
 

Predictable and composable system-on-chip memory
controllers
Citation for published version (APA):
Akesson, K. B. (2010). Predictable and composable system-on-chip memory controllers. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR658012

DOI:
10.6100/IR658012

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR658012
https://doi.org/10.6100/IR658012
https://research.tue.nl/en/publications/92a7414a-926d-4135-98ab-6be94317819c


Predictable and Composable
System-on-Chip Memory Controllers

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven, op gezag van de

rector magnificus prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op woensdag 24 februari 2010 om 16.00 uur

door

Benny Åkesson

geboren te Saxtorp, Zweden



ii

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. K.G.W. Goossens
en
prof.dr. H. Corporaal

A catalogue record is available from the Eindhoven University of Technology Library

ISBN: 978-90-386-2169-2
NUR: 959



iii

Predictable and Composable
System-on-Chip Memory Controllers

Benny Åkesson



iv

Members of the dissertation committee:

Prof.dr. K.G.W. Goossens Eindhoven University of Technology (first promotor)
Prof.dr. H. Corporaal Eindhoven University of Technology (second promotor)
Prof.dr.ir. C.H. van Berkel Eindhoven University of Technology

ST Ericsson
Prof.dr.ir. M.J.G. Bekooij University of Twente

NXP Semiconductors
Prof.Dr.-Ing R. Ernst Technical University of Braunschweig
Prof.dr.ir. H.J. Sips Delft University of Technology
Dr.ir. P. van der Wolf Virage Logic
Prof.dr.ir. A.C.P.M. Backx Eindhoven University of Technology (chairman)

This work was carried out at Philips Electronics & NXP Semiconductors.

Copyright 2010 Benny Åkesson
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means electronic, mechanical,
photocopying, or otherwise, without the prior written permission from the copyright
owner.

Cover design by Juan Manuel Martelli.

Printing by Printservice, Eindhoven University of Technology.



v

This thesis is dedicated to the
memory of Marianne Åkesson, my

loving mother who left us much too soon.



vi



Acknowledgements

This journey would not have been possible without the contributions from many people.
I want to thank Prof. Lambert Spaanenburg for organizing thefield-trip that first brought
me to the Netherlands and resulted in my master project at Philips Research in Eind-
hoven. I am also grateful to Prof. Jef van Meerbergen for the opportunity to become a
Ph.D. student at the Eindhoven University of Technology.

Moving abroad was a life-changing experience. Thanks to thefriends in Sweden that
kept in touch after I left, most prominently Malin Davidsson. I also want to thank the
International Student Network in Eindhoven, through whichI quickly made many new
friends from all over the world. Special thanks to Ramesh Chidambaram and Anastasia
Andreadaki, who were both here from the very beginning, and who are still here, no
matter how hard they try not to. During my stay in Eindhoven, Ideveloped a passion
for capoeira. Obrigado Formado Tayson and all capoeiristasin Eindhoven for the classes
and the good times in the roda.

In the Electronic Systems group at Eindhoven University of Technology, I want to
thank my second promotor Prof. Henk Corporaal for the fruitful feedback that improved
this thesis. Big thanks also to Sander Stuijk for all the technical support over the years. I
furthermore want to recognize our dear secretaries, Rian van Gaalen and Marja de Mol -
Regels, who always helped with practical matters.

I always enjoyed working at Philips and NXP. I want to thank Prof. Kees Goossens
for being my first promotor, and a role model as mentor, scientist, and Jedi master. I
am proud to have been a part of his Æthereal team. Never beforedid so many people
work so hard on a project that was so cancelled. I am also happyto have worked with
Prof. Marco Bekooij and his people in the Hijdra project. I further want to mention
Roelof Salters for sharing his deep knowledge about SDRAM memories, Ad Siereveld
for his insights on memory controller architectures, and Liesbeth Steffens for teaching
me about real-time arbitration. Coming to work was always a pleasure with great office
mates and fellow Ph.D. students. Thank you Aleksandar Milutinovic, Tjerk Bijlsma,

vii



viii

Maarten Wiggers, Arno Moonen and Philippe Dumont, just to name a few. Working
together is more fun than working alone. In this spirit, I thank my students Markus
Ringhofer, Eelke Strooisma, Getachew Teshome, Williston Hayes, and Winston Siauw
for their contributions to my research and for the fun we had together.

I extend my deepest gratitude to Andreas Hansson, a great friend and house mate.
I really value our cooperation during the past decade. Now, our quest to take over the
world continues, but on different hemispheres. Divide and conquer!

I would not be here without my family who always supported me throughout my life,
and encouraged me to follow my dreams and leave my country when the opportunity
presented itself. In particular, I want to thank my parents,Marianne and Lars-Göran
Åkesson, for always acting in the best interest of their children. I owe it all to you!
Finally, I want to thank María Eugenia Martelli for being thegreatest girlfriend through
the long working hours and mood swings it means to finish a Ph.D. I love you!



Abstract

Predictable and Composable System-on-Chip Memory Controllers

Contemporary System-on-Chip (SoC) become more and more complex, as increasing
integration results in a larger number of concurrently executing applications. These ap-
plications consist of tasks that are mapped on heterogeneous multi-processor platforms
with distributed memory hierarchies, where SRAMs and SDRAMs are shared by a vari-
ety of arbiters. Some applications havereal-time requirements, meaning that they must
perform a particular computation before a deadline to guarantee functional correctness,
or to prevent quality degradation. Mapping the applications on the platform such that all
real-time requirements are satisfied is very challenging. The number of possible map-
pings of tasks to processing elements and data structures tomemories may be large, and
appropriate configuration settings must be determined oncethe mapping is chosen. Ver-
ifying that a particular mapping satisfies all application requirements is typically done
by system-level simulation. However, resource sharing causes interference between ap-
plications, making their temporal behaviors inter-dependent. All concurrently executing
applications must hence be verified together, causing the verification complexity of the
system toincrease exponentiallywith the number of applications. Together these fac-
tors contribute to making the integration and verification process a dominant part of SoC
development, both in terms of time and money.

Predictableandcomposablesystems are proposed to manage the increasing verifica-
tion complexity. Predictable systems provide lower boundson application performance,
while applications in composable systems are completely isolated and cannot affect each
other’s temporal behavior by even a single clock cycle. Predictable systems enable for-
mal verification that covers all possible interactions withthe platform. However, this
assumes that the behavior of an application is captured in a performance model, which is
not the case for many applications. Composability offers a complementary verification
approach by letting these applications be verified independently by simulation with lin-
ear verification complexity. A limitation of current predictable and composable systems

ix



x

is that there are no memory controllers supporting the concepts in a general way. Current
SRAM controllers can be shared in a predictable way with a variety of arbiters, but are
only composable if statically scheduled or shared using time-division multiplexing. Ex-
isting SDRAM controllers are not composable, and are eitherunpredictable or limited to
applications that are statically scheduled.

This thesis addresses the limitations of current predictable and composable systems
by proposinga general predictable and composable memory controller, thereby ad-
dressing the mapping and verification problem in embedded systems. The proposed
memory controller is divided into afront-endand aback-end. The back-end is spe-
cific for DDR2/DDR3 SDRAM and makes the memory behave in a predictable manner
using precomputed memory patterns that are dynamically combined at run time. The
front-end contains buffering and an arbiter in the class of Latency-Rate (LR) servers,
which is a class with many well-known predictable arbiters.We extend this class with a
Credit-Controlled Static-Priority (CCSP) arbiter that isdeveloped specifically for shared
resources with latency-critical requestors and high loads, such as memories. Three key
features of CCSP are: 1) It accommodates latency-critical requestors with low bandwidth
requirements without wasting bandwidth. 2) Over-allocated bandwidth due to discretiza-
tion can be made negligible at an increased area cost, without affecting latency. 3) It has
a small implementation that runs fast enough to keep up with most DDR2/DDR3 memo-
ries. The proposed front-end is general and can be used with other predictable resources,
such as SRAM controllers. The proposed memory controller hence supports multiple
arbiter and memory types, thus addressing the diversity in modern SoCs. The combina-
tion of front-end and predictable memory behaves like aLR server, which is theshared
resource abstractionused in this work. In essence, aLR server guarantees a requestor
a minimum bandwidth and a maximum latency, enabling formal verification of real-time
requirements. TheLR server model is compatible with several commonly used formal
analysis frameworks, such as network calculus and data-flowanalysis. Our memory con-
troller hence allowsany combinationof predictable memory andLR arbiter to be used
transparently for formal verification of applications withany of these frameworks.

Sharing a predictable memory at run-time results in interference between requestors,
making the memory controller non-composable. This is addressed by adding a Delay
Block to the front-end that delays all signals sent from the front-end to a requestor to
always emulate worst-case interference. This makes requestors unable to affect each
other’s temporal behavior, which is sufficient to guaranteecomposability on the level of
applications. Our predictable memory controller hence offers composable service with
a variety of memory and arbiter types, which widely extends the scope of composable
platforms. Another benefit of this approach is that it enables composable service to be
dynamically enabled and disabled, enabling requestors that do not require composable
service to use slack bandwidth to improve performance.

The predictable and composable memory controller is supported by a configuration
flow thatautomatically computes memory patterns and arbiter settings to satisfy given
bandwidth and latency requirements. The flow uses abstraction to separate the configu-
ration of the memory and the arbiter, enabling settings to becomputed in a streamlined
fashion for all supported memories and arbiters.



Contents

1 Introduction 1
1.1 Trends in embedded system design . . . . . . . . . . . . . . . . . . . .2
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Proposed solution 25
2.1 Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Composability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 SDRAM memories and controllers 41
3.1 Introduction to SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Formal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Memory efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Memory controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Predictable SDRAM back-end 59
4.1 Overview of predictable SDRAM controller . . . . . . . . . . . .. . . 59
4.2 Memory patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Memory efficiency bound . . . . . . . . . . . . . . . . . . . . . . . . . 66

xi



xii CONTENTS

4.4 Latency bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Memory pattern generation . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Architecture and synthesis . . . . . . . . . . . . . . . . . . . . . . . .84
4.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Credit-Controlled Static-Priority arbitration 97
5.1 Arbiter requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Formal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Definition of CCSP arbitration . . . . . . . . . . . . . . . . . . . . . .101
5.4 Arbiter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5 LR server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.6 Hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . 120
5.7 Architecture and synthesis . . . . . . . . . . . . . . . . . . . . . . . .125
5.8 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Composable resource front-end 141
6.1 Overview of approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2 Formal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3 Timing analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4 Architecture and synthesis . . . . . . . . . . . . . . . . . . . . . . . .148
6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Configuration 169
7.1 Formal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2 Memory pattern generation . . . . . . . . . . . . . . . . . . . . . . . . 171
7.3 Normalization of requirements . . . . . . . . . . . . . . . . . . . . .. 173
7.4 Arbiter configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5 Denormalization of allocation . . . . . . . . . . . . . . . . . . . . .. 179
7.6 Requirement verification . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8 Related work 185
8.1 Resource arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.2 SDRAM controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.3 Composable service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9 Conclusions and future work 193
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Bibliography 199



CONTENTS xiii

A Glossary 209
A.1 List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A.2 List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

B System XML specification 215
B.1 Architecture specification . . . . . . . . . . . . . . . . . . . . . . . .. 215
B.2 Use-case specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

C About the author 219

D List of publications 221



xiv CONTENTS



List of Figures

1.1 Example design flow comprised of a partitioning, platform exploration,
mapping, and a verification stage. . . . . . . . . . . . . . . . . . . . . 2

1.2 A JPEG decoder application consisting of three tasks. . .. . . . . . . . 4
1.3 Starting and stopping applications causes use-case transitions. . . . . . 5
1.4 The design productivity gap. . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 The platform template considered in this thesis. . . . . . .. . . . . . . 7
1.6 Processing element and resource communicating via a standard protocol. 9
1.7 Multiple processing elements sharing a resource. . . . . .. . . . . . . 9
1.8 Tasks are mapped to processing elements, data structures to memories,

and communication channels to the interconnect as a part of the mapping
process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9 The SDRAM architecture consists of banks, rows, and columns. . . . . 13
1.10 Four systems demonstrating all combinations of the predictability and

composability properties. . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.11 The proposed predictable and composable memory controller. . . . . . 20

2.1 Overview of predictable memory controller. . . . . . . . . . .. . . . . 26
2.2 The behaviors of some important SDRAM commands. . . . . . . .. . 27
2.3 Read pattern and write patterns with burst length 8 for a DDR2-400. . . 29
2.4 Mapping from requests to patterns to SDRAM bursts. . . . . .. . . . . 29
2.5 Overview of the predictable SDRAM back-end. . . . . . . . . . .. . . 30
2.6 Example of coupling between allocation granularity, latency, and allo-

cated bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Overview of a CCSP arbiter with two requestors. . . . . . . . .. . . . 32
2.8 A predictable SDRAM controller supporting two requestors. . . . . . . 33
2.9 TheLR server abstraction. . . . . . . . . . . . . . . . . . . . . . . . . 34

xv



xvi LIST OF FIGURES

2.10 LR arbiters are a subset of predictable arbiters. . . . . . . . . . . .. . 34
2.11 An instance of a predictable and composable SDRAM controller, sup-

porting two requestors. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.12 Simplified overview of the automated configuration flow.. . . . . . . . 38

3.1 The SDRAM architecture. . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Example of SDRAM timing constraints. . . . . . . . . . . . . . . . .. 44
3.3 Two bursts of 8 words are required to read or write 8 words that are

misaligned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 The most important building blocks of a general SDRAM controller. . . 51
3.5 Illustration of a continuous memory map. . . . . . . . . . . . . .. . . 53
3.6 Best case for a requestor reading sequential addresses using a continuous

memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Worst-case for a requestor reading sequential addresses using a continu-

ous memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Worst-case command sequence for a request consisting offour bursts

using a continuous memory map. . . . . . . . . . . . . . . . . . . . . . 55
3.9 Illustration of an interleaved memory map. . . . . . . . . . . .. . . . . 55
3.10 A requestor reading sequential addresses using an interleaved memory

map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Example pattern sets illustrating the four different dominance classes. . 65
4.2 Illustration of how the dominance class of a pattern set changes astread

is incremented or decremented. . . . . . . . . . . . . . . . . . . . . . . 65
4.3 A sequence of patterns and corresponding bursts. . . . . . .. . . . . . 66
4.4 Refresh efficiency accounts for refresh patterns. . . . . .. . . . . . . . 67
4.5 Read/write efficiency accounts for switching patterns.. . . . . . . . . . 68
4.6 Bank and conflict efficiencies remove overhead within read and write

patterns, leaving only data bursts. . . . . . . . . . . . . . . . . . . . .. 69
4.7 Data efficiency accounts for data that is not useful to requestors, leaving

only requested data bursts. . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 The minimum distance between two refresh patterns. . . . .. . . . . . 71
4.9 Adding NOPs to the beginning of an access pattern may reduce the length

of a switching pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.10 Issuing all bursts to a bank before moving on to the next gives more time

between activate and reads/writes, and more time to precharge before
reactivating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 The branch and bound algorithm creates pattern by exploring a tree of
SDRAM commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.12 Number of valid patterns fitting our design decisions atBC = 2 for a
DDR2-400 SDRAM device. . . . . . . . . . . . . . . . . . . . . . . . 79

4.13 Conceptual illustration of the ASAP scheduling algorithm. . . . . . . . 80
4.14 Prematurely scheduled activate commands result in longer access patterns. 81
4.15 Conceptual illustration of the bank scheduling algorithm forBC = 1. . 82



LIST OF FIGURES xvii

4.16 Memory efficiency results for DDR2-400. . . . . . . . . . . . . .. . . 88
4.17 Memory efficiency results for DDR2-800. . . . . . . . . . . . . .. . . 89
4.18 Bank scheduling gross efficiency breakdown for DDR3-800. . . . . . . 90
4.19 Bank scheduling gross efficiency breakdown for DDR3-1600. . . . . . 91
4.20 Gross efficiency and gross bandwidth comparisons between different DDR2

and DDR3 memories. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.21 Bound on net bandwidth for different memories and request sizes. . . . 93
4.22 Net bandwidth plotted over time for a DDR2-400 memory with and with-

out worst-case switches. . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 A requested service curve,w, a provided service curve,w′, and repre-
sentations of the related concepts. . . . . . . . . . . . . . . . . . . . .100

5.2 Service curves showing the relation between being live,backlogged, and
active. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 The upper bound on provided service,ŵ′, is not necessarily monotoni-
cally non-decreasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Illustration of the two cases in Theorem 5.1. . . . . . . . . . .. . . . . 112
5.5 Example service curves in aLR server. . . . . . . . . . . . . . . . . . 113
5.6 Relations between busy periods and active periods. . . . .. . . . . . . 115
5.7 Example of the cases in Lemma 5.13. . . . . . . . . . . . . . . . . . . 118
5.8 The architecture of the CCSP arbiter. . . . . . . . . . . . . . . . .. . . 125
5.9 Synthesis results for the CCSP arbiter. . . . . . . . . . . . . . .. . . . 127
5.10 The trade-off between over-allocation and cell area. .. . . . . . . . . . 128
5.11 Maximum measured latency and bound, expressed in service cycles, for

the requestors in the use-case. . . . . . . . . . . . . . . . . . . . . . . 132
5.12 Maximum measured latency and bound, expressed in clockcycles at 200

MHz, for the requestors in the use-case. . . . . . . . . . . . . . . . . .134
5.13 Over-allocated rate for the CRA and CBA strategies. . . .. . . . . . . 135
5.14 Over-allocated burstiness for the CRA and CBA strategies. . . . . . . . 136
5.15 Successful allocations and priority assignments for CRA and CBA. . . . 136
5.16 Success rate when increasing precision with CRA. . . . . .. . . . . . . 137
5.17 Success rate when increasing precision with FBSP. . . . .. . . . . . . 138

6.1 Temporally independent interfaces are created by delaying responses and
flow control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Illustration of worst-case starting time and finishing time in aLR server. 145
6.3 The trade-off between service latency and net bandwidth. . . . . . . . . 147
6.4 An instance of the proposed architecture supporting tworequestors. . . 149
6.5 Delay Block architecture. . . . . . . . . . . . . . . . . . . . . . . . . .150
6.6 Diverging finishing times prevented by discrete approximation of the

completion latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.7 Synthesis results for the Atomizer. . . . . . . . . . . . . . . . . .. . . 155
6.8 Synthesis results for the Delay Block. . . . . . . . . . . . . . . .. . . 156
6.9 Synthesis results for the Data Bus with a CCSP arbiter. . .. . . . . . . 157



xviii LIST OF FIGURES

6.10 The first 200 requests ofr2 in the SRAM use-case. . . . . . . . . . . . 159
6.11 Atoms finish before the computed bound, since they are served non-

preemptively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.12 SRAM controller behaving in a composable manner. . . . . .. . . . . 162
6.13 Using a work-conserving arbiter to distribute unallocated bandwidth may

significantly reduce finishing times. . . . . . . . . . . . . . . . . . . .164
6.14 The first 200 requests ofr2 in the SDRAM use-case. . . . . . . . . . . 165
6.15 SDRAM controller behaving in a composable manner. . . . .. . . . . 167

7.1 Overview of the automated configuration flow. . . . . . . . . . .. . . . 170
7.2 Configuration of CCSP and FBSP consists of a bandwidth allocation step

and a priority assignment step. . . . . . . . . . . . . . . . . . . . . . . 176
7.3 LR servers cannot capture service provided with multiple rates to a re-

questor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.4 The percentage of use-cases with bandwidth and latency requirements

satisfied using pattern generators with fixed and iterating burst counts. . 183

8.1 Two arbiters regulating requested service and providedservice, respec-
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



List of Tables

3.1 List of relevant timing parameters for a 64 Mb x16 (512 Mb)DDR2-400
memory device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Comparison of timing constraints in nanoseconds and clock cycles for a
DDR2-400 and a DDR3-1600. . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Worst-case patterns for mix-dominant patterns. . . . . . .. . . . . . . 71
4.2 List of relevant timing parameters for some different 64Mb x16 (512

Mb) memory devices with page sizes of 2 KB. . . . . . . . . . . . . . . 86
4.3 Length of generated patterns for the DDR2-400 memory. . .. . . . . . 87
4.4 Length of generated patterns for the DDR2-800 memory. . .. . . . . . 88
4.5 Length of generated patterns for the DDR3-800 memory. . .. . . . . . 90
4.6 Length of generated patterns for the DDR3-1600 memory. .. . . . . . 91

5.1 Reference to figure showing combinations of liveness, business, and back-
log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Requestor configuration and service latency bounds. . . .. . . . . . . . 129
5.3 Bandwidth and service latency results. . . . . . . . . . . . . . .. . . . 130
5.4 Bandwidth and service latency results with malfunctioning requestor us-

ing a regular static-priority arbiter. . . . . . . . . . . . . . . . . .. . . 131

6.1 SRAM use-case specification and configuration. . . . . . . . .. . . . . 158
6.2 SDRAM use-case specification and configuration. . . . . . . .. . . . . 165

7.1 Use-case specification. . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2 Output from pattern generation stage. . . . . . . . . . . . . . . .. . . 172
7.3 Output from normalization stage. . . . . . . . . . . . . . . . . . . .. . 175
7.4 Results from the bandwidth allocation stage. . . . . . . . . .. . . . . . 178

xix



xx LIST OF TABLES

7.5 Results from priority assignment stage. . . . . . . . . . . . . .. . . . . 179
7.6 Output from denormalization stage. . . . . . . . . . . . . . . . . .. . 180
7.7 Allocated bandwidths and service latencies together with their corre-

sponding bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.8 Output from normalization stage withBC = 2. . . . . . . . . . . . . . 182

A.1 List of symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210



List of Algorithms

4.1 Pseudo-code of ASAP scheduling algorithm. . . . . . . . . . . .. . . 80
4.2 Pseudo-code of the bank scheduling algorithm. . . . . . . . .. . . . . 82
6.1 Mechanism for discrete approximation of completion latency. . . . . . . 153
7.1 Optimal priority assignment algorithm. . . . . . . . . . . . . .. . . . . 179

xxi



xxii LIST OF ALGORITHMS



CHAPTER 1

Introduction

People in modern society are surrounded by computers. This is hard to believe, consider-
ing that the electronic computer was a rare and simple calculator the size of a house little
over half a century ago. Since then, we have seen an amazing development that turned
these machines into computational marvels that contributeto most aspects of our daily
lives. Computers became faster and cheaper, and found theirway into our homes. They
also became smaller and more energy efficient, resulting in portable laptop computers
that accompany us when traveling. However, the majority of computers in our daily lives
are not the general personal computers we use at work, school, or in the office. Instead,
these are the embedded systems that are built for a particular purpose, such as our mobile
phones, MP3-players, televisions, DVD-players, and navigation systems. Examples of
embedded systems outside the consumer electronics domain involve the many computers
inside washing machines, cars, and airplanes. The impressive development of embedded
systems is not without drawbacks. As the systems become increasingly powerful and
integrate more and more functionality, they also become more difficult to produce. More
advanced devices consist of more hardware and software components that must be de-
signed, integrated and verified. To stay ahead of the competition, companies have to
design these complex systems in a very short time [45]. A particular challenge with em-
bedded systems design is that they often have timing requirements, as failure to produce
the right result at the right time may cause an application tomalfunction.

We begin this thesis in Section 1.1 by discussing trends in embedded system design,
followed by an introduction to the intended application domains and considered plat-
forms. We then explain the problem of mapping these applications on the platform and
verifying that all timing requirements are satisfied. This results in the problem statement
of this thesis, presented in Section 1.2, which focuses on these issues in a main system

1



2 CHAPTER 1. INTRODUCTION

component: the memory controller. Section 1.3 then explains how predictability, ab-
straction, composability, and automation reduce the mapping and verification effort of
embedded systems, and introduces them as requirements on our solution. The contri-
butions of this work are summarized in Section 1.4, before wepresent an outline of the
rest of the thesis in Section 1.5. Lastly, the contents of thechapter are summarized in
Section 1.6.

1.1 Trends in embedded system design

This section discusses some general aspects of embedded system design to create under-
standing for the different steps and the complexities involved in designing the embedded
systems that surrounds us in our daily lives, such as smart phones and navigation systems.
Challenges are highlighted, as well as past and current trends to help us extrapolate future
problems in the field. The contents of this section revolve around the example embed-
ded system design flow shown in Figure 1.1. The first part of thediscussion considers
applications, which are the input to the partitioning step in the design flow.

PartitioningPartitioning

Exploration
Platform

Mapping Verification

Finished
system

PlatformPlatform
Instance

Applications

Platform

Tasks
Data structures Configuration

Binding

Figure 1.1: Example design flow comprised of a partitioning,platform exploration, map-
ping, and a verification stage.

1.1.1 Applications

The functionality provided by an embedded system is determined by its applications. An
application is an independent program that performs a well-defined function for the user,
such as playing audio or video content. Trends show that the amount of application soft-
ware in embedded systems is rapidly increasing [45]. This evolution towards systems
with more and more functionality is visible in both the consumer electronics and the au-
tomotive domains. Already a decade ago, it was shown that theamount of software in
high-end consumer electronic products, such as televisions, video recorders and stereo
sets, increased exponentially with an annual growth rate ofabout 40% [24]. Currently,
convergence in application domains causes the number of applications in consumer elec-
tronic and mobile devices to increase. A prime example of this development is that the



1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 3

functionality of previously separate devices, such as MP3 players, movie players, cell
phones, digital cameras, game consoles, and personal-digital assistants, are all coming
together in a single hand-held device, called a smart phone.The large number of appli-
cations in these devices covers a vast space from multimediadecoding to Internet and
gaming [45]. As a result of this trend, the computational load of smart phones grows
exponentially and doubles every five years [108]. A similar trend of increased function-
ality is also visible in the automotive domain, although fordifferent reasons. Traditional
automotive systems have been implemented as federated architectures. This means that
applications, such as engine control system, braking system, and multimedia system, are
mapped on nearly autonomous distributed application subsystems, consisting of elec-
tronic control units (ECU), networks, sensors and actuators. A state of the art car is a
complex distributed system with up to 70 ECUs [85]. For cost,dependability and weight
reasons, there is a transition towards integrated architectures, where multiple applications
share a common hardware base [85]. Future automotive systems are hence also expected
to be highly integrated systems, executing many applications.

Apart from being functionally correct, applications may also have different types
of real-time requirements. Some applications havelatency requirements, which means
that the result of certain computation must be finished within a specified time, called a
deadline. This type of requirement is common in control applications that need to react
quickly to incoming events. Other applications are pipelined and havethroughput re-
quirementsinstead of latency requirements. In this case, it is less important how long it
takes to perform the pipelined computation, as long as a result is being produced often
enough to sustain the required throughput. An example of an application with a through-
put requirement is a video decoder that must be able to present a new video frame on a
television screen with a rate of 100 Hz. This means that a new image must be displayed
on the screen every 10 ms. The time to decode a frame may, however, be greater than 10
ms if the decoding process is pipelined.

Real-time requirements exist in a number of different classes. In this work, we dis-
tinguish three such classes [15], beinghard real-time requirements, firm real-time re-
quirements, andsoft real-time requirements. Applications with hard real-time require-
ments are oftensafety criticaland are primarily found in the health-care, automotive and
aerospace domains. The real-time requirements of hard real-time applications, such as
the brake system in a car, mustalways be satisfiedto ensure safety of the passengers.
To guarantee that hard real-time requirements are satisfiedeven in the presence of hard-
ware failure, some architectures even include redundant hardware. Some applications,
such as a Software-Defined Radio [77], have firm real-time requirements. Missing a firm
deadline ishighly undesirableand may result in failure to comply with a given standard,
and may even violate the functional correctness of the System-on-Chip (SoC) [32, 103].
Firm real-time requirements, unlike their hard counterpart, are not safety critical, and
costly measures, such as hardware redundancy, are not takento exclude the possibility of
missing a deadline. This type of requirement is hence more prevalent in domains where
applications are not safety-critical, such as consumer electronics. The temporal behavior
of soft real-time applications, such as media decoders, arenot critical to preserve the
functional correctness of the SoC. Missing a soft deadline results inquality degradation



4 CHAPTER 1. INTRODUCTION

of the application output, such as causing visual artifactsin decoded video or clicks in au-
dio playback. Although this is perceived as annoying by the user, it may be acceptable as
long as it does not occur too frequently [1]. There are also applications without real-time
requirements, such as a JPEG decoder or a graphical user interface. These applications
do not have any timing requirements, but must still execute fast enough to be perceived
as responsive by the user.

The partitioning step in Figure 1.1, partitions applications into smallertasksthat com-
municate through shared data structures. The JPEG decoder in Figure 1.2 is an exam-
ple of a partitioned application. It is partitioned into three communicating tasks, being
variable-length decoding (VLD), inverse-discrete cosinetransform (IDCT), and color
conversion (CC). The reason to partition an application is to enable parallel execution by
binding the tasks to different Processing Elements (PEs) and the shared data structures
to memories. This allows computations to be done faster, increasing application perfor-
mance if the overhead of communication and synchronizationis limited [46]. This has
been demonstrated for the example JPEG decoder in [36]. As analternative to increasing
performance of a single processing element, parallel execution uses multiple processing
elements that run at a lower clock frequency, reducing powerconsumption [117].

encoded
bit stream

decoded
bit stream

JPEG decoder application

VLD CCIDCT

Figure 1.2: A JPEG decoder application consisting of three tasks.

Multiple applications may execute at the same time and we refer to a set of concur-
rently running applications as ause-case. The number of use-cases in a system varies
greatly, but is growing rapidly and is already in the hundreds for a high-end television.
This impressive growth is intuitively understood by considering that the number of pos-
sible use-cases in a systemincreases exponentiallywith the number of applications. Ap-
plications can be dynamically started and stopped at any time, triggering ause-case tran-
sition. This is shown in Figure 1.3, where five use-cases are createdas three applications
start and stop their executions.

1.1.2 Platform-based design

Technological advances in the semiconductor industry continuously increase the achiev-
able density of very large-scale integrated circuits [24].This development has followed
a trend known as Moore’s law [75, 76] for more than four decades. Moore’s law pre-
dicts that the number of transistors that can be integrated on a chip will double every 24
months. This prediction remains valid today and is considered a self-fulfilling prophecy,
as the semiconductor industry strives towards its continuation.



1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 5

Use−case
transition

R
un

ni
ng

ap
pl

ic
at

io
ns JPEG decoder Navigation

MP3 playback

Time

Figure 1.3: Starting and stopping applications causes use-case transitions.

Previously, a system was distributed over multiple chips connected on a printed cir-
cuit board. However, the increasing transistor density hasenabled more and more com-
ponents to be integrated on a single chip. This has resulted in a transition towards SoC
solutions, where an entire system is implemented on a singlechip. This development
has not only reduced the size of the resulting systems, but also power dissipation and
ultimately cost [95]. The increasing transistor density has many advantages and paved
way for many of the complex embedded systems we enjoy today. However, the bene-
fits of Moore’s law do not come without their share of associated challenges. One of
the most prominent challenges concerns design productivity [18]. According to Moore’s
law, the number of transistors on a chip doubles every 24 months, corresponding to an
annual increase of 40%. In contrast, the hardware productivity of VLSI designers only
increases annually with 20% [95]. This results in an exponentially increasinghardware
productivity gap, as illustrated in Figure 1.4. A consequence if this trend isthat designers
are unable to make efficient use of the additional transistors provided by developments in
process technology without just replicating regular structures, such as memories. Resolv-
ing this gap has been identified as one of the grand design challenges in the International
Technology Roadmap for Semiconductors (ITRS) [49].

Hardware productivity

Moore’s law

Productivity

gap

Time

lo
g 

tr
an

si
st

or
s

+20%

+40%

Figure 1.4: The design productivity gap.



6 CHAPTER 1. INTRODUCTION

The design productivity problem has led to adoption ofreuse methodologies, where
pre-designed and pre-verified components are reused between products [95]. However,
productivity gains from reusable Intellectual Property (IP) components alone are not
enough to close the productivity gap and reduce cost, due to the large associated inte-
gration effort. Additionally, aplatform-based designapproach has been proposed that
promotes reuse at a higher level of abstraction [95]. A platform comprises a set of hard-
ware and software components, specific to a particular application domain [49]. The
platform software is not application code, but rather middleware (software for hardware),
operating system, and compilers, required to program the platform. This may hence in-
volve operating system kernel, hardware drivers, communication and synchronization
libraries, and resource managers. The purpose of the platform is to serve as a starting
point for products in the intended domain and differentiation is achieved by integrating
additional components, either in hardware or software [49,115]. Which components to
add are determined during the platform exploration step in Figure 1.1. The purpose of
this step is to find a suitableplatform instancefor the tasks of the considered applica-
tions that satisfies all design requirements. A drawback of reusing platforms across an
application domain is that the resulting designs are slowerand more expensive in terms
of area and power than customized solutions. The reason is that the platform is more
general than what is required for a particular design and maybe slightly over-designed to
leave room for future products [58]. On the other hand, platform-based design increases
design productivity and reduces time-to-market, resulting in increased revenue.

In the past years, platforms for embedded systems have been progressing towards
multi-processor systems-on-chip (MPSoC) architectures.This transition is motivated by
diminishing returns from instruction-level parallelism,and that it is no longer possible
to increase performance of a processor by increasing the clock frequency, due to power
and thermal constraints [2, 44, 54]. To further increase performance without adhering
to these constraints, industry has moved towards exploiting task-level parallelism by ex-
ecuting tasks on multiple processors [44, 96]. This trend iswell-known and has been
observed in many homes, since most personal computers, bothstationary and portable,
are now shipped with up to four processors on a single die [44]. Similarly, the number
of processors on SoCs in both consumer electronics [59] and mobile phones [108] are
increasing with every generation. However, the required processing power in portable
consumer SoCs is expected to increase with three orders of magnitude over the next
ten years, while power consumption must remain largely unaffected to maintain bat-
tery life time [50]. To satisfy this requirement, we need highly parallel heterogeneous
platforms with a single or a few general purpose processors and many processing el-
ements, to strike a good balance between performance, cost,power consumption and
flexibility [34, 45, 50, 54, 108, 117]. Processing elements in this context correspond to
application-specific processors or hardware acceleratorsthat efficiently realize computa-
tionally intensive functions in hardware. The general purpose processors and the periph-
erals used in these architectures are expected to maintain constant complexity over time.
However, ITRS indicates that the number of processing elements on a chip will increase
by an order of magnitude over the next ten years [50], pushingparallel computing to its
limits. The combination adding more processing elements and increasing heterogeneity



1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 7

results in an overall trend towardsincreasing system complexitythat is expected to persist
in the coming decades.

1.1.3 Platform architecture

In Section 1.1.1, we mentioned that the number of applications in embedded systems is
increasing. We then explained in Section 1.1.2 how increased customer demand for more
applications and pressure to reduce cost and time-to-market caused embedded systems
to move from being single-processor designs to being based on reusable heterogeneous
multi-processor platforms. In this section, we discuss what the architectures of these
platforms may look like. The discussion revolves around a general architecture template,
shown in Figure 1.5. The considered architecture template applies to industrial heteroge-
neous multi-processor platforms, such as NXP’s Nexperia [28,34,59], STI’s Cell Broad-
band Engine [54], BroadCom MediaDSP [96], and Texas Instruments OMAP [34].

Based on the design trends explained in Section 1.1.2, we consider a platform ar-
chitecture that consists of many Processing Elements (PEs). The processing elements in
a platform typically consist of one or a few general-purposeRISC processors, such as
ARM [12] or MIPS [73] cores. These processors orchestrate the execution on the plat-
form by starting and stopping applications and configuring components during use-case
transitions. It is also possible that some of these are high-performance processors that are
used to speed up execution of code that is either legacy or inherently sequential [46]. The
bulk of the computation in the platform is carried out by a large number of application-
specific instruction-set processors , such as Digital Signal Processors (DSPs), vector
processors, or very-long instruction-word processors, targeting a particular application
domain. However, they may also be hardware accelerators, efficiently implementing a
single computationally intensive function, such as a Fast-Fourier Transform or inverse-
discrete cosine transform.

PE PE

MEM MEM

PE

MEM

Interconnect

PERI

PERI

I/O

I/O

Figure 1.5: The platform template considered in this thesis.

Apart from processing elements, the platform also containsmemories. There are
often many different types of memories, representing different cost and performance
trade-offs. On-chip Static RAMs (SRAMs) are often used to store instructions or data
local to the CPUs and PEs, either in form of caches or scratchpads. Being on-chip,



8 CHAPTER 1. INTRODUCTION

SRAMs have the benefit of being faster to access than off-chipmemories, but they are
often limited to less than a megabyte (MB) to reduce cost. In addition to local memories,
there are centralized memories (MEM) that are typically shared by multiple processing
elements. SRAMs may be used to implement these centralized memories, especially if
local memories cannot be accessed by remote CPUs or PEs. However, many platforms
have a central interface to an off-chip Synchronous DynamicRAM (SDRAM). An ad-
vantage of SDRAMs is that a memory cell is implemented with a single transistor and a
capacitor, as opposed to the six transistors required by an SRAM. SDRAMs are further-
more manufactured in large volumes in an optimized process technology. Together, these
factors allow them to provide a large storage capacity, up toseveral gigabytes (GB), at
relatively low cost. This makes SDRAMs an important component in any cost-sensitive
SoC with applications using large data sets, such as video decoders. Both SRAMs and
SDRAMs are volatile memories, which means that they lose thestored data whenever
they are switched off. For this reason, it is common to also have non-volatile memory
to store instructions and data required to boot the system. These days, this is most com-
monly done using flash memories. Finally, the platform contains peripherals (PERI),
such as mice, keyboards, speakers and displays, and I/O devices providing connectivity
to other systems. Common types of connectivity involve USB,UART, HDMI, PCI, I2E,
or Ethernet.

Communicating components are connected using an interconnection fabric that can
be direct wires, switches, or buses. Decreasing feature size has created a need for multi-
hop interconnects, since it is not always possible to cross achip in a single clock cycle.
Complex SoCs hence require bridged buses or networks-on-chips [26], which are multi-
hop interconnects that allow multiple transactions to be served in parallel.

The different hardware components, i.e. processing elements, memories, periph-
erals, I/O devices, and interconnect, may run at different clock frequencies. This is
required either to achieve different power and performancetrade-offs using dynamic
voltage and frequency scaling, or because the maximum clockfrequency of a compo-
nent is limited. To cope with different clock frequencies, communicating components
are bridged using a clock domain crossing, typically implemented using asynchronous
first-in-first-out (FIFO) buffers. The considered system ishence globally-asynchronous
locally-synchronous (GALS) [79].

IP components in the architecture communicate by sending read and write transac-
tions on ports. The transactions consist of requests and responses, as shown in Fig-
ure 1.6. The components communicate using a protocol, such as the Device Trans-
action Level (DTL) protocol [88] used by Philips and NXP, or Advanced eXtensible
Interface (AXI) protocol [13] promoted by ARM. These protocols often feature a flow-
control mechanism, as illustrated by the flow-control signals in Figure 1.6. This mech-
anism is typically implemented by a two-phase valid / accepthandshake between the
sender and receiver. The benefit of flow control is that it allows a receiving component to
stall the sender if it is not ready to accept a request or a response, which is useful to pre-
vent a buffer overflow, or to implement clock domain crossings. Throughout the figures
in this thesis, standard DTL/AXI ports are colored white, while grey ports indicate other
types of interfaces.



1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 9

Interconnect

P
rocessing
E

lem
ent

flow control

responses

flow control

requests

R
esource

flow control

responses

flow control

requests

Figure 1.6: Processing element and resource communicatingvia a standard protocol.

Resources, such as memories and peripherals, are often shared between multiple pro-
cessing elements, since area, power and pin constraints prevent them from being dupli-
cated. If a resource is shared, arriving requests are storedin a Request Buffer, located
in front of the resource. Access to the resource is provided by a bus, controlled by a re-
source arbiter. The resource processes the request and stores a response in the Response
Buffer of the corresponding processing element when it is finished. This is illustrated in
Figure 1.7. Contemporary platforms contain a large varietyof resource arbiters with dif-
ferent properties. One common example is Time-Division Multiplexing (TDM), which
shares the resource in time among the processing elements according to a fixed periodic
schedule. An advantage of this arbiter is that the service provided to a processing ele-
ment is known at design time and is completely independent ofothers. Another example
is round-robin arbitration [80], which cycles between processing elements trying to ac-
cess the resource. This arbiter tries to be fair by treating all processing elements equally.
In contrast, a static-priority arbiter provides differentiated service by always scheduling
the processing element with the highest priority. This enables low latency to be pro-
vided to applications with tight deadlines, while applications with loose deadlines, or no
deadlines, access the resource with a longer latency.

P
rocessing
E

lem
ent

E
lem

ent
P

rocessing

Arbiter

R
esource
S

hared

Request Buffer

Response Buffer

B
us

Interconnect

Request Buffer

Response Buffer

Figure 1.7: Multiple processing elements sharing a resource.

1.1.4 Mapping

Mapping is the process of binding applications to the platform instance, such that all
functional and non-functional requirements are satisfied.The mapping process hence



10 CHAPTER 1. INTRODUCTION

takes place after applications have been partitioned and a suitable platform instance has
been found, as shown in Figure 1.1. The mapping process consists of two parts. The
first part deals with binding tasks and data structures to IP components in the platform
instance, and the second with computing IP parameters and configurations. We proceed
by discussing these steps and their associated challenges in more detail.

In the binding step, all tasks are assigned to processing elements, and shared data
structures to either local or centralized memories. This process is illustrated in Fig-
ure 1.8, as the JPEG decoder application is mapped on an instance of the considered
platform. The three tasks are mapped to different processing elements and the buffers
for inter-task communication are mapped in centralized SRAMs. The encoded bit stream
is read from an SDRAM and the decoded output is written to a display controller. The
binding is a non-trivial problem, since processing elements have different performance
and power consumption and memories have different capacities and access latencies.
This results in a large design space that grows with the increasing system complexity,
as more and more components are added to SoC platforms [49]. However, there are no
industrial-strength tools that automatically derive suitable bindings, leading to that the
embedded system industry often performs this step manually. Fortunately, the scope of
the problem is somewhat mitigated by the increased specialization of processing ele-
ments in heterogeneous platforms. A particular implementation of a task may hence be
limited to a subset of the processing elements, or even to a single core [59, 108]. Imag-
ine, for example, if an IDCT task has to be mapped to a platformand an implementation
is available as highly optimized C-code for a particular type of DSP. In this case, the
binding is limited only to DSPs of this type unless alternative implementations are de-
veloped. Once a satisfactory binding is found, the bandwidth and latency requirements
for all resources, such as interconnect and memories, can bederived. In this thesis, we
use the termrequestorto represent a component that performs resource access on be-
half of an application. This corresponds to a port on a processing element connected to
the resource through a communication channel. A partitioned application is hence asso-
ciated with multiple requestors with requirements that maybe very diverse in terms of
bandwidth, latency, and real-time classification.

The second part of the mapping process is computing parameters and configuration
settings for all IP components, such as memory controllers,interconnect and arbiters.
IP parameters, such as buffer sizes, are used to instantiatecomponents at design time.
Configuration settings, on the other hand, may be different per use-case and are pro-
grammed at run time. Finding these parameters and configuration components is chal-
lenging, since all bandwidth and latency requirements of the requestors must be satis-
fied for all use-cases. In practice, parameters and configuration settings are often de-
termined by trial-and-error using simulation-based techniques [45]. Transaction-level
models (TLM) that capture the temporal behavior of the system may be used to speed up
simulations [34], making the search for appropriate parameters more feasible, possibly
at the expense of accuracy. Simulation-based techniques are predominant over analytical
approaches, since the impact of changing the configuration parameters on the bandwidth
and latency of a requestor is often not well understood. Thisproblem is particularly
difficult when there are multiple arbiters, often with different characteristics, interacting



1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 11

Interconnect

SRAM SRAMSDRAM

DSP DSPARM9

DisplayAudio

VLD CCIDCT

Figure 1.8: Tasks are mapped to processing elements, data structures to memories, and
communication channels to the interconnect as a part of the mapping process.

in the platform [108]. The configuration step is expected to be increasingly difficult as
more and more heterogeneous components, executing increasingly diverse concurrent
applications, are added to the platforms.

1.1.5 Verification

The purpose of the verification process is to assert that a system meets its specification
and hence that all application requirements are satisfied. The verification process starts
when a mapping has been determined in the mapping stage, as shown in Figure 1.1. The
mapping is considered successful if all application requirements are satisfied. Otherwise,
if verification fails, it is time to consider a different taskpartitioning, a different mapping,
or a different platform instance, as indicated by the dashedback-arrows in the figure.

Verification is typically done by system-level simulation of the applications execut-
ing on the platform instance. The simulation speed of a complete system is very slow.
For this reason, verification is sometimes performed using transaction-level models of
the components, enabling the accuracy of the verification tobe traded for increased sim-
ulation speed. Simulation-based verification of real-timerequirements is complicated by
resource sharing, which causesscheduling interferencebetween requestors, as they have
to wait for each other before accessing the resource. Interference makes the temporal
behavior of concurrently executing applications inter-dependent, resulting in three prob-
lems. The first problem is that it is not sufficient to verify that the requirements of each
application are satisfied when executing individually. Instead, all concurrently execut-
ing applications have to be verified together for all use-cases, causing the verification
complexity of the system toincrease exponentiallywith the number of applications [37].
However, system-level simulation of all use-cases is far too slow to be feasible in prac-
tice. As a result, industry often resorts to reducing the coverage and verifying only a
subset of use-cases that have the tightest requirements [34, 103]. The second problem is
that verification of a use-case cannot begin until all applications it comprises are avail-
able. Timely completion of the verification process hence depends on the availability of



12 CHAPTER 1. INTRODUCTION

the applications, which may be developed by different teamsboth inside and outside the
company. The last problem with application dependencies isthat use-case verification
becomes acircular processthat must be repeated if an application is added, removed,
or modified [60]. Together these three problems contribute to making the integration
and verification process a dominant part of SoC development,both in terms of time and
money. Currently, verification engineers currently outnumber designers with a ratio of
two to one for complex designs and the effort in system-levelverification is expected to
increase in the future [49].

An alternative to simulation-based verification is to analytically verify that require-
ments are satisfied using a formal performance analysis framework, such as network
calculus [25] or data-flow analysis [100]. These frameworkscan be used to derive hard
performance guarantees on latency or throughput of an application, provided that worst-
case execution times of its tasks are known. Firm performance guarantees, on the other
hand, can be analytically derived based on execution time estimates. However, in this
case it is important to know the quality of the estimates and the assumptions under which
they are valid. Formal methods are not necessarily faster than simulation-based tech-
niques, considering that the run-time of mapping and verification algorithms can be very
long. Formal methods do, however, guarantee coverage of allpossible initial states, input
sequences, and interactions with other requestors in shared resources, assuming conser-
vative execution times for all tasks. This contrasts to the poor coverage achieved by sim-
ulation. The time required to develop formal performance models is not negligible, but
these models can be reused together with the software or hardware block they model. Ver-
ification of real-time requirements using simulation-based techniques, on the other hand,
cannot be reused. The problem with formal verification is that it requires performance
models of the software, the hardware, and the mapping [15, 62]. Suitable application
models, such as data-flow graphs, exist, but are not yet widely adopted by industry. Most
industrial hardware has furthermore not been designed withformal analysis in mind.
There have been recent advances in the research community, where some IP components
have been proposed together with corresponding performance models [39]. However, a
satisfactory solution has not yet been developed for SDRAM memories. This prevents
formal analysis techniques from being applied to many platforms, since SDRAMs are
essential to satisfy large storage requirements at a reasonable cost. The reason SDRAM
memories are difficult to combine with formal analysis is dueto a combination of a com-
plex temporal behavior that is inherent to their architecture, and contradictory requestor
requirements. The next section elaborates on these problems.

1.1.6 SDRAM and real-time requirements

SDRAM memories are challenging to use in systems with real-time requirements be-
cause of their internal architecture. An SDRAM memory comprises a number of banks,
each containing a memory array with a matrix-like structure, consisting of rows and
columns [51]. A simple illustration of this architecture isshown in Figure 1.9. Each
bank has a row buffer that can hold one open row at a time, and read and write operations
are only allowed to the open row. Before opening a new row in a bank, the contents of the



1.1. TRENDS IN EMBEDDED SYSTEM DESIGN 13

currently open row are copied back into the memory array. Theelements in the memory
arrays are implemented with a single capacitor and a resistor, where a charged capacitor
represents a one and an empty capacitor a zero. The capacitorloses its charge over time
due to leakage and must be refreshed regularly to retain the stored data.

ro
w

s

row buffer

columns

ba
nk

s

Figure 1.9: The SDRAM architecture consists of banks, rows,and columns.

The SDRAM architecture causes the offered bandwidth and thetime to serve a mem-
ory request to depend on three things. First, there is a dependency on the row targeted
by the request and the rows that are currently open in the banks. The reason is that a
request targeting an open row can be served immediately, while a request targeting a
closed row must wait until the current open row has been closed and the required row
has been opened. The overhead from opening and closing rows results in additional la-
tency, as well as idle cycles on the data bus. The latter implies a reduction of the offered
bandwidth. The second dependency is on the direction (read/write) of the current and
previous request. The reason for this dependency is that thedata bus is bi-directional and
requires a number of clock cycles to change direction from read to write or write to read,
again adding latency and wasting bandwidth. The last dependency is on the temporal
alignment with respect to refresh operations, since a refresh operation requires tens of
clock cycles during which no data can be transferred on the data bus. Together, these
three dependencies create large variations in the time required serve a read or a write re-
quest. The first two dependencies are especially problematic, since they involve previous
requests that may have been issued by other requestors sharing the resource. This cre-
atesresource interferencebetween requestors, where the time required by the resourceto
serve a scheduled request from one requestor depends on other requestors. These effects
make it very difficult to bound the bandwidth offered by the memory and the latency of
memory requests at design time, which is required to supportfirm and hard real-time
requirements.

We proceed by elaborating on the requirements of SDRAM requestors, and explain
what makes them contradictory and difficult to satisfy. SDRAM requestors are catego-
rized as eitherlatency critical or latency tolerant. Latency-critical requestors require
low-latency memory accesses to reduce the number of stall cycles on the processing ele-
ments. This is typical for processing elements supporting only a few outstanding trans-
actions and that store data in a remote memory, such as an SDRAM. When no more
transactions can be issued, the processing element blocks until a response has been re-



14 CHAPTER 1. INTRODUCTION

turned, potentially resulting in long stalls [54]. This problem is often mitigated by using
a cache to store commonly used data locally, significantly reducing the average memory
access latency for applications with good locality. However, many processing elements
still spend a significant number of clock cycles waiting for data, due to long latencies in
the interconnect and memory controller. This problem got increasingly severe through-
out the single-processor era, since processor speed increased faster than memory speed.
In fact, both processor and memory speeds increased exponentially, but with different
exponents, causing the difference between the two to also increase exponentially [118].
This observation has resulted in the theory that the performance of many applications
will eventually be dominated by the memory latency, a situation that is known as hitting
thememory wall[118]. The effects of the memory wall can be observed in transaction-
based workloads and high performance scientific computing [68], where processors can
stall up to 95% of the time. The recent step to multi-processor platforms has reduced
the clock frequencies of processors [2], which should mitigate the effects of the mem-
ory wall. However, the cumulative memory bandwidth requirement of all processing
elements is still increasing, adding a new dimension to the problem.

Some applications, such as media processing, can often be implemented in a pipelined
fashion. The requestors of these applications are more latency-tolerant, but require guar-
anteed bandwidth to sustain their throughput requirements. In this case, higher band-
width enables higher resolutions and support for more functionality, such as additional
tasks that improve the quality of the output. However, external memory bandwidth is
a scarce resourcein many platforms. The reason is that an SDRAM controller is an
expensive component both in terms of area and power consumption. Adding more mem-
ory controllers, or making the SDRAM interface wider, requires more pins. More pins
further increases both the area and power consumption, and may also require a more
expensive packaging. Using multiple memory controllers ishence often not an option,
making it important to use the existing SDRAM bandwidth as efficiently as possible.

The requirements of latency-critical and latency-tolerant requestors are challenging
to satisfy, since low latency and high offered bandwidth areinherently contradictory
properties for SDRAMs. The memory is efficiently utilized bylimiting the number of
switches between reads and writes and using large requests to make better use of an
open row. Providing low latency to critical requestors, on the other hand, is achieved
by letting them switch directions immediately and preempt less important requestors,
potentially closing the open rows they are using. Both of these actions reduce latency for
critical requestors at the expense of a reduction of the bandwidth offered by the SDRAM.

1.2 Problem statement

The high-level problem addressed in this thesis is to designa memory controller that sat-
isfies the real-time requirements of applications in embedded systems, thereby reducing
the mapping and verification effort.More specifically, the proposed memory controller
shouldaddress the diversity of contemporary platformsby supporting different types of
memories (SRAM and SDRAM in particular) and arbiters. The memory controller must



1.3. REQUIREMENTS 15

use the memory bandwidth efficiently, since it is a scarce resource that must be care-
fully utilized. To reduce the mapping effort, the memory controller should be supported
by tooling thatautomatically determines instantiation parameters and configuration set-
tings for all components in the architecture, such that all application requirements are
satisfied. The memory controller shouldimprove verification coverageby enabling for-
mal verification of real-time requirements. It should furthermorereduce the verification
complexityby enabling independent verification of applications usingeither formal meth-
ods or simulation-based techniques.

1.3 Requirements

Based on the problem statement in the previous section, we impose four requirements
on the memory controller design: predictability, abstraction, composability and automa-
tion. We proceed by explaining the concepts behind these requirements, and motivate
their relevance with respect to the problem statement. An overview of how our solution
implements these requirements is provided in Chapter 2, andis hence not discussed here.

1.3.1 Predictability

The first requirement on the memory controller is predictability. In this thesis, we con-
sider a component predictable if and only ifa useful bound is known on temporal be-
havior that covers all possible initial states and state transitions. A component in this
definition may refer either to a piece of hardware or software, which affects the particular
temporal behavior that should be bounded. For example, determining the time required
by a memory controller to serve a memory request, requires both the allocated band-
width and the latency of the controller to be bounded. On the other hand, computing the
throughput of a video application may require bounds on the worst-case execution times
of all its tasks. Predictability has a hierarchical aspect to it, since the temporal behavior
of a component is determined by the timings of the sub-components it comprises. This
implies that a predictable system must be built from predictable components. We pro-
ceed by discussing the relevance and implications of our definition of predictability more
closely, starting with a brief discussion about predictability versus determinism.

A component isdeterministicif it can be implemented by a state machine that pro-
vides a unique output, given a particular input and state. A deterministic component is
hence perfectly well-defined given a particular input sequence and initial state, making
it predictable in some sense of the word. A non-deterministic component, on the other
hand, can transition to multiple states with possibly different outputs, given a particular
state and input. An example of non-deterministic componentis an asynchronous clock
domain crossing, the latency of which varies depending on the alignment of the different
clock signals and the time to settle the signals to a stable state [109]. A non-deterministic
component may intuitively feel unpredictable. However, our definition of predictabil-
ity requires a bound on temporal behavior, as opposed to knowing the exact temporal



16 CHAPTER 1. INTRODUCTION

behavior. This implies that our notion of predictability isnot exclusive to deterministic
components.

To use a bound in a general analysis, we require it to cover allpossible state tran-
sitions and initial states. This is a key problem when analyzing the behavior of a com-
ponent. For a deterministic component, the possible transitions depend on the input se-
quence. Non-deterministic components additionally require all possible transitions from
a visited state to be considered, further complicating analysis. Determining the state tran-
sitions that triggers the worst-case behavior may be extremely difficult, especially if the
temporal behavior of the component is data dependent and theset of possible inputs is
large. Consider, for instance, the problem of determining the worst-case decoding time
of an H.264 decoder. Due to the difficulties in deriving thesegeneral bounds, we do not
consider components predictable until this analysis has been done. Knowing that a bound
exists is hence not a sufficient condition for a component to be considered predictable in
this thesis.

Our definition of predictability also states that the derived bounds must be useful.
The reason is to prevent behaviors that are bounded with useless bounds from being
considered predictable. For example, we do not consider a memory controller to be
predictable, if the latency of a memory access is bounded by ayear, since it cannot satisfy
any realistic requirements. The exact meaning of usefulness and the required tightness
of the bound is of course highly dependent on the behavior that is being bounded and
the context in which is going to be used. This part of the definition hence has to be
considered on a case-by-case basis.

We proceed by exercising our definition by an example, where we consider bounding
the offered bandwidth from a typical Double-Data-Rate (DDR) SDRAM controller. If
we cannot exploit any knowledge of the initial SDRAM state orthe incoming request
stream, which is typically the case, we have to assume that every memory access targets a
closed row. The currently open row hence has to be closed and the requested row opened
before the access can proceed. This results in added latencyand many unused cycles on
the data bus of the memory, as explained in Section 1.1.6. It is not possible under this
assumption to guarantee that the offered bandwidth will be greater than some 10-40%
of the maximum bandwidth, depending on the speed of the memory [6]. Although this
is a known bound on relevant behavior that covers all state transitions and initial states,
it is not considered useful for many SoC designs, since SDRAMbandwidth is a scarce
resource that must be efficiently utilized.

The memory controller proposed in this thesis is required toprovide useful bounds
on offered bandwidth and latencyto be able to satisfy the communication requirements
of the requestors. This requirement addresses the problem statement in this thesis by en-
abling formal verification of application requirements in predictable systems. Note that
this requires performance models of the applications, as well as all other hardware com-
ponents they are using. Formal verification of a predictablesystem has the benefit of cov-
ering all possible input sequences and initial states, as opposed to the limited subset that
can be verified by simulation. This makes this verification approach essential in systems
with hard and firm real-time requirements. Formal verification is furthermore less sensi-
tive to changes in use-case specifications than simulation-based techniques, since it only



1.3. REQUIREMENTS 17

requires re-verification if the temporal bounds on any of itstasks increase. This provides
some additional flexibility in development of IP componentsand reduces the verification
effort. However, this benefit assumes that the application model is performance mono-
tonic, which means that a local reduction in latency cannot result in an overall latency
increase. Another benefit of formal performance analysis isthat there is a clear relation
between platform parameters and the resulting temporal behavior. This may allow buffer
sizes and configuration settings that satisfy the application requirements to be automati-
cally synthesized, removing the need for mapping approaches based on trial-and-error.

1.3.2 Abstraction

Contemporary SoCs platforms consist of an increasing number of shared resources of
different types, such as peripherals, interconnect, and several different types of memo-
ries. Access to these resources may furthermore be controlled by many different types
of arbiters, which may all affect the temporal properties ofan application. The com-
plexity resulting from the diversity of shared resources can be reduced by abstraction.
Abstraction is a mapping from one description of an object toanother, where the sec-
ond description is simpler in some sense [69]. An example is the digital abstraction that
reduces continuous-time analogue signals with continuousamplitude into a discrete se-
quence of ones and zeroes. Ashared resource abstractioncan be used to capture the
(temporal) behavior of the diversity of shared memories andtheir arbiters, and hide the
details of their implementations [93]. A good abstraction should be simple to reduce
complexity, yet capture relevant behavior as closely as possible. An abstraction with
many parameters can be difficult to use, while hiding too muchdetail may result in sub-
optimal models and poor utilization of the resulting system. Abstraction hence presents
a delicate trade-off between simplicity and accuracy.

The memory controller proposed in this thesis requires a shared resource abstraction
that captures temporal behavior in a way that makes the details of the types memory
and arbiter transparent to the user. The chosen abstraction must be simple and general
enough to apply to a wide range of memories and arbiters, while providing useful accu-
racy. Abstraction should also be used in the hardware architecture to allow memories and
arbiters to be exchanged with minimum effort. The value of the abstraction requirement
is that it allows the user to deal with different memories andarbiters in a homogeneous
way, thus reducing complexity [93]. It furthermore enablesreuse of models and tooling
for different combinations of memories and arbiters, whichincreases design productivity
and greatly simplifies automation.

1.3.3 Composability

A system is consideredcomposableif applications cannot affect each other’s behavior in
the value and time domains [35]. This implies that applications are completely indepen-
dent and cannot change each other’s data, nor affect each other’s temporal behavior by
even a single clock cycle. Composability is an issue with shared resources, as they often



18 CHAPTER 1. INTRODUCTION

enable requestors to affect each other’s temporal behaviorby either scheduling interfer-
ence or resource interference, discussed earlier. Scheduling interference occurs in the
arbiter, where the presence or absence of a request from one requestor may cause another
requestor to be scheduled earlier or later. Resource interference happens in the resource
itself when a requestor alters the resource state in a way that affects the time it takes to
serve a request from another requestor. An example of resource interference is switching
the direction of the data bus in an SDRAM memory.

The proposed memory controller is required to provide composable service to ap-
plications. For simplicity, we will refer to a memory controller that satisfies this re-
quirement as a composable memory controller. Composability addresses the problem
statement in this thesis by reducing the verification effortwith simulation-based tech-
niques in the following four ways [39]: 1) Applications can be verified by simulation
in isolation, resulting in a linear and non-circular verification process. 2) Simulating
only a single application and its required resources reduces simulation time compared to
complete system simulations. This allows more use-cases tobe verified, increasing the
verification coverage. 3) The verification process can be incremental and start as soon
as the first application is available. 4) Functional verification is simplified, since bugs
caused by, for instance, race conditions in the integrated application, are independent
of other applications. Another benefit of composability is that independent applications
create well-defined liabilities, which is important if applications are developed by differ-
ent parties [85]. IP protection is furthermore improved, since the verification process no
longer requires the IP components of independent software vendors to be shared. Note
that composability eliminates all interference from otherapplications, but that the plat-
form may be non-deterministic, or even unpredictable [35].For example, the platform
may contain asynchronous clock domain crossings with non-deterministic latency [109],
which may result in that a particular simulation trace from the execution of an application
is hard to reproduce.

Composability is not a concept without drawbacks, since it involves eliminating both
positive and negative interference between applications.This implies thatslack, which
is unreserved resource capacity or resource capacity reserved by one application that is
currently not used, cannot be used by another application. Although this does not impact
the worst-case latency of an application, it affects the average case, for instance making
non-real-time applications appear less responsive. However, composability does not im-
ply that all slack is wasted. It is possible to safely distribute slack between requestors
belonging to the same application [35].

It is important to realize that predictability and composability are two different prop-
erties and that one does not imply the other. Predictabilitymeans that a useful bound is
known on temporal behavior, and composability that the temporal behavior of an appli-
cation is independent of other applications. We illustratethe difference by discussing the
four example systems, shown in Figure 1.10, that cover all combinations of predictability
and composability. The first system, depicted in Figure 1.10a, consists of two processors,
each executing a single application. We assume that the applications are predictable and
that worst-case execution times are known for all tasks. Data is stored in a shared remote
SRAM that for simplicity is reached by direct wires. The SRAMhas a latency of one



1.3. REQUIREMENTS 19

PE

PE B
us SRAM

TDM

(a) Predictable and composable
system.

PE

PE B
us SRAM

RR

(b) Predictable system.

PE

PE

$

B
us SRAM

TDM

$

(c) Composable system.

PE

PE

$

B
us SRAM

RR

$

(d) Neither predictable nor com-
posable system.

Figure 1.10: Four systems demonstrating all combinations of the predictability and com-
posability properties.

clock cycle that is independent of other requestors. The SRAM is shared using TDM
arbitration, which is a predictable and composable arbitration scheme, since the latency
of a requestor is bounded and independent of other requestors. This makes this system
as a whole both predictable and composable. For our second system in Figure 1.10b,
we replace the TDM arbiter with a round-robin arbiter (RR). This makes the system pre-
dictable, but not composable, since the round-robin arbiter creates a dependence on the
presence or absence of other requestors. We create our last two systems by adding private
L1 caches ($) to the processors in both previous systems. A private cache is composable,
since it is not shared between applications. However, it makes the systems unpredictable,
since a useful bound cannot be derived on the time to serve a sequence of requests. The
third system, in Figure 1.10c, is hence composable, but not predictable. The last system,
shown in Figure 1.10d, is neither predictable, nor composable.

1.3.4 Automation

Automation refers to having parts of the design process doneby tools. Automation has
grown to become an essential part of embedded system design,since it reduces the design
time, directly impacting time to market [115]. As explainedin Section 1.1.4, the mapping
process contains a configuration step that is typically performed manually. An SDRAM
controller has many instantiation parameters and configuration settings, such as buffer
sizes and the burst size of the SDRAM. Many arbiters furthermore need to be configured.
The particular configuration settings vary depending on thearbiter type, but may involve
bandwidth allocations and priority assignments.



20 CHAPTER 1. INTRODUCTION

The proposed memory service is required to have an automatedapproach to finding
IP parameters and configuration settings. This involves automatic buffer sizing and
computation of configuration settings for the memory controller and its associated arbiter
at design time. Automation of buffer sizing and configuration is required to reduce design
time by removing a manual step from the mapping process that relies on trial-and-error
and extensive system-level simulation.

1.4 Contributions

This section lists the main contributions of this thesis. The contributions are discussed in
terms of the illustration of the proposed predictable and composable memory controller
shown in Figure 1.11. All hardware is implemented both as SystemC simulation models
and in synthesizable VHDL.

Predictable memories

Resource front−end

Latency−rate arbiters

cfg

requestor 1

requestor 2 SRAM
controller

SDRAM
back−end S

D
R

A
M

D
ata B

us

S
R

A
M

Configuration Bus

Atomizer

Atomizer
Block
Delay

Block
Delay

Arbiter

CCSP TDM RR

Figure 1.11: The proposed predictable and composable memory controller.

• A predictable SDRAM back-end[6] is presented that provide hard/firm real-time
guarantees on bandwidth and latency with any DDR2/DDR3 SDRAM memory,
while increasing the level of flexibility over previous approaches. (Chapter 4)

• We propose apredictable Credit-Controlled Static-Priority (CCSP) arbiter [9,10]
that is suitable for providing access to shared resources with latency-critical re-
questors and high loads, such as memories. (Chapter 5)

• A general predictable resource front-endis proposed that provides access to shared
predictable memories, such as our SDRAM back-end or an SRAM controller. The
front-end contains an arbiter in the class of Latency-Rate (LR) servers, which
is a class with many well-known predictable arbiters, including round-robin (RR),
TDM, and CCSP. The front-end guarantees a requestor a minimum bandwidth and
a maximum latency withany combinationof supported arbiters and predictable



1.5. OUTLINE 21

memories. They hence act like aLR server, which is theshared resource abstrac-
tion used in this work. This abstraction enables formal verification of real-time
requirements in a transparent manner for multiple types of memories and arbiters
using several commonly used performance analysis frameworks. (Chapter 6)

• We introduce a novel approach tocomposable resource sharingthat makes pre-
dictable shared resources composable [7]. The idea is to adda Delay Block to
the front-end that delays all signals sent to a requestor to emulate worst-case in-
terference from others. This approach enables composability with a wider range
of applications and shared resources than previous work. Itfurthermore allows re-
questors that do not require composable service touse slack bandwidthto improve
performance. (Chapter 6)

• We propose anautomated configuration flowthat computes instantiation parame-
ters and configuration settings to satisfy requestor requirements. The flow uses ab-
straction to make the memory and arbiter configuration independent of each other.
This enables all supported arbiters to be configured for all supported memories in
a streamlined fashion without a special case for every combination. (Chapter 7)

1.5 Outline

This thesis is organized as follows. Chapter 2 provides an overview of our proposed so-
lution in terms of the four requirements: predictability, abstraction, composability, and
automation. Chapter 3 contains and introduction to SDRAM memories and explains
why they are difficult to use in real-time systems. It also discusses the general building
blocks of an SDRAM controller and highlights interesting design options. An SDRAM
back-end is presented in Chapter 4 that makes a DDR2/DDR3 SDRAM behave in a pre-
dictable manner, and bounds are derived on bandwidth and latency. Chapter 5 addresses
how to share the back-end, or other resources, among multiple requestors by introduc-
ing a Credit-Controlled Static-Priority arbiter. This arbiter is designed particularly for
resources with high loads and latency-critical requestors, such as memories. A resource
front-end is presented in Chapter 6. The front-end providespredictable service with
any combination of arbiter in the class ofLR servers and predictable resource, such as
our SDRAM back-end or an SRAM controller. We furthermore show how to make the
shared predictable resource composable by delaying all signals sent from the front-end
to a requestor to emulate maximum interference from others.Chapter 7 presents our con-
figuration flow and demonstrates with a running example how instantiation parameters
and configuration settings are derived for both the front-end and the back-end. The pro-
posed solution is positioned with respect to related work onresource arbitration, memory
controllers, and composability in Chapter 8. Lastly, conclusions and future work are pre-
sented in Chapter 9.



22 CHAPTER 1. INTRODUCTION

1.6 Summary

Embedded system design gets increasingly complex. Each newproduct generation inte-
grates more applications and contains more hardware and software. The product life time
is furthermore reducing, requiring new generations to be designed, verified, and released
faster than ever before.

Applications in embedded systems often havereal-time requirements, meaning that
they must perform a particular computation before a deadline. A real-time requirement is
classified as either hard, firm, or soft, depending on its criticality. Hard real-time require-
ments must always be satisfied to guarantee safety or functional correctness. Similarly,
firm real-time requirements must be satisfied to prevent significant quality degradation,
while missing a soft requirement may just be perceived as annoying to the user. An appli-
cation is partitioned into tasks, which can be mapped to different processing elements in
the platform. Contemporary platforms often contain multiple heterogeneous processing
elements, to provide good balance between performance, cost, power consumption and
flexibility. They also have a distributed memory hierarchy with different types of shared
memories, such as Static RAM (SRAM) and Synchronous DynamicRAM (SDRAM), to
achieve large storage capacity with low latency at a reasonable cost. However, due to pin
constraints, SDRAM bandwidth is a scarce resource that mustbe efficiently utilized.

Mapping applications on the platform such that all real-time requirements of the ap-
plications are satisfied is very challenging. The number of possible bindings of tasks
to processing elements, and data structures to memories is very large, and appropriate
instantiation parameters and arbiter settings must be derived. Verifying that a particular
mapping satisfies all application requirements is very timeconsuming, since it is often
done by simulation with poor use-case coverage. Formal verification offers significantly
better coverage, but is typically not an alternative, sincemost industrial hardware and
software is not designed with formal analysis in mind. SDRAMmemories are exam-
ples of commonly used components that make verification difficult. The bandwidths
and latencies provided by these memories depend highly on the requests sent by the ap-
plications. The timing behaviors of concurrently executing applications hence become
inter-dependent, making it impossible to verify them in isolation. Instead, concurrently
executing applications must be verified together, resulting in that theverification com-
plexity grows exponentiallywith the number of applications.

The problem in this thesis is to design a memory controller that satisfies hard, firm,
and soft real-time requirements, thereby reducing the mapping and verification effort
of embedded systems. We impose four requirements on the solution to achieve this
goal. The memory controller should bepredictablein the sense that there must be useful
bounds on the latency of a memory request and on the provided bandwidth. This enables
the controller to be used with formal verification techniques, improving use-case cover-
age. The solution should make use ofabstractionto support different types of memories,
such as SRAM and SDRAM, and different arbiters transparently. This reduces design
time by enabling reuse of tools and models. We require the memory controller to be
composable, which means that two applications sharing the memory cannot modify each
other’s data or affect each other’s temporal behavior by even a single clock cycle. This



1.6. SUMMARY 23

property allows applications to be verified in isolation, reducing the verification com-
plexity. Lastly, we requireautomationof the memory controller configuration to reduce
the mapping effort. The controller should hence be supported by tooling that automat-
ically derives configuration settings and instantiation parameters, such that application
requirements are satisfied.



24 CHAPTER 1. INTRODUCTION



CHAPTER 2

Proposed solution

The previous chapter identified problems related to mappingapplications with real-time
requirements to a heterogeneous multi-processor platformwith SDRAM memory and
verifying that all requirements are satisfied. We then committed to designing a memory
controller with requirements on predictability, abstraction, composability, and automa-
tion to address this issue. This chapter presents an overview of the proposed solution,
and explains how it delivers on each of the four requirements. We begin in Section 2.1
by discussing predictability. We then move on to abstraction in Section 2.2, followed by
composability and automation in Sections 2.3 and 2.4, respectively. Lastly, the chapter
is concluded with a summary in Section 2.5.

2.1 Predictability

Section 1.3.1 stated that the memory controller must provide useful bounds on the offered
bandwidth and latency of memory transactions. This sectionexplains how the proposed
memory controller delivers on this requirement. First, an overview of our approach to
predictability, based on combining predictable memories with predictable arbitration,
is presented in Section 2.1.1. Then, Section 2.1.2 explainshow to make an SDRAM
memory behave in a predictable manner, before Section 2.1.3concludes with a discussion
on predictable arbitration.

2.1.1 Overview of approach

Our approach to predictable memory controllers is based on combining memories and
arbiters with predictable behaviors. More specifically, from the memory, we require

25



26 CHAPTER 2. PROPOSED SOLUTION

bounds on the offered bandwidth and the time to serve a scheduled request, since these
characterize the worst-case behavior of an unshared memory. We refer to a memory sat-
isfying this requirement as apredictable memory. We also require apredictable arbiter,
where the number of interfering requests that can be scheduled before a particular request
is bounded. Combining a predictable memory and a predictable arbiter allows the maxi-
mum time to schedule a particular request to be computed by multiplying the number of
interfering requests with the maximum time to serve a scheduled request. This takes the
effects of sharing the memory into account. Our approach is hence based on combining
independent analysesof the memory and the arbitration. The strength of this approach is
that it lets us design a general memory controller, providing predictable service forany
combination of predictable memory and predictable arbiter. This helps us satisfy our
abstraction requirement, as further discussed in Section 2.2. An illustration of a basic
memory controller is provided in Figure 2.1. We use this architecture as a starting point
and extend it with additional elements throughout this chapter.

B
us

Pred.
Arbiter

P
redictable
M

em
ory

Requestor 1

Requestor 2

Req/Resp. Buffers

Req/Resp. Buffers

Memory Controller

Figure 2.1: Overview of predictable memory controller.

2.1.2 Predictable SDRAM back-end

As previously mentioned, our approach to predictable memory controllers requires a
useful bound on: 1) the bandwidth offered by the memory, and 2) the time to serve a
request. Satisfying these requirements is straight-forward for stateless SRAM memories,
where the available bandwidth simply corresponds to the product between the width of
the memory interface and the clock frequency, and a word is served with a fixed latency
of one clock cycle. However, as mentioned in Section 1.1.6, this is more difficult for
SDRAMs, where both the offered bandwidth and the time to serve a request depend on
the interleaving of requests from all requestors sharing the memory, which is not known
at design time.

The behavior of an SDRAM memory is determined by the sequenceof SDRAM
commands that are communicated from the memory controller to the memory device.
These commands tell the memory to activate (open) a particular row in the memory ar-
ray, to read from or write to an open row, or to precharge (close) an open row and store



2.1. PREDICTABILITY 27

its contents back into the memory array. There is also a refresh command that charges
the capacitors of the memory elements to ensure that the contents of the memory array
are retained. The behaviors of some of these commands are illustrated in Figure 2.2.
Scheduling SDRAM commands is not a trivial task, since thereare a considerable num-
ber of timing constraints that must be satisfied before a command can be issued. These
timing constraints are minimum delays between issuing particular SDRAM commands,
such as two activates, or an activate and a read or a write.

Existing SDRAM controllers can be divided into two categories, depending on how
they schedule the SDRAM commands. Statically scheduled controllers execute pre-
computed command schedules that are guaranteed at design time to satisfy all timing
constraints of the memory. Executing precomputed schedules makes these controllers
predictable and easy to analyze. However, they are also unable to adapt to the dynamic
behavior of applications in contemporary System-on-Chips(SoCs), such as bandwidth
requirements or read/write ratios that vary over time. The second category of controllers
uses dynamic scheduling of commands, which requires the timing constraints to be en-
forced at run time. These controllers have sophisticated command schedulers that attempt
to maximize the average offered bandwidth and to reduce the average latency at the ex-
pense of making the resource extremely difficult to analyze.As a result, the offered
bandwidth can only be estimated by simulation, making bandwidth allocation a difficult
task that must be re-evaluated every time a requestor is added, removed or is modified.

row buffer

bank

read write

prechargeactivate
(open) (close)

Figure 2.2: The behaviors of some important SDRAM commands.

We propose a hybrid approach to SDRAM command scheduling that combines ele-
ments of statically and dynamically scheduled SDRAM controllers in an attempt to get
the best of both worlds. Our approach is based onpredictable memory patterns, which
are precomputed sequences (sub-schedules) of SDRAM commands that are known to
satisfy the timing constraints of the memory. These patterns are dynamically combined
at run-time, depending on the incoming request streams. Thememory patterns exist in
five flavors: 1) read pattern, 2) write pattern, 3) read/writeswitching pattern, 4) write/read
switching pattern, and 5) refresh pattern. The patterns arecreated such that multiple read
or write patterns can be scheduled in sequence. However, a read pattern cannot be sched-
uled immediately after a write pattern. In this case, the read pattern must be preceded
by a write/read switching pattern. This works analogously in the other direction. The re-
fresh pattern can be scheduled immediately after either a read pattern or a write pattern.



28 CHAPTER 2. PROPOSED SOLUTION

Both read and write patterns can be scheduled immediately after a refresh without any
preceding switching patterns.

The read and write patterns consist of a fixed number of SDRAM bursts, all targeting
the same row in a bank. The bursts are issued to the different banks in sequence, since
the data bus is shared between all banks to reduce the number of pins on the SDRAM
interface. The fixed number of bursts is hence first sent to thefirst bank, then to the
second, and so forth in an interleaving fashion until all banks have been accessed. This
way of accessing the SDRAM results in a short period with frequent accesses, followed
by a longer period without any accesses. The patterns exploit bank-level parallelism by
issuing activate and precharge commands to the banks duringthe long intervals in which
they do not transfer any data. The read and write patterns arehence very efficient in
terms of bandwidth, since it is possible to hide a significantpart of the latency incurred
by activating and precharging rows. This limits the overhead cycles incurred by always
precharging a bank immediately after it has been accessed, which is known as a closed
page policy. We implement this policy, as it effectively removes the dependency on rows
opened by earlier requests by returning the memory to a neutral state after every access.
Removing this dependency between requests is akey elementin our approach, since it
reduces the variation in the offered bandwidth and latency, enabling tighter bounds on
bandwidth and latency to be derived.

Although interleaving memory patterns allow us to bound theoffered bandwidth,
they come with two drawbacks. The first drawback is that continuously activating and
precharging the banks increases power consumption compared to if a single bank is used
at a time. The second drawback is that the memory is accessed with large granularity and
hence requires large requests to be efficient. An efficient access requires one SDRAM
burst to every bank. A typical burst size for SDRAM is 8 words and the number of banks
is either four or eight. The minimum efficient request size for a 32-bit memory interface
is hence between 128-256 B. Working with large requests in a non-preemptive manner
also means that urgent requests can be blocked longer, resulting in longer latencies.

Figure 2.3 shows example read and write patterns for a 16-bitDDR2-400 memory
device. The SDRAM commands in the figure are encoded according to activate (ACT),
read (RD), write (WR), and no-operation (NOP). All read and write commands are issued
with an automatic precharge option, causing the bank to be precharged automatically at
the earliest possible convenience. This removes the need toexplicitly issue precharge
commands and furthermore ensures that an arbitrary row can be opened in the bank
in the shortest possible time. The numbers in the figure correspond to the number of
the bank associated with a command or data element. Note thattwo data elements are
transferred every cycle due to the Double-Data-Rate (DDR) of the memory. The patterns
in the figure are very efficient in terms of bandwidth, as they transfer data during every
cycle if they are repeated multiple times. The figure also shows that scheduling a write
pattern immediately after a read pattern (first command of write pattern in cycle 16 of
read pattern) causes a conflict on the data bus, which is one ofthe reasons switching
patterns are needed.

Requests are dynamically mapped to patterns in a non-preemptive manner by the
command generator in the memory controller. A scheduled read request maps to a read



2.1. PREDICTABILITY 29

0 1 2 10 11 12 13 14 153 4 5 6 87 9cycle 16 17 18 19 20 21

0 0 0 0 0 0 0 0 11 1 1 1 1 1 1 2 2 2 2 2 2 2 2 33 3 3 3 3 3 3data

ACT
0 NOP NOP 0

RD ACT
1 NOP NOP 1

RD ACT
2 NOP NOP 2

RD ACT
3 NOP NOP 3

RDcmd

(a) Read pattern

0 1 2 10 11 12 13 14 153 4 5 6 87 9cycle 16 17 18 2019

0 0 0 0 0 0 0 0 11 1 1 1 1 1 1 2 2 2 2 2 2 2 2 33 3 3 3 3 3 3data

ACT
0 NOP NOP 0

WR ACT
1 NOP NOP 1

WR ACT
2 NOP NOP 2

WR ACT
3 NOP NOP 3

WRcmd

(b) Write pattern

Figure 2.3: Read pattern and write patterns with burst length 8 for a DDR2-400.

pattern, possibly preceded by a write/read switching pattern. Similarly, a write request is
mapped to a write pattern and a potential preceding read/write switching pattern. Refresh
patterns are scheduled automatically by the memory controller on a regular basis between
requests. The mapping from requests to patterns and from patterns to SDRAM bursts is
shown for an SDRAM with four banks in Figure 2.4. The figure illustrates that the time
to serve a request of four bursts varies depending on whetheror not a switching pattern
is required and if a refresh is scheduled before the request.

Bursts /
Banks

Read Read

Read Refresh Write W/R Read Read R/W Write

0 2 31 0 2 31 0 2 31 0 2 31 0 2 31

Write Read WriteRequests

Time

patterns
Memory

Figure 2.4: Mapping from requests to patterns to SDRAM bursts.

The benefit of memory patterns is that they raise SDRAM command scheduling to a
higher level. Instead of dynamically issuing individual SDRAM commands, like a dy-
namically scheduled SDRAM controller, our proposed controller issues memory patterns
that are sequences of commands. This implies a reduction of state and constraints that
have to be considered, making our approach easier to analyzethan completely dynamic
solutions. Memory patterns allow a lower bound on the offered bandwidth and the time
to serve a request to be determined, since we know the length of each pattern, how much
data they transfer, and how they can be dynamically combined. The use of memory
patterns hence gives our approach the predictability of statically scheduled memory con-
trollers. In addition, our approach also has some properties of dynamically scheduled



30 CHAPTER 2. PROPOSED SOLUTION

controllers, such as the ability to dynamically choose between read and write requests,
and the use of run-time arbitration. The latter is the topic of the following section.

Our approach is implemented as an SDRAM back-end, as shown inFigure 2.5. The
back-end accepts a scheduled request through a Device Transaction Level (DTL) [88]
port, and translates the logical address into a physical address (bank, row, and column)
using an interleaved memory map. A command generator then issues the appropriate
memory patterns and sends the SDRAM commands to the memory device. The imple-
mentation of the back-end is very light weight and has a smallarea foot print.

SDRAM back−end

Scheduled
request

address
logical

Memory
Map

Command
Generator

cmd
SDRAM

address
physical

S
D

R
A

M

cmd
DTL

data

Figure 2.5: Overview of the predictable SDRAM back-end.

2.1.3 Predictable arbitration

After the previous section, we assume that we have a predictable memory, such as an
SRAM or our proposed SDRAM back-end based on predictable memory patterns, where
useful bounds on both the offered bandwidth and the time to serve a request are known. In
this section, we consider the effects of sharing the predictable memory between multiple
requestors. As mentioned in Section 2.1, we require a predictable arbiter, where the num-
ber of interfering requests before a particular request is scheduled is bounded. There ex-
ists are large number of both predictable and unpredictablearbiters in literature. To pro-
vide some concrete examples, we return to the three arbitersintroduced in Section 1.1.3.
Time-Division Multiplexing (TDM) schedules requestors according to a static schedule
that is computed at design time. The latency of this arbiter is hence easily bounded by
inspecting this schedule, and potentially also the requestsizes of the requestors in case
of a non-preemptive arbiter. TDM is hence a predictable arbiter. Round-robin arbitration
cycles between requestors that are trying to access the resource, skipping any requestors
that are currently idle. This is another example of a predictable arbiter, since the latency
is determined by the number of requestors and their request sizes. A static-priority ar-
biter, on the other hand, is an example of an arbiter that is unpredictable. The reason is
that a high-priority requestor that continuously accessesthe memory can prevent access
from a low-priority requestor indefinitely, resulting in anunbounded latency.



2.1. PREDICTABILITY 31

Worst−case latency
6 slots

Allocation
1/4 slots4 slots

Frame size

(a) Frame size of 4 slots, alloca-
tion of 1 slot.

Worst−case latency
4 slots

Allocation
2/4 slots4 slots

Frame size

(b) Frame size of 4 slots, alloca-
tion of 2 slots.

Worst−case latency
14 slots

1/8 slots
Allocation

8 slots
Frame size

(c) Frame size of 8 slots, allocation of 1 slot.

Figure 2.6: Example of coupling between allocation granularity, latency, and allocated
bandwidth.

A common problem with existing predictable arbiters is thatthey have unwanted
couplings between essential properties, such as allocation granularity, latency, and rate
(allocated bandwidth). We illustrate this problem with an example in Figure 2.6. The
figure shows a frame-based rate regulator that is commonly used in predictable arbiters
to ensure that requestors get their allocated bandwidth. Every requestor is allocated a
number of slots, corresponding to memory accesses, in a common periodically repeating
frame of fixed size. We assume that the scheduler decides which requestor that can use
which slot in a frame arbitrarily. Figure 2.6a shows an example where the rate regulator
has a frame size of four slots. A requestor is allocated one out of four slots in the frame,
corresponding to1/4 = 25% of the available bandwidth. The figure shows that if the
scheduler would give the requestor the first slot in one frame, and the last slot in the
next frame, it would encounter its worst-case latency of sixslots. Since the requestor
maps requestors to slots arbitrarily, there is nothing we can do to reduce the worst-case
latency, except giving more slots to the requestor, wastingbandwidth. This is shown in
Figure 2.6b, where the requestor is allocated an additionalslot in the frame, reducing
the worst-case latency to 4 slots at the expense of another 25% of the total bandwidth.
The example illustrates that latency and rate are coupled, and that one is traded for the
other. The coupling between allocation granularity and latency becomes a problem if the
requestor only wants 10% of the total bandwidth, since this means that we are wasting
15% of the 25% allocated to the requestor. We can address thisproblem by doubling the
frame size, changing the allocation of the requestor to1/8 = 12.5% of the bandwidth.
However, as seen in Figure 2.6c, this means that the worst-case latency also increases
from six slots to 14. The coupling between allocation granularity and latency hence
implies a trade-off between over allocation and latency.

As a part of this work, we present a Credit-Controlled Static-Priority (CCSP) arbiter.
The CCSP arbiter consists of a rate regulator and a static-priority scheduler, as illustrated
in Figure 2.7. The rate regulator isolates requestors by enforcing an upper bound on



32 CHAPTER 2. PROPOSED SOLUTION

the provided service, according to an allocated budget. Thestatic-priority scheduler
schedules the highest priority requestor that is within itsbudget. The combination of rate
regulator and static-priority scheduler makes the arbiterpredictable, while still being able
to satisfy the requirements of latency-critical requestors.

CCSP Arbiter

Rate
Regulator

Static−Priority
SchedulerRequestor 2

Requestor 1

Requestor
Scheduled

Scheduled requestor

Figure 2.7: Overview of a CCSP arbiter with two requestors.

CCSP has been developed to control resource access in SoCs and has a small and fast
hardware implementation. The CCSP rate regulator furthermore decouples allocation
granularity and latency bycontinuously increasing the budgets of the requestors, as op-
posed replenishing between frames. Bandwidth can hence be allocated with an arbitrary
precision without affecting latency, enabling a clean trade-off between over allocation
and area. This allows over allocation to become negligible,which is essential for scarce
SoC resources with very high loads, such as SDRAMs. The static-priority scheduler
decouples latency and rate using priorities, thus enablinglow latency to be provided to
requestors with low bandwidth requirements without wasting bandwidth.

The addition of a rate regulator creates a separation of concerns and makes it pos-
sible to bound the latency of a requestor in a static-priority scheduler without relying
on the cooperation of higher priority requestors. Instead,bounds are based on the allo-
cated bandwidths and burstinesses, which are determined atdesign time. However, to be
completely robust, we also need to be independent of the sizes of scheduled requests to
prevent a malfunctioning requestor from preventing accessfrom others by issuing very
large requests. We solve this problem using preemptive service, which is accomplished
by adding an additional hardware block, called anAtomizer[39]. The Atomizer splits
requests intoatomic service units, referred to as atoms, which are served by the memory
in a known bounded time. Large requests are hence chopped up in smaller pieces, en-
suring that other requestors can access the resources within a bounded time. The size of
the atoms are fixed and determined at design time. The size of an atom is chosen to be
the minimum request size that can be efficiently served by theresource. For an SRAM,
the natural service unit is a single word, but it is much larger for an SDRAM with pre-
dictable memory patterns. In this case, the service unit might be between 16 and 256
words, depending on the memory device and the pattern. Usingfixed-sized requests in
the memory controller furthermore simplifies other blocks in the architecture, resulting in
a faster implementation. Another benefit of adding the Atomizer as a separate hardware
block on front of the arbiter is that it effectively makes allpredictable arbiters preemptive
on the granularity of atoms. This qualifies any existing predictable arbiter for use with
our approach, which adds to the flexibility, while promotingreuse.



2.2. ABSTRACTION 33

A predictable SDRAM controller with two requestors is shownin Figure 2.8. In
addition to the SDRAM back-end and memory from Figure 2.5, wesee a predictable
resource front-end with multiple DTL inputs and a single DTLoutput. The front-end
contains an Atomizer per requestor that chops incoming requests into atoms. After the
Atomizer are the Request and Response Buffers. Arriving atoms are stored in the Request
Buffer until they are scheduled by the predictable arbiter.A scheduled atom is routed
through the Data Bus to the output port of the front-end, arriving in the SDRAM back-
end. The proposed front-end is general and fits withany predictable resourcewith a DTL
interface. For instance, if we want to access an SRAM, we simply remove the SDRAM
back-end and connect the output port of the front-end directly to an off-the-shelf SRAM
controller with a DTL interface. The implementation of the front-end is hence general
both with respect to the target resource and to the type of arbiter, as long as they are
predictable.

SDRAM back−endResource front−end

requestor 1

requestor 2

D
ata B

us

address
logical

cmd
SDRAM

address
physical

cmd
DTL

Memory
Map

Command
Generator

S
D

R
A

M

Atomizer

Atomizer
Req/Resp

data

Buffers

Req/Resp
Buffers

Arbiter

Figure 2.8: A predictable SDRAM controller supporting two requestors.

2.2 Abstraction

The memory service is required to use a common abstraction that captures the temporal
behavior of many different memory and arbiter types to mitigate the increasing system
complexity. We have chosen Latency-Rate (LR) servers [104] as the shared resource
abstraction in this work. In essence, aLR server guarantees a requestor a minimum
allocated bandwidth,b′, after a maximum service latency,Θcc, as shown in Figure 2.9.
A LR server hence provides a lower bound on the amount of data thatcan be transferred
during an interval, making it an abstraction of predictableservice.

TheLR server model applies to a wide range of shared resources, which is required
by our chosen abstraction. In theory, all predictable arbiters belong to the class ofLR
servers, since they guarantee that a request is scheduled within a maximum latency, mak-
ing them starvation free. However, no arbiter truly belongsto the class until the service
latency has been derived, which is difficult for some arbiters. The arbiters that belong to
the class ofLR servers are hence a subset of the set of predictable arbiters, as illustrated
in Figure 2.10. In this work, we refer to arbiters in the classofLR servers asLR arbiters.
It is shown in [104] that many well-known arbiters, such as Weighted Round-Robin [57],



34 CHAPTER 2. PROPOSED SOLUTION

A
cc

um
ul

at
ed

da
ta

provided service

Clock cycles

requested service

min. provided service

Θcc

b
′

Figure 2.9: TheLR server abstraction.

Deficit Round-Robin [98], and several varieties of Fair Queuing [119] areLR arbiters.
Another example of a commonly usedLR arbiter is TDM [110]. As a part of this work,
we show that the CCSP arbiter [10], also belongs to the class of LR servers. The ap-
plicability of theLR model with respect to resources is very good, since it can be used
with any predictable resource. Example uses of the model in literature involve modeling
communication channels in busses [110] and networks-on-chip [40].

Predictable Arbiters

Arbiters

LR Arbiters

Figure 2.10:LR arbiters are a subset of predictable arbiters.

TheLR server model uses two parameters, service latency and allocated bandwidth,
to model the service provided by a shared resource. The modelis hence more sophis-
ticated than a model with a single parameter that only considers the maximum time to
serve a request and uses this for every resource access. The added value of theLRmodel
is that it considers the service history of a requestor. Thisallows it to exploit the fact that
many requests from a requestor may be waiting for service at aparticular time, and that
all of them cannot experience worst-case interference fromother requestors. This al-
lows tighter bounds to be derived on the time required to serve a number of requests, as
shown in [40]. It is possible to conceive using more than the two parameters used by
theLR server model to further improve the accuracy of the model. There are, however,
three main reasons not to go in this direction in this work. 1)TheLR model has been
shown to apply to many well-known arbiters. This body of workwould not necessarily
be reusable by a more refined model. 2) It may be more difficult to prove that a particular
arbiter belongs to a class with more parameters. 3) Having more parameters makes it



2.3. COMPOSABILITY 35

more difficult to specify requestor requirements. This is important since requirements
often have to be specified manually. Getting the requestor specification may hence in-
volve significant manual labor that has to be repeated whenever changes are made to an
application.

A benefit of theLR server abstraction is that it supports formal performance analysis
using approaches based on network calculus [25] or data-flowanalysis [114]. This en-
ables formal verification of real-time requirements in a transparent manner forany com-
binationof arbiter in the class ofLR servers and predictable resource using any of these
frameworks. Some applications have behavior that is too complex to model accurately
using formal models, and have to be verified by simulation. Toreduce the verification
effort of these applications, our memory controller also provides composable service, as
discussed next.

2.3 Composability

The memory controller is required to provide composable service to applications to en-
able them to be developed and verified independently, as explained in Section 1.3.3.
Composability requires that applications are independentin both the value and time do-
mains. The proposed memory controller only explicitly addresses composability in the
time domain. Applications must hence be unable to change each other’s temporal behav-
ior, positively or negatively, with even a single clock cycle. We assume that applications
are composable in the value domain by some other mechanism, and cannot affect each
other’s behavior. An example of such a mechanism is to map applications to different,
potentially protected, memory regions. Composability affects the design of all hardware
and software where applications can interfere with each other temporally, such as stateful
resources and most run-time schedulers. We already mentioned SDRAM as an example
of a stateful resource in Section 1.1.6, where requestors can interfere with each other’s
temporal behavior by activating and precharging rows and changing direction of the data
bus. Another example is caches, where requestors can evict each other’s cache lines,
resulting in increased memory latency.

There are currently three approaches to composable system design. The first involves
not sharing any resources, which is trivially composable, but prohibitively expensive for
systems not running safety-critical applications. The second is to statically schedule all
interaction between components in the system [60]. This approach requires a global no-
tion of time and is limited to applications that can be statically scheduled. The third is
to share resources dynamically at run-time using TDM [15,39], which cannot efficiently
satisfy the requirements of latency-critical requestors,since it couples allocation granu-
larity, latency and rate.

In this work, we present a fourth approach to composable resource sharing that is
based on theLR server abstraction, previously presented in Section 2.2. The major ad-
vantage of this approach is that is extends the use of composability beyond resources and
arbiters that are inherently composable. Our approach is hence not limited only to state-
less SRAM controllers, but can capture the behavior of any predictable resource, such as



36 CHAPTER 2. PROPOSED SOLUTION

our proposed SDRAM back-end based on predictable memory patterns. It furthermore
supports any arbiter in the class ofLR servers, enabling service differentiation that in-
creases the possibility of satisfying a given set of requestor requirements. A key benefit is
that the approach does not haveany restrictionson the applications. This ensures that all
applications that cannot be formally verified can be verifiedindependently by simulation
with a linear verification complexity.

The main problem with non-composable resources and arbitration is that they cause
the time to serve a read or a write request to depend on other requestors. This might cause
an application that has been verified in isolation to miss deadlines after being integrated
with other applications due to contention for shared resources. The key idea behind our
approach is to make the system composable by delaying all signals sent to the requestor to
emulate maximum interference from other requestors. A requestor hence always receives
the same worst-case service no matter what other requestorsare doing, decoupling their
temporal behaviors. Intuitively, it may seem sufficient to verify that the applications meet
their real-time requirements under worst-case conditionsand then disable emulation of
worst-case interference after verification to benefit from improved performance. How-
ever, this intuition assumes that applications executing on the system areperformance
monotonic[63] and that having additional resources cannot result in worse performance.
This only holds for applications that do not exhibit timing dependent behavior executing
in systems that are free from timing anomalies [33], which may occur in shared caches,
dynamically scheduled processors [66], and some multi-processor systems [33]. We pro-
pose to always emulate maximum interference to avoid restricting the range of supported
systems and applications.

Our approach to composable resource sharing makes the temporal behaviors of the
requestors are independent of each other, thus implementing composability on the level
of requestors. This is a sufficient condition to be composable on the level of applications,
which is our actual requirement. However, composability onthe level of requestors is
a stricter requirement, since requestors belonging to the same application are allowed to
interfere with each other in a composable system. A drawbackof our approach is hence
that it is not possible to benefit from unused resource capacity reserved by requestors be-
longing to the same application (slack). However, a featureof our approach is that it can
be dynamically enabled or disabled per requestor at run-time by turning the emulation
of worst-case interference on or off. Composable service can hence be provided to only
a subset of the applications, while providing predictable service to the rest. We refer to
this type of system as apartially composable system. This type of system enables slack
to be used by requestors that do not require composable service, such as non-real-time
requestors, or those belonging to applications that are verified using formal approaches.
The slack may be used by these requestors to Using slack enables to improve perfor-
mance or reduce power [74]. Partial composability is also interesting if the provider of
a system wants to isolate the applications shipped with the system from those developed
by third parties. In this case, applications shipped with the platform would have compos-
able service, while it is up to third party to decide between using slack and composability.
This creates a separation of concerns between different suppliers, making responsibilities
more clear.



2.4. AUTOMATION 37

Our approach is implemented by extending the component containing the Request
and Response Buffers in Figure 2.8. Apart from containing the Request and Response
Buffers the new component, called a Delay Block, contains the additional functionality
to implement composable service. The refined architecture,providing both predictable
and composable service, is shown in Figure 2.11. The purposeof the Delay Block is to
emulate worst-case interference from other requestors to provide a composable interface
towards the Atomizer. This makes the interface of the entirefront-end composable, since
the Atomizer is not shared. The Delay Block is composable if all signals sent from the
Delay Block to the Atomizer exhibit composable behavior, which implies that both the
response data and the flow-control signals must emulate maximum interference. This is
achieved by computing the latest possible time this information can be sent, using the
lower bound on service provided by theLR server abstraction.

Resource front−end SDRAM back−end

Predictable and composable SDRAM controller

cfg

requestor 1

requestor 2

D
ata B

us

address
logical

Memory
Map

Command
Generator

cmd
SDRAM

address
physical

S
D

R
A

M

cmd
DTL

Configuration Bus

Atomizer

Atomizer
Block
Delay

Block
Delay

data

Arbiter

Figure 2.11: An instance of a predictable and composable SDRAM controller, supporting
two requestors.

To provide composable service, a Delay Block needs information about the maxi-
mum interference that can be experienced by its requestor. This information is typically
different for all requestors and changes between use-cases. A Configuration Busis hence
added to the architecture, as shown in Figure 2.11, that allows the worst-case interference
to be programmed.

2.4 Automation

The memory controller is required to have an automated approach to finding Intellec-
tual Property (IP) instantiation parameters and configuration settings to reduce design
time. To satisfy this requirement, we have developed a configuration flow, shown in Fig-
ure 2.12. This flow derives the instantiation parameters forall hardware blocks in the
memory controller, as well as programmable configuration settings. The purpose of the
configuration flow is to derive instantiation and configuration parameters that satisfy the
requirements of all requestors for all use-cases. There maybe many possible configu-
rations that satisfy the requirements for a given use-case,in which case we prefer the



38 CHAPTER 2. PROPOSED SOLUTION

configuration that produces the largest amount of slack bandwidth. The rationale behind
this decision is that a configuration with more slack bandwidth is likely to provide better
average performance for requestors that do not require composable service. The inputs
to this flow are the requestor requirements, being the required minimum bandwidth and
maximum service latency, and the timing specification of thememory device. We pro-
ceed by discussing the different steps in this flow.

Pattern
Generator

Normalized
requirements

Memory
patterns

Normalize
Requirements

Arbiter
Configuration

Verify
Requirements

normalized
Provided

latencies
bandwiths &

latencies
bandwiths &

Provided

latencies
bandwiths &

Provided

Denormalize
Allocation

Requestor
requirements

Memory
specification

Figure 2.12: Simplified overview of the automated configuration flow.

The first step of the flow is to generate a set of memory patterns, assuming that the
memory is an SDRAM. Otherwise, a specification is provided that represents the tim-
ing behavior of the particular memory. The second step in theflow is normalization of
requestor requirements, which implies transforming the bandwidth and service latency
requirements to make them independent of the memory device.To accomplish this, the
original requirements and the generated memory patterns are required as input. The
advantage of this step is that arbiter configuration becomesindependent of the memory
device, allowing the same configuration tool to be used for all memories. The normalized
service latency requirement is expressed as the number of interfering atoms that can max-
imally be tolerated, which can be computed given the lengthsof the memory patterns.
Normalization of the required bandwidth implies expressing the requirement as a fraction
of the total bandwidth offered by the memory. The third step is the arbiter configuration,
which attempts to find arbiter settings that satisfy the normalized requirements. The im-
plementation of this step is arbiter dependent. For a TDM arbiter, it involves finding a
TDM schedule, while a round robin arbiter does not require any configuration at all. The
configuration of CCSP is divided into two parts, being bandwidth allocation and priority
assignment. Bandwidth allocation means finding the configuration parameters that pro-
vide the closest approximation of the normalized required bandwidth, given a particular
precision. The allocated bandwidths of all requestors are then passed to the priority as-
signment that uses an optimal algorithm to assign priorities to the requestors. The output
of the arbiter configuration is the normalized allocated (provided) bandwidths and ser-
vice latencies, resulting from the chosen configuration parameters. The fourth step in the
configuration flow is denormalization of the allocated bandwidths and service latencies.
In addition to the output from the arbiter configuration, thememory patterns are required



2.5. SUMMARY 39

to convert the normalized allocation back into regular bandwidths and service latencies.
The denormalized service allocation, being the provided bandwidth and latency, is out-
put from this step. The fifth step accepts the denormalized service allocation as input and
verifies that the original requestor requirements are satisfied. If all requirements are met,
the configuration is stored as a candidate configuration for the use-case. At this point,
the flow may iterate to evaluate another set of memory patterns. After all interesting
pattern sets have been evaluated, the configuration providing the most slack bandwidth
is chosen.

The proposed dimensioning and configuration flow finds all parameters for instan-
tiation and configuration of the memory controller. However, both the memory pattern
generation algorithm and the service allocation step of theCCSP arbiter are heuristic,
and are hence not guaranteed to find parameters that satisfy all requirements, even if they
exist. However, the size of the design space is so large even for individual steps, such as
the memory pattern generation, that optimal solutions are not considered feasible.

2.5 Summary

This chapter discussed how the proposed memory controller and its associated tooling
deliver on the four requirements introduced in the previouschapter:predictability, ab-
straction, composability, andautomation. First, we presented an approach to predictabil-
ity, based on combining predictable resources with predictable arbitration. We showed
how to make an SDRAM memory behave in a predictable manner using memory pat-
terns, which are precomputed sequences of SDRAM commands. There are five types of
memory patterns: read patterns, write patterns, read/write switching patterns, write/read
switching patterns, and refresh patterns. These patterns are dynamically instantiated
and combined at run-time by a proposed SDRAM back-end. To allow our SDRAM
back-end to be shared among multiple requestors, a predictable arbiter, suitable for pro-
viding access to shared memories, is needed. We proposed a Credit-Controlled Static-
Priority (CCSP) arbiter, consisting of a rate regulator anda scheduler. The rate regulator
isolates applications by regulating the amount of providedservice in a way thatdecou-
ples allocation granularity and latency. The scheduler then uses priorities todecouple
latency and rate, such that low latency can be provided to any requestor, regardless of its
allocated rate.

We presentedLatency-Rate (LR) serversas our shared resource abstraction. ALR
server is an abstraction of predictability that uses two parameters to describe a lower
linear bound on the amount of data that is transferred in an interval. TheLR server
model is very general andapplies to any predictable resource, such as SRAM controllers
or our proposed SDRAM back-end. It furthermoresupports many well-known arbiters,
including the CCSP arbiter. An important benefit of theLR server model is that it is
compatible with several commonly used formal performance analysis frameworks, such
as network calculus and data-flow analysis. Any combinationof supported resources and
arbiters can hence be used transparently with any of these frameworks.



40 CHAPTER 2. PROPOSED SOLUTION

Some applications have behavior that is too complex to modelaccurately using for-
mal models, and have to be verified by simulation. Composability is required to reduce
the verification complexity for these applications. However, existing approaches to com-
posable system design are either restricted to applications that can be statically sched-
uled, or share inherently composable resources using time-division multiplexing, which
cannot efficiently satisfy tight latency requirements. We presented a new approach to
composable resource sharing, based on theLR server abstraction. The key idea is to
delay all signalssent from the resource to a requestor to emulate maximum interference
from other applications. A benefit of our approach is that it can be dynamically enabled
or disabled per requestor at run-time. Thisenables slack bandwidth to be used to improve
performance of requestors that do not require composable service. However, the biggest
advantage of this approach is that is extends the use of composability to work withany
applicationsharingany combinationof predictable resource and arbiter in the class of
LR servers. This approach is implemented as a resource front-end that is located in front
of a predictable resource, such as our SDRAM back-end.

The composable resource front-end and SDRAM back-end are supported by a con-
figuration tool thatautomatically computes memory patterns and arbiter settings. The
tool uses abstraction to separate the configuration of the memory and the arbiter. The tool
hence only knows how to configure the supported SRAM or SDRAMsand each of the
arbiters, but can compute configurations that satisfy bandwidth and latency requirements
for any combination.



CHAPTER 3

SDRAM memories and controllers

The journey towards a predictable and composable SDRAM controller is started with
some background information on both SDRAM memories themselves and their con-
trollers. First, the architecture and temporal behavior ofSDRAM memories are intro-
duced in Section 3.1. A formal model is then presented in Section 3.2 that enables us
to formally describe our techniques in later chapters. The concept of memory efficiency
is introduced in Section 3.3, as we explain why it is difficultto bound the bandwidth
and latency of an SDRAM at design time. A general memory controller architecture is
presented in Section 3.4, and its main functional blocks arediscussed. For each of these
blocks, different design options are highlighted along with their impact on the provided
bandwidth and latency. Lastly, we conclude the chapter witha summary in Section 3.5.

3.1 Introduction to SDRAM

Random Access Memory (RAM) is a fundamental component in computer systems and
has been for the past decades. It is used as intermediate storage for the processing el-
ements in the system. There are several types of RAM targeting different requirements
on bandwidth, power consumption, and manufacturing cost. This work focuses on two
common types of RAMs: Static RAM (SRAM) and Dynamic RAM (DRAM). SRAM,
was introduced in 1970 and is typically used as fast on-chip memory that can be accessed
with low latency. For this reason, SRAM is often used for caches and scratchpads in the
higher levels of the memory hierarchy to boost performance.The drawback of SRAM
is cost, since at least six transistors are needed for every bit in the memory array. The
DRAM was invented in 1968 by Robert Dennard at IBM [3]. DRAM isconsiderably
cheaper than SRAM, as it needs only one transistor and a capacitor per bit. The capacitor

41



42 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

is charged with a high or low voltage to indicate a one or zero,respectively. The term dy-
namic stems from the fact that the capacitor is leaking current and needs to be refreshed
several hundred times per second to prevent data loss. DRAM is manufactured in an
optimized process technology, allowing it to reach high densities and speeds. However,
it is typically an off-chip memory, which implies longer latencies and higher power con-
sumption than its on-chip static counterpart. On-chip embedded DRAM exists, but has
yet to gain widespread adoption. For these reasons, DRAM is often used high-volume
storage in the lower levels of the memory hierarchy.

In the past ten years, there have been a number of improvements of the DRAM de-
sign. A clock signal has been added to the previously asynchronous DRAM interface
to reduce synchronization overhead with the memory controller during burst transfers.
This type of memory is called synchronous DRAM, or SDRAM for short. In 2001, a
new generation of SDRAM was introduced, featuring significantly higher bandwidth.
These memories transfer data on both the rising and the falling edge of the clock, hence
the name Double-Data-Rate (DDR) SDRAM. The second and thirdgenerations of this
memory, called DDR2 [52] and DDR3 [53], respectively, are very similar in design, but
scales to higher clock frequencies and bandwidths.

3.1.1 SDRAM architecture

The architecture of an SDRAM memory contains a number of banks. A bank stores a
number of word-sized elements in a two-dimensional structure organized in rows and
columns, as shown in Figure 3.1. In essence, banks are independent memories, but they
share a data bus, an address bus, and a command bus to reduce the number of off-chip
pins. Each bank has a row buffer that stores one open row. Onlythe elements of this open
row can be accessed by read and write accesses. To give an ideaabout the number of
banks, rows, and columns in a contemporary SDRAM, we choose an example memory
that we use throughout this thesis. This memory is a 512 megabit (Mb) DDR2-400 [52]
device with a word width of 16 bits. This device has 4 banks, each with 8192 rows
containing 1024 word-sized elements. Since each column holds an element of 16 bits, it
follows that a row contains 2 kilobytes (KB) of data. This is referred to as thepage size
of the memory. Multiple devices can be combined to create wider memory interfaces and
increase storage capacity. The clock frequency of our example memory is 200 MHz and
data elements can be transferred with a frequency of 400 MHz,due to the double data
rate.

If we compare our example memory to other DDR2 or DDR3 memories, we notice
that the DDR2-400 is the slowest memory of these generations. The reason for using
this memory as our running example is that it results in shorter and less complicated
memory schedules, increasing the clarity of our presentation. DDR2 memories start with
the DDR2-400 memory and ends with the DDR2-800 running at 400MHz. This is
where the DDR3 generation begins with the DDR3-800 and the standard specifies up to
DDR3-1600, which runs at 800 MHz. Faster DDR3 memories, up toDDR3-2133, are
listed in the standard, but are not yet fully specified. DDR3-1600 is hence the fastest
memory considered in this thesis. Except the increase in clock frequencies, there are



3.1. INTRODUCTION TO SDRAM 43

row buffer

bank

read write

prechargeactivate
(open) (close)

Figure 3.1: The SDRAM architecture.

few differences between the DDR2 and DDR3 generations of SDRAM that are relevant
to this work. We will point out these differences where applicable. The typical number
of banks in a DDR memory is 4 or 8. All DDR3 memories have 8 banks, while it is
determined by the density of the memory for DDR2. DDR2 devices with a density less
than 1 Gb have 4 banks, while the larger ones have 8 banks. The memory devices are
available with widths of 4, 8, and 16 bits, and specified capacities are 256 Mb to 8 Gb.

3.1.2 The SDRAM protocol

An SDRAM is controlled by sending SDRAM commands to the memory interface ac-
cording to the SDRAM protocol. The protocol contains six commands: activate (ACT),
read (RD), write (WR), precharge (PRE), refresh (REF), and no-operation (NOP). We
continue by discussing the function of each of these commands.

The activate command is issued with a row and a bank as argument, instructing the
chosen bank to copy the requested row to its row buffer. Once the requested row is
opened, column accesses, such as read and write bursts, can be issued to access the
columns in the row buffer. These bursts have a burst length (BL) of 4 or 8 words. The
burst length of a DDR2 memory is programmed when the memory isinitialized, while a
DDR3 allows it to be changed on the fly for every access. A burstlength of 4 words is
only supported by a burst chopping mechanism on DDR3 devices[53]. Such a chopped
burst requires the same time as a burst of 8 words, but only transfers data during half the
time. The read and write commands have the target bank, row, and column sent as argu-
ments. The precharge command is the converse of the activatecommand, as it copies the
contents of the row buffer back into its place in the memory array. Read and write com-
mands can be issued with an auto-precharge flag, resulting inan automatic precharge
at the earliest possible moment after the transfer is completed. This has the benefit of
allowing a new arbitrary row to be opened as quickly as possible without causing con-
tention on the shared command bus. The refresh command must be issued regularly to
prevent the leaking capacitors from losing data. Multiple refresh commands are required
to refresh the entire memory array, as each individual command only refreshes a fraction
of the capacitors. However, no argument is required by this command, since an internal
counter supplies the appropriate address. All banks must beprecharged before the refresh



44 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

command is issued. The last command is the no-operation command, which is issued if
no other command is required during a cycle. Figure 3.1 illustrates the behaviors of some
of these commands.

3.1.3 Timing constraints

There are many timing constraints and parameters that decide which SDRAM commands
that can be issued during a particular cycle. The constraints are typically specified as
minimum delays between successive commands. Table 3.1 lists all relevant constraints
for our example memory. Detailed descriptions of all constraints are provided in [52,53].
The meanings of some of the constraints are illustrated in Figure 3.2, which is a valid
command sequence for our example memory. The figure shows that at leasttRRD cycles
have to pass between consecutive activates to different banks. It also shows that at least
tRCD cycles have to pass from issuing an activate command before aread or write
command is sent to the same bank. A read or a write command causes data to be sent over
the data bus duringBL/2 clock cycles with a DDR memory. This means that successive
read or write commands must be scheduled at leastBL/2 clock cycles apart to prevent a
conflict on the data bus. This is seen in the figure, where the burst length is programmed
to eight words. The first read and write data appears on the data bus a number of cycles
after the corresponding command has been issued. This time is referred to as the read
latency,tRL, and write latency,tWL, respectively. The figure shows that the read latency
is 3 cycles for our example memory.

0 0 0 0 0 0 0 0 11 1 1 1 1 1 1data

ACT
0 NOP NOP NOPACT

1 NOP 0
RD NOPNOP 1

RDcmd

≥ tRCD ≥ BL/2

≥ tRRD tRL

Figure 3.2: Example of SDRAM timing constraints.

3.2 Formal model

We proceed by introducing the formal model used in this thesis, which allows us to
formally describe some of our techniques. For simplicity, we build up this model incre-
mentally and add more content in later chapters. We start by introducing our choice of
notation. Throughout this thesis, we use capital letters (A) to denote sets, hats to de-
note upper bounds (â), and checks to denote lower bounds (ǎ). We use subscripts to
disambiguate between variables belonging to different requestors, although for clarity
these subscripts are omitted when they are not required. We useN to denote the set of



3.2. FORMAL MODEL 45

Table 3.1: List of relevant timing parameters for a 64 Mb x16 (512 Mb) DDR2-400
memory device.

Parameter Description DDR2-400
[cycles]

tRC Row cycle time. Minimum time between successive activate
commands to the same bank

11

tRCD Minimum time between activate and read/write commands on
the same bank

3

tCL CAS latency. Time after read command until first data is avail-
able on the bus

3

tWL Write latency. Time after write command until first data is avail-
able on the bus

2

tRP Minimum time between a precharge command on a bank and a
successive activate command

3

tRFC Minimum time between a refresh command and a successive
refresh or activate command

21

tRAS Minimum time after an activate command to a bank until that
bank is allowed to be precharged

8

tRTP Minimum time between a read and precharge command 2
tWR Write recovery time. Minimum time after the last data has been

written to a bank until a precharge may be issued
3

tFAW Window in which maximally four banks may be activated 10
tRRD Minimum time between activates to different banks 2
tCCD CAS to CAS command delay. Minimum time between two read

commands or two write commands
2

tWTR Internal write to read command delay 2
tREFI Average refresh interval 1560



46 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

non-negative integers, andN+ to denote the set of positive integers. Time is discrete and
counts from zero.

We start by defining the architecture of a memory in Definition3.1. This definition
is quite general and does not only describe the architectureof SDRAM, but also SRAM.
A typical SRAM architecture has a single bank, a data rate of one word per cycle, and
a burst length of one word. The clock frequency and data widthdepends on the design
in which it is used. The only timing parameter we are interested in for SRAMs is the
clock frequency. The more elaborate definition of the timingbehavior of an SDRAM is
provided in Definition 3.2.

Definition 3.1 (Memory architecture). The architecture of a memory is defined as (nbanks,
wmem, fmem, dr, BL), wherenbanks is the number of banks,wmem is the width of the data
bus in bits,fmem is the clock frequency of the memory in MHz,dr is the number of data
words that can be transferred during a clock cycle, andBL is the programmed burst
length in words.

Definition 3.2 (SDRAM timings). The timings of an SDRAM, measured in clock cycles,
are defined as (tRC , tRRD, tRCD, tRP, tREFI , tRFC , tCL, tWR, tWTR, tRL,
tWL, tRAS , tRTP, tFAW , tCCD, tCK ), where the parameters are defined according
to Table 3.1.

We proceed by adding definitions for requestors and memory requests. These enable
our discussions on memory efficiency in this chapter and the next. The memory is shared
between a set of requestors, as stated in Definition 3.3. A requestor generates a sequence
of memory requests, defined in Definitions 3.4 and 3.5, that may be either reads or writes.
These requests have variable size, as expressed by Definition 3.6. A read or a write burst
is only allowed to start at an address that is an integer multiple of the programmed burst
length. The alignment of a request is defined as the offset of the targeted address with
respect to the start of the burst, as defined in Definition 3.7.

Definition 3.3 (Set of requestors). The set of requestors sharing the memory is denoted
byR.

Definition 3.4 (Set of requests). The set of requests from a requestorr ∈ R is denoted
byΩr.

Definition 3.5 (Request). The k:th request(k ∈ N) from a requestorr ∈ R is denoted
byωkr ∈ Ωr.

Definition 3.6 (Request size (bytes)). The size of a requestωkr in bytes is given by
sbytes(ωkr ) : Ωr → N+.

Definition 3.7 (Request alignment). The alignment of a requestωkr in bytes is given by
a(ωkr ) : Ωr → N, and is defined asa(ωkr ) = α(ωkr ) mod (BL · wmem), whereα(ωkr ) is
the address ofωkr in bytes.



3.3. MEMORY EFFICIENCY 47

3.3 Memory efficiency

The offered bandwidth from a memory ideally corresponds to the product of the width
of the memory interface, the clock frequency of the memory, and the data rate. This is
referred to as thepeak bandwidth, defined in Definition 3.8. Our example DDR2-400
memory has a peak bandwidth of 800 MB/s, since it has a clock frequency of 200 MHz,
a data rate of 2 words per clock cycle, and a data bus width of 16bits. A typical SRAM
has no problems with achieving its peak bandwidth, due to itsconstant access latency.
However, SDRAMs typically cannot be fully utilized, due to stall cycles caused by the
timing constraints of the memory. This is captured by the concept ofmemory efficiency.
Memory efficiency corresponds to the fraction of cycles datais transferred to and from
the memory. A useful classification of memory efficiency intofive categories is presented
in [116]. The categories are: 1) refresh efficiency, 2) read/write efficiency, 3) bank effi-
ciency, 4) command efficiency, and 5) data efficiency. We continue by explaining each
of the categories of memory efficiency, discuss what they depend on, and try to estimate
their impact in the general case.

Definition 3.8 (Peak bandwidth). The peak bandwidth of a memory device is denoted by
bpeak, and is defined asbpeak = fmem· dr · wmem.

3.3.1 Refresh efficiency

Refresh efficiency,eref, accounts for the cycles that are lost due to refreshing the capac-
itors in the memory array. This efficiency depends on the timerequired to precharge
all banks, the time to complete the refresh command itself, and the refresh period. The
refresh command requirestRFC cycles to complete after it has been issued. The value
of this parameter is determined by the size of the memory device, as larger devices re-
quire more time to refresh. The refresh command must be issued everytREFI cycles
on average, corresponding to 7.8µs for all DDR2 and DDR3 devices at normal operat-
ing temperatures. The only uncertainty when determining refresh efficiency is the time
required to precharge all banks, which depends on the state of the memory. The refresh
efficiency can hence be estimated at design time with reasonable accuracy. Typically, the
refresh efficiency is between 95-99% for both DDR2 and DDR3 memories.

3.3.2 Read/write efficiency

SDRAMs have a bi-directional data bus that requires time to switch from read to write
and vice versa. This results in lost cycles as the direction of the data bus is being reversed.
To use the data bus of a DDR SDRAM at maximum efficiency, a read or write command
must be issued everyBL/2 cycles. We quantify the cost of switching directions as the
number of extra cycles on the command bus before the read or write command can be
issued. As an example, the cost for a read/write switch and a write/read switch using
our example DDR2-400 is 2 and 4 cycles, respectively. The read/write efficiency,erw,
depends on the number of read/write switches, which cannot typically be determined



48 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

at design time. However, a formula is presented in [116] thatcomputes the average
read/write efficiency, based on a long-term read/write ratio. As an example, the average
read/write efficiency for traffic consisting of 70% reads and30% writes withBL = 8
equals 93.8%. Note that the worst-case read/write efficiency must be considerably lower,
since a long-term read/write ratio cannot exclude that there are long intervals where there
is a switch after every single access.

3.3.3 Bank efficiency

The access time of an SDRAM is highly variable. A read or writecommand can be
issued immediately to columns in the active row. However, ifa command targets an
inactive row, it first requires a precharge followed by an activate command. This requires
at least an additionaltRP + tRCD cycles (6 for our memory) before the read or write
command can be issued. The penalty can be even larger, astRC cycles must separate
one activate command from another within the same bank, according to Table 3.1. This
overhead is captured by bank efficiency,ebank. Bank efficiency is highly dependent on
the target addresses of requests, and how they are mapped to the different rows and banks
of the memory. Therefore, it is not possible to give a generalestimate on the impact of
this efficiency.

3.3.4 Command efficiency

Even though a DDR device transfers data on both the rising andthe falling edge of the
clock, commands can only be issued once every clock cycle. Sometimes a required
activate or precharge command has to be delayed because another command is already
issued in that clock cycle. This results in lost cycles when aread or write command
has to be postponed due to a row miss. The impact of this is connected to the burst
length, as smaller bursts result in more activate and precharge commands. Command
efficiency,ecmd, is traffic dependent and can generally not be calculated at design time,
but is estimated in [116] to be between 95-100%.

3.3.5 Data efficiency

Data efficiency,edata, is defined as the fraction of a memory access that actually contains
requested data. This can be less than 100%, since SDRAM memories are accessed with a
minimum burst length; 4 words for DDR2 and 8 for DDR3 SDRAM (since four words is
only supported by chopping bursts of 8 words ). The problem isnot only related to fine-
grained requests, but also to how data is aligned with respect to a memory burst. This is
because a burst is required to accessBL words from an address that is evenly divisible by
the burst length. This is illustrated in Figure 3.3. The dataefficiency of a requestor can be
computed at design time if the minimum access granularity ofthe memory, and the size
and alignment of requests are known. For example, if requests are aligned cache lines of
128 B from an L2 cache then the data efficiency may be 100%. On the other hand, [116]
computes a data efficiency of 75% for an MPEG2 stream. However, the overall data



3.3. MEMORY EFFICIENCY 49

efficiency of the memory depends on how many requests from a particular requestor that
is scheduled in an interval, which is determined by the arbiter and may hence depend on
traffic.

3.3.6 Gross and net efficiencies

Having discussed all categories of memory efficiency, we proceed by distinguishing two
different types of the concept. Definition 3.9 definesgross memory efficiencyas the
product of all categories memory efficiency, excluding dataefficiency. This metric hence
does not care if the data on the bus is wanted by any of the requestors or not.Gross
bandwidth, defined in Definition 3.10, hence accounts for all data that passes the data
bus in an interval. This metric is primarily relevant if the data efficiency is unknown or
uninteresting. Note that all categories of gross memory efficiency are traffic dependent,
making it very difficult to determine the gross bandwidth at design time in the general
case.

Definition 3.9 (Gross memory efficiency). Gross memory efficiency is denoted byegross,
and is defined asegross = eref · erw · ebank · ecmd.

Definition 3.10(Gross bandwidth). The gross bandwidth of a memory device is denoted
by bgross, and is defined asbgross = bpeak· egross.

Definition 3.11 definesnet memory efficiencyas the product of all categories of mem-
ory efficiency, thus including data efficiency. This hence corresponds to the fraction of
clock cycles with useful data requested by a requestor on thedata bus. Net memory
efficiency is used to determine thenet bandwidthprovided by the memory controller,
defined in Definition 3.12. Net bandwidth is an important concept, since the bandwidth
requirements of the requestors have to be satisfied according to this definition of band-
width, as stated in Definition 3.13. This implies that the netbandwidth allocated to the
requestor in the memory controller, defined in Definition 3.14, must be at least equal to
the requested bandwidth.

Definition 3.11 (Net memory efficiency). Net memory efficiency is denoted byenet, and
is defined asenet = eref · erw · ebank · ecmd · edata.

Definition 3.12 (Net bandwidth). The net bandwidth of a memory device is denoted by
bnet, and is defined asbnet = bpeak· enet.

Definition 3.13 (Requested bandwidth). The net bandwidth, expressed in MB/s, of a
requestorr ∈ R is denoted bybr.

word
wasted

word
requested

Figure 3.3: Two bursts of 8 words are required to read or write8 words that are mis-
aligned.



50 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

Definition 3.14(Allocated bandwidth). The allocated net bandwidth, expressed in MB/s,
of a requestorr ∈ R is denoted byb′r.

3.3.7 Memory efficiency trend

An interesting trend in SDRAMs is that the actual timing behavior does not change much
between generations. This trend is clearly visible if the timing constraints, measured in
nanoseconds, are compared between newer and older memories. However, newer memo-
ries are clocked at higher and higher frequencies, resulting in that the timing constraints,
measured in clock cycles, are increasing. We illustrate this point in Table 3.2 by com-
paring the timings of the slowest DDR2 memory (DDR2-400) to the fastest considered
DDR3 memory (DDR3-1600) in both nanoseconds and clock cycles. We note that the
activate-to-activate delay for a bank,tRC , is reduced with 10 ns for the DDR3-1600,
corresponding to a reduction of about 20%. However, the samedelay measured in clock
cycles is more than 3 times larger than for the DDR2-400! We note that similar trends are
visible for the other timing parameters. The bottom line of this trend is that the fraction
of time lost due to memory access overhead increases with clock frequency. It hence
follows from Amdahl’s law [11] that the memory efficiency of SDRAMs is decreasing
over time. We will experimentally demonstrate this trend inSection 4.7.

Table 3.2: Comparison of timing constraints in nanosecondsand clock cycles for a
DDR2-400 and a DDR3-1600.

DDR2-400 DDR3-1600
Constraint [ns] [cc] [ns] [cc]
tRC (ACT-ACT same bank) 55 11 45 36
tRRD (ACT-ACT diff. banks) 7.5 2 6 5
tRCD (ACT-RD/WR) 15 3 10 8
tRP (PRE-ACT) 15 3 10 8

3.4 Memory controllers

There exists a large number of memory controller designs with different features. How-
ever, most memory controllers consist of the same basic building blocks. In this section,
we present an overview a general SDRAM controller design. Such a controller can be
partitioned into two parts: a front-end, and a back-end, as illustrated in Figure 3.4. The
front-end is memory independent and primarily buffers incoming requests, schedules
access to the back-end, and returns responses. It hence works on the granularity of trans-
actions. The back-end, on the other hand, is dependent on thememory device and needs
to be replaced, modified, or reprogrammed if the memory changes. The back-end is pri-
marily responsible for the translation between the protocol of the requestors and that of
the memory. The back-end of an SDRAM controller hence works with both requestor



3.4. MEMORY CONTROLLERS 51

transactions and SDRAM commands. There four main building blocks in an SDRAM
controller: 1) a bus and arbiter, 2) a command generator, 3) amemory map, and 4) a
data path. The bus and arbiter are located in the front-end, while the command generator
and memory map are in the back-end. The data path goes throughboth the front-end
and the back-end. We proceed by describing the function of the three first blocks and
explain some important design options that impact important characteristics of the con-
troller, such as the provided net bandwidth and latency. Thedata path is a necessary part
of the controller, but we do not discuss it further, since there are no interesting design
considerations that are relevant to this work. We keep an open mind in this section and
discuss options without making any decisions for our own design. These decisions are
postponed until Chapter 4 when we present our predictable SDRAM back-end.

Logical
Address(es)

Scheduled
Request(s)

Physical
Address(es)

SDRAM
Commands

Arbiter
Bus &

Map
Memory

Generator
Command

S
D

R
A

M

Requestor
Transactions

Requestor
Transactions

Back−end

Data path

Front−end

Command

Address

Data

Req
Read

ACT

Figure 3.4: The most important building blocks of a general SDRAM controller.

3.4.1 Bus and arbiter

The bus is responsible for funneling arriving requests intothe back-end according to the
policy of the attached arbiter. The arbiter can work in a variety of ways, but typically
makes decisions based on bandwidth and latency requirements of the requestors. We cat-
egorize arbiters into static and dynamic, depending on if the scheduling is done at design
time or at run time. The main advantage of computing a static schedule at design time
is that the maximum number of interfering requests can be bounded by examining the
schedule, making the arbitration predictable. The disadvantage is that they cannot han-
dle latency-critical requestors or requestors with small bandwidth requirements without
wasting bandwidth. The reason for this wasted bandwidth is that static front-end arbiters
suffer from the couplings between allocation granularity,latency, and rate, previously
described in Section 2.1.3. The increasing number of use-cases in contemporary systems
furthermore causes difficulties with static arbiters. Multiple use-cases are supported by
precomputing and storing a separate schedule per use-case.This may take a long time to



52 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

compute and require a significant amount of space to store if the number of use-cases is
large.

Dynamic front-end arbiters make scheduling decisions at run time, allowing them
to use information that is not available at design time. Thismakes them more flexi-
ble, but also more difficult to analyze. Useful bounds on latency have not been suc-
cessfully derived for many dynamic arbiters, making them unpredictable according to
our definition. The three types of arbiters presented in Section 1.1.3, Time-Division
Multiplexing (TDM), round robin, and static-priority scheduling, are all examples of
front-end arbiters, since scheduling is done at run time. However, TDM has many prop-
erties of static arbitration, since it is based on a schedulethat is computed at design
time. We elaborate further on front-end arbitration in Chapter 5 when introducing our
Credit-Controlled Static-Priority (CCSP) and in Section 8.1 when discussing its related
work.

3.4.2 Command generator

The command generator is responsible for generating and scheduling SDRAM com-
mands, such that no timing constraints of the SDRAM are violated. Just like front-end
arbiters, command generators can be classified as either static or dynamic, depending on
how the scheduling is done. A command generator that uses static scheduling simply
issues a schedule of SDRAM commands that is precomputed at design time. The com-
mand generator is hence a very simple block that does not haveto be aware of the state of
the memory, since this becomes the responsibility of the tooling that computes the sched-
ules. These command generators are predictable, since the time to serve a request and the
provided gross bandwidth can be derived from the schedule atdesign time. However, the
precomputed schedule makes these controllers unable to adapt to changes in traffic. This
limits the applicability to requestors with regular accesspatterns, where the request sizes
and read/write ratio do not change during a use-case. Just like in the case of front-end
arbitration, static command scheduling implies that a different SDRAM schedule has to
be computed and stored for every use-case.

A command generator that uses dynamic scheduling generatesthe required SDRAM
commands for the memory requests sent to the back-end and schedules them according to
some algorithm. A common goal is to schedule the commands to maximize gross band-
width and provide low latency to critical requestors. To achieve high efficiency, requests
are often scheduled out of order, depending on how they fit with the state of the mem-
ory. Requests that address open rows may hence be preferred over requests that target
closed rows to reduce overhead. Similarly, reads or writes may be preferred depending
on the current direction of the data bus. Most dynamic command generators address re-
quirements of latency critical requestors by incorporating priorities into the scheduling
algorithm, thereby decoupling latency and rate. It is important that command genera-
tors that use dynamic scheduling closely tracks of the stateof the memory, such that no
timing constraints are violated. The particular timings ofthe target memory device are
often programmed into registers, allowing a single commandgenerator to be used with
many different SDRAM devices. Dynamic command scheduling is clearly more compli-



3.4. MEMORY CONTROLLERS 53

cated that the static counterpart, both conceptually and interms of hardware, but it also
gives many additional degrees of freedom. This approach automatically adapts to the in-
coming requests and can hence handle input-dependent applications. It does furthermore
not require reconfiguration between use-cases. While dynamic command generation and
scheduling has many advantages, it is not without its share of disadvantages. The in-
creased flexibility may increase the provided bandwidth andreduce latency, but at the
expense of predictability. The provided net bandwidth and latencies are typically not
bounded, due to the complex interactions between differentmechanisms, and have to be
estimated by simulation. This makes it difficult to satisfy requestor requirements, since
the bandwidths and latencies have to be reevaluated every time a requestor is added,
removed, or changes behavior.

3.4.3 Memory map

A memory map provides a translation from the logic memory addresses used by the
requestors to the physical address (bank, row, column), used by the memory device.
There are many possible memory mappings and the choice impacts important properties
of the memory, such as the average and worst-case offered bandwidths and latencies. We
proceed by discussing two commonly used memory maps and highlight their respective
advantages and disadvantages.

Continuous memory map

A continuous memory map maps a sequential address space to successive elements in a
single row in a single bank. Thus, the same row is accessed over and over again until the
end of the row is met. At this point, the mapping switches to a new bank. When there are
no more banks, the next access maps to the next row in the first bank. This is illustrated
in Figure 3.5, where a five-bit logical address space is mapped to a toy memory with
four banks, two rows, and four columns. The figure also shows which bits in the logical
address are used to index the bank (B), row (R), and column (C), respectively.

00 01 10 11

0

1

0 1 2 3

16 17 18 19

00 01 10 11

0

1

4 5 6 7

20 21 22 23

00 01 10 11

0

1

8 9 10 11

24 25 26 27

00 01 10 11

0

1

12 13 14 15

28 29 30 31

Column

Row

Bank 00 Bank 01 Bank 10 Bank 11

Physical Address

Logical Address 4 3 2 1 0

B[1] C[0]C[1]B[0]R[0]

Figure 3.5: Illustration of a continuous memory map.

The best case for a continuous memory map is demonstrated in Figure 3.6 for a
single requestor that reads four bursts withBL = 4 from a sequential address space



54 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

using our example DDR2-400 memory. First, an activate command is issued to open the
appropriate row. Then, the requestor reads all four bursts from the same row without any
need to activate or precharge. When the requestor reaches theend of the row, an activate
command is sent to a row in the next bank. If the request requiring access to this bank is
presented early enough, the bank activation can be done in the background, completely
or partially hiding the overhead. This results in a bank efficiency close to 100%.

0 1 2 3 4 5 6 87 9cycle

ACT
0 NOP NOP 0

RD NOP 0
RD NOP 0

RD NOP 0
RDcmd

Figure 3.6: Best case for a requestor reading sequential addresses using a continuous
memory map.

The worst case for this memory map, or any other memory map forthat matter, is
when successive bursts target different rows in the same bank. This requires an activate
and a precharge command to be issued for every access, as shown in Figure 3.7. The
activate-to-activate timing constraint for a single bank,tRC , is quite long, resulting in
significantly increased latency. This is seen in Figure 3.7,where the time required to
issue four memory bursts is 37 clock cycles, as opposed to the10 clock cycles in the best
case. This shows that memory efficiency is highly dependent on spatial locality, and is
very high in the best case, but very poor in worst case.

0 1 2 3cycle 11 12 13 14 22 23 24 25 33 35 3634

7 cyclesACT
0 NOP NOP 0

RD ACT
0 NOP NOP 0

RD 7 cycles ACT
0 NOP NOP 0

RD 7 cycles ACT
0 NOP NOP 0

RDcmd

Figure 3.7: Worst-case for a requestor reading sequential addresses using a continuous
memory map.

One technique to prevent requestors from ruining each other’s spatial locality is to
partition them to different banks. In this case, each requestor gets exclusive access to one
or more memory banks, depending on their required storage capacity, resulting in that
their potential spatial locality is preserved. However, a problem with this approach is that
it is only guaranteed to work if there is maximally one requestor per bank. Otherwise, the
risk of interference between requestors reappears. Since the number of banks is limited
to four or eight, this becomes a significant restriction.

Serving larger requests in a non-preemptive manner is another method of improving
worst-case efficiency. Figure 3.8 shows the worst case for requests consisting of four
bursts to sequential addresses that are served non-preemptively. In this case, every re-
quest targets a different row in the same bank, thus requiring a precharge and an activate
for every four bursts. This causes the sequence in the figure to be repeated for every
request, resulting in a bank efficiency of8/14 = 57%. The bank efficiency increases
with the size of the request as there are more cycles with datatransfer to amortize the
overhead cycles.



3.4. MEMORY CONTROLLERS 55

0 1 2 3 4 5 6 87 9cycle 10 11 12 13

ACT
0 NOP NOP 0

RD NOP 0
RD NOP 0

RD NOP 0
RD NOP PRE

0 NOP NOPcmd

Figure 3.8: Worst-case command sequence for a request consisting of four bursts using
a continuous memory map.

Interleaved memory map

An interleaved memory map is an alternative approach to memory mapping. This map-
ping sends sequential bursts in the logical address space todifferent banks. Once all
banks have been accessed, bursts are mapped to the followingcolumns in the same rows,
until the rows are full. At this time, the interleaving continues over the next rows. This
is illustrated in Figure 3.9, where bursts of size two are interleaved over the banks.

00 01 10 11

0

1

0 1

17

00 01 10 11

0

1

00 01 10 11

0

1

00 01 10 11

0

1 30 31

Column

Row

Bank 00 Bank 01 Bank 10 Bank 11

2 3 4 5 6 7

16

8 9 10 11 12 13 14 15

18 19 20 21 22 2324 25 26 27 28 29

Physical Address

Logical Address 4 3 2 1 0

C[0]R[0] B[0]B[1]C[1]

Figure 3.9: Illustration of an interleaved memory map.

The best case for an interleaving memory map is shown in Figure 3.10, where a
number of sequential reads with auto-precharge are issued.Just like for the continuous
memory map, the best case is very efficient and also requires 10 cycles to issue four
read commands. The worst case with an interleaving memory map exactly the same
as for the continuous memory map, previously shown in Figure3.7, and happens when
every burst accesses different rows in the same bank. However, the two memory maps
behave differently in the worst case if requests are larger than a single burst and are
served non-preemptively. In this case, a single NOP commandis added to the end of
the sequence in Figure 3.10 to satisfy the activate-to-activate constraint,tRC , for bank
0. The latency to precharge the banks is hidden by the accesses to the other banks.
This results in a worst-case bank efficiency of8/11 = 73%, which is higher than the
57% provided by the continuous memory map. In fact, an interleaving memory map
always provide equal or higher worst-case bank efficiency than its continuous counter
part, since it exploits bank parallelism. However, a drawback of this memory map is that
interleaving over the banks causes more activate and precharge commands to be issued.
Both of these commands consume a considerable amount of power [70, 71], resulting



56 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS

in that the total power consumption of the memory device may be higher than with the
continuous alternative.

0 1 2 3 4 5 6 87 9cycle

ACT
0 NOP 0

RDACT
1 1

RD
2

RD NOP 3
RDACT

2
ACT

3cmd

Figure 3.10: A requestor reading sequential addresses using an interleaved memory map.

3.5 Summary

Synchronous Dynamic RAM (SDRAM) memories are commonly usedas off-chip back-
ground memory in contemporary systems, since they provide high storage capacities
and reasonable bandwidths at low cost. Many current platforms use Double-Data-Rate
(DDR) SDRAM that transfer data elements on both the rising and falling edges of the
clock, effectively doubling the bandwidth over its predecessors. This work considers
DDR2 and DDR3 SDRAM memories, which are the second and third generations of
DDR SDRAM, respectively. These memories are specified from 200 to 800 MHz. The
architecture of an SDRAM consists ofbanks, rows, andcolumns. Current SDRAM mem-
ories have either 4 or 8 banks, which are essentially independent memories, but with
shared data, command, and address buses to reduce the numberof off-chip pins.

The SDRAM protocol consists of six commands:activate, read, write, precharge,
refreshandno-operation. The activate command opens a row in the memory array and
stores it in a row buffer. Once the requested row is opened, read and write commands
can be issued to access the columns in the row buffer. These bursts have a length of
either 4 or 8 words. The precharge command is the converse of the activate command,
as it copies the contents of the row buffer back into its placein the memory array. Read
and write commands can be issued with anauto-prechargeflag, resulting in an automatic
precharge at the earliest possible moment after the transfer is completed. A DRAM cell
stores a bit as a charge in a capacitor. To prevent data from being lost due to leakage, a
refresh command must be issued regularly to recharge the capacitor. The last command
is the no-operation command, which is issued if no other command is required during a
cycle. There are manytiming constraintsthat decide which SDRAM commands that can
be issued during a particular cycle. These constraints are typically specified as minimum
delays between successive commands of different types.

Thepeak bandwidthprovided by a memory is determined by the width of its inter-
face, the clock frequency, and the data rate. However, SDRAMmemories cannot achieve
this bandwidth due to overhead caused by the timing constraints. This is captured by the
concept ofmemory efficiency, which is the fraction of the time that the memory controller
transfers data. Memory efficiency can be classified into five categories that account for
different types of overhead: 1)refresh efficiency, 2) read/write efficiency, 3) bank effi-
ciency, 4) command efficiency, and 5)data efficiency. All of these categories are traffic
dependent for SDRAM and very difficult to bound at design timein the general case.



3.5. SUMMARY 57

Gross memory efficiencyis the product of the first four categories of memory efficiency.
Multiplying this number with the peak bandwidth determinesthegross bandwidth, which
considers all data that is sent over the data bus of the memory. Similarly, net memory ef-
ficiencyis the product of all categories of memory efficiency. Multiplying this with the
peak bandwidth computes thenet bandwidth, corresponding to the data sent over the data
bus that is requested by any of the requestors.

A typical SDRAM controller has three main building blocks:arbiter, command gen-
erator, andmemory map. The arbiter schedules one or more requests. The command
generator generates the appropriate SDRAM commands for thescheduled requests. It
also schedules these commands, such that no timing constraints of the memory are vio-
lated. The arbiter and command generator either usestaticor dynamic scheduling. The
advantage of static scheduling is predictability, but it isalso less flexible than its dynamic
counterpart, resulting in longer latencies and lower memory efficiency. The memory
map translates the logical addresses used by the requestorsto physical addresses, being
the targeted bank, row, and column. Two common ways of doing this is using either a
continuousor an interleaved memory map. An interleaved memory map offers better
worst-case bank efficiency than a continuous memory map, as it exploits bank paral-
lelism. However, this benefit comes at the expense of increased power consumption.



58 CHAPTER 3. SDRAM MEMORIES AND CONTROLLERS



CHAPTER 4

Predictable SDRAM back-end

Designing a predictable SDRAM controller is challenging. Traditional approaches are
based on static scheduling of requests and SDRAM commands. This makes them un-
suitable for many applications in contemporary System-on-Chips (SoCs), as they are
getting increasingly input dependent and have diverse bandwidth and latency require-
ments. However, the timing constraints of SDRAM memories make it difficult to sup-
port dynamic behavior, since it results in that net bandwidth and latencies become traffic
dependent and hard to bound at design time. This chapter starts with an overview of
our predictable memory controller in Section 4.1 by discussing our decisions between
static and dynamic arbitration and command generation, andbetween continuous and
interleaved memory maps. The rest of this chapter focuses onthe SDRAM back-end,
saving the front-end arbitration for Chapter 5. After the overview, Section 4.2 intro-
duces memory patterns, which are a key concept to achieve predictability with SDRAM
in our approach. We then show how these patterns enable us to bound gross bandwidth
and latency in Section 4.3 and Section 4.4, respectively. Next, three approaches to au-
tomatic memory pattern generation, each offering a different trade-off between memory
efficiency and run time, are presented in Section 4.5. The architecture and synthesis
results of our SDRAM back-end are discussed in Section 4.6, before we experimentally
evaluate it in Section 4.7. Lastly, we conclude the chapter with a summary in Section 4.8.

4.1 Overview of predictable SDRAM controller

We learned from our discussion about memory controllers in Section 3.4 that there are
many important design decisions to be made when making a new design, and the right
choices are determined by the goals of the design. We are developing a predictable

59



60 CHAPTER 4. PREDICTABLE SDRAM BACK-END

SDRAM controller, and we mentioned in Section 2.1.1 that ourapproach is based on
combining memories and arbitration that are predictable inthemselves. The motiva-
tion for this decision is that it allows us to combine different memories and arbiters,
and abstract from the diversity of memory controllers foundin contemporary SoCs. To
consider the memory predictable, we require useful bounds on both net bandwidth and
the time to serve a scheduled memory request. The predictable arbitration accounts for
resource sharing, and here we require a useful bound on the number of interfering mem-
ory transactions. Together, these requirements allow us todetermine the behavior of a
shared memory. In the light of these requirements, we proceed by looking into the design
choices made for each of the three major functional blocks inan SDRAM controller.

4.1.1 Arbitration

Our first design decision involves choosing between static and dynamic (front-end) arbi-
tration. We highlighted predictability as a feature of static arbiters in Section 3.4.1. How-
ever, we also mentioned that these arbiters cannot satisfy the requirements of latency-
critical requestors, or requestors with low bandwidth requirements without wasting band-
width. We explained in Section 1.1.6 that we consider requestors with these requirements
in this work, and that SDRAM bandwidth is a scarce resource that cannot be wasted. We
hence decide to use dynamic arbitration for our predictablememory controller design.
However, we also mentioned that all dynamic arbiters are notpredictable, which re-
quires us to further reduce the design space. For the reasonsexplained in Section 2.2, we
choose to limit ourselves to dynamic arbiters in the class ofLatency-Rate (LR) servers,
which is a subset of predictable dynamic arbiters. In combination with a predictable
memory, these arbiters guarantee a requestor a minimum bandwidth, b′, after a max-
imum service latency,Θcc, thus providing a lower bound on service in an interval of
arbitrary length. The class contains many well-known arbiters, such as Weighted Round-
Robin [57], Deficit Round-Robin [98], and several varietiesof Fair Queuing [119], suit-
able for a wide range of requestor requirements. We discuss this further when introducing
the Credit-Controlled Static-Priority arbiter in Chapter5.

4.1.2 Command generator

After deciding to use dynamic arbiters in the class ofLR servers to satisfy our require-
ment on predictable arbitration, we continue by making the memory behave in a pre-
dictable manner. We start this process by considering the options of static and dynamic
command generation and scheduling. We require useful bounds on the amount of net
bandwidth and the time to serve a scheduled memory request. This requirement fits well
with the properties of a static command generator. However,many applications in our
considered application domains are too dynamic and input dependent to fit with a static
schedule. On the other hand, dynamic command generators typically prove too compli-
cated to analyze. We hence decide to take a middle ground and develop a hybrid approach
that combines aspects of static and dynamic command generation and scheduling. We
use predictable memory patterns, which are precomputed sequences of commands for



4.2. MEMORY PATTERNS 61

read accesses, write accesses, read/write switches, and refresh operations, respectively.
These short patterns are then dynamically scheduled by the command generator depend-
ing on whether the scheduled request is a read or a write, or ifit is time to refresh. We
hence reduce the problem of scheduling memory commands to the problem of scheduling
memory patterns, which is an easier problem, since patternshave much fewer constraints
determining when they can be scheduled. The hybrid approachstill has the benefit of
being predictable, since the rules for how the patterns can be dynamically combined are
relatively straight-forward. The command generator can bekept simple, since the pat-
terns are constructed at design time to prevent timing violations for all valid dynamic
combinations. We support an increased level of dynamism compared to fully static ap-
proaches, since the decision to schedule a read, a write or a refresh is done at run time.
Lastly, the problem of computing and storing schedules is reduced, since we only have
to compute and store patterns, which are a small number of short sub-schedules.

4.1.3 Memory map

Our choice to use a hybrid approach for the command generatormeans that bandwidth
and latency can be bounded at design time. The next step is to choose a suitable memory
map to make the bounds as useful as possible. The properties of the interleaved memory
map provides a closer fit with our requirements, since the bound on gross bandwidth is
higher than that of a continuous memory map. However, it dissipates more power than
a continuous memory map, since activates and precharges contribute significantly to the
power consumed by the memory device. We accept this drawbackwith the motivation
that we are providing the first predictable memory controller of its kind, and even though
reducing power consumption is an important goal in embeddedsystems, it is not one of
the main goals addressed in this thesis. However, we recognize this as important future
work to enable predictable memory controllers in portable devices.

4.2 Memory patterns

After motivating the design choices for our predictable memory controller, we explain
the details of the SDRAM back-end. We start by discussing thepredictable memory
patterns with interleaving memory accesses. The command generator uses a set of pre-
dictable memory patterns, consisting of five patterns sorted into two groups. The read
and the write pattern constitute the first group calledaccess patterns. The name of the
group reflects that these patterns are the only ones that access the row buffers and mod-
ify the contents of the memory. The second group, calledauxiliary patterns, contains a
read/write switching pattern, a write/read switching pattern, and a refresh pattern. These
patterns do not access the contents of the memory, but are required to give the data bus
time to switch direction, and to prevent the memory from loosing data.



62 CHAPTER 4. PREDICTABLE SDRAM BACK-END

4.2.1 Scheduling rules

The scheduling rules determine how the memory patterns may be dynamically combined
by the command generator. These important rules impose requirements on the construc-
tion of the patterns, and affect the worst-case latency and gross/net bandwidth. Our ap-
proach uses five scheduling rules: 1) Memory patterns are scheduled in a non-preemptive
manner, which means that a pattern that has been issued cannot be stopped until it has
finished. This rule restricts scheduling towork on the granularity of patterns, as opposed
to SDRAM commands, greatly simplifying both scheduling andanalysis. 2) A read or
a write pattern can be scheduled immediately after itself, or when the memory is idle.
This rule makessuccessive read and write transactions independent of eachother, fur-
ther simplifying analysis. 3) A write pattern following a read pattern must be preceded
by a read/write switching pattern. Similarly, a read pattern following a write pattern must
be preceded by a write/read switching pattern. Combined with the first and second rules,
thisbounds the interference that can carry over from one memory transaction to another.
It is possible to build enough time into the read and write patterns to allow them to repeat
after each other arbitrarily [105]. However, this is equivalent to enforcing a read/write
switch after every access pattern, which may unnecessarilyincrease latency and waste
bandwidth. 4) A read or a write pattern can be scheduled immediately after a refresh pat-
tern. This follows from that the refresh command leaves all banks in a precharged state,
suitable for both read and write patterns. 5) A refresh pattern will only be scheduled after
a read pattern, a write pattern, another refresh pattern, orif the memory is idle. Techni-
cally, it would be possible to schedule a refresh also after aswitching pattern, but it does
not make sense to spend time switching direction and then schedule a refresh pattern,
which can be followed by either a read or a write pattern regardless.

4.2.2 Pattern descriptions

We now present the structure of the different patterns in a pattern set. There are many
possible patterns for each memory device that implement this structure. For now, we
keep the discussion general and consider any patterns of thedifferent types that satisfy
the scheduling rules and do not violate the timing constraints of the memory device.
We refer to these patterns asvalid patterns. We return in Section 4.5 to discuss how to
construct valid patterns that are efficient.

We have chosen to use an interleaving memory map for our design. This means that
read and write accesses to successive logical addresses mapto the different banks in
sequence with a granularity of one or more SDRAM bursts. The second scheduling rule
in Section 4.2.1 states that successive access patterns of the same type must be completely
independent of each other. It is hence not possible to assumethat the correct rows are
open in any of the banks, so an access pattern must contain oneactivate command and
one precharge command for each bank. The pattern also contains a fixed number of
SDRAM bursts to every bank. The number of SDRAM bursts is a pattern parameter
and is referred to as theburst count, defined in Definition 4.1. The example access
patterns in Figure 2.3 have a burst count of one, since there is only a single SDRAM



4.2. MEMORY PATTERNS 63

burst per bank in the patterns. The reason for having a burst count larger than one is
that a single burst to each bank requiresBL/2 · nbanks clock cycles to complete. This
number may be less thantRC , which is the minimum activate to activate delay for a
bank and hence the minimum length of an access pattern that can be repeated after itself.
Increasing burst count addresses this problem by increasing the number of cycles that
data is transferred during a pattern. However, increasing the burst count also increases
the access granularity of the memory, defined in Definition 4.2. More data hence has to
be read or written on every access and requests smaller than the access granularity of the
pattern are masked or padded to fit. This choice might sound severe, but it is important
to realize that no SDRAM controller performs well in the worst case with small memory
transactions, due the inherent uncertainty of SDRAM memories. Different approaches
push this uncertainty in different directions to put it where it does not interfere with the
goals of the design. Our goal is to make a predictable SDRAM controller, so we push this
uncertainty into data efficiency where it can be quantified atdesign time, allowing us to
bound the net bandwidth. The impact of this decision becomesapparent when bounding
memory efficiency in Section 4.3 and when computing net bandwidth for some example
memories in Section 4.7.

Definition 4.1 (Burst count). The burst count of an access pattern is denoted byBC ,
and is defined as the number of SDRAM bursts per bank in the pattern.

Definition 4.2 (Access granularity). The access granularity in bytes of an access pattern
is denoted byg, and is defined asg = BC · BL · nbanks· wmem.

The switching patterns are used to provide sufficient time for the SDRAM to reverse
the direction of the data bus. These patterns only consist ofNOP commands, and the
length is determined by the minimum number of cycles required between read and write
commands, which are defined by the specification of the memorydevice. Note that it is
possible to have switching patterns with a length of zero cycles if the distance between
the last read of a read pattern and the first write of a write pattern, or the other way
around, is already sufficient.

The refresh pattern contains a single refresh command, preceded and succeeded by a
number of NOPs. There have to be enough NOPs before the refresh command to allow
all banks to auto-precharge after the last read or write pattern. After the refresh command
is issued, there have to be at leasttRFC NOPs to allow the refresh operation to complete
before the next pattern is issued.

We conclude our discussion about the general structure of memory patterns by for-
mally defining memory patterns and pattern sets in Definition4.3 and Definition 4.4,
respectively. Definition 4.4 considers the lengths of the patterns in the set, corresponding
to the number of commands in the pattern. One command is issued by the memory con-
troller per clock cycle, which implies that the time to issuea pattern is known at design
time. This information is required to bound the bandwidth and latencies provided by the
memory controller.



64 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Definition 4.3 (Memory pattern). A memory pattern is defined as a sequence of SDRAM
commands in {ACT, RD, WR, PRE, REF, NOP}. The number of commands in the pattern
is referred to as the length of the pattern.

Definition 4.4 (Pattern set). A pattern set is defined as (tread, twrite, trtw, twtr, tref), where
the parameters correspond to the lengths of the read pattern, the write pattern, the
read/write switching pattern, the write/read switching pattern, and the refresh pattern,
respectively.

4.2.3 Pattern set dominance

Before bounding the gross/net bandwidth or latency for a given pattern set, we must
determine which sequence of patterns produces the worst results. There are four different
possibilities, depending on the relations between the lengths of the patterns in the set.
We hence sort pattern sets into four classes: read-dominant, write-dominant, mix-read-
dominant, or mix-write-dominant. We proceed by defining these classes and show how
to compute the dominance of a pattern set.

A pattern set is classified asread-dominantwhen the read pattern is longer than the
write pattern and both the switching patterns put together.This is formally defined in
Definition 4.5 and illustrated in Figure 4.1a. In this case, the lowest bandwidth and
longest latency occurs when all interfering transactions are reads, i.e. when only read
patterns and an occasional refresh pattern are issued. Conversely, a pattern is considered
write-dominantif the write pattern is longer than the combined lengths of the read pattern
and both the switching patterns. This case is defined in Definition 4.6, and an example is
shown in Figure 4.1b. It follows by the earlier reasoning that the worst-case bandwidth
and latency for a write-dominant pattern set occurs when allinterfering requests are
writes, resulting in that only write patterns and refresh patterns are issued. Pattern sets
that are neither read-dominant nor write-dominant are referred to asmix dominantsets,
defined in Definition 4.7. For these sets, the worst-case bandwidth and latency is provided
when interfering requests alternate between reads and writes, causing as many switches
as possible. The definitions of the dominance classes are allexpressed in terms of the
read pattern to clearly show that the classes are mutually exclusive and jointly exhaustive.

Definition 4.5 (Read-dominant pattern set). A pattern set is defined as read-dominant iff
tread> twrite + twtr + trtw.

Definition 4.6 (Write-dominant pattern set). A pattern set is defined as write-dominant
iff twrite > tread + twtr + trtw, which is equivalent totread< twrite − twtr − trtw.

Definition 4.7 (Mix-dominant pattern set). A pattern set is defined as mix-dominant iff
twrite − twtr − trtw ≤ tread≤ twrite + twtr + trtw.

The division into three dominance classes is sufficient to bound net bandwidth. How-
ever, to accurately determine worst-case latency, mix-dominant pattern sets are further
subdivided into two categories:mix-read-dominantandmix-write-dominantsets. The
reason is that we need to know if an odd number of interfering requests result in more



4.2. MEMORY PATTERNS 65

ReadReadRead

R/W Write W/R

(a) A read-dominant pattern set.

W/R Read R/W

Write

(b) A write-dominant pattern set.

R/W

W/R

Write

Read

(c) A mix-read-dominant pattern set.

R/W

W/R Read

Write

(d) A mix-write-dominant pattern set.

Figure 4.1: Example pattern sets illustrating the four different dominance classes.

read patterns or write patterns in the worst case. A mix-read-dominant pattern set corre-
sponds to a mix-dominant set in which the lengths of the writeto read switching pattern
and the read pattern is greater than or equal to that of the read to write switching pat-
tern and the write pattern. Otherwise, the pattern set is mix-write-dominant. Mix-read-
dominant and mix-write-dominant pattern sets are formallydefined in Definition 4.8 and
Definition 4.9, respectively. The corresponding example pattern sets are illustrated in
Figure 4.1c and Figure 4.1d.

Definition 4.8 (Mix-read-dominant pattern set). A mix-dominant-pattern set is defined
as mix-read-dominant ifftwtr + tread≥ trtw + twrite, which is equivalent totread≥ twrite−
twtr + trtw.

Definition 4.9 (Mix-write-dominant pattern set). A mix-dominant pattern set is defined
as mix-write-dominant ifftrtw + twrite > twtr + tread, which is equivalent totread< twrite−
twtr + trtw.

Having defined all four dominance classes, we illustrate their relation in Figure 4.2.
The figure shows how the dominance class of a pattern changes as tread is scaled up and
down while keepingtwrite, twtr, andtrtw fixed.

Write−
dominant

Mix−write−
dominant

Mix−read−
dominant

Read−
dominant

twrite − twtr + trtw

twrite − twtr − trtw twrite + twtr + trtw

tread + +tread −−

Figure 4.2: Illustration of how the dominance class of a pattern set changes astread is
incremented or decremented.



66 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Bursts /
Banks

Read Refresh Write W/R Read R/W Write

0 2 31

R/W

10 0 2 31 2 3

Patterns

Time

32 0 1

Figure 4.3: A sequence of patterns and corresponding bursts.

4.3 Memory efficiency bound

We have now introduced the concept of predictable memory access patterns and learned
how to categorize pattern sets into different dominance classes, based on the situation
that triggers the worst-case bandwidth and latency. We now have all the necessary in-
gredients to lower bound the memory efficiency for all classes of pattern sets, which
is an important step towards creating a predictable memory controller. We proceed by
walking through each of the efficiency categories presentedin Section 3.3 and show
how predictable memory patterns allow them to be bounded. Weillustrate the effects
of cumulatively bounding the efficiencies using a running example. Figure 4.3 shows
the starting point of this example, which is a sequence of patterns and their associated
SDRAM bursts. The gray bursts are the useful bursts that are transferred to and from
the requestors. The black bursts correspond to data that is not explicitly requested by the
requestors, but is provided anyway due to the minimum accessgranularity of the patterns.

4.3.1 Refresh efficiency

We explained in Section 3.3.1 that the refresh efficiency depends on the time to precharge
all banks and execute a refresh command, and the refresh period. We mentioned that
the difficulty with accurately bounding refresh efficiency is to know how long it takes to
precharge all banks, since this depends on the state of the memory. This problem is solved
in our approach by accounting for the time to precharge all banks by inserting NOPs
before the refresh command in the refresh pattern. The length of the refresh pattern,tref,
hence accounts for all time lost due to refresh operations.

The refresh period is controlled by a timer that triggers every tREFI clock cycles
(corresponding to 7.8µs for all DDR2 and DDR3 memories). At this point, the mem-
ory controller prepares to schedule a refresh pattern. However, the scheduling rules state
that a refresh pattern can only be issued after a read or writepattern has finished. The
longest blocking time,tblock, before a refresh pattern can be issued is hence determined
by the largest sum of a write/read switching pattern and a read pattern, and a read/write
switching pattern and a write pattern. This is expressed in Equation (4.1), which is inde-
pendent of the dominance class of the pattern set. A refresh pattern is hence scheduled
every 7.8µs on average, but with some occasional jitter due to blocking. This jitter
does not jeopardize the integrity of the data in the memory array unless it is greater than
8 · tREFI [52,53], which is a very long time in comparison to the time ittakes to execute
any reasonable pattern. In case the jitter is larger thantREFI , multiple refresh events



4.3. MEMORY EFFICIENCY BOUND 67

Bursts /
Banks

Read Write W/R Read R/W Write

0 2 31

R/W

0 2 3110 2 3

Patterns

Time

0 132

Figure 4.4: Refresh efficiency accounts for refresh patterns.

are queued, resulting in that several refresh patterns are executed in sequence. We now
bound refresh efficiency according to Equation (4.2). Figure 4.4 illustrates the mean-
ing of bounding refresh efficiency by removing the refresh pattern from the example
sequence of patterns.

tblock = max(twtr + tread, trtw + twrite) (4.1)

eref = 1− tref

tREFI
(4.2)

4.3.2 Read/write efficiency

The read/write efficiency accounts for the time lost to switching direction of the data
bus. Read/write efficiency is often difficult to determine, since the worst-case number
of switches in an interval is rarely known at design time. Using predictable memory
patterns, we know that the read/write efficiency corresponds to the maximum fraction
of time spent executing read/write and write/read switching patterns. This can be de-
termined at design time, since the length of the patterns andthe scheduling rules are
known. The read/write efficiency is straight-forward to determine for read-dominant and
write-dominant pattern sets, since these issue only read orwrite patterns in the worst
case. Since the worst case does not contain any switches, it follows that the read/write
efficiency is 100% for these sets. However, if the set is mix-dominant, there is a switch
after every read and write pattern in the worst case. The read/write efficiency is hence
determined by the time required to execute a read and write pattern divided by the time
to execute the patterns and their corresponding switches, as shown in Equation (4.3).
Bounding read/write efficiency after having already bounded refresh efficiency is illus-
trated in Figure 4.5 by also removing all switching patternsfrom the sequence. All that
remains to be considered is the efficiency of the read and write patterns themselves.

erw =

{

1 if read-dominant or write-dominant
tread+twrite

tread+twrite+twtr+trtw
if mix-dominant

(4.3)



68 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Bursts /
Banks

Read Write Read Write

0 2 310 2 3110 2 3

Patterns

Time

32 0 1

Figure 4.5: Read/write efficiency accounts for switching patterns.

4.3.3 Bank and command efficiency

The bank efficiency accounts for the overhead associated with activating and precharging
banks. This term is highly dependent on how the traffic maps tothe different rows and
banks, as explained in Section 3.3.3, and cannot be tightly bounded in the general case.
The predictable memory patterns allow us to tightly bound this efficiency by interleaving
every memory access over all banks, making the timings of allactivates and precharges
known at design time. We compute the bank efficiency by determining the fraction of
cycles of a read and a write pattern that data is actually transferred. However, this also
accounts for any overhead due to command conflicts that may delay activate or precharge
commands and result in a longer read or write pattern. Although it may be possible to
distinguish this loss, we conveniently choose to compute bank efficiency and command
efficiency as an aggregate. The aggregate bank and command efficiency is computed
by first determining the number of cycles that data is transferred during a read pattern
or a write pattern, denoted byttransfer. This is calculated by considering that there are
BC bursts ofBL words to each of thenbanks, and that two words are transferred every
clock cycle to a DDR memory. This is expressed in Equation (4.4). For read-dominant
pattern sets, we simply divide the data transfer cycles withthe length of the read pattern.
Conversely for write-dominant sets, we divide the transfercycles with the length of the
write pattern. Lastly for mix-dominant sets, we consider the fraction of transfer cycles
during one read and one write pattern. This is expressed formally in Equation (4.5).
Accounting for bank and command efficiency after already considering refresh efficiency
and switching efficiency is illustrated in Figure 4.6. All overhead cycles inside the read
and write patterns are removed, leaving only the cycles where data is transferred.

ttransfer =
BC · BL · nbanks

2
(4.4)

ebank · ecmd =











ttransfer

tread
if read-dominant

ttransfer

twrite
if write-dominant

2·ttransfer

tread+twrite
if mix-dominant

(4.5)

4.3.4 Data efficiency

Data efficiency corresponds to the amount of data that is transferred over the data bus
that is useful to the requestors. The data efficiency of a requestor is determined by how



4.4. LATENCY BOUND 69

Bursts /
Banks 0 2 310 2 3110 2 3

Time

3 0 12

Figure 4.6: Bank and conflict efficiencies remove overhead within read and write pat-
terns, leaving only data bursts.

the size and alignment of its requests fits with the minimum access granularity of the
memory, as previously discussed in Section 3.3.5. The minimum access granularity in
our approach is equal to the granularity of an access pattern, computed according to Def-
inition 4.2. This is a drawback of our approach, since the access granularity of a pattern
is significantly larger than that of a single SDRAM burst, which is the minimum access
granularity of the memory device itself. This means that some of the efficiency gains pro-
vided in the other categories are lost in data efficiency in the presence of small requests.
However, a benefit of our approach is that this loss can be quantified, allowing the net
bandwidth to be bounded. The data efficiency of a requestorr is computed according to
Equation (4.6). As seen in the equation, we use a simple modelthat uses the worst-case
combination of size and alignment that is possible for the requests from a requestor. A
more refined model of data efficiency may be possible given a good characterization of
the application. We demonstrate Equation (4.6) by applyingit to the example in Fig-
ure 3.3, assuming a 16-bit memory interface. The requestor in the figure has a request
size of 16 bytes (8 words), an alignment of 6 bytes (3 words), and the minimum access
granularity of the memory device is 16 bytes. This results ina data efficiency of 50%,
which is accurate, since two accesses of 8 words are requiredto transfer the request.

edata
r = min

∀ωkr∈Ωr





sbytes(ωkr )
⌈

sbytes(ωkr )+a(ωkr )
g

⌉

· g



 (4.6)

Equation (4.6) can be used to determine the total data efficiency of the memory in
the special case where the request sizes and alignments of all requestors are the same.
If this assumption does not hold, then the data efficiency depends on how frequently
the different requestors are scheduled, which is determined by the particular front-end
arbiter. We return to discuss this issue in Chapter 7. Figure4.6 illustrates the effect of
accounting for data efficiency after all other categories have been considered. All bursts
that are not useful to the requestors are removed, leaving only the actual useful bursts in
the figure. We have now arrived at the net bandwidth, which concludes our example of
bounding memory efficiency.

4.4 Latency bound

We have shown how to bound gross and net bandwidth, based on how the patterns in
a pattern set are dynamically combined in the worst case. We now proceed by showing



70 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Bursts /
Banks 0 2 310 2 3110 2

Time

3 3

Figure 4.7: Data efficiency accounts for data that is not useful to requestors, leaving only
requested data bursts.

how to derive the maximum latency of a request, given a maximum number of interfering
atomic service units (atoms). An atomic service unit corresponds to a memory transac-
tion with a size equal or less than the access granularity of the access patterns, and it is
hence served in a non-preemptive manner. We choose this particular metric, since this is
the granularity at which arbitration is done in our architecture, as previously explained
in Section 2.1.3. We define the maximum latency of an atom as the total length of in-
terfering patterns. This accounts for all switching patterns and access patterns related to
different atoms, and to refresh patterns. The own switchingpattern and access pattern is
not considered a part of this latency.

Our first step towards bounding the worst-case latency of an atom is to disregard of
refresh patterns and compute the maximum latency caused by read, write and switch-
ing patterns in the presence ofx interfering atoms. The maximum latency in this case
depends on the dominance of the pattern set, as shown in Equation (4.7). If the set is
read-dominant, then all interfering atoms are assumed to bereads. In this case, the worst
case contains an initial write/read switch, followed byx read patterns. By the same
logic, all interfering atoms are assumed to be writes for write-dominant patterns. The
worst-case latency for mix-dominant patterns happens if the interfering atoms alternate
between reads and writes, resulting in the maximum number ofinterfering switching pat-
terns. Which type of access pattern there are more of depends on whether the pattern set
is mix-read-dominant or mix-write-dominant, as shown in Equation (4.7). For clarity,
Table 4.1 shows the mix patterns instantiated in the worst case for up to four interfering
atoms using mix-dominant patterns.

taux(x) =



















twtr + tread · x if read-dominant

trtw + twrite · x if write-dominant
⌈

x
2

⌉

· (twtr + tread) +
⌊

x
2

⌋

· (trtw + twrite) if mix-read-dominant
⌈

x
2

⌉

· (trtw + twrite) +
⌊

x
2

⌋

· (twtr + tread) if mix-write-dominant

(4.7)

Next, we account for interference due to blocking and refresh, and compute the total
worst-case latency,ttot. Blocking occurs because the worst-case latency of a request
may start counting from a moment just after a scheduling decision has been taken by
the arbiter. This results in that maximally one additional atom may interfere with the
requestor due to the non-preemptive nature of memory patterns. We account for this
by adding one extra interfering atom to the bound, thus usingtaux(x + 1) to compute
the maximum interference fromx atoms. To compute the maximum interference from
refresh patterns, we must consider the minimum distance between two of these patterns.



4.4. LATENCY BOUND 71

x twtr tread trtw twrite

0 0 0 0 0
1 1 1 0 0
2 1 1 1 1
3 2 2 1 1
4 2 2 2 2

(a) Worst-case patterns for mix-read-
dominant pattern sets.

x twtr tread trtw twrite

0 0 0 0 0
1 0 0 1 1
2 1 1 1 1
3 1 1 2 2
4 2 2 2 2

(b) Worst-case patterns for mix-write-
dominant pattern sets.

Table 4.1: Worst-case patterns for mix-dominant patterns.

Refresh Block Refresh Refresh
Time

2 · tREFItREFI

tREFI − tref − tblock

0

treftblocktREFI

Figure 4.8: The minimum distance between two refresh patterns.

This distance occurs if one refresh pattern is maximally blocked (tblock) by other patterns,
and the following refresh pattern encounters no blocking. In this case, the time between
two consecutive refresh patterns istREFI − tref− tblock, as illustrated in Figure 4.8. For
every such interval, we add the time to execute a refresh pattern to the latency from other
interfering patterns, as shown in Equation (4.8). This approach is somewhat pessimistic,
since two such worst-case intervals cannot occur multiple times in a row. However, we
do not attempt to tighten the bound in this work. The equationrounds the number of
interfering refresh patterns up, reflecting that a refresh can happen immediately in an
arbitrary interval. Hence, all requestors always have at least one refresh pattern in their
worst-case latency.

Equation (4.8) provides a hard bound on the interference from other requestors ac-
cessing the back-end. A key feature of this equation is that it does not makeany assump-
tionsabout the arbiter, since the number of interfering atoms is left as a parameter. This
separates the analysis of the arbiter and the resource, as described in Section 2.1. The
back-end can hence be used in a predictable manner with a variety of arbiters, which is a
differentiating feature with respect to the state of the art. The equation can furthermore
be used to bound many different definitions of latency. One example is worst-case delay,
often used in communication networks [104], which considers the maximum time from a
request arrives at a resource until it gets scheduled by the arbiter. Another example is ser-
vice latency, used byLR servers, which measures the time from a request is eligible for
scheduling at the head of the Request Buffer until it gets scheduled. All that is required
to use Equation (4.8) with any of these metrics is that the chosen arbiter can provide a
bound on the number of atoms scheduled in this time. This holds for any arbiter in the
class ofLR servers.



72 CHAPTER 4. PREDICTABLE SDRAM BACK-END

ttot(x) =

⌈

taux(x+ 1)

tREFI − tref− tblock

⌉

· tref + taux(x+ 1) (4.8)

4.5 Memory pattern generation

We have now explained how our approach to achieve predictability with SDRAMs al-
lows us to bound gross/net bandwidth and worst-case latencyby using memory patterns.
However, we have not yet discussed how these patterns are generated. In the early stages
of this research [5, 6, 105], memory patterns were derived manually using spreadsheets.
Although this was sufficient to illustrate the concept, there are three important reasons
to automate the process: 1) Making a pattern set is a time consuming process that must
be repeated every time a new combination of memory device, burst length (BL) and
burst count (BC ) is needed. 2) Making patterns manually is error prone, considering the
large number of constraints that must be satisfied for a pattern to be valid. In fact, our
automated generators found errors in some of our handmade patterns. 3) It is difficult
to ensure that the generated patterns provide (close to) optimal efficiency, considering
the huge number of valid patterns for a particular memory device, burst length and burst
count. Also here, our automated pattern generators have derived patterns that are more
efficient than some of those previously made by hand.

We now proceed by discussing how to automatically compute efficient pattern sets.
First, we motivate some design decisions that focus the vastsearch space on the more ef-
ficient sets, while speeding up the computation. We then proceed by explaining the con-
ditions that have to be satisfied for an access pattern to be considered valid and complete.
After discussing these preliminaries, we move on to presentthree pattern generation al-
gorithms, each presenting a different trade-off between the efficiency of the generated
pattern sets and run time. Note that we focus our efforts on generating patterns for a
given burst count and memory device. We return to discuss howto determine which
burst count is best suited to satisfy requestor requirements in Chapter 7.

4.5.1 Design decisions

The number possible access patterns for a given burst count and memory device grows
exponentially with the pattern length, resulting in a huge design space. To limit the size
of the design space, we make five important design decisions:1) We assume that shorter
access patterns provide more bandwidth and lower latenciesthan longer ones. 2) We do
not distinguish the identity of the banks, but cycle throughthem in ascending order. 3)
We always start an access pattern with an activate command. 4) Instead of scheduling
precharge commands, the last burst to each bank in an access pattern is issued with
the auto-precharge flag. 5) We issue all bursts in an access pattern to one bank before
moving on to the next. We proceed by motivating these decisions and explaining their
consequences.

The first design decision is that we assume that shorter access patterns result in higher
bandwidth and lower latencies. The benefit of this assumption is that it allows the pat-



4.5. MEMORY PATTERN GENERATION 73

tern generation algorithms to focus on independently finding the shortest read and write
patterns for the given burst count before deriving the corresponding auxiliary patterns.
Otherwise, auxiliary patterns have to be derived for every possible pair of access patterns,
exploding the design space. The validity of the assumption depends on the dominance
class of the pattern set. The assumption typically holds forpattern sets that are read
or write-dominant. For these patterns, the lowest bandwidth and longest latencies oc-
cur when all transactions are reads or writes, respectively, and hence when there are no
read/write switches. The number of words transferred in an access pattern with a given
burst count is constant. A shorter pattern hence transfers the same amount of data in less
time, which intuitively means increased bandwidth. Expressed more formally, the bank
and command efficiency in Equation (4.5) monotonically increases with reducing pattern
lengths, becausettransfer is constant, whiletread andtwrite are reducing. The problem with
the assumption is that a shorter access pattern may result inslightly longer switching
patterns and refresh patterns, since NOP commands at the endof access patterns help
precharging the banks before auxiliary patterns are issued. This effect, both in terms of
bandwidth and latency, is negligible in most cases for refresh patterns, due to their low
frequency. Experiments with a variety of memories and burstcounts suggest that mem-
ory efficiency may reduce with 0.1% and that latencies are unaffected by longer refresh
patterns. The effect of longer switching patterns is negligible for read-dominant and
write-dominant pattern sets, but may be more significant fortheir mix-dominant counter
parts, since read/write switches occur after every access pattern in the worst case.

The second design decision is not to distinguish the identity of the banks. This means
that we do not consider two access patterns as different if all commands to two banks
are swapped. Swapping the commands in this fashion essentially corresponds to conse-
quently changing the identity of the banks, which affects neither bandwidth nor latency.
However, this decision has a significant impact on the set of valid patterns, since we do
not have to consider identical patterns that access the banks in different orders.

The third design decision states that we always start an access pattern with an acti-
vate command. The idea behind this decision is to prune a large number of uninteresting
patterns from the design space, which grows exponentially with the length of the pattern.
This decision ignores all patterns starting with one NOP command, two NOP commands,
etc., possibly removing millions or billions of possible patterns. The rationale behind the
decision is that the purpose of an access pattern is to issue anumber of read and write
bursts to the SDRAM. These bursts cannot be issued until their corresponding banks
have been activated. Inserting NOPs in the beginning of an access pattern makes the
access pattern longer. This typically reduces bandwidths and increases latencies for read
or write-dominant pattern sets, similarly to what we described for the first design deci-
sion. For mix-dominant patterns, adding a NOP in the beginning of a read pattern implies
that a NOP can be removed from the write/read switching pattern, unless the length of
the switching pattern is already zero clock cycles. This is illustrated in Figure 4.9 for
our example memory. Shifting NOP commands from a switching pattern to the begin-
ning of an access pattern does not affect worst-case latency, but it reduces actual-case
bandwidth during intervals with better than worst-case switching behavior. However, it
does not change the bound on bandwidth for mix-dominant patterns, since the increase in



74 CHAPTER 4. PREDICTABLE SDRAM BACK-END

NOP NOP 0
RD ACT

1 NOP NOP 1
RD ACT

2 NOP NOP 2
RD ACT

3 NOP NOP 3
RDACT

0NOPNOPNOPNOPcmd

twtr tread

(a) Original patterns.

NOP NOP 0
RD ACT

1 NOP NOP 1
RD ACT

2 NOP NOP 2
RD ACT

3 NOP NOP 3
RDACT

0NOPNOPNOPNOPcmd

twtr tread

(b) Two NOP commands added to beginning of read pattern.

Figure 4.9: Adding NOPs to the beginning of an access patternmay reduce the length of
a switching pattern.

read/write efficiency and decrease in bank and conflict efficiency cancel each other out.
This effect can be observed in Equation (4.9), which corresponds to Definition 3.11 with
all efficiency terms that depend on the length of the access patterns and switching pat-
terns expanded. Addingn cycles to the length of an access pattern and subtract the same
number of cycles from one of the switching patterns does not affect memory efficiency.

emem= eref · tread + twrite

tread + twrite + twtr + trtw
· 2 · ttransfer

tread + twrite
· edata =

eref · BC · BL · nbanks

tread + twrite + twtr + trtw
· edata (4.9)

The fourth design decision is to issue the last burst to a bankin an access pattern
with the auto-precharge flag. This removes the risk of command conflicts when issuing
precharge commands, possibly reducing the length of the pattern. It also reduces the
number of non-NOP commands in the access patterns, further reducing the design space.

The last design decision is to issue allBC bursts to one bank before proceeding to the
next. A bank is ready to receive the next read or write commandBL/2 cycles after the
first. No read or write command can be issued to any other bank before this time, since
it would cause a conflict on the data bus. Keeping all bursts toa bank close together
may give a bank more time between the activate command and thefirst read or write
command, as well as more time to precharge after the last reador write command before
the following activate command. We illustrate this in Figure 4.10, where a read pattern
is repeated after itself. To get a short pattern, we use animaginary memorywith very
generous timings, two banks, and withBL = 4 andBC = 2. Figure 4.10a shows the
case where only a single read is sent to a bank before moving onto the next. Conversely,
the pattern in Figure 4.10b issues both bursts before movingon to the next bank. We see
that the time between the activate to and read to bank 1 is longer in the second figure.
Similarly, the time from the last read until the activate command in the second pattern
is longer. This makes it easier to satisfy the timing constraints of the memory device,
making the set of valid patterns larger and potentially resulting in shorter patterns.



4.5. MEMORY PATTERN GENERATION 75

Activate to first read

Last read to reactivation
bank 0

bank 1

ACT
0 NOP 0

RD ACT
1 NOP NOP 1

RD
1

RD
0

RD ACT
0 NOP 0

RD ACT
1 NOP NOP 1

RD
1

RD
0

RDcmd

(a) One burst per bank before moving on.

bank 0

Activate to first read

Last read to reactivation

bank 1

ACT
0 NOP 0

RD ACT
1 0

RD NOP 1
RD NOP 1

RD ACT
0 NOP 0

RD ACT
1 0

RD NOP 1
RD NOP 1

RDcmd

(b) All bursts to one bank before moving on.

Figure 4.10: Issuing all bursts to a bank before moving on to the next gives more time
between activate and reads/writes, and more time to precharge before reactivating.

4.5.2 Access pattern termination

We now show how to decide when an access pattern is valid and complete, which de-
termines what the access pattern generation algorithms actually have to do. An access
pattern is valid and complete when it satisfies the followingfive criteria: 1) all necessary
commands have been scheduled, 2) the activate-to-activateconstraint is satisfied for all
banks, 3) the four-activate window constraint is satisfied,4) the data bus constraint is
satisfied, and 5) the precharge constraints are satisfied. Weproceed by explaining these
conditions and how to ensure that they are satisfied.

The first termination condition requires all necessary commands to be included in
the pattern. It follows from the structure of access patterns, presented in Section 4.2.2,
and our design decisions in Section 4.5.1 that an access pattern consists of one activate
command andBC read or write commands per bank. There are no precharge commands,
since the last SDRAM burst in the pattern is issued with the auto-precharge flag. After
all commands have been scheduled, NOPs are added to the end ofthe generated pattern
to prevent the following constraints from carrying over into a repeated pattern, violating
their independence. The second condition is that the activate-to-activate constraint must
be satisfied for all banks. This condition implies that theremust be at leasttRC clock cy-
cles between successive activates to a bank when an access pattern is repeated after itself.
Since there is only one activate command per bank in an accesspattern, this constraint
is automatically satisfied if the length of the pattern is greater than or equal totRC .
The third condition is that any window oftFAW cycles, referred to as a Four-activate
window (FAW), can maximally contain four activate commands.This is to ensure that
the instantaneous power consumption by a device with eight banks does not exceed that
of a device with four banks. This constraint has to be considered during the pattern gen-



76 CHAPTER 4. PREDICTABLE SDRAM BACK-END

eration, but NOPs may additionally have to be added at the endof pattern to allow it to
be repeated after itself without violating this constraint. The fourth termination condition
requires that the data produced on the data bus by the last burst in an access pattern does
not collide with the data from the first burst in the next. Thisrequirement is satisfied if
the corresponding access commands are separated by at leastBL/2 clock cycles, which
is the time required to finish the burst. The last condition requires that there must be at
leasttRP clock cycles between the bank is precharged and reactivated. To satisfy this
requirement, we must know in which clock cycle the prechargeof the last accessed bank
actually happens. This procedure works differently for read and write patterns. For a
read pattern, the precharge cycle of the last bank is determined by finding the cycle with
its activate command,tact, and the cycle with its last read command,tlast

read. The precharge
cycle is then computed according to Equation (4.10). Note that the precharge cycle is
computed with respect to start of the read pattern and may be greater than the total length
of the pattern, indicating that the precharge finishes during the execution of a later pat-
tern. The procedure is similar for write patterns, althoughEquation (4.11) is used instead.
Both these equations are derived from [52,53].

tpre
read =

{

max(tlast
read + BL

2 + max(tRTP, 2)− 2, tact + tRAS) DDR2

max(tlast
read + tRTP, tact + tRAS) DDR3

(4.10)

tpre
write = tlast

write + tWL +
BL

2
+ tWR (4.11)

4.5.3 Branch and bound

The first of the three access pattern generation algorithms is a branch and bound al-
gorithm. This algorithm is based on a depth-first traversal of the set of valid patterns
satisfying the design decisions in Section 4.5.1. It is guaranteed to find the shortest pos-
sible access patterns, as its bounding conditions exclude only longer patterns. We start
by giving a brief introduction to the branching part of the algorithm, before explaining
how to bound the search space. The algorithm works by starting an access pattern with
an activate command in the first cycle, according to our thirddesign decision. It then
looks to see which commands that can be scheduled the following cycle. For each com-
mand that respects the timing constraints of the memory, a copy of the pattern is made
and each command is appended to the end of a copy. The algorithm repeats this process
cycle by cycle until the first pattern is complete. At this point, it stores the completed
pattern and returns to one of the remaining copies and continues its search until there are
no unfinished copies remaining. An illustration of this algorithm is shown in Figure 4.11.

The set of valid patterns complying with our design decisions is very large and grows
exponentially with the size of the patterns. To speed up execution of the algorithm, we
implemented two bounding conditions that limit the size of the design space. The first
bounding condition is a sliding cut-off point based on the pattern length. We keep track
of the length of the shortest pattern found so far, and stop pursuing any branches longer



4.5. MEMORY PATTERN GENERATION 77

ACT 1

NOP

1 2 3 4 50 6

ACT 0 NOP NOP

Cycle Number

RD 0

NOP

ACT 1

NOP

RD 0

NOP

NOP

RD 0

NOP

RD 0

ACT 1

NOP

RD 0

ACT 1

ACT 2

NOP

ACT 2

NOP

ACT 2

NOP

NOP

RD 0

NOP

NOP

ACT 1
NOP

NOP

RD 0

ACT 1
NOP

RD 0
ACT 1
NOP

NOP

Figure 4.11: The branch and bound algorithm creates patternby exploring a tree of
SDRAM commands.



78 CHAPTER 4. PREDICTABLE SDRAM BACK-END

than this value. This condition significantly reduces the run time and memory use of
the algorithm, while trivially not excluding the shortest pattern. The second bounding
condition is an extension of the first. Whenever, the algorithm branches, it looks at the
list of commands remaining to be scheduled, and performs twoquick sanity checks to
see if the finished pattern can be shorter than or equal to the current shortest pattern in a
best-case scenario. If any of these checks fail, then no further branches along this path is
pursued. Just like the first condition, this significantly reduces run time and memory us-
age of the algorithm. The sanity checks are exact and cannot exclude the shortest pattern
from the search space. The first check considers the number ofactivates that remains to
be scheduled,nact. The time required to schedule these commands is guaranteedto be at
least(nact− 1) · tRRD + tRCD clock cycles. The(nact− 1) · tRRD comes from the
fact that activates cannot be scheduled withintRRD cycles of each other, and there are
at least(nact− 1) full delays between activates remaining. The second part ofthe sum is
tRCD. This is included because we know that if there is at least oneactivate left, there
is also at least one read or write command remaining, andtRCD is the minimum delay
between an activate and a read or a write command. The first sanity check hence simply
determines if the current cycle,t, plus the delays implied by the remaining activates can
result in a pattern that is equal to or shorter than the current shortest one,tshortest. This
is expressed in Equation (4.12)

t+ (nact− 1) · tRRD + tRCD ≤ tshortest (4.12)

The second sanity check considers the number of remaining read or write commands,
nacc. If there arenacc read or write commands remaining, we know that there have to be
at least(nacc− 1) ·BL/2 cycles between them to prevent a conflict on the data bus. The
data of the last read or write command may overlap with the following pattern and is
hence not included. The second check is hence expressed according to Equation (4.13).

t+ (nacc− 1) · BL/2 ≤ tshortest (4.13)

After the search is complete, there is at least one access pattern of each type with the
shortest length. Out of these, we choose the read and write pattern where the last read
or write command is issued as early as possible. This allows the access pattern to hide
more of the precharge time, potentially resulting in shorter refresh pattern and switching
patterns.

The benefit of the branch and bound algorithm is that it is guaranteed to find the
shortest possible access patterns and choose the one of these that provides the shortest
auxiliary patterns. The drawback of the algorithm is that itmay take a long time to
search the design space, despite the help of our two boundingconditions. The complex-
ity of the algorithm begins to show itself as the clock frequency of the memory device
increases. This is because the timing constraints become longer, as previously discussed
in Section 3.3.7, and increase the lengths of the patterns. Similarly, increased burst count
increases the number of commands to schedule, creating moreoptions and longer pat-
terns. The size of the design space is seen in Figure 4.12. Thefigure shows the number



4.5. MEMORY PATTERN GENERATION 79

of valid patterns with a particular length that fits with our design decisions for our ex-
ample DDR2-400 SDRAM memory withBC = 2. We note that there are thousands
of suitable read and write patterns with length 32, which is the minimum possible size.
The complexity of the problem becomes apparent when increasing the length of the pat-
tern with five cycles, resulting in that the set of suitable patterns grows with three orders
of magnitude! For practical purposes, this algorithm is suitable up to DDR3-1600 with
BC = 2. After this point, the run time of the algorithm moves into months and years.
This motivated us to look for a faster algorithm.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

32 33 34 35 36 37

V
al

id
 p

at
te

rn
s

Pattern length

Read
Write

Figure 4.12: Number of valid patterns fitting our design decisions atBC = 2 for a
DDR2-400 SDRAM device.

4.5.4 As-soon-as-possible scheduling

The second pattern generation algorithm uses as-soon-as-possible (ASAP) scheduling.
According to our design decision, the algorithm starts by putting an activate command
in the first cycle. It then proceeds one cycle at a time by choosing a command that
can be scheduled without violating the timing constraints of the memory. If there are
multiple candidate commands, a simple priority scheme is used to make the choice. This
contrasts to the previous algorithm that pursues all possible options. This priority scheme
first considers read and write commands, since these are the commands that put data
on the data bus, thereby increasing efficiency. Activate commands are considered as
second, since these enable future read or write commands, and hence future data transfer.
However, an activate command is less important than a read ora write, since this can
sometimes be postponed without negatively affecting the length of the pattern. If none of
these commands are available, a NOP command is scheduled. A conceptual illustration
of the ASAP scheduling algorithm is provided in Figure 4.13,and the pseudo-code is
shown in Algorithm 4.1.

A consequence of the ASAP scheduling algorithm is that the activate commands are
scheduled early in the pattern, as seen in Figure 4.14a. The reason is that activates to
different banks can be scheduled everytRRD clock cycles, which is not a very long
time. However, the read and write commands must be separatedby at leastBL/2 clock



80 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Algorithm 4.1 Pseudo-code of ASAP scheduling algorithm.
t← 0
pattern[t]← {ACT-0}
while notCompleted(pattern)do

availableCmds← getAllowedCmds(pattern, t)
cmdToSchedule← pickBestCmd(availableCmds)
pattern[t]← cmdToSchedule
t← t + 1

end while

0 1 2 3 4 5 6cycle

ACT
0 NOP NOP ACT

1 0
RD NOP

ACT
2

NOP
valid commands

cycle 6

cmd

priority 2

priority 3

Figure 4.13: Conceptual illustration of the ASAP scheduling algorithm.

cycles, causing the distance between an activate command and its corresponding read
or write to increase, as shown in the figure. This creates a problem, since a bank needs
time to precharge after the last read or write command has completed, before it can be
reactivated. The earliest reactivation occurs when the pattern is repeated after itself. The
critical constraint is hence the time between the last read or write command in the pattern
until the activate command in the repeating pattern. The earlier the activate command,
the less time available to precharge. This is why the patterngenerated by the ASAP
scheduling algorithm requires five extra NOP commands to be inserted at the end of
the pattern, while the more balanced pattern shown in Figure4.14b does not. Clearly,
scheduling commands as early as possible is not always beneficial.

The advantage of the ASAP scheduling algorithm is that it runs extremely fast. It gen-
erates a schedule in less than a second for any memory and reasonable burst count, clearly
addressing the problem with the branch and bound algorithm.However, the advantage
in speed comes at the cost of bandwidth, mainly due to the problem with prematurely
scheduled activate commands. As a result, the generated patterns provide up to 10% less
bandwidth than those generated by the slower algorithm. Although the ASAP scheduling
algorithm provides a different trade-off between run time and bandwidth, we consider it
rather inefficient, since SDRAM bandwidth is a scarce resource. We hence look into a
third algorithm, hoping to find a suitable middle ground.

4.5.5 Bank scheduling

The bank scheduling approach builds on the lessons learned from ASAP scheduling algo-
rithm. The idea behind the algorithm is to keep an activate command as close as possible



4.5. MEMORY PATTERN GENERATION 81

0 1 2 10 11 12 13 14 153 4 5 6 87 9cycle 16 17 18 19 20

ACT
0 NOP NOP 1

WR NOP NOP 2
WR NOP NOP 3

WRACT
1 0

WR ACT
2

ACT
3 NOP NOP NOP NOP NOP NOP NOPcmd

9 cycles

3 cycles 7 cycles

5 cycles

(a) The ASAP algorithm results in increasingly large distances between activate commands and their
corresponding write commands.

0 1 2 10 11 12 13 14 153 4 5 6 87 9cycle

ACT
0 NOP 1

WR NOP 2
WR NOP NOP 3

WR
0

WRNOP ACT
1 NOP NOP ACT

2 NOP ACT
3

3 cycles 3 cycles 3 cycles 3 cycles

cmd

(b) A pattern with balanced distances between activate commands and write commands.

Figure 4.14: Prematurely scheduled activate commands result in longer access patterns.

to its corresponding read or write command, thereby preventing the precharge-to-activate
constraint from extending the length of the pattern.

The bank scheduling algorithm works by scheduling one bank at a time. It starts
by putting an activate command to the first bank in the first cycle, and a corresponding
read or write command at the earliest possible convenience,being tRCD cycles later.
Each additional burst to the bank is then scheduledBL/2 cycles apart to constantly keep
data on the data bus. This finishes the scheduling of the first bank. For each successive
bank, the algorithm finds the position of the latest read or write command, and tries to
schedule the next read or writeBL/2 cycles later when the data bus is free. The new
read or write command can be scheduled in this position if itsactivate command can
be scheduledtRCD cycles earlier. This depends on whether the cycle already has a
scheduled command, and whether the activate-to-activate constraints for different banks
and the four-activate window constraint are satisfied. If the activate cannot be scheduled
in the requested cycle, the algorithm tries to schedule the read or write command in a
later cycle by iteratively repeating this test. Once the first read or write command to
the bank has been scheduled, the others follow with a separation of BL/2 clock cycles.
An illustration of the algorithm is provided in Figure 4.15 and pseudo-code is presented
in Algorithm 4.2. We evaluated an alternative approach to this algorithm, where we
let the activate command slide backwards instead of slidingthe read or write command
forwards. However, the results of this algorithm were at best the same and occasionally
provided worse results than the current implementation.

The patterns generated by the bank scheduling algorithms achieve very regular dis-
tances between the activates and their corresponding read and write commands, address-
ing the problem found with the ASAP scheduling approach. In fact, the write pattern
shown in Figure 4.14b was generated using this approach. Therun time of the algorithm
is similar to the ASAP scheduling algorithm, and hence sufficiently fast. It furthermore
generates pattern sets that provide similar bandwidths to those created by the branch and



82 CHAPTER 4. PREDICTABLE SDRAM BACK-END

0 1 2 10 11 12 133 4 5 6 87 9cycle

0 0 0 0 0 0 0 0 11 1 1 1 1 1 1data

ACT
0 0

RD

ACT
1 1

RDcmd bank 1

cmd bank 0

BL/2

tRCD

Figure 4.15: Conceptual illustration of the bank scheduling algorithm forBC = 1.

Algorithm 4.2 Pseudo-code of the bank scheduling algorithm.
currentBank← 0
while currentBank< nbanksdo

// Determine cycle of next activate command
targetCycleAct← 0
if currentBank > 0then

cycleLastRead← getLastRead(pattern)
targetCycleAct← cycleLastRead +BL/2− tRCD

end if

while !activateAllowed(targetCycleAct)do
targetCycleAct← targetCycleAct + 1

end while

// Schedule activate, followed byBC read command
pattern[targetCycleAct]← {ACT - currentBank}
currentBurst← 1
targetCycleRead← targetCycleAct +tRCD

while currentBurst≤ BC do
pattern[targetCycleRead]← {RD - currentBank}
targetCycleRead← targetCycleRead +BL/2
currentBurst← currentBurst + 1

end while

currentBank← currentBank + 1
end while



4.5. MEMORY PATTERN GENERATION 83

bound algorithm. Bank scheduling hence provides a very favorable trade-off between
run time and memory efficiency, compared to the other algorithms.

4.5.6 Computing auxiliary patterns

The auxiliary patterns can be computed as soon as the access patterns are calculated by
any of the pattern generation algorithms. We start by showing how to generate the refresh
pattern, followed by the switching patterns. The refresh pattern starts with a number of
NOPs that allow the banks to precharge after the latest access pattern. The time required
to precharge all banks depends on the distance between the precharge cycle of the last
bank,tpre

read or tpre
write, and the end of the read or write pattern, since this determines how

much of the precharging time that is hidden by the access pattern itself. The number of
NOPs required to precharge all banks may be different after aread and a write pattern,
since the values oftpre

read andtpre
write are unrelated. It is hence possible to derive two refresh

patterns, one that follows read patterns, and one that follows write patterns. However,
reducing the refresh pattern for one of these cases with a fewclock cycles has very little
impact on both bandwidth and latency and is hence not considered in this work. The
refresh command is placed in cycletRP + (tpre

read − tread), or tRP + (tpre
write − twrite),

whichever is larger. This is followed by a refresh command and tRFC NOPs that are
required to satisfy the refresh-to-activate constraint. The equation for computing the
length of refresh patterns is therefore:

tref = tRP + tRFC + max(tpre
read− tread, t

pre
write − twrite) (4.14)

The switching patterns only consist of NOP commands that allow the direction of
the data bus to be reversed. We first explain how to compute theread/write switching
pattern and then proceed with the write/read switching pattern. The number of NOPs in
the read/write switching pattern depends both on the SDRAM generation and the burst
length. For simplicity, we do not consider that DDR3 memories can change the burst
length on the fly and assume that the burst length is fixed to either 4 or 8 words for both
reads and writes. However, there should be no conceptual problems with supporting
read patterns and write patterns with different lengths, aslong as it does not change
dynamically. Equation (4.15) shows the minimum number of clock cycles between a
read and a write command for different memories and burst lengths. This equation is
derived from the memory specifications [52, 53]. We compute the number of NOPs in
the read/write switching pattern by subtracting the numberof cycles between the read and
write commands that are already built into the read and the write patterns. The length
of the read/write switching pattern is hence computed according to Equation (4.16). The
computation of the write/read switching pattern is computed in a similar manner. The
minimum delay between the write and the read command is shownin Equation (4.17)
and the length of the pattern is determined in Equation (4.18).



84 CHAPTER 4. PREDICTABLE SDRAM BACK-END

δread =



















4 DDR2 withBL = 4

6 DDR2 withBL = 8

tCL + tCCD

2 + 2− tWL DDR3 withBL = 4

tCL + tCCD + 2− tWL DDR3 withBL = 8

(4.15)

trtw = max(δread− (tfirst
write + tread− tlast

read), 0) (4.16)

δwrite = tWL +
BL

2
+ tWTR (4.17)

twtr = max(δwrite − (tfirst
read + twrite − tlast

write), 0) (4.18)

4.6 Architecture and synthesis

The concepts in this chapter are embodied in hardware as an SDRAM back-end, accord-
ing to the architecture previously shown in Figure 2.5. The back-end is accessed through
a Device Transaction Level (DTL) [88] port, where the scheduled request is presented by
the bus in the resource front-end. The back-end consists of two major functional blocks,
being a Command Generator and a Memory Map.

The Memory Map decodes the logical memory addresses used by the requestors,
into a physical SDRAM address consisting of bank, row and column. The burst are
mapped to the banks in an interleaving fashion, as mentionedin Section 3.4.3. For the
example patterns of our example DDR2-400 memory withBL = 8 andBC = 1 shown
in Figure 2.3, this is done by letting bits 3 to 4 in the logicalmemory address index the
bank, 12 to 24 index the row, and 0 to 2 and 5 to 11 index the column.

The Command Generator issues the appropriate memory patterns based on the re-
fresh state, the read/write state, and the scheduled request. The patterns are hard-coded
in a finite-state machine inside the Command Generator, which results in a small imple-
mentation. However, this also implies that the Command Generator must be modified to
change the patterns in response to different use-case requirements, or if a different mem-
ory device is used. Although this is sufficient for an initialproof of concept, we consider
a configurable Command Generator important future work.

The SDRAM back-end has been implemented in VHDL and tested together with a
Verilog model of a Micron DDR2-400 memory [72]. The implemented model is a part
of an older version of the proposed memory controller [6, 90], containing an integrated
front-end and back-end. Apart from Command Generator and Memory Map, this im-
plementation also contains a bus and a Credit-Controlled Static-Priority (CCSP) arbiter.
This older memory controller is no longer maintained, in favor of the new more modular
architecture. The design has been synthesized in a 0.13µm CMOS technology. Synthesis
with six ports and a speed target of 200 MHz, suitable for a DDR2-400, resulted in a total
cell area of 42000µm2. Note that all synthesis results in this thesis are obtainedbefore



4.7. EXPERIMENTAL RESULTS 85

place-and-route and that areas after layout are expected tobe higher and maximum fre-
quencies lower. We estimate the size of the current SDRAM back-end without the arbiter
to 23000µm2 by subtracting the area of the six port CCSP arbiter instanceincluded in
the design. The cell area of the design is small for an SDRAM controller, partly because
it does not include buffers to store requests and responses.A second reason is that the
design is customized for a particular memory and uses a simple finite-state machine to
schedule commands in a way that is guaranteed not to violate any timing constraints.
We do hence not require the large amount of registers required to track the state of the
memory.

4.7 Experimental results

We conclude the chapter by experimentally evaluating the proposed SDRAM back-end.
We first describe the experimental setup, before conductingthree experiments. The first
experiment evaluates the three different memory pattern generation algorithms by com-
paring how much bandwidth they provide for different memories and burst counts. We
consider gross bandwidth in this experiment to isolate the results from the influence of
different request sizes. The different categories of grossmemory efficiency are quan-
tified, enabling us to learn about how efficiency is lost for the different memories. In
our second experiment, we take data efficiency into consideration and demonstrate that
both burst count and memory device must be chosen carefully to maximize bandwidth in
presence of small requests. For our last experiment, we evaluate the tightness of our de-
rived bound on net bandwidth by simulating a SystemC model ofour SDRAM back-end.
No latency results are presented in this chapter. However, the tightness of the latency
bound is evaluated in Chapter 5 when we discuss sharing the SDRAM back-end between
multiple requestors.

4.7.1 Experimental setup

The experiments in this section use our proposed SDRAM back-end together with four
different memories with different speeds: DDR2-400, DDR2-800, DDR3-800, DDR3-
1600. These memories cover the span from the slowest specified memory in the DDR2
generation to the fastest specified DDR3 device. Each of these memories exists in a
number of different speed bins, determining their timings.We have consistently used
the fastest possible version of every memory, which should provide as much freedom as
possible when generating the patterns. All memories have a capacity of 512 Mb and 16-
bit interfaces. The DDR2 memories have four banks, and the DDR3 memories eight. The
relevant timing parameters of these memories are listed in Table 4.2. Brief explanations
of the different memory timings are provided in Table 3.1.



86 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Table 4.2: List of relevant timing parameters for some different 64 Mb x16 (512 Mb)
memory devices with page sizes of 2 KB.

Parameter DDR2-400 DDR2-800 DDR3-800 DDR3-1600
[cycles] [cycles] [cycles] [cycles]

tRC 11 22 20 36
tRCD 3 4 5 8
tCL 3 4 5 8
tWL 2 3 5 8
tRP 3 4 5 8
tRFC 21 42 36 72
tRAS 8 18 15 28
tRTP 2 3 4 6
tWR 3 6 6 12
tFAW 10 18 20 32
tRRD 2 4 4 6
tCCD 2 2 4 4
tWTR 2 3 4 6
tREFI 1560 1560 1560 1560

4.7.2 Algorithm evaluation

In our first experiment, we compare the different pattern generation approaches. The idea
behind the experiment is to let all three algorithms generate a set of patterns for burst
counts 1, 2, and 4 with a burst length of 8 words. To provide a low-latency option, we
also generate pattern sets with burst count 1 and burst length 4 for the DDR2 memories.
This experiment just exercises the pattern generation tooling, and does not involve any
implementation of the SDRAM back-end. To reduce the run-time of the branch and
bound algorithm, the lengths of the access patterns generated by the bank scheduling
algorithm were used as initial shortest patterns. This significantly reduces the search
space without the possibility of removing the shortest pattern.

First up is our example DDR2-400 memory. Table 4.3 lists the lengths of the resulting
patterns for the different algorithms. We have merged the columns for the branch and
bound algorithm and the bank scheduling algorithm, since they consistently provide the
exact same pattern lengths for all tested memories. The table shows that all algorithms
provide patterns with the same length forBL = 4. In fact, they even provide the exact
same patterns. The reason is that the low burst count and short burst length results in
short patterns, where the memory timings do not allow a lot ofoptions. In contrast
with BL = 8, we observe that the ASAP scheduling algorithm generates write patterns
that are five cycles longer than those generated by the other algorithms. As explained
in Section 4.5.4, this is because scheduling the activate commands as soon as possible
causes the distance to the corresponding write commands to gradually increase, causing
a problem with precharges. The generated read patterns all have the same lengths. The
ASAP scheduling algorithm still schedules the activate commands much earlier, although
this does not affect the length of the pattern, since the memory starts precharging faster



4.7. EXPERIMENTAL RESULTS 87

Table 4.3: Length of generated patterns for the DDR2-400 memory.
B&B & Bank scheduling ASAP scheduling

BL/BC 4/1 8/1 8/2 8/4 4/1 8/1 8/2 8/4
Dominance wr mix rd mix rd mix rd wr wr wr wr
tread 11 16 32 64 11 16 32 64
twrite 13 16 32 64 13 21 37 69
trtw 0 2 2 2 0 2 2 2
twtr 0 4 4 4 0 0 0 0
tref 27 32 32 32 27 27 27 27

after reads. Having a longer write pattern is not completelywithout advantages. We
observe that the patterns generated by the ASAP algorithm often has shorter write/read
switching patterns and refresh patterns. The reason is thatthe five NOPs at the end of
the write patterns hide some of the time required to switch direction of the data bus, or to
precharge all banks.

As far as the run times of the algorithms are concerned, the ASAP scheduling and
bank scheduling algorithms provided all results in a matterof seconds. The branch and
bound algorithms managed to produce patterns with low burstcounts in comparable time.
However, the pattern set withBC = 4 took 8 days to generate. Such a long run-time
clearly motivates the existence of the heuristic algorithms.

Next, we look at how the bounds on gross memory efficiency and gross bandwidth
vary between the different algorithms for the DDR2-400 memory. This is shown in Fig-
ure 4.16a. Note that the bars in the plot can be interpreted using either y-axis, depending
on the metric of interest. The branch and bound algorithm andthe bank scheduling al-
gorithm perform identically, having generated patterns with the same length. We note
that the patterns generated with the ASAP scheduling algorithm for BL = 8 provide
slightly less gross bandwidth than the patterns from the other two algorithms. The rea-
son is that the longer write pattern reduces the bank and command efficiencies. The
improved read/write efficiency and refresh efficiency (marginal) helps compensating for
this drawback, but they do not manage to completely cancel out the effect.

Figure 4.16b illustrates the impact of the different categories of gross efficiency for
the pattern sets with the shortest access patterns, generated by the branch and bound and
bank scheduling algorithms. We note that it is the bank and command efficiencies that
cause problems for DDR2-400 withBL = 4. This because the access patterns only
transfer data during 8 cycles and then have to wait a few cycles before the activate-to-
activate constraint or precharge constraints are satisfied. However, these extra cycles
completely eliminate the switching patterns, resulting inread/write efficiency of 100%.
As the burst count and burst length increases, we note that the bank efficiency is 100%
for this memory, as it transfers data during every cycle of the access patterns. Instead,
the main loss of efficiency is now due to read/write switches,since this overhead is no
longer hidden by the access patterns. The line in the figure clearly shows how the gross
efficiency increases with increasing burst count, indicating the longer bursts to all banks
help amortizing the switching costs.



88 CHAPTER 4. PREDICTABLE SDRAM BACK-END

 0

 0.2

 0.4

 0.6

 0.8

 1

BL4/BC1 BL8/BC1 BL8/BC2 BL8/BC4
 0

 100

 200

 300

 400

 500

 600

 700

 800

G
ro

ss
 e

ffi
ci

en
cy

G
ro

ss
 b

an
dw

id
th

Settings

B&B ASAP Bank

(a) Bounds on gross efficiency and gross bandwidth
for the different algorithms.

 0

 0.2

 0.4

 0.6

 0.8

 1

BL4/BC1 BL8/BC1 BL8/BC2 BL8/BC4
 0

 100

 200

 300

 400

 500

 600

 700

 800

G
ro

ss
 e

ffi
ci

en
cy

G
ro

ss
 b

an
dw

id
th

Settings

eref

erw
ebank x ecmd

egross

(b) Bank scheduling gross efficiency breakdown.

Figure 4.16: Memory efficiency results for DDR2-400.

Table 4.4: Length of generated patterns for the DDR2-800 memory.
B&B & Bank scheduling ASAP scheduling

BL/BC 4/1 8/1 8/2 8/4 4/1 8/1 8/2 8/4
Dominance mix rd mix rd mix rd mix rd mix rd mix rd mix wr mix wr
tread 22 22 33 65 22 22 33 65
twrite 22 22 33 65 22 22 36 68
trtw 0 0 1 1 1 0 1 1
twtr 1 3 5 5 1 3 2 2
tref 27 32 32 32 27 27 27 27

We proceed by looking at the results for the DDR2-800, the fastest device in the
generation of DDR2 memories. The patterns generated for this memory are listed in Ta-
ble 4.4. The difference between the algorithms is that ASAP scheduling again generates
longer write patterns for some values of burst count and burst length. The increase is
slightly less severe than for the DDR2-400, since the precharging constraints are more
favorable for this memory. The minimum spacing between activates to different banks,
tRRD, is increased from two to four cycles, moving all but the firstactivate commands
further into the access patterns. This gives more time to precharge the banks after an
access pattern before they are reactivated in a later pattern. The timing constraints that
determine the precharge cycle increase too for this memory,but not enough to cancel out
the benefits. Just like for DDR2-400, all patterns were generated in a few seconds with
the exception ofBC = 4, which took the branch and bound algorithm 32 minutes.

Looking at the gross efficiency for the different algorithmsin Figure 4.17a, we ob-
serve that the ASAP scheduling algorithm is not performing worse than the branch and
bound algorithm and bank scheduling. In fact, the longer write patterns result in that the
gross efficiency is marginallyincreasedby 0.001! This is explained by observing that
the patterns are mix-dominant and that increasing the writepattern with three cycles re-
moves three cycles from the write/read switching pattern, eliminating the disadvantage.



4.7. EXPERIMENTAL RESULTS 89

 0

 0.2

 0.4

 0.6

 0.8

 1

BL4/BC1 BL8/BC1 BL8/BC2 BL8/BC4
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

G
ro

ss
 e

ffi
ci

en
cy

G
ro

ss
 b

an
dw

id
th

Settings

B&B ASAP Bank

(a) Bounds on gross efficiency and gross bandwidth
for the different algorithms.

 0

 0.2

 0.4

 0.6

 0.8

 1

BL4/BC1BL8/BC1BL8/BC2BL8/BC4
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

G
ro

ss
 e

ffi
ci

en
cy

G
ro

ss
 b

an
dw

id
th

Settings

eref

erw
ebank x ecmd

egross

(b) Bank scheduling gross efficiency breakdown.

Figure 4.17: Memory efficiency results for DDR2-800.

The slight increase in efficiency stems from that the longer write pattern also allows
the refresh pattern to be shorter. This demonstrates that the shortest access patterns do
not always provide the best efficiency, although the difference in this case is negligible.
Comparing the results of DDR2-800 to our earlier results forDDR2-400 shows that the
efficiency of the faster memory is lower for any burst count, as discussed in Section 3.3.7.
However, the gross bandwidth of DDR2-800 is still higher than for DDR2-400, since the
peak bandwidth of the faster memory is twice as high.

The gross efficiency breakdown in Figure 4.17b reveals that it is the bank and com-
mand efficiency that causes the most significant efficiency loss for this memory with
lower burst counts. This happens because the time between consecutive activate com-
mands to the same bank,tRCD, is 22 cycles, effectively preventing any access pattern
from being shorter than that. This in turns allows the accesspatterns to hide much of the
read/write switching time, resulting in high read/write efficiency.

The next memory is DDR3-800, the slowest memory in the DDR3 generation. We
are interested in this memory, since it provides the same peak bandwidth as the DDR2-
800. Apart from the difference in memory generation, our DDR3-800 memory comes
with 8 banks instead of 4. We do not evaluateBL = 4 for DDR3 memories, since this
is only supported by means of a burst chopping mechanism. Bursts of 4 words are hence
not much faster than burst of 8 words. The generated patternsfor this memory are shown
in Table 4.5. The results from all algorithms are merged, since they always provide pat-
terns of the same lengths for this memory. A possible reason for this is that eight banks
resolves the precharging problem of the ASAP algorithm, since the last activate com-
mand slips further into the pattern. Eight bank memories also have the additional FAW
constraint, which limits the number of activate commands ina window oftFAW cycles.
This constraint helps spacing the activate commands in the pattern more evenly, further
mitigating the precharging issue. However, this constraint does not primarily make pat-
terns shorter. Both access patterns withBC = 1 have two NOP commands in the end
to ensure that the FAW constraint is satisfied also when the patterns are repeated after



90 CHAPTER 4. PREDICTABLE SDRAM BACK-END

Table 4.5: Length of generated patterns for the DDR3-800 memory.
All algorithms

BL/BC 8/1 8/2 8/41

Dominance mix rd mix rd mix rd
tread 40 66 130
twrite 40 66 130
trtw 0 0 0
twtr 5 7 7
tref 53 55 55

1 The B&B algorithm did not finish in less than 10 days for this setting.

themselves. The additional banks also impact the run time ofthe branch and bound algo-
rithm. More banks imply more commands to schedule, creatingmore possible patterns.
The pattern set withBC = 1 still completed within seconds. However, the patterns with
BC = 2 took 39 hours to complete, and the patterns withBC = 4 where still not finished
after 10 days when we terminated the experiment.

Since all three algorithms perform identically, we proceeddirectly to the gross effi-
ciency breakdown in Figure 4.18. The breakdown is similar tothat of DDR2-800. Most
of the efficiency loss is due to bank and command efficiencies,which reduce with in-
creasing burst count. Overall, DDR3-800 has a gross efficiency that is a few percent
higher than DDR2-800.

 0

 0.2

 0.4

 0.6

 0.8

 1

BL8/BC1 BL8/BC2 BL8/BC4
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

G
ro

ss
 e

ffi
ci

en
cy

G
ro

ss
 b

an
dw

id
th

Settings

eref

erw
ebank x ecmd

egross

Figure 4.18: Bank scheduling gross efficiency breakdown forDDR3-800.

Our last memory in the pattern generation experiment is a DDR3-1600, currently
the fastest specified DDR3 memory, doubling the peak bandwidth over DDR3-800. Just
like for the previous memory, all algorithms perform the same and provide the results
shown in Table 4.6. We observe that there is not a big difference in the length of the
access patterns withBC = 1 andBC = 2. The reason is that the FAW constraint of
32 cycles postpones the fifth activate command by eight cycles in both access patterns
with BC = 1. The same constraint also adds an extra five NOPs at the end of these
access patterns to allow them to repeat after themselves. The branch and bound algorithm



4.7. EXPERIMENTAL RESULTS 91

Table 4.6: Length of generated patterns for the DDR3-1600 memory.
All algorithms

BL/BC 8/1 8/2 8/41

Dominance mix rd mix rd mix rd
tread 64 70 133
twrite 64 70 133
trtw 0 0 0
twtr 4 9 9
tref 98 103 103

1 The B&B algorithm did not finish in less than 10 days for this setting.

required 7 days to generate the pattern set withBC = 1, although the set withBC = 2
was generated in seconds. The algorithm had not successfully generated a pattern set
with BC = 4 after 10 days when we terminated the experiment. Just like always, the
other two algorithms produced all results in just seconds.

The gross efficiency breakdown in Figure 4.19 does not show usmuch new over
DDR3-800. We observe that the gross efficiency is lower for DDR3-1600 than for DDR3-
800, proving the efficiency trend for faster memories yet again. Still, the peak bandwidth
is double compared to the slower memory, resulting in increased gross bandwidth.

 0

 0.2

 0.4

 0.6

 0.8

 1

BL4/BC1BL8/BC1BL8/BC2BL8/BC4
 0

 500

 1000

 1500

 2000

 2500

 3000

G
ro

ss
 e

ffi
ci

en
cy

G
ro

ss
 b

an
dw

id
th

Settings

eref

erw
ebank x ecmd

egross

Figure 4.19: Bank scheduling gross efficiency breakdown forDDR3-1600.

This experiment allows us to draw three conclusions. 1)By considering all patterns
generated by our algorithms, we observe that all generated read patterns are shorter
than or equal to the corresponding write patterns. Similarly, read/write switching pat-
terns are always shorter than write/read switching patterns. In both cases, this is related
to the fact that a bank requires more time to precharge after awrite burst. A result of
this relation is that we have not generated any read-dominant pattern sets in this experi-
ment. In fact, it is possible that read-dominant pattern sets cannot be optimal for current
DDR2 and DDR3 memories. 2)Gross efficiency increases with burst count, although
the increase becomes smaller for every increment.This is shown for all tested memories
when comparing their results with the bank scheduling algorithm in Figure 4.20a. 3)



92 CHAPTER 4. PREDICTABLE SDRAM BACK-END

 0

 0.2

 0.4

 0.6

 0.8

 1

BL8/BC1 BL8/BC2 BL8/BC4

G
ro

ss
 e

ffi
ci

en
cy

Settings

DDR2-400
DDR2-800

DDR3-800
DDR3-1600

(a) Gross efficiency comparison

 0

 500

 1000

 1500

 2000

 2500

 3000

BL8/BC1 BL8/BC2 BL8/BC4

G
ro

ss
 b

an
dw

id
th

 (
M

B
/s

)

Settings

DDR2-400
DDR2-800

DDR3-800
DDR3-1600

(b) Gross bandwidth comparison.

Figure 4.20: Gross efficiency and gross bandwidth comparisons between different DDR2
and DDR3 memories.

Newer faster memories offer higher peak bandwidths, but lower gross efficiency, due to
increasingly severe timing constraints. However, the provided gross bandwidth is still
increasing with clock frequency.Figure 4.20a indicates that gross efficiency is reducing
as memories get faster. It also shows that DDR3-800 has higher gross efficiency than
DDR2-800. The fact that gross bandwidth is increasing despite the reducing gross effi-
ciency is clearly shown in Figure 4.20b, where DDR3-1600 provides the highest gross
bandwidth.

4.7.3 Bounding net bandwidth

For our second experiment, we take data efficiency into account and bound the net band-
width offered by the memories. Figure 4.21 shows the bound onnet bandwidth provided
by the different memories and settings for different request sizes, based on the patterns
generated by the bank scheduling algorithm. For simplicity, we assume that the request
sizes of all requestors are the same, since this allows us to compute the data efficiency
independently of the memory arbiter. The bars in the plot canbe read from either y-axis,
depending on if net bandwidth or net efficiency is of interest. All graphs have the same
scale, allowing the net bandwidths provided by the different memories to be compared.
From this experiment, we learn that while increasing burst count consistently increases
gross bandwidth, it may reduce net bandwidth. The reason is that increasing burst count
also increases the access granularity of the memory, resulting in more waste for small
requests. This trend is clearly visible for requests of 256 B(bytes) as the DDR3-1600
memory moves fromBC = 2 to BC = 4. This reduction of net bandwidth is guaranteed
to occur no later than when the access granularity of the memory becomes larger than
the request size of all requestors. Similarly, increasing the number of banks from 4 to 8
improves bank and command efficiencies, but can still reducenet bandwidth, due to the
larger access granularity. A consequence of this behavior is that our DDR2-800 provides
more net bandwidth for small requests than the DDR3-800. However, the tables turn as
requests become big enough to benefit from the larger granularity. The figure also shows



4.7. EXPERIMENTAL RESULTS 93

 0

 500

 1000

 1500

 2000

 2500

 3000

BL8/BC1 BL8/BC2 BL8/BC4
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
et

 b
an

dw
id

th
 (

M
B

/s
)

N
et

 e
ffi

ci
en

cy

Settings

32 B
64 B

128 B
256 B
512 B

(a) Net bandwidth with a DDR2-400

 0

 500

 1000

 1500

 2000

 2500

 3000

BL8/BC1 BL8/BC2 BL8/BC4
 0

 0.5

 1

 1.5

 2

N
et

 b
an

dw
id

th
 (

M
B

/s
)

N
et

 e
ffi

ci
en

cy

Settings

32 B
64 B

128 B
256 B
512 B

(b) Net bandwidth with a DDR2-800

 0

 500

 1000

 1500

 2000

 2500

 3000

BL8/BC1 BL8/BC2 BL8/BC4
 0

 0.5

 1

 1.5

 2

N
et

 b
an

dw
id

th
 (

M
B

/s
)

N
et

 e
ffi

ci
en

cy

Settings

32 B
64 B

128 B
256 B
512 B

(c) Net bandwidth with a DDR3-800

 0

 500

 1000

 1500

 2000

 2500

 3000

BL8/BC1 BL8/BC2 BL8/BC4
 0

 0.2

 0.4

 0.6

 0.8

 1

N
et

 b
an

dw
id

th
 (

M
B

/s
)

N
et

 e
ffi

ci
en

cy

Settings

32 B
64 B

128 B
256 B
512 B

(d) Net bandwidth with a DDR3-1600

Figure 4.21: Bound on net bandwidth for different memories and request sizes.

that achieving really high bandwidths with an interleavingmemory map fundamentally
requires large requests. In fact, the DDR2 memories with 4 banks require requests of
64-128 B to provide a net memory efficiency of above 80%, whilethe DDR3 memories
require requests of 256 B to accomplish the same. If the requests in the system are small,
there is hence no benefit in using a faster SDRAM memory unlessit is cheaper to buy.
A good example of this is that the DDR2-800 with four banks provides the most net
bandwidth for requests of 32 B.

4.7.4 Tightness of net bandwidth bound

In our third and last experiment, we evaluate the tightness of our lower bound on net
bandwidth by simulation using a SystemC model of our proposed SDRAM back-end.
We measure the running average net bandwidth, which we expect to converge to a value
greater than or equal to our derived bound during the simulation. The experiment is
conducted by sending an equal mix of read and write requests to our example DDR2-400
memory using the shortest mix-read-dominant pattern set with BC = 1, computed in
the first experiment. The sizes of the requests are 64 B, whichis equal to the access
granularity of the pattern, thus providing a data efficiencyof 100%. The bound on net
bandwidth with this setup is 660 MB/s. We simulate the memorycontroller back-end
twice. In the first simulation, we let read and write requestsarrive in a random order. In
the second simulation, arriving requests are alternating reads and writes to illustrate what



94 CHAPTER 4. PREDICTABLE SDRAM BACK-END

 600

 650

 700

 750

 800

 0  2  4  6  8  10  12  14  16
 0.75

 0.8

 0.85

 0.9

 0.95

 1
N

et
 b

an
dw

id
th

 (
M

B
/s

)

N
et

 e
ffi

ci
en

cy

Time [us]

Normal simulation
Worst-case simulation

Bound

(a) The first 16µs of the simulation.

 600

 650

 700

 750

 800

 0  20  40  60  80  100  120  140  160
 0.75

 0.8

 0.85

 0.9

 0.95

 1

N
et

 b
an

dw
id

th
 (

M
B

/s
)

N
et

 e
ffi

ci
en

cy

Time [us]

Normal simulation
Worst-case simulation

Bound

(b) The first 160µs of the simulation.

Figure 4.22: Net bandwidth plotted over time for a DDR2-400 memory with and without
worst-case switches.

happens during worst-case conditions. The simulation timein both cases is 100 ms. The
results of this experiment are shown in Figure 4.22, where the provided net bandwidth
is plotted over time. Figure 4.22a shows the first 16µs of the simulation, which is just
enough to get two interfering refresh patterns. In both simulations, net bandwidth shoots
towards 800 MB/s as the first request arrives. This is becausethe bank and command
efficiency of the patterns is 100% and hence that data is transferred on every cycle of the
pattern. The efficiency then gradually reduces as read/write switches cause lost cycles
on the data bus. We note that the impact of these switches is considerably higher when
the worst-case switching behavior is enforced. We see the effects of refresh at 7.8µs
and again at 15.6µs, where the efficiency reduces due to the 32 idle cycles required to
precharge all bank and refresh the memory. The measured bandwidth is very close to
the bound at the end of the refresh pattern, indicating that this is the time at which the
memory efficiency calculation “evens out”. This is not surprising, considering that all
events covered by the bound, such as read/write switches andrefresh, have happened at
this time. After 100 ms when the simulation ends, the worst-case simulation converges at
a net bandwidth of 661.0 MB/s, which is less than 0.2% from thederived bound. This is
not completely unexpected, since we have enforced exactly the behavior assumed by the
bound. The normal simulation, on the other hand, converges at 694 MB/s, thus providing
about 4% extra net bandwidth due to the reduced number of read/write switches. This
convergence is visualized in Figure 4.22b, which shows the efficiency during the first
160 µs of the simulation. This experiment is shown also for DDR2-800, DDR3-800,
and DDR3-1600 in [42]. A similar experiment, although without enforcing the worst-
case scenario, is furthermore conducted with the VHDL implementation of the back-end
together with a Micron DDR2-400 memory model in [90].

4.8 Summary

Our approach to predictability involves combining predictable resources with predictable
arbitration. This chapter addressed the first part of this approach by introducing a pre-



4.8. SUMMARY 95

dictable SDRAM back-end that increases the level of dynamism compared to previous
work. The proposed back-end is shared using predictabledynamic front-end arbitra-
tion to be able to satisfy diverse latency requirements, while remaining analyzable. The
command generator uses a newhybrid approachthat combines elements of static and dy-
namic command scheduling, enabling it to accommodate traffic that is not fully known
at design time in a predictable fashion. The hybrid approachis based onmemory pat-
terns, which are precomputed sequences of SDRAM commands that aredynamically
instantiated and combined by the command generator at run-time.

A pattern setconsists of five memory patterns: aread pattern, a write pattern, a
read/write switching pattern, a write/read switching pattern, and arefresh pattern. The
read and write patterns access the memory by issuing a fixed number of bursts each of
the banks in an interleaving fashion. The read/write switching patterns and write/read
switching patterns are used to give the data bus time to switch direction between a read
and a write pattern. The refresh pattern is issued regularlyto prevent leakage in the
DRAM cells from causing data loss.

A pattern set is classified as eitherread-dominant, write-dominant, or mix-dominant,
depending on which combination of patterns that results in the lowest bandwidths and
longest latencies. A pattern set is read or write-dominant if the worst case happens if all
interfering requests are either reads or writes, resultingin that only read or write patterns
are issued. On the other hand, the worst-case situation for amix-dominant pattern is if
requests alternate between reads and writes, causing the maximum number of read/write
switches. A mix-dominant pattern is further classified asmix-read-dominantor mix-
write-dominantdepending on if an odd number of requests contain more reads or writes
in the worst case. The gross and net bandwidths provided by a pattern set were computed
for all dominance types by bounding the five categories of memory efficiency introduced
in the previous chapter. We also bounded the maximum time required to serve an arbi-
trary number of atom service units, delivering on the requirements for the controller to
be predictable.

Three algorithms for automatic memory pattern generation were presented, repre-
senting different trade-offs between net bandwidth and therun time of the algorithm.
The algorithms try to compute the shortest possible read andwrite patterns and then gen-
erate the accompanying switching and refresh patterns. Thefirst algorithm uses abranch
and boundapproach to exhaustively evaluate all valid patterns, branching only when a
given pattern cannot become shorter than the shortest one currently found. This algo-
rithm is guaranteed to find the shortest read and write patterns, but has a run time in the
range of weeks or months when the generated patterns are long. The second algorithm
usesas-soon-as-possible (ASAP) schedulingand tries to schedule SDRAM commands at
the earliest possible time, prioritizing read and write commands over activates in case two
commands can be scheduled in the same cycle. This algorithm runs in less than a second,
but occasionally generates patterns providing 10% less bandwidth than the branch and
bound algorithm. The last algorithm is calledbank scheduling, as it schedules commands
for one bank at a time. This results in patterns offering the same bandwidth as the branch
and bound algorithm in all our tests, while having a run time comparable to the ASAP
scheduling algorithm.



96 CHAPTER 4. PREDICTABLE SDRAM BACK-END

We experimentally concluded that newer faster memories offer higher peak band-
widths, but lower gross efficiency, due to increasingly severe timing constraints. How-
ever, the provided gross bandwidth is still increasing withclock frequency. It was shown
that gross memory efficiency increases with burst count, although the increase becomes
smaller for every increment. We also concluded that large request sizes are required to
achieve high net memory efficiency. A DDR2 memory requires request sizes between
64-128 B to provide a net memory efficiency above 80%, while the DDR3 memories
require requests of 256 B to accomplish the same.



CHAPTER 5

Credit-Controlled Static-Priority arbitration

The previous chapter presented a memory controller back-end that makes an SDRAM
into a predictable resource, corresponding to the first partof our approach to predictabil-
ity. The second part of the approach, which is the topic of this chapter, considers sharing
this resource among multiple requestors in a predictable manner. The context of this
problem was previously shown in Figure 1.7, where requests arrive in a Request Buffer
in front of a resource arbiter and responses are returned in aResponse Buffer. Resource
arbitration with real-time requirements is in no way a new research field. In fact, research
has been conducted in this field during more than half a century already and there exists a
plethora of different arbiters. Still, new applications and emerging technologies like het-
erogeneous multi-core System-on-Chips (SoCs) continue tochange the requirements, as
they need small and fast arbiters that cater to diverse requirements without wasting scarce
resource capacity. We start this chapter in Section 5.1 by elaborating on the requirements
from the SoC context, and from the requestors in our considered application domains.
We then proceed in Section 5.2 by augmenting our formal modelwith definitions related
to resource arbitration. In Section 5.3, we address the arbitration requirements by propos-
ing a Credit-Controlled Static-Priority (CCSP) arbiter, consisting of a rate regulator and a
static-priority scheduler. We subsequently perform a worst-case analysis of the arbiter in
Section 5.4, and derive its service guarantee. Based on thisservice guarantee, we prove
that CCSP belongs to the class of Latency-Rate (LR) servers in Section 5.5. A small and
fast implementation of the CCSP rate regulator is derived inSection 5.6, and we show
that it decouples allocation granularity and latency. Section 5.7 discusses the architecture
of the arbiter and presents synthesis results. We then evaluate the arbiter experimentally
in Section 5.8, before concluding the chapter with a summaryin Section 5.9.

97



98 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

5.1 Arbiter requirements

An important difference between memory arbitration and, for instance, processor schedul-
ing is that a memory arbiter works at a much finer level of granularity [103]. The execu-
tion time of a task may range from microseconds to milliseconds, while a memory request
in an SRAM controller is served in a few nanoseconds. This is one important reason why
resource arbiters are implemented in hardware instead of software. There are three main
requirements on the hardware implementation of the arbiterto make it applicable to this
type of resource. 1) It must run at high clock frequency to keep up with the resource
and to be able to schedule small requests. 2) It must have a small hardware implemen-
tation to limit the impact on area. 3) The arbiter must be ableto provide the required
service to a requestor without reserving more capacity thanrequired, referred to asover
allocation. Limiting over allocation is imperative, since memory bandwidth is scarce
and must be efficiently utilized. The arbiter must not only consider the requirements of
the SoC context, but also those of the requestors in our application domains, previously
discussed in Section 1.1.6. It must hence be able to accommodate both latency-critical
and latency-tolerant requestors.

5.2 Formal model

We proceed in this section by extending our formal model withthe definitions required
to deal with resource arbitration. To emphasize the generality of our arbiter, and its ap-
plicability to a wide range of resources, we abstract from a particular target resource.
Some of the definitions in this section are hence more generalthan required by the pro-
posed memory controller. Still, we chose to include these toincrease the applicability of
the provided theory. However, for simplicity, we limit the discussion to individual inde-
pendent resources, such as memories. Resources with multiple internal arbiters, such as
Network-on-Chips (NoCs), are not addressed here.

We adopt an abstract resource view, where a service unit corresponds to the access
granularity of the resource. For a typical SRAM, the access granularity is a single word,
and for the proposed SDRAM back-end it is the granularity of aread or write pattern,g,
previously defined in Definition 4.2. The size of a request in service units is hence com-
puted according to Definition 5.1. Note that in the architecture of the proposed memory
controller, previously shown in Figure 2.11, the Request Buffers are located inside the
Delay Block, and hence after the Atomizer. This means that the arriving requests are
atoms and are hence guaranteed to have a size of a single service unit per definition.
Time is discrete and counts from zero. A time unit, referred to as aservice cycle, is de-
fined as the time required to serve a request with the size of one service unit. The length
of a service cycle, measured in clock cycles, is expressed according to Definition 5.2.
A simple SRAM has a constant service cycle length of one clockcycle. On the other
hand, an SDRAM has a highly variable service cycle length that depends on whether the
request is a read or a write and the state of the memory at the time it is scheduled. Multi-
plying a latency in service cycles with the maximum service cycle length, which is known



5.2. FORMAL MODEL 99

and bounded for predictable resources, always provides a conservative result. While this
approach works well for an SRAM, it is too pessimistic for ourSDRAM back-end, since
it considers an interfering read/write or write/read switch and a refresh for every single
request. Instead, we use the specialized latency equationttot(x) from Equation (4.8) for
this particular resource. This equation accurately accounts for the maximum possible
interfering read/write switches and refreshes. We consider arbitration that ispreemptive
on the granularity of service cycles. This applies to many arbiters in general and to all
arbiters in our architecture, due to the presence of the Atomizer.

Definition 5.1 (Request size (service units)). The size of a requestωkr in service units is
given bys(ωkr ) : Ωr → N+, and is defined ass(ωkr ) = ⌈sbytes(ωkr )/g⌉.

Definition 5.2 (Service cycle length). The length of the service cycle, measured in clock
cycles, when servicing a requestωkr at timet is given byλ(ωkr , t) : Ωr × N→ N.

We use service curves [19] to model the interaction between the resource and the re-
questors. These service curves are typically cumulative and monotonically non-decreasing
in time. We start by defining an operator for retrieving the value of a service curve in
Definition 5.3. We use closed discrete time intervals throughout this thesis. The interval
[τ, t] hence includes all service cycles in the sequence〈τ, τ + 1, ..., t − 1, t〉. Defini-
tion 5.4 defines a more compact notation for expressing the difference in values between
the endpoints of such an interval.

Definition 5.3 (Value of a service curve). The value of a service curveξ in service units
at service cyclet is given byξ(t) : N→ N.

Definition 5.4 (Difference in values between endpoints of an interval). The difference in
values between the endpoints of the closed interval[τ, t], wheret ≥ τ , of a service curve
ξ is given byξ(τ, t) : N× N→ N, and is defined asξ(τ, t) = ξ(t+ 1)− ξ(τ).

A requestor generates requests according to a requested service rate, as defined in
Definition 5.5. This rate expresses the requested fraction of the total service units pro-
vided by the resource, and is defined asρr = br/b

net for the special case where data
efficiency is 100%, making gross and net bandwidth identical. The general case is dis-
cussed in Chapter 7. A request is considered to arrive as an impulse when: 1) it has
completely arrived in the Request Buffer, and 2) there is enough space in the Response
Buffer to store a response, as stated by Definition 5.6. This is captured by the requested
service curve,w, defined in Definition 5.7. For clarity, it is assumed that only a single
request arrives per requestor in any cycle, although this iseasy to generalize. Note that
Definitions 5.6 and 5.7 state that a requested service curve at time t + 1 accounts for a
request with arrival timet+ 1.

Definition 5.5 (Requested service rate). The requested service rate of a requestorr ∈ R,
expressed in service units/service cycles, is denoted byρr.

Definition 5.6 (Arrival time). The arrival time of a requestωkr from a requestorr ∈ R
is given byta(ωkr ) : Ωr → N+, and is defined as the smallestt at which the last bit ofωkr



100 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

has arrived in the Request Buffer and there is enough free space in the Response Buffer
to store a response.

Definition 5.7 (Requested service curve). The requested service curve of a requestor
r ∈ R is given bywr(t) : N→ N, wherewr(0) = 0 and

wr(t+ 1) =

{

wr(t) + s(ωkr ) ∃ωkr : ta(ω
k
r ) = t+ 1

wr(t) ∄ωkr : ta(ω
k
r ) = t+ 1

The arbiter schedules a requestor every service cycle according to its particular schedul-
ing policy, as stated in Definition 5.8. A requestωk has to be scheduleds(ωk) times
before it is finished.

Definition 5.8 (Scheduled requestor). The scheduled requestor at timet is given byγ(t) :
N→ R ∪ {∅}, where∅ denotes that no requestor is scheduled.

The provided service curve,w′, defined in Definition 5.9, reflects the number of
service units provided by the resource to a requestor. A service unit takes one service
cycle to serve. This is reflected in that the provided serviceis increased att + 1, if a
requestor is scheduled att. An illustration of a requested service curve and a provided
service curve is provided in Figure 5.1. For reasons of clarity, the curves in the figure are
drawn as continuous functions, although their values are only defined at discrete points
in time.

Definition 5.9 (Provided service curve). The provided service curve of a requestorr ∈ R
is given byw′r(t) : N→ N, wherew′r(0) = 0 and

w′r(t+ 1) =

{

w′r(t) + 1 γ(t) = r

w′r(t) γ(t) 6= r

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

s(ω0)

w

w′

q(τ)

s(ω1)

ta(ω0) ta(ω1) τ

Figure 5.1: A requested service curve,w, a provided service curve,w′, and representa-
tions of the related concepts.

The backlog of a requestor, defined in Definition 5.10, corresponds to the amount of
requested service that has not yet been served at a particular time. A requestor that has



5.3. DEFINITION OF CCSP ARBITRATION 101

a backlog greater than zero has outstanding requests, and isreferred to as a backlogged
requestor. The set of requestors that are backlogged at a particular time is defined in
Definition 5.11. The graphical interpretation of backlog isshown in Figure 5.1.

Definition 5.10 (Backlog). The backlog of a requestorr ∈ R at a timet is given by
qr(t) : N→ N, and is defined asqr(t) = wr(t)− w′r(t).

Definition 5.11(Set of backlogged requestors). The set of requestors that are backlogged
at t is defined asRqt = {r | ∀r ∈ R ∧ qr(t) > 0}.

5.3 Definition of CCSP arbitration

The CCSP arbiter consists of a rate regulator and a scheduler, following the decomposi-
tion from [120]. The purpose of a rate regulator is to protectrequestors that do not ask
for more service than they are allocated from the ones that do, which is a key property
in providing guaranteed service to requestors with real-time requirements [119]. The
scheduler is responsible for choosing which requestor to schedule, based on its particular
policy. This partitioning provides a separation of concerns, but also emphasizes the mod-
ularity and re-usability of the components. We proceed by discussing the details of the
CCSP rate regulator and scheduler separately in Sections 5.3.1 and 5.3.2, respectively.

5.3.1 Rate regulator

A rate regulator providesaccountingandenforcementand determines which requests are
eligible for scheduling at a particular time, considering their allocated service. The ser-
vice allocated to a requestor in the CCSP arbiter depends on two parameters, as defined
in Definition 5.12. These are the allocated service rate,ρ′, and allocated burstiness,σ′,
respectively. The definition states three constraints thatmust be satisfied in order for an
allocation to be valid: 1) the allocated service rate of a requestor must be at least equal
to its average request rate,ρ, to satisfy its service requirement, and to maintain finite
buffers, 2) it is not possible to allocate more service to therequestors than what is offered
by the resource, and 3) the allocated burstiness must be sufficiently large to accommodate
a service unit.

Definition 5.12 (Allocated service). The service allocation of a requestorr ∈ R is
defined as(σ′r, ρ

′
r) ∈ R+ × R+. For a valid allocation it holds that∀r ∈ R : ρ′r ≥ ρr,

∑

∀r∈R ρ
′
r ≤ 1, and∀r ∈ R : σ′r ≥ 1.

Next, we introduce the accounting mechanisms in the CCSP rate regulator. An im-
portant feature of this mechanism is that it usescontinuous replenishment, i.e. a requestor
gets a small increase in its resource access budget, proportional to its allocated service
rate, every service cycle, as opposed to being replenished at the end of a frame. This is
similar to getting a small salary at the end of the day rather than a larger salary at the
end of the month. Continuous replenishment is not an exclusive feature of CCSP, but
it is not very common among resource arbiters, as we will see when discussing related



102 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

work in Section 8.1. The advantage of this feature is that themaximum time before a
requestor can afford to access the resource is independent of a the number of days in
a month (frame size), as it is just a function of the allocatedservice rate and the cost
of a resource access. The allocation granularity in the CCSPrate regulator can hence
be increased without increasing a frame size and also increase latency.This means that
the CCSP rate regulator decouples allocation granularity and latency.We continue by
elaborating on the details of the regulator.

The accounting and enforcement mechanisms are based on the notion of active pe-
riods. Definition 5.13 states that a requestor is active att if it is either live at t (Def-
inition 5.14), backlogged att, or both. Definition 5.14 states that a requestor must on
average have requested service according to its allocated rate since the start of the latest
active period to be considered live at timet. Note that liveness is determined only by the
requested service curve and is hence independent of the resource. Backlog, on the other
hand, is determined by both the requested service curve and the provided service curve,
and hence depends on the behavior of the resource.

Definition 5.13 (Active period). An active period of a requestorr ∈ R is defined as the
maximum interval[τ1, τ2], such that∀t ∈ [τ1, τ2] : wr(τ1−1, t−1) ≥ ρ′r · (t−τ1 +1) ∨
qr(t) > 0. Requestorr is active∀t ∈ [τ1, τ2].

Definition 5.14 (Live requestor). A requestorr ∈ R is defined as live at timet during
an active period[τ1, τ2] if wr(τ1 − 1, t− 1) ≥ ρ′r · (t− τ1 + 1).

Definition 5.15 (Set of active requestors). The set of requestors that are active att is
defined asRat = {r | ∀r ∈ R ∧ r active att}.

Definition 5.16 (Set of live requestors). The set of requestors that are live att is defined
asRlt = {r | ∀r ∈ R ∧ r live at t}.

Figure 5.2 illustrates the relation between being live, backlogged and active. Three
requests arrive betweenτ1 andτ2, keeping the requestor live untilτ3. This is seen in
the figure by the requested service curve being above the dash-dotted live line, which
graphically illustrates the requirement to be live in Definition 5.14. The requestor is
initially both live and backlogged, but the provided service curve catches up with the
requested service curve atτ2. This puts the requestor in a live and not backlogged state
until τ3. The requestor is neither live nor backlogged betweenτ3 andτ4, as no additional
requests arrive at the resource. The requestor becomes liveand backlogged again atτ4,
since two additional requests arrive within a small period of time. The requestor stays
in this state untilτ5, since not enough service is provided to remove the backlog.The
requestor is hence backlogged but not live atτ5, and remains such until the end of the
shown interval. The requestor in Figure 5.2 is active between τ1 andτ3 and fromτ4 and
onwards, according to Definition 5.13. Note from this example that a live requestor is
not necessarily backlogged, nor vice versa.

We proceed in Lemma 5.1 by deriving some important relationsbetween the re-
quested service curve and provided service curve at the start of an active period. These



5.3. DEFINITION OF CCSP ARBITRATION 103

live

backlogged

active

x x x

x x x

x x xx

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

live lines

τ1 τ3 τ4 τ5τ2

w

τ6

w′

ρ′

Figure 5.2: Service curves showing the relation between being live, backlogged, and
active.

relations follow immediately from the definitions of the service curves and active peri-
ods. The purpose of this lemma is to create an intuition aboutactive periods, as well as
deriving useful results for later analysis. Two important insights provided by this lemma
are that: 1) there is no backlog at the start of an active period, and 2) an arriving request
is required to trigger the start of an active period.

Lemma 5.1. If τ1 is the start of an active period thenw(τ1) > w(τ1 − 1) =
w′(τ1) = w′(τ1 − 1).

Proof. According to Definition 5.13, ifτ1 starts an active period then the requestor
was inactive atτ1 − 1 and henceq(τ1 − 1) = 0. We know from Definition 5.10 that
if q(τ1 − 1) = 0 thenw(τ1 − 1) = w′(τ1 − 1). This implies that the requestor can-
not be scheduled atτ1 − 1, which according to Definition 5.9 results in thatw′(τ1) =
w′(τ1 − 1). Definition 5.13 states that if an active period starts atτ1 thenq(τ1) > 0 or
w(τ1 − 1, τ1 − 1) ≥ ρ′. These cases all implyw(τ1) > w(τ1 − 1).

We are now ready to discuss the accounting mechanism inside the CCSP rate regula-
tor. The accounting provides an upper bound on provided service, based on the concept
of active periods. This upper bound is defined according to Definition 5.17. The in-
tuition behind the definition is that the upper bound on provided service of an active
requestor increases according to the allocated rate every service cycle. Conversely, for
an inactive requestor, the bound is limited tow′(t) + σ′, a value that depends on the
allocated burstiness. This prevents that a requestor that is inactive for an extended period
of time increases its bound to an arbitrarily large value, and starves other requestors once
it becomes active again.



104 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

Definition 5.17(Provided service bound). The enforced upper bound on provided service
of a requestorr ∈ R at timet is given byŵ′r(t) : N→ R+, whereŵ′r(0) = σ′r and

ŵ′r(t+ 1) =

{

ŵ′r(t) + ρ′r r ∈ Rat
w′r(t) + σ′r r /∈ Rat

(5.1)

Note that the upper bound on provided service is not necessarily monotonically non-
decreasing in time, as shown at timeτ2 in Figure 5.3. The requestor in the figure is
live until τ1, but remains active untilτ2 wherew′ catches up tow. According to Def-
inition 5.17, this results in an upper bound on provided service ŵ′(τ2 + 1) < ŵ′(τ2),
sinceŵ′(τ2) > w′(τ2) + σ′. The requestor starts a new active period atτ3, causingŵ′ to
increase again. Note that the fact that the upper bound on provided service is not mono-
tonically non-decreasing does not impact the service provided to a requestor during an
active period, since a decrease in potential can only happenwhen a requestor is inactive.

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

live line

τ2τ1

ŵ′

σ′

τ3

π(τ1)

ρ′

Figure 5.3: The upper bound on provided service,ŵ′, is not necessarily monotonically
non-decreasing.

It is not possible to perform accounting and enforcement in hardware based directly
on ŵ′, sincelimt→∞ ŵ

′(t) =∞, resulting in overflow of finite counters. Instead, the ac-
counting mechanism in the rate regulator is based on thepotentialof a requestor, defined
in Definition 5.18. Potential corresponds to the amount of service that can maximally
be provided before the provided service curve reaches the upper bound, as illustrated in
Figure 5.3. The potential of a requestor is bounded, since the arbiter guarantees a lower
bound on provided service,̌w′, as we will show in Section 5.4. We show in Lemma 5.2
how to express the potential of a requestor at any time duringan active period, using the
upper bound on provided service and the provided service curve. This result is used ex-
tensively in later analysis. The potential-based accounting used by the CCSP rate regula-
tor is defined according to Definition 5.19. Lemma 5.3 shows that the accounting mecha-
nism in Definition 5.19 corresponds to a recursive definitionof potential. Definition 5.19
illustrates an important point of the accounting mechanism, namely thatπ(t) = σ′ if t is
the start of an active period. This means that we do not have toassume that a requestor



5.3. DEFINITION OF CCSP ARBITRATION 105

has an initial potential of zero when deriving a lower bound on service provided during
an active period in Section 5.4.

Definition 5.18 (Potential). The potential of a requestorr ∈ R at time t is given by
πr(t) : N→ R, and is defined asπr(t) = ŵ′r(t)− w′r(t).
Lemma 5.2. During an active period[τ1, τ2], it holds that∀t ∈ [τ1, τ2] : π(t) =
ŵ′(τ1)− w′(τ1) + ŵ′(τ1, t− 1)− w′(τ1, t− 1).

Proof. Rewriting the right hand side according to Definition 5.4 yieldsŵ′(τ1)−w′(τ1)+
ŵ′(t−1+1)−ŵ′(τ1)−(w′(t−1+1)−w′(τ1)). According to the definition of potential
in Definition 5.18, this is equivalent toπ(τ1) + π(t)− π(τ1) = π(t).

Definition 5.19 (Potential-based accounting). The accounted potential of a requestor
r ∈ R is given byπ∗r (t) : N→ R, whereπ∗r (0) = σ′r and

π∗r (t+ 1) =











π∗r (t) + ρ′r − 1 r ∈ Rat ∧ γ(t) = r

π∗r (t) + ρ′r r ∈ Rat ∧ γ(t) 6= r
σ′r r /∈ Rat

(5.2)

Lemma 5.3. ∀t ∈ N : π(t) = π∗(t).

Proof. We prove the lemma by induction.

Base case:The lemma holds whent = 0, sinceπ(0) = ŵ′(0) − w′(0) = π∗(0),
according to Definition 5.9, Definition 5.17 and Definition 5.19.

Inductive step:For the inductive step, we prove that if the lemma holds at time t then
it also holds fort + 1. According to Definition 5.18, potential att + 1 is defined as
πr(t+ 1) = ŵ′r(t+ 1)−w′r(t+ 1). We substitutêw′r(t+ 1) andw′r(t+ 1), according to
the recursive definitions in Definition 5.17 and Definition 5.9, respectively. Definition 5.9
has two cases and depends on whether the requestor is scheduled or not. Similarly, Def-
inition 5.17 has two cases depending on if the requestor is active or not. The resulting
equation is shown in Equation (5.3).

ŵ′(t+ 1)− w′(t+ 1) =











(ŵ′(t) + ρ′)− (w′(t) + 1) r ∈ Rat ∧ γ(t) = r

(ŵ′(t) + ρ′)− w′(t) r ∈ Rat ∧ γ(t) 6= r
(w′(t) + σ′)− w′(t) r /∈ Rat ∧ γ(t) 6= r

(5.3)

Finally, we substituteπ(t) = ŵ′(t)−w′(t), in accordance with Definition 5.18, after
which we arrive at the accounting mechanism in Definition 5.19.

Enforcement in the rate regulator is performed by determining if a requestor is el-
igible for scheduling. Definition 5.20 states that a requestor is considered eligible if it
is backlogged, and has at least enough potential to serve oneservice unit, including the
service earned the next time the accounting is updated.



106 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

Definition 5.20 (Eligible requestor). Requestorr is defined as eligible for scheduling at
t if πr(t) ≥ 1− ρ′r ∧ wr(t) > w′r(t).

Definition 5.21 (Set of eligible requestors). The set of requestors that are eligible for
scheduling att is defined asRet = {r | ∀r ∈ R ∧ r eligible at t}.

5.3.2 Scheduler

Schedulers are divided into two classes, as they are eitherwork-conserving, ornon-work-
conserving. A work-conserving scheduler always schedules a request when there is a
backlogged requestor. A non-work-conserving scheduler, on the other hand, does not
schedule a request unless it has enough budget/potential topay for the access, even
though the resource may be idle. A non-work-conserving scheduler clearly leads to a
lower resource utilization, but is beneficial for networks of arbiters, as it limits the in-
crease in burstiness of the provided service at their respective outputs [25,104,120]. On
an orthogonal axis, a scheduler can be either preemptive or non-preemptive. Although
there are flavors of CCSP covering all combinations of these properties, we consider a
non-work-conserving scheduler that is preemptive on the granularity of a single service
unit. Note that this is actually a non-preemptive instance of the arbiter that is analyzed as
preemptive, due to the presence of an Atomizer. Analysis of the other flavors of CCSP is
covered in [8].

The CCSP arbiter uses a static-priority scheduler, becauseit decouples latency and
rate and has a low-cost hardware implementation. Each requestor is assigned a unique
priority level,p, as stated in Definition 5.22, where a lower level indicates higher priority.
Unlike [120], we do not allow requestors to share priority levels, as it results in a situation
where equal priority requestors must assume that they all have to wait for each other in the
worst-case, resulting in less tight bounds. Each requestorhence has a unique set of higher
priority requestors, defined in Definition 5.23. A preemptive non-work-conserving static-
priority scheduler schedules the highest priority eligible requestor every service cycle, as
defined in Definition 5.24.

Definition 5.22(Priority level). A requestorr ∈ R has a priority levelpr ∈ N, such that
∀ri, rj ∈ R : ri 6= rj ⇒ pri 6= prj .

Definition 5.23 (Set of higher priority requestors). The set of requestors with higher
priority than ri ∈ R is defined asR+

ri
= {rj | ∀rj ∈ R ∧ pri > prj}.

Definition 5.24 (Static-priority scheduler). The scheduled requestor at timet in a pre-
emptive non-work-conserving static-priority scheduler is defined as

γ(t) =

{

ri s.t.ri ∈ Ret ∧ ∄rj ∈ Ret : prj < pri R
e
t 6= ∅

∅ Ret = ∅



5.4. ARBITER ANALYSIS 107

5.4 Arbiter analysis

We have now introduced the CCSP arbiter and defined its rate regulator and static-priority
scheduler in terms of our formal analysis framework based onservice curves. In this
section, we use the definition of the rate regulator and scheduler to derive analytical
properties of the CCSP arbiter. We start by defining and upperbound the interference
experienced by a requestor during an interval. We then use this bound to derive the
service guarantee of CCSP, which later enables us to prove that CCSP belongs to the
class ofLR servers in Section 5.5.

Definition 5.25 states that the maximum interference experienced by a requestor in
an interval consists of two parts. The first part is concernedwith the potential of higher
priority requestors at the start of the interval, and the second with the increase of their
upper bounds on provided service during the interval. Intuitively, this definition of inter-
ference corresponds to the maximum number of service cyclesa requestor can wait for
higher priority requestors accessing the resource.

Definition 5.25(Maximum interference in an interval). The maximum interference expe-
rienced by a requestorr ∈ R during an interval[τ1, τ2] is given byir(τ1, τ2) : N×N→
R, and is defined as

ir(τ1, τ2) =
∑

∀rj∈R
+
ri

(πrj (τ1) + ŵ′rj (τ1, τ2))

We need to compute an upper bound on interference that holds for any interval. This
is done by bounding the two parts of Definition 5.25 separately. We start in Lemma 5.4
by bounding the increase in the upper bound on provided service during an interval,
corresponding to the second part of Definition 5.25. This is done by first showing that the
maximum increase of the provided service bound happens whenthe requestor is active
throughout the entire interval. After deriving this important result, it is straight-forward
to bound the maximum increase of the upper bound.

Lemma 5.4. ŵ′r(τ, t) ≤ ρ′r · (t− τ + 1).

Proof. We prove the lemma by showing that the inequality holds whenŵ′r(τ, t) is max-
imal. This occurs whenτ, t ∈ [τ1, τ2], where[τ1, τ2] is an active period. This in turn is
proved by showing that the first rule of Equation (5.1) implies ŵ′r(t+ 1) > ŵ′r(t), while
the second rule implieŝw′r(t+ 1) ≤ ŵ′r(t).

The first rule in Equation (5.1) implies that̂w′r(t+ 1) > ŵ′r(t), since it follows from
Definition 5.12 thatρ′r ≥ 0.

We split the analysis of the second rule in Equation (5.1) into two cases. In the first
case, the requestor is inactive at botht − 1 andt, corresponding to multiple cycles of
inactivity. In the second case, the requestor is active att− 1 and inactive att, meaning it
is ending its active period.

Case 1:r /∈ Rat−1 ∧ r /∈ Rat



108 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

From the second rule in Equation (5.1), we get thatŵ′r(t + 1) = w′r(t) + σ′r. Since an
inactive requestor cannot be scheduled, it must hold thatw′r(t) = w′r(t − 1). It hence
follows thatŵ′r(t+ 1) = ŵ′r(t) if r /∈ Rat−1 ∧ r /∈ Rat .

Case 2:r ∈ Rat−1 ∧ r /∈ Rat
We proceed by showing that this case impliesŵ′r(t+ 1) < ŵ′r(t). Let t = τ2 + 1, where
[τ1, τ2] defines an active period. We must hence show that

ŵ′r(τ2 + 2) < ŵ′r(τ2 + 1) (5.4)

According to Definition 5.4,̂w′r(τ2+1) = ŵ′r(τ1)+ŵ′r(τ1, τ2). From Lemma 5.1 and the
second rule in Equation (5.1), we get thatŵ′r(τ1) = w′r(τ1−1)+σ′r = w′r(τ1)+σ′r, since
r /∈ Raτ1−1. We furthermore know from the first rule in Equation (5.1) that ŵ′r(τ1, τ2) =
ρ′r · (τ2 − τ1 + 1), since∀t ∈ [τ1, τ2] : r ∈ Rat . This results in

ŵ′r(τ2 + 1) = w′r(τ1) + σ′r + ρ′r · (τ2 − τ1 + 1) (5.5)

The second rule in Equation (5.1) states thatŵ′r(τ2 + 2) = w′r(τ2 + 1) + σ′ sincer /∈
Raτ2+1. Rewriting this using Definition 5.4 results in̂w′r(τ2+2) =w′r(τ1) + w′r(τ1, τ2) + σ′r.
From Definition 5.13 and Lemma 5.1, we know thatr /∈ Raτ2+1 ⇒ w′r(τ1 − 1, τ2) =
wr(τ1 − 1, τ2) < ρ′r · (τ2 − τ1 + 1), as the requestor is neither live nor backlogged at
τ2 + 1. Putting these results together gives us

ŵ′r(τ2 + 2) < w′r(τ1) + σ′r + ρ′r · (τ2 − τ1 + 1) (5.6)

By substituting Equations (5.5) and (5.6) into Equation (5.4), we see that̂w′r(τ2 + 2) <
ŵ′r(τ2 + 1). We hence conclude that̂w′r(τ, t) is maximal whenτ, t ∈ [τ1, τ2], where
[τ1, τ2] is an active period. According to Definition 5.18 and the firstrule of Equa-
tion (5.2), this implies that̂w′r(τ, t) ≤ ρ′ · (t− τ + 1).

Having derived an upper bound on the second part of Definition5.25, our next goal
on our path to bound interference in an arbitrary interval isto bound the remaining part of
the definition. To accomplish this, we require some additional lemmas that relate the live,
backlogged and eligible states using potential. We begin inLemma 5.5 by establishing a
relation between potential and provided service that follows directly from the definitions
of the upper bound on provided service and potential. Next, we show in Lemma 5.6 that
there is a connection between potential and being live for non-backlogged requestors.
The key insight is that the requested service curve and provided service curve are equal
in the absence of backlog, which allows us to use the previousresult from Lemma 5.5
to bound the requested service curve. We then demonstrate how to use potential to
determine if an active requestor is backlogged in Lemma 5.7.We use the result from
Lemma 5.6 to show that the requestor cannot be live, given itspotential. We then con-
clude that the requestor is backlogged, since it cannot be active otherwise. Lastly, we
show in Lemma 5.8 that it is possible to determine if an activerequestor is eligible by
looking at the potential. An active requestor must have a minimum potential and a back-
log to be eligible. Thanks to Lemma 5.8, we can determine of both if these conditions
are satisfied by only looking at potential.



5.4. ARBITER ANALYSIS 109

Lemma 5.5. For a requestorr ∈ R during an active period[τ1, τ2], it holds that
∀t ∈ [τ1, τ2] : πr(t) ≤ σ′r − ρ′r ⇐⇒ w′r(τ1, t− 1) ≥ ρ′r · (t− τ1 + 1).

Proof. We know that the equation in Lemma 5.2 holds during an active period [τ1, τ2].
Definition 5.17 and the fact that the requestor is inactive atτ1 − 1 results in
ŵ′r(τ1)− w′r(τ1) = σ′r, andŵ′r(τ1, t− 1) = (t− τ1) · ρ′r. Substituting these results into
the equation in Lemma 5.2 yieldsπr(t) = σ′r + (t− τ1) · ρ′r −w′r(τ1, t− 1) ≤ σ′r − ρ′r.
The proof is concluded by solving forw′r(τ1, t− 1).

Lemma 5.6. For a requestorr ∈ R during an active period[τ1, τ2], it holds that
∀t ∈ [τ1, τ2] : qr(t) = 0 : πr(t) ≤ σ′r − ρ′r ⇐⇒ wr(τ1 − 1, t− 1) ≥ ρ′r · (t− τ1 + 1).

Proof. According to Lemma 5.5, we knoww′r(t) − w′r(τ1) ≥ ρ′r · (t − τ1 + 1) ⇐⇒
πr(t) ≤ σ′r − ρ′r. Definition 5.10 states thatw′r(t) = wr(t), sinceqr(t) = 0. From
Lemma 5.1, we additionally know thatw′r(τ1) = wr(τ1 − 1). We conclude the proof by
substituting these results into the result from Lemma 5.5.

Lemma 5.7. For a requestorr ∈ Rat : πr(t) > σ
′
r − ρ′r ⇒ qr(t) > 0.

Proof. We prove the lemma by contradiction. We know from Definition 5.13 thatr ∈ Rat
implies thatqr(t) > 0 or wr(τ1 − 1, t − 1) ≥ ρ′r · (t − τ1 + 1), whereτ1 is the start
of the last active period. However, it follows from Lemma 5.5that if qr(t) = 0, then
πr(t) > σ

′
r − ρ′r ⇒ wr(τ1 − 1, t − 1) < ρ′r · (t − τ1 + 1). This implies thatr /∈ Rat ,

which is a contradiction.

Lemma 5.8. ∀r ∈ Rat : πr(t) > σ
′
r − ρ′r ⇒ r ∈ Ret .

Proof. We must show that for a requestorr ∈ Rat : πr(t) > σ
′
r − ρ′r implies that

the two conditions in Definition 5.20 are satisfied. The first condition is satisfied since
Lemma 5.7 states thatr ∈ Rat andπr(t) > σ′r − ρ′r implies qr(t) > 0. The second
condition is satisfied sinceπr(t) > σ′r − ρ′r ≥ 1− ρ′r, according to Definition 5.12.

The next stop towards our goal to bound the first part of Definition 5.25, being the
aggregate potentialof the higher priority requestors. We define the concept of aggregate
potential of a set of requestors in Definition 5.26 and show inLemma 5.9 that it cannot
increase, as long as a requestor in the set is scheduled everycycle. The key observation
is that the aggregate potential is reduced by one every time arequestor in the set is
scheduled, while it can maximally increase by the sum of the allocated rates, which is
less or equal to one. This is an important result that enablesLemma 5.10 to bound the
first part of the maximum interference equation in Definition5.25.

Definition 5.26 (Aggregate potential). The aggregate potential of a set of requestors
R′ ⊆ R is defined as

∑

∀r∈R′ πr(t) =
∑

∀r∈R′ ŵ
′
r(t)−

∑

∀r∈R′ w
′
r(t).

Lemma 5.9. For a set of requestorsR′ ⊆ R, it holds that∀t ∈ N : (∃rk ∈ R′ : γ(t) = rk)⇒
∑

∀r∈R′ πr(t+ 1) ≤∑∀r∈R′ πr(t).



110 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

Proof. According to Definition 5.4 and the definition of aggregate potential in Defini-
tion 5.26

∑

∀r∈R′

πr(t+ 1) =
∑

∀r∈R′

πr(t) +
∑

∀r∈R′

ŵ′r(t, t)−
∑

∀r∈R′

w′r(t, t)

According to Lemma 5.4,
∑

∀r∈R′ ŵ
′(t, t) ≤

∑

∀r∈R′ ρ
′
r, where equality is reached if

all requestors are active att. We also know from Definition 5.12 that
∑

∀r∈R′ ρ
′
r ≤ 1.

From Definition 5.9, we get that
∑

∀r∈R′ w
′
r(t, t) = 1 if a requestor inR′ is scheduled

at t. Hence, if∀r ∈ R′ : r ∈ Rat and∃rk ∈ R′ : γ(t) = rk, then

∑

∀r∈R′

πr(t+ 1) =
∑

∀r∈R′

πr(t) +
∑

∀r∈R′

ρ′r − 1 ≤
∑

∀r∈R′

πr(t)

Lemma 5.10. For a requestorri ∈ R, it holds that∀t ∈ N :
∑

∀rj∈R
+
ri

πrj (t) ≤
∑

∀rj∈R
+
ri

σ′rj . The equality occurs at any timet for which∀rj ∈ R+
ri

: rj /∈ Rat−1.

Proof. We prove the lemma by induction on t.

Base case:The lemma holds att = 0, since Definition 5.19 states that∀r ∈ R :
πr(0) = σ′r.

Inductive step:At t + 1, we examine two different cases for the premise att. In the
first case there exists a higher priority eligible requestor, and in the second case there
does not.
Case 1:(R+

ri
∩Ret ) 6= ∅

Pickingrk ∈ (R+
ri
∩ Ret ), according to Definition 5.24 and applying Lemma 5.9 results

in the first inequality in Equation (5.7). The second inequality follows from the induction
hypothesis.

∑

∀rj∈R
+
ri

πrj (t+ 1) ≤
∑

∀rj∈R
+
ri

πrj (t) ≤
∑

∀rj∈R
+
ri

σ′rj (5.7)

Case 2:(R+
ri
∩Ret ) = ∅

No higher priority requestor is eligible in this case. We will show that this implies that
π(t+ 1) ≤ σ′ both for requestors withπ(t) > σ′ − ρ′ andπ(t) ≤ σ′ − ρ′.

According to Lemma 5.8, it must hold that∀rj ∈ R+
ri
∧ rj /∈ Ret : πrj (t) >

σ′rj − ρ′rj ⇒ rj /∈ Rat . The third rule of Equation (5.2) hence states that∀rj ∈ R+
ri

:

πrj (t) > σ
′
rj
−ρ′rj ⇒ πrj (t+1) = σ′rj . For the other case by Definition 5.19,∀rj ∈ R+

ri
:

πrj (t) ≤ σ′rj − ρ′rj ⇒ πrj (t + 1) ≤ σ′rj . Hence,∀rj ∈ R+
ri

: πrj (t + 1) ≤ σ′rj . This
means that

∑

∀rj∈R
+
ri

πrj (t+ 1) ≤
∑

∀rj∈R
+
ri

σ′rj , which proves the second case.

The aggregate potential of higher priority requestors is maximal when∀rj ∈ R+
ri

:
πrj (t) = σ′rj , which occurs at any timet for which∀rj ∈ R+

ri
: rj /∈ Rat−1.



5.4. ARBITER ANALYSIS 111

We proceed by combining the derived bounds on the different parts of Definition 5.25
to upper bound the maximum interference in any interval in Lemma 5.11. This result
allows us to derive the service guarantee of the CCSP arbiterand to compute its service
latency. This is shown in Theorem 5.1, which is the main contribution of this section.
Note that the service latency derived in Equation (5.9) is decoupled from the allocated
rate by the priority level. Low service latency can hence be provided to latency-critical
requestors by assigning high priorities, while lower priorities are assigned to latency-
tolerant requestors.

Lemma 5.11(Maximum interference in any interval). The maximum interference expe-
rienced by a requestorri ∈ R during any interval[τ1, τ2] occurs when all higher-priority
requestors start an active period atτ1 and remain active∀t ∈ [τ1, τ2], and equals

îri(τ1, τ2) =
∑

∀rj∈R
+
ri

σ′rj + ρ′rj · (τ2 − τ1 + 1) (5.8)

Proof. We know from Definition 5.25 that the maximum interference inan interval is
iri(τ1, τ2) =

∑

∀rj∈R
+
ri

(πrj (τ1)+ŵ′rj (τ1, τ2)). Lemma 5.10 states that
∑

∀rj∈R
+
ri

πrj (τ1) ≤
∑

∀rj∈R
+
ri

σ′rj , which is maximal when all higher priority requestors are inactive atτ1−1.

We furthermore know from Lemma 5.4 that
∑

∀rj∈R
+
ri

ŵ′rj (τ1, τ2) ≤
∑

∀rj∈R
+
ri

ρ′rj ·
(τ2 − τ1 + 1), which is maximal when∀t ∈ [τ1, τ2] : rj ∈ Rat . Hence,̂iri(τ1, τ2) =
∑

∀rj∈R
+
ri

σ′rj + ρ′rj · (τ2 − τ1 + 1) when all higher priority requestors start an active

period atτ1, and remain active∀t ∈ [τ1, τ2].

Theorem 5.1(Service guarantee). An active requestorri ∈ R is guaranteed a mini-
mum service during an active period[τ1, τ2] according to∀t ∈ [τ1, τ2] : w̌′ri(τ1, t) =
max(0, ρ′ri · (t− τ1 + 1−Θri)), where

Θri =

∑

∀rj∈R
+
ri

σ′rj

1−
∑

∀rj∈R
+
ri

ρ′rj
(5.9)

Proof. It suffices to show that the theorem holds for intervals whereτ2 − τ1 + 1 > Θri ,
as these are the only intervals for whicȟw′ri(τ1, τ2) > 0. For these intervals, we must
show that

∀t ∈ [τ1, τ2] : w̌′ri(τ1, t) = ρ′ri · (t− τ1 + 1−Θri) (5.10)

We prove the theorem by splitting the active period into intervals [τi, τj ], based on the
potential of the active requestor. We are interested in two cases, namely intervals where
the potential is larger thanσ′ri and intervals where it is not. These cases correspond
to when the provided service curve is located in the areas above or below the live line,
marked case 1 and case 2 in Figure 5.4, respectively. We proceed by showing that the
service guarantee is satisfied during both types of intervals.

Case 1:∀t ∈ [τi, τj ] : ri ∈ Rat ∧ π(t) > σ′ri − ρ′ri



112 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

According to Lemma 5.8 this case implies that∀t ∈ [τi, τj ] : ri ∈ Ret . There are
(τj − τi + 1) units of service available in the interval. An eligible requestor in a static-
priority scheduler cannot access the resource whenever it is used by higher priority re-
questors, as stated by Definition 5.24. The minimum service available tori, denoted by
w̌ari , is hence expressed according tow̌ari(τi, τj) = τj − τi + 1 − îri(τi, τj). Sinceri is
continuously eligible in the interval, it follows thaťw′ri(τi, τj) = w̌ari(τi, τj). We proceed
by using the result from Lemma 5.11 to bound the maximum possible interference.

w̌′ri(τi, τj) = τj − τi + 1−
∑

∀rj∈R
+
ri

σ′rj −
∑

∀rj∈R
+
ri

ρ′rj · (τj − τi + 1) (5.11)

Combining Equation (5.10) and Equation (5.11) results in

ρ′ri · (τj − τi + 1−Θri) =

τj − τi + 1−
∑

∀rj∈R
+
ri

σ′rj −
∑

∀rj∈R
+
ri

ρ′rj · (τj − τi + 1)

We replaceρ′ri by 1 −∑∀rj∈R+
ri

ρ′rj , which is valid since1 −∑∀rj∈R+
ri

ρ′rj ≥ ρ′ri ,
according to Definition 5.12. Solving forΘri results in Equation (5.9), proving the first
case.

Case 2:∀t ∈ [τi, τj ] : ri ∈ Rat ∧ π(t) ≤ σ′ri − ρ′ri
It follows from Lemma 5.5 that this case impliesw′ri(τ1, t − 1) ≥ ρ′ri · (t − τ1 + 1).
We proceed by noting thatw′ri(τ1, t) ≥ w′ri(τ1, t − 1), according to Definition 5.9, and
hence that alsow′ri(τ1, t) ≥ ρ′ri · (t − τ1 + 1). This concludes the proof of the second
case, since this expression satisfies Equation (5.10) for all possible values ofΘri .

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

case 1

case 2

Service cycles

Live line

Θ

σ′

ŵ′

w̌′

ρ′

Figure 5.4: Illustration of the two cases in Theorem 5.1.



5.5. LR SERVER 113

5.5 LR server

At this point, we have presented the CCSP arbiter, consisting of a rate regulator and a
scheduler. The regulator uses continuous replenishment ofservice based on active peri-
ods, which decouples allocation granularity and latency. Furthermore, the scheduler uses
static priorities to decouple latency and rate. We analyzedthe combination of rate regu-
lator and scheduler and derived a lower bound on the providedservice during an active
period. In this section, we connect the CCSP arbiter to the theory ofLR servers, which
is our shared resource abstraction. First, we define aLR server and discuss differences
and similarities with what we have explained about CCSP so far. We then conclude the
section by proving that CCSP belongs to the class ofLR servers, enabling it to provide
predictable and composable service with any predictable resource.

Our first step is to formally define aLR server. We use the definitions from [104],
adapted to fit with our use of discrete, as opposed to continuous, time. The concept
of busy periods, defined in Definition 5.27 is central to the definition ofLR servers.
A busy period is intuitively understood as a period in which arequestor requests more
service on average than it is allocated. Definition 5.29 defines aLR server as a server
that guarantees a busy requestor its allocated service rate, ρ′ after a maximum service
latency,Θ, as illustrated in Figure 5.5. The requestor in the figure is busy fromτ1 until
τ2, since it is above the dash-dotted reference line with slopeρ′ that we informally refer
to as thebusy line. A second busy period starts atτ3 and lasts throughout the rest of the
shown interval.

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

busy line

busy period 1

busy period 2

Θ

w′

w

w̌′

ρ′

τ2 τ3τ1

Figure 5.5: Example service curves in aLR server.

Definition 5.27 (Busy period). A busy period of a requestorr ∈ R is defined as a
maximum interval[τ1, τ2], such that∀t ∈ [τ1, τ2] : wr(τ1− 1, t− 1) ≥ ρ′r · (t− τ1 + 1).
Requestorr is busy∀t ∈ [τ1, τ2].

Definition 5.28(Set of busy requestors). The set of requestors that are busy att is defined
asRbt = {r | ∀r ∈ R ∧ r busy att}.
Definition 5.29 (LR server). A server is aLR server if and only if a non-negative
service latencyΘr can be found such that Equation(5.12)holds during a busy period



114 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

[τ1, τ2] of a requestorr. The minimum non-negative constantΘr satisfying the equation
is the service latency of the server.

∀t ∈ [τ1, τ2] : w̌′r(τ1, t) = max(0, ρ′r · (t− τ1 + 1−Θr)) (5.12)

The definition of a busy period is quite similar to the definition of liveness in Defi-
nition 5.14. The only difference between the definitions is the interval during which the
requested service is considered. Liveness is a state that relates to the start of an active
period, whereas business relates to the start of a busy period. We also see that the defini-
tion of aLR server in Definition 5.5 is very similar to the service guarantee derived for
CCSP in Theorem 5.1, again the difference being thatLR servers consider busy periods
as opposed to active periods. We proceed by discussing some relations between busy
periods and active periods. We then prove that CCSP belongs to the class ofLR servers,
which is the main contribution of this section.

Next, we show that although the definitions of active periodsand busy periods are
quite similar, the relations between the two are quite complicated. Five such relations
are illustrated in Figure 5.6. For clarity, we use dash-dotted lines to indicate busy lines.
We furthermore use lines with double dots followed by a dash for live lines. Lastly,
overlapping busy and live lines are drawn with dashed lines.This convention is shown
in the legend in Figure 5.6f. Figure 5.6a illustrates that itis possible for a busy period
and active period to start and stop at the same time. If a busy period and an active period
start simultaneously, the requirements to be busy and live are identical until the first time
either state is lost. If the backlog is lost before liveness,like in Figure 5.6a, then the busy
period and active period ends at the same time. In Figure 5.6b, we see that the second
active period contains a busy period. This means that the busy period starting atτ3 both
starts and stops inside the active period. A third relation is demonstrated in Figure 5.6c.
Here, a busy period starts inside an active period atτ3, and finishes atτ5 after the active
period has stopped. This figure is similar to Figure 5.6b, butwith the difference that
the backlog is lost shortly after the busy period starts atτ3. The active period hence
finishes already atτ4, since no new requests arrive. Figure 5.6d shows that it is possible
for a busy period to contain an active period. This may happenif a busy period starts in
an earlier active period. In this case, the new active periodloses its liveness before the
requestor stops being busy. The busy period hence contains the active period if there is
no backlog. This is seen in Figure 5.6d, where liveness must be lost in the active period
starting atτ5 before the busy period starting atτ3 can end. The final relation is illustrated
in Figure 5.6e. Here we see a busy period that starts inside anactive period and ends
inside another active period. In total, eight states capture all combinations of being busy,
live, and backlogged. Table 5.1 lists all these combinations and indicates the sub-figure
where they occur. We do not consider active as a separate state, since it is defined as
being backlogged or live. Two combinations in the table do not have a reference, as they
do not occur in any of the sub-figures in Figure 5.6. In fact, these two combinations
cannot occur, as we will explain later in this section.

Despite all the differences between active periods and busyperiods, illustrated in
Figure 5.6, there are a few key relations. These relations allow us to extend the service



5.5. LR SERVER 115

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

live

backlogged

active

busy x x

x

x

x

x

x

τ1

w
w′

τ2 τ3

(a) Active period and busy period start and stop
simultaneously.

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

live

backlogged

active

busy x x

x

x x x x

x x x x

τ1

w′

w

τ2 τ4τ3

(b) Active period contains busy period.

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

live

backlogged

active

busy x

x

x

x

x

x

x

x

x

x

τ1

w

τ2 τ5

w′

τ4τ3

(c) Busy period starts in active period, but finishes
after.

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

live

backlogged

active

busy x x x x

x

x x x

x x x

x

x

x

x

x

x

x

τ1 τ2 τ3 τ4τ5 τ7τ8

w

w′

τ6

(d) Busy period contains active period.

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

live

backlogged

active

busy x x x

x

x x x

x x x

x

x

x

x

x

x

xx

x

τ1 τ2 τ3 τ4 τ8

w′

w

τ5 τ7τ6

(e) Busy period starts in one active period and ends
in another.

Overlapping live
and busy lines:

Live line:

Busy line:

(f) Legend of line types in figure.

Figure 5.6: Relations between busy periods and active periods.



116 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

Table 5.1: Reference to figure showing combinations of liveness, business, and backlog.
Figure: 5.6a 5.6c 5.6b 5.6b 5.6a 5.6a
live

√ √ √ √

backlogged
√ √ √ √

busy
√ √ √ √

guarantee in Theorem 5.1 to also cover busy periods, which implies that CCSP is aLR
server. The first relation is that a requestor is always active at the start of a busy pe-
riod. The reason is that according to Definition 5.27, a busy period can only start if the
requestor is not already in a busy period and if there is an arrival of a request. If the
requestor is already active, then the busy period starts inside the active period, as previ-
ously shown in Figure 5.6b and Figure 5.6d. However, if the requestor is not active, then
the arrival also triggers a start of a new active period, as shown atτ1 in all sub-figures
in Figure 5.6. In either case, the requestor is active. The second relation is thatt can-
not be the start of a busy period if the requestor was live att − 1. The reason is that
a live requestor has requested enough service to be in a busy period att. This relation
is the reason why two state combinations in Table 5.1 cannot occur: a requestor cannot
be live unless it is busy. This is a key insight that allows us to bound the potential of a
requestor at the start of a busy period. We do this in two steps. First, Lemma 5.12 shows
that a requestor is live if the potential is less than or equalto the allocated burstiness and
if there is an arrival in the service cycle (such as the start of a busy or active period).
Lemma 5.13 then uses this result to show that the potential must be greater than or equal
to the allocated burstiness at the start of a busy period, since lower potential would imply
that the requestor is live.

Lemma 5.12. During an active period[τ1, τ2], it holds that∀t ∈ [τ1, τ2] : π(t) ≤ σ′ ∧
w(t− 1, t− 1) ≥ 1⇒ w(τ1 − 1, t− 1) ≥ ρ′ · (t− τ1 + 1).

Proof. We start by using the potential to compute the amount of service provided in the
active period. Lemma 5.2 states thatπ(t) = ŵ′(τ1)−w′(τ1)+ŵ′(τ1, t−1)−w′(τ1, t−1).
We rewrite the equation and substitute using Definition 5.4 and Definition 5.18, yielding

w′(t)− w′(τ1) = π(τ1)− π(t) + ŵ′(τ1, t− 1) (5.13)

We know from Definition 5.19 thatπ(τ1) = σ′, sinceτ1 is the start of an active period and
the requestor is inactive atτ1− 1. Definition 5.17 furthermore states thatŵ′(τ1, t− 1) =
ρ′ · (t− τ1), since the requestor is active throughout the entire interval. Considering the
precondition thatπ(t) ≤ σ′, we get

w′(t)− w′(τ1) ≥ σ′ − σ′ + ρ′ · (t− τ1) = ρ′ · (t− τ1) (5.14)

Having determined the amount of service provided during theactive period, we pro-
ceed by using relations between the requested and provided service curves and the pre-
condition of the lemma to draw conclusions about the requested service curve. Defini-
tion 5.20 states thatw(t− 1) ≥ w′(t), since a requestor cannot be scheduled unless it is



5.5. LR SERVER 117

backlogged. Moreover, the second precondition of this lemma is thatw(t) ≥ w(t−1)+1,
which means that there is an arrival att. We conclude by noting thatw(τ1−1) = w′(τ1),
according to Lemma 5.1, and substitute the results into Equation (5.14). This results in
w(t) − w(τ1 − 1) ≥ ρ′ · (t − τ1) + 1 ≥ ρ′ · (t − τ1 + 1) The proof is concluded by
rewriting the left hand side of the expression using Definition 5.4.

Lemma 5.13. During an active period[τ1, τ2], it holds that∀t ∈ [τ1, τ2] : π(t) ≥ σ′ if
t is the start of a busy period.

Proof. We prove the lemma by contradiction. We proceed by showing that if π(t) < σ′,
then the requestor is already busy andt cannot be the start of a busy period.

We start the proof by bounding the amount of requested service so far in the ac-
tive period. The precondition of this lemma states thatπ(t) < σ′. We also know that
w(t− 1, t− 1) ≥ 1, since a new busy period is triggered att. Lemma 5.12 hence im-
pliesw(τ1 − 1, t − 1) ≥ ρ′ · (t − τ1 + 1). This means that we know that the requested
service is above the live line in the active period. This alsomeans that the requested
service curve is on or above the busy line att, if the busy period started together with the
active period atτ1, as shown in Figure 5.7a. On the other hand, if the busy periodstarted
at someτ∗ < τ1, as shown in Figure 5.7b, then we know thatr ∈ Rbτ1−1. According to
Definition 5.27 this impliesw(τ∗−1, τ1−2) ≥ ρ′ ·(τ1−τ∗). Combining what we know
about the requested service curve in the interval[τ∗−1, t−1], results in Equation (5.15),
which shows the requested service curve is on or above the busy line att also in this case.

w(τ∗ − 1, t− 1) = w(τ∗ − 1, τ1 − 2) + w(τ1 − 1, t− 1) ≥
ρ′ · (τ1 − τ∗) + ρ′ · (t− τ1 + 1) = ρ′ · (t− τ∗ + 1) (5.15)

We have now shown that the requested service curve att is above the busy line of a busy
period that started at or beforeτ1. However, Lemma 5.12 only guarantees that the re-
quested service curve is on or above the busy line att and not∀t′ ∈ [τ1−1, t−1], which
is required to stay in the busy period that started at or before τ1. We identify two cases.
In the first case, the requested service curve was on or above the busy line in the entire
interval and in the second case, it was not.

Case 1:∄t′ ∈ [τ1 − 1, t− 1] : w(τ1 − 1, t′ − 1) < ρ′ · (t′ − τ1 + 1)
In this case, the requested service curve was on or above the busy line∀t′ ∈ [τ1 − 1, t− 1],
as illustrated in Figure 5.7a and Figure 5.7b, and hence thatno new busy period started
afterτ1. We hence only have to consider busy periods that started at or before this time.
According to Definition 5.27, the definition of this case implies that the requestor is busy
at t if the busy period started atτ1. On the other hand, if the busy period started at
τ∗ < τ1, then it follows that Equation (5.15) holds∀t′ ∈ [τ∗ − 1, t− 1], and hence thatt
is still in the busy period that started atτ∗. In either case, a new busy period cannot start
at t.

Case 2:∃t′ ∈ [τ1 − 1, t− 1] : w(τ1 − 1, t′ − 1) < ρ′ · (t′ − τ1 + 1)
This case implies that the busy period that started at or before τ1 ended atτ ′ < t, as



118 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

Live line =
Busy line

ρ′

w(t)

tτ1

(a) Requestor still in busy period that started atτ1.

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

Live line

Busy line

ρ′

τ1

τ∗

t

w(t)

(b) Requestor still in busy period that started at
τ∗ < τ1.

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

Busy line

Live line

w(t)

tτ1 τ ′ τ ′′

ρ′

(c) Requestor still in busy period that started at
τ ′′ > τ1.

Overlapping live
and busy lines:

Live line:

Busy line:

(d) Legend of line types in figure.

Figure 5.7: Example of the cases in Lemma 5.13.

shown in Figure 5.7c. However, we know that one or more busy periods have started
afterτ ′, sincew(t) > w(τ ′). The latest such busy period beforet started at some time
τ ′′ > τ ′. This means thatr /∈ Rbτ ′′−1, and hencew(τ1 − 1, τ ′′ − 2) < ρ′ · (τ ′′ − τ1).
The requested service in this busy period is expressed in Equation (5.16). According to
Definition 5.27, this result means thatt is in the busy period that started atτ ′′ and that a
new busy period cannot start att.

w(τ ′′ − 1, t− 1) = w(τ1 − 1, t− 1)− w(τ1 − 1, τ ′′ − 2) ≥
ρ′ · (t− τ1 + 1)− ρ′ · (τ ′′ − τ1) = ρ′ · (t− τ ′′ + 1) (5.16)

After deriving the key relations between active periods andbusy periods, we proceed
by showing that CCSP belongs to the class ofLR servers in Theorem 5.2. The approach
is to examine sub-intervals during the active period and show that the service guarantee
provided during active periods is sufficient to cover busy periods. To accomplish this, we
exploit the recently derived key relations between active periods and busy periods.



5.5. LR SERVER 119

Theorem 5.2(LR server). A CCSP arbiter belongs to the class ofLR servers, and the
service latency of a busy requestor is equal to Equation(5.9).

Proof. According to 5.29, we must show that a busy requestor is guaranteed a minimum
service during a busy period[τ1, τ2] according to∀t ∈ [τ1, τ2] : w̌′(τ1, t) = max(0, ρ′ ·
(t− τ1 + 1−Θ)).

We prove the theorem by dividing the busy period into intervals [τa, τb] in which the
requestor is either active or inactive. We then show that theservice guarantee is satisfied
during both kinds of intervals.

Case 1:∀t ∈ [τa, τb] : r ∈ Rat
The requestor is active throughout the interval and the service guarantee from Theo-
rem 5.1 hence applies. This guarantee is identical to the onewe are proving in this
theorem, except that it is based on active periods instead ofbusy periods. We pro-
ceed by showing that the two cases in Theorem 5.1 also apply toactive intervals during
which the requestor is busy. The first case in Theorem 5.1 applies straight-forwardly
to anyt ∈ [τa, τb], whereπ(t) > σ′ − ρ′. The second case, however, guarantees that
w′(τ1, t) ≥ ρ′ · (t − τ1 + 1) and hence that the required amount of service is provided
with respect to the start of the active period (τ1), as opposed to the start of the overlap
between the busy period and the active periodτa.

We proceed by showing that our bound on potential at the startof a busy period
ensures that enough service is provided during the second case in Theorem 5.1. The
intuition is that the provided service is guaranteed to be above the live line, which is
above the busy line, as seen in the examples in Figures 5.6b, 5.6c, 5.6d, and 5.6e. We
know from Lemma 5.13 thatπ(τa) ≥ σ′. We also know from Definition 5.17 that
ŵ′(τa, t− 1) = ρ′ · (t− τa), since the requestor is active throughout the entire interval.
It furthermore follows from the second case in Theorem 5.1 that π(t) ≤ σ′ − ρ′. We
conclude this part of the proof by using Equation (5.13) and Definition 5.9, resulting in
w′(τa, t) ≥ w′(τa, t− 1) ≥ σ′ − (σ′ − ρ′) + ρ′ · (t− τa) = ρ′ · (t− τa + 1).

Case 2:∀t ∈ [τa, τb] : ri /∈ Rat
The proof of this case is similar to the second case in Theorem5.1. Definition 5.27 states
thatr ∈ Rbt impliesw(τ1 − 1, t − 1) ≥ ρ′ · (t − τ1 + 1), whereτ1 is the start of a busy
period. We know from Definition 5.13 that an inactive requestor is not backlogged, and
hence that

w′(τ1 − 1, t− 1) ≥ ρ′ · (t− τ1 + 1) (5.17)

We note thatw′(τ1, t) ≥ w′(τ1, t − 1), according to Definition 5.9, andw′(τ1) =
w′(τ1 − 1) by Lemma 5.1. Substituting these results into Equation (5.17) concludes
the proof of the second case, since this expression satisfiesEquation (5.10) during busy
periods for all possible values ofΘ.



120 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

5.6 Hardware implementation

We have now introduced the CCSP arbiter and shown that it belongs to the class of
latency-rate servers. The service latency of the arbiter isdecoupled from the allocated
rate using priorities, allowing it to distinguish latency-critical and latency-tolerant re-
questors. The challenge in this section is to provide a fast and small hardware implemen-
tation of the arbiter that decouples allocation granularity and latency. This allows over
allocation to be made negligible, which is useful when managing scarce resources. First
in Section 5.6.1, we discuss how to represent the allocated service,(ρ′, σ′), in the rate
regulator using finite precision and present two allocationstrategies that address different
aspects of over allocation. We proceed in Section 5.6.2 by providing tight bounds on over
allocation of the two strategies and comparing these results to those of a frame-based ar-
biter. An implementation of the CCSP rate regulator based onsimple integer arithmetic
is derived in Section 5.6.3, and we formally prove the equivalence between this imple-
mentation and the definition of active period rate regulation from Section 5.3.1. The
architecture of the arbiter is presented in Section 5.7 together with synthesis results in-
dicating that our implementation provides an exponential reduction in maximum over
allocation at the cost of a linear increase in area.

5.6.1 Service representation

The hardware implementation of the rate regulator only offers finite precision for repre-
senting the service allocation of a requestor, potentiallycausing it to be discretized. We
hence associate each requestor with a discrete service allocation, denoted by(ρ′′, σ′′),
thatconservatively approximatesthe real-valued allocation in Definition 5.12. The dis-
crete allocated rate is represented as a fraction of integers, as proposed in [86], whose
maximum size is limited by the number of bits used to represent them in the implemen-
tation. This provides a design time trade-off between precision and area, as we will see
in Section 5.7. The discrete allocated rate and burstiness are formally defined in Defini-
tion 5.30 and Definition 5.31, respectively.

Definition 5.30 (Discrete allocated rate). The discrete allocated rate of a requestor
r ∈ R in an arbiter with a precision ofβ bits is denoted byρ′′r ∈ Q+, and is repre-
sented asρ′′r = nr/dr, whereρ′′r ≥ ρ′r, nr, dr ∈ N+ andnr ≤ dr < 2β .

Definition 5.31 (Discrete allocated burstiness). The discrete allocated burstiness of a

requestorr ∈ R is denoted byσ′′r ∈ Q+, and is defined asσ′′r =
⌈σ′r·dr⌉
dr

.

The conservative approximation of the allocated service may cause the allocated rate
and burstiness to be over allocated. We define the over-allocated rate of a requestor
according to Definition 5.32. This definition shows us how much of the resource capacity
is wasted when service is allocated to a requestor. We are also interested in the over-
allocated burstiness, defined in Definition 5.33, since the service latency of CCSP in
Equation (5.9), depends on both the allocated rate and the allocated burstiness. This
allows us to study how over allocation impacts the service latency of the arbiter. It



5.6. HARDWARE IMPLEMENTATION 121

follows from these definitions that the total over-allocated rate and burstiness are obtained
by summing over the set of requestors sharing the resource.

Definition 5.32 (Over-allocated rate). The over-allocated rate of a requestorr ∈ R is
given byoρ(ρ′′r , ρ

′
r) : Q+×R+ → R, and is defined according tooρ(ρ′′r , ρ

′
r) = ρ′′r − ρ′r.

Definition 5.33(Over-allocated burstiness). The over-allocation of a requestorr ∈ R is
given byoσ(σ′′r , σ

′
r) : Q+×R+ → R, and is defined according tooσ(σ′′r , σ

′
r) = σ′′r − σ′r.

There are multiple strategies when selecting then andd of a requestor to allocate its
service. It follows directly from Definition 5.31 and Definition 5.33 thatoσ(σ′′, σ′) =
⌈σ′·d⌉
d
− σ′ < 1

d
, and hence that a larged reduces the over-allocated burstiness. How-

ever, this may not provide the closest approximation of the allocated rate, resulting in
wasted resource capacity. Considering this, we present twoallocation strategies. The
first strategy, calledClosest Rate Approximation (CRA), involves approximating the allo-
cated rate as closely as possible to reduce wasted resource capacity, with a secondary ob-
jective to reduce the over-allocated burstiness. Conversely, the second strategy, referred
to asClosest Burstiness Approximation (CBA), attempts to reduce the service latency by
closely approximating the allocated burstiness, and reducing the over-allocated rate as a
secondary objective.

CRA chooses then andd, such thatρ′′ is the minimum rate that satisfiesρ′′ ≥ ρ′.
If there are multiplen andd pairs providing equal approximations of the allocated rate
(e.g. 1

2 = 2
4 ), the one with the largestd is preferred to improve the approximation of

the allocated burstiness. CBA, on the other hand, picks the largest possibled to reduce
the over-allocated burstiness. To provide the best possible conservative approximation
of the allocated rate, given the selectedd, this meansn = ⌈ρ′ · d⌉. Next, we derive the
allocation properties of these strategies.

5.6.2 Allocation properties

In this section, we analytically examine the properties of the CRA and CBA allocation
strategies and compare them to those of a frame-based arbiter. We start in Lemma 5.14 by
bounding the over-allocated rate of both strategies, revealing that it reduces exponentially
with the number of bits,β, used to representn andd.

Lemma 5.14. The over-allocated rate of a requestor in a CCSP arbiter witha precision
of β bits is upper bounded according tooccsp

ρ (ρ′′, ρ′) < 1
2β−1

.

Proof. The over-allocated rate is defined asoρ(ρ′′, ρ′) = ρ′′ − ρ′, according to Def-
inition 5.32. We know from Definition 5.30 thatρ′′ = n/d. For CBA, it holds that
d = 2β − 1 andn = ⌈d · ρ′⌉. CRA also falls back on this allocation, unless there is
anothern, d pair that yields a tighter approximation. By substituting these results into
Lemma 5.14 and performing basic algebraic manipulation, wearrive atoccsp

ρ (ρ′′, ρ′) <
⌈d·ρ′⌉
d
− d·ρ′
d
< 1/d. The proof is concluded by substitutingd = 2β − 1.



122 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

The derived bound on over-allocated rate is tight for CBA. For CRA, however, it is
only tight for requestors withρ′ = ε, whereε is close to zero. In this case, the closest
approximation for both strategies is given by choosingn = 1 andd = 2β − 1, which
is the smallest rate that can be represented, given a particular precision. This results in
occsp
ρ (ρ′′, ρ′) = 1

2β−1
− ε ≈ 1

2β−1
, corresponding to the worst case. The worst-case

reoccurs for CBA when∀k ∈ N+, 1 < k < 2β − 1 : ρ′ = k
2β−1

+ ε, as it results in

a discrete allocation according toρ′′ = k+1
2β−1

. For k > 1, CRA is guaranteed to find
a solution that results in a tighter approximation. CRA hence results in a smaller over-
allocated rate than suggested by the bound for larger allocated rates, as we will see in
Section 5.8. However, since the bound is already tight, no better bound exists for this
strategy that supports arbitrary allocations.

We proceed by bounding the over-allocated burstiness for a requestor using the two
allocation strategies. Since a requestor always uses the largest possibled under the CBA
strategy, it follows directly thatocba

σ (σ′′, σ′) < 1
d
< 1

2β−1
. The over allocation of a re-

questor using the CRA strategy is derived in Lemma 5.15.

Lemma 5.15. The over-allocated burstiness of a requestor using the CRA strategy in a
CCSP arbiter with a precision ofβ bits is upper bounded according toocra

ρ (ρ′′, ρ′) < 2
2β−1

.

Proof. We know that the over-allocated burstiness for CCSP is upperbounded by1
d
.

The CRA strategy uses then and d pair with the largestd that provides the tightest
approximation ofρ′. We note that for anyd < 2β−1

2 there exists ak ∈ N+, k > 1 such

that k·n
k·d is an equivalent allocation ofρ′ with a largerd. We hence get thatd ≥ 2β−1

2 and
thatocra

σ (σ′′, σ′) < 2
2β−1

.

The bounds computed in this section show that theover-allocated rate and burstiness
monotonically reduce with increased precisionfor both strategies. Hence, increasing pre-
cision cannot result in more resource capacity being wastedor increased service latency.
This property is essential for effective design-space-exploration and optimization algo-
rithms. We compare this result to that of an arbiter with a typical frame-based regulator,
previously discussed in Section 2.1.3, together with a static-priority scheduler. We refer
to this combination as Frame-Based Static-Priority (FBSP)arbitration in this thesis.

FBSP allocates service to a requestor by assigning it a number of slots,φ, propor-
tional to the allocated rate, in a frame of sizef, which is the same for all requestors. The
arbiter only has a single allocation parameter and thus cannot allocate rate and burstiness
separately. Instead, the allocated burstiness follows implicitly from the allocated rate
and the frame size. The number of slots allocated to a requestor is assigned according
to φ = ⌈ρ′ · f⌉. This implies that FBSP allocates service in the same way as CBA if
f = 2β − 1, and hence that the over-allocated rate isofbsp

ρ (ρ′′, ρ′) < 1/f. We observe
that the maximum over allocation of a requestor is inverselyproportional to the frame
size, implying that a large frame size is required to providean efficient allocation. How-
ever, the service latency of this arbiter is computed according to Equation (5.18), and
is proportional to the frame size. Increasing the frame sizeto reduce the over-allocated
rate increases the implicitly allocated burstiness, and results in a trade-off between low



5.6. HARDWARE IMPLEMENTATION 123

service latency and over allocation. The over-allocated rate and service latency do hence
not monotonically reduce with increased frame size for FBSP, which is typical for frame-
based arbiters.

Θfbsp
ri

= 2 ·
∑

∀rj∈R
+
ri

φrj ≥ 2 · f ·
∑

∀rj∈R
+
ri

ρ′rj (5.18)

5.6.3 Credit-based rate regulation

In this section, we derive a simple hardware implementationof the rate regulator model
in Section 5.3.1, based on the discrete representation of the allocated service in Defini-
tion 5.30 and Definition 5.31.

The main difficulty in efficiently implementing the potential-based accounting in
Definition 5.19 lies in knowing if a requestor is active or not. To accomplish this, Def-
inition 5.13 states that we need to know if a requestor is backlogged or live during a
particular service cycle. It is easy to determine if a requestor is backlogged in hardware
by checking if there are any requests waiting to be served. Knowing how therequested
serviceduring an active period relates to the allocated rate, on theother hand, is more
challenging, especially considering that CCSP enforces anupper bound onprovided ser-
viceand is only aware of the request at the head of the request buffer of each requestor.
Although this design has a number of benefits, as we will laterdiscuss in Section 8.1,
it complicates the hardware implementation. The reason is that the regulator cannot
directly observe the requested service, since the bus and the arbiter are placed after the
Request Buffer, as previously shown in Figure 1.7. They hence only know if there is a re-
quest pending or not, but are for the rest unaware of arrivingrequests. The solution to this
problem is to use the potential to determine if a requestor isactive. We already showed
in Lemma 5.6 that it is possible to use the potential to determine if a non-backlogged re-
questor is live. Lemma 5.16 provides another piece to the puzzle, deriving a lower bound
on potential of an inactive requestor. These results are essential to derive the hardware
implementation of the rate regulator, which is done next.

Lemma 5.16. For a requestorr /∈ Rat ⇒ πr(t) > σ′r − ρ′r.

Proof. By negating Definition 5.13, we know that iffr /∈ Rat then qr(t) = 0 and
wr(τ1 − 1, t− 1) < ρ′r · (t− τ1 + 1), whereτ1 is the start of the last active period. From
Definition 5.10, we get thatqr(t) = 0 implieswr(t) = w′r(t). Substituting this into the
expression results inw′r(τ1 − 1, t − 1) < ρ′r · (t − τ1 + 1). Lemma 5.1 states that
w′r(τ1 − 1, t − 1) = w′r(τ1, t − 1), giving usw′r(τ1, t − 1) < ρ′r · (t − τ1 + 1), which
according to Lemma 5.5 implies thatπr(t) > σ′r − ρ′r.

The credit-based accounting used by the hardware implementation of the rate regula-
tor is presented in Definition 5.34, and the formal proof of correctness is provided in The-
orem 5.3. Note that the accounting is simple and only needs toknow the current credit
state (potential) of each requestor, if they are backloggedor not, and which requestor
was scheduled in the service cycle when updating the state. The mechanism furthermore



124 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

only uses integer arithmetic, making it suitable for hardware implementation. Note that
the underlying ideas behind this mechanism, as well as the efficient integer representa-
tion of the allocated rate and the allocation strategies, are useful to implement other rate
regulators that use continuous replenishment and enforce linear bounds, such as(σ, ρ)
regulators [25].

Definition 5.34 (Credit-based accounting). The number of credits of a requestorr ∈ R
is given bycr(t) : N→ N, wherecr(0) = σ′′r · dr and

cr(t+ 1) =











cr(t) + nr − dr γ(t) = r

cr(t) + nr γ(t) 6= r ∧ qr(t) > 0

min(cr(t) + nr, cr(0)) γ(t) 6= r ∧ qr(t) = 0

Theorem 5.3. The credit-based accounting is an implementation of potential-based ac-
counting, where the service allocation of a requestorr ∈ R equals(ρ′′r , σ

′′
r ), and it holds

that∀t : cr(t) = πr(t) · dr.

Proof. We rewrite the equation in Definition 5.19 by splitting the second case, where
r ∈ Rat , in two, according to Definition 5.13. In the first caseqr(t) > 0 and in the
otherqr(t) = 0 andr ∈ Rlt. According to Definition 5.14 and Lemma 5.6,r ∈ Rlt and
q(t) = 0 implies thatπr(t) ≤ σ′′r − ρ′′r . We use the results from Lemma 5.16 to rewrite
the case wherer /∈ Rat , resulting in

πr(t+ 1) =







































πr(t) + ρ′′r − 1 γ(t) = r

πr(t) + ρ′′r γ(t) 6= r ∧ qr(t) > 0

πr(t) + ρ′′r (γ(t) 6= r ∧ qr(t) = 0 ∧
πr(t) ≤ σ′′r − ρ′′r )

σ′′r (γ(t) 6= r ∧ qr(t) = 0 ∧
πr(t) > σ

′′
r − ρ′′r )

(5.19)

Multiplying both sides of Equation (5.19) withdr and substitutingcr(t) = πr(t) ·dr,
nr = ρ′′r · dr andcr(0) = σ′′r · dr, according to Definitions 5.30, 5.31, and 5.34 yields

cr(t+ 1) =







































cr(t) + nr − dr γ(t) = r

cr(t) + nr γ(t) 6= r ∧ qr(t) > 0

cr(t) + nr (γ(t) 6= r ∧ qr(t) = 0 ∧
cr(t) ≤ cr(0)− nr)

cr(0) (γ(t) 6= r ∧ qr(t) = 0 ∧
cr(t) > cr(0)− nr)

(5.20)

To simplify the accounting, we merge the two last cases in Equation (5.20) into
cr(t+ 1) = min(cr(t) + nr, cr(0)), where the third case in Equation (5.20) is covered
by the first operand and the fourth case by the second operand.This concludes the



5.7. ARCHITECTURE AND SYNTHESIS 125

proof, as we have now arrived at the simple credit-based accounting mechanism in Defi-
nition 5.34.

The introduction of the credit-based accounting mechanismalso affects the enforce-
ment. Similarly to the proof of Theorem 5.3, we multiply the eligibility criterion in
Section 5.3.1 withd and use thatc(t) = π(t) · d andn = ρ′′ · d, which results in that a
requestor requiresc(t) ≥ d− n to be considered eligible att.

5.7 Architecture and synthesis

The proposed arbiter has been implemented in synthesizableVHDL according to the
architecture presented in Figure 5.8. We proceed with a brief discussion on the architec-
ture after which we present synthesis results. The architecture and its implementation are
presented in full detail in [106].

SchedulerRate regulator

from
Data Bus

from
Config Bus

cfg to
Data Bus

S
tatic−

priority
schedulerbank

R
egister

E
ligibility test 

Update
state

cr(t)

pr

Re
t

γ(t)

γ(t)

qr(t) > 0

Figure 5.8: The architecture of the CCSP arbiter.

First, we look at the input and outputs of the architecture. The upper input port in
Figure 5.8 and the output port are connected to the Data Bus inFigure 2.11. The input
port contains a single bit per requestor that indicates if ithas a request pending and wants
to be scheduled by the arbiter. The output port returns the identity of the scheduled re-
questor to the Data Bus, which forwards the appropriate request to the resource. There
is furthermore a DTL port that is connected to the Configuration Bus, enabling run-time
(re)configuration during use-case transitions using memory mapped IO. The configura-
tion of the arbiter is stored in a register bank containing five registers per requestor. Four
of these relate to the credit-based accounting mechanism:n, d, c(t), andc(0). The fifth
register is used by the static-priority scheduler and contains the priority level,p. After
programming these values, the priority relations between the requestors are computed
and stored in the register file as a binary matrix structure [106]. An entry i, j in this
matrix is set to one iffprj > pri . The idea with this structure is to speed up the im-
plementation of the arbiter by exploiting the fact that priorities do not change during a
use-case, and hence only compare the priorities of the requestors once immediately after
a new configuration has been programmed.



126 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

The architecture is divided into a rate regulator and a scheduler, following the dis-
cussion in this chapter. The scheduling process starts withan eligibility test in the rate
regulator, following Definition 5.20. This test samples thecurrent credit state of the
requestors, as well as checking if they are backlogged, and outputs a binary eligibility
vector, indicating which requestors that may be scheduled by the static-priority sched-
uler. The scheduler then determines which requestor to schedule by checking the matrix
with priority relations and performing a simple and-operation with a corresponding ele-
ment in the eligibility vector. The highest priority eligible requestor is then quickly found
by finding a row containing only entries with zeroes [106]. The scheduled requestor is
output from the arbiter, but also fed back to a unit inside therate regulator that updates
the register bank according to Definition 5.34 to reflect the new credit state.

We have synthesized our implementation of the CCSP arbiter in a 90 nm CMOS
process using Cadence RTL Compiler. Synthesis is done usinga 50% clock duty cycle,
and with 20% of the cycle time as input and output delay with 10% clock skew. Both
clock-gate insertion and scan insertion are disabled, and we synthesize under worst-case
commercial conditions. The area of the implementation and the maximum frequency are
determined by the supported number of requestors and the precision used by the credit-
based accounting mechanism to representn, d, c(t) andc(0). For a memory controller,
we consider the interesting range to be between 4-10 requestors. Many memory con-
trollers only support the lower end of this range, due to the complexity of their scheduling
mechanisms, and add additional multiplexors and arbiters in front of the memory con-
troller if more requestors need to access the memory. With 4-10 requestors, we consider
precisions between 4-10 bits to be interesting. Four bits should results in considerable
over-allocation already with four requestors, and with 10 bits over-allocation should be
completely negligible even with 10 requestors.

We start by looking at how the area of the implementation changes as the number of
requestors and the precision increase. The histogram in Figure 5.9a shows the cell area
for different instances of the arbiter with varying number of requestors and precisions.
These instances have been synthesized with a speed target of200 MHz, suitable for our
example DDR2-400 memory. We note that the cell area of the implementation grows
linearly with the number of requestors and that it approximately doubles as the number
of requestors doubles from four to eight. This result is not surprising, since more re-
questors result in more registers with configuration data, as well as larger structures to
store intermediate state. The effects of increasing precision are somewhat more subtle,
but still noticeable. Again, we see a linear trend with increasing precision, but doubling
precision only results in a 30-40% increase in cell area.

Next, we consider the maximum operating frequency of the arbiter, and study how
it scales with increasing requestors and precision. The maximum operating frequency
is found by a binary search algorithm that looks for the highest clock frequency that
synthesizes successfully. The accuracy of the algorithm isset to 5 MHz. The results of
this experiment are shown in Figure 5.9b. We immediately observe that the maximum
clock frequency is relatively stable around 570 MHz and doesnot change much as the
number of requestors is increased. The credit management isdone in parallel for all
requestors and should not be significantly affected when thenumber of requestors is



5.8. EXPERIMENTAL RESULTS 127

 0

 5000

 10000

 15000

 20000

 25000

 30000

4 6 8 10

C
el

l a
re

a 
[u

m
2 ]

Requestors

4 bits
6 bits
8 bits

10 bits

(a) The area of the arbiter for different number of
requestors and precisions.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 6 8 10

M
ax

im
um

 fr
eq

ue
nc

y 
[M

H
z]

Requestors

4 bits
6 bits
8 bits

10 bits

(b) The maximum frequency of the arbiter for dif-
ferent number of requestors and precisions.

Figure 5.9: Synthesis results for the CCSP arbiter.

scaled. The static-priority scheduler on the other hand, performs operations on vectors
and matrices whose sizes are determined by the number of requestors, and should be the
limiting factor. Since the arbiter is not pipelined, the critical cycle goes through the entire
design. It starts in the register bank where the operands forthe eligibility tests are fetched,
and ends in the same place as the updated credits are stored after a requestor has been
scheduled. Increasing the precision of the accounting mechanism above 4 bits causes
a drop in maximum frequency with almost 100 MHz, but further increases have little
impact. From this result, we conclude that the CCSP arbiter synthesizes in frequencies
well above 400 MHz. This should enable it to make scheduling decisions in a single
clock cycle for the entire range of DDR2 memories, even if it is slowed down after place-
and-route. The arbiter cannot keep up with the fastest DDR3 memory, which currently
runs at 800 MHz. However, it should be possible to increase the frequency by pipelining
the arbitration. Another option is to run the memory controller at a slower frequency than
the memory interface and schedule multiple SDRAM commands every clock cycle in the
back-end. Neither of these paths has been explored.

For our last synthesis experiment with CCSP, we increase theprecision to show how
the bound on over-allocated rate is traded for area. Figure 5.10 presents this trade-off
for an instance with six requestors as the bit widths ofn, d, c(t) andc(0) are uniformly
changed. The figure shows the bound on over-allocated rate for six requestors and hence
corresponds to the bound in Lemma 5.14 multiplied by six. Note that the exponential
reduction in the bound on over-allocated rate comes at a near-linear increase in area.

5.8 Experimental results

The time has come to experimentally evaluate the theory and implementation of the
CCSP arbiter. First, we present an experimental setup wherethe CCSP arbiter provides
access to a shared SDRAM memory. We then demonstrate that CCSP decouples latency
and rate using priorities. The service guarantee of CCSP is then evaluated, both in the
presence of well-behaved requestors, and when a malfunctioning requestor is asking for
more bandwidth than specified. Then, we examine the tightness of CCSP’s bound on ser-



128 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

 0

 5000

 10000

 15000

 20000

4 6 8 10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

C
el

l a
re

a 
[u

m
2 ]

O
ve

r-
al

lo
ca

te
d 

ra
te

Precision [bits]

Cell area
Bound over-allocated rate

Figure 5.10: The trade-off between over-allocation and cell area.

vice latency, both when it is expressed in abstract service cycles and actual clock cycles.
We then focus on the hardware implementation of the CCSP rateregulator and compare
the CRA and CBA allocation strategies. Lastly, we conclude our experiments by experi-
mentally demonstrating that CCSP decouples allocation granularity and latency, and that
the allocation behavior of CCSP improves monotonically with increased precision.

5.8.1 Experimental setup

The experimental setup consists of a SystemC simulation model of a predictable multi-
processor SoC. The processing elements are represented by traffic generators that gen-
erate requests according to a normal distribution. The average time between requests is
determined by the generated bandwidth and request size, anda variance of 10 ns is used
to prevent requests from being issued periodically. The memory controller architecture
used in these experiments corresponds to the setup previously shown in Figure 2.8. The
CCSP arbiter provides access to the predictable SDRAM back-end, previously presented
in Chapter 4. The back-end is connected to our example 16-bitDDR2-400 memory, and
uses the memory pattern set withBL = 8 andBC = 1 generated by the bank scheduling
algorithm, previously shown in Table 4.3. This pattern set has an access granularity of 64
B and guarantees a minimum gross bandwidth of 660 MB/s. An Atomizer chops arriving
requests into atoms, whose size are equal to the access granularity of the memory. An
arriving request with a size of 256 B is hence be split up into four requests with size 64 B
that arrive back-to-back in the Request Buffer, waiting to be scheduled. The processing
elements communicate with the memory through the Æthereal [31] NoC. The network is
both predictable and composable and hence provides isolated connections that guarantee
a minimum bandwidth and a maximum latency. Arbitration in the network is by means
of pipelined Time-Division Multiplexing (TDM), which may add a small amount of jitter
to the issued requests before they arrive at the memory controller.



5.8. EXPERIMENTAL RESULTS 129

5.8.2 Decoupling latency and rate

The goal of the first experiment is to demonstrate that CCSP decouples latency and rate
by comparing the bound on service latency to that of a TDM arbiter. For this purpose,
Table 5.2 presents a simple use-case with four requestors. Two of the requestors only
issue read requests, and the other two only issue write requests. Three of the requestors
process rather large quantities of data, and request bandwidth according tobr = 210
MB/s, while 20 MB/s suffices for the last requestor. The requestors have different request
sizes, but all requests are aligned and an integer multiple of the access granularity of the
memory. Data efficiency is hence 100%, making the provided gross and net bandwidths
the same. The requested service rates of the requestors,ρr, are determined by dividing
the requested net bandwidths with the total net bandwidth provided by the memory. The
allocated service rates of all requestors are set equal to the requested service rate,ρ′r =
ρr. In total, 98.8% of the net bandwidth is allocated to the requestors, including over
allocation, indicating a high load. For all requestors,σ′r = 1.0 service units (su), which
is the smallest valid allocation according to Definition 5.12. We return to experiment
with this parameter later. The allocated rates,ρ′r, and the allocated burstinesses,σ′r, may
suffer from over allocation due to discretization. This results in the discrete allocated
rates,ρ′′r and the allocated burstinesses,σ′′r , that are used in the experiment. We will not
discuss this further for now, but we return to this in later experiments.

Table 5.2: Requestor configuration and service latency bounds.
Requestor Type br Size σ′′r ρ′′r Θtdmr Θascr Θdesr

[MB/s] [B] [su] [su/sc] [sc] [sc] [sc]
r0 Read 210.0 512 1.0 0.319 3 0 9
r1 Write 210.0 128 1.0 0.319 3 1 3
r2 Read 210.0 64 1.0 0.319 3 5 1
r3 Write 20.0 256 1.0 0.031 32 70 0

Using a TDM scheduler, the best-case service latency is achieved if the reserved slots
of a requestor are placed equidistantly in the schedule. In this case,Θtdmr = ⌈1/ρ′′r − 1⌉.
The service latencies of the requestors in the use-case using TDM are shown in Table 5.2.
We note that the low allocated service rate ofr3 results in a rather high service latency
of 32 service cycles (sc). The reason is that TDM couples latency and rate, which causes
problems forr3 who only has an allocated rate of 0.031. The only way to reducethe
service latency using TDM is to increase the allocated service rate, wasting scarce band-
width. CCSP, on the other hand, uses priorities to decouple latency and rate. Table 5.2
shows the service latencies of the requestors when prioritylevels are assigned in both
ascending,Θasc, and descending,Θdes, order. These service latencies are computed us-
ing Equation (5.9). We observe the service latencies of the requestors are monotonically
increasing with the priority level, and that the highest priority requestor enjoys a ser-
vice latency bound of zero service cycles.We conclude from this experiment that CCSP



130 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

decouples latency and rate using priorities, allowing low latency to be provided to any
requestor without wasting bandwidth.

5.8.3 Evaluation of service guarantee

The second experiment evaluates the service guarantee provided by the CCSP arbiter.
The use-case in Table 5.2 with descending priorities is simulated during 100 ms and the
provided bandwidths,̇br, and maximum latencies,max Θr, are measured and compared
to the requested bandwidths,br, and the bounds on service latency,Θr. The results
of this experiment, shown in Table 5.3, indicate that all requestors get their requested
net bandwidth and that the maximum measured service latencyis less or equal to the
computed bound. This experiment hence suggests that the CCSP arbiter delivers on its
service guarantee.

Table 5.3: Bandwidth and service latency results.
Requestor pr br ḃr max Θr Θr

[MB/s] [MB/s] [sc] [sc]
r0 3 210.0 210.0 5 9
r1 2 210.0 210.0 2 3
r2 1 210.0 210.0 1 1
r3 0 20.0 20.0 0 0

A limitation of our evaluation so far is that all requestors in the use-case are well-
behaved and do not ask for more bandwidth than specified. To evaluate the robustness
of the service guarantee, we modify the highest priority requestor,r3, to ask for 400
MB/s instead of 20 MB/s, without changing its resource allocation in the network or
the memory controller. Table 5.4 shows what happens when this modified use-case is
simulated during 100 ms with a regular static-priority arbiter that does not have a rate
regulator. We see thatr3 gets 323.4 MB/s out of the requested 400 MB/s, since there is
no rate regulator to enforce the allocated 20 MB/s. The reason that the requestor is not
getting its full 400 MB/s is because the network connection acts as a bottleneck, since
it is not dimensioned for 400 MB/s. Requestorr2 gets its requested bandwidth, but the
memory cannot supply enough bandwidth to deliver on the requirements ofr1 andr0.
In fact,r0, is completely starved by other requestors and does not receive any bandwidth
at all! The results also show that the service latency boundsof all requestors exceptr3
are violated in this experiment. We repeated the same experiment with the CCSP arbiter,
which features a rate regulator. The results of this experiment are essentially equivalent
to the results previously shown in Table 5.3. The only difference is that the bandwidth
provided tor3 increases from 20.0 MB/s to 22.3 MB/s. The reason is that the memory
offers slightly more bandwidth than suggested by its bound,since the simulation contains
fewer read/write switches than the worst case.From this experiment, we conclude that
the CCSP arbiter provides a service guarantee that is reliable also in the presence of
misbehaving requestors.



5.8. EXPERIMENTAL RESULTS 131

Table 5.4: Bandwidth and service latency results with malfunctioning requestor using a
regular static-priority arbiter.

Requestor pr br ḃr max Θr Θr
[MB/s] [MB/s] [sc] [sc]

r0 3 210.0 0.0 N/A 9
r1 2 210.0 173.2 10 3
r2 1 210.0 210.0 3 1
r3 0 400.0 323.2 0 0

5.8.4 Tightness of service latency bound

The third experiment evaluates the tightness of CCSP’s service latency bound from Equa-
tion (5.9). We use the use-case in Table 5.2 with descending priorities as a starting point,
and uniformly vary the discrete allocated burstinesses,σ′′r , of all requestors in the range
[1, 5]. Again, the system is simulated during 100 ms. The maximum measured service
latencies and the analytical bounds of the requestors are shown in Figure 5.11. Three ob-
servations are made from the results in the figure. 1) The measured service latency and
the bound forr3 are both zero cycles for all values ofσ′′. The bound is hence both conser-
vative and perfectly tight for the highest priority requestor. 2) The service latency bound
becomes less tight with decreasing priority. There are two main reasons for this behav-
ior. The first reason is that the service latency bound in Equation (5.9) does not take into
account that service is provided in a discrete manner. Two requestors providing 1.5 ser-
vice cycles of interference in an interval hence results in atotal interference of 3 service
cycles. The actual maximum interference is 2 service cycles, since there is no such thing
as half service cycles. The bound is hence over-estimated with up to one service cycle
per higher priority requestor, resulting in less tight bounds. This issue is inherent to how
the bound is computed. The second reason is that it becomes increasingly unlikely with
lower priority that all requestors display their worst-case behavior at the same time. This
issue is not related to CCSP, but rather an effect of that all requestors are not constantly
backlogged, much like in a realistic use-case. 3) The service latency bound becomes less
tight as the allocated burstinesses increase. This happensbecause the requestors do not
ask for service in a bursty enough manner to fully use their allocation. This is understood
by realizing that requests are issued almost periodically,although with some jitter from
the requestor itself and from the network. The largest request is 256 B, not considering
the lowest priority requestor that cannot interfere with anyone. 256 B correspond to 4
service units given the access granularity of the pattern set. Allocating a higher bursti-
ness than this to the requestors hence only affects the boundof lower priority requestors,
according to Equation (5.9), but not the actual interference. Some of the other requestors
have smaller request sizes than 256 B, contributing to less tight bounds of lower priority
requestors as the allocated burstiness increases.Based on this experiment, we conclude
that the service latency bound of CCSP is tight for high priority requestors, but becomes
less tight with decreasing priority and increasing allocated burstiness.



132 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

 0

 10

 20

 30

 40

 50

 1  2  3  4  5S
er

vi
ce

 la
te

nc
y 

[s
er

vi
ce

 c
yc

le
s]

Allocated burstiness [service units]

Max measured service latency
Service latency bound

(a) Maximum measured service latency and bound
for r0.

 0

 2

 4

 6

 8

 10

 12

 14

 1  2  3  4  5S
er

vi
ce

 la
te

nc
y 

[s
er

vi
ce

 c
yc

le
s]

Allocated burstiness [service units]

Max measured service latency
Service latency bound

(b) Maximum measured service latency and bound
for r1.

 0

 1

 2

 3

 4

 5

 1  2  3  4  5S
er

vi
ce

 la
te

nc
y 

[s
er

vi
ce

 c
yc

le
s]

Allocated burstiness [service units]

Max measured service latency
Service latency bound

(c) Maximum measured service latency and bound
for r2.

-1

-0.5

 0

 0.5

 1

 1  2  3  4  5S
er

vi
ce

 la
te

nc
y 

[s
er

vi
ce

 c
yc

le
s]

Allocated burstiness [service units]

Max measured service latency
Service latency bound

(d) Maximum measured service latency and bound
for r3.

Figure 5.11: Maximum measured latency and bound, expressedin service cycles, for the
requestors in the use-case.



5.8. EXPERIMENTAL RESULTS 133

5.8.5 Service latency bound in clock cycles

This far, we have only reasoned in abstract service cycles. However, we are actually
interested in latencies measured in clock cycles. This fourth experiment evaluates the
tightness of Equation (4.8) that translates a bound in service cycles into a bound in clock
cycles, considering the particular pattern set. We hence repeat the previous experiment,
but now we use Equation (4.8) convert the results into clock cycles at 200 MHz. The
results are shown in Figure 5.12. At a first glance, we see the same general trends in
tightness as discussed in the previous experiment; the bounds become less tight with
decreasing priority and with increasing allocated burstinesses. However, we also note a
bigger difference between the maximum measured service latency and the bound. This
is especially apparent forr2 andr3, whose service latency bounds, measured in service
cycles, are relatively small. There are three reasons why the bounds expressed in clock
cycles are less tight than the bounds in service cycles. 1) The actual simulation may have
fewer read/write switches than assumed by the bound. 2) The bound in service cycles,
ttot(x) in Equation (4.8), adds an extra service unit to the interference to account for
blocking when a request arrives just after a scheduling decision has been taken. However,
the actual blocking time may be shorter. Limitations in our instrumentation furthermore
prevent us from measuring interference due to blocking. Theactual maximum service
latencies may hence be up to 20 clock cycles longer with this pattern set. 3) The bound in
clock cycles accounts for worst-case interference from refresh, although the actual case
may perform better. Our instrumentation captures refresh interference in the general
case, but does not include refreshes after the request has been scheduled by the arbiter.
It hence does not cover the special case of a requestor that isalways scheduled in zero
service units, such asr3 in this use-case. This explains why the service latency bound
for r3 is 52 clock cycles, although the maximum measured value is zero clock cycles!
Blocking accounts for 20 clock cycles out of the 52, and refresh for the other 32, neither
which can be measured with our instrumentation. Looking past the two limitations of
our measurements, the results in Figure 5.12 are very similar to those in Figure 5.11.We
hence conclude that Equation(4.8) performs a useful conversion of bounds in service
cycles to clock cycles.

5.8.6 Comparison of allocation strategies

For our final two experiments, we focus on the hardware implementation of the CCSP
rate regulator. We start by comparing the Closest Rate Approximation (CRA) and Closest
Burstiness Approximation (CBA) strategies by looking at how the average and maximum
measured over-allocated rates and burstinesses relate to each other and to the analytical
bounds computed in Section 5.6.2. For each number of requestors in 2, 4, 6, and 8,
we randomly generate 1000 synthetic use-cases with uniformly distributed loads in the
interval [0, 100]%. We are interested in the total over allocation of all requestors and
hence sum their individual over-allocated rates and burstinesses. Similarly, all derived
bounds are multiplied with the number of requestors in the use-case to capture the total



134 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

 0

 200

 400

 600

 800

 1000

 1  2  3  4  5

S
er

vi
ce

 la
te

nc
y 

[c
lo

ck
 c

yc
le

s]

Allocated burstiness [service units]

Max measured service latency
Service latency bound

(a) Maximum measured service latency and bound
for r0.

 0

 50

 100

 150

 200

 250

 300

 350

 1  2  3  4  5

S
er

vi
ce

 la
te

nc
y 

[c
lo

ck
 c

yc
le

s]

Allocated burstiness [service units]

Max measured service latency
Service latency bound

(b) Maximum measured service latency and bound
for r1.

 0

 20

 40

 60

 80

 100

 120

 140

 1  2  3  4  5

S
er

vi
ce

 la
te

nc
y 

[c
lo

ck
 c

yc
le

s]

Allocated burstiness [service units]

Max measured service latency
Service latency bound

(c) Maximum measured service latency and bound
for r2.

-10

 0

 10

 20

 30

 40

 50

 60

 70

 1  2  3  4  5

S
er

vi
ce

 la
te

nc
y 

[c
lo

ck
 c

yc
le

s]

Allocated burstiness [service units]

Max measured service latency
Service latency bound

(d) Maximum measured service latency and bound
for r3.

Figure 5.12: Maximum measured latency and bound, expressedin clock cycles at 200
MHz, for the requestors in the use-case.



5.8. EXPERIMENTAL RESULTS 135

over allocation. Five bits of precision (β = 5) are used for both strategies, andσ′′r are real
numbers in the range [1, 5] service units. The over-allocated rate is shown in Figure 5.13.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 4 6 8 10

O
ve

r-
al

lo
ca

te
d 

ra
te

Requestors

Max CRA5
Avg CRA5
Max CBA5
Avg CBA5

Bound CRA CBA

Figure 5.13: Over-allocated rate for the CRA and CBA strategies.

We see in the figure that the CRA strategy indeed results in lower average over-
allocated rate than CBA. In fact,the CRA strategy reduces the average over-allocated
rate with a factor three compared to CBA. The choice of allocation strategy may hence
have a significant impact on the how much precious bandwidth is wasted, especially if
the precision is kept low to reduce area. For example, the average over-allocated rate
in the use-cases with six requestors is 3% of the bandwidth for CRA, while it is 10%
with CBA. The corresponding maximum values are 9% and 16%, respectively, while the
bound for both strategies is 19% with five bits of precision. The maximum measured
over-allocated rate is close to the analytical bound for both strategies for use-cases with
two requestors, although the difference increases with thenumber of requestors. This
reflects that the worst-case over allocation becomes increasingly unlikely as the number
of requestors increases. In particular, we note that the difference between the maximum
over allocation and the bound becomes very large for CRA, as it is extremely unlikely that
a generated use-case, much like a realistic one, only contains requestors with allocated
rates close to zero.

The over-allocated burstinesses of the two strategies are shown in Figure 5.14. We see
that the CBA representation does reduce the average over-allocated burstiness, although
the difference between the two strategies is less significant than for the over-allocated
rate. We conclude thatreducing the average over-allocated rate by a factor three using
CRA comes at the cost of a 25% increase in the average over-allocated burstiness.The
maximum over-allocated burstiness is close to the bound forCBA, but not for CRA,
reflecting the unlikeliness thatd = 2β−1

2 for all requestors, which is required for its
worst case.

Next, we compare the behavior of the CRA and CBA strategies for use-cases with
high loads and service latency requirements. The use-casesall have six requestors and
are randomly generated with the total load divided in a number of bins (91%, 93%, 95%,
97%, and 99%, respectively). In this experiment, we generate 1000 use-cases for each



136 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

2 4 6 8 10

O
ve

r-
al

lo
ca

te
d 

bu
rs

tin
es

s

Requestors

Max CRA5
Avg CRA5

Bound CRA5
Max CBA5
Avg CBA5

Bound CBA5

Figure 5.14: Over-allocated burstiness for the CRA and CBA strategies.

bin. The service latency requirements of the requestors areuniformly distributed in the
interval [0, 10000] ns. This range is chosen as it provides requirements that are feasi-
ble to satisfy with our SDRAM back-end with the considered memory and loads. The
requirements are then transformed from ns to service cyclesusing the inverse of the la-
tency functions of the SDRAM back-end, presented later in Section 7.3. This results in
requirements varying in the range [0, 120] service cycles. In addition to allocating ser-
vice for the use-case, priorities are assigned in an attemptto satisfy the service latency
requirements of the requestors. For this purpose, we use an optimal priority assignment
algorithm, further discussed in Section 7.4. We compare thetwo allocation strategies by
measuring the percentage of use-cases in which the rate requirements of all requestors
are satisfied and the total allocated rate is less than 100%, indicating successful alloca-
tion. Additionally, we compare the percentage of use-caseswhere the service latency
requirements of all requestors are satisfied. Lastly, we study the total success rate, being
the percentage of use-cases where both service allocation and priority assignment are
successful, indicating that both rate and latency requirements are satisfied. The results of
this experiment are shown in Figure 5.15.

 0

 20

 40

 60

 80

 100

 120

 140

91 93 95 97 99

S
uc

ce
ss

 r
at

e 
[%

]

Load [%]

Rate allocation CRA5
Priority assignment CRA5

Rate allocation CBA5
Priority assignment CBA5

Total CRA5
Total CBA5

Figure 5.15: Successful allocations and priority assignments for CRA and CBA.



5.8. EXPERIMENTAL RESULTS 137

We note that all use-cases with up to 93% load, and 99.1% of theuse-cases with 95%
load, are successfully allocated when using CRA. The success rate is reduced to 89.1%
and 54.8% for use-cases with 97% and 99% loads, respectively. As expected, CBA per-
forms worse, and only allocates 66.4% of the use-cases with 91% load successfully. The
success rate is significantly reduced for higher loads and reaches zero for loads higher
than 95%. We see that CRA also performs better when priorities are assigned to satisfy
the service latency requirements. The latency requirements are satisfied for 95% of the
use-cases with 91% load and drops towards 82.4% for use-cases with 99%. The trend
is similar when using CBA, although it starts at 84.7% for 91%load and ends at 68.3%
for loads of 99%. The answer to why CRA is better at satisfyinglatency requirements,
even though CBA provides a closer approximation of the allocated burstiness, is found in
Equation (5.9). We note in the equation that over allocatingthe burstiness results in a lin-
ear increase of the service latency, while over allocating the rate causes a faster increase,
favoring the CRA strategy. The total success rate shows thatthe CRA strategy performs
better than CBA for all tested loads, primarily because the smaller over-allocated rate
allows more use-cases to be successfully allocated. On average, CRA results in more
than four times as many use-cases with high loads having boththeir service and latency
requirements satisfied compared to CBA.We conclude from this experiment that hav-
ing a close approximation of the allocated rate is essentialto manage heavily loaded
resources.

5.8.7 Increasing precision

In our last experiment, we study the effects of increasing precision to achieve a finer
allocation granularity. Use-cases are randomly generatedaccording to the previous ex-
periment, but we now compare CCSP with five and six bits, respectively, using the CRA
strategy.

 0

 20

 40

 60

 80

 100

 120

 140

 160

91 93 95 97 99

S
uc

ce
ss

 r
at

e 
[%

]

Load [%]

Rate allocation CRA5
Priority assignment CRA5

Rate allocation CRA6
Priority assignment CRA6

Total CRA5
Total CRA6

Figure 5.16: Success rate when increasing precision with CRA.

As seen in Figure 5.16, increasing precision improves both the number of successful
allocations and priority assignments. This is because boththe over-allocated rate and



138 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION

burstiness of CCSP are monotonically reduced with increased precision, as explained in
Section 5.6.2. We experimentally compare this behavior to that of FBSP in Figure 5.17,
where the frame size,f, is increased from 31 to 63. These particular frame sizes are
chosen, as they provide the same bounds on over-allocated rate as for CCSP with five and
six bits of precision, used in Figure 5.16. We first note that the percentage of successful

 0

 20

 40

 60

 80

 100

 120

 140

 160

91 93 95 97 99

S
uc

ce
ss

 r
at

e 
[%

]

Load [%]

Rate allocation FBSP31
Priority assignment FBSP31

Rate allocation FBSP63
Priority assignment FBSP63

Total FBSP31
Total FBSP63

Figure 5.17: Success rate when increasing precision with FBSP.

allocations is much lower for FBSP than for CCSP using the CRAstrategy. Using a frame
size of 31, only 63.7% of the use-cases with a load of 91% are successfully allocated
and the success rate drops dramatically for higher loads, approaching zero at loads of
97%. However, the percentage of successful priority assignments is stable at about 80%
across all loads. Doubling the frame size to increase precision results in a significant
improvement in the percentage of successful allocation forloads up to 95%, all being
above 80%. However, this causes the percentage of successful priority assignments to be
less than 20% for all loads. This is because both the allocation granularity and the service
latency depend on the frame size, causing one to be traded forthe other.We conclude
from this experiment that having an allocation granularitythat is decoupled from latency
is essential when sharing highly loaded resources in the presence of applications with
real-time requirements.

5.9 Summary

Predictability in our approach is achieved by combining predictable resources with pre-
dictable arbitration. The previous chapter addressed the first part by showing how to
design a memory controller back-end that makes an SDRAM behave in a predictable
manner. This chapter discussed the second part, namely how to share a predictable re-
source among multiple requestors using a predictable arbiter.

There are three main requirements on the hardware implementation of an arbiter to
make it generally applicable in the System-on-Chip (SoC) context. 1) It must run at
high clock frequencyto keep up with the resource and allow scheduling at a fine level of
granularity. 2) It must have asmall hardware implementation. 3) The arbiter must be



5.9. SUMMARY 139

able to provide the required service to a requestor withoutover allocating, which means
reserving more capacity than required. To fit with the requirements from our application
domains it must furthermore be able toaccommodate both latency-critical and latency-
tolerant requestors. A Credit-Controlled Static-Priority (CCSP) arbiter was proposed to
deliver on these requirements.

A CCSP arbiter consists of arate regulatorand ascheduler. The rate regulator iso-
lates requestors by enforcing an upper bound on the providedservice based on two pa-
rameters, being anallocated rateand allocated burstiness, respectively. The service
bound is incremented duringactive periods, which are intervals in which the requestor
is backloggedor live. A requestor is backlogged if it has outstanding requests and live if
it requested more service than allocated on average, since the start of the active period.
An important benefit of the CCSP arbiter is that itdecouples allocation granularity and
latency, which enables over allocation to become negligible. CCSP uses a static-priority
scheduler, since the priority levelsdecouple latency and rate. This enables low latency
to be provided to any requestor, regardless of its allocatedrate, without over allocating.
A static-priority scheduler simply schedules the highest priority requestor that iseligible
for scheduling. A requestor is considered eligible if it is backlogged and has been pro-
vided less service than supported by its upper bound. The combination of rate regulator
and scheduler was analyzed and the maximum interference that can be experienced by
a requestor in any interval was bounded. This bound was used to show thatan active
requestor is guaranteed its allocated rate after a maximum service latency, as required
by hard real-time applications. Based on this guarantee, itwas shown thatCCSP belongs
to the class of Latency-Rate (LR) servers, which is the shared resource abstraction used
in this work.

A fast and small hardware implementation of the CCSP rate regulator, based on sim-
ple integer arithmetic was presented along with an efficientway of representing the al-
located service in hardware with finite precision. Two service allocation strategies were
defined based on this representation. TheClosest Rate Approximation (CRA)strategy
attempts to approximate the allocated rate as closely as possible to reduce both latency
and wasted capacity, while theClosest Burstiness Approximation (CBA)strategy finds
the best approximation of the allocated burstiness to minimize latency. The allocation
properties of the two strategies were compared both analytically and experimentally, and
it was shown that the CRA strategy is better at satisfying bandwidth and latency require-
ments for highly loaded resources, such as memories. It was also demonstrated that
the allocation behavior of CCSP, unlike most traditional frame-based arbiters, improves
monotonically with increased precision. Synthesis of the CCSP arbiter with six ports
using a precision of six bits in a 90 nm CMOS process resulted in a total cell area of
14231µm2. The instance was synthesized with a speed target of 200 MHz,suitable
for a DDR2-400 memory. The maximum frequency of the arbiter was determined to be
approximately 570 MHz, enabling the arbiter to keep up with most DDR2 and DDR3
memories. It was shown that in increasing the precision of the rate regulator results in an
exponential reduction in maximum over allocation at the cost of a linear increase in the
cell area of the implementation.



140 CHAPTER 5. CREDIT-CONTROLLED STATIC-PRIORITY ARBITRATION



CHAPTER 6

Composable resource front-end

We have now arrived at a point where we have a predictable SDRAM back-end that of-
fers hard real-time guarantees on net bandwidth and on the time to serve a scheduled
memory request. We have also presented a Credit-ControlledStatic-Priority (CCSP) ar-
biter that allows the memory to be shared in a way that bounds the time until a request
is scheduled. The arbiter furthermore distinguishes latency-critical and latency-tolerant
requestors without wasting scarce bandwidth, fitting with our requirements. Together,
these predictable components enable formal verification ofthroughput and latency re-
quirements at the application level. However, this requires a performance model of the
application, which is not always available. Some applications have behaviors that can-
not be modeled, while others are written in ways that make modeling very complicated.
An example of the latter, are applications that communicatethrough shared memory
using a programming model where communication is not explicit. To deal with these
applications, we require a complementary verification approach that does not have any
restrictions on the application. For this purpose, we rely on simulation-based verification.
However, to manage the increasing verification complexity due to the growing amount
of use-cases in embedded systems, we require composable service to enable independent
verification of applications, as previously explained in Section 1.3.3.

There are currently three approaches to composable system design. The first involves
not sharing any resources, which is trivially composable, but prohibitively expensive for
systems not running safety-critical applications. The second is to statically schedule all
interaction between components in the system [60] at designtime. This approach re-
quires a global notion of time and is limited to applicationsand hardware that can be
statically scheduled. Although our SDRAM back-end is predictable and can be statically
scheduled, we want to ensure that our approach applies to allapplications, including

141



142 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

those that cannot be verified using formal methods. The thirdapproach is to dynamically
share resources at run-time, which is limited to combinations of inherently composable
resources and arbiters [15,39]. It is hence not suited to handle SDRAM memories, since
the time to serve a request is variable and depends on other requestors. We have pre-
viously mentioned Time-Division Multiplexing (TDM) as an example of an inherently
composable arbitration scheme. However, we concluded in Section 5.8.2 that TDM can-
not distinguish latency-critical requestors without wasting bandwidth. We hence require
a new approach to composable resource sharing that is more general and works in com-
bination with our proposed SDRAM back-end and CCSP arbiter.

In this chapter, we present a fourth approach to composable resource sharing that
works with any combination of predictable resource and Latency-Rate (LR) arbiter with-
out any restrictions on the application, thus widely extending the class of systems that
can offer composable service. We start in Section 6.1 by providing an overview of our
approach. Our formal model is extended in Section 6.2, allowing us to provide a defini-
tion of composable service. We then show in Section 6.3 howLR servers can be used to
provide service according to this definition, both for resources with constant and variable
service cycle times. In Section 6.4, we propose an architecture for a resource front-end
that implements the presented concepts when combined with any predictable resource.
We experimentally show in Section 6.5 that our front-end fitted with a CCSP arbiter pro-
vides composable service when paired with both a simple SRAMcontroller and with our
SDRAM back-end. The chapter is concluded with a summary in Section 6.6.

6.1 Overview of approach

We explained in Section 1.3.3 that composability means thatapplications cannot influ-
ence each other’s temporal behavior by even a single clock cycle. The problem with
providing composable service in the general case is that requestors interfere with each
other by changing the state of stateful resources and arbiters. This interference results
in jitter in the provided service that causes both arrival times and finishing times of a
requestor to change, due to the behavior of others. The key idea behind our approach is
to make the provided service composable by removing this jitter. This is accomplished
by delaying all signals sent to the requestor to always emulate worst-case interference
from other requestors. This creates an interface towards each requestor that is indepen-
dent from others in the temporal domain, as shown in Figure 6.1. The figure shows that
the resource communicates with the requestors in two ways. The first one is through the
flow-control signal that accepts incoming requests. The second one is via responses that
are returned. We hence need to make sure that both of these signals display compos-
able behavior. This makes the system composable on the levelof requestors, which is
a sufficient condition for it to be composable on the level of applications. A drawback
of making the system composable on this level is that it is notpossible to benefit from
slack that is generated within the application. The approach is, on the other hand, less
complex to implement, since requestors do not require a notion of to which application
they belong.



6.1. OVERVIEW OF APPROACH 143

A benefit of our approach to composability is that it can be dynamically enabled or
disabled per requestor at run-time by turning the emulationof worst-case interference
on or off. This introduces the notion ofpartially composable systems, where some ap-
plications are free from interference and others are not. The advantage of a partially
composable system is that slack can be used to improve performance of requestors that
do not require composable service, such as non-real-time requestors, or those belonging
to applications that are verified using formal approaches.

R
esource

P
redictable

Temporally independent
interfaces

P
rocessing
E

lem
ent

P
rocessing
E

lem
ent

Response Buffer

Request Buffer

Response Buffer
B

us

Request Buffer

flow control

requests

responses

flow control

Arbiter

Figure 6.1: Temporally independent interfaces are createdby delaying responses and
flow control.

Our approach to composable resource sharing relies on predictability, since it is not
possible to emulate worst-case interference unless it is known and bounded. More specif-
ically, we require predictable resources, where the time toserve a scheduled request is
upper bounded, such as an SRAM or our proposed SDRAM back-end. We furthermore
require an upper bound on interference from other requestors. Given a predictable re-
source, this requirement can be satisfied in three ways: 1) Bycharacterizing the amount
of service requested by each requestor in an interval and upper bounding the size of a
request. This allows any predictable arbiter to be used, butis not robust without support
for preemption in case the characterization is wrong or a requestor malfunctions. 2) Pre-
empt a request in service after a maximum time. This solutionis robust and can handle
requests whose sizes are initially unknown, but is limited to predictable preemptive ar-
biters. 3) Use a hardware block to split up requests intoatomic service units, referred to
as atoms, with known maximum service time, as proposed in [39]. Both the second and
the third solution assume that the resource supports serving requests in smaller pieces,
which is typically the case for transaction-based resources like memories and peripherals.
We choose this option for our approach, since it enables preemption of requests at the
granularity of atoms using any predictable arbiter, thus providing maximum flexibility.

Themain benefitof our approach is that it is built on theLR server abstraction. This
enables composable service to be provided forany combinationof arbiter in the class
of LR servers and predictable resource. An additional benefit ofLR servers is that the
latency metric, service latency (Θ), accounts for interference from other requestors, but
not for self interference, which is the time a request waits for other requests from its



144 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

own requestor. This separation is advantageous, since composability only requires us to
eliminate the effects of interference from others.

6.2 Formal model

Our discussion on composability requires us to further extend our formal model, allowing
us to properly define the concept. Since our approach to composable resource sharing
applies to a variety of predictable resources and arbiters,we stick to the abstract resource
view introduced in Section 5.2. Data is hence still measuredin service units and time in
service cycles, unless otherwise noted.

We previously defined the arrival time of a request in Definition 5.6. Now we de-
fine two more events in the life of a request, being the starting time and the finishing
time. The starting time,ts(ωk) is the first service cycle in whichωk is scheduled by
the arbiter. Since atoms in the proposed memory controller have a request size of one
service unit, it follows that the starting time correspondsto the one and only time it is
scheduled. The finishing time of a request corresponds to thefirst service cycle in which
a request is completely served and available in the ResponseBuffer, formally defined in
Definition 6.2.

Definition 6.1 (Starting time of a request). The starting time of a requestωkr is given by
ts(ω

k
r ) : Ωr → N, and is defined as the smallestt at whichωkr is scheduled.

Definition 6.2 (Finishing time of a request). The finishing time of a requestωkr is given
by tf(ωkr ) : Ωr → N, and is defined astf(ωkr ) = min({t | t ∈ N∧w′r(t) = w′r(ts(ω

k
r ))+

s(ωkr )}).
The definitions of arrival time and finishing time allow us to provide a definition of

composable service. Definition 6.3 states that the providedservice is considered com-
posable if the arrival times and finishing times of all requests from a requestor are in-
dependent of other requestors. This definition implements the temporally independent
interface previously illustrated in Figure 6.1. Note that the arrival time is defined with re-
spect to available space in both the Request Buffer and the Response Buffer, and is hence
not independent of other requestors. This creates a dependence between the arrival time
and both the starting and finishing times. Composable service according to Definition 6.3
is hence implemented by assuring that both the starting times and finishing times emulate
worst-case behavior.

Definition 6.3 (Composable service). The service provided to a requestor by a resource
is defined as composable if both the arrival times and finishing times of all requests from
the requestor are independent of other requestors sharing the resource.

6.3 Timing analysis

To provide composable service with our approach, we need to emulate worst-case in-
terference by delaying flow-control signals and responses.As explained in the previ-



6.3. TIMING ANALYSIS 145

A
cc

um
ul

at
ed

se
rv

ic
e 

un
its

Service cycles

busy line

busy period

Θ

w′

w

w̌′

l(ωk)

ta(ωk) t̂s(ω
k)

ρ′

ta(ωk+1)

t̂f(ω
k) = t̂s(ω

k+1)

s(ωk)

Figure 6.2: Illustration of worst-case starting time and finishing time in aLR server.

ous section, this is achieved by emulating worst-case starting times and finishing times,
which requires these to be bounded. This is done next in Section 6.3.1. We then proceed
in Section 6.3.2 by discussing how to convert these bounds from service cycles to clock
cycles in an efficient manner for resources with variable service cycle length, such as our
SDRAM back-end.

6.3.1 Bounding starting time and finishing time

We bound the starting time and finishing times using theLR server abstraction, which
enables our solution to work with any arbiter belonging to the class. From the work
in [114], we derive that the worst-case starting time of a request is expressed according
to Equation (6.1). We see that it is determined by the servicelatency of the arbiter,Θ, or
by the worst-case finishing time of the previous request fromthe requestor, whichever is
larger. The first case happens if the arrival of the request triggers a new busy period, and
the second case if the requestor is already busy. This can be observed in Figure 6.2, where
the arrival ofωk triggers the start of a new busy period and hencet̂s(ωk) = ta(ω

k) + Θ.
On the other hand,ωk+1 arrives during a busy period, resulting in̂ts(ωk+1) = t̂f(ω

k).

t̂s(ω
k
r ) = max(ta(ω

k
r ) + Θr, t̂f(ω

k−1
r )) (6.1)

Next, Definition 6.4, defines the time it takes for a request that is scheduled at the
worst-case starting time to finish receiving service as the completion latency of the re-
quest. The bound on completion latency that is stated in the definition, follows immedi-
ately from the service guarantee provided by aLR server. The graphical interpretation
of completion latency is also shown in Figure 6.2.

Definition 6.4 (Completion latency). The completion latency of a requestωkr from a
requestorr ∈ R is given byl(ωkr ) : Ωr → N, and is defined according tol(ωkr ) =
tf(ω

k
r )− ts(ωkr ), which is equal tos(ωkr )/ρ

′
r.



146 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

We have now defined everything we need to compute an upper bound on the finishing
time of a request in aLR server. It follows directly from Definition 6.4 that the worst-
case finishing time is computed according to Equation (6.2),which is equivalent to the
result presented in [114]. This equation is visualized for requestωk in Figure 6.2.

t̂f(ω
k
r ) = t̂s(ω

k
r ) + l(ωkr ) (6.2)

Note that bounds on starting time and finishing time computedby Equations (6.1)
and (6.2) are based on worst-case interference from other requestors throughΘ, but only
on actual-case self interference through the dependency onprevious requests from its
requestor. This means that the maximum time between the arrival time and finishing
time is not constant for all requests, but changes dependingon the number of requests
in the Request Buffer of the requestor. This behavior is natural and can be seen in Fig-
ure 6.2 by observing the difference between the arrival times and the worst-case finishing
times of the different requests. Enforcing a constant delayfrom arrival time to finishing
time requires a conservative bound on the requested service, using for instance a(σ, ρ)
characterization [25], to compute the worst-case self interference for every request. This
results in very pessimistic finishing times, as we will see inSection 6.5. It is furthermore
very difficult to obtain an accurate characterization without unnecessarily restricting the
application, which does not fit with our approach to composability. We hence choose to
compute the worst-case starting times and finishing times dynamically at run-time.

6.3.2 Clock cycle conversion

The service latency and completion latency have to be converted from service cycles to
clock cycles to be of any practical use in a hardware implementation. For a resource
with constant service cycle length, such as an SRAM controller, this is easily done by
multiplying the values in service cycles with the service cycle length. For our SDRAM
back-end, we use Equation (4.8), to convert the service latency. However, this solution
does not work for the completion latency, as it would accountfor an interfering refresh
for every request. This would result in extremely pessimistic finishing times, and more
seriously, it would reduce the net bandwidth provided to therequestors. This leaves us
with two options. The first option is to program multiple completion latencies, e.g. one
for reads and one for writes, and choose among them dynamically at run time. However,
this option has the drawback of making the implementation dependent on the particular
resource, since different resources may have a different number of interesting cases. In-
stead, we opt for the second option, which is to use a single completion latency that is
consistent with our computation of net bandwidth. We accomplish this by using theav-
erage service cycle length during worst-case conditions. We conveniently refer to this as
the average service cycle length and denote itλ̄. However, using the average service cycle
length to convert the completion latency to clock cycles mayresult in non-composable
behavior, since some actual service cycles are longer. Thisis illustrated in Figure 6.3,
where the provided service curve,w′, is often behind the dotted lower bound on pro-
vided service starting atttot(Θ). We address this issue by adding an offset,∆, to the



6.3. TIMING ANALYSIS 147

service latency, giving us increased bandwidth at the cost of increased service latency.
This trade-off is illustrated in the figure, where a lower bandwidth is provided by en-
forcing a service cycle length,λ∗ > λ̄. This is represented by the dashed line denoted
λ∗. However, we enforce the dash-dotted line denotedλ̄ that has an additional offset and
starts atttot(Θ) + ∆. This enables us to provide the intended bandwidth by increasing
latency. We proceed by explaining how to compute the averageservice cycle length and
the required service latency offset.

A
cc

um
ul

at
ed

da
ta

Clock cyclesttot(Θ) ∆

w

λ∗

λ̄

λ̄
w′

< ρ′ · bnet

ρ′ · bnet

Figure 6.3: The trade-off between service latency and net bandwidth.

The average service cycle length is defined according to Definition 6.5. The intuition
behind the definition is that gross memory efficiency is the average fraction of time dur-
ing which requested data is transferred to and from the memory. The product of gross
efficiency and the average service cycle length should hencecorrespond to the average
numbers of cycles with data transfer during a service cycle.A service cycle only transfers
data during the access pattern, making the average number ofcycles with data transfer
constant and equal tottransfer, previously computed in Equation (4.4). Gross memory
efficiency can hence be expressed according toegross =

ttransfer

λ̄
. By solving for the av-

erage service cycle length, we arrive at the expression in Definition 6.5. Note that the
length of the service cycle is independent of whether or not the data is requested by a
requestor, and does hence not depend on data efficiency. Intuitively, the average service
cycle length works like a savings account. The length of every service cycle budgets
a constant amount of time to pay for overhead, such as read/write switches or refresh.
Assuming this amount of time is saved for every service unit during tREFI cycles as-
serts that the provided gross bandwidth equalsbgross, that all possible overhead due to
read/write switches is paid for, and that there aretref clock cycles left to pay for the
refresh.

Definition 6.5 (Average service cycle length during worst-case conditions). The average
service cycle length during worst-case conditions, expressed in clock cycles is denoted
by λ̄ ∈ R+, and is defined as̄λ =

ttransfer

egross .

The service latency offset,∆, must assert that the lower bound on provided service re-
mains valid, despite the use of the average service cycle length. The offset corresponds to
the difference between the maximum and the average service cycle length, as expressed



148 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

in Definition 6.6. This offset is tight if a requestor receives worst-case interference as
predicted by its service latency bound, starting with a refresh, and is scheduled close to
the next refresh. In this case, there has not been any time forλ̄ to amortize the second re-
fresh, hence requiring the offset in Definition 6.6. However, if the service latency is short
and only contains a blocking and a refresh, thenλ̄ almost entirely amortizes the follow-
ing refresh by the time it happens, making the service latency offset appear pessimistic.
This is experimentally shown in Section 6.5.

Definition 6.6 (Service latency offset). The service cycle offset, expressed in clock cycles,
is denoted by∆ ∈ N, and is defined as

∆ =

{

tref + twtr + tread− ⌈λ̄⌉ if read-dominant or mix-read-dominant

tref + trtw + twrite − ⌈λ̄⌉ if write-dominant or mix-write-dominant

For the computed finishing times to be correct, the number of pipeline stages in the
architecture between the Request Buffer and the Response Buffer, npipe, must be con-
sidered. The pipeline stages add a constant delay to the finishing time and are hence
included in the service latency of the requestor. All piecesare now in place to define
service latency and completion latency, expressed in clockcycles. This is done in Def-
inition 6.7 and Definition 6.8, respectively. The completion latency is defined as a real
number, resulting in real starting times and finishing timesin the implementation. We
return to address this issue in Section 6.4.3.

Definition 6.7 (Service latency (clock cycles)). The service latency of a requestorr ∈ R,
expressed in clock cycles, is denoted byΘccr ∈ N, and is defined asΘccr = ttot(Θr) +
∆ + npipe.

Definition 6.8 (Completion latency (clock cycles)). The completion latency of a re-
questorr ∈ R, expressed in clock cycles, is denoted bylccr ∈ R+, and is defined as

lccr = ⌈λ̄ · l(ωkr )⌉, which is equivalent to
⌈

λ̄
ρ′r

⌉

.

6.4 Architecture and synthesis

In this section, we introduce the architecture of our proposed resource front-end that
implements the concepts from Section 6.1 based on the model from Section 6.2. We
start by presenting an overview of the architecture in Section 6.4.1, followed by brief
descriptions of the functional blocks in Sections 6.4.2 through 6.4.4. The design and
implementation of all blocks in the implementation are described in full detail in [106].

6.4.1 Architecture overview

The proposed resource front-end is located in front of a predictable resource, as shown
in Figure 6.4. The architecture is comprised of three main simple and reusable blocks:



6.4. ARCHITECTURE AND SYNTHESIS 149

an Atomizer, a Delay Block, and a Data Bus with an arbiter. Additionally, there is a
Configuration Bus that allows registers inside the different blocks to be programmed via
memory mapped I/O during use-case transitions [38]. The blocks communicate using
a Device Transaction Level (DTL) protocol [88], which is a standardized communica-
tion protocol similar to Advanced eXtensible Interface (AXI) [13]. All ports shown in
Figure 6.4 are DTL ports.

Resource front−endtemporally
independent

interfaces

cfg

requestor 1

requestor 2

D
ata B

us

Configuration Bus

Atomizer

Atomizer
Block
Delay

Block
Delay

Arbiter

P
redictable R

esource

Figure 6.4: An instance of the proposed architecture supporting two requestors.

The architecture achieves composability by combining two approaches to compos-
able system design at the block level. The Atomizer and DelayBlocks are composable
because they are not shared with other requestors, corresponding to the first approach
presented earlier. The Data Bus shares the predictable resource using an arbiter in the
class ofLR servers. The Delay Block hides the interference caused by scheduling and
accessing the resource by emulating worst-case interference from other requestors, ac-
cording to our proposed fourth approach. This creates an interface per requestor that is
temporally independent of the behavior of other requestors, as shown in Figure 6.4. Note
that this architecture is similar to the conceptual image inFigure 6.1, since the Request
Buffer and Response Buffer are located inside the Delay Block.

6.4.2 Atomizer

The Atomizer is responsible for splitting requests into atoms with a fixed programmable
size. This ensures that requests have a known size that can beserved in a bounded time
by the resource. The design is hence predictable without relying on a characterization
of the maximum request size or requiring explicit support for preemption in the arbiter.
Fixed-sized requests furthermore simplify other blocks inthe architecture. The size of an
atom corresponds to the service unit of the resource, as mentioned in Section 5.2. For a
typical SRAM, the natural service unit is a single word, but for our predictable SDRAM
back-end it is equal to the granularity of the access patterns, g, previously defined in



150 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

Definition 4.2. The original sizes of the requests are storedin the Atomizer to allow it to
merge arriving responses back into the size expected by the requestor.

6.4.3 Delay Block

The most complex block in the architecture is the Delay Block, shown in Figure 6.5, and
we hence explain this block in greater detail than the rest. The purpose of the Delay Block
is to absorb interference created by other requestors in theresource or arbiter to provide
a composable interface towards the Atomizer. This makes theinterface of the entire
front-end composable, since the Atomizer is not shared. TheDelay Block is composable
if all arrows on the interface in Figure 6.5 pointing left towards the Atomizer exhibit
composable behavior, which implies that both response dataand flow control signals
must emulate maximum interference. We proceed by discussing how the Delay Block
accomplishes this, based on the results from Section 6.3. After this, we discuss how to
configure the Delay Block.

write data
command

request data
command

read data

config data

flow control

flow control

response data

Sender

Request

Receiver

Request

Sender
Response

Receiver
Response

Register
Bank

finishing times

Response
Buffer

cmd

data

cmd

data

Request
Buffer

starting times

Flow
Controller

Figure 6.5: Delay Block architecture.

Composable responses

Requests are received by the Request Receiver according to the DTL protocol. Incoming
requests are split into a command (read/write information and request size) and data
(for write requests), and are stored in the Request Buffer. The Request Receiver then
waits until the request has completely arrived in the Request Buffer and there is enough
space to store its response in the Response Buffer, implementing the definition of arrival
in Definition 5.6. At this time, it computes the worst-case starting time and the worst-
case finishing time, according to Equations (6.1) and (6.2),and stores the results in two
respective FIFO buffers.



6.4. ARCHITECTURE AND SYNTHESIS 151

The Request Sender pops the request at the head of the RequestBuffer and presents
it to the Data Bus, such that it can be scheduled for resource access by the arbiter. This
is further discussed in Section 6.4.4.

Responses are received by a Response Receiver and are storedin the Response Buffer.
The Response Sender pops the worst-case finishing time from the head of the FIFO
buffer and waits until the appropriate clock cycle to release the response, thus emulating
maximum interference according to theLR server model. This ensures that the finishing
times of the requestor are unaffected by the interference from others, which is one of the
two requirements to be composable according to Definition 6.3.

The notion of time in the Delay Block is implemented using a locally running wrap-
ping cycle counter. The counter has to be wide enough to represent the maximum number
of clock cycles between the arrival time and finishing time ofa requestor. Refer to [106]
for more details on the implementation of this time base.

Composable flow control

Having taken care of composable responses, we proceed by discussing the issue of com-
posable flow control, which is required to make the arrival times of a requestor indepen-
dent of others. The arrival time of a request is assigned whenit has completely arrived in
the Request Buffer and there is enough space to store a response in the Response Buffer,
and it is hence determined by the state of both of these buffers. However, the time at
which a request leaves the Request Buffer and enters the Response Buffer depends on
the starting time and the completion latency, which may be affected by other requestors.
We must hence make sure that space in these buffers is claimedand released indepen-
dently of others. This is done by a Flow Controller block. Forthe Request Buffer, we
base the flow control on the worst-case buffer filling. The Flow Controller has a counter
that is initialized to the size of the Request Buffer. This counter is decremented whenever
a request enters the Request Buffer and incremented at the computed worst-case starting
times, removing the dependence on the actual starting times. For the Response Buffer,
the Flow Controller reserves space at the arrival time of a request, since this is required
to ensure that the bounds on starting times and finishing times are valid. However, this
also removes the dependency on the starting time and the state of the resource, thus ef-
fectively serving a double purpose. Together, these buffermanagement strategies ensure
that the arrival times of a requestor are unaffected by interference from others, which is
the remaining requirement to provide composable service according to Definition 6.3.

Discrete approximation mechanism

A problem arises if the completion latency,lcc, is not an integer multiple of clock cycles,
which it typically is not. Rounding off the value causes the enforced worst-case finishing
times to diverge from the exact values over time for a busy requestor. As we will see
in Section 6.5, this divergence is significant for requestors with high allocated rates for
resources with small service units, where completion latencies are in the order of a few
clock cycles. Similarly to what we discussed in Section 6.3.2, rounding the value down-



152 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

wards makes the finishing times too optimistic, leading to non-composable behavior. On
the other hand, rounding upwards makes the finishing time toopessimistic and causes the
actual provided bandwidth to be less than the allocated bandwidth,ρ′ · bnet. This problem
is illustrated in Figure 6.6. Note that the requestor in the figure is busy throughout the
entire shown interval, although the busy line has been omitted for clarity.

A
cc

um
ul

at
ed

da
ta

Clock cycles

approximation

Θcc

l(ωk) · λ̄

⌊l(ωk) · λ̄⌋

w′

w

⌈l(ωk) · λ̄⌉

ρ′ · bnet

Figure 6.6: Diverging finishing times prevented by discreteapproximation of the com-
pletion latency.

Our solution to this problem is to implement a mechanism thatchanges between
using the rounded up and rounded down completion latencies in a weighted fashion to
conservatively approximate the actual value, as shown in Figure 6.6. The fraction of
the service units for which the rounded down value should be used is expressed asη =
⌈λ̄ · l(ωk)⌉ − λ̄ · l(ωk). Sinceη ∈ R and 0 ≤ η < 1, our mechanism requires a
discrete approximation based on integer arithmetic that has a fast and simple hardware
implementation. For this purpose, we reuse the service representation introduced for the
CCSP rate regulator in Section 5.6.1. We hence representη as a fraction of integers
according toη = n∗/d∗, wheren∗, d∗ ∈ N+ andn∗ ≤ d∗. The values ofn∗ andd∗ are
chosen to be the(n∗, d∗) pair that provides the closest approximation ofη, corresponding
to the Closest Rate Approximation (CRA) strategy in Section5.6.1. The accuracy of this
approximation is only limited by the number of bits used to representn∗ andd∗. Then∗

andd∗ are computed for all requestors at design time and are programmed at run time.

The behavior of the mechanism is such that the approximated completion latency is
⌈lcc⌉ − η ≈ ⌈lcc⌉ − n∗/d∗. The implementation is based on a credit counterc∗, as
described by the pseudo code in Algorithm 6.1. The credit counter is set to zero at the
start of a busy period, which is detected by checking if the first parameter of the max
expression in Equation (6.2) is larger than the second. The mechanism then alternates
between the rounded up and the rounded down completion latencies based on the value
of the counter. The approximation done by the mechanism is conservative and guarantees
that the maximum difference between the approximated and actual completion latency is
less than one clock cycle at any time.



6.4. ARCHITECTURE AND SYNTHESIS 153

Algorithm 6.1 Mechanism for discrete approximation of completion latency.

for all ωkr ∈ Ωr do
if ta(ωkr ) + Θccr ≥ t̂f(ωk−1

r ) then // Start of busy period
c∗r ← 0

end if

if c∗r < d
∗
r − n∗r then // Rounding up

c∗r ← c∗r + n∗r
t̂f(ω

k
r )← max(ta(ω

k
r ) + Θccr , t̂f(ω

k−1
r )) + ⌈lccr ⌉

else// Rounding down
c∗r ← c∗r + n∗r − d∗r
t̂f(ω

k
r )← max(ta(ω

k
r ) + Θr, t̂f(ω

k−1
r )) + ⌊lccr ⌋

end if
end for

Configuring the Delay Block

The Delay Block is programmed with the service latency and completion latency of its
requestor to facilitate run-time computation of the worst-case starting times and finish-
ing times. Note that the Atomizer ensures that all requests have the same size and that
we only have to program one completion latency per requestor. The presence of an At-
omizer thus reduces the amount of computation required to dynamically determine the
completion latency of a particular request, or the space required to store precomputed
values.

The programmed service latencies and completion latenciesare computed according
to Definitions 6.7 and 6.8, respectively. The completion latency is rounded upwards to
the closest integer before programming, although the discrete approximation mechanism
asserts that this does not negatively impact throughput. The rounded down completion
latency, required by the mechanism, is easily obtained by subtracting one from the pro-
grammed value. Every block in our implementation is output registered, resulting in
a total of four pipeline stages between the Request Buffer and Response Buffer. Four
clock cycles are hence added to the service latency to account for the pipelining in the
implementation, as stated by Definition 6.7.

Composable service is dynamically disabled by programmingboth the service la-
tency and completion latency to zero clock cycles. This feature has two advantages.
First, it allows requestors that do not require composable service to use slack generated
by others, as mentioned in Section 6.1. The second advantageis that it enables requestors
that require composable service to share hardware with requestors that do not by enabling
or disabling composable service on use-case transitions.



154 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

6.4.4 Data bus

The Data Bus is a regular DTL bus that schedules requests according to the policy of an
attached arbiter that belongs to the class ofLR servers. The Data Bus is a very general
building block with multiple DTL input ports and a single DTLoutput port. A chal-
lenge with using such a general block is that it is not aware ofthe type of resource it is
providing access to. This makes it difficult to know when to trigger a new scheduling
decision, since it is not known in advance when the previous request is finished. We
proceed by discussing five options: 1) Schedule a request when the resource raises the
accept signal on the DTL interface. This results in that the resource is idle during one
clock cycle when the arbiter schedules the next request. Forsmall requests, such as
word-sized requests for an SRAM, this may reduce throughputup to 50%. 2) Make a
new scheduling decision periodically, where the period is set to the worst-case service
cycle length. This approach works well for resources with a constant access time, such as
an SRAM. In this case, the best-case completion latency equals the worst case, resulting
in a periodic simple periodic counter. However, for our SDRAM back-end, this would
assume a switching pattern and a refresh pattern for every access, reducing the provided
net bandwidth as discussed previously. 3) Schedule the nextrequest immediately after
the previous has been accepted. This way, a request is alwaysscheduled when the re-
source is ready to accept. However, arbitration may be done on old state, missing later
arrivals from critical requestors. This approach increases the average latency of critical
requestors unnecessarily. 4) Reevaluate the arbitration decision every clock cycle to en-
sure that it is always up to date, improving the average case latency of critical requestors.
A drawback with this approach is that it complicates the interaction with the accounting
mechanism in the arbiter. This is because the accounting should be updated exactly once
every service cycle to preserve the net bandwidth guaranteeof the requestors. 5) Sched-
ule a new requestor based on the minimum service cycle length. With this approach,
a new scheduling signal is generated based on a programmed minimum service cycle
length,λ̌. For our SDRAM back-end, this corresponds to the time required to execute
the shorter of a read and a write pattern, as expressed in Equation (6.3). This ensures
that a scheduling decision has been made when the resource isready to accept without
committing to a decision unnecessarily early. The resourcemay not accept the scheduled
request immediately. This happens for instance in case there is a refresh or a read/write
switch. The timer generating the scheduling signal is hencenot reset until the resource
accepts the request, causing the service cycle to dynamically stretch with the behavior
of the resource. This approach, employed in our implementation, is hence a compro-
mise between scheduling only once and using the most up-to-date information possible.
It furthermore makes exactly one scheduling decision per service unit, simplifying the
interaction with the accounting mechanism in the arbiter.

λ̌ = min(tread, twrite) (6.3)

When the arbiter schedules a request, the Data Bus stores an identifier to the sched-
uled port so that responses are demultiplexed to their respective Delay Blocks. These



6.4. ARCHITECTURE AND SYNTHESIS 155

 0

 5000

 10000

 15000

 20000

1 20 40 60 80 100

C
el

l a
re

a 
[u

m
2 ]

Buffer size [words]

(a) Cell area for different buffer sizes.

 0

 100

 200

 300

 400

 500

 600

 700

1 20 40 60 80 100
 0

 5000

 10000

 15000

 20000

 25000

M
ax

im
um

 fr
eq

ue
nc

y 
[M

H
z]

C
el

l a
re

a 
[u

m
2 ]

Buffer size [words]

Max. freq.
Cell area

(b) Maximum frequency and corresponding cell
area for different buffer sizes.

Figure 6.7: Synthesis results for the Atomizer.

identifiers are stored in separate FIFO buffers for read and write requests, since the DTL
protocol does not enforce ordering between reads and writes.

6.4.5 Synthesis results

The proposed front-end has been implemented in VHDL [106] and synthesized in a 90
nm CMOS process, using the procedure presented in Section 5.7. We proceed by walking
through the synthesis results for each of the blocks in the front-end, starting with the
Atomizer. Figure 6.7 shows the cell area of the Atomizer witha speed target of 200
MHz, as the size of the buffer storing the original sizes of requests is varied in the range
[1, 100] words. We conclude from the figure that the Atomizer is a small and simple
block with a cell area of less than 5000µm2 occupied by logic, while the rest is buffering.
The maximum frequency and the corresponding cell area of theAtomizer are shown in
Figure 6.7b. We observe that the Atomizer synthesizes above700 MHz with a buffer
size of one word. The area of the implementation grows linearly as the buffer size is
increased, while the maximum frequency reduces, ending at 530 MHz for the instance
with a buffer size of 100 words.

Next, we look at the Delay Block, which is a considerably morecomplex block. The
size and maximum frequency of this block depends on the sizesof the many buffers, on
the width of time stamps, and on the precision of discrete approximation mechanism.
For the synthesized instance, we have used 15 bits for the time stamps, and varied the
buffer sizes and precision. The considered buffers are the FIFOs with starting and fin-
ishing times, and the Request and Response Buffers, which both have separate queues
for commands and data. For simplicity, we vary the sizes of all these buffers uniformly.
This is reasonable assuming an atom size of a single word, suitable for an SRAM, since
the buffers for data and commands should have equal sizes in this case. The cell area at
200 MHz for different buffer sizes and precisions are shown in Figure 6.8a. We note that
the Delay Block is more complex than the Atomizer, considering that it is three times
larger with minimum buffering. We also see that the many buffers cause the area to in-
crease quickly as the buffer depths are increased. Unlike for CCSP, the impact on area



156 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

 0

 100000

 200000

 300000

 400000

 500000

1 20 40 60 80 100

C
el

l a
re

a 
[u

m
2 ]

Buffer size

4 bits
6 bits
8 bits

10 bits

(a) Cell area for different buffer sizes and preci-
sions.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 20 40 60 80 100
 0

 100000

 200000

 300000

 400000

 500000

M
ax

im
um

 fr
eq

ue
nc

y 
[M

H
z]

C
el

l a
re

a 
[u

m
2 ]

Buffer size [words]

Max. freq.
Cell area

(b) Maximum frequency and corresponding cell
area for different buffer sizes with 10 bits of preci-
sion.

Figure 6.8: Synthesis results for the Delay Block.

when changing the precision used in the discrete approximation mechanism are hardly
noticeable in the Delay Block. The reason is that the Delay Block is a larger block, thus
reducing the relative impact. Increasing precision from 4 to 10 bits adds just below 10%
to the area for a Delay Block with buffer sizes of a single element, and the effect is negli-
gible for larger buffer sizes. Figure 6.8b shows that the maximum frequency of the Delay
Block is relatively stable around 340 MHz as the buffer sizeschange. The precision is
10 bits for all synthesized instances in this figure, although synthesis results omitted here
indicate that reducing precision to 4 bits increases the maximum frequency by less than
5% for all buffer sizes.

The last block is the Data Bus, combined with a CCSP arbiter. The area and maxi-
mum frequency scales with the number of requestors for both of these components. The
CCSP arbiter is additionally affected by the chosen precision, as shown in Section 5.7.
We see in Figure 6.9a how the cell area changes with the both the number of requestors
and precision. By comparing the results in this figure to those in Figure 5.9a, we see
that the total area is dominated by the arbiter, constituting some 60-70% of the area of
the combination. We see in Figure 6.9b that the combined DataBus and CCSP arbiter
runs significantly slower than the CCSP arbiter alone. The reason is that a command
is scheduled by the arbiter and moved from the input of the Data Bus to the output in
a single clock cycle. Although the maximum frequency of the arbiter does not change
much as the number of requestors increases, the Data Bus does, causing the combina-
tion to synthesize between 350-450 MHz, depending on the number of requestors. This
frequency is fast enough to keep up with most DDR2 memories, but improvement is
required to keep up with any memory in the DDR3 generation. Itis possible that the
maximum frequency can be improved by pipelining the arbitration, although no attempts
have been carried out in this direction. In conclusion, it appears that the Delay Block is
the bottleneck in the current implementation, limiting themaximum clock frequency to
approximately 350 MHz. However, judging from the trend in Figure 6.9b, it seems like
the Data Bus may become the limiting factor if the number of requestors is scaled up
further, beyond the needs of our memory controller.



6.5. EXPERIMENTS 157

 0

 10000

 20000

 30000

 40000

 50000

4 6 8 10

C
el

l a
re

a 
[u

m
2 ]

Requestors

4 bits
6 bits
8 bits

10 bits

(a) Cell area for different number of requestors and
precisions.

 0

 100

 200

 300

 400

 500

4 6 8 10
 0

 10000

 20000

 30000

 40000

 50000

M
ax

im
um

 fr
eq

ue
nc

y 
[M

H
z]

C
el

l a
re

a 
[u

m
2 ]

Requestors

Max. freq.
Cell area

(b) Maximum frequency and corresponding cell
area for different number of requestors with 10 bits
of precision.

Figure 6.9: Synthesis results for the Data Bus with a CCSP arbiter.

6.5 Experiments

We proceed by experimentally evaluating our approach to composable resource sharing,
using both a simple SRAM controller and our proposed SDRAM back-end. The be-
havior of the resource front-end together with these resources is studied to increase the
understanding of our approach. We furthermore evaluate thetightness of the bound on
finishing time, look at the added average latency and buffering requirements of our ap-
proach, and examine the benefits of distributing slack bandwidth to requestors that do not
require composable service. Most importantly, we also demonstrate that the arrival times
and finishing times of a requestor are independent of other requestors and hence that our
design provides composable service according to Definition6.3.

6.5.1 SRAM experiments

For our first set of experiments, we use a simple SRAM controller with constant service
cycle length. This is a simpler case than our SDRAM back-end with variable service
cycle length, allowing us to build up the complexity of the experiments gradually. The
SRAM controller is running at 200 MHz with a 32-bit data path,offering a gross band-
width of 800 MB/s. The service unit size of this controller isa single word (4 bytes),
and the length of a service cycle is one clock cycle. The proposed resource front-end
is fitted with a CCSP arbiter and is located in front of the SRAMcontroller. The ex-
perimental setup with SystemC models from Section 5.8 is used as a starting point for
the experiments in this chapter. Traffic Generators generating requests according to a
normal distribution are used to represent processing elements that are interconnected us-
ing a model of the Æthereal [31] Network-on-Chip (NoC). For continuity, we reuse the
use-case with four requestors from Section 5.8. However, wescale down the request
sizes in proportion to the reduction in access granularity to keep the sizes in service units
constant. The access granularity of the SDRAM back-end in Section 5.8 was 64 B, while
it is 4 B for the SRAM controller in this section. The request sizes in the original use-



158 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

case are hence divided by64/4 = 16. The data efficiency of the requestors is 100%,
making the offered gross and net bandwidths equal. The revised use-case is presented in
Table 6.1. Since the SRAM controller in this experiment provides higher net bandwidth
than the DDR2-400 memory in the previous chapter, the allocated rates of the requestors
are decreased to remain the fraction between their requested bandwidths and the total net
bandwidth. With these changes, the total allocated bandwidth in this use-case is 81.4%
of the provided net bandwidth, indicating a moderate load. Priority levels are assigned
in ascending order and the service latencies in clock cycles(cc), computed according to
Definition 6.7, are listed in the table. The service latency offset in this setup is zero clock
cycles, since we are using an SRAM with constant service cycle time. The completion
latencies ofr0, r1, andr2 are 3.80 clock cycles. As mentioned in Section 6.4.3, rounding
this value downwards might lead to non-composable behavior, and rounding it upwards
results in that the provided bandwidth is reduced from 210 MB/s to 200 MB/s (1 word /
4 clock cycles), failing to satisfy the bandwidth requirements of the requestors. This is
prevented by our proposed approximation mechanism, which ensures that each requestor
receives their allocated bandwidth in a composable manner.

Table 6.1: SRAM use-case specification and configuration.
Requestor Type br Size pr σ′r ρ′r Θccr lccr

[MB/s] [B] [su] [su/sc] [cc] [cc]
r0 Read 210.0 32 0 1.0 0.263 5 3.80
r1 Write 210.0 8 1 1.0 0.263 6 3.80
r2 Read 210.0 4 2 1.0 0.263 9 3.80
r3 Write 20.0 16 3 1.0 0.025 19 40.00

General observations

For our first experiment, we simulate the use-case in Table 6.1 during 100 ms to observe
the behavior of the front-end and the SRAM controller. We size all buffers to 255 words
to prevent overflow, thus enabling us to evaluate both the added latency and buffering
that follows from delaying responses. Figure 6.10 plots theworst-case finishing times,
the actual finishing times and the actual starting times versus the arrival times of the first
200 requests from requestorr2.

By studying the figure, three general observations can be made. First, that it is possi-
ble to see which requests that start a new busy period by looking at the bound on finishing
time. The starting times of these requests are determined bythe service latency in the first
term in Equation (6.1), as opposed to by the finishing time of the previous request. The
finishing time in this case hence equals the sum of the servicelatency and the rounded up
completion latency, which is 13 clock cycles in total for requestorr2. This corresponds
to the lowest bounds on finishing time in the figure, while self-interference during busy
periods increases the bound. The second general observation is that the number of clock
cycles between the starting times and the finishing times is constant for all requests and



6.5. EXPERIMENTS 159

 0

 5

 10

 15

 20

 25

 30

 35

 0  20  40  60  80  100  120  140  160  180  200

C
lo

ck
 c

yc
le

s 
(2

00
 M

H
z)

Request number

Worst-case finishing time
Actual finishing time
Actual starting time

Figure 6.10: The first 200 requests ofr2 in the SRAM use-case.

equal to three clock cycles. This is expected, since the SRAMcontroller has a constant
service cycle time. One out of the three clock cycles is when the request is served, while
the other two are due to the two pipeline stages between the SRAM controller and the
Response Buffer. The third observation is that the number ofclock cycles between the
worst-case finishing times and the arrival times in Figure 6.10 is not constant for all
requests, as mentioned in Section 6.1. The drawback of enforcing a constant time be-
tween the arrival time and finishing time is that the constantwould have to be at least
equal to our worst case, which is 523 clock cycles in this simulation. However, analyt-
ically computing this value as the worst case assumes a perfect characterization of the
requested service and its resulting self interference, which is very difficult to obtain. Ac-
tual analytical results are likely to add pessimism, further increasing this delay.From
this observation, we conclude that enforcing a constant time between the arrival time
and finishing time of a request results in very pessimistic latencies.

Tightness of bound on finishing time

We proceed by focusing our attention on the bound on finishingtime. We see in Fig-
ure 6.10 that the worst-case finishing times are larger than the actual finishing times,
indicating that the bound is conservative in the shown interval. The minimum difference
between the worst-case and actual finishing times during this simulation is 7 clock cycles.
There are three reasons why the bound is not perfectly tight.The first reason is that the
requestor does not experience the maximum interference predicted by the CCSP arbiter.
The service latency bound of the requestor is 4 service units, while the arbiter measures
a maximum interference of 2 service units. The reason the latency bound provided by
CCSP is not tight in this case is because it assumes that service is provided in a continu-
ous manner, as discussed in Section 5.8.4, while it is actually done discretely. The second
reason the bound is not perfectly tight is also related to discrete versus continuous service.
The finishing time of a request is computed based on theLR service guarantee provided



160 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

by the arbiter. This bound assumes that a requestor receivesits allocated bandwidth in
a continuous fashion after the service latency, as shown in Figure 6.11. The computed
finishing time,t̂f(ωk), is hence after the completion latency when the next requestfrom
the requestor is scheduled. However, atom-sized requests are served in a non-preemptive
manner and either receives service at the full capacity of the memory, or not at all. They
are hence guaranteed to finish one service cycle after their starting times, corresponding
to tf(ωk) in Figure 6.11. The next request from the requestor is then scheduled at the
originally computed finishing time when the server becomes available again to the re-
questor. The impact of this effect is that the computed finishing time over-estimated by
⌈l(ωkr )⌉− 1 = ⌈1/ρ′⌉− 1 service cycles for atom-sized requests. For requestorr2 in the
use-case, this corresponds to 3 service cycles, which is equal to 3 clock cycles with our
SRAM memory. This problem can be addressed by programming a second completion
latency of one service cycle that is used when computing finishing times, while keeping
the regular one for starting times. However, we did not implement this optimization. The
third reason the bound is not tight is related to blocking. Anextra service unit is added
to the service latency in Equation (4.8) to account for that arequest may arrive just after
a scheduling decision is taken. This actually over-estimates the blocking with one clock
cycle, considering that a request must arrive at least one cycle after a scheduling deci-
sion is taken to be blocked. Since a service cycle is a single clock cycle for the SRAM
controller, blocking actually cannot occur, although it isstill included in the bound. To-
gether, these three reasons explain why the service latencybound is not perfectly tight
in this simulation.We conclude that the bound on finishing time is conservative,but not
tight.

A
cc

um
ul

at
ed

se
rv

ic
e

Service cyclesΘ

ρ′

w

w′

w̌′

tf(ω
k)

t̂s(ω
k) t̂f(ω

k) = t̂s(ω
k+1)

Figure 6.11: Atoms finish before the computed bound, since they are served non-
preemptively.

Added latency and buffering

We now examine the cost of composable service for our observed requestor in terms of
added latency and buffering. The average actual finishing time and the average worst-
case finishing time forr2 during the simulation are 59.5 and 68.6 clock cycles after the
corresponding arrivals, respectively. This corresponds to an increase of 15.2%, support-



6.5. EXPERIMENTS 161

ing the intuition that delaying responses makes it more difficult to satisfy requirements
on average-case latency. Delaying responses furthermore implies that more data has to be
stored in the Response Buffer to prevent reducing throughput. The amount of extra data
to buffer is related to the tightness of the bound on finishingtime, since this determines
the extra time an atom spends in the Response Buffer before being released. Without
delaying responses, the read requestors have a maximum Response Buffer filling of one
command and one data word each, since responses are immediately passed on to the At-
omizer. When enabling delays, the maximum buffer filling increases with one command
and one data word forr0 and two commands and two data words forr2. These results are
not unexpected, since the requests ofr2 are buffered an extra 9 clock cycles on average,
roughly corresponding to slightly more than two completionlatencies.We conclude that
enabling composable service according to our approach increases the finishing times of
the requestors, thus requiring larger buffers to sustain throughput.

Composable SRAM controller

For our second experiment, we experimentally demonstrate that the resource front-end
makes the service provided by the SRAM controller composable. In this experiment, we
illustrate the consequences of small changes in application software by simulating the
use-case twice (case 1 and case 2) with different variances in the request generation for
r0. We additionally increase the allocated burstiness ofr0 in Table 6.1 toσ′r0 = 8. This
creates larger service variations for lower priority requestors, allowing us to visualize our
point more clearly. The results for requestorr2 are shown in Figure 6.12a. We see that
changing the variance causes the actual finishing times of the requests to change, making
the system non-composable. However, the requests are held in the Delay Block until
their worst-case finishing times, which are completely overlapping for the two cases,
indicating that requests are released from the Delay Block at the same time regardless
of these changes. Making the finishing times of requestors independent of each other
in this way delivers on one of the two requirements in Definition 6.3 for the service
provided by the front-end to be considered composable. The remaining requirement
is that also the arrival times of the requestors should be independent. As previously
explained in Section 6.4.3, this is accomplished by basing the flow-control on the worst-
case Request Buffer filling, rather than the actual case. Theworst-case buffer filling is
stored in a counter in the Delay Block and is computed based onthe worst-case starting
time of a requestor, making it independent of actual interference from other requestors.
Figure 6.12b shows that the worst-case Request Buffer filling of r2 is unaffected when the
behavior ofr0 changes, although the actual filling changes. This implies that the arrival
times of the requestor are also unaffected. Similar experiments are performed with the
RTL implementation in [106]. The front-end is shown to provide composable service
with an SRAM controller, both in behavioral simulation and on FPGA.We conclude
that the service provided by the resource front-end combined with an SRAM controller is
composable.



162 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0  20  40  60  80  100  120  140  160  180  200

C
lo

ck
 c

yc
le

s 
(2

00
 M

H
z)

Request number

Case 1: Actual finishing time
Case 1: Worst-case finishing time

Case 2: Actual finishing time
Case 2: Worst-case finishing time

(a) Request releases are unaffected by other requestors.

 242

 244

 246

 248

 250

 252

 254

 256

 0  20  40  60  80  100  120  140  160  180  200

R
eq

ue
st

 B
uf

fe
r 

sp
ac

e 
(w

or
ds

)

Request number

Case 1: Actual free space
Case 1: Worst-case free space

Case 2: Actual free space
Case 2: Worst-case free space

(b) Worst-case Response Buffer space is unaffected by otherre-
questors.

Figure 6.12: SRAM controller behaving in a composable manner.



6.5. EXPERIMENTS 163

Distributing slack bandwidth

The third experiment shows how to increase the performance of requestors that do not re-
quire composable service. We now considerr2 as a non-real-time requestor and program
its service latency and completion latency to zero clock cycles to disable the emulation
of worst-case interference. This causes requests to be released at the actual finishing
time, as opposed to the worst-case finishing time. This reduces the release time of the
requests fromr2 by 13.2%, as we have seen in our first experiment. However, theper-
formance of the requestor may be further improved by distributing the slack bandwidth
in the use-case, corresponding to the 18.6% of unallocated bandwidth and any allocated
bandwidth that is not used by its requestor. To demonstrate the benefit of slack distribu-
tion, we compare a work-conserving instance of CCSP to our non-work-conserving one.
As previously discussed in Section 5.3.2, a work-conserving arbiter always schedules a
request when there is a backlogged requestor. The highest priority backlogged requestor
is hence scheduled if there are no eligible requestors. The use-case in Table 6.1 is sim-
ulated twice for 100 ms, the first time with a work-conservingarbiter, and the second
time with a non-work-conserving instance. Figure 6.13 illustrates the results for the first
500 requests fromr2. It is clear that disabling the emulation of worst-case interference
causes requests to finish earlier. However, we note that the impact of distributing the
unallocated net bandwidth is more significant in this use-case. In fact, the average fin-
ishing time of request fromr2 is reduced from 59.5 clock cycles after the arrival to 5.5
clock cycles, corresponding to a reduction of 90.7%. This large difference is probably
due to that bandwidth is allocated very closely to the average requested bandwidth, thus
causing self interference to increase quickly if the requested service is bursty.From this
experiment, we conclude that disabling emulation of worst-case interference reduces the
finishing times of requestors that do not require composableservice. The finishing times
may further reduce significantly by using a work-conservingarbiter to distribute slack
bandwidth.

6.5.2 SDRAM experiments

For our second set of experiments, we evaluate our approach to composable service when
pairing our resource front-end with the predictable SDRAM back-end proposed in Chap-
ter 4. The setup used in this experiment hence corresponds tothe illustration previously
shown in Figure 2.11. Just like in our experiments in Section5.8, the SDRAM back-end
is connected to our example 16-bit DDR2-400 memory, using the pattern set generated
by the bank scheduling algorithm withBL = 8 andBC = 1 from Table 4.3. The ac-
cess granularity of the memory is hence 64 B and the SDRAM back-end guarantees a
minimum gross bandwidth of 660 MB/s. We keep the same use-case as in the earlier
experiments, but we scale up the request sizes to fit with the larger access granularity
of the SDRAM back-end. All request sizes remain an integer multiple of the access
granularity of the memory, resulting in a data efficiency of 100%, making gross and net
bandwidth the same. We furthermore increase the allocated rates in response to the re-
duced gross bandwidth provided by the memory to satisfy the bandwidth requirements



164 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  50  100  150  200  250  300  350  400  450  500

C
lo

ck
 c

yc
le

s 
(2

00
 M

H
z)

Request number

Worst-case finishing time
Actual finishing time without slack

Actual finishing time with slack

Figure 6.13: Using a work-conserving arbiter to distributeunallocated bandwidth may
significantly reduce finishing times.

of the requestors. The total allocated net bandwidth equals98.8% of what is provided
by the SDRAM memory, indicating a high load. The use-case in this experiment, shown
in Table 6.2, is hence identical to what we previously used inSection 5.8. The service
latencies,Θccr , and completion latencies,lccr , expressed in clock cycles, are computed
according to Definition 6.7 and Definition 6.8, respectively. The completion latencies
are determined based on the average service cycle length using the considered memory
pattern, corresponding tōλ = 16/0.825 = 19.4 clock cycles. The intuition behind this
value is that our pattern set is mix read dominant, causing the worst-case bandwidth and
latencies to be provided with alternating read and write requests. For our pattern set
twtr + tread = 18 clock cycles andtrtw + twrite = 20 clock cycles, resulting in an average
of 19 clock cycles. The remaining 0.4 clock cycles inλ̄ accounts for refresh by ensuring
that 32 clock cycles can be lost once every 1560 when the memory needs to refresh. Note
that the completion latencies are much longer for SDRAM memories with large access
granularities, making the discrete approximation mechanism less significant. Rounding
the completion latencies ofr0, r1, andr2 upwards, reduces their provided bandwidths by
approximately 1 MB/s, and the provided bandwidth ofr3 by just a couple of KB/s. The
service latencies include a latency offset of 32 clock cycles to compensate for the use of
the average service cycle time when computing the completion latency.

General observations

For our first experiment with SDRAM, we simulate the use-caseduring 100 ms to make
some general observations about the behavior of the front-end and the back-end. The
results of this simulation for the first 200 requests ofr2 are shown in Figure 6.14. There
are two interesting differences compared to the results forthe SRAM controller, previ-



6.5. EXPERIMENTS 165

Table 6.2: SDRAM use-case specification and configuration.
Requestor Type br Size pr σ′′r ρ′′r Θccr lccr

[MB/s] [B] [su] [su/sc] [cc] [cc]
r0 Read 210.0 512 0 1.0 0.319 88 60.8
r1 Write 210.0 128 1 1.0 0.319 106 60.8
r2 Read 210.0 64 2 1.0 0.319 182 60.8
r3 Write 20.0 256 3 1.0 0.031 1418 621

ously shown in Figure 6.10. The first difference is that the bound on finishing time is
flatter, indicating less self interference. This is explained by that requests are generated
with the same variance in both cases, although the average time between generated re-
quests increases with the request size. Requests in this use-case are hence generated in
a less bursty fashion. The second difference is that the number of clock cycles between
the starting times and finishing times is no longer constant,but varies between 20 and
54 clock cycles with an average of approximately 24. This variation is explained by the
introduction of read/write switches and refreshes. The effects of read/write switches are
difficult to see, since they are in the range of a few clock cycles. The 54 cycle difference
due to refresh is somewhat more noticeable, although it onlyhappens approximately
once per 100 requests. In Figure 6.14, there is interferencefrom refresh for request 50
and request 178.

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140  160  180  200

C
lo

ck
 c

yc
le

s 
(2

00
 M

H
z)

Request number

Worst-case finishing time
Actual finishing time
Actual starting time

Figure 6.14: The first 200 requests ofr2 in the SDRAM use-case.

Tightness of bound on finishing time

When looking at the bounds on finishing times in Figure 6.14, wenote that they seem
less tight than for the SRAM in Figure 6.10. In fact, the minimum difference between
the actual finishing times and the corresponding bounds is 134 clock cycles. The same



166 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

reasons for the bound not being tight in the case of the SRAM still applies to the case
of SDRAM. Increasing the allocated rates of the requestors furthermore increases the
possible interference from other requestors, according toEquation (5.9). The bound on
interference from other requestors is 150 clock cycles, although the arbiter only mea-
sures 70 clock cycles, excluding blocking, loosening the bound with 60-80 clock cycles
out of the total 134. Blocking is over-estimated by one clockcycle, although this is neg-
ligible in the case of SDRAM, where latencies are much longerdue to the larger access
granularity. The impact of computing the finishing time to beone completion latency
after the starting time, as opposed to one average service cycle, is quite significant also in
this case. The completion latency is 61 clock cycles, whereas the average service cycle
length rounds up to 20 clock cycles, loosening the bound withapproximately 40 cycles.
For the case of SDRAM, there are also two new reasons why the bound is not tight. The
first reason is that the bound assumes the maximum number of interfering refreshes and
read/write switches, where the actual case may contain less. The second reason is the
added latency offset, which is very pessimistic unless the actual service latency is very
close to a multiple oftREFI . According to measurements in the arbiter, the requestor
actually experiences interference that is less than 5% oftREFI , which means that̄λ used
to compute the completion latency has already amortized most of the refresh by the time
it happens. Together, all these factors contribute to the bound not being tight.We con-
clude that the bound on finishing time for SDRAM is conservative, but less tight than the
bound for SRAM, due to the extra uncertainties introduced bythe variable service cycle
length.

Added latency and buffering

The fact that the bounds on finishing time are less tight for the SDRAM than the SRAM,
implies that the added latency and buffering by delaying requests increase. The aver-
age actual finishing time and average worst-case finishing time of r2 in this use-case
are 49 and 254 clock cycles after the corresponding arrival times, respectively. Delay-
ing responses hence increases the average latency ofr2 by a factor 4.2 in this use-case.
However, this added latency can be reduced by at least 25% by not using the comple-
tion latency to compute the bound. It is also important to consider that generating the
requests in a burstier manner may increase the average actual completion latency, while
the bound remains unaffected, hence reducing the cost in terms of added average latency.
The Response Buffer of the read requestors has a maximum filling of one command and
16 data words, corresponding to a single atom, when responses are not delayed. En-
abling emulation of worst-case interference increases theResponse Buffer filling to four
atoms forr0 and slightly less than six atoms forr2. We conclude that the larger access
granularity and looser latency bound when using SDRAM increases the relative cost in
terms of average latency and required buffer capacity compared to SRAM when enabling
composable service.



6.5. EXPERIMENTS 167

 0

 100

 200

 300

 400

 500

 600

 700

 0  20  40  60  80  100  120  140  160  180  200

C
lo

ck
 c

yc
le

s 
(2

00
 M

H
z)

Request number

Case 1: Actual finishing time
Case 1: Worst-case finishing time

Case 2: Actual finishing time
Case 2: Worst-case finishing time

(a) Request releases are unaffected by other requestors.

 244

 246

 248

 250

 252

 254

 256

 0  20  40  60  80  100  120  140  160  180  200

F
re

e 
sp

ac
e 

(w
or

ds
)

Request number

Case 1: Actual free space
Case 1: Worst-case free space

Case 2: Actual free space
Case 2: Worst-case free space

(b) Worst-case Response Buffer space is unaffected by otherre-
questors.

Figure 6.15: SDRAM controller behaving in a composable manner.

Composable SDRAM controller

For our second experiment with SDRAM, we demonstrate that the time requests are
released from the Delay Block and the worst-case Response Buffer space are independent
of other requestors. We follow the same procedure as with theSRAM controller and
simulate the use-case twice, changing the burstiness ofr0 between the runs. The impact
of this change onr2 is shown in Figure 6.15. We note that the actual finishing times
and Response Buffer filling changes, while the worst-case values emulated by the Delay
Block are unaffected.This leads us to conclude that the service provided by the resource
front-end combined with our SDRAM back-end is composable.



168 CHAPTER 6. COMPOSABLE RESOURCE FRONT-END

6.6 Summary

A predictable memory controller enables formal verification of latency and throughput
requirements of applications. However, this requires a performance model of the appli-
cation, which is not always available. A complementary verification approach based on
simulation ofcomposable systemsis proposed in this chapter. Applications in a com-
posable system cannot affect each other’s temporal behavior by even a single clock
cycle. This enables independent verification of applications, reducing the verification
effort. Existing approaches to composable system design are eitherrestricted to appli-
cations that can be statically scheduled, or share inherently composable resources using
Time-Division Multiplexing (TDM), which cannot efficiently satisfy the requirements
of latency-critical requestors. Neither of these approaches apply to an arbitrary appli-
cation in a platform with our proposed SDRAM back-end and Credit-Controlled Static-
Priority (CCSP) arbiter.

This chapter proposes a new approach to composable resourcesharing that applies to
any combinationof predictable resource and Latency-Rate (LR) arbiter without any re-
strictions on the application. The key idea is to delay all signals sent from the resource to
a requestor byemulating worst-case interference from other requestors. This makes the
system composable on the level of requestors, which is a sufficient condition for it to be
composable on the level of applications. Our approach supports providing composable
service to a subset of the requestors by dynamically enabling or disabling emulation of
worst-case interference.This enables slack bandwidth to be used to improve the perfor-
mance of requestors that do not require composable service.A request is scheduled at its
starting timeand finishes receiving service at itsfinishing time. Providing composable
service in our approach requires these to be bounded. Boundswere derived based on the
service guarantee of the combined predictable resource andtheLR arbiter. We further-
more showed how to adapt these bounds for resources with variable service cycle length,
such as our SDRAM back-end.

The ideas presented in this chapter are implemented as acomposable resource front-
end that is placed in front of the predictable resource. The architecture of the front-end
has three main building blocks: 1) anAtomizer, 2) a Delay Block, and 3) aData Bus
with an arbiter in the class ofLR servers. The Atomizer chops requests into smaller
pieces fitting with the access granularity of the resource and merges responses into the
expected size. This prevents malfunctioning requestors from violating latency guaran-
tees of other’s by sending large requests, and simplifies therest of the architecture. The
Delay Block makes the front-end composable by delaying signals to emulate worst-case
interference from other requestors. The Data Bus schedulesrequests for resource ac-
cess according the policy of its attachedLR arbiter. It was experimentally demonstrated
that the resource front-end fitted with a CCSP arbiter provides composable service when
combined with both a SRAM controller and our SDRAM back-end.Based on our exper-
iments, we concluded that the bounds on finishing times are conservative, but not tight.
We also demonstrated the benefits of distributing slack bandwidth to requestors that do
not require composable service by disabling the delays and using a work-conserving ar-
biter.



CHAPTER 7

Configuration

Our journey towards a predictable and composable memory controller is approaching its
end. A predictable SDRAM back-end has been presented that enables net bandwidth and
latency to be bounded. The memory controller architecture was completed by a front-
end that enables the SDRAM back-end, or any other predictable resource, to be shared
among multiple requestors in a predictable and composable manner using an arbiter in
the class of Latency-Rate (LR) servers. While presenting this architecture, a number
of instantiation parameters and configuration settings were mentioned. The remaining
problem is to automatically derive these parameters and settings, such that the requestor
requirements are satisfied, thus delivering on our automation requirement.

This chapter introduces a configuration flow that automatically derives architecture
parameters and configuration settings, given requestor requirements and a specification
of the memory and arbiter. The discussion is structured around the different steps in
the configuration flow, illustrated in Figure 7.1, and reliesheavily on results from earlier
chapters. This chapter hence acts as a summary that brings the pieces together to satisfy
requestor requirements. First in Section 7.1, we formalizerequestor requirements and
define a metric that is used to evaluate the quality of a given configuration. We then
proceed by walking through each of the steps in the configuration flow in Section 7.2
through Section 7.6. A running example is used throughout these sections to clearly
illustrate what happens in the different steps of the flow. The flow is experimentally
evaluated with a large number of use-cases in Section 7.7, before the chapter is concluded
with a summary in Section 7.8.

169



170 CHAPTER 7. CONFIGURATION

Pattern
Generator

Normalized
requirements

Memory
patterns

Normalize
Requirements

Arbiter
Configuration

Verify
Requirements

normalized
Provided

latencies
bandwiths &

latencies
bandwiths &

Provided

latencies
bandwiths &

Provided

Denormalize
Allocation

Requestor
requirements

Memory
specification

Slack bandwidth
increased and

latency requirements
satisfied

Increase burst count

Figure 7.1: Overview of the automated configuration flow.

7.1 Formal model

The discussion in this chapter is focused around satisfyingrequestor requirements, mak-
ing it prudent to include these in our formal model. Definition 7.1 states that a requestor
requires a maximum service latency,Θ̂cc, measured in clock cycles, and a required min-
imum net bandwidth,b. These requirements are provided by the first part of the mapping
process, discussed in Section 1.1.4, which is considered outside the scope of this thesis.
The requirements of a requestor are assumed to be derived in different ways depending on
its real-time classification. The requirements of hard and firm real-time requestors are as-
sumed to be derived based on a conservative model of the application that guarantees that
the application requirements are satisfied if the requestorrequirements are met. Soft real-
time applications are often more complex than their hard andfirm real-time counterparts
and a conservative application model may hence not exist. Soft real-time requirements
may hence be derived based on estimates or simulation that suggests that the application
meets its real-time requirements often enough to be considered useful. The requirements
of non-real-time requestors, on the other hand, just have tobe derived in a way that makes
the application seem responsive to the user. A non-real-time requestor may hence have
an infinite latency requirement and use only slack bandwidth. It may not be possible to
derive suitable requirements if there is no model of the application. For this reason, it is
possible to side-step parts of the configuration flow and manually configure a requestor.
This can be used as a fall-back mechanism together with simulation-based verification to
ensure that all applications meet their requirements.

Definition 7.1 (Requestor requirements). The requirements of a requestorr ∈ R are
denoted by(Θ̂ccr , br), whereΘ̂ccr is an upper bound on service latency in clock cycles
andbr the required net bandwidth in MB/s.

We proceed in Definition 7.2 by defining a use-case as valid if three requirements are
satisfied: 1) The allocated bandwidths for all requestors,b′r, must be at least as large as the
required bandwidths,br. 2) The provided service latencies,Θccr , cannot be larger than the
corresponding bounds,̂Θccr . 3) The requestors cannot be allocated more bandwidth than



7.2. MEMORY PATTERN GENERATION 171

what is provided by the memory. The goal of the flow is to deriveinstantiation parameters
and settings for the memory controller, such that all use-cases are valid. However, the
current implementation of the configuration flow is limited to a single use-case. General-
izing the flow to remove this limitation is considered important future work. There may
be many configurations that result in a valid use-case. In this case, the one configuration
with maximum slack bandwidth, defined in Definition 7.3, is preferred. The rationale
behind this decision is that slack bandwidth can be used to improve the performance of
requestors that do not require composable service, as previously shown in Section 6.5.
Note that slack bandwidth is computed based on gross bandwidth, since the net usage
depends on the request size of the requestor the slack is allocated to.

Definition 7.2 (Valid use-case). A use-case is defined as valid iff∀r ∈ R : Θ̂ccr ≥
Θccr ∧ b′r ≥ br ∧

∑

∀r∈R b
′
r ≤ bnet.

Definition 7.3 (Slack bandwidth). The slack bandwidth in a use-case is defined asbslack =
bgross−∑∀r∈R b′r.

The configuration flow will be demonstrated step by step usingan example use-case.
For this purpose, we revisit the use-case with four requestors previously used in Sec-
tion 5.8 and Section 6.5. Service latency requirements are added to the use-case, as
shown in Table 7.1, to provide a starting point for the configuration flow. The consid-
ered memory controller is using our resource front-end fitted with a Credit-Controlled
Static-Priority (CCSP) arbiter with six bits of precision,and an SDRAM back-end in-
terfacing to our example 16-bit DDR2-400 memory. The proposed configuration flow
runs at design time and only configures the memory controller. The configuration of the
network-on-chip is covered in [35].

Table 7.1: Use-case specification.

Requestor Type br Size Θ̂ccr
[MB/s] [B] [cc]

r0 Read 210.0 512 300
r1 Write 210.0 128 110
r2 Read 210.0 64 90
r3 Write 20.0 256 200

7.2 Memory pattern generation

The first step of the configuration flow is to generate a set of memory patterns. For
an SDRAM controlled by our proposed back-end, any of the algorithms presented in
Section 4.5 can be used. However, we have chosen to integratethe bank scheduling
algorithm into our tool flow, since it provides a favorable trade-off between run-time and
memory efficiency, as experimentally shown in Section 4.7.



172 CHAPTER 7. CONFIGURATION

The memory architecture and timings, previously defined in Definitions 3.1 and 3.2
are supplied as inputs to the memory pattern generation algorithm. These are provided
as parts of a system architecture specification file, shown inAppendix B. The final input
to the pattern generation is the burst count, although this is supplied automatically by
the configuration flow, since the optimal burst count is not known up front. Larger burst
count results in more gross bandwidth, as previously shown in Section 4.7. Increasing
burst count thus provides an opportunity to create more slack bandwidth, and hence a
better configuration. However, it was also shown that increasing the burst count increases
access granularity, potentially reducing net bandwidth ifrequest sizes are not sufficiently
large. Increasing burst count furthermore increases the length of the access patterns,
making it more difficult to satisfy latency requirements. Inour configuration flow, this is
addressed by starting to generate patterns withBC = 1 and later visit other options by
iteration in the flow. This is further explained in Section 7.6.

No memory patterns are needed if the memory is an SRAM, controlled by an off-
the-shelf SRAM controller. However, a pattern specification is generated that describes
the characteristics of accesses to the memory. For this specification, we settread = 1,
twrite = 1, twtr = 0, trtw = 0, andtref = 0, reflecting that a simple SRAM reads or writes
a burst of one word in a single clock cycle. It furthermore does not require any time to
switch from reads to writes, and a refresh is performed in zero time. The advantage with
this specification is that it abstracts from the detailed timing behavior of the memory, al-
lowing the same configuration flow to be used with several different memory types. This
approach fits well with our abstraction requirement. Currently, we use the configuration
flow with both SRAM and SDRAM, although we believe that the pattern specification is
general enough to also cover other types of memories, such asflash.

The memory pattern generation step determines the set of patterns that should be im-
plemented in the Command Generator of the SDRAM back-end. The pattern specifica-
tion determines two instantiation parameters used in the resource front-end: 1) The min-
imum service cycle time,̌λ, used by the Data Bus to determine when the next scheduling
decision should be made. This parameter is computed according to Equation (6.3). 2)
The access granularity of an access pattern,g, which is the atom size used by the Atom-
izer, is calculated according to Definition 4.2.

Applying the memory pattern generation step to our example use-case and system
results in the output shown in Table 7.2. The generated pattern set withBC = 1 is the
same as we previously generated for this memory with the bankscheduling algorithm
in Section 4.7. This pattern set has an access granularity of64 B and provides a gross
bandwidth of 660 MB/s. The minimum service cycle length is 16clock cycles, resulting
from either a read pattern or a write pattern, since they are equally long.

Table 7.2: Output from pattern generation stage.

tread twrite trtw twtr tref λ̌ g
[cc] [cc] [cc] [cc] [cc] [cc] [B]
16 16 2 4 32 16 64



7.3. NORMALIZATION OF REQUIREMENTS 173

7.3 Normalization of requirements

The second step in the configuration flow is to normalize the requestor requirements,
thereby making them independent of the target memory. The advantage of this abstrac-
tion is that it makes the choice of memorycompletely transparentto the arbiter configu-
ration step, allowinganysupported arbiter to be configured foranysupported memory in
a streamlined fashion. The requirements are normalized by converting the requirements
to service units according to Definition 7.4. The requestor requirements are provided by
the user as an input to this stage using a use-case specification file, shown in Appendix B.
The second input is the description of the generated memory pattern set.

Definition 7.4 (Normalized requestor requirements). The normalized requirements of a
requestorr ∈ R are defined as(Θ̂r, ρr), whereΘ̂r is an upper bound on service latency
in service cycles andρr the required service rate.

Definition 6.7 states how to convert a service latency expressed in service units to
clock cycles. Since normalizing the service latency requirement is the inverse of this
operation, we proceed by inverting the expression and solving for the service latency in
service units. Equation (7.1) starts the inversion by stating thatΘ̂cc ≥ Θcc and solving for
the pattern dominant expressiontaux(Θ̂+1). The inversion is conservative, but somewhat
pessimistic, since it adds up to an additional refresh,tref, to the worst-case latency when
removing a ceiling.

Θ̂cc ≥ Θcc = ttot(Θ̂) + ∆ + npipe =
⌈

taux(Θ̂ + 1)

tREFI − tref− tblock

⌉

· tref + taux(Θ̂ + 1) + ∆ + npipe≥
(

taux(Θ̂ + 1)

tREFI − tref− tblock
+ 1

)

· tref + taux(Θ̂ + 1) + ∆ + npipe =

taux(Θ̂ + 1) · tref

tREFI − tref− tblock
+ tref + taux(Θ̂ + 1) + ∆ + npipe =

taux(Θ̂ + 1) ·
(

1 +
tref

tREFI − tref− tblock

)

+ tref + ∆ + npipe⇒

Θ̂cc − tref−∆− npipe

1 +
tref

tREFI−tref−tblock

≥ taux(Θ̂ + 1) (7.1)

We proceed by solving for̂Θ for the different dominance classes according to the dif-
ferent cases in Equation (4.7). Equation (7.2) and Equation(7.3) derive upper bounds on
Θ̂ for read-dominant patterns and mix-read-dominant patterns, respectively. The cases
of write-dominant and mix-write-dominant patterns are derived in the same manner, but
with tread switched fortwrite andtwtr switched fortrtw, respectively. Equation (7.3) in-
troduces an over-estimation of the worst-case latency whenremoving the ceiling and



174 CHAPTER 7. CONFIGURATION

floor operations. The pessimism introduced by the inversionis an added cost in terms
of latency attributed to our choice to use abstraction to decouple the configuration of the
memory and the arbiter.

Θ̂cc − tref− npipe

1 +
tref

tREFI−tref−∆−tblock

≥ taux(Θ̂ + 1) = (Θ̂ + 1) · tread + twtr ⇒

Θ̂cc − tref−∆− npipe

1 +
tref

tREFI−tref−tblock

− tread− twtr ≥ Θ̂ · tread⇒
(

Θ̂cc − tref −∆− npipe

1 +
tref

tREFI−tref−tblock

− tread− twtr

)

· 1

tread
≥ Θ̂ (7.2)

Θ̂cc − tref −∆− npipe

1 +
tref

tREFI−tref−tblock

≥ taux(Θ̂ + 1) =

⌈

Θ̂ + 1

2

⌉

· (twtr + tread) +

⌊

Θ̂ + 1

2

⌋

· (trtw + twrite) ≥
(

Θ̂ + 1

2
+ 1

)

· (twtr + tread) +

(

Θ̂ + 1

2

)

· (trtw + twrite) =

Θ̂ + 3

2
· (twtr + tread) +

Θ̂ + 1

2
· (trtw + twrite)⇒

Θ̂cc − tref −∆− npipe

1 +
tref

tREFI−tref−tblock

−3

2
·(twtr+tread)−

1

2
·(trtw+twrite) ≥ Θ̂· twtr + tread + trtw + twrite

2
⇒

Θ̂ ≤

Θ̂cc−tref−∆−npipe

1+
tref

tREFI−tref−tblock

− 3
2 · (twtr + tread)− 1

2 · (trtw + twrite)

twtr+tread+trtw+twrite
2

(7.3)

Our SRAM pattern specification is technically mix-read-dominant according to Def-
inition 4.8, and is hence normalized using Equation (7.3). This specification istread = 1,
twrite = 1, twtr = 0, trtw = 0, andtref = 0, reducing the equation tôΘ ≤ Θ̂cc − npipe− 2.
This is an over-estimation of two clock cycles, which is quite an acceptable loss for a
streamlined configuration flow. However, it can easily be eliminated by treating SRAM
as a special case.

The normalized bandwidth requirement of a requestor,ρ, is a service rate that rep-
resents the required fraction of the total available service units provided by the memory.
However, the size of a service unit equals the access granularity of the resource, which
may be larger than the request size of the requestor. This problem of data efficiency must
hence be addressed in the normalization to ensure that the net bandwidth requirement of



7.4. ARBITER CONFIGURATION 175

the requestor is satisfied. This is done by converting the netbandwidth requirement of a
requestor into a gross requirement by scaling it with the requestors data efficiency, previ-
ously computed in Equation (4.6). The intuition behind thisis that a requestor that cannot
use half of the data in a service unit hence requires twice as many service units to satisfy
its requirements. This implies that the normalized bandwidth requirement may increase
with burst count, since a larger access granularity resultsin lower data efficiency, as pre-
viously shown in Equation (4.6). The normalized bandwidth requirement is computed
according to Equation (7.4). This equation reduces toρr = br

bpeak for the SRAM pattern
specification, since all categories of memory efficiency are100%.

ρr =
br

edata
r · bgross

=
br

edata
r · egross· bpeak

(7.4)

The results of normalizing the requirements in our example use-case are shown in Ta-
ble 7.3. Note that the service latency requirement ofr2 is zero service cycles. This sug-
gests that it is not possible to satisfy much lower latency requirements than its 90 clock
cycles with our example memory due to three factors: 1) unavoidable interference from
refresh oftref clock cycles for every startedtREFI clock cycles, 2) the service latency
offset,∆, and 3) the overhead introduced by the pessimistic inversion of the requirement.
However, the requirements in service cycles scale better with the requirements in clock
cycles after the first service cycle, as only effects of refresh recur as requirements in clock
cycles increase. This is seen as the latency requirement of 100 clock cycles turns into a
requirement of 1 service cycle forr1, while 200 clock cycles results in a requirement of 5
service cycles forr3. Computing the normalized bandwidth requirement is quite straight
forward, since the access granularity of the memory patternis 64 B. All request sizes are
hence integer multiples of the access granularity for this burst count, making gross and
net bandwidth equal. Normalizing the results shows that 98.5 % of the available gross
bandwidth is required by the requestors.

Table 7.3: Output from normalization stage.

Requestor Θ̂r ρr
[sc] [su/sc]

r0 10 0.318
r1 1 0.318
r2 0 0.318
r3 5 0.030

7.4 Arbiter configuration

The arbiter configuration is computed after the requestor requirements have been nor-
malized. Due to the normalization, the arbiter configuration is completely independent
of the memory. The implementation of this step depends on theparticular arbiter, which



176 CHAPTER 7. CONFIGURATION

is specified in the system architecture specification provided by the user. It is possible
for the user to side-step the arbiter configuration for a subset of the requestors by man-
ually entering configuration settings in the use-case specification file. As mentioned in
Section 7.1, this enables the user to manually search for suitable settings if requestor
requirements cannot be derived for an application. We proceed by showing how the con-
figuration is done for the CCSP and Frame-Based Static-Priority (FBSP) arbiters. We
split the configuration of these arbiters into two steps, bandwidth allocation and priority
assignment, as shown in Figure 7.2 and solve the problem according to a waterfall ap-
proach. Decomposing the problem in this manner has the advantage of making it easier to
solve at the expense of possibly not finding a valid configuration even if one exists. The
two steps are discussed in more detail in Section 7.4.1 and Section 7.4.2, respectively.

Priority
Assignment

Bandwidth
Allocation

Normalized
requirements

normalized
bandwidth &

latencies

Provided

normalized
bandwidth

Provided

Arbiter Configuration

Figure 7.2: Configuration of CCSP and FBSP consists of a bandwidth allocation step and
a priority assignment step.

7.4.1 Bandwidth allocation

The input to this step is the normalized bandwidth requirements of the requestors,ρr. The
bandwidth allocation step needs to perform two tasks. The first task is to determine the
allocated normalized bandwidths (allocated service rates), ρ′r ≥ ρr, for the requestors.
Secondly, it has to find arbiter-specific settings to allocate these bandwidths. We discuss
each of these tasks in turn.

The first task is addressed in a very simple way by assigningρ′r = ρr for all re-
questors. This ensures that each requestor has their bandwidth requirement satisfied,
assuming they do not request more bandwidth than is offered by the resource in total.
This is checked in verification step at the end of the flow. A limitation with this approach
is that it does not consider the fact that bandwidth allocation may affect the ability to
satisfy latency requirements. Reserving additional bandwidth reduces the latency of a
requestor if bandwidth and latency are coupled, such as in the case of Time-Division
Multiplexing (TDM). However, allocating additional bandwidth to a requestorincreases
the latency of lower priority requestors in priority-basedschemes like CCSP and FBSP.
For simplicity, we choose to keep these steps decoupled, although we consider improve-
ments in arbiter configuration an important part of future work.

The second task is to find arbiter settings that provide the allocated bandwidth. For
frame-based arbiters, such as TDM or FBSP, this involves finding the number of slots,
φr, guaranteed to a requestor in a frame of sizef. The frame size is manually chosen
to balance to conflicting requirements of providing low latency and over allocating, dis-
cussed in Chapter 5. The frame size is included as an input to this step through the system



7.4. ARBITER CONFIGURATION 177

specification, listed in Appendix B, if FBSP is used. Given a frame size, bandwidth is
allocated with FBSP by lettingφr = ⌈ρ′r · f⌉, as discussed in Section 5.6.2. Bandwidth al-
location with CCSP, on the other hand, considers two parameters per requestor,(σ′r, ρ

′
r),

as previously stated in Definition 5.12. These parameters donot only reserve a particular
bandwidth, but also explicitly define the maximum deviationfrom this value through the
allocated burstiness. In contrast, this value is implicitly allocated for a requestor with
FBSP when the slots are reserved. CCSP requires thatσ′ ≥ 1 for a requestor to act as a
LR server. The benefit of assigningσ′ > 1 is that a requestorri is temporarily served

with a higher rateρ∗ri = 1 −
(

∑

∀rj∈R
+
ri

ρ′rj

)

≥ ρ′ri , while π(t)ri > 1, as shown in

Figure 7.3. In essence, this means that a lower priority requestor does not receive service
while a higher priority requestor is eligible. Assigningσ′ > 1 increases the time eligi-
ble high priority requestors enjoys service at the higher rate at the expense of increased
service latency of the lower priority requestors. The increase in service latency is visible
in Equation (5.9) through the dependence on the allocated burstiness of higher priority
requestors. In theory, the temporarily higher service rate, ρ∗, can be used to reduce the
worst-case finishing time of a request, since it results in animproved lower bound on
provided service in an interval,̄w, as shown in Figure 7.3. However, this is not captured
by theLR server model, which assumes a constant service rateρ′ after a service latency
Θ. Extending theLR server model to cover multiple provided service rates is relevant
future work that allows the behavior of CCSP and many other arbiters to be more ac-
curately modeled. Since assigningσ′ > 1 to a requestor increases the service latency
of lower priority requestors, without reducing worst-caselatency or worst-case finishing
times of the requestor itself, we choose to configureσ′ = 1 for all requestors.

Once the allocation parameters have been determined, they are discretized to fit with
the allocation granularity of the arbiter. For CCSP, accounting for over allocation results
in a discrete allocated burstinesses,σ′′r , and a discrete allocated rates,ρ′′r , previously dis-
cussed in Section 5.6.1. These are determined as the allocation strategy determines the
three parametersnr, dr, andcr(0) that approximate the service allocation of a requestor.
The bandwidth allocation of CCSP uses the Closest Rate Approximation (CRA) strategy
instead of the Closest Burstiness Approximation (CBA), since the experiments in Sec-
tion 5.8 indicate an increased chance of satisfying a given set of requirements with this
strategy.

The results of allocating bandwidth in our use-case for a CCSP arbiter using the CRA
allocation strategy are shown in Table 7.4. Choosingσ′r to be integers implies that there is
no discretization of the allocated burstinesses and hence thatσ′′r = σ′r = 1.0. From this,
it furthermore follows from Definition 5.34 thatcr(0) = dr. Allocating the service rates
with a precision of six bits results in an over-allocated rate of 0.4%. The total allocated
service of all requestors, including over allocation, is hence 98.9% of the available service
units. Observe that the closest approximation of the allocated rate,nr/dr, does not make
use the largest possible denominator (dr = 63) for any of the requestors. This is in fact
rarely the case, which is why the CRA allocation strategy reduces the over-allocated rate
over CBA.



178 CHAPTER 7. CONFIGURATION

A
cc

um
ul

at
ed

se
rv

ic
e

Service cyclesΘ

σ′

ρ∗ ρ′

w̌′

w̄

w
ŵ′

π(t)

w′

Figure 7.3:LR servers cannot capture service provided with multiple rates to a requestor.

Table 7.4: Results from the bandwidth allocation stage.
Requestor σ′′r ρ′′r nr dr cr(0)

[su] [su/sc]
r0 1.0 0.319 15 47 47
r1 1.0 0.319 15 47 47
r2 1.0 0.319 15 47 47
r3 1.0 0.0312 1 32 32

7.4.2 Priority assignment

Priorities are assigned using the optimal priority assignment algorithm proposed in [14].
This algorithm is reproduced in Algorithm 7.1, based on the implementation in [107].
Note that|R| represents the number of elements inR. The algorithm first finds a re-
questor that meets its service latency requirement with thelowest priority. If such a
requestor is found, it is assigned the lowest priority. If multiple requestors are found, a
choice between them can be made arbitrarily. This procedureis then repeated for the next
higher priority. The algorithm terminates either if all priorities are assigned, indicating
that a valid priority assignment has been found, or if none ofthe remaining requestors can
meet their service latency requirement at a particular level, indicating failure. It is shown
in [14] that this algorithm has a quadratic time complexity and is optimal in the sense that
it is guaranteed to find a successful priority assignment if one exists. For the algorithm
to be correct, it is required that the service latency is monotonically non-increasing with
decreasing priority level, meaning that giving a requestorhigher priority may not result
in increased service latency. This assumption holds for both the service latency equations
of CCSP and FBSP, previously shown in Equations (5.9) and (5.18), respectively. Pri-
ority assignment concludes the arbiter configuration for both CCSP and FBSP, since all
configuration settings have been derived. The configurationsettings are stored pending
final approval in the last step of the flow. The discrete allocated service rates,ρ′′r , and the
service latencies,Θr, are output from the arbiter configuration.



7.5. DENORMALIZATION OF ALLOCATION 179

Algorithm 7.1 Optimal priority assignment algorithm.

prio← |R| − 1
repeat

finished← false
failed← true
j ← 0
repeat

assign priority prio torj
if Θrj ≤ Θ̂rj then

prio← prio - 1
failed← false
finished← true

else
restore old priority ofrj

end if
j ← j + 1

until finished or j = prio - 1
until prio = 0 or failed

The priority assignment for our use-case is shown in Table 7.5. Priorities happen to
be assigned according to the tightness of the latency requirements, which seems intu-
itive, but does not always result in the best solution. For example, a requestor with high
allocated rate and burstiness may significantly increase the latency of a requestor with a
low service allocation if given high priority. However, therequestor with the low service
allocation cannot significantly interfere with others if given high priority, making this
an interesting option, even if the latency requirement of the higher priority requestor is
tighter.

Table 7.5: Results from priority assignment stage.

Requestor pr Θr Θ̂r
[sc] [sc]

r0 3 9 10
r1 1 1 1
r2 0 0 0
r3 2 5 5

7.5 Denormalization of allocation

This step receives the discrete allocated rates and servicelatencies along with the gener-
ated memory patterns and transforms it from the normalized domain with service units



180 CHAPTER 7. CONFIGURATION

and service cycles to the domain of bytes and clock cycles. The service latencies are
converted to clock cycles using Definition 6.7, and the discrete allocated rates to band-
widths in MB/s by Equation (7.5). The service latency in clock cycles is one of the four
configuration settings for the Delay Blocks. The other threesettings are related to the
completion latency. First, there is the integer part,lccr , which is computed according to
Definition 6.8 and is rounded up when programmed. This is followed by the two num-
bers,n∗r andd∗r , that are used to approximate the fractional part. These twoparameters
are determined by the CRA algorithm to get tightest possibleapproximation of the exact
completion latency. The denormalized allocated bandwidths and service latencies, (Θccr ,
b′r), are forwarded to the next step in the flow.

b′r = ρ′′r · bnet (7.5)

Denormalizing the arbiter configuration of our running example using six bits to rep-
resent the fractional parts of the completion latency, gives us the results in Table 7.6.
The denormalized bandwidths show the actual meaning of the over allocation resulting
from discretization in the CCSP arbiter. The over allocatedbandwidths are quite mod-
est, indicating that the chosen precision is suitable for this use-case. We observe that
the completion latency ofr3 is 621 clock cycles, which seems to be a rather long time.
This completion latency follows naturally from the low bandwidth allocation of the re-
questor. Service latency is decoupled from rate using priorities, but completion latency
corresponds to the time it takes to serve an atom given a particular bandwidth allocation.
The only way to reduce this number is hence to increase the required bandwidth.

Table 7.6: Output from denormalization stage.
Requestor b′r Θccr lccr n∗r d∗r

[MB/s] [cc] [cc]
r0 210.5 258 60.8 11 50
r1 210.5 106 60.8 11 50
r2 210.5 88 60.8 11 50
r3 20.6 182 621 15 56

7.6 Requirement verification

The requirement verification step asserts that the use-caseis valid according to Defi-
nition 7.2, meaning that all bandwidth and latency requirements are satisfied without
allocating more bandwidth than provided by the memory controller. If the use-case is
valid, the computed configuration is stored as a candidate, along with its associated slack
bandwidth, determined according to Definition 7.3. It is possible that there exists a con-
figuration with a larger burst count that provides more slackbandwidth. This is investi-
gated by increasing the burst count to the next power of two and iterate in the flow, as



7.6. REQUIREMENT VERIFICATION 181

shown in Figure 2.12. For each iteration, the configuration with the most slack band-
width is stored. The loop terminates in either of two cases: 1) The latency requirements
of a requestor could not be satisfied. Increasing the burst count results in larger access
granularity and thus longer latencies. The configuration flow will hence not be able to
satisfy the failing latency constraint for any larger burstcount. 2) The amount of slack
bandwidth is less than or equal to the slack bandwidth of the previous iteration. If the
amount of slack bandwidth does not increase with the burst count, the access granularity
of the memory is already too large considering the request sizes of the requestors. Any
gains in bank efficiency or read/write switching efficiency are hence cancelled out by
losses in data efficiency. The iteration is guaranteed to terminate with these conditions,
since both latency requirements and request sizes are finite. For all current practical
applications, burst size is unlikely to go beyond four, since this already implies a large
access granularity and potentially long latencies.

The inputs for the requirement verification of our use-case are shown in Table 7.7.
The configuration withBC = 1 is valid, since all bandwidth and latency requirements
are satisfied and the total allocated bandwidth is approximately 652 MB/s, resulting in a
slack bandwidth of 8 MB/s. This configuration is stored as a potential candidate, while
we iterate in the flow to generate a configuration withBC = 2. Only the most inter-
esting parameters and configuration settings are shown during the iteration to keep the
discussion focused.

Table 7.7: Allocated bandwidths and service latencies together with their corresponding
bounds.

Requestor br b′r Θccr Θ̂ccr
[MB/s] [MB/s] [cc] [cc]

r0 210.0 210.5 258 300
r1 210.0 210.5 106 110
r2 210.0 210.5 88 90
r3 20.0 20.6 182 200

Increasing the burst count to two results in the pattern set generated by the bank
scheduling algorithm that was previously shown in Table 4.3. This pattern set offers
a gross bandwidth of 716 MB/s, which is an increase of 8.5% over the pattern with
BC = 1. Normalizing the requirements with respect to the new pattern set results in the
output in Table 7.8. Observe that the service latency requirements, expressed in service
cycles, are reduced compared to the previous iteration, dueto the longer service cycles
resulting from the new patterns. The latency requirement ofr2 is negative, meaning that it
cannot be satisfied for any priority assignment. We also notethat the required service rate
of r2 is doubled compared to before. This is because its request size is 64 B and the access
granularity of the pattern set increased from 64 B to 128 B, resulting in a data efficiency
of 50%. The configuration flow bravely continues, although the arbiter configuration
fails to assign priorities. The requirement verification steps notes that the configuration
is not valid, since all latency requirements could not be satisfied and approximately 20%



182 CHAPTER 7. CONFIGURATION

more gross bandwidth than available has been allocated. Neither of these problems can
be resolved by increasing the burst count. Further iteration is hence not required and the
configuration withBC = 1 is chosen for the use-case, concluding our running example.

Table 7.8: Output from normalization stage withBC = 2.

Requestor Θ̂r ρr
[sc] [su/sc]

r0 5 0.294
r1 0 0.294
r2 -1 0.587
r3 2 0.0279

7.7 Experimental results

The running example in this chapter demonstrated how the configuration flow works
with a single use-case. Now, we experimentally show how the flow performs with a large
number of use-cases with requestors accessing a 16-bit DDR2-400 memory, connected
to the SDRAM back-end proposed in Chapter 4. The timings of this memory device were
listed in Table 3.1. The memory is shared using a CCSP arbiterwith six bits of precision
in the service allocation mechanism.

The experiment in this section evaluates the configuration flow and show the bene-
fit of iterating over different burst counts. For this purpose, we generate 5000 synthetic
use-cases, each with six requestors. The requestors issue requests with sizes64 · i bytes,
wherei is a uniformly varying integer in the range 1-8. Together, the requestors require
660 MB/s in all use-cases. This corresponds to 82.6% of the peak bandwidth offered by
the memory, which is very close to 100% of the gross bandwidthprovided by the memory
with BC = 1. The generated service latency requirements are randomized according to
27 ·j clock cycles at 200 MHz, wherej is a uniformly varying integer in the range 1-100.
Some latency requirements may hence be quite tight, while others may be quite relaxed
and up to 50% longer than the refresh interval of the memory. To illustrate the benefits
of iterating over burst counts, we let the flow configure the use-cases in four different
ways. First, using only memory patterns withBC = 1, then using only patterns with
BC = 2, followed by only usingBC = 4. Lastly, we use the iterating scheme presented
in this chapter that tries all of these and chooses the best result. All generated patterns
use a burst length (BL) of eight words. Just like in Section 5.8, we look at the threemet-
rics: 1) the percentage of use-cases where bandwidth requirements are satisfied for all
requestors, 2) the percentage where latency requirements are satisfied for all requestors,
and 3) the percentage where both bandwidth and latency requirements are satisfied for
all requestors. The results of this experiment are shown in Figure 7.4. Bandwidth re-
quirements are only satisfied in 21% of the use-cases withBC = 1, due to the high load
required by the requestors. The success rate increases to 54% with BC = 2, because of



7.8. SUMMARY 183

 0

 10

 20

 30

 40

 50

 60

BL8/BC1 BL8/BC2 BL8/BC4 Iterating

S
uc

ce
ss

 r
at

e 
(%

)

Setting

Bandwidth satisfied
Latency satisfied

Bandwidth and latency satisfied

Figure 7.4: The percentage of use-cases with bandwidth and latency requirements satis-
fied using pattern generators with fixed and iterating burst counts.

the extra 55 MB/s provided by the longer patterns. At this point, some requests may be
larger than access granularity of the memory, being 128 B, although the reducing data
efficiency does not eliminate the benefits of the increased gross bandwidth. However, fur-
ther increasing the burst count toBC = 4 reduces the percentage of satisfied bandwidth
requirements to 23%, since the access granularity of 256 B isnow too large compared to
the sizes of the requests. This results in that more bandwidth is wasted than is added by
the longer access patterns. While the percentage of use-cases with satisfied bandwidth
requirements initially increases with burst count, the percentage of latency requirements
monotonically decrease, starting at 55% withBC = 1, 11% forBC = 2, and ending
at 0% withBC = 4. Looking at the percentage of use-cases with both bandwidthand
latency requirements satisfied, we conclude that it is kept at approximately 10% for both
BC = 1 andBC = 2, in the first case because of unsatisfied bandwidth requirements,
and in the second case because of failing latency requirements. The total success rate
with BC = 4 is 0%, as it is totally killed by the latency requirements. Lastly, we look
at the results with the iterative approach that is normally used in the flow. We ignore the
separate results for bandwidth and latency requirements, since these depend on which
pattern set is chosen for a use-case if either set of requirements fail. Instead, we focus on
the percentage of use-cases where all requirements are satisfied. The iterative approach
satisfies the requirements of almost twice as many use-casesas any of the fixed burst
counts. This result is not surprising, since a larger solution space is considered. The only
drawback of this approach is increased run-time of the configuration flow. However, this
is negligible, since the time to configure a use-case is in theorder of a few seconds.

7.8 Summary

This chapter presented a configuration flow that automatically computes instantiation
parameters and configuration settings for the proposed resource front-end and SDRAM
back-end with the goal of satisfyingnet bandwidth and service latency requirementsof
the requestors. If there are multiple configurations that satisfy the requirements, the one



184 CHAPTER 7. CONFIGURATION

with themost slack bandwidthis preferred to improve the performance of requestors that
do not require composable service.

The configuration flow consists of five main steps: 1)memory pattern generation,
2) normalization of requirements, 3) arbiter configuration, 4) denormalization of alloca-
tion, and 5)requirement verification. The pattern generation step first generates a pattern
with burst count one for the specified memory device. Other burst counts are considered
later by iteration in the flow. No memory patterns are needed if the memory is an SRAM.
Instead, a pattern specification is generated that describes the characteristics of accesses
to the memory. This enables the same configuration flow to be used both for SRAM and
SDRAM. The specification of the generated memory pattern determines the instantiation
parameters for the Atomizer and Data Bus in the resource front-end. The requirements of
the requestors are then normalized to make them independentof the target memory. The
normalization is done by converting the requirements into the abstract domain of service
units and service cycles.This use of abstraction enables the same arbiter configuration
to be used for all supported memories at the expense of makingtight latency requirements
somewhat more difficult to satisfy due to pessimism in the conversion.The size of a ser-
vice unit equals the access granularity of the generated pattern set. A requestor may have
a data efficiency of less than 100%, making it unable to use alldata in a service unit. This
is addressed by dividing the net bandwidth requirement withthe data efficiency, turning
it into a gross bandwidth requirement before normalization. This technique enables net
bandwidth requirements to be satisfied for requestors with arbitrary data efficiency.The
arbiter configuration tries to find settings that satisfy thenormalized requirements. For
our Credit-Controlled Static-Priority arbiter, this is done by first allocating bandwidth,
and then assigning priorities according to a waterfall approach. The service allocations
of the requestors are then denormalized back into bandwidthin MB/s and service latency
in clock cycles. The service latency and completion latencyrequired to configure the
Delay Block are derived in this step. The final step verifies ifall requirements are satis-
fied and computes the slack bandwidth. Patterns with higher burst count are evaluated by
iteration in the flow if it can result in a valid configuration with more slack bandwidth.



CHAPTER 8

Related work

This thesis proposes a predictable and composable memory controller design and a sup-
porting configuration flow to satisfy real-time requirements of applications in embedded
systems. In this chapter, we position the proposed solutionwith respect to the related
work. This is done in three parts. First in Section 8.1, we relate the Credit-Controlled
Static-Priority (CCSP) arbiter to the existing body of resource arbiters. We then compare
our predictable SDRAM controller to the state of the art in memory controller design
in Section 8.2. Lastly, we position our way of achieving composable service to earlier
approaches in Section 8.3.

8.1 Resource arbitration

Much work has been carried out in the real-time community concerning server-based
processor scheduling with aperiodic and sporadic requestors [21]. First, it was assumed
that there was only a single server scheduling all aperiodicand sporadic requests, sharing
the resource with periodic requestors. In more recent publications [27, 65], the servers
are used as first-level schedulers to partition the resource, while additional levels of
schedulers address the requirements of the requestors sharing the server. The sporadic
server [99] was the first server to depart from the purely periodic polling server, and try-
ing to address the specific needs of sporadic requestors. Itsvalue is mostly theoretical,
since its practical applicability is limited due to its complex accounting mechanism. The
constant-bandwidth server [1] is similar to our CCSP arbiter in the sense that it provides
isolation between requestors and offers a lower bound on provided service. However,
just like many other processor scheduling algorithms, it isuses an earliest-deadline-first
(EDF) scheduler. These schedulers are difficult to implement at high clock speed in hard-

185



186 CHAPTER 8. RELATED WORK

ware, since they must maintain a priority queue. This makes the algorithm too slow for
many System-on-Chip (SoC) resources, such as memories.

Many arbiters suitable for scheduling of transaction-based SoC resources, such as
memories, peripherals, and interconnects have been proposed in the context of com-
munication networks. Several of these are based on the Round-Robin algorithm [80],
because it is simple and starvation free. Weighted Round-Robin [57] and Deficit Round-
Robin [98] are extensions of this algorithm that guarantee each requestor a minimum
service, proportional to an allocated rate (bandwidth), ina common periodically repeat-
ing frame of fixed size. This type offrame-based arbitrationis easy to implement, but
suffers from aninherent coupling between allocation granularity and latency, where
allocation granularity is inversely proportional to the frame size [119]. Increasing the
frame size results in finer allocation granularity, reducing over-allocation. However,
this comes at the cost of increased latencies for all requestors, as demonstrated in Sec-
tion 5.8. Another common example of frame-based schedulingdisciplines is Time-
Division Multiplexing (TDM) that suffers from the additional disadvantage that it re-
quires a schedule to be stored for each configuration, which may be very costly if the
frame size or the number of use-cases are large.

The coupling between allocation granularity and latency isaddressed in [55, 56,
94] with hierarchical framing strategies that accomplish exact allocation over multiple
frames. However, these algorithms, just as the family of Fair Queuing algorithms [119],
are unable to distinguish different latency requirements,as the rate is the only parameter
affecting scheduling. This results in anunwanted coupling between latency and rate,
where latency is inversely proportional to the allocated rate. Requestors with low rate
requirements hence suffer from long latencies unless theirrates are increased, resulting
in over allocation. Our requirement that we must be able to distinguish latency-critical
and latency-tolerant requestors implies that latency and rate must be decoupled, speaking
in favor of priority-based solutions.

Four approaches using static-priority scheduling are presented in [17, 41, 43, 47].
Static-priority schedulers have the benefit of decoupling latency and rate and being cheap
to implement in hardware. However, the arbiters in [41, 43, 47] have significant short-
comings, as the rate regulators are frame based and couple allocation granularity and
latency. In [17], service is allocated in discrete chunks, the size of which depends on the
priority of the requestor and the total number of requestorssharing the resource. This
couples allocation granularity and latency. Moreover, at most 84% of the resource ca-
pacity can be allocated to the requestors as guaranteed service. A priority-based arbiter is
presented in [86] for resource scheduling in SoCs. The rate regulator uses an accounting
mechanism based on integers that is easily implemented in hardware, and inspired the
implementation of the CCSP rate regulator. However, it is not clear if the proposed ar-
biter meet our requirements, as no results are presented on provided bandwidth, latency,
over allocation, or area and speed of the implementation.

We propose CCSP arbitration for scheduling access to SoC resources, such as mem-
ories and peripherals. CCSP resembles an arbiter with a rateregulator that enforces a
(σ, ρ) constraint [25] on requested service together with a static-priority scheduler, a
combination we refer to as Sigma-Rho Static-Priority (SRSP) arbitration in this work.



8.1. RESOURCE ARBITRATION 187

buffers
Request

Scheduler

Rate
regulator

Rate
regulator

B
us

γ(t)q(t) > 0

wr0
(t)

wr1
(t)

(a) Requested service regulation.

buffers
Request

Scheduler
Rate

regulator

B
us

wr0
(t)

wr1
(t)

γ(t)q(t) > 0

(b) Provided service regulation.

Figure 8.1: Two arbiters regulating requested service and provided service, respectively.

Similarly to SRSP, the CCSP rate regulator replenishes the service available to a re-
questor continuously, instead of basing it on frames, decoupling allocation granularity
and latency. This allows over-allocation to become negligible, which is essential for
scarce SoC resources with very high loads, such as memories.Both arbiters furthermore
use priorities to decouple latency and rate. However, instead of enforcing a burstiness
constraint onrequested service, as done by SRSP, CCSP enforces it onprovided service.
We proceed by discussing this difference in more detail. Figure 8.1a shows an arbiter
that enforces an upper bound on requested service, such as [25,89,120]. The rate regula-
tor is positioned before the Request Buffers, allowing it toregulate the arriving requests
by holding them until a particular burstiness constraint, such as a minimum inter-arrival
time, is satisfied. Note that there is no communication between the scheduler and the
rate regulator. A rate regulator that enforces an upper bound on provided service, such as
those in [23,29,47,57,98] and the CCSP rate regulator, is shown in Figure 8.1b. As seen
in the figure, the rate regulator is positioned after the Request Buffers. It is hence only
aware of requests at the heads of the buffers, and cannot constrain arrivals of requests
in any way. The scheduler communicates the identifier of the scheduled requestor,γ(t),
back to the rate regulator every cycle to update the accounting mechanism. Enforcing
an upper bound on provided service has the benefit that the amount of service required
by a particular request does not have to be known in advance. For example, it is typ-
ically not possible for a processor scheduler to know the number of cycles required to
decode a video frame, since this is highly data dependent. A similar problem occurs in
SDRAM controllers if the arbiter is scheduling memory cycles, as opposed to a fixed
amount of transferred data, since the time to serve a requestis not known in advance
for most SDRAM controllers. These situations cannot be efficiently handled if requested
service is regulated, since the rate regulator determines if the request is eligible based on
the effort involved in serving it. It is possible to use worst-case assumptions to estimate
the amount of required service, although this is very inefficient if the variance is large.
This is efficiently handled when combining provided serviceregulation with preemptive
arbitration, since the accounting is updated for every service unit, causing a requestor to
be preempted when it runs out of budget. Unlike SRSP, CCSP enjoys this benefit without
any performance penalty. In fact, we conjectured in [10], based on experimental results,
that CCSP and SRSP provide identical latencies for all requests.



188 CHAPTER 8. RELATED WORK

8.2 SDRAM controllers

Existing SDRAM controller designs are either statically ordynamically scheduled, de-
pending on which kind of systems they target. Statically scheduled memory controllers [92,
101] combine static front-end arbitration with static scheduling of SDRAM commands in
the back-end. The command generator executes a static schedule of SDRAM commands
that has been computed at design time. The read and write bursts in the schedule are stat-
ically mapped to the requestors according to their requirements. These controllers are
predictable, since the latency of a request and the offered net bandwidth can be bounded
at design time by analyzing the schedule and the mapping of bursts to requestors. It
is hence possible to formally verify that all requestor requirements are satisfied at de-
sign time. For this reason, statically scheduled memory controllers are most frequently
used in embedded systems with firm or hard real-time requirements, such as TV picture
improvement ICs [102]. The predictability of statically scheduled memory controllers
comes at the expense of flexibility. The precomputed schedule in the back-end makes
these designs unable to adapt to changes in the behaviors of the requestors. This lim-
its their applicability to applications whose requestors have regular access patterns and
where the request sizes and read/write ratio do not change during a use-case. Static
front-end arbitration furthermore couples latency and allocated bandwidth, as previously
discussed in Section 8.1. This makes statically scheduled memory controllers unable to
satisfy the requirements of latency-critical requestors with low bandwidth requirements
without wasting bandwidth. Finally, many schedules are required, as the number of use-
cases grows exponentially with the number of applications.These schedules may take
a long time to compute and require significant storage space,since each schedule may
contain thousands of commands for newer memories.These properties prevent stati-
cally scheduled controllers from scaling to larger systemswith more use-cases and more
dynamic applications.

Dynamically scheduled memory controllers, on the other hand, combine dynamic
front-end arbitration with dynamic back-end scheduling. These controllers target high
efficiency and flexibility to fit in high-performance systemswith dynamic applications
whose behaviors may not be known up front. Priorities are used in the front-end arbitra-
tion in several dynamic memory controllers [43,64,78,111,112] to cater to the needs of
latency-critical requestors, often corresponding to processors that stall while waiting for
cache lines. Some controllers provide additional mechanisms to further reduce latency.
The design in [64] lets high priority requestors preempt lower priority requestors that
are receiving service in the back-end, which reduces latency at the expense of memory
efficiency. Another technique is to prefer reads over writes[97], which is beneficial if
reads are blocking while writes are posted.

A number of dynamic memory controllers use information about memory state when
scheduling to improve memory efficiency. This consideration is typically done in the
back-end, but some designs communicate memory state to the front-end arbiter, blurring
the distinction between the two. Typically, requests are preferred if they target an open
row in a bank [78,91,97], if they fit with the current direction of the data bus [20,43,112],
or a combination of the two [64, 67, 111]. The idea behind the scheduler in [78] is to



8.2. SDRAM CONTROLLERS 189

exploit thread-level parallelism by scheduling bursts belonging to the same requestor
simultaneously in all banks. It is shown that this approach reduces the average latency
of the requestors, although it probably reduces memory efficiency. A disadvantage of all
the mentioned scheduling algorithms is that they are not capable of long-term planning.
Instead, they make short-term scheduling decisions to transfer data on the bus as fast as
possible, such as preferring a read or a write command over activates and precharges.
These decisions are clever on short term, but may result in sub-optimal performance in
the long run. This issue is addressed by a self-optimizing memory controller in [48]. The
proposed memory scheduler uses theory from reinforcement learning to recognize which
scheduling decisions that result in high long-term memory efficiency.

Many dynamic designs [20, 43, 64, 67, 78, 111, 112] use rate regulators in the front-
end to protect requestors from each other. This is especially important in controllers with
priority-based arbiters, since these are often prone to starvation. The designs in [43, 67,
112] regulate the amount of requested service, while [20, 64, 78, 111] regulate provided
service. The rate regulators in [20, 43, 64, 78, 111, 112] areall frame-based and hence
couple allocation granularity, latency, and rate. An interesting difference between these
controllers is that [43,112] only consider rate regulationof high priority requestors, cor-
responding to processors, while low priority hardware accelerators are assumed to be
well-behaved.

The problem with dynamically scheduled memory controllersis that the interaction
between the front-end and back-end scheduler is complex, especially in the presence of
reordering mechanisms. For this reason, neither of the mentioned memory controllers
provides bounds on either latency or provided gross/net bandwidth. This makes dynamic
memory controllers unsuitable for applications with firm orhard requirements on worst-
case latency and bandwidth.A related problem is that there is often not a clear relation
between configuration parameters and the provided bandwidth and latency. This prevents
automatic generation of configuration parameters that satisfy requestor requirements. In-
stead, successful deployment of these controllers has to rely on extensive simulation to
measure the provided bandwidth and latency with different configuration parameters.
This results in a significant verification effort as it has to be done for all use-cases and
must be repeated every time a requestor is added, removed or changes behavior.

Our memory controller combines elements of statically and dynamically scheduled
memory controllers. The front-end uses predictable dynamic arbiters in the class of
Latency-Rate (LR) servers, which enables us to satisfy diverse latency requirements.
The command generator uses a hybrid approach based on memorypatterns that is a mix
between static and dynamic command scheduling. Memory patterns are precomputed
sub-schedules that are dynamically combined at run-time, enabling the controller to ac-
commodate traffic that is not fully known at design time in a predictable fashion. Our
memory controller offers bounds on both net bandwidth and the latency of requestors at
design time, which enables configuration settings to be automatically synthesized for a
given set of requirements.The proposed memory controller significantly increases flexi-
bility over existing predictable memory controllers and issuitable for systems with firm
and hard real-time requirements on worst-case bandwidth and latency.



190 CHAPTER 8. RELATED WORK

8.3 Composable service

A number of works in the field of high-performance computing discuss performance iso-
lation of applications in predictable systems by providinglower bounds on performance.
Fair Queuing Memory Systems [82] and Virtual Private Caches[81] are both part of
the Virtual Private Machine framework [83] for multi-core resource management. The
authors show that the service provided by a Virtual Private Machine running at an allo-
cated fraction of the original capacity is at least as good asa real machine with the same
resources. This allows real-time requirements to be verified by simulation in isolation,
assuming that the applications executing on the system areperformance monotonic[63],
which means that having additional resources cannot resultin worse performance.

Two simulation-based approaches to verification of real-time requirements in pre-
dictable systems are presented in [63, 87]. The idea in thesepapers is to simulate the
execution of an application and verify that real-time requirements are satisfied when em-
ulating maximum interference from other applications by delaying responses until their
worst-case latency. This is similar to our approach to composability, although with some
important differences. In contrast to our work, the authorspropose to disable emulation
of worst-case interference for all requestors when deploying the system to benefit from
slack and increase performance. This breaks the isolation between applications, limit-
ing the approach to applications and systems that either have performance monotonic
execution, or can be captured in a performance monotonic model, such as deterministic
data-flow graphs [16]. Furthermore, no hardware architecture is presented for the ap-
proach in [63], although our proposed resource front-end can be used to implement the
methodology.

The drawback of relying on performance monotonicity is thatit severely restricts both
the supported platform and application software. The platform has to be free from timing
anomalies, which can appear in shared caches or in dynamically scheduled processors,
such as PowerPCs [66]. Another example is that increasing the memory bandwidth allo-
cated to an application may lead to a net performance loss dueto cache pollution, caused
by an increased number of prefetches [81]. Timing anomaliesalso appear in some multi-
processor systems [33], making verification results of distributed applications unreliable.
Applications can furthermore not have timing dependent behavior, such as adapting the
quality level of a video decoder based on the decoding time ofprevious frames.

Verification of composable systems, on the other hand, does not rely on performance
monotonicity, since applications are completely independent of each other in both the
value and time domains. There are currently three approaches to composable system
design. The first involves not sharing any resources, which is used by federated architec-
tures in the automotive and aerospace industries [61]. Thismethod is trivially compos-
able, but prohibitively expensive for systems that do not have safety-critical applications.
The second option is the time-triggered approach [60] that uses component interfaces
where the time instances for communication are specified at design time. This approach
requires a global notion of time and is limited to applications that can be statically sched-
uled at design time. The third approach is to dynamically schedule resource access at run
time using TDM, as proposed in [15, 39]. Using run-time scheduling has the benefit of



8.3. COMPOSABLE SERVICE 191

supporting event-triggered systems, although a limitation of TDM is that it couples the
worst-case latency and the allocated bandwidth of an application. Another drawback of
this approach is that it only applies to inherently composable resources, such as SRAM.
An SDRAM memory is an example of a resource that is not inherently composable, since
requestors can affect each other’s temporal behavior by changing the memory state, such
as switching direction from read to write. We addressed thisin [105], where a compos-
able SDRAM controller based on memory patterns is proposed.The idea is to enforce
a read/write switch between all requests, thus removing thepossibility for requestors
to interfere with each other by changing the state of the resource. A disadvantage of
this approach is that no slack is created by the resource itself. Only slack generated by
the arbiter can hence be used to improve performance of requestors that do not require
composable service.

This work adds a fourth approach to composability, based on delaying signals sent
from predictable shared resources to the requestors to emulate worst-case interference.
The approach applies to any combination of predictable resource and arbiter in the class
ofLR servers, thereby widely extending the types of platforms that can provide compos-
able service.Generalizing composability beyond arbiters and resourcesthat are inher-
ently composable affects the conditions for which the resource can continue to provide
composable service as more applications are integrated. This property is known as sta-
bility of prior services [61]. When resources are sharing using TDM [15, 39], stability
of prior services is guaranteed as long as the slots reservedby an application remains
unchanged. Our approach has a more general requirement to address the diversity of
the supported arbiters. Stability of prior services is guaranteed as long as the starting
times and finishing times of a requestor are unchanged as moreapplications are inte-
grated. If we use TDM, which is a predictable arbiter in the class ofLR servers, to
share a predictable resource, the requirement is satisfied by not changing the slots re-
served by an application. On the other hand, if we use the CCSPor Frame-Based Static-
Priority (FBSP) arbitration, stability is only guaranteedif lower priority requestors are
added, since additional higher priority requestors increases the worst-case interference
that must be emulated.

Our approach to composable resource sharing makes the resource composable on the
level of requestors, which is a sufficient requirement to be composable on the level of ap-
plications. However, this is also a stricter requirement, since requestors belonging to the
same application are allowed to interfere with each other. The platform in [39] capitalizes
on this by having two levels of arbitration. The first level isan intra-application arbiter
that does not have to be composable, and the second a composable inter-application ar-
biter. This type of arbitration enables requestors from thesame application to use slack
created in the intra-application arbiter to boost performance without violating compos-
ability at the application level. A novel aspect of our approach is that composable service
can be enabled or disabled per requestor at run-time by turning the emulation of worst-
case interference on or off. This introduces the notion ofpartially composable systems,
where some applications are free from interference and others are not. The benefit of
this distinction is that itallows requestors that do not have real-time requirements to use
slack to improve performance.



192 CHAPTER 8. RELATED WORK



CHAPTER 9

Conclusions and future work

There is a growing mapping and verification problem in System-on-Chips (SoCs), as
an increasing number of applications with real-time requirements are mapped on het-
erogeneous multi-processor platforms with distributed memory hierarchies. To reduce
cost, resources in the platform, such as SRAM and SDRAM memories, are shared be-
tween applications using a variety of arbiters. The mappingprocess is challenging as it
involves both binding application tasks and data structures to processing elements and
memories in the platform, and determining configuration settings such that all real-time
requirements are satisfied. Once a candidate mapping has been determined, system-
level simulation is often used to verify the real-time requirements. However, resource
sharing introduces interference between applications, causing their temporal behaviors
to become inter-dependent. As a result, all combinations ofconcurrently executing ap-
plications have to be verified together, resulting in a verification complexity that grows
exponentially with the number of applications. This limitsthe verification to a subset of
use-cases with the most critical requirements, resulting in poor coverage. Formal verifi-
cation offers significantly better coverage, but is typically not an alternative, since many
resources, such as memory controllers, are not designed with formal analysis in mind.
This problem is addressed in this thesis by designing a memory controller with require-
ments onpredictability, abstraction, composability, andautomation. We conclude this
work by explaining how the proposed solution delivers on these requirements in Sec-
tion 9.1, followed by a discussion on future work in Section 9.2.

193



194 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

Each of the four requirements predictability, abstraction, composability, and automation
are discussed in turn, as we highlight the strengths and limitations of the proposed mem-
ory controller and its configuration flow.

9.1.1 Predictability

This work presents a predictable memory controller, consisting of a back-end and a front-
end. The back-end makes a DDR2/DDR3 SDRAM behave in a predictable manner, en-
abling us to derive a tight bound on the provided gross bandwidth. The provided net
bandwidth depends on the relation between the request sizesof the requestors and the
access granularity of the memory. The back-end accesses thememory by interleav-
ing over the banks, which provides a high bound on gross bandwidth at the expense
of a large access granularity. To be efficient, requests should have sizes in words that
are integer multiples of the product between the burst length and the number of banks.
Other requests may significantly reduce the provided bandwidth. The front-end contains
a Credit-Controlled Static-Priority (CCSP) arbiter, comprised of a rate regulator and a
static-priority scheduler, that allows the SDRAM back-endto be shared among multi-
ple requestors. The arbiter guarantees each requestor a minimum guaranteed bandwidth
and a maximum latency. We experimentally demonstrate that the bandwidth and latency
guarantee is conservative, even in the presence of misbehaving requestors. The latency
bound is furthermore shown to be tight for high-priority requestors, but becomes looser
with lower priorities. This is partly inherent to how the bound is computed, but also
because the worst case becomes increasingly unlikely as priority decreases.

The proposed SDRAM controller providesincreased flexibilitycompared to cur-
rent predictable memory controllers. These controllers are statically scheduled, while
our controller combines dynamic front-end scheduling witha combination of static and
dynamic scheduling in the back-end. The Credit-ControlledStatic-Priority (CCSP) ar-
biter improves on the state of the art by combining four properties: 1) It accommodates
latency-critical requestors with low bandwidth requirements without wasting bandwidth.
2) Over-allocated bandwidth can be made negligible at an increased area cost, without
affecting latency. 3) It has a small implementation that runs fast enough to schedule re-
quests for all DDR2 memories, and most DDR3 memories, in a single clock cycle. 4) It
supports requests where the associated work is not known up front.

9.1.2 Abstraction

The combination of front-end and predictable back-end behaves like a Latency-Rate
(LR) server, which means that a minimum bandwidth and a maximum latency are guar-
anteed to a requestor. The memory controller and the associated analysis methods and
tooling are designed to use theLR server model as ashared resource abstraction, which
makes our solution very general. It is possible to replace the CCSP arbiter withany
arbiter in the class ofLR servers, which enables the controller to cater to diverse sets



9.1. CONCLUSIONS 195

of requirements. There are many well-known arbiters belonging to the class, such as
Weighted Round-Robin, Time-Division Multiplexing (TDM),and several varieties of
Fair Queuing. It is also possible to remove the SDRAM back-end and use the front-end
with any other predictable memory, such as an SRAM.

TheLR server model enables verification with several commonly used formal analy-
sis frameworks, such as network calculus, and data-flow analysis. Our memory controller
hence allowsany combinationof predictable memory andLR arbiter to be used trans-
parently for formal verification of applications with any ofthese frameworks. However,
we show that the benefits of abstraction come at the cost of increased latency. TheLR
server model assumes that a request is served in a continuousmanner according to the
allocated rated rate of its requestor, while it is actually either served at the full capacity
of the memory, or not served at all. This causes theLR server model to over-estimate the
time when a request is served by an amount that is inversely proportional to the allocated
bandwidth. The model is furthermore unable to capture the bursty service behavior of
CCSP and many other priority-based arbiters, which may further reduce accuracy. These
issues can be mitigated by extending theLR server model, although this is left as an
open issue.

9.1.3 Composability

The proposed front-end is made composable by adding a Delay Block that delays all sig-
nals sent to a requestor to emulate constant worst-case interference from other requestors.
Achieving composability in this wayremoves restrictionsimposed by earlier approaches
that are limited to applications and resources that can be statically scheduled, or sharing
inherently composable resources at run-time using TDM. In contrast, our approach ap-
plies toany combinationof predictable resource and arbiter in the class ofLR servers
without any assumptionson the application.

Delaying signals to emulate worst-case interference makesthe average latency equal
to the computed worst case, which may significantly increaselatency if the two are far
apart. This furthermore increases the required buffering to sustain the allocated band-
width. Currently, our approach uses theLR server model to compute the worst-case
release time of delayed signals, which introduces some pessimism that adds to this cost.
However, a strength of our approach is that composable service can be dynamically acti-
vated and deactivated, and hence limited to requestors withreal-time requirements. This
removes the added cost for requestors that do not require composable service, and fur-
thermore allows them to benefit from slack bandwidth to improve performance.

9.1.4 Automation

The proposed memory controller is supported by a configuration flow that automatically
computes appropriate configuration settings for the front-end and back-end, given band-
width and latency requirements of the requestors. The flow uses abstraction to make the
memory and arbiter configuration independent of each other.This allows all supported
arbiters to be configured for all supported memories in a streamlined fashion without a



196 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

special case for every combination. The configuration tool explores different configu-
ration options for the back-end, but uses a simple bandwidthallocation algorithm when
configuring the arbiter. The flow may hence be unable to find a configuration that satisfies
a given set of requirements even if one exists. This is left asan open issue.

9.2 Future work

For every door your close in research, two new doors are opened. This section discusses
interesting future work and open issues in the context of this work.

9.2.1 Reducing power consumption

The proposed memory controller accesses the memory in an interleaving manner. This
enables us to guarantee high gross bandwidth, but the frequent activates and precharges
consume a lot of power, as explained in Section 3.4.3. We believe it is important to
address this issue, since power consumption is of utmost importance for many embedded
systems. A simple technique that fits within the current architecture is to let the back-end
benefit from locality to reduce power. The idea is to gate out any activate or (auto)-
precharge commands if the right row is already open. This is alow-complexity extension
of the back-end that reduces power by adding a degree of dynamism to the execution of
a memory pattern. Another direction is to exploit low-powerfeatures of the memories
themselves and incorporate the predictable use of power-down modes [52, 53]. This
option is primarily interesting in systems where the memoryis not constantly utilized.
Power is saved by letting the SDRAM enter a low power state when idle. However,
powering up the memory incurs a latency penalty on the requestors, thus making it more
difficult to satisfy latency requirements. This presents aninteresting trade-off between
power and latency that deserves further exploration.

9.2.2 Opportunities with 3D integration

3D integration enables stacking SDRAM on top of one or more logic layers and connect-
ing them with vertical wires called through-silicon-vias (TSVs) [30], thus removing the
need to go off-chip to access the memory. Since TSVs require less area and consume
less power than off-chip pins, the number of connections to the SDRAM can signifi-
cantly increase. Removing the pin constraint has many benefits for memory efficiency,
since sharing wires between memory banks can be reduced or removed. Three possible
scenarios are: 1) Every bank gets its own command bus, removing losses due to com-
mand conflicts. 2) The data path is split into a separate read and write channel, removing
lost cycles due to read/write switches. 3) Each bank gets itsown data path, removing all
conflicts on the data path. These changes incrementally bring each bank closer to being
separate memories. To what extent the sharing between banksis reduced depends on
the cost and availability of TSVs, which is not yet fully known. Interesting future work,



9.2. FUTURE WORK 197

while this is being determined, involves investigating thebenefits of the three scenarios
in proportion to the increase of signals on the memory interface.

The impact of 3D integration may go well beyond the memory devices themselves
and change the architecture of contemporary systems. Increasing the number of connec-
tions to memory enables wider memory interfaces and higher peak bandwidths. How-
ever, wider interfaces increase the access granularity of the memory, reducing data ef-
ficiency and net bandwidth [22]. An alternative to wider interfaces is to use multiple
memory channels, each with their own memory controller. Although recent publica-
tions [4, 22, 84] propose using multiple memory channels, noone has considered how
to do this in a predictable or composable way. Multi-channelsolutions enable more net
bandwidth and a reduction of memory contention. We hence believe that extending our
approach to cover multiple channels is important future work to meet future real-time
requirements.

9.2.3 Improved arbiter configuration

The arbiter configuration attempts to automatically derivearbiter settings, such that all
bandwidth and service latency requirements are satisfied. For CCSP, this involves finding
two allocation parameters,(σ′, ρ′), being an allocated burstiness and an allocated service
rate, per requestor. The current configuration approach is rather limited. First, we assign
ρ′ = ρ, even though a higher allocated rate could help satisfying potential throughput
requirements. The reason is that allocating a higher rate impacts the latency of lower
priority requestors, and we currently cannot oversee how much extra bandwidth that
can be allocated before the requirements of all requestors cannot be satisfied anymore.
Similarly, we always assignσ′ = 1 for all requestors, effectively throwing away the
flexibility provided by a second allocation parameter. The reason for this assignment is
that theLR server model does not capture the benefits of a higher allocated burstiness,
as discussed in Section 7.4.1. We believe it is important to extend theLR server model
to cover the effects of multiple service rates. Such an extension would not only provide
better modeling of the CCSP arbiter, but many other, primarily priority-based, arbiters
receiving service in a bursty manner. This extension would enable us to set the two
allocation parameters freely. Since the service allocation of one requestor impacts the
service provided to another, a more refined allocation scheme is required that considers
the allocation parameters and requirements of all requestors simultaneously to improve
the possibilities of satisfying all requirements.

9.2.4 Reconfiguration

The proposed predictable and composable memory controllercurrently only offers lim-
ited support for multiple use-cases. Only a subset of the hardware blocks, namely the De-
lay Block and CCSP arbiter, have programmable configurations, while other important
parameters are fixed at design time. The most prominent example of this is the SDRAM
back-end, which generates the memory patterns with a hard-coded finite-state machine



198 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

in the Command Generator. Making this block programmable has two important advan-
tages: 1) It increases the re-usability of the component, since it can be used with different
memory devices without modification. 2) It allows the memorypatterns to be changed
between use-cases, increasing the diversity of the use-case requirements that can be ac-
commodated by the platform. A consequence of changing the memory patterns between
use-cases is that the service unit size used by the Atomizer and the best-case service cycle
length used by the Data Bus also changes. These blocks hence have to be connected to
the configuration infrastructure and the parameters made run-time programmable.

The current implementation of the configuration flow only supports a single use-case.
Generalizing it to support multiple use-cases should not pose any conceptual difficulties
as it involves iterating through the flow for every use-case.If the back-end is made
programmable, different memory patterns can be used for every use-case. Otherwise, a
single pattern has to be chosen for all use-cases. We also need to change verification step
to consider multiple use-cases and modify the quality metric to consider the total slack
in all use-cases or something more refined.

9.2.5 Data-flow model of memory controller

The memory controller acts like aLR server, which enables formal verification using
well-known performance analysis frameworks, such as network calculus and data-flow
analysis. Data-flow analysis is suitable for the SoC context, since it supports cyclic de-
pendencies between nodes in the graph. This is an essential feature that allows communi-
cation between tasks using finite buffers to be included in the model, which is necessary
to capture the behavior of partitioned applications. It furthermore enables modeling of
flow-control mechanisms that are common in communication protocols used in contem-
porary SoCs. A data-flow model of the proposed memory controller would bridge the gap
between the application and the memory controller by enabling them to be represented in
the same framework. This would allow throughput requirements of applications access-
ing the memory controller to be verified using traditional data-flow techniques. There
are also benefits related to buffer sizing. Currently, buffers are sized by trial-and-error to
be large enough to prevent overflow. A data-flow model of the architecture enables us
to extend the configuration flow with a buffer sizing step thatuses an existing tool [113]
to find sufficient sizes for all buffers in the controller, given throughput requirements of
the applications. This would further automate our approachand reduce area by removing
unnecessary buffer space. This is work in progress.



Bibliography

[1] L. Abeni and G. Buttazzo. Resource Reservation in Dynamic Real-Time Systems.
Real-Time Systems, 27(2):123–167, 2004.

[2] S. Adee. 37 years of Moore’s law.IEEE Spectrum, 45(5):56, 2008.

[3] S. Adee. Thanks for the memories.IEEE Spectrum, 46(5), 2009.

[4] E. Aho, J. Nikara, P. Tuominen, and K. Kuusilinna. A case for multi-channel
memories in video recording. InProc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2009.

[5] B. Akesson. An analytical model for a memory controller offering hard-real-time
guarantees. Master’s thesis, Lund’s Institute of Technology, May 2005.

[6] B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable SDRAM
memory controller. InCODES+ISSS ’07: Proceedings of the 5th IEEE/ACM
international conference on Hardware/software codesign and system synthesis,
pages 251–256, 2007.

[7] B. Akesson, A. Hansson, and K. Goossens. Composable resource sharing based
on latency-rate servers. In12th Euromicro Conference on Digital System Design
(DSD), 2009.

[8] B. Akesson, L. Steffens, and K. Goossens. Real-Time Scheduling of Hybrid Sys-
tems using Credit-Controlled Static-Priority Arbitration . Technical report, NXP
Semiconductors, 2007. http://www.es.ele.tue.nl/˜kakesson/publications/pdf/NXP-
TN-2007-00119.pdf.

[9] B. Akesson, L. Steffens, and K. Goossens. Efficient Service Allocation in Hard-
ware Using Credit-Controlled Static-Priority Arbitration. In Int’l Conference on
Embedded and Real-Time Computing Systems and Applications(RTCSA), 2009.

199



200 BIBLIOGRAPHY

[10] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens.Real-Time Scheduling
Using Credit-Controlled Static-Priority Arbitration. InInt’l Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA), 2008.

[11] G. Amdahl. Validity of the single processor approach toachieving large scale
computing capabilities. InProceedings of the April 18-20, 1967, spring joint
computer conference, pages 483–485, 1967.

[12] ARM Limited. http://www.arm.com, 2009.

[13] ARM Limited. AMBA AXI Protocol Specification, 2003.

[14] N. Audsley. Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times.Real-Time Systems, 1991.

[15] M. Bekooij, A. Moonen, and J. van Meerbergen. Predictable and Composable
Multiprocessor System Design: A Constructive Approach. InBits&Chips Sympo-
sium on Embedded Systems and Software, 2007.

[16] M. Bekooij, S. Parnar, and J. van Meerbergen. Performance guarantees by sim-
ulation of process networks. InProc. Int’l Workshop on Software and Compilers
for Embedded Systems (SCOPES), 2005.

[17] T. Bjerregaard and J. Sparsø. A scheduling discipline for latency and bandwidth
guarantees in asynchronous network-on-chip. InProceedings of the 11th IEEE
International Symposium on Asynchronous Circuits and Systems, pages 34–43,
2005.

[18] S. Borkar. Thousand core chips: a technology perspective. InProceedings of the
44th annual conference on Design automation, pages 746–749, 2007.

[19] J.-Y. L. Boudec and P. Thiran.Network calculus: a theory of deterministic queuing
systems for the Internet. Springer-Verlag New York, Inc., 2001.

[20] A. Burchard, E. Hekstra-Nowacka, and A. Chauhan. A real-time streaming mem-
ory controller. InProc. Design, Automation and Test in Europe Conference and
Exhibition (DATE), pages 20–25, 2005.

[21] G. Buttazzo.Hard Real-Time Computing Systems: Predictable SchedulingAlgo-
rithms and Applications. Springer, 2004.

[22] P. Casini. SoC Architecture to Multichannel Memory Management Using Sonics
IMT. White paper, 2008. Sonics, inc.

[23] H. Chao and J. Hong. Design of an ATM shaping multiplexerwith guaranteed
output burstiness.Computer Systems Science and Engineering, 12(2):131–141,
1997.



BIBLIOGRAPHY 201

[24] T. Claasen. The logarithmic law of usefulness.Semiconductor international,
21(8):175–184, 1998.

[25] R. Cruz. A calculus for network delay. I. Network elements in isolation. IEEE
Transactions on Information Theory, 37(1):114–131, 1991.

[26] W. Dally and B. Towles. Route packets, not wires: On-chip interconnection net-
works. InProceedings of the 38th Design Automation Conference (DAC), pages
684–689, 2001.

[27] R. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling.26th
IEEE International Real-Time Systems Symposium, pages 389–398, 2005.

[28] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multiprocessor SOC for ad-
vanced set-top box and digital TV systems.IEEE Design and Test of Computers,
pages 21–31, 2001.

[29] A. Francini and F. Chiussi. Minimum-latency dual-leaky-bucket shapers for
packet multiplexers: theory and implementation.Quality of Service, 2000.
IWQOS. 2000 Eighth International Workshop on, pages 19–28, 2000.

[30] P. Garrou.Handbook of 3D Integration: Technology and Applications of3D Inte-
grated Circuits, volume 1. Wiley-VCH, 2008.

[31] K. Goossens, J. Dielissen, and A. Rădulescu. The Æthereal network on chip: Con-
cepts, architectures, and implementations.IEEE Design and Test of Computers,
22(5):414–421, 2005.

[32] K. Goossens, O. P. Gangwal, J. Röver, and A. P. Niranjan.Interconnect and mem-
ory organization in SOCs for advanced set-top boxes and TV — Evolution, anal-
ysis, and trends. InInterconnect-Centric Design for Advanced SoC and NoC,
chapter 15, pages 399–423. Kluwer, 2004.

[33] R. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Ap-
plied Mathematics, pages 416–429, 1969.

[34] P. Gumming. The TI OMAP Platform Approach to SoC.Winning the SoC revo-
lution: experiences in real design, page 97, 2003.

[35] A. Hansson.A Predictable and Composable On-Chip Interconnect. PhD thesis,
Eindhoven University of Technology, 2009.

[36] A. Hansson, B. Akesson, and J. van Meerbergen. Multi-processor programming
in the embedded system curriculum.SIGBED Rev., 6(1):1–9, 2009.

[37] A. Hansson, M. Coenen, and K. Goossens. Undisrupted quality-of-service during
reconfiguration of multiple applications in networks on chip. In Proc. Design,
Automation and Test in Europe Conference and Exhibition (DATE), pages 954–
959, 2007.



202 BIBLIOGRAPHY

[38] A. Hansson and K. Goossens. Trade-offs in the configuration of a network on chip
for multiple use-cases. InThe 1st ACM/IEEE International Symposium on
Networks-on-Chip, 2007.

[39] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CoMPSoC: A template for
composable and predictable multi-processor system on chips. ACM Transactions
on Design Automation of Electronic Systems, 14(1):1–24, 2009.

[40] A. Hansson, M. Wiggers, A. Moonen, K. Goossens, and M. Bekooij. Enabling
application-level performance guarantees in network-based systems on chip by
applying dataflow analysis.IET Computers & Digital Techniques, 2009.

[41] F. Harmsze, A. Timmer, and J. van Meerbergen. Memory arbitration and cache
management in stream-based systems. InProc. Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2000.

[42] W. S. Hayes jr. Memory pattern generation based on specification and environ-
ment. Master’s thesis, Eindhoven University of Technology, 2009.

[43] S. Heithecker and R. Ernst. Traffic shaping for an FPGA based SDRAM controller
with complex QoS requirements. InDAC ’05: Proceedings of the 42nd annual
conference on Design automation, pages 575–578, 2005.

[44] J. Held, J. Bautista, and S. Koehl. From a few cores to many: A tera-scale com-
puting research overview.Research at Intel white paper, 2006.

[45] J. Henkel. Closing the SoC design gap.IEEE Transactions on Computers, pages
119–121, 2003.

[46] M. Hill and M. Marty. Amdahl’s law in the multicore era.IEEE Transactions on
Computers, 41(7), 2008.

[47] S. Hosseini-Khayat and A. Bovopoulos. A simple and efficient bus management
scheme that supports continuous streams.ACM Transactions on Computer Sys-
tems (TOCS), 13(2):122–140, 1995.

[48] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-optimizing memory con-
trollers: A reinforcement learning approach. InComputer Architecture, 2008.
ISCA ’08. 35th International Symposium on, pages 39–50, 2008.

[49] International Technology Roadmap for Semiconductors(ITRS) - Design, 2007.
http://www.itrs.net/reports.html.

[50] International Technology Roadmap for Semiconductors(ITRS) - System Drivers,
2007. http://www.itrs.net/reports.html.

[51] B. Jacob, S. Ng, and D. Wang.Memory systems: cache, DRAM, disk. Morgan
Kaufmann Pub, 2007.



BIBLIOGRAPHY 203

[52] JEDEC Solid State Technology Association.DDR2 SDRAM Specification,
JESD79-2E edition, Apr. 2008.

[53] JEDEC Solid State Technology Association, JEDEC SolidState Technology As-
sociation 2004, 2500 Wilson Boulevard, Arlington, VA 22201-3834. DDR3
SDRAM Specification, jesd79-3d edition, Sept. 2009.

[54] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and D.Shippy. Introduction to
the Cell multiprocessor.IBM Journal of Research and Development, 49(4/5):589,
2005.

[55] C. Kalmanek, H. Kanakia, and S. Keshav. Rate controlledservers for very high-
speed networks.Proceedings of GLOBECOM, pages 12–20, 1990.

[56] S. S. Kanhere and H. Sethu. Fair, efficient and low-latency packet scheduling
using nested deficit round robin.High Performance Switching and Routing, 2001
IEEE Workshop on, pages 6–10, 2001.

[57] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted round-robin cell
multiplexing in a general-purpose ATM switch chip.IEEE Journal on Selected
Areas in Communications, 9(8):1265–1279, Oct. 1991.

[58] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System-level
design: orthogonalization of concerns and platform-baseddesign.IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 19(12):1523–
1543, 2000.

[59] P. Kollig, C. Osborne, and T. Henriksson. Heterogeneous Multi-Core Platform
for Consumer Multimedia Applications. InProc. Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2009.

[60] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the
IEEE, 91(1):112–126, 2003.

[61] H. Kopetz, C. El Salloum, B. Huber, R. Obermaisser, and C. Paukovits. Com-
posability in the time-triggered system-on-chip architecture. InSOC Conference,
2008 IEEE International, pages 87–90, 2008.

[62] E. A. Lee. Absolutely positively on time: what would it take?IEEE Transactions
on Computers, 38(7):85–87, 2005.

[63] J. Lee and K. Asanovic. METERG: Measurement-Based End-to-End Performance
Estimation Technique in QoS-Capable Multiprocessors. InProc. of the 12th IEEE
Real-Time and Embedded Technology and Applications Symp, pages 135–147,
2006.

[64] K. Lee, T. Lin, and C. Jen. An efficient quality-aware memory controller for
multimedia platform SoC.IEEE transactions on circuits and systems for video
technology, 15(5):620–633, 2005.



204 BIBLIOGRAPHY

[65] G. Lipari and E. Bini. Resource partitioning among real-time applications.Real-
Time Systems, 2003. Proceedings. 15th Euromicro Conference on, pages 151–158,
2003.

[66] T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled mi-
croprocessors. InIEEE Real-Time Systems Symposium, pages 12–21, 1999.

[67] C. Macian, S. Dharmapurikar, and J. Lockwood. Beyond performance: Secure and
fair memory management for multiple systems on a chip. InIEEE International
Conference on Field-Programmable Technology (FPT), pages 348–351, 2003.

[68] S. McKee. Reflections on the memory wall. InProceedings of the 1st conference
on Computing frontiers, 2004.

[69] T. F. Melham.Formalising Abstraction Mechanisms for Hardware Verification in
Higher Order Logic. PhD thesis, University of Cambridge, 1990. Also available
as Technical Report UCAM-CL-TR-201.

[70] Calculating Memory System Power for DDR2. Technical report, Micron Technol-
ogy Inc., 2005. TN-47-04.

[71] Calculating Memory System Power for DDR3. Technical report, Micron Technol-
ogy Inc., 2007. TN-41-01.

[72] Micron Technology Inc. http://www.micron.com, 2009.

[73] MIPS Technologies. http://www.mips.com, 2009.

[74] A. Molnos and K. Goossens. Conservative dynamic energymanagement for real-
time dataflow applications mapped on multiple processors. In 12th Euromicro
Conference on Digital System Design (DSD), 2009.

[75] G. Moore. Cramming more components onto integrated circuits.Electronics Mag-
azine, 38:114–117, 1965.

[76] G. Moore. Progress in digital integrated electronics.In Electron Devices Meeting,
volume 21, 1975.

[77] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent hard-
real-time jobs on a heterogeneous multiprocessor. InEMSOFT ’07: Proceedings
of the 7th ACM & IEEE international conference on Embedded software, pages
57–66, 2007.

[78] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enabling
High-Performance and Fair Shared Memory Controllers.IEEE Micro, 29(1):22–
32, 2009.



BIBLIOGRAPHY 205

[79] J. Muttersbach, T. Villiger, and W. Fichtner. Practical design of globally-
asynchronous locally-synchronous systems. InAdvanced Research in Asyn-
chronous Circuits and Systems, 2000.(ASYNC 2000) Proceedings. Sixth Interna-
tional Symposium on, pages 52–59, 2000.

[80] J. B. Nagle. On packet switches with infinite storage.IEEE Transactions on
Communications, COM-35(4):435–438, 1987.

[81] K. Nesbit, J. Laudon, and J. Smith. Virtual private caches. InProceedings of
the 34th annual international conference on Computer architecture, pages 57–68,
2007.

[82] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing memory
systems. InMICRO 39: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 208–222, 2006.

[83] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero, and J. E. Smith.
Multicore resource management.IEEE Micro, 28(3), 2008.

[84] J. Nikara, E. Aho, P. Tuominen, and K. Kuusilinna. Performance analysis of multi-
channel memories in mobile devices. InInternational Symposium on System-on-
Chip 2009, Oct. 2009.

[85] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz. From a federated to an
integrated automotive architecture.IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 28(7), 2009.

[86] C. Otero Pérez, M. Rutten, J. van Eijndhoven, L. Steffens, and P. Stravers. Re-
source reservations in shared-memory multiprocessor SOCs. In Dynamic and Ro-
bust Streaming In And Between Connected Consumer-Electronics Devices, chap-
ter 5, pages 109 – 137. Springer, 2005.

[87] M. Paolieri, E. Quiñones, F. Cazorla, G. Bernat, and M. Valero. Hardware support
for WCET analysis of hard real-time multicore systems. InProceedings of the 36th
annual international symposium on Computer architecture, pages 57–68. ACM
New York, NY, USA, 2009.

[88] Philips Semiconductors.Device Transaction Level (DTL) Protocol Specification.
Version 2.2, 2002.

[89] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong. Scalable architecture for fair
leaky-bucket shaping.Proc. IEEE INFOCOM, 3:1054–1062, 1997.

[90] M. Ringhofer. Design and implementation of a memory controller for real-time
applications. Master’s thesis, Graz University of Technology, 2006.

[91] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.Owens. Memory access
scheduling. InISCA ’00: Proceedings of the 27th annual international symposium
on Computer architecture, pages 128–138, 2000.



206 BIBLIOGRAPHY

[92] J. Roest. Spider project: Detailed design descriptionof the DDR SDRAM con-
troller. Technical Report 1.3, Philips Consumer Electronics, 2004. Philips confi-
dential.

[93] B. Rumpler. Complexity Management for Composable Real-Time Systems.
In Proceedings of the Ninth IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing, pages 365–373, 2006.

[94] D. Saha, S. Mukherjee, and S. K. Tripathi. Carry-over round robin: a simple cell
scheduling mechanism for ATM networks.IEEE/ACM Transactions on Network-
ing, 6(6):779–796, 1998.

[95] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. Pande,
C. Grecu, and A. Ivanov. System-on-chip: Reuse and integration. Proceedings of
the IEEE, 94(6):1050–1069, 2006.

[96] R. Selvaggi and L. Pearlstein. Broadcom mediadsp: A platform for building pro-
grammable multicore video processors.Micro, IEEE, 29(2):30–45, 2009.

[97] J. Shao and B. Davis. A burst scheduling access reordering mechanism. InPro-
ceedings of the 13th International Symposium on High-Performance Computer
Architecture, pages 285–294, 2007.

[98] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin.
In Proc. SIGCOMM, pages 231–242, 1995.

[99] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for Hard-Real-Time
systems.Real-Time Systems, 1(1):27–60, 1989.

[100] S. Sriram and S. Bhattacharyya.Embedded multiprocessors: Scheduling and syn-
chronization. CRC, 2000.

[101] F. Steenhof. Columbus SDRAM interface. Technical Report 0.8, Philips Con-
sumer Electronics, 2002. Philips confidential.

[102] F. Steenhof, H. Duque, B. Nilsson, K. Goossens, and R. Peset Llopis. Networks
on chips for high-end consumer-electronics TV system architectures. InProc.
Design, Automation and Test in Europe Conference and Exhibition (DATE), pages
148–153, 2006.

[103] L. Steffens, M. Agarwal, and P. van der Wolf. Real-TimeAnalysis for Memory
Access in Media Processing SoCs: A Practical Approach.ECRTS ’08: Proceed-
ings of the 2008 Euromicro Conference on Real-Time Systems, pages 255–265,
2008.

[104] D. Stiliadis and A. Varma. Latency-rate servers: a general model for analysis of
traffic scheduling algorithms.IEEE/ACM Transactions on Networking, 6(5):611–
624, 1998.



BIBLIOGRAPHY 207

[105] E. Strooisma. A predictable and composable front-endfor system on chip memory
controllers. Master’s thesis, Delft University of Technology, 2008.

[106] G. Teshome Woldegebreal. Front-end for composable resource sharing using
latency-rate servers. Master’s thesis, Delft University of Technology, 2009.

[107] K. Tindell, A. Burns, and A. Wellings. An extendible approach for analyzing fixed
priority hard real-time tasks.Real-Time Systems, 6(2):133–151, 1994.

[108] C. van Berkel. Multi-core for Mobile Phones. InProc. Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2009.

[109] B. Vermeulen and K. Goossens.Multi-Core Embedded Systems, chapter 5. CRC
Press/Taylor & Francis Group, 2010.

[110] J. Vink, K. van Berkel, and P. van der Wolf. Performanceanalysis of SoC architec-
tures based on latency-rate servers.Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), pages 200–205, 2008.

[111] W.-D. Weber.Efficient Shared DRAM Subsystems for SOCs. Sonics, Inc, 2001.
White paper.

[112] S. Whitty and R. Ernst. A bandwidth optimized SDRAM controller for the MOR-
PHEUS reconfigurable architecture. InProceedings of the Parallel and Dis-
tributed Processing Symposium (IPDPS), 2008.

[113] M. Wiggers, M. Bekooij, and G. Smit. Efficient computation of buffer capac-
ities for cyclo-static dataflow graphs. InDesign Automation Conference, 2007.
DAC’07. 44th ACM/IEEE, pages 658–663, 2007.

[114] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit. Modelling run-time arbitra-
tion by latency-rate servers in dataflow graphs. InSCOPES ’07: Proceedings of
the 10th international workshop on Software & compilers forembedded systems,
pages 11–22, 2007.

[115] N. Wingen. What if you could design tomorrow’s system today? InProc. Design,
Automation and Test in Europe Conference and Exhibition (DATE), pages 835–
840, 2007.

[116] L. Woltjer. Optimal DDR controller. Master’s thesis,University of Twente, Jan.
2005.

[117] D. Woo and H. Lee. Extending Amdahl’s Law for Energy-Efficient Computing in
the Many-Core Era.IEEE Transactions on Computers, 41(12):24–31, 2008.

[118] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the
obvious.SIGARCH Computer Archiecutre News, 23(1):20–24, 1995.



208 BIBLIOGRAPHY

[119] H. Zhang. Service disciplines for guaranteed performance service in packet-
switching networks.Proceedings of the IEEE, 83(10):1374–96, Oct. 1995.

[120] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High-
Speed Networks, 3(4):389–412, 1994.



APPENDIX A

Glossary

This chapter provides a guide to the language used in this thesis. Section A.1 contains a
list of abbreviations and Section A.2 a list of symbols.

A.1 List of abbreviations

This list of abbreviations explains the most commonly used abbreviations in this thesis.

AXI Advanced eXtensible Interface

CBA Closest Burstiness Approximation

CCSP Credit-Controlled Static-Priority

CRA Closest Rate Approximation

DDR Double-Data-Rate

DRAM Dynamic RAM

DSP Digital Signal Processor

DTL Device Transaction Level

FAW Four-activate window

FBSP Frame-Based Static-Priority

IP Intellectual Property

209



210 APPENDIX A. GLOSSARY

LR Latency-Rate

NoC Network-on-Chip

PE Processing Element

RAM Random Access Memory

RR Round-Robin

SC Service Cycle

SDRAM Synchronous Dynamic RAM

SoC System-on-Chip

SRAM Static RAM

SRSP Sigma-Rho Static-Priority

SU Service Unit

TDM Time-Division Multiplexing

A.2 List of symbols

The list of symbols explains most of the symbols that constitute the formal framework
in this thesis. The symbols are sorted in alphabetical orderwith the Greek alphabet
preceding the Latin.

Table A.1: List of symbols.

Symbol Description Page
α(ωkr ) Address of requestωkr (bytes) 46
β Precision used by CCSP to approximate the allocated rates and

burstinesses (bits)
120

γ(t) Scheduled requestor at a timet 100
∆ Latency offset (clock cycles) 148
δread Minimum clock cycles between a read and a write command 84
δwrite Minimum clock cycles between a write and a read command 84
η Fraction of service cycles with rounded-down completion la-

tency
151

Θr Service latency of requestorr (service cycles) 113
Θ̂r Service latency requirement of requestorr (service cycles) 173
Θccr Service latency of requestorr (clock cycles) 148
Θ̂ccr Service latency requirement of requestorr (clock cycles) 170

Continued on next page



A.2. LIST OF SYMBOLS 211

Table A.1 – continued from previous page
Symbol Description Page
λ(ωkr , t) Service cycle length when serving requestωkr starting at timet

(clock cycles)
99

λ̌ Minimum service cycle length (clock cycles) 154
λ̄ Average service cycle length during worst-case conditions(clock

cycles)
147

πr(t) Potential of requestorr at timet (service units) 105
π∗r (t) Accounted potential of requestorr at timet (service units) 105
ρr Requested service rate of requestorr (service units/service cy-

cle)
99

ρ′r Allocated rate of requestorr (service units/service cycle) 101
ρ′′r Discrete allocated rate of requestorr (service units/service cy-

cle)
120

σ′r Allocated burstiness of requestorr (service units) 101
σ′′r Discrete allocated burstiness of requestorr (service units) 120
φr The allocated slots of requestorr in a frame-based rate regulator 122
ωkr Kth request from requestorr 46
Ωr Set of requests from requestorr 46
a(ωkr ) Alignment of requestωkr (bytes) 46
BC Burst count. Number of read/write commands per bank per ac-

cess pattern
63

BL Burst length (words) 46
br Requested bandwidth of requestorr (MB/s) 49
b′r Allocated bandwidth of requestorr (MB/s) 49
bgross Gross memory bandwidth (MB/s) 49
bnet Net memory bandwidth (MB/s) 49
bpeak Peak memory bandwidth (MB/s) 47
bslack Slack memory bandwidth (MB/s) 171
cr(t) Credits of requestorr at timet 124
c∗ Credits used to approximate completion latency 151
d Denominator used to approximate the discrete allocated rate 120
d∗ Denominator used to approximate completion latency 151
dr Data rate (words/clock cycle) 46
ebank Bank efficiency 48
ecmd Command efficiency 48
edata Data efficiency 48
egross Gross memory efficiency 49
enet Net memory efficiency 49
eref Refresh efficiency 47
erw Read/write efficiency 47
f The frame size of a frame-based rate regulator 121

Continued on next page



212 APPENDIX A. GLOSSARY

Table A.1 – continued from previous page
Symbol Description Page
fmem Clock frequency (MHz) 46
g Access granularity of a memory pattern (bytes) 63
ir(τ1, τ2) Maximum interference experienced by requestorr in an interval

(service cycles)
107

l(ωkr ) Completion latency of requestωkr (service cycles) 145
lccr Completion latency of requestorr (clock cycles) 148
n Numerator used to approximate the discrete allocated rate 120
n∗ Numerator used to approximate completion latency 151
nacc Remaining number of read or write commands to schedule 78
nact Remaining number of activate commands to schedule 78
nbanks Number of banks in the SDRAM 46
npipe Number of pipeline stages between the Request Buffer and Re-

sponse Buffer
148

oρ(ρ
′′
r , ρ
′
r) The over-allocated rate of requestorr (service units/service cy-

cle)
121

oσ(σ
′′
r , σ

′
r) Over-allocated burstiness of requestorr (service units) 121

pr Priority level of requestorr 106
qr(t) Backlog of requestorr at timet 101
R Set of requestors sharing the memory 46
R+
r Set of requestors with higher priority thanr 106
Rat Set of active requestors at timet 102
Rbt Set of busy requestors at timet 113
Ret Set of requestors eligible for scheduling at timet 106
Rlt Set of live requestors at timet 102
Rqt Set of backlogged requestors at timet 101
s(ωkr ) Size of requestωkr (service units) 99
sbytes(ωkr ) Size of requestωkr (bytes) 46
ta(ω

k
r ) Arrival time of requestωkr 99

taux(x) Maximum time to servex service units, excluding refreshes
(clock cycles)

70

tblock Maximum blocking time (clock cycles) 67
tCCD Minimum time between two read commands or two write com-

mands (clock cycles)
46

tCL Time after read command until first data is available on the bus
(clock cycles)

46

tf(ω
k
r ) Finishing time of requestωkr 144

tFAW Window in which maximally four banks may be activated (clock
cycles)

46

tfirst
read Cycle with first read command in a read pattern 84
tfirst
write Cycle with first write command in a write pattern 84

Continued on next page



A.2. LIST OF SYMBOLS 213

Table A.1 – continued from previous page
Symbol Description Page
tlast
read Cycle with last read command in a read pattern 76
tlast
write Cycle with last write command in a write pattern 76
tpre
read Cycle when last bank is precharged after a read pattern 76
tpre
write Cycle when last bank is precharged after a write pattern 76

tRC Minimum time between successive activate commands to the
same bank (clock cycles)

46

tRCD Minimum time between activate and read/write commands on
the same bank (clock cycles)

46

tRFC Minimum time between a refresh command and a successive re-
fresh or activate command (clock cycles)

46

tRAS Minimum time after an activate command to a bank until that
bank is allowed to be precharged (clock cycles)

46

tread Length of a read pattern (clock cycles) 64
tref Length of a refresh pattern (clock cycles) 64
tREFI Average refresh interval (clock cycles) 46
tRP Minimum time between a precharge command on a bank and a

successive activate command (clock cycles)
46

tRRD Minimum time between activates to different banks (clock cy-
cles)

46

tRTP Minimum time between a read and precharge command (clock
cycles)

46

trtw Length of a read/write switching pattern (clock cycles) 64
ts(ω

k
r ) Starting time of requestωkr 144

tshortest Length of the shortest access pattern found so far (clock cycles) 78
ttot(x) Total time to servex service units (clock cycles) 72
ttransfer Clock cycles with data transfer in an access pattern 68
tWL Time after write command until first data is available on the bus

(clock cycles)
46

tWR Minimum time after the last data has been written to a bank until
a precharge may be issued (clock cycles)

46

twrite Length of a write pattern (clock cycles) 64
twtr Length of a write/read switching pattern (clock cycles) 64
tWTR Internal write to read command delay (clock cycles) 46
wr(t) Requested service curve of requestorr at timet 100
w′r(t) Provided service curve of requestorr at timet 100
w̌′r(t) Lower bound on provided service bound for requestorr at time

t (service units)
111

ŵ′r(t) Upper bound on provided service bound for requestorr at time
t (service units)

103

wmem Width of the data bus (bits) 46



214 APPENDIX A. GLOSSARY



APPENDIX B

System XML specification

This chapter shows the XML specifications that are used as input to the configuration
flow, presented in Chapter 7. First, we look at the architecture specification in Sec-
tion B.1, followed by the use-case specification in Section B.2.

B.1 Architecture specification

The architecture specification lists a number of Intellectual Property (IP) components,
each with a number of ports. For each port, type, protocol andother relevant architecture
parameters are specified. The architecture does not specifyIP components that are auto-
matically synthesized, such as the Network-on-Chip (NoC),and the resource front-end.
However, some parameters are listed as directions for this synthesis. A number of such
parameters required to synthesize the NoC [35] have been removed for clarity. The most
interesting IP component in the context of this thesis is thememory controller, which is
our proposed SDRAM back-end. The memory controller has a single port to which a
synthesized resource front-end is connected. Port parameters determine the arbiter that
is used in the front-end, as well as specify the timings of theSDRAM, used to generate
the memory patterns.

<architecture id="thesis">

<ip id="ip_0" type="IP">
<port id="p1" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />
<parameter id="blocksize" type="int" value="32" />
<parameter id="speed_var" type="double" value="10.2" />

215



216 APPENDIX B. SYSTEM XML SPECIFICATION

</port>
</ip>
<ip id="ip_1" type="IP">

<port id="p1" type="Initiator" protocol="MMIO_DTL">
<parameter id="width" type="int" value="32" />
<parameter id="blocksize" type="int" value="32" />
<parameter id="speed_var" type="double" value="10.2" />

</port>
<port id="p2" type="Initiator" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />
<parameter id="blocksize" type="int" value="32" />
<parameter id="speed_var" type="double" value="10.2" />

</port>
</ip>
<ip id="ip_2" type="IP">

<port id="p1" type="Initiator" protocol="MMIO_DTL">
<parameter id="width" type="int" value="32" />
<parameter id="blocksize" type="int" value="32" />
<parameter id="speed_var" type="double" value="10.2" />

</port>
</ip>
<ip id="sdram_backend" type="MemoryController">

<port id="p1" type="Target" protocol="MMIO_DTL">

<parameter id="width" type="int" value="32" />
<parameter id="delay" type="bool" value="1"/>

<!-- Arbiter Specification -->
<parameter id="arbiter" type="string" value="CCSP"/>
<parameter id="preemptive" type="bool" value="1"/>
<parameter id="workConserving" type="bool" value="0"/>

<!-- Memory Specification -->
<parameter id="memoryId" type="string" value="DDR2-400" />
<parameter id="capacity" type="uint" value="65536" />
<parameter id="nbrOfBanks" type="uint" value="4" />
<parameter id="clk" type="uint" value="200" />
<parameter id="dataRate" type="uint" value="2" />
<parameter id="tREFI" type="double" value="7800" />
<parameter id="burstSize" type="uint" value="8" />
<parameter id="wordSize" type="uint" value="2" />
<parameter id="RC" type="uint" value="11" />
<parameter id="RCD" type="uint" value="3" />
<parameter id="CL" type="uint" value="3" />
<parameter id="WL" type="uint" value="2" />
<parameter id="AL" type="uint" value="0" />
<parameter id="RP" type="uint" value="3" />



B.2. USE-CASE SPECIFICATION 217

<parameter id="RFC" type="uint" value="21" />
<parameter id="RAS" type="uint" value="8" />
<parameter id="RTP" type="uint" value="2" />
<parameter id="WR" type="uint" value="3" />
<parameter id="FAW4" type="uint" value="10" />
<parameter id="RRD" type="uint" value="2" />
<parameter id="CCD" type="uint" value="2" />
<parameter id="WTR" type="uint" value="2" />

</port>
</ip>

</architecture>

B.2 Use-case specification

The use-case specification specifies the applications and their connections. Each con-
nection corresponds to a requestor. For each requestor, thetype (read, write, or both)
is specified, along with burst sizes, required bandwidth andlatency requirements. Each
requestor furthermore has a parameter that determines if responses and flow-control sig-
nals should be delayed to emulate maximum interference fromother requestors. This
parameter hence determines if the resource front-end should be programmed to provide
composable service to the requestor. The use-case below corresponds to the running ex-
ample in Chapter 7. This simple use-case only has one requestor per application and all
applications execute concurrently.

<communication>
<application id="Application_0">

<connection qos="GT" id="0">
<initiator ip="ip_0" port="p1"/>
<target ip="sdram_backend" port="p1"/>
<read latency="0" bw="210" burstsize="512"/>
<parameter id="maxLatency" type="double" value="1500"/>
<parameter id="delay" type="bool" value="1"/>

</connection>
</application>
<application id="Application_1">

<connection qos="GT" id="1">
<initiator ip="ip_1" port="p1"/>
<target ip="sdram_backend" port="p1"/>
<write latency="0" bw="210" burstsize="128"/>
<parameter id="maxLatency" type="double" value="550"/>
<parameter id="delay" type="bool" value="1"/>

</connection>
</application>
<application id="Application_2">

<connection qos="GT" id="2">



218 APPENDIX B. SYSTEM XML SPECIFICATION

<initiator ip="ip_1" port="p2"/>
<target ip="sdram_backend" port="p1"/>
<read latency="0" bw="210" burstsize="64"/>
<parameter id="maxLatency" type="double" value="450"/>
<parameter id="delay" type="bool" value="1"/>

</connection>
</application>
<application id="Application_3">
<connection qos="GT" id="3">

<initiator ip="ip_2" port="p1"/>
<target ip="sdram_backend" port="p1"/>
<write latency="0" bw="20" burstsize="256"/>
<parameter id="maxLatency" type="double" value="1000"/>
<parameter id="delay" type="bool" value="1"/>

</connection>
</application>

</communication>



APPENDIX C

About the author

Benny Åkesson was born in Landskrona, Sweden in 1977. He received the M.Sc. degree
in Computer Science and Engineering from Lund Institute of Technology, Sweden in
2005. The master project was carried out at Philips Researchin Eindhoven, the Nether-
lands on the topic of predictable SDRAM controllers. In August 2005, Åkesson started
the journey towards a Ph.D. degree at the Technical University of Eindhoven in collabo-
ration with Philips Research later becoming NXP Semiconductors. His research interests
are memory controller architectures, resource arbitration, and performance analysis.

219



220 APPENDIX C. ABOUT THE AUTHOR



APPENDIX D

List of publications

This work has resulted in nine publications. More specifically, one journal article, four
conference papers, one workshop paper, and one patent application. There are further-
more two pending invention disclosures related to memory controllers and resource arbi-
tration.

Journal articles

[1] Multi-Processor Programming in the Embedded System Curriculum. Andreas Hans-
son, Benny Akesson, and Jef van Meerbergen.ACM SIGBED Review, Volume 6, Number
1, 2009.

Conference and workshop papers

[2] Efficient Service Allocation in Hardware Using Credit-Controlled Static-Priority Ar-
bitration. Benny Akesson, Liesbeth Steffens, and Kees Goossens. Int’l Conference on
Embedded and Real-Time Computing Systems and Applications(RTCSA) 2009.

[3] Composable Resource Sharing Based on Latency-Rate Servers. Benny Akesson,
Andreas Hansson, and Kees Goossens.12th Euromicro Conference on Digital System
Design (DSD) 2009.

[4] Multi-Processor Programming in the Embedded System Curriculum. Andreas Hans-
son, Benny Akesson, and Jef van Meerbergen.4th Workshop on Embedded Systems
Education (WESE) 2008.

221



222 APPENDIX D. LIST OF PUBLICATIONS

[5] Real-Time Scheduling Using Credit-Controlled Static-Priority Arbitration. Benny
Akesson, Liesbeth Steffens, Eelke Strooisma, and Kees Goossens.Int’l Conference on
Embedded and Real-Time Computing Systems and Applications(RTCSA) 2008.

[6] Predator: A Predictable SDRAM Memory Controller. BennyAkesson, Kees Goossens
and Markus Ringhofer.Int’l Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS) 2007.

Reports

[7] Real-Time Scheduling of Hybrid Systems using Credit-Controlled Static-Priority Ar-
bitration. Benny Akesson, Liesbeth Steffens, Eelke Strooisma, and Kees Goossens.NXP
Semiconductors Technical Note, September 2007.

[8] An analytical model for a memory controller offering hard-real-time guarantees.
Benny Akesson.Master Thesis May 2005. Lund Institute of Technology.

Patent applications

[9] Memory controller and method for controlling access to amemory, as well as system
comprising a memory controller. Benny Akesson, Andrei Radulescu, Kees Goossens,
and Frits Steenhof. Applications: WO2006117746, EP1880296, US2008244135, and
JP2008541217. NXP B.V.


	Title page
	Acknowledgements
	Abstract
	Contents
	1 Introduction
	1.1 Trends in embedded system design
	1.2 Problem statement
	1.3 Requirements
	1.4 Contributions
	1.5 Outline
	1.6 Summary

	2 Proposed solution
	2.1 Predictability
	2.2 Abstraction
	2.3 Composability
	2.4 Automation
	2.5 Summary

	3 SDRAM memories and controllers
	3.1 Introduction to SDRAM
	3.2 Formal model
	3.3 Memory efficiency
	3.4 Memory controllers
	3.5 Summary

	4 Predictable SDRAM back-end
	4.1 Overview of predictable SDRAM controller
	4.2 Memory patterns
	4.3 Memory efficiency bound
	4.4 Latency bound
	4.5 Memory pattern generation
	4.6 Architecture and synthesis
	4.7 Experimental results
	4.8 Summary

	5 Credit-Controlled Static-Priority arbitration
	5.1 Arbiter requirements
	5.2 Formal model
	5.3 Definition of CCSP arbitration
	5.4 Arbiter analysis
	5.5 LR server
	5.6 Hardware implementation
	5.7 Architecture and synthesis
	5.8 Experimental results
	5.9 Summary

	6 Composable resource front-end
	6.1 Overview of approach
	6.2 Formal model
	6.3 Timing analysis
	6.4 Architecture and synthesis
	6.5 Experiments
	6.6 Summary

	7 Configuration
	7.1 Formal model
	7.2 Memory pattern generation
	7.3 Normalization of requirements
	7.4 Arbiter configuration
	7.5 Denormalization of allocation
	7.6 Requirement verification
	7.7 Experimental results
	7.8 Summary

	8 Related work
	8.1 Resource arbitration
	8.2 SDRAM controllers
	8.3 Composable service

	9 Conclusions and future work
	9.1 Conclusions
	9.2 Future work

	Bibliography
	A Glossary
	A.1 List of abbreviations
	A.2 List of symbols

	B System XML specification
	B.1 Architecture specification
	B.2 Use-case specification

	C About the author
	D List of publications

