at least m/4 garbled
circuits which are not correct and none of them is chosen by Alice during the challenge
phase then a wrong input is received. However, this event occurs with probability at most(
3m/4
m/2

)
/
(

m
m/2

)
≤ 2−m/4 (see [FM06, Woo06] for more details.).

Observe that not only the correctness of garbled circuits can be proved using the cut-
and-choose technique but also the correctness of commitments can be proved. In this case,
there is a prover who will generate many commitments (like the garbled circuits above)
and there is a verifier who is allowed to choose a random set of these commitments using
the cut-and-choose technique. The prover reveals the chosen commitments, and the half of
the other commitments is ensured to be correct to the verifier with very high probability
by the same reasoning as above.

Our protocol in the malicious model is going to use the m/2-out-of-m technique in order
to ensure a negligible cheating probability for malicious adversaries. For security reasons,
the randomness, which is used to select the circuits, must be computed by both parties, as
observed by [LP07]. The reason is that, when analyzing the security of the protocol when
Alice is corrupted the simulation is run in such a way that incorrect circuits are evaluated.
This is solved using rather standard techniques, like choosing the circuits to be opened via
a coin-tossing protocol.

We finally remark that Franklin and Mohassel in [FM06] presented a “relaxed” protocol
which allows leaking at most one bit of input of the honest party. In this way, there is no
need to generate many garbled circuits, and actually it is sufficient to construct only two of
them. Roughly speaking, Alice constructs a garbled circuit and sends it to Bob. Similarly,
Bob also constructs a garbled circuit and send it to Alice. OT is run for each of them, one
after the other. The first OT is run for the first garbled circuit where Alice is the sender
and Bob is the receiver. Similarly, the second OT is run for the second circuit where the
roles of Alice and Bob are changed. They compute their respective circuits, and compute
the output values. They then run a new secure protocol comparing the outputs to check
whether they are equal. In this way the protocol becomes more efficient since there is no
need to generate many garbled circuits, and therefore the cut-and-choose technique will not
be necessary. However, a corrupted party may learn at most one bit of information about
the honest party’s input (during the comparison of the outputs for checking the equality).
For example, assume that Bob is corrupted and he is using an input bit 0 in the oblivious
transfer for obtaining the garbled value for evaluating the circuit constructed by Alice,
and use 1 for the same wire for the circuit he constructed (and to be evaluated by Alice).
Then he may learn something from the fact that the output values of the two evaluations
match or not. For example, suppose Alice and Bob agreed to run the millionaires protocol.
Assume that a malicious Bob constructs his garbled circuit correctly. Assume also that a
malicious Bob has input B = 100 and an honest Alice has input A = 110. A malicious
Bob can send the wrong input B′ = 101 in garbled form for his ”correct” circuit and can
use the correct input B = 100 for Alice’s circuit. The output of two circuits would be
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the same (namely that Alice is richer) and she cannot detect that Bob cheated, so Alice
would think that everything ran correctly. However, Bob learnt that Alice’s input value is
bigger than 101 instead of learning only bigger than 100. (For example, only the values
110 and 111 are greater than 101 and therefore, the second bit of Alice’s input must be
1.) Hence, different inputs might result in extra information for a malicious participant
without detection.

In this chapter, we consider full privacy rather than leaking some private information
of the honest party.

6.2.2 Majority Circuit Computation

We consider protocols which let Alice decide (at random) for each m garbled circuit,
whether such a circuit must be opened (for checking the correctness), or whether the circuit
will be evaluated. Exactly m/2 circuits will be checked by Alice, and she will evaluate the
remaining half. Among the evaluated circuits there may still be a few incorrect circuits (not
computing function f), but with high probability the majority of the evaluated circuits
is correct. Before we proceed with the details, we explain why Alice should to send the
output values only for a majority circuit, rather than sending Bob the output values for
all evaluated circuits. (e.g., [Pin03, LP07]). Note that if there is only one output for Alice
but not for Bob, then the majority circuit for Alice is straightforward. However, if there
is also a private output for Bob then we have to ensure that Bob does not get any further
information, and this is done by sending outputs of only the correct one. In this chapter,
we consider the case where both parties receive respective private outputs.

For example, if Bob is malicious then he may construct m − 1 garbled circuits that
compute the function f(x, y) = (f1(x, y), f2(x, y)) and a single circuit which simply outputs
Alice’s input values. Since Alice evaluates m/2 out of m circuits, the probability would
be 1/2 that this single circuit is selected by Alice. Therefore, Bob receives the outputs
of the incorrect circuit from Alice with probability 1/2 at the end of the evaluation. It
follows that, Alice should determine a correct circuit, the so-called majority circuit out of
all evaluation-circuits. We actually need to deal with two types of majority circuits. One
is related to Bob’s output wires (which we will indicate by index r throughout the chapter;
to ensure that Bob cannot get any information on Alice’s inputs), and one is related to
Alice’s output wires (to ensure that Alice is guaranteed to get correct output values). These
majority circuits can be characterized as follows. First, the majority value for an output
wire is the bit value that occurs most frequently for that wire when considered over all
m/2 evaluated circuits (ties can be broken arbitrarily). Further, an output wire is called a
majority wire if its value is equal to the majority value. And, finally, a circuit is called a
majority circuit for Alice resp. Bob if all of Alice’s resp. Bob’s output wires are majority
wires.

Lindell and Pinkas [LP07] presented a solution when two-parties receives respective
outputs, dealing with majority. This works as follows (see Figure 6.1). Let D be a field that
contains the range of values f2(x, y)x,y∈{0,1}∗ , and let p, a, b be randomly chosen elements in
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x y
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p a b

f1

f2

ε

ζε

Bob’s private inputAlice’s private input

Alice’s private output

Bob’s private output

Figure 6.1: The function g(x, (p, a, b, y)) = (f1, ε, ζ).

D. A new function g is constructed from f(x, y) = (f1, f2) by g(x, (p, a, b, y)) = (f1, ε, ζ).
Bob’s new input will be y, p, a, b in such a way that the output of Bob is ε, ζ where
ε = p + f2(x, y), ζ = a · ε + b is a one-time pad encryption of Bob’s output, and ζ is an
information-theoretic message authentication tag of ε. Both Alice and Bob compute the
new function g. At the end of the protocol, Alice sends ε and ζ to Bob. Bob checks first
that ζ = a · ε + b; if yes, he outputs ε − p, and otherwise he outputs ⊥. Note here that
addition gates needs O(`) boolean gates, and multiplication needs O(`2) boolean gates
where ` = |D|.

In our protocol, we will present a different technique than the one described-above.
Recall that when Alice evaluates the circuit she learns garbled values for every output
wire. She obtains her output, and sends Bob’s output back to him. Our protocol is run
in such a way that Alice sends the bits of the majority circuit together with an OR-proof.
Bob is going to reject, of course, if the proof is unsuccessful. In this way, we will not use
the modification described-above.

6.2.3 The Equality-Checker Scheme

Recall that only one circuit is constructed by Bob for the protocol in the semi-honest
model, and in that case he simply sends his garbled input to Alice. However, in the
malicious model we have to be more careful. There are many circuits to be evaluated by
Alice when the m/2-out-m technique is used, and one may wonder how to ensure that
Alice and Bob use the same input for all the circuits.

From security point of view, if a corrupted party provides different inputs for garbled
circuits, it can learn more information than what follow directly from the desired output
of the function. Suppose, for example, we want to compute millionaires’ problem (to find
out who is richer) using Yao’s garbled circuit with the m/2-out-of-m technique where m
denotes the number of garbled circuits. Assume also that m denotes the length of the
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inputs. A corrupted Alice could provide the inputs 〈10 . . . 0〉, 〈010 . . . 0〉,. . .,〈0 . . . 01〉, and
in this way learns Bob’s input easily.

We now briefly show how the input can be guaranteed to be the same for every garbled
circuit. That is, we have to ensure that both parties use the same input for all the garbled
circuits. A solution to show the consistency of Bob’s input is presented in the protocol by
Pinkas [Pin03] that uses the proofs of partial knowledge technique of Cramer et al. [CDS94]
(which uses public key operations). Later, the authors in [FM06, LP07] presented new
alternative schemes which are based on using only symmetric operations (no public key
operations). For efficiency reasons, we will also use the equality-checker scheme of Franklin
and Mohassel in our protocol for the proof of consistency of Bob’s input (later, slightly
improved by Woodruff [Woo06]).

The basic structure of the equality-checker scheme is as follows: let

Bi,j,j′,b = commit(wi,j,b‖wi,j′,b; γi,j,j′,b)

be the commitment to the garbled values wi,j,b and wi,j′,b for every i-th input wire and
for every b ∈ {0, 1} in the j-th and the j′-th garbled circuit such that 1 ≤ j < j′ ≤
m 1. The idea is that a correctly built commitment binds the two garbled values that
correspond to the same bit value for the same input wire, but in two different circuits.
An equality-checker scheme between these circuits is the collection of the commitments
Bi,j,j′,b (see [FM06] for more details). When Alice asks to open the check-circuits Bob also
opens these commitments for the j-th and j′-th check circuits. Note that the number of
commitments Bi,j,j′,b is m(m− 1) for m garbled circuits.

On the other hand, Alice’s garbled input values for all the circuits must also be the
same, and that follows directly by definition of OT. Namely, Bob is the sender with private
input (〈wi,1,0, . . . , wi,m,0〉, 〈wi,1,1, . . . , wi,m,1〉) and Alice is the receiver with private input
bit xi for every input wire i of Alice where xi ∈ {0, 1}. At the end of OT, Alice receives
〈wi,1,xi

, . . . , wi,m,xi
〉, i.e, she receives the set of all garbled input values for all the circuits

at once. Therefore, OT not only gives Alice her garbled input but also proves consistency
of her input.

6.3 A Protocol Issue Regarding Oblivious Transfer Protocol

The problem that we address in this section stems from the particular way OT is
used in the cut-and-choose protocols mentioned above. A malicious Bob cannot simply
be assumed to send the right garbled strings to Alice during the OT protocol. Without
any further protection, Alice’s privacy and the correctness of her outputs may have been
affected by Bob’s behavior. This protocol issue is not related to OT per se, but rather
to the interaction between OT and the surrounding protocol. A similar point is made in
recent paper by Franklin and Mohassel [FM06] (of which our work is independent). Their
discussion and proposed solution focuses on Fairplay [MNPS04], but as we will point out,
Bob will still be able to cheat in a critical way.

1Note that the commitments here are only based on symmetric operations.
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Recall that at some stage in Yao’s protocol, OT is used to let Bob provide Alice the
garbled strings corresponding to her input bits. To discuss the problem it suffices to
consider a single OT in which Alice uses an input bit b as her private input, say, and Bob
uses garbled strings w0 and w1 as his private input, where w0 corresponds to bit value 0
and w1 represents bit value 1. Alice can only evaluate the corresponding circuit correctly
if she indeed gets the bit string wb at the end of the OT protocol. The problem with the
extensions to the malicious case of Yao’s protocol as presented in [Pin03, MNPS04] is that
a malicious Bob is not stopped from using other values than w0 and w1.

Therefore, Bob can follow several strategies to compromise correctness and/or privacy of
Yao’s protocol in the malicious case. We mention a few obvious deviations of the protocol,
resulting in wrong values w̃0, w̃1:

• Bob may interchange the values of w0 and w1, putting (w̃0, w̃1) = (w1, w0);

• Bob may duplicate either of the values w0 and w1, putting either (w̃0, w̃1) = (w0, w0)
or (w̃0, w̃1) = (w1, w1);

• Bob may replace either or both of the values with a bogus value, denoted by ∗,
putting (w̃0, w̃1) = (w0, ∗), or (w̃0, w̃1) = (∗, w1), or even (w̃0, w̃1) = (∗, ∗).

The consequences for Alice’s security are as follows in these cases.

• If Bob interchanges the values of w0 and w1 then clearly Alice will receive an incorrect
garbled string for her input wire, but she will continue to evaluate the circuit without
noticing anything (but obtaining wrong output values). Similarly, if Bob duplicates
either of the values w0 and w1 then Bob is sure which input value Alice is using, and
Alice possibly gets a wrong output (without her noticing anything).

• If Bob uses (w0, ∗) in OT where ∗ 6= w1 then depending on Alice’s input bit b, she
will either, if b = 0, be able to evaluate the circuit and produce an output for Bob
(and not notice anything) or, if b = 1, she will notice that she cannot evaluate the
circuit and cannot produce an output for Bob. Clearly, this way Bob learns the value
of Alice’s input b, and Alice cannot do anything about it.

To eliminate these problems, Bob must be forced to use the correct values in OT.

The repair of Franklin and Mohassel does not work.

We now review the proposed modification for Fairplay [MNPS04] by [FM06] and then
present the reasons why the problem is not completely eliminated.

For the sake of simplicity, we assume that the garbled circuit has only one input wire
for Alice. The more general case of multiple input wires can be dealt with by a simple
extension of this case. The modification proposed in [FM06] is as follows. When Bob sends
the garbled circuits to Alice, he also generates commitments to the garbled strings wj,0 and
wj,1 used for Alice’s input wire in the j-th circuit. Let these commitments be denoted by
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commitB(wj,0; rj,0) and commitB(wj,0; rj,0), respectively where rj,0 and rj,1 are random bit
strings. When verifying the m − 1 check-circuits, Bob also opens these commitments
and Alice verifies that these commitments are correct and whether the committed garbled
strings wj,0 and wj,1 correspond to the garbled strings used in the j-th circuit.

If verification succeeds, Alice is sure with overwhelming probability that the evaluation-
circuit and the corresponding commitments are correct as well. For the evaluation-circuit
they run OT for Alice’s input wire where Bob is the sender holding two witnesses and two
garbled strings and Alice is the receiver holding her input bit. At the end of OT Alice
receives one of the witnesses and the corresponding garbled string.

As a consequence, with probability at least 1−1/m, Alice is ensured that the committed
values for the evaluation-circuit are correct. Therefore, with probability at least 1− 1/m,
Alice will notice when she gets a wrong garbled string for her input wire (e.g., because Bob
interchanged or duplicated the garbled strings), and by using the m/2-out-of-m technique,
this probability will be close to 1.

The problem with this proposal, however, is that it does not consider what happens
once a cheating Bob sends a bogus value in the OT protocol, following the same scenario as
described above. A cheating Bob will simply construct all the garbled circuits and all the
commitments correctly. Therefore, Alice will certainly accept the check-circuits and the
corresponding commitments. But during OT Bob may cheat as described above. Suppose
Bob decides to use ((wj,0, rj,0), (∗, ∗)) as input to OT. Then Alice’s input bit is 0 and she
will obtain correct values (wj,0, rj,0), which pass all verifications, and she will be able to
evaluate the circuit without any problems. But if Alice’s input bit is 1, she gets bogus
values, which she will notice, and she is unable to hide this fact from Bob. Clearly, Bob is
able to tell what Alice’s input bit is, thereby compromising her privacy.

6.4 Our Modification to Fix the Protocol Issue

In this section, we propose two schemes to fix the issue described in Section 6.3. We
first describe how we can repair the issue with the use of committed oblivious transfer.

6.4.1 Using Committed Oblivious Transfer

We describe how we can fix the issue in case of the 1-out-of-m technique, by using
committed OT which works for bit strings. Note that since the inputs are garbled strings,
an implementation of committed OT that allows to transmit bit-strings is necessary (which
is presented in Chapter 4). A protocol using the 1-out-of-m technique and committed OT
runs as follows.

Phase 1. Before Bob sends the garbled circuits to Alice, he also generates commitments
to the garbled strings for her inputs. He then sends the garbled circuits together
with the corresponding commitments to Alice.
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Phase 2. When Alice asks Bob to open the circuits he also opens all the corresponding
commitments.

Phase 3. Alice is now almost (i.e., with probability 1/m) sure that the commitments for
the evaluations-circuits are correct. As required for committed OT, Alice commits
to her input bits. Then for the evaluation-circuit they run committed OT for every
input wire of Alice from which Alice learns her corresponding garbled input values.

Now, any attempt by Bob to use other values than the correct garbled strings in com-
mitted OT will be detected by Alice, and she can abort the protocol at this point. The
point is that she can abort without revealing any information on her input bits, as com-
mitted OT will only finish successfully (by definition) if Bob’s private inputs correspond to
the commitments. As desired, the cheating probability of Bob is thus 1/m (which can be
made exponentially small by using committed OT in combination with the m/2-out-of-m
technique).

6.4.2 Using Committing Oblivious Transfer

As described above, the use of committed OT also requires Alice to send commitments
to her input bits, and one may wonder why this would be needed. In fact, the use of
committed OT may be too much for securing the protocols which use cut-and-choose
methods. Therefore, as a concrete example, we like to propose using committing OT which
conceptually sit between plain OT and committed OT (see Section 4.2 for committing OT).

Before Alice chooses which circuits she wants to evaluate, Alice and Bob run committing
OT for all garbled circuits. This will be done using only one committing OT per input
wire of Alice. Thus Alice receives the garbled strings for her input values, together with
commitments on all garbled strings associated with her input wires. She will check the
commitments for the check-circuits, ensuring her that the garbled strings for the evaluation-
circuits are valid as well, with high probability. More concretely, a protocol using a 1-out-
of-m technique with committing OT may run as follows.

Phase 1. Bob sends garbled circuits GCj for j ∈ {1, . . . ,m} to Alice.

Phase 2. For each input wire of Alice the following is done. Let xi denote Alice’s input bit
for the i-th input wire. Alice and Bob run committing OT where Bob is the sender
holding the bit strings (wi,1,0, . . . , wi,m,0) and (wi,1,1, . . . , wi,m,1), consisting of the
garbled strings for Alice’s input wires in all GCj, j ∈ {1, . . . ,m}. Alice is the receiver
holding her input bit xi. At the end of committing OT, Alice gets (wi,1,xi

, . . . , wi,m,xi
).

The commitments by Bob to his input strings are common output.

Phase 3. Alice randomly chooses r ∈R {1, . . . ,m} and sends r to Bob.

Phase 4. Bob opens the circuits GCj and the corresponding commitments commitB(wi,j,b)
for j ∈ {1, . . . ,m}\r and b ∈ {0, 1}.
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Phase 5. Alice first checks whether the check-circuits are correct, and then she verifies
all committing OTs. If all are correct, Alice evaluates circuit GCr as before.

The cheating probability of Bob is now 1/m. A difference with the protocols based
on committed OT of the previous section is that in this protocol committing OT is ap-
plied to all circuits, whereas in the previous protocols committed OT is applied to the
evaluation-circuits only. Note, however, that using the m/2-out-of-m technique the num-
ber of evaluation-circuits is exactly half of the total number of circuits. Hence, for the
general case when Bob’s cheating probability should be exponentially small, the protocol
based on committing OT is more efficient than one based on committed OT.

6.5 A Modification to the Circuit

Alice needs to be able to determine a majority circuit for Bob, but at the same time she
should not learn Bob’s actual output values. Let Cf denote a circuit computing function
f(x, y). We extend circuit Cf to a randomized circuit RCf as follows (see Figure 6.2. Hence,
for each output wire Wi of Bob, a new input wire W ′

i is added as well as a new output
wire W ′′

i , such that W ′′
i = Wi ⊕W ′

i . This will require as many XOR gates and additional
input wires of Bob as the number of Bob’s output wires of the original circuit Cf . This
modification was suggested to us by Pinkas to resolve a subtle problem for the protocol
of [Pin03], which we communicated to him [Pin05]. We remark that this modification is
going to be used in our protocols in this chapter and in Chapter 7.
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Figure 6.2: The randomized circuit RCf made from the original circuit Cf .

6.6 A Two-Party Protocol in the Malicious Model

In this section we present a formal description of our two-party protocol against active
adversaries. The object of the protocol is to evaluate a function of the form f(x, y) =
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(f1(x, y), f2(x, y)) securely, where Alice holds input x and gets output f1(x, y) and Bob
holds input y and gets output f2(x, y). For simplicity, we assume that these inputs and
outputs are all of equal length, i.e., f : {0, 1}`×{0, 1}` → {0, 1}`×{0, 1}`, for some integer
value `.

Before we go into details for our protocol we remark that a protocol computing two
private outputs (even with fairness) could possibly work as follows: First modify a protocol
allowing one private output for the evaluator. The idea is to run this protocol twice one
after the other, by interchanging the roles. Namely, Alice will be the evaluator in the first
protocol execution, and Bob will be the evaluator in the second protocol execution. In
the first execution the parties compute f ′(x, y) = (f1(x, y),⊥) where Alice learns f1(x, y)
(in this case, Alice is the evaluator) and in the second execution the parties compute
f ′′(x, y) = (f2(x, y),⊥) where Bob learns f2(x, y) (in this case, Bob is the evaluator).
Roughly speaking, if a protocol is run twice for the functions f ′(x, y) and f ′′(x, y) then, in
order to analyse the security, we only need to ensure that the circuits for the functions are
correct and their inputs are the same for both protocols. The correctness of the circuits for
the functions f ′(x, y) and f ′′(x, y) can be proven easily by the cut-and-choose technique.
Next, both parties has to be sure that the second protocol execution uses exactly the same
inputs as in the first protocol execution. This can be also done, for example, by adding an
additional round as a first round in which parties commit to their input bits and sent to
each other. Then start running the protocols. Finally, the parties need to prove that the
inputs they are using are the same for both protocol executions. We leave the investigation
of this approach as an interesting future problem.

Let’s now present our protocol in greater detail. Let RCf denote the randomized
boolean circuit for function f , see Figure 6.2. Let IA denote the set of Alice’s input wires
and IB the set of Bob’s input wires. Similarly, OA denotes the set of Alice’s output wires
and OB the set of Bob’s output wires. Furthermore, we use I ′B to denote the additional
input wires for Bob, used in the construction of RCf from Cf . Note that |IA| = |IB| =
|I ′B| = |OA| = |OB| = `. Accordingly, we write x = 〈xi ∈ {0, 1} : i ∈ IA〉 for Alice’s input,
y = 〈yi ∈ {0, 1} : i ∈ IB〉 for Bob’s input, and z = 〈zi ∈ {0, 1} : i ∈ I ′B〉 for Bob’s random
input to RCf . Further, |RCf | denotes the number of gates in the circuit RCf , and we W
denote the set of all wires in the circuit RCf . Hence, IA ∪ IB ∪ I ′B ∪OA ∪OB ⊆ W.

Commitments to Bob’s ordered pairs OPi,j = (wi,j,0, wi,j,) for his i-th output wire
and for the j-th garbled circuit are denoted by COPi,j = (commitB(w0

i,j,0; βi,j,0), com-
mitB(wi,j,1; βi,j,1)). Bob then converts the randomized circuit RCf into garbled randomized
circuits GRCj for j = 1, . . . ,m as follows:

GRCj =
〈
〈PEG-4-Tuplei,j : 1 ≤ i ≤ |RCf |〉, 〈OPi,j : i ∈ OA〉, 〈COPi,j : i ∈ OB〉

〉
= 〈〈ti,j : 1 ≤ i ≤ |RCf |〉, 〈ui,j : i ∈ OA〉, 〈vi,j : i ∈ OB〉〉

where ti,j denotes the permuted-encrypted-garbled-4-tuple for the i-th wire in the j-th cir-
cuit, ui,j denotes the ordered pair for Alice’s output wires IA and vi,j denotes the committed
ordered pair for Bob’s randomized output wires OB.

When Bob constructs the garbled circuits GRCj’s in Phase 3 he chooses secretly a bit
b at random for each of his additional input wires W ′

i (see Figure 6.2). He then generates
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garbled values to the additional input wires W ′
i and to the additional output wires W ′′

i as
in the original garbled circuit. In the same way as his original inputs, he then commits to
them. Bob is required to prove that all garbled inputs for each circuit of the same wire are
consistent by the equality-checker scheme [FM06]. Hence, he must also choose the same
bit b for each of the additional wires in the garbled circuits. The m/2-out-of-m technique
assures Alice that, with high probability, at least half of the circuits compute the correct
function and receive the same input values from Bob for all the circuits.

We remark that there is an observation by Pinkas which improved our protocol [Pin08].
This observation applies to a previous version of our protocols [KS06b, KS08], and to
the protocol in [Pin03], and any other protocols of similar nature. The problem occurs
when Bob is corrupted and is described as follows: At the end of our protocol Alice
sends the garbled values of Bob’s output wires for the majority circuit. This majority
circuit computes the correct function f . However, informing Bob that a certain circuit is
a majority circuit allows leaking some information about Alice’s input. Let’s consider, for
example, the following attack by Bob: He generates n− 1 garbled circuits which compute
f correctly and one garbled circuit that computes f correctly only if Alice’s first input
bit is 0, and which can not be computed at all otherwise. This can be done by putting
some garbage values in the permuted-garbled-4-tuple of a certain gate which uses Alice’s
first input bit (see Section 5.1.1). With probability 1/2 this circuit will not be selected
during the Opening & Checking phase. If Alice’s first bit is 0, then, with probability 2/n,
the garbled values of this circuit will be sent to Bob. If Alice’s first input bit is 1, then
Alice cannot compute that garbled circuit. Therefore, it will not be a majority circuit and
this event will occur with probability 0. We highlight that any protocol which reveals the
index of a majority circuit to Bob will have this problem. Therefore, we at the end of the
protocol only the bit values of the majority circuit are revealed to Bob.

In our protocol we use two types of commitments, namely homomorphic (“asymmet-
ric”) commitments, e.g., Pedersen commitments [Ped91], and other (“symmetric”) com-
mitments, e.g., constructed from pseudorandom generators [Nao91]. We let commitP (m; r)
denote a symmetric commitment to a message m using randomness r generated by party
P , and we use commith

P (m; r) to denote homomorphic commitments.

There are 8 phases in our protocol (see Figure 6.3 for an illustration of the protocol).
Description of our protocol.

Phase 1. [Generation of garbled input strings] Bob generates garbled strings wi,j,b

∈ {0, 1}k for Alice’s input wires i ∈ IA and for circuit indices j = 1, . . . ,m.

Phase 2. [Committing OT] Committing OT is run in order to let Alice learn her
garbled input values. Bob is the sender with private input wi,j,0, wi,j,1 which are
generated in Phase 1, and Alice is the receiver with private input xi ∈ {0, 1} for
i ∈ IA. At the end of committing OT Alice receives wi,j,xi

for j = 1, . . . ,m, and
Bob gets no information about which one is chosen. The common output is Ai,j,b= 〈
commitA(wi,j,b; αi,j,b) 〉 for i ∈ IA, j = 1, . . . ,m and b ∈ {0, 1}.
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Phase 3.[Construction] Bob does the following:

• He computes the garbled randomized circuits GRCj for j = 1, . . . ,m in such
a way that the garbled strings from Phase 1 are used for Alice’s input wires.
Note that the COPi,j’s are necessary to prevent Bob from cheating so that Alice
could determine a correct majority circuit. Indeed, Alice needs to be ensured
that the garbled values in COPi,j are in order (i.e., the first value corresponds to
0 and the second value 1) so that she can determine a correct majority circuit.

• He also generates the commitments Bi,j,j′,b =commitB(wi,j,b‖wi,j′,b; γi,j,j′,b) for
i ∈ IB ∪ I ′B and j, j′ such that 1 ≤ j < j′ ≤ m, b ∈ {0, 1}.

He sends these circuits and the corresponding commitments to Alice. The commit-
ment sets Bi,j,j′,0 and Bi,j,j′,1 are sent in random order so that Alice cannot link the
committed values to 0 or 1.

Phase 4. [Challenge] Alice and Bob run the challenge phase which results in a random
bit-string `=`1 . . . `m for `i ∈R {0, 1} as common output. She asks Bob to open the
circuits GRCj for j such that `j = 1 which are called as check-circuits. She also asks
Bob to open the corresponding commitments for j such that `j = 1.

Phase 5. [Opening & Checking] Bob sends the following:

• The opening sets

G̃RCj = 〈〈wi,j,b : i ∈ W , b ∈ {0, 1}〉, 〈αi,j,b : i ∈ IA〉, 〈βi,j,b : i ∈ OB, b ∈ {0, 1}〉〉

for j such that `j = 1. These will open the circuits GRCj for which `j = 1
and the corresponding commitments Ai,j,b and COPi,j. Note that once GRCj

is opened the corresponding committed ordered pairs COPi,j for i ∈ OB and
`j = 1 are also opened since it is a part of the construction of GRCj.

• The set B̃j,j′,b = 〈γi,j,j′,b : i ∈ IB ∪ I ′B〉 for j, j′ such that `j = `j′ = 1, 1 ≤ j <
j′ ≤ m, b ∈ {0, 1} to open the corresponding commitments Bi,j,j′,b.

• The opening set B̃input
j,j′ = 〈 wi,j,yi

,wi,j′,yi
, γi,j,j′,yi

, wi′,j,zi′
,wi′,j′,zi′

, γi′,j,j′,zi′
: i ∈ IB,

i′ ∈ I ′B 〉 for j, j′ such that `j=`j′ =0, 1 ≤ j < j′ ≤ m. Note that B̃input
j,j′ contains

Bob’s garbled input values for the evaluation-circuits.

Alice verifies the circuits and the commitments. She can detect wrong values easily.
Note that the consistency check of Bob’s input is now done by the equality-checker
scheme with the commitment sets B̃j,j′,b, B̃

input
j,j′ . Committing OT is verified as follows:

Bob opens the commitments 〈 commitB(wi,j,b; αi,j,b) 〉 for i ∈ IA, `j = 1 and b ∈ {0, 1}.
Alice checks that her garbled input values wi,j,0, wi,j,1 used in committing OT are
equal to the corresponding circuit garbled input values, and the first garbled input
value wi,j,0 corresponds to 0 and the second value wi,j,1 corresponds to 1. If any of
the verification fails Alice aborts the protocol.
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Phase 6. [Evaluation] Alice evaluates the evaluation-circuits GRCj for j such that `j =

0 using the set B̃input
j,j′ (that contains garbled values of Bob’s input wires). She then

commits to garbled values of Bob’s output wires, denoted by Cj = commith
A(〈wi,j :

i ∈ OB〉; δj) for j such that `j = 0. If Alice cannot compute a circuit, she will
commit to some garbage values (not to reveal extra information to Bob). She sends
〈Cj : j s.t. `j = 0〉 to Bob. Note that the commitments Cj are generated to assure
Bob that the committed values in Cj are really circuit values.

For efficiency reasons, the committed value inside Cj can be Mj = Hash(〈wi,j : i ∈
OB〉). We note that instead of a full random oracle the property of collision-resistance
is sufficient for this case. For example, if we use Pedersen commitments then Cj will
be equal to gMjhδj where g is a generator of group G and h is a random element of
G assuming that nobody knows the discrete logarithm of h to the base g [Ped91].

Phase 7. [Opening of COPi,j] After Bob receives the commitments Cj he opens the

committed ordered pairs COPi,j for i ∈ OB and `j = 0 by sending the set C̃OP j,b =
〈 wi,j,b,βi,j,b: i ∈ OB 〉 for j such that `j = 0, b ∈ {0, 1}.

Phase 8. [Decision of majority circuit] Alice determines a majority circuit GRCr

for some r such that `r = 0. She then sends the output 〈bi : i ∈ OB, bi ∈ {0, 1}〉 of
GRCr together with an OR-proof that this output agrees with at least one circuit
output. More precisely, the OR-proof is simply generated as follows:

She will prove that one of the Cj’s commits to Mj where the relation is

Routput = {(g, h, 〈Mj, Cj : j s.t. `j = 0〉; δ) : ∃j s.t. `j=0 hδ = Cj/g
Mj}

where both parties can compute Mj = Hash(〈wi,j,bi
: i ∈ OB〉) for j such that `j = 0

and 〈bi : i ∈ OB, bi ∈ {0, 1}〉 is the output of GRCr. In this way, Alice will ensure
that at least one of the circuit output agrees with the output of the majority circuit.

Note that she can determine the majority circuit GRCr without further interaction
with Bob since the additional input values that were used to randomize Bob’s output
wires are all identical for the same wire in each of the circuits GRCj where `j = 0.
She finally matches her outputs with the OPi,r where i ∈ OA and learns f1(x, y).

Bob also computes his output f2(x, y) by XORing his randomized output wire for
the circuit GRCr with the corresponding additional wires.
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A Two-Party Protocol in the Malicious Model

Common Input: f
Compute: f(x, y) = (f1(x, y), f2(x, y))

Alice Bob
Private Input: x = 〈xi ∈ {0, 1}, i ∈ IA〉 Private Input: y = 〈yi ∈ {0, 1}, i ∈ IB〉

Phase 1: Generation of garbled input strings.

Generate wi,j,b ∈R {0, 1}k, i ∈ IA, j = 1, . . . , m, b ∈ {0, 1}.

Phase 2: Committing OT. Run in parallel, for i ∈ IA.

Receiver Sender
Private Input: xi Private Input: 〈wi,j,0, wi,j,1 : j = 1, . . . , m〉

Committing OT subprotocol←→
Private Output: 〈wi,j,xi : j = 1, . . . , m〉 Private Output: 〈αi,j,0, αi,j,1 : j = 1, . . . , m〉

Common Output:
Ai,j,b = 〈 commitB(wi,j,b; αi,j,b) 〉 for j = 1, . . . , m, b ∈ {0, 1}

Phase 3: Construction.

Compute GRCj for j = 1, . . . , m s.t. for all i ∈ IA

〈wi,j,0, wi,j,1 : j = 1, . . . , m〉 are used for the
corresponding wires in GRCj .

Compute Bi,j,j′,b =commitB(wi,j,b‖wi,j′,b; γi,j,j′,b)
for i ∈ IB ∪ I′B and j, j′ s.t. 1 ≤ j < j′ ≤ m, b ∈ {0, 1}.

←−
〈GRCj : j = 1, . . . , m〉,

〈Bi,j,j′,bi,j,j′ , Bi,j,j′,1−bi,j,j′ : i ∈ IB , 1 ≤ j < j′ ≤ m, bi,j,j′ ∈R {0, 1}〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Phase 4: Challenge.

Secure coin-flipping subprotocol←→
Common Output: ` = `1|| . . . ||`m, `i ∈R {0, 1}

Phase 5: Opening & Checking.

G̃RCj = 〈〈wi,j,b : i ∈ W, b ∈ {0, 1}〉, 〈αi,j,b : i ∈ IA, b ∈ {0, 1}〉,
〈βi,j,b : i ∈ OB〉〉, for j s.t. `j = 1.

B̃j,j′,b = 〈γi,j,j′,b : i ∈ IB ∪ I′B〉 for j, j′ s.t. `j = `j′ = 1,
1 ≤ j < j′ ≤ m, b ∈ {0, 1}.

B̃input
j,j′ = 〈wi,j,yi , wi,j′,yi

, γi,j,j′,yi
, wi′,j,zi′

, wi′,j′,zi′
,

γi′,j,j′,zi′
: i ∈ IB , i′ ∈ I′B〉 for `j = `j′ = 0, 1 ≤ j < j′ ≤ m.

←−−−−−
〈G̃RCj : for j s.t. `j = 1〉, 〈B̃j,j′,b : for `j = `j′ = 1, 1 ≤ j < j′ ≤ m, b ∈ {0, 1}〉,

〈B̃input
j,j′ : for j, j′ s.t. `j = `j′ = 0, 1 ≤ j < j′ ≤ m〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Check GRCj for j s.t. `j = 1 using G̃RCj .

Ai,j,b
?
= commitB(wi,j,b; αi,j,b) for i ∈ IA, j s.t. `j = 1, b ∈ {0, 1} using G̃RCj .

Bi,j,j′,b
?
= commitB(wi,j,b‖wi,j′,b; γi,j,j′,b) for i ∈ IB ∪ I′B , j, j′ s.t. `j = `j′ = 1, 1 ≤ j < j′ ≤ m, b ∈ {0, 1} using B̃j,j′,b.

Bi,j,j′,yi

?
= commitB(wi,j,yi ||wi,j′,yi

; γi,j,j′,yi
) for i ∈ IB , `j = `j′ = 0, 1≤j<j′≤m.

Bi′,j,j′,zi′
?
= commitB(wi′,j,zi′

||wi′,j′,zi′
; γi′,j,j′,zi′

) for i′ ∈ I′B , `j = `j′ = 0, 1≤j<j′≤m.
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Phase 6: Evaluation.

Evaluate GRCj for j s.t. `j = 0, using B̃input
j,j′ .

Compute Cj = commith
A(Hash(〈wi,j : i ∈ OB〉); δj) for j s.t. `j = 0.

−
〈Cj : `j = 0〉

−−−−−−−−−−−−−−−−−−−−−−→
Phase 7: Opening of COPi,j .

C̃OP j,b = 〈wi,j,b, βi,j,b : i ∈ OB〉 for j s.t. `j = 0, b ∈ {0, 1}.

←−
〈C̃OP j,b : `j = 0, b ∈ {0, 1}〉

−−−−−−−−−−−−−−−−−−−−−−

COPi,j
?
= (commitB(wi,j,0; βi,j,0),commitB(wi,j,1; βi,j,1)) for i ∈ OB , j s.t. `j = 0 using C̃OP j,b.

Phase 8: Decision of Majority Circuit.

Determine a majority circuit GRCr where `r = 0.

−
〈bi′ : i′ ∈ OB , bi′ ∈ {0, 1}〉+ Proof

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Let ΘAlice,i be the result of matching wi,r with
OPi,r for i ∈ OA.

Private Output: f1(x, y) = 〈ΘAlice,i : i ∈ OA〉

Let ΘBob,i′ be the result of XORing 〈bi′ : i′ ∈ OB , bi′ ∈ {0, 1}〉
with the corresponding additional input wire values.

Private Output: f2(x, y) = 〈ΘBob,i′ : i′ ∈ OB〉

Figure 6.3: A two-party protocol in the malicious model

6.7 Security Analysis

The security analysis of our protocol is based on real/ideal simulation paradigm which
is similar to the one in [LP07] (see Section 3.3.3 for a definition of security). Before we
show a simulation we remark that the additional modifications of the circuit RCf presented
in Section 5.4 must be applied. We show later that by applying these modifications the
failure probability of the simulator in [LP07] can be reduced.

We split the analysis into two cases where either Bob or Alice is corrupted, and we
construct a simulator for each of these cases. Together, these two simulators analyze the
security of our protocol.

Case 1 - Assume Bob is corrupted.

Let RB be an adversary corrupting Bob; we construct a simulator SB as follows. Since we
assume that the committing OT protocol is secure, we analyze the security of the protocol
in the hybrid model with a trusted party computing the committing OT function (see
Section 3.3.4).
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The simulator.

1. The simulator SB chooses a fixed input x′ = 0 for Alice and uses it only at the
beginning of the protocol to be able to start the protocol (namely, to run OT phase)
but not to be used later on.

2. SB invokes RB and extracts the garbled values that Bob assigns to Alice’s inputs
from the committing OT protocol. This is possible because we analyze the security
of the protocol in the hybrid model with a trusted party computing the committing
OT functionality. Namely, Bob just sends his garbled input values to the trusted
party, and so the simulator SB obtains them directly.

3. SB receives all the garbled circuits and commitments from RB.

4. SB then runs the challenge phase to generate the random challenge strings.

5. Now the input of Bob will be extracted as follows. The simulator SB receives all
the required decommitments from RB based on the challenge strings, including the
garbled values that correspond to Bob’s input. SB verifies that all the commitments
are correct as Alice would do. If any of the checks fail, SB sends an abort message
to RB, sends ⊥ to the trusted party and halts, outputting whatever RB outputs. If
none of the checks fail, SB obtains m/2 input for Bob for m/2 circuits (because of the
additional modifications described in Section 5.4). If no input value appears more
than m/4 times, then SB outputs fail.2 We show below that fail does not occur with
high probability. If the same value appears more than m/4 times, SB sets y to be
this value and sends it to the trusted party. The trusted party replies with f2(x, y)
to SB.

6. The simulator SB evaluates the evaluation-circuits as in the real protocol and obtains
garbled output values. It then computes the commitments commith

A(Hash(〈wi,j : i ∈
OB〉); δj) for j such that `j = 0 as Alice does in the real protocol in the evaluation
phase and sends then to RB. If the simulator cannot compute a circuit it will commit
some garbage values not to reveal extra information to Bob that this circuit was not
computed.

7. The commitments commitB(wi,j,b; βi,j,b) for b ∈ {0, 1} are opened by RB for the
evaluation-circuits as in the real protocol. If the committed values are not correct SB

sends an abort message to RB, sends ⊥ to the trusted party and halts, outputting
whatever RB outputs.

8. Since the simulator knows the actual private input of RB (i.e. knows the additional
input wire value) and knows f2(x, y) it can learn the randomized output bit by
computing the exclusive-or for RB’s output wire for circuit RCf . The simulator then
determines a majority circuit GRCr for some r whose output is 〈bi′ : i′ ∈ OB, bi′ ∈

2The majority of inputs are taken to have a correct output based on cut-and-choose technique.
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{0, 1}〉. The simulator sends 〈bi′ : i′ ∈ OB, bi′ ∈ {0, 1}〉 together with an OR-proof
for the relation Routput.

Analysis. We show that the view of RB in the simulation with SB is statistically close
to its view in a hybrid execution of the protocol with a trusted party computing the
committing OT protocol. (Note that our protocol is not statistically secure since the
simulation is in the hybrid model for committing OT functionality, and it depends on the
implementation of OT subprotocol and the commitment schemes used.)

We must ensure that if at some point Alice aborts the protocol depending on a cheating
behavior by Bob, then Bob does not get any information about Alice’s input. This is,
however, only possible either at Phase 5 (at the opening & checking stage) or at Phase 7 (at
the opening of COPi,j) while checking the correctness of the circuits and the commitments.
In this case, the decision to abort is based on Bob’s construction of the circuits as well as
his commitments (including commitments from OT stage), and on the random inputs of
the parties, and is independent of Alice’s input. Thus, Bob does not get any information
if Alice aborts the protocol. We therefore consider the case that Alice does not abort the
protocol. We next show that SB outputs fail with negligible probability. If Alice does not
abort then with overwhelming probability the circuits (including the commitments COPi,j

and the commitments from committing OT) are correct (by the m/2-out-of-m technique).
Next, the equality-checker scheme assures that with high probability a majority of the
evaluation-circuits obtain the same input bit, and fail does not occur. The simulator SB

can then decide on a majority circuit and sends its output 〈bi′ : i′ ∈ OB, bi′ ∈ {0, 1}〉
together with proof. Since with very high probability there exists a majority circuit, the
proof will pass successfully.

We next show that if SB does not output any fail message, the simulated view of RB is
identical to his view of an execution of the protocol. Actually, they are identical since SB

just runs the same instructions as an honest Alice would do. Since SB uses independent
random coins in the challenge phase and follows Alice’s instructions each time, the above
process results in a distribution that is identical to the view of RB in a real execution with
Alice.

Case 2 - Assume Alice is corrupted.

The security analysis of the protocol in the case that Alice is corrupted is very similar to
the one in [LP07]. In this case, an ideal-model simulator SA will be constructed working
with a real-adversary RA that has corrupted Alice. Roughly speaking, the simulator SA

first extracts RA’s input bits from the OT protocol (since we analyze the security in the
hybrid model), and then externally sends this input x to the trusted party and receives back
f1(x, y). Given the output f1(x, y), SA constructs m garbled circuits where some of them
correctly compute f(x, y) and the others are false (“fake” ones) that compute the constant
function which always outputs f1(x, y). We note that the authors in [LP04] show that,
given the output, SA can generate the “fake” garbled circuits and RA cannot distinguish
between them and correctly generated circuits. Next, it is necessary to make sure that all
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of the check-circuits compute f(x, y) correctly, and all of the evaluation-circuits compute
the constant function outputting f1(x, y) for Alice. In order to make sure that the it
is not caught cheating, SA runs the challenge phase so that all of the correctly generated
garbled circuits are check-circuits, and all of the others are evaluation-circuits. The authors
in [LP04] show that the challenge phase can be simulated with negligible failure probability.
Intuitively, given that the simulation of the challenge phase simulation succeeds, it follows
that all of the check-circuits are correctly constructed, as in the protocol. Namely, RA

evaluates only the circuits which always output f1(x, y). Thus, the view of RA in the
simulation with SA with respect to these circuits is the same as its view in a real execution
with an honest RB.

6.8 Performance Analysis

We will now give a precise description of the complexity of our protocol and the protocol
by Lindell and Pinkas [LP07] and compare them. In order to be able to make a comparison
we assume that both protocols permit two private outputs. As said before, our construction
is a little bit different from [LP07] in the case that both parties receive their respective
private outputs. In our case, once Alice evaluates the circuits we know that she can
compute only one garbled output value for every output wire, and Bob accepts it as output
if and only if the value is the same as the circuit garbled value. However, in [LP07], the
modification in Figure 6.1 is applied.

The protocol by Lindell and Pinkas [LP07].

The protocol of [LP07] needs 2 addition gates and 1 multiplication gate in order to have
private outputs for both Alice and Bob (see Figure 6.1). Multiplication needs O(`2) and
addition needs O(`) number of Boolean gates. So, overall O(`2) additional Boolean gates
are necessary in [LP07]. There are also m new input wires for the i-th input wire of Alice.
Note that the number of Alice’s input wires is now `m and the number of Bob’s input
wires is now 4`. Therefore, the size of the new circuit is O(|Cf | + `2 + `m). The number
of commitments for Bob’s input wires is O(`m2). There are also O(`m2) commitments for
Alice’s input wires. Hence, the communication overhead is O(m|Cf |+ `2m + `m2) times a
security parameter.

For the number of exponentiations, in their protocol, each input bit of Alice is replaced
by m new inputs and therefore `m OTs are required. The authors describes a randomized
construction which reduces the number additional wires to max(4`, 8m), and a determin-
istic construction which reduces to m`/(log(m) + 1).

Our protocol.

By the modification presented in Section 6.5 we need only one extra XOR gate for each
of Bob’s output wires. Therefore, the number of Bob’s input wires is now 2`. The size of

81



6.9 Discussion on the Simulation

the new circuit is O(|Cf |+ `). There are O(`m2) commitments to Bob’s input values and
O(`m) commitments to Bob’s output values. There are also O(`m) commitments to Bob’s
output values which are computed at the end of the evaluation. Therefore, there are in
total O(`m2) commitments. Hence, the communication overhead is O(m|Cf |+ `m2) times
a security parameter.

For the number of exponentiations, the computational overhead is dominated by the
committing OTs (public key operations) and OR-Proofs. For each input wire of Alice in
all m circuits a single committing OT is run, and therefore exactly ` number of committing
OTs are required. And, for each evaluation-circuit there is one OR-proof, therefore exactly
m/2 number of OR-proofs are required.

The Protocol in [LP07] Our Protocol
Symmetric Encryptions O(m|Cf |+ `m2 + `2m) O(m|Cf |+ `m2)
# of OT m`/(log(m) + 1) `

Table 6.1: Complexity Analysis

6.9 Discussion on the Simulation

Note that in one part of the proof of [LP07], the failure probability of their simulator
is quite large in the case that Bob is corrupted; namely 21−m/17, where m is the number of
circuits used, for a certain type of failure—in addition to other types of failures. However,
this requires a large value for m, even for a low level of security. The reason is that the
rewinding process is used to be able to extract the input from m/4 circuits (the circuits that
are checked in the first execution of the rewinding and evaluated in the second execution,
see [LP07] for details). We note that Modification 1 (in Figure 5.3) is sufficient to have
a better bound of [LP07] (i.e., avoids the rewinding procedure). Namely, by applying
Modification 1 we are able to reduce the failure probability to 2−m/4 which we believe is
optimal for this type of cut-and-choose protocols relying on majorities.

Modification 2 (in Figure 5.4) is not necessary for [LP07] since the way our protocol
permits two private outputs is different from theirs. In our case, once Alice evaluates the
circuits we know that she can compute a single garbled value per output wire. And, Bob
accepts it as output if and only if the value is the same as the circuit garbled value. In our
security analysis, Modification 2 lets the simulator learn the corresponding garbled value
and in this way, we avoid running the rewinding process in [LP07].

As we described before Alice cannot simply send garbled values of a majority circuit,
since in this way Bob might learn extra information. The protocol in [LP07] does not have
this problem. In our protocol, we added an OR-Proof in Phase 8 to show that the output
bits she sent agrees with at least one circuit. In this way, Bob will not be able to learn
which circuit has been evaluated.

82



7
Fair Secure Two-Party Computation

In this chapter, we revisit fairness while borrowing several improvements and ideas from
the recent papers. So far the protocol by Pinkas (Eurocrypt 2003) is the only paper which
deals with fairness for Yao’s garbled circuit approach. We thus improve upon the protocol
by presenting a more efficient variant, which includes several modifications including one
that fixes a subtle security problem with the computation of the so-called majority circuit.
We note that our protocol is a modular extension of the protocol presented in Chapter 6.
We analyzed the security of our protocol according to the real/ideal simulation paradigm.

Parts of this chapter are based on [KS06a, KS06b, KS08] (joint work with Berry Schoen-
makers).

7.1 Introduction

We have seen from Chapter 6 that there are several protocols in the literature based
on garbled circuits covering malicious adversaries. Only a few papers, however, discuss the
fundamental property of fairness for secure two-party computation. In fact, the protocol
by Pinkas [Pin03] is the only one which deals with fairness for two-party protocols based
on Yao’s garbled circuit approach.

In general, fairness is achieved with special protocol techniques. To achieve fairness
in the protocol by Pinkas [Pin03], he presents an intricate method which involves the
modification on the truth tables for the garbled circuits. A crucial part of his protocol is
that the evaluation of the garbled circuit, as performed by Alice, does not result in garbled
values (one per output wire) but—roughly speaking—in commitments to these garbled
values. Basically, Alice will hold commitments for Bob’s output wires, and, vice versa,
Bob will hold commitments for Alice’s output wires. The important point here is to show
the correctness of these commitments. Once the correctness of the commitments for the
output values is guaranteed, both parties will gradually open their commitments.

Note that, if one would use the “gate-by-gate” approach instead of garbled circuits,
fairness can be added easily in a modular way (see [GMPY06] for more details). The
reason is that the protocols using the “gate-by-gate” approach [CDN01, ST04] already
guarantee that the parties learn the correct encrypted (or committed, shared) values to

83



7.1 Introduction

outputs. Hence, the parties only have to open them gradually instead of at once. On the
other hand, suppose that we use a protocol using Yao’s garbled circuit approach in the case
of malicious adversaries. If we have a protocol without fairness, then we obtain only garbled
output values rather than commitments to these values, because those commitments are
not needed if we want to release the output values at once (instead of gradually). In
the literature, one can see many such protocols that are secure in the case of malicious
adversaries, but have no commitments to the garbled output values during the protocol
execution (e.g. [MNPS04, FM06, Woo06, LP07]). Therefore, some significant changes must
be made in order to let the parties learn the commitments to the correct outputs so that
fairness is achieved. Namely, once the commitments are accepted by the parties then
fairness follows by gradually opening the commitments.

Concretely, blind signatures are used in [Pin03] as a building block for the verification
of these commitments. On a high level, we describe below how blind signatures are used
in [Pin03] for a special gate which has two private input and two private output (for Alice
and Bob resp.).

Phase 1. [Generation of commitments] In the beginning of the protocol, for output
wire of Bob Alice generates k commitments to 0/1 bits and blinds them where k is
some security parameter. She generates two sets, one consists of commitments to 0
and the other one consists of commitments to 1. She sends these two sets to Bob
together with the proof of correctness (a further cut-and-choose subprotocol is used
to ensure that Bob only signs correctly formed (blinded) commitments).

Phase 2. [Blind signatures and construction of garbled circuits] Bob signs to these
blinded commitments and generates m garbled circuits in a usual way except that
the garbled output values of Bob will be mapped to the signed commitments together
(the number of commitments is k/2). Correctness of garbled circuits are proved with
the cut-and-choose technique.

Phase 3. [Evaluation] Once Alice evaluates the circuits she obtains blind signatures
to the commitments, and since she knows the blinding factor she can remove the
blinding and obtain the signed commitments.

Phase 4. [Gradual opening] By the gradual release, the signed commitments will be
opened and Bob will be sure if he sees his signatures to the opened commitments.

We note that in this protocol for a single output wire of Bob (for m garbled circuits)
k blind signatures are used, which makes the protocol rather complex and inefficient. In
our protocol, we do not use blind signatures, instead, we use the well-known OR-proofs
[CDS94], to let Alice show that she correctly committed to the garbled output values that
she obtained for each of Bob’s output wires.
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7.2 Main Protocol Ideas

In this section we briefly review some issues for Pinkas’ protocol, and we present the
main ideas behind our new protocol. As we said in Section 3.4.2, we will use the protocol
for the “commit-prove-fair-open” functionality (“wrapped” version of it) [GMPY06] for
gradual release phase in a black-box manner. The only thing we need to take care of
before reaching the gradual release phase is that Alice and Bob hold commitments to the
correct values for each other’s output wires.

7.2.1 Problem with Pinkas’ Computation of Majority Circuit for
Bob

The computation of majority circuit for Bob can be avoided altogether for a protocol
tolerating malicious adversaries but not achieving fairness (see Section 6.2.2). It is not
clear, however, whether this protocol can be extended to cover fairness as well. Omitting
details, the protocol by Pinkas reaches a state in which for each evaluated garbled circuit
GCj and for each output wire i of Bob, Bob knows a random bit kij and Alice knows
the value bij ⊕ kij, where bij is the actual output bit for wire i in circuit GCj. Alice and
Bob then use these values to determine a majority circuit GCr for Bob. Pinkas proposes
that Alice can be trusted to construct a garbled circuit for this task, as Alice needs this
majority circuit to prevent Bob from cheating. But this way, nothing prevents Alice from
constructing an arbitrary circuit which reveals some of Bob’s input values and hence some
of the ki,j values. Then Alice learns Bob’s actual output bits, which should not be possible.

Of course, this problem can be solved by running any two-party protocol which is
secure against malicious parties (e.g., [LP07]). However, in our protocol, we will not
require any additional protocol for computing a majority circuit for Bob. We present a
simple modification to the circuit and in this way we show that a majority circuit can be
computed without considerable additional cost.

As we said in Chapter 6 the index of a majority circuit is revealed to Bob in [Pin03],
which results in leaking some private information of Alice. Currently, we do not know
whether there is a way to fix this issue for [Pin03].

7.2.2 Correctness of Garbled Input Values

Bob is not only providing Alice with m garbled circuits, but also with garbled values
for each input wire for each circuit to be evaluated. It must be ensured that these garbled
values are correct (i.e., correspond to the actual input value and fit with the garbled truth
tables of the garbled circuits).

The correctness of Alice’s garbled inputs will basically follow by definition of 1-out-of-2
oblivious transfer (OT) as in [Pin03]. However, as pointed out in Chapter 6, one cannot
use plain OT for the malicious case; rather a stronger form of OT such as committed OT,
or the potentially weaker form of committing OT should be used.
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The correctness of Bob’s garbled inputs is not as straightforward to handle. Pinkas
[Pin03] originally used OR-proofs [CDS94], whereas later papers [FM06, Woo06, LP07])
aimed at using less expensive techniques relying on symmetric operations only (used in
combination with cut-and-choose). In our protocol, we use the equality-checker scheme of
Franklin and Mohassel [FM06] for proving correctness of Bob’s inputs (see Section 6.2.3).

7.2.3 Correctness of Committed Outputs

In order that the two parties can safely enter the gradual release phase, one of the main
problems that needs to be solved is that both parties are convinced of the correctness of
the values contained in the commitments held by the other party. We treat this problem
differently for Alice and Bob.

Bob’s commitments to Alice’s outputs will be guaranteed to be correct by cut-and-
choose, exactly as in [Pin03]. For Alice’s commitments to Bob’s outputs, however, we will
use a different approach than in [Pin03], which used blind signatures for this purpose. In
our protocol, Alice will first obtain the garbled values for Bob’s outputs for all evaluated
circuits, and she commits to all of these values. At that point, Bob can safely reveal both
garbled values for each output wire (of the randomized circuit, as described above). Ad-
ditional commitments from Bob will ensure that these garbled values are correct. Finally,
Alice proves that she committed to one of these garbled values, from which Bob deduces
that Alice indeed committed to correct values for Bob’s output wires.

Concretely, we let Alice produce an OR-proof as follows. Suppose Alice committed to
a garbled value wi,j for output wire i of Bob in circuit GCj, and that she received garbled
values wi,j,0 and wi,j,1 from Bob. Using homomorphic commitments, such as Pedersen
commitments [Ped91], Alice can prove that either wi,j = wi,j,0 or wi,j = wi,j,1 without
revealing which is the case, applying [CDS94] to the Chaum-Pedersen protocol for proving
equality of discrete logarithms [CP93]. We will use the Fiat-Shamir heuristic to make these
proofs non-interactive (and provably secure in the random oracle model).

The above application of OR-proofs also critically relies on a slight modification of the
circuit representing f , where a new input wire (for Bob) is introduced for every output
wire of Bob (see Figure 6.2). Bob will use random values for these new input wires, to
blind the values of his output wires. Nevertheless, Alice will still be able to determine a
majority circuit.

7.3 A Fair and Secure Two-Party Protocol

Let RCf denote the randomized boolean circuit for a function f which is a modified
version of the circuit Cf , see Figure 6.2. We use IA resp. OA to denote the set of Al-
ice’s input resp. output wires, and IB resp. OB to denote the set of Bob’s input resp.
output wires. Also, we use I ′B to denote the additional input wires for Bob, used in the
construction of RCf from Cf . Note that |IA| = |IB| = |I ′B| = |OA| = |OB| = `. Let
x = 〈xi ∈ {0, 1}, i ∈ IA〉 denote Alice’s input, y = 〈yi ∈ {0, 1}, i ∈ IB〉 denotes Bob’s in-
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put, and z = 〈zi ∈ {0, 1} : i ∈ I ′B〉 denote Bob’s random input to RCf . Furthermore, let
|RCf | denote the number of gates, and weW denote the set of all wires in the circuit RCf .

In Phase 3 of the protocol, Bob will generate m garbled versions of the circuit RCf ,
where m is a security parameter. We will denote these garbled circuits by GRCj, for
j = 1, . . . ,m. A garbled circuit GRCj for RCf is completely determined by the pair of
garbled values (wi,j,0, wi,j,1) assigned by Bob to each wire i ∈ W . Here, wi,j,b ∈ {0, 1}k
corresponds to bit value b ∈ 0, 1, where k is another security parameter, denoting the
length of the garbled values.

For our purposes it suffices to view a garbled circuit (as to be evaluated by Alice) as
a concatenation of PEG-4-tuples, one for each (binary) gate in RCf , and of permuted
ordered pairs, one for each output wire of Alice:

GRCj = 〈〈PEG-4-tuplen,j : 1 ≤ n ≤ |RCf |〉, 〈POPi,j : i ∈ OA〉〉.

The permuted ordered pairs POPi,j are generated at random by Bob, using the garbled val-
ues wi,j,0 and wi,j,1 assigned to wire i ∈ OA in circuit GRCj: POPi,j = (wi,j,σi,j

, wi,j,1−σi,j
),

where σi,j ∈R {0, 1}.
As in the previous chapter, in our protocol we use two types of commitments, namely ho-

momorphic (“asymmetric”) commitments, e.g., Pedersen commitments [Ped91], and other
(“symmetric”) commitments, e.g., constructed from pseudorandom generators [Nao91].
We let commitP (m; r) denote a symmetric commitment to a message m using randomness
r generated by party P , and we use commith

P (m; r) to denote homomorphic commitments.

The protocol consists of 10 phases (see also Figure 7.1 for a protocol diagram).

Phase 1. [Generation of garbled input values] Bob generates garbled values wi,j,b ∈R

{0, 1}k, for i ∈ IA, j = 1, . . . ,m, and b ∈ {0, 1}.

Phase 2. [Committing OT] Committing OT is run in order for Alice to learn her
garbled input values. Bob is the sender with private input wi,j,0, wi,j,1 for i ∈ IA and
j = 1, . . . ,m which were generated in Phase 1, and Alice is the receiver with private
input xi ∈ {0, 1}. At the end of Committing OT Alice receives wi,j,xi

and Bob gets
no information about which of his inputs is chosen. Also, the common output is AOT

i,j,b

= 〈 commitB(wi,j,b; αi,j,b) 〉 for i ∈ IA, j = 1, . . . ,m, b ∈ {0, 1}. These commitments
will be checked by Alice later on, in order to prevent cheating by Bob; in particular
to avoid the protocol issue addressed in Section 6.3.

Phase 3. [Construction] In this phase Bob does the following:

• He prepares the garbled circuits GRCj for j = 1, . . . ,m such that the garbled
values wi,j,0, wi,j,1 for i ∈ IA and j = 1, . . . ,m which are generated in Phase 1
are used for the corresponding wires.

• He also generates the commitments Bi,j,j′,b=commitB(wi,j,b, wi,j′,b; βi,j,j′,b) for i
∈ IB ∪ I ′B and j, j′ such that 1 ≤ j < j′ ≤ m, b ∈ {0, 1} for the equality-
checker scheme. Bi,j,j′,b’s are committed to Bob’s garbled input values and they
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are generated to ensure that Bob’s input is consistent for all the circuits (see
Section 7.2.2).

• He also computes the commitments Ci,j=commitB(σi,j; γi,j) for i ∈ OA and
j = 1, . . . ,m where σi,j ∈R {0, 1}. These committed values are used to permute
Alice’s output values and the correctness will be proved by the cut-and-choose
technique, by opening half of them in the opening phase.

• Finally in this phase, the commitments Di,j=commitB(wi,j,0, wi,j,1; δi,j) for i ∈
OB and j = 1, . . . ,m are computed. The Di,j’s are committed to Bob’s garbled
output values and they are generated so that Alice can determine a correct
majority circuit.

He sends the circuits and the commitments generated above to Alice. Each pair of
commitments (Bi,j,j′,0, Bi,j,j′,1) is sent in random order, in order that Alice does not
learn Bob’s inputs when Bob opens one commitment for each of these pairs later on
in the evaluation phase.

Phase 4. [Challenge] Alice and Bob run the challenge phase (a coin-tossing protocol)
in order to choose a random bit string ` = `1 . . . `m ∈R {0, 1}m that defines which
garbled circuits and which commitments will be opened.

Phase 5. [Opening & Checking]Alice asks Bob to open the circuits GRCj for j
such that `j = 1 which are called check-circuits. Similarly, the circuits GRCj for j
such that `j = 0 will be called evaluation-circuits. She also asks Bob to open the
corresponding commitments for j such that `j = 1.
Bob sends the following for opening:

• Bob sends the opening set G̃RCj= 〈 wi,j,b: i ∈ W 〉, for j such that `j = 1, b ∈
{0, 1} to open the check-circuits.

• He also sends ÃOT
j,b = 〈 αi,j,b: i ∈ IA 〉 for j such that `j = 1, b ∈ {0, 1} in order

to open the corresponding commitments AOT
i,j,b.

• He also sends the opening set B̃j,j′,b= 〈 βi,j,j′,b: i ∈ IB ∪ I ′B 〉 for j, j′ such that
`j=`j′ =1, 1 ≤ j < j′ ≤ m, b ∈ {0, 1} to open the corresponding commitments
Bi,j,j′,b.

• The opening set C̃j= 〈 σi,j,γi,j: i ∈ OA 〉 for j such that `j = 1 is also sent in
this phase to open the corresponding commitments Ci,j.

• The opening set D̃j= 〈 δi,j: i ∈ OB 〉 for j such that `j = 1 is also sent to open
the corresponding commitments Di,j.

• The opening set B̃input
j,j′ = 〈 wi,j,yi

,wi,j′,yi
, βi,j,j′,yi

, wi′,j,zi′
,wi′,j′,zi′

, βi′,j,j′,zi′
: i ∈ IB,

i′ ∈ I ′B 〉 for j, j′ such that `j=`j′ =0, 1≤ j <j′ ≤ m. This set contains the
garbled values of Bob’s input wires for the evaluation-circuits, and sent to Alice
which is a part of the equality-checker scheme.
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Alice verifies the circuits and the commitments. Note that the consistency check of
Bob’s input is done now by the equality-checker scheme with the commitment set

G̃RCj (contains all garbled values) for j such that `j = 1 and b ∈ 0, 1 and the set

B̃j,j′,b for j, j′ such that `j = `j′ = 1, 1 ≤ j < j′ ≤ m and b ∈ {0, 1}. Note that the

opening sets ÃOT
j,b , B̃j,j′,b and D̃j contain only randomness since the corresponding

garbled values comes already from the set G̃RCj. If any of the verifications fail Alice
aborts the protocol.

Phase 6. [Evaluation] Alice does the following in the evaluation phase:

• She first evaluates the circuits GRCj for `j = 0 and computes garbled output
values.

• She then commits to Bob’s output values as Ei,j = commith
A(wi,j; ζi,j) for i ∈ OB

and j such that `j = 0 and sends them to Bob. If Alice cannot compute a circuit
she will commit some garbage values not to reveal extra information to Bob that
this circuit was not computed.

Note that the commitments Ei,j are generated to assure Bob that the committed
values in Ei,j are circuit values. If, for example, Alice commits to values different
from garbled output values then she will be detected in OR-proofs in Phase 9.
The crucial property we need here is that these commitments are homomorphic
in order to be able to use in OR-proofs.

For example, if we use Pedersen commitments then Ei,j will be equal to gwi,jhζi,j

where g is a generator of group G and h is a random element of G assuming
that nobody knows the discrete logarithm of h to the base g [Ped91].

Phase 7. [Opening of Bob’s ordered output] After Bob receives the commitments
Ei,j for i ∈ OB and j such that `j = 0 he opens the commitments Di,j by sending

the opening set D̃j = 〈 wi,j,0,wi,j,1,δi,j: i ∈ OB 〉 for j such that `j = 0. Note that the
commitments Di,j can be opened since Bob’s outputs are randomized (see Figure 6.2);
hence Alice can only see which outputs match (and determine a majority circuit),
but she does not learn Bob’s output f2(x, y).

Phase 8. [Decision of majority circuit] Alice determines a majority circuit GRCr

for some r such that `r = 0. Note that she can determine a correct majority circuit
GRCr without further interaction with Bob since the additional input values that
were used to randomize Bob’s output wires are all identical for the same wire in each
circuit GRCj for j such that `j = 0. Let 〈bi : i ∈ OB, bi ∈ {0, 1}〉 be the output of
Bob for the circuit GRCr. Alice commits to each bi as Fi = commith

A(bi; εi) = gbihεi

and sends 〈Fi : i ∈ OB〉 to Bob.

Phase 9. [Verification of Alice’s commitments] They run an OR-proof where Alice
is the prover, Bob is the verifier. Alice proves that the committed value inside Fi is
correct. More precisely, the OR-proof is generated as follows:
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She will prove that the committed values inside Fi agree with at least the output of
a circuit where the relation is

Routput = {(g, h, 〈wi,j,0, wi,j,1, Ei,j, Fi : i ∈ OB and j s.t. `j = 0〉; ε, ζ) :

∃b∈{0,1} and j s.t. `j=0 s.t. ∀i ∈ OB hε = Fi/g
b, hζ = Ei,j/g

wi,j,b}.

In this way, Alice will ensure that at least one of the circuit output agrees with the
output of the majority circuit.

Phase 10. [Gradual release] They then run the protocol for the gradual release to
open their respective commitments, namely, Ci,j’s and Fi’s. At the end of the gradual
release:

• Alice learns all σi,j for i ∈ OA and j ∈ U and applies it to POPi,j to learn her
actual outputs for j circuits. She takes the majority of j circuits which will
result in f1(x, y).

• Bob learns the bit values for randomized output wires. He finally computes his
output f2(x, y) by XORing his randomized output wire values for the circuit
GRCr with the corresponding additional wire values.
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A Fair and Secure Two-Party Protocol

Common Input: f
Compute: f(x, y) = (f1(x, y), f2(x, y))

Alice Bob

Private Input: x = 〈xi ∈ {0, 1}, i ∈ IA〉 Private Input: y = 〈yi ∈ {0, 1}, i ∈ IB〉

Phase 1: Generation of garbled input values.

Generate wi,j,b ∈R {0, 1}k, i ∈ IA, j = 1, . . . , m, b ∈ {0, 1}.

Phase 2: Committing OT Run in parallel, for i ∈ IA.

Receiver Sender
Private Input: xi Private Input: 〈wi,j,0, wi,j,1 : j = 1, . . . , m〉

Committing OT subprotocol←→
Private Output: 〈wi,j,xi : j = 1, . . . , m〉 Private Output: 〈αi,j,0, αi,j,1 : j = 1, . . . , m〉

Common Output:
Ai,j,b = 〈 commitB(wi,j,b; αi,j,b) 〉 for j = 1, . . . , m, b ∈ {0, 1}

Phase 3: Construction.

Compute GRCj for j = 1, . . . , m s.t. for all i ∈ IA

〈wi,j,0, wi,j,1 : j = 1, . . . , m〉 are used for the
corresponding wires in GRCj .

Compute Bi,j,j′,b= commitB(wi,j,b, wi,j′,b; βi,j,j′,b) for
i ∈ IB ∪ I′B and j, j′ s.t. 1 ≤ j < j′ ≤ m, b ∈ {0, 1}.

Compute Ci,j= commitB(σi,j ; γi,j) for i ∈ OA and
j = 1, . . . , m where σi,j ∈R {0, 1}.

Compute Di,j= commitB(wi,j,0, wi,j,1; δi,j) for
i ∈ OB and j = 1, . . . , m.

←−
〈GRCj : j = 1, . . . , m〉, 〈Ci,j : i ∈ OA, j = 1, . . . , m〉, 〈Di,j : i ∈ OB , j = 1, . . . , m〉,
〈Bi,j,j′,bi,j,j′ , Bi,j,j′,1−bi,j,j′ : i ∈ IB ∪ I′B , 1 ≤ j < j′ ≤ m, bi,j,j′ ∈R {0, 1}〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Phase 4: Challenge.

Secure coin-flipping subprotocol←→
Common Output: ` = `1||`2|| . . . ||`m s.t. `i ∈R {0, 1}
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Phase 5: Opening & Checking.

G̃RCj = 〈wi,j,b : i ∈ W, b ∈ {0, 1}〉, for j s.t. `j = 1,

ÃOT
j,b = 〈αi,j,b : i ∈ IA〉, for j s.t. `j = 1, b ∈ {0, 1}

B̃j,j′,b = 〈βi,j,j′,b : i ∈ IB ∪ I′B〉 for j, j′ s.t. `j = `j′ = 1,
1 ≤ j < j′ ≤ m, b ∈ {0, 1}

C̃j = 〈σi,j , γi,j : i ∈ OA〉 for j s.t. `j = 1

D̃j = 〈δi,j : i ∈ OB〉 for j s.t. `j = 1

B̃input
j,j′ = 〈wi,j,yi , wi,j′,yi

, βi,j,j′,yi
, wi′,j,zi′

, wi′,j′,zi′
,

βi′,j,j′,zi′
: i ∈ IB , i′ ∈ I′B〉 for `j = `j′ = 0, 1 ≤ j < j′ ≤ m.

←−
〈G̃RCj : `j = 1, b ∈ {0, 1}〉, 〈B̃j,j′,b : `j = `j′ = 1, 1≤j< j′≤m, b ∈ {0, 1}〉,

〈C̃j : `j = 1〉, 〈D̃j : `j = 1〉, 〈B̃input
j,j′ : `j = `j′ = 0, 1≤j<j′≤m〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Check GRCj for j s.t. `j = 1 using G̃RCj

AOT
i,j,b

?
= commitB(wi,j,b; αi,j,b) for i ∈ IA, j s.t. `j = 1, b ∈ {0, 1}

Bi,j,j′,b
?
= commitB(wi,j,b, wi,j′,b; βi,j,j′,b) fori ∈ IB ∪ I′B s.t. `j = `j′ = 1, 1 ≤ j < j′ ≤ m, b ∈ {0, 1}

Ci,j
?
= commitB(σi,j ; γi,j) for i ∈ OA, j s.t. `j = 1

Di,j
?
= commitB(wi,j,0, wi,j,1; δi,j) for i ∈ OB , j s.t. `j = 1

Bi,j,j′,yi

?
= commitB(wi,j,yi , wi,j′,yi

; βi,j,j′,yi
) for i ∈ IB , j, j′ s.t. `j = `j′ = 0, 1 ≤ j < j′ ≤ m

Bi′,j,j′,zi′
?
= commitB(wi′,j,zi′

, wi′,j′,zi′
; βi′,j,j′,zi′

) for i′ ∈ I′B , j, j′ s.t. `j = `j′ = 0, 1≤j<j′≤m.

Phase 6: Evaluation.
Evaluate GRCj for j s.t. `j = 0, using B̃input

j,j′

Compute Ei,j = commith
P (wi,j ; ζi,j) for i ∈ OB and j s.t. `j = 0

−
〈Ei,j : i ∈ OB , j s.t. `j = 0〉
−−−−−−−−−−−−−−−−−→

Phase 7: Opening of Di,j .

D̃j = 〈wi,j,0, wi,j,1, δi,j : i ∈ OB〉 for j s.t. `j = 0

←−
〈D̃j : j s.t. `j = 0〉

−−−−−−−−−−−−−−−−−
Di,j

?
= commitB(wi,j,0, wi,j,1; δi,j) for i ∈ OB , j s.t. `j = 0

Phase 8: Decision of majority circuit.

Determine a majority circuit GRCr for some r s.t. `r = 0.
Compute Fi = commith

A(bi; εi) for i ∈ OB where
bi ∈ {0, 1} is the bit value of the i-th output wire of GRCr.

−
〈Fi : i ∈ OB〉−−−−−−−−−−−−−→

Phase 9: Verification of Alice’s commitments. Run in parallel for i ∈ OB .

Prover Verifier
Private Input: εi, ζi,j Common Input: g, h, 〈wi,j,0, wi,j,1, Ei,j , Fi : Private Input: ⊥

i ∈ OB and j s.t. `j = 0〉

OR-Proofs subprotocol←→
Private Output: ⊥ Common Output: Proof of validity Private Output: ⊥

Phase 10: Gradual Release. Run in parallel, for i ∈ OA, i′ ∈ OB , `j = 0.

Private Input: bi′ , εi′ Common Input: Ci,j , Fi′ Private Input: σi,j , γi,j

Gradual Release subprotocol←→
Private Output: σi,j Private Output: bi′
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Apply σi,j to POPi,j for i ∈ OA and
match wi,r with (wi,j,0, wi,j,1) for i ∈ OA

and determine a majority circuit for Alice.

Private Output: f1(x, y)

Compute XOR the randomized output bits with
the corresponding additional input wire values.

Private Output: f2(x, y)

Figure 7.1: A fair and secure two-party protocol

7.4 Security Analysis

In our security analysis we want to take advantage of the frameworks established by
[LP07] and [GMPY06] for the real/ideal simulation paradigm, resp., for the malicious case
in secure two-party computation (and Yao’s protocol in particular) and for the case of
fair protocols (see Section 3.4.2 for more discussion.). To do so we will actually focus on
analyzing a variant of our protocol, in which Phase 10 is replaced by Phase 10′:
Phase 10′. [Trivial opening] Alice opens the commitments Fi for i ∈ OB and Bob opens
the commitments Ci,j for i ∈ OA and j such that `j = 0.

This adapted protocol is not fair, but it withstand malicious adversaries. We will ar-
gue so by showing how to simulate it, following [LP07]. From this we conclude that the
commitments upon entering Phase 10 in the protocol are correct, as a consequence of which
the framework of [GMPY06] applies and the simulatability of our protocol follows. Before
we analyze the security of our protocol we note that the additional modifications presented
in Section 5.4 are applied to the circuit RCf .

We are now ready to simulate the protocol (the one with the trivial opening) assuming
that either Bob or Alice is corrupted.

Case 1- Assume Bob is corrupted.

Let RB be an adversary corrupting Bob; we construct a simulator SB as follows. Since we
assume that the committing OT protocol is secure, we analyze the security of the protocol
in the hybrid model with a trusted party computing the committing OT functionality (see
Section 3.3.4).

The simulator.

1. The simulator SB chooses a fixed input x′ = 0 for Alice and uses it only in the
beginning of the protocol (namely, to run the OT phase) but it is not used later on.

2. SB invokes RB and obtains the garbled input values wi,j,0 and wi,j,1 for i ∈ IA and
j ∈ {1, . . . ,m} which are RB’s inputs from the committing OT protocol (in the
hybrid model).
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3. SB receives all of the garbled circuits and the commitments from RB.

4. SB then runs the challenge phase to generate the random challenge values.

5. Now the input of RB will be extracted as follows. The simulator SB receives all of
the required decommitments from RB based on the challenge values, including the
garbled values that correspond to Bob’s input. Let wi,j be Bob’s garbled input value
for i ∈ IB ∪ I ′B and j such that `j = 0. SB verifies that all the commitments are
correct as Alice would do in Phase 5. If any of the checks fail, SB sends an abort
message to RB, sends ⊥ to the trusted party and halts, outputting whatever RB

outputs. If none of the checks fail, SB obtains m/2 input for Bob for m/2 circuits
because of Modification 1. More precisely, the simulator knows wi,j,0, wi,j,1 for i ∈ IA

and wi,j for i ∈ IB∪I ′B for j such that `j = 0, and by Modification 1 the simulator can
learn the input bit of Bob for each wi,j for i ∈ IB ∪ I ′B for j such that `j = 0. (In the
real case, this does not happen since Alice learns only one garbled input value from
OT for each her input wire.) If no input value appears more than m/4 times, then
SB outputs fail 1. We show below that fail also does not occur with high probability.
Otherwise, SB sets y to be the value that appears more than m/4 times and sends it
to the trusted party. Trusted party replies with f2(x, y) to SB.

6. Now the simulator knows f2(x, y) but it has to convert this value into the correspond-
ing garbled values. The simulator SB first computes the evaluation-circuits as in the
real protocol and obtains one garbled output value per wire. The complementary
values will appear as well which are in general not the correct ones since the simu-
lator computes the garbled circuit in the case that x′ = 0. However, Modification
2 has been applied in order to learn both garbled output values of Bob, and the
corresponding bits. As we described above, the simulator learns the output bit of
wi,j for i ∈ IB ∪ I ′B and j such that `j = 0 from the AND gate in Figure 5.4 (for the
wire WB). This bit value is the same as the bit value for the wire W ′

B in Figure 5.4.
Then, by decrypting the XOR gates the simulator learns both garbled values, and
their corresponding bits. In the real case, this does not happen since Alice learns only
one garbled input value from OT for each her input wire. Hence, since the simulator
knows the private output of the corrupted party and corresponding garbled output
values it then computes the commitments commitA(wi,j; ζi,j) for i ∈ OB and j such
that `j = 0 as Alice does in the real protocol in Phase 6 and sends to RB. If the
simulator cannot compute a circuit it will commit some garbage values not to reveal
extra information to Bob that this circuit was not computed.

7. The commitments commitB(wi,j,0, wi,j,1; δi,j) for i ∈ OB and j such that `j = 0 are
opened by RB for the evaluation-circuits as in the real protocol.

8. The simulator then can determine the majority circuit whose output is 〈bi′ : i′ ∈
OB, bi′ ∈ {0, 1}〉 since it knows the garbled output values and the corresponding bits

1The majority of inputs are computed in order to have a correct output by the cut-and-choose technique.
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as in the real protocol.

9. The simulator generates the commitments to 〈bi : i ∈ OB, bi ∈ {0, 1}〉 as Fi =
commith

A(bi; εi) = gbihεi for i ∈ OB, bi ∈ {0, 1} and produces the proof for the relation
Routput.

10′. Alice opens the commitments Fi for i ∈ OB and Bob opens the commitments Ci,j for
i ∈ OA and j such that `j = 0.

Analysis. We claim that the view of RB in the simulation with SB is statistically close
to its view in a hybrid execution of the protocol with a trusted party computing the
committing OT protocol. (Note that our protocol is not statistically secure since the
simulation is in the hybrid model for committing OT functionality, and it depends on the
implementation of OT subprotocol, the commitment schemes and the OR-proofs used).

Initially, we show that if Alice aborts the protocol depending a cheating behavior by
Bob, then Bob does not get any information about Alices input. This is only possible
either at Phase 5 (at the opening & checking phase) or at Phase 7 (at the opening of
Di,j’s) while checking the correctness of the circuits and the commitments. In this case,
the decision to abort is based on Bob’s construction of the circuits as well as commitments
(including commitments from the OT phase), and on the random inputs of the parties, and
is independent of Alice’s input. Thus, Bob does not get any information if Alice aborts
the protocol. Thus, we know that the difference between Alice receives “abort” in an ideal
execution with SB and that Alice outputs “abort” in a real execution with RB is negligible.
From here on, we therefore consider the case that Alice does not abort the protocol.

We now prove that the circuits and the commitments are correct with overwhelming
probability. We here note that the additional modifications does not compromise the
security of the garbled circuit since, by definition of garbled circuit, having one garbled
value for each input wire for a gate results in always one garbled output value, which
ensures privacy. If Alice does not abort then with probability 2−m/4 at most m/4 of the
circuits are bad (including the commitments). Also, we know that the equality-checker
scheme [Woo06] assures with high probability a majority of the evaluation-circuits obtain
the same input and OT assures with high probability that the values received from OT are
garbled values, and therefore fail does not occur with negligibly probability. The simulator
SB can then decide on a majority circuit, prove that the commitments Ei,j’s are committed
to the garbled values of Bob’s output wires and open the commitments Fi’s for his i-th
output wires.

We next show that if SB does not output any fail message, the simulated view of
RB is identically distributed to its view in an execution of the protocol. Actually, they
are identical since SB just runs the honest Alice’s instructions when interacting with the
corrupted Bob. Since SB uses independent random coins in the challenge phase and follows
Alice’s instructions each time, the above process results in a distribution that is identical to
the view of RB in a real execution with Alice. As we mentioned before the protocol is not
statistically secure since the simulation is considered in the hybrid model for committing
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OT functionality, and it depends on the implementation of OT subprotocol and the OR-
proofs.

Case 2- Assume Alice is corrupted.

The security analysis when Alice is corrupted is very similar to the proof of [LP07]. During
the protocol Alice sees the circuits and the commitments and they run a secure committing
OT where she gets only the garbled values corresponding to her input bits. On a high level,
in the simulation, the simulator first extracts the input of Alice from OT functionality in
the hybrid model and then sends the input x to the trusted party and learn the output
value. Given the output, the simulator constructs the garbled circuits. The simulator
constructs the garbled circuits where some of them correctly computes f(x, y) and some of
them compute a constant function which always outputs Alice’s real output. Namely, the
output of this garbled circuit is always equal to the value which is received from the trusted
party. The simulator then chooses the challenge value in such a way that all the check-
circuits correctly compute the function f(x, y) while all the other circuits (representation of
constant function) are going to be evaluation-circuits which compute the constant function.
We refer to [LP07] for details.

7.5 Performance Analysis

We analyze the overall communication and computational complexity of our protocol,
and compare with Pinkas’ protocol by ignoring the constructions that are used in both
protocols. We assume that Pinkas’ protocol also uses the equality-checker for consistency
of Bob’s input. We also assume that Pinkas’ protocol uses committing OT to fix the
protocol issue described in Section 6.3. As we said before, [Pin03] also has problem by
revealing the majority circuit to Bob and we do not know whether there is way to fix.
Note that by the modification presented in Figure 6.2 we need ` additional XOR gate for
each output wire of Bob which has only negligible affect to the overall complexity.

As we said before, the problem of Pinkas’ protocol with majority circuit computation
can be fixed by running any two-party protocol considering malicious adversaries. For
example, if the protocol in [LP07] is used then the communication complexity of majority
circuit computation is O(`m2 log m). We note that there is no need to use such a protocol
in our case.

We next consider the parts related to fairness. Note that the way we generate Bob’s
commitments to Alice’s outputs is the same as in Pinkas’ protocol (namely, there are O(`m)
commitments to permutations σi,j’s). However, for Alice’s commitments to Bob’s outputs
is much different: Pinkas’ protocol has O(`mκ) commitments which are generated by Alice
in order to be blindly signed by Bob, where κ is another security parameter (which are
actually timed-commitments for the gradual opening). In our protocol, there are O(`m)
homomorphic commitments, and O(`m) OR-proofs. In the gradual phase, we use the
protocol of [GMPY06] in order to ensure fairness, namely new commitments (together
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with the proof of correctness) will be generated before applying gradual opening.
The major difference between our approach and the construction by Pinkas [Pin03] is in

the removal of the blind signatures and of the majority circuit computation. This leads to
an improvement by a factor of κ for the computational complexity. The reason is that for
every output wire of Bob 2κ blind signatures are needed in Pinkas’ protocol while in ours
only one proof of knowledge is needed together with a simple modification to the circuit.
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8
Conclusions

In this thesis, we have presented several new protocols for general secure two-party com-
putation. The first protocol, which is in Chapter 4, is designed to implement the Com-
mitted Oblivious Transfer (OT) functionality. This protocol has a major advantage over
all existing protocols because of the following reasons: firstly, all existing protocols could
transfer single bits only whereas our Committed OT protocol allows transferring arbitrary
bit strings. Secondly, it is very efficient since it requires less back-and-forth communication
among the parties. Also, it has (fixed) constant number of rounds. In fact, the efficiency
of our protocol is comparable with the most efficient one in the literature that transfers
only bits (even performing slightly better). We showed that the protocols implement-
ing Committed OT functionality may solve subtle problems that occur in the malicious
model within two-party protocols that use (plain) OT. Therefore, it gives a better result
if Committed OT allows transferring bit strings. We also introduced a new variant called
Committing OT which is a combination of OT and commitments. It is a weaker version of
Committed OT but as we showed in Section 6.4.2, it can easily be exploited to yield more
efficient constructions.

The protocols in Chapter 5, 6 and 7 are mainly based on garbled circuits and we
consider both semi-honest and malicious adversaries. Before presenting these protocols we
provided a clear insight into Yao’s garbled circuit in Chapter 5. In Chapter 5, we presented
a two-party protocol in the semi-honest model first which is a slightly modified version of
Yao’s original protocol. We then transformed this two-party protocol into another protocol
in Chapter 6 to achieve security in the malicious model by forcing each party to ensure that
he or she behaves as a semi-honest party. Before proposing our protocol for the malicious
case, we have addressed a protocol issue in the malicious model with the use of OT. We
showed that this issue arises the protocols of [Pin03, MNPS04, FM06], where it is possible
for the malicious party (i.e., the constructor) to learn some information on the input of
the honest party (i.e., the evaluator). We proposed our Committed OT protocol as a quick
solution to solve this issue. We have also solved this issue using a Committing OT protocol
that gives more efficient result.

We have examined the fairness property of secure two-party computation in Chapter 7,
since we believe that fairness (apart from correctness and privacy) is an important secu-
rity property for secure two-party computation problems. Therefore, we developed a new
efficient and fair two-party protocol using garbled circuits. Only Pinkas [Pin03] has used
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garbled circuits in the literature to deal with fairness. We pointed out a subtle problem re-
garding the fairness in his protocol (for the case where the evaluator is corrupted). Namely,
we showed that a malicious evaluator may learn the constructor’s private input. We have
also repaired this problem in our protocol.

The security of our protocols based on garbled circuits was analyzed according to the
real/ideal simulation paradigm, which is quite similar to [LP07]. We have also presented a
simple modification to the circuit (computing the function f), which leads to an improve-
ment in the failure probability of the simulator in [LP07].

Current focus in secure two-party computation is to implement the protocols described
in the literature as well as to bring them into practice. As discussed in Chapter 3, there
are two main approaches to solve the secure two-party computation problems. These are
“garbled” circuit approach and the “gate-by-gate” approach. The computational cost of
the former approach depends on the size of the boolean circuit (that computes f). On the
other hand, the cost of the “gate-by-gate” approach is proportional to the depth of the
arithmetic circuit (that implements f). In other words, Yao’s approach is not expensive for
large circuits (many gates with relatively few inputs) whereas the gate-by-gate approach
is cheaper for small circuits (few gates with relatively many inputs). Therefore, there is a
tradeoff between the two schemes.

We like to conclude by highlighting three topics for further research and then handle
these one by one, where the last one is actually an open problem. To begin with, of course
it remains challenging to improve the efficiency of the protocols presented here.

Firstly, Committed OT is a strong primitive that needs to be understood in detail.
As we said before, we used Committed OT of bit strings in Chapter 6 to fix the protocol
issue with the use of OT. Future research may be directed to finding applications that use
Committed OT of bit strings. Another area to work on would be finding more protocols
in which similar protocol issues occur and see whether our protocol for Committed OT is
a good candidate to fix them.

Secondly, in the security proofs of existing protocols [LP04, FM06, LP07], and also
in our security analyses, the execution is assumed to be performed in isolation (i.e., in
the stand-alone model). Today’s attempts consider security of execution in an arbitrary
environment (i.e., within the UC framework of Canetti [Can01]). Therefore, it will be
worthwhile to work on providing formal proofs of security in the UC framework.

Finally, we conclude with a technical aspect of the majority circuit computation. Ini-
tially, please note that the protocol in Chapter 7 deals with fairness (also the protocol
by Pinkas [Pin03]) and evaluates different majority circuits for both parties Alice and
Bob. The majority circuit for Bob is computed before the gradual release phase, and the
majority circuit for Alice is computed after the gradual release phase. Therefore, during
the gradual opening Alice opens commitments for only one circuit (i.e., majority circuit),
whereas Bob opens commitments for many circuits. It would be more efficient if there is a
way to determine a unique and correct majority circuit before the gradual phase. In that
case, the cost of gradual opening would be much cheaper. In other words, Bob does not
need to open commitments for many circuits, instead he would open the commitments for
only that majority circuit.
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Glossary
Notation Meaning

N set of all integers

{0, 1}∗ set of all finite length strings, including the empty string

{0, 1}k set of all strings of length k

s ∈R S element s is chosen uniformly at random from set S

∆(X, Y ) statistical distance between random variables X and Y

WP a wire of the party P

Cf a circuit for a function f

GCf a garbled circuit for a function f

GRCf a garbled randomized circuit for a function f

a||b concatenation of a and b

wi,b a garbled value corresponds to the bit b for the i-th wire

wP,i,b a garbled value corresponds to the bit b for the i-th wire
of the party P

wP,i,j,b a garbled value corresponds to the bit b for the i-th wire
of the party P in the j-th garbled circuit

Π a two-party protocol

Πf a two-party protocol for a functionality f

commitP (m; r) a commitment scheme to a message m using a random
number r generated by the party P
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Nederlandse samenvatting: Secure and Fair
Two-Party Computation

We beschouwen enkele personen (of partijen) die elkaar niet vertrouwen, maar toch een
gezamenlijke berekening willen doen. De berekening is afhankelijk van een geheime invoer
van elke persoon waarbij de invoer geheim dient te blijven. Dit probleem staat bekend als
“Secure Multi-Party Computation” (veilige berekening tussen meerdere personen) en is in
1982 door Andrew Yao gëıntroduceerd. Deze berekeningen hebben praktische toepassingen
zoals digitale veilingen en digitaal stemmen. In dit proefschrift concentreren we ons op het
geval waarin slechts twee personen zijn betrokken. Dit staat bekend als “Secure Two-Party
Computation”.

Als er een derde persoon aanwezig is die door iedereen wordt vertrouwd (trusted third
party) dan is er een simpele oplossing: beide deelnemers geven hun geheime invoer aan
deze vertrouwde persoon, die op haar beurt de berekening uitvoert. Vervolgens geeft ze
beide deelnemers het correcte antwoord terug. Doel is echter om (bijna) hetzelfde resultaat
te bereiken zonder vertrouwde persoon.

Om dit soort problemen op te lossen worden cryptografische protocollen ontwikkeld.
Deze protocollen worden vervolgens geanalyseerd in een model voor het gedrag van de
deelnemers. Het meest simpele model is het zogeheten Semi-Honest (gedeeltelijk eerlijk)
model. Hierbij wordt aangenomen dat iedereen zich aan het protocol houdt, maar probeert
zoveel mogelijk informatie uit de ontvangen berichten te krijgen. Een meer realistisch
scenario is het Malicious (kwaadaardig) model. De meest gebruikte aanpak is om een
protocol eerst in het semi-honest model te analyseren en deze analyse daarna uit te breiden
naar het malicious model.

Elk cryptografisch protocol voor secure two-party computation moet aan drie veilig-
heidseisen voldoen: correctheid, privacy en fairness (eerlijkheid). Het protocol moet de
correctheid van het resultaat garanderen terwijl het de geheimhouding van alle invoer be-
waakt, zelfs wanneer een van de deelnemers kwaadaardig is en willekeurig van het protocol
af kan wijken. Het moet ook eerlijkheid garanderen. Dit betekent grofweg dat wanneer
een deelnemer het protocol voortijdig afbreekt deze deelnemer het eindresultaat niet mak-
kelijker te weten kan komen dan de andere spelers.

De belangrijkste onderzoeksvraag in het construeren van een nieuw protocol voor secure
multi-party computation is of het aan deze eisen voldoet. Een protocol moet zowel efficiënt
zijn als een goede veiligheid bieden. In 1986 presenteerde Yao het eerste algemene proto-
col voor secure two-party computation, dat toen alleen geanalyseerd is in het semi-honest
model. Hij gebruikt een techniek die “Garbled Circuit” genoemd wordt en gebruikt on-
dermeer de onderliggende primitieven “Pseudorandom Generator” en “Oblivious Transfer”
om tot efficiënte resultaten te komen. Na Yao zijn er vele varianten en verbeteringen voor
het malicious model voorgesteld. In dit proefschrift ontwerpen we verschillende nieuwe
protocollen voor secure two-party computation gebaseerd op Yao’s garbled circuit. We to-
nen enkele zwakke punten en veiligheidsproblemen met bestaande protocollen. Vervolgens
werken we details uit van nieuwe protocollen, eerst in het semi-honest model en vervolgens
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in het malicious model. Tot slot voegen we fairness aan ons protocol toe.
Oblivious transfer (OT) is een fundamentele tool in moderne cryptografie en erg nuttig

bij het implementeren van protocollen voor secure multi-party computation. In dit proef-
schrift bestuderen we verschillende varianten van oblivious transfer. We presenteren een
nieuw protocol voor zogeheten “Committed OT”. Dit protocol is erg efficiënt, in de zin
dat het goed presteert in vergelijking met de meest efficiënte bestaande protocollen in de
literatuur. Een van de veiligheidsproblemen van eerdere protocollen die we beschrijven in
dit proefschrift wordt verholpen door het gebruik van ons nieuwe protocol voor ”Commit-
ted OT”. Bovendien is het algemener dan bestaande protocollen, wat op zichzelf al een
interessant resultaat is.

We behandelen ook fairness in dit proefschrift. Tot dusver heeft alleen Benny Pinkas een
op garbled circuits gebaseerd protocol gepresenteerd dat fairness behaald. We tonen aan
dat er een subtiel probleem met zijn protocol is waardoor de geheimhouding van de invoer
van een van de deelnemers niet gegarandeerd kan worden. We beschrijven dit probleem in
detail en geven een efficiënter protocol dat deze problemen oplost.
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Summary: Secure and Fair Two-Party
Computation

Consider several parties that do not trust each other, yet they wish to correctly compute
some common function of their local inputs while keeping these inputs private. This
problem is known as “Secure Multi-Party Computation”, and was introduced by Andrew
Yao in 1982. Secure multi-party computations have some real world examples like electronic
auctions, electronic voting or fingerprinting. In this thesis we consider the case where there
are only two parties involved. This is known as “Secure Two-Party Computation”.

If there is a trusted third party called Carol, then the problem is pretty straightforward.
The participating parties could hand their inputs in Carol who can compute the common
function correctly and could return the outputs to the corresponding parties. The goal is
to achieve (almost) the same result when there is no trusted third party.

Cryptographic protocols are designed in order to solve these kinds of problems. These
protocols are analyzed within an appropriate model in which the behavior of parties is
structured. The basic level is called the Semi-Honest Model where parties are assumed to
follow the protocol specification, but later can derive additional information based on the
messages which have been received so far. A more realistic model is the so-called Malicious
Model. The common approach is to first analyze a protocol in the semi-honest model and
then later extend it into the malicious model.

Any cryptographic protocol for secure two-party computation must satisfy the following
security requirements: correctness, privacy and fairness. It must guarantee the correctness
of the result while preserving the privacy of the parties’ inputs, even if one of the parties is
malicious and behaves arbitrarily throughout the protocol. It must also guarantee fairness.
This roughly means that whenever a party aborts the protocol prematurely, he or she should
not have any advantage over the other party in discovering the output.

The main question for researchers is to construct new protocols that achieve the above
mentioned goals for secure multi-party computation. Of course, such protocols must be
secure in a given model, as well as be as efficient as possible. In 1986, Yao presented
the first general protocol for secure two-party computation which was applicable only to
the semi-honest model. He uses a tool called “Garbled Circuit”. Yao’s protocol uses the
underlying primitives (“Pseudorandom Generator” and “Oblivious Transfer”) as black-
boxes which lead to efficient results. After Yao’s work many variants and improvements
have been proposed for the malicious model. In this thesis, we design several new protocols
for secure two-party computation based on Yao’s garbled circuit. Before we present the
details of our new designs, we first show several weaknesses, security flaws or problems with
the existing protocols in the literature. We first work in the semi-honest model and then
extend it into the malicious model by presenting new protocols. Finally we add fairness to
our protocol.

Oblivious transfer (OT) is a fundamental primitive in modern cryptography which is
useful for implementing protocols for secure multi-party computation. We study several
variants of oblivious transfer in this thesis. We present a new protocol for the so-called
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“Committed OT”. This protocol is very efficient in the sense that it is quite good in
comparison to the most efficient committed OT protocols in the literature. The above-
mentioned flaw with the use of OT can be fixed with our committed oblivious transfer
protocol. Furthermore, it is more general than all previous protocols, and, therefore, it is
of independent interest.

We also deal with fairness in this thesis. For protocols based on garbled circuit, so far
only Benny Pinkas has presented a protocol in the literature for achieving fairness. We
show a subtle problem with this protocol where the privacy of the inputs of one party can
be compromised. We also describe this problem in detail which is in fact related to the
fairness, and finally propose a more efficient scheme that does achieve fairness.
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