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The Residues modulo m of Products of
Random Integers

Yuliy Baryshnikov and Wolfgang Stadje
University of Osnabriick

Abstract

For two (possibly stochastically dependent) random variables X
and Y taking values in {O, ... , m - 1} we study the distribution of
the random residue U = XY mod m. In the case of independent
and uniformly distributed X and Y we provide an exact solution in
terms of generating functions that are computed via p-adic analysis.
We show also that in the uniform case it is stochastically smaller than
(and very close to) the uniform distribution. For general dependent
X and Y we prove an inequality for the distance sUPxE[O,l] lFu(x) - xl.

1 Introduction

Let X and Y be two (possibly dependent) random variables taking values in
{O, 1, ... ,m - I}, where m 2:: 2 is some fixed integer. In this note we study
the distribution of the random residue of the product

U = XYmodm.

We consider first the case when X and Y are independent and uniformly
distributed, i.e. P(X = i, Y = j) = m-2 for i, j E {O, ... ,m - I}. In
Section 2 it is shown that the problem for general m can be reduced to that
for m = pn, where p is some prime number and n E N, and that in this case
it is sufficient to determine the cardinalities
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We prove that for every prime number p the generating function Hp(T, Z) =
~ Np(l, n)TnZl of the double sequence Np(l, n) is given by
n,l

R (T Z) = (1 - pT)2(1 - p-lZ) - p2(1 - p-1T)T(1 - Z) . (1.1)
p , (1 - Z)(1 - p-1Z)(1 - pT)2(1 - p2T)

In the case p = 2 we derive a neat explicit formula for the distribution
function of U. It is given by

n-l

P(U::; k) = (k + 1)2-n + 2-n+l L(1- 6i)
i=O

(1.2)

for k = 0, ... ,2n -
1

, where 60,." ,6n-l E {O, 1} are the binary digits of k,
defined by k = 60 + 261 + 462 + ... + 2n - 18n _ 1 .

It follows from (1.2) that the random 'fractional residue' 2-n U is stochastically
smaller than a uniform random variable on [0,1), i.e. P(U/2n < u) ~ u for
all u E [0, 1] and that the maximal deviation is given by

sup (P(2-nU < u) - u) = (n + 2)2-(n+l) ,
0<u9

(1.3)

so that the distribution of 2-n U tends to the uniform distribution on [0,1]
at an exponential rate (given by (1.3)), as n -+ 00. In fact, these stochastic
dominance and convergence remain valid for arbitrary m.

The rest of the paper is devoted to an extension of this asymptotic equidistribution
result to general m and dependent, non-uniform random variables X and Y.

We will show that

(
IOgm) 1/2

sup IP(U/m < u) - ul ::; C --
O<u<1 m

(1.4)

if the distribution of Y and the conditional distribution of X given Y do not
deviate too much from uniformity and if the latter distribution satisfies a
certain Lipschitz condition. Specifically, we assume that

P(Y = k) ::; Co/m

p(jlk) = P(X = j I Y = k) ::; Cdm

Ip(j
1Ik) 11 C '" . 1/p(j2Ik) - ::; 2 JI - J2 m
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for some constants Co, C1 , C2 • Then (1.4) holds for a certain constant C which
depends only on Co, C1 and C2 • From (1.4) we can conclude that U1m is for
a large class of joint distributions of X and Y 'almost' uniformly distributed
on [0,1] in the sense of weak convergence.

Deterministic sequences of integers whose residues are uniformly distributed
are treated in Narkiewicz [10] and Kuipers and Niederreiter [8]. They play
an important role in random number generation (Ripley [12]). In the realm
of stochastic sequences already Dvoretzky and Wolfowitz [5] studied weak
convergence of residues for sums of independent, Z+-valued random variables;
more recent papers on related questions are Brown [3], Barbour and Grubel
[1], and Grubel [6]. The distribution of the fractional part of continuous
random variables, in particular its closeness or convergence to the uniform
distribution on [0,1), has been studied by many authors (e.g. Schatte [13],
Stadje [14, 15], Qi and Wilms [11]).

2 The uniform case

We start by deriving the exact probability distribution of U in the case
m = 2n , n E N. For x E ll4 let frac(x) be the fractional part of x.

Proposition 1 We have

n-1
P(U:::; k) = (k + 1)2-n + 2-(n+1) L)l - 6i ),

i=O

(2.1)

if m < n
if m = n.

for every k E {a, 1, ... ,2n - I}, where 60 , ,6n - 1 E {O, ... ,n - I} are the
binary digits of k, i.e. k = 60 + 261 + 462 + + 2n - 16n _ 1 .

Proof. Obviously,

2n -1

P(U = k) = L 2-2n card{j E In I frac(ij2-n
) = k2-n}. (2.2)

i=O

Let

A _ { {i E In I i2-m is odd},
m - {O},

It is easily seen that

d A {
2n-m-1, if mE {O, ... ,n -I}

car m = 1, }'f m=n.
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Consider i E Am and k E A! for some m, l E {O, ... ,n-1}, say i = (2p+1)2m

and k = (2q + 1)2!. Then for any j E In,

(2.3)

is equivalent to

(2p + 1)j - (2q + 1)2!-m = N2n- m for some integer N. (2.4)

For l < m the lefthand side of (2.4) is not integer, so there is no solution j
of (2.3). Now let l ~ m. Since 2p + 1 and 2n are relatively prime, a simple
result on residues implies that the numbers (2p + 1)j - (2q + 1)2!-m run
through a complete set of residues mod 2n if j runs through (the complete
set of residues) 0, 1, ... ,2n - 1. But N2n- m gives different residues mod 2n

for N = 0, ... ,2m -1, while for larger values of N one only gets replications
of these residues. Thus, the number of solutions j of (2.3) is 2n if l ~ m.
The same result also holds for m E As, Le. m = 0.

From (2.2) it now follows that if k E A! for some l < n we obtain

n-l

P(U = k2-n) = L 2-2n L card{j E In I int(ij2-n
) = k2-n} + 2-n8ok

m=O iEAm
!

L 2-2n card(Am )2n

m=O
I

L2-n2n-m-l

m=O
(l + 1)2-(n+l),

(2.5)

while if k E An,

n-l

P(U = 0) = L 2-2n card(Am )2n + 2-n

m=O

= (n + 2)2-(n+l). (2.6)

In particular, k I--t P(U = k) is constant on A! for every l. Therefore, the
probability P(U E (2ma, 2m a+2m - 1]) is the same for every a E {O, ... ,2n- m_
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I}. It follows that

P(U S k) - P(U = 0) + P(O < U < <5n _ 12n )

+~P (~O'2' < U~ '~,0,2')
n-l

P(U = 0) +L P(O < Us <512' ).
1=0

(2.7)

To compute the righthand side of (2.7), note that the number of integers
i E Am satisfying 0 < i S 2' is equal to 21- m- 1 for m = 0, ... ,l-1 and equal
to 1 for m = l. Hence, by (2.5),

I

P(O < U S 21
) = L P(U E Am n {O, . " ,21

})

m=O
1-1

L(l + 1)2-(n+l)21- m- 1 + (l + 1)2-(n+l)

m=O
_ 2-(n+l)(21+1 - 1).

Inserting (2.8) and (2.6) in (2.7) now yields (2.1).

(2.8)

Proposition 2 1) For arbitrary m U is stochastically smaller than a uniform
random variable on [0, 1];

2) For arbitrary m

sup (P(U < u) - u) = O(m-l+ f
),

O<u::;l

for any € > 0;

and

3) For m = 2n ,

sup (P(U < u) - u) = (n + 2)2-(n+l).
0<u9

Proof. We start with 1). It is clear that

(2.9)

(2.10)

#{O s j < m: ijmodm S k} = gcd(i,m) (l t )J + 1). (2.11)
gcd ?',m
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This implies

1 m-l (k )
P(U:::; k) = 2 Lgcd(i,m) L C )J + 1 > kim

m i=O gcd z,m

for all 0 :::; k < m, and hence proves 1).

Further, estimating (2.12) in an obvious way from above, we obtain

(2.12)

P(U:::; k) < ~2 E~~l gcd(i, m) (gCd~,m) + 1)
< kim + -4 E~~l gcd(i, m)

kim + ~2Ellm #{O :::; i < m : gcd(i, m) = l} (2.13)
< kim + ~2 El1m l7

kim + d(m)/m,

where d(m) denotes the number of divisors of m. It is known that d(m) =
O(mE

) for all € > 0, which implies 2).

To prove 3) define for 0 < u:::; 1 the integer k(u) by k(u)2-n < u :::; (k(u) +
1)2-n and let 00, ... ,On-l be its binary digits. By (2.1) we can write

n-l

P(U < u) - u = (k(u)2-n + 2-n - u) + 2-(n+l) L(1 - Oi), (2.14)
i=O

which is nonnegative by the definition of k(u). Further it is clear from (2.14)
that sUPO<u9(P(U < u) - u) is approached as u 4- 0, yielding (2.10).

Now we derive the exact formulae for P(U = k) in the case of general mEN.

Let X and Y be independent and uniform on the set {a, ... ,m - 1}, which
we identify with Z/mZ. Then P(U = a) is equal to m-2 times the number
of solutions (x, y) E (Z/mZ) x (Z/mZ) of the equation

xy =amodm.

Let m = Ilp~i be the prime factorization of m (pi primes, ni EN). For
a E Z/mZ we define a(i) E Z/p~iZ as the (unique) solution of

a(i) = a modp~i.

Then as Z/mZ = Il(Z/p~iZ) (the Chinese remainder theorem), we have the
following decomposition.
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Lemma 1 The number of pairs (x, y) E (Z/mZ) x (Z/mZ) satisfying

xy =amodm (2.15)

is equal to the product of the numbers of solutions (x, y) E (Z/p~iZ) X

(Z/p~iZ) of

(2.16)

By the Lemma, we only have to determine the number of solutions of (2.15)
for m of the form m = pn.

Fix a prime number p and a natural number n. Observe first that the number
of solutions (x, y) E (Z/pnz) x (ZpnZ) of xy = amodpn depends on a only
through the p-adic norm of a, that is, through the exponent of the maximal
power of p that divides a. Indeed, if there exists an invertible b in Z/pnz
satisfying

then

#{(x,y) E (Z/pnZ) x (Z/pnZ) I xy =amodpn}

=#((x, y) I xyb =pn-l modpn}

=#((x, z) E (Z/pZ) x (Z/pZ) I xz =pn-l modpn}

=Np(l,n).

To compute Np(l, n), we use the following well-known formula from the theory
ofp-adic integration (Christol [4, Sect. 7.2.2, p. 466]). Let f(Xl,'" ,xr) be
a polynomial with coefficients in Zp, the ring of p-adic integers, and let I . Ip
denote the p-adic norm. Then for any real s > 0,

! If(Xl"" ,xr)I~Jl(dxl)'" Jl(dxr) = pS - (pS _l)Q(p-r-s), (2.17)

(Zp)T

where Jl is the Haar measure on Zp and Q(T) is a Poincare series:

00

Q(T) = LTk#{(Xl"" ,xr) E (Z/pkzy I f(xl"" ,xr) =Omodpk}.
k=O

Theorem 1 The generating functions

00 00 n

Gp,l(T) = LNp(Z,n)Tn, Hp(T,Z) = LLNp(Z,n)TnZl

n=O n=O l=O
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are given by

H (T Z) = (1 - pT)2(1- p-1Z) - p2(1 - p-1T)(1 - Z)T
p , (1 - Z)(1 - p-1Z)(1 - pT)2(1 _ p2T) (2.19)

Proof. We use formula (2.17) for r = 2 and f(x, y) = f,(X, y) = pixy. For
the lefthand side of (2.17) we obtain

f If,(X,y)l;tt(dx)tt(dy) = f p-1Ixl; Iyl; tt(dx)tt(dy)
(Zp)2 (Zp)2

= p-l ([ Ixl; I'(dx)r
By (2.17),

f I Is (d) S (S 1) 1 1 - p-1
X ptt x = P - P - 1 _ p-1-s = 1 _ p-1-s'

Zp

(Note that here Q(T) = 1/(1 - T), since #{x E 'llpn I'll I x 0 modpn} = 1
for all n). Furthermore,

Thus, the coefficients on the righthand side of (2.17) are just the Np(l, n). It
follows that

Setting T = p-2-s, so that p-s = p2T we get

1 (1) (1- -1)2p2T - p2T - 1 Gp,I(T) = p-l 1 _ ~T (2.20)

and (2.18) follows from (2.20) by a short calculation. Similarly, multiplying
(2.20) by Zl and summing over 1yields (2.19).
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For example, if p = 2 the numbers Np(O, n) of solutions (x, y) of (x, y) 0
mod 2n is (n + 2)2n-t, as

00 (1 - 2T)2 - T
G2,o(T) = ~ Np(O, n)T

n
= (1 _ 2T)2(1 _ 4T)

00

1 - T "'"'( ) n-ITn
= (1 - 2T)2 =~ n + 2 2 .

3 The inequality for dependent random variables

We will now prove (1.4). For this we need some basic theory of continued
fractions (see e.g. Hardy and Wright [7], Billingsley [2]) and a probability
estimate due to Levy [9]).

Any x E [0, 1] has a continued fraction expansion x = [al (x), a2 (x), ... ]
providing a sequence of fractions usually denoted by

For two positive numbers Po < PI let

B(po, PI) = {x E [0,1] I Po < qk(X) < PI for some kEN}.

2po 1
Lemma 2 >'(B(po, PI)) ~ 1 - (1 + 2log2 Po) - PI .

PI - Po

Proof. Let Q be the set of all finite sequences q= (qI,'" ,qk), kEN, of
denominators of possible continued fraction expansions satisfying qk :::; Po. We
set x(q) = Pk/qk, where Pk is the kth numerator corresponding to qI, ... ,qk,
and

I(q) = {x E [0,1] I (qI(X), ... ,qk(X)) = q}

J(q) = I(q) n {x E [0,1] I qk+I(X) ~ PI or x = x(q)}

J(O) = {x E [0,1] I qI(X) ~ pr}o

The sets J(q), q E Q, and J(O) are pairwise disjoint intervals and

B(po, PI) = [0,1]\ (J(O) u UJ(q)).
qEQ
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Thus,

A([O, l]\B(po, P1)) A(J(O)) + L A(J(q))
qEQ

ko

A(J(O)) + L L A(J(q)),
k=l qEQ

Iql=k

(3.1)

where Iql denotes the length of the sequence qand ko is the maximum length
of sequences in Q. Since

> 2(k-1)/2 £ ( ) QPo > qk _ or every q1,···, qk E ,

it follows that

ko < 1 + 2log2 po. (3.2)

Now let U be a random variable that is uniformly distributed on [0,1]. Then
if qE Q, Iql = k, it follows that

A(J(q)) P(qk+l(U) ~ PI, U E I(q))
P(U E I(q))P(qk+l(U) ~ P11 U E I(q))

< P(U E I(q))P(ak+l(U) > P1 - po I U E I(q)) (3.3)
-1 Po

< P(U E I(q))2 (P1 ~ po)

For the first inequality in (3.3) we have used the recursion qk+l = qkak+l+qk-1
which for q E Q,lql = k, implies that ak+l > (P1 - Po)/Po. The second
inequality follows from a result of Levy [9, p. 296].

To estimate A(J(O)), note that q1(X) ~ Po implies that x ~ P1(X)/q1(X) =
1/Pl. Thus, by (3.1), (3.2) and (3.3).

A([O, 1]IB(Po,P1)) ~ pi1+ ko 2po L P(U E I(q))
P1 - Po --+

qEQ

1 2po
~ PI + (1 + 2log2 po) .

P1 - Po

The Lemma is proved.

10



(3.5)

Lemma 3 Let X be uniformly distributed on {O, 1, ... ,m - 1}. Then

P(X/m (j. B(po, Pi)) :::; 2po(1 + 2log2Po) ( 1 + po) + pi1 + m-1
•

Pi - Po m
(3.4)

Proof. For every half-open or open interval I in [0,1] we have

IP(X/m E I) - .\(1)1:::; m-1
•

As J(O) and J(q) are half-open intervals, (3.1) and (3.4) yield

P(X/m (j. B(po, pd) :::; .\(J(O)) + L .\(J(q))
qEQ (3.6)

+m-1 (1 + card Q).

It remains to find an upper bound for card Q. Let Q be the set of sequences
in Q having maximal length, i.e., the set of those (ql(X), ... ,qk(X)) E Q for
which qk+l(X) ~ Po. Since

1 1 1
.\(I(ql" .. ,qk)) = qk(qk + qk-l) > 2q~ ~ 2p~

for (ql, . .. ,qk) E Q, we clearly have card Q < 2p~. Inequality (3.4) now
follows from (3.6), Lemma 2 and

card Q :::; kocard Q< (1 + log2 Po) (2P5)'

Lemma 4 Let

p(j,k) = P(X =j, Y = k), j,k E {O, ... ,m-1}

be the joint distribution of X and Y. Assume that there are constants C1

and C2 such that

p(jlk) = P(X = jlY = k) :::; Cdm

I
p(jll k ) I ., 1/
p(j2Ik) - 1 :::; C21Jl - J2 m

for allj,k,jl,h E {O, ... ,m-1}. Then

IP(U/m < ulY = k) - ul :::; 3C2 + inf f (qn(~))
m n~l m

11

(3.7)

(3.8)



for all k E {O, ... ,m -I}, where

f( ) - 3 (C1 + C2)q ~T
q - - + , q E 1'1.

q m

Proof. Let piq be an arbitrary fraction from the continued fraction expansion
of kim. Let

Ji = {(i - l)q, (i - l)q + 1, ... ,iq - I}

Ji(u) = {j E Ji I frac (jklm) < u},

where frac(x) denotes the fractional part of x ~ O. Then

[m/q]

P(Ulm < u) I Y = k) = L L P(X = j I Y = k)
i=1 jEJi(U)

+ L P(X = j I Y = k) (3.9)
kEJ[m/q]+l

k<m
1 +11.

Clearly, (3.7) yields

(3.10)

Regarding the sum 1, we can write

(3.11)

where Ai = ~axp(jlk) and ai = rp.inp(jlk). l,From (3.8) we can conclude
JEJi JEJi

that

(3.12)

Obviously, card Ji = q. We need an upper bound for card Ji(u). Note that

12



For arbitrary j E Ji(u) write j = (i - l)q + h, where h E J1 ; we obtain

( k hk)frac(jk/m) = frac (i - l)qm + m

= frac ((i -l)q~ +frac(~))

and

frac ( ~) = frac ( h(~ -~) + h:) = frac ( a + h:)
where lal < q-l. Recall that p and q are relatively prime. Thus, as h runs
through J1 , frac( ':::) runs through the set of all values ~ + a, l E J1• Let
f3i = (i - l)qk/m.

Let Ji(U) be the number of values frac(f3i + (l/q)) in [0, u) for which l E J1 .

Clearly, we have Ji(U) E {[qu], [qu] + I}. Since lal < q-l, it now follows
easily that

so that

By (3.12) and (3.13),

Ai card Ji(u) (1 C1q) qu + 3 C1q 3 3C2
---~< +- <u+-+-+-.

ai card Ji - m q - m q m

Inserting (3.14) and (3.10) in (3.9) we find that

C2q 3 3C2 C1q
P(U/m <u):::; u+ -+ - + -+-

m q m m
3C2

=u+-+f(q)·
m

(3.13)

(3.14)

Minimizing with respect to all possible denominators q = qn(k/m) we arrive
at

3C2 • (( k))P(U/ m < u) - u :::; - + mf f qn - .
m n2':1 m

The analogous lower bound P(U/m < u) 2:: u - (3C2/m) - f(q) is derived
along the same lines.

13



Theorem 2 Assume that the joint distribution ofX and Y satisfies conditions
(3.7) and (3.8) and that

P(Y = k) ~ Co/m, k = 0, ... ,m-1. (3.15)

for same constant co. Then there is a constant C depending only on Co, C1, C2

such that

(
10g m) 1/2

sup IP(U/m < u) - ul ~ C -- .
o::;u::;I m

Proof. By the formula of total probability and Lemma 4, we obtain

(3.16)

m-l

P(U/m < u) = L P(Y = k)P(U/m < ulY = k)
k=O

< u + 3C,m-1 +~ P{Y = k) min [l,~~f (qn(~))]

u+3C2m-
1
+E (min [l,~~rf (qn(:))]).

(3.17)

Note that the right side of (3.17) is equal to Jo
1(1 - G(x))dx, where

Let C3 = C1 + C2. The function f(t) = 3t-1 + C3m-1t, t > 0, is strictly
convex, has the unique minimum to = (3m/C3 )1/2 and xo = f(to) = 2to1.
Thus the equati on f(t) = x has no solution for x < xo and exactly two
solutions t 1 (x) < t2 (x) for x > xo. If x > xo, a short calculation yields

x 6C3
f(6/x) = f(mx/2C3 ) = -2 + - < x,

mx

and consequently t1(x) < 6/x < mx/2C3 < t2(X). These observations show
that

G(x) P(t1(x) < qn(Y/m) < t2(x) for some n E N}
> P(6/x < qn(Y/m) < mx/2C3 for some n E N} (3.18)

P(Y/m E B(6/x, mx/2C3 ).

l,From (3.15) and Lemma 3 it now follows that

1 - G(x) ~ H(x) + m-1, x E (0,1]

14



where the function H is defined by

2C ( 12C )H(x) = _3 + 2Co (6/X)2m -1 + 2 3 (1 + 2logt(6/x)), x> xo.
mx mx -12C3

Thus, for any y E (xo, 1] we have the following estimate:

E(min[1, f(qn(Y/m))]) =[(1 -G(x)) dx:o Y +l H(x) dx. (3.19)

On (xo, (0) the function H(x) is positive and strictly decreasing from infinity
at zero. FUrther,

(
36 12C3) 48

H(x) ~ 2 -2 +-2 (1 + 2log2(6/x)) ~ 12· -2' x E (xo, 1] (3.20)
mx mx mx

as Co ~ 1 and C3 ~ 1. Let Xl be the solution of H(x) = 1 in (xo, (0). For
sufficiently large m we have Xl < 1 and then, by (3.20),

Xl ~ max[12(C3/m)1/2, (576/m) 1/2].

Hence if Xl ~ X ~ 1, H(x) can be bounded as follows:

2C3 ( 36 12C3 ) / 2))H(x) ~ - + 2Co -2 + 2( (C / 2)) (1 + log2(36 Xlmx mx mx 1 - 12 3 mX1

2C3 2Co ( 144)
~ - + -2 36 + -C3 (1 + log2(36m/576))

mx mx 11
2C3 2Co

~ - + -2(36 + 14C3)(10g2 m - 3).
mx mx

For any y E [Xl, 1] we now find that

11 H( ) d 2C3 2Co(36 + 14C3)(log2 m - 3)y+ X x~y+-+ .
y my my

Over y E (0, (0) the right-hand side of (3.21) is minimized for

Yo = [2C3 + 2Co{36 + 14C3)(log2m - 3)jl/2m-1/2,

(3.21 )

the corresponding minimum being equal to 2yo. A short calculation shows
that H(yo) ~ (9 + 3C3)/(9 + 4C3) < 1, as m ~ 00. Thus, Yo > Xl for
sufficiently large m. Hence we may insert the value Yo in (3.21) for all but
finitely many m. To summarize, it is now proved that

JlOgmP(U/m < u) ~ u + C ----:;;;-
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for some constant C depending only on Co, Cl, and C2 . Similarly it can be
shown that P(U/m < u) ~ u - C((1ogm)/m)1/2.
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