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Abstract 

In this thesis, a mathematica! description is presented of the dynamic behaviour of 

systems of interconnected deformable bodies. 

The displacement field of a body is resolved into a displacement field due to a 

rigid body motion and a displacement field due to deformation. In order to get an 

unambiguous resolution, the displacement field due to deformation is required to be 

such that it cannot represent rigid body motions. This is achieved by prescrihing 

either displacements due to deformation of selected particles or mean displacements 

due to deformation. 

Starting from the equations of motion of a partiele of the body, a variational 

formulation of the equations of motion of the free body is derived. These equations 

are simpler in case the mean displacements due to deformation are equal to zero. 

Approximate equations of motion are obtained by approximating the displacement 

field due to deformation by a linear combination of a set of assumed displacement 

fields. Three methods are described for generating assumed displacement fields, 

namely the assumed-modes method, the finite element method, and the modal 

synthesis method. 

For formulating the equations of motion of a body which forms part of a system 

of bodies, the interconnections with other bodies must be accounted for. Energetic 

and active connections can betaken into account by adding the forces they generate 

to the applied forces on the free body. Kinematic connections constrain the relative 

motion of interconnected bodies. This can be accounted for with constraint 

equations, that can be used for partitioning the variables that describe the 

kinematics of the system of bodies into dependent and independent variables. For 

formulating constraint equations it is convenient to introduce variables that 

describe the relative motion of the interconnected bodies. 

The simplification of the equations of motion in case the mean displacements 

due to deformation are chosen equal to zero, leads to a computation time reduction 

of a few decades of per cents in the most favourable case. For the systems investi­

gated in this thesis the dynamic behaviour is approximated better in case 

displacement fields due to deformation are approximated by assumed displacement 

fields with mean displacements equal to zero. Caution must be taken in preventing 

rigid body motions of the displacement field due to deformation by prescrihing 

displacementsof selected particles of the body, sirree this may result in an incorrect 
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solution of the dynamic behaviour. 

The assumed-modes method is only feasible for regularly shaped bodies. The 

finite element method and the modal synthesis method can be used for boclies with 

arbitrary shape. The finite element method leads often to a model with many 

degrees of freedom. The solution of such a model requires much computation time. 

The modal synthesis method can then be used with success to reduce the number of 

degrees of freedom such that the required computation time is cut down. The 

effectiveness of the modal synthesis method depends to a great extent on a proper 

choice of the assumed displacement fields. Such a choice can generally be made in 

advance on the basis of the load on the body. The lumped mass approximation, 

which is frequently used in literature, is feasible for determining time-independent 

mass coefficients from displacement fields which have been determined with a 

standard finite element program. One should bear in mind that a finer subdivision 

into elements may be required than would be necessary for determining the 

displacement fields sufficiently accurate. 

A method is proposed to improve approximations for descrihing the dynamic 

behaviour of a body for a specific set of assumed displacement fields. This method 

has been used successfully for reducing the required computation time by lowering 

irrelevant high frequencies. 
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chapter 1 

Introduetion 

The increase in capacity of computers has opened the possibility to simulate the 

dynamic behaviour of complex mechanica! systems, such as spacecraft and vehicles, 

already in the design phase. This may save expensive modifications of prototypes 

which wiJl be necessary in case the dynamic behaviour is inadequate. Increasing 

demands on the dynan1ic behaviour and more flexible system parts due to a more 

economical use of matcrials require that deformation of the parts is taken into 

account in determining the dynamic behaviour. 

Mechanica! systems differ in various ways, such as the number of bodies, the 

types of connections joining the bodies, and the topology. Many papers with the 

main objective to present a formalism to develop equations of motion for general 

mechanica! systems have been published. Often the presented theory is restricted to 

a specific class of mechanica! systems, such as systems with rigid boclies or 

two-dimensional systems. A survey will be given of three important topics related 

to the description of the dynamic behaviour of mechanica! systerns, namely the 

description of the kinematics of mechanica! systems, mechanica! principles for 

deriving the equations of motion, and deformability of bodies. 

Two ways to describe the kinematics of mechanica! systems are in common use, 

namely the global description and the relative description. In the global description, 

the positions of all bodies are described relative to an inertial space. In deriving the 

equations of motion, the kinematic connections between the bodies are taken into 

account separately by means of eenstraint equations. The resulting equations of 

motion are a set of mixed differential-algebraic equations having a simple form. 

Special techniques are required for solving these equations. The global description is 

used by, among others, Orlandea et al. (1977a, b), Wehage and Haug (1982), Hang 

et al. (1986), and Changizi et al. (1986). 

The finite element formulation presented by Van der Werff and Jonker (1984) 

may be regarcled as a variant of the global description. They describe the position 

and orientation of nodes relative to an inertial space. Both bodies and connections 

are considered as finite elements. This allows to obtain the equations of motion of a 

mechanica! system by a standard assembly process. The relative motion of nodes of 

an element are described with deformation mode coordinates which are nonlinear 

functions of the nodal displacements. When a relative motion is constrained, such 
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as may be the case for rigid bodies, the corresponding deformation coordinate 

equals zero which leads to a constraint equation. 

In the relative description, the position of one arbitrary body is described 

relative to an inertial space; the positions of the other bodies are described relative 

to a body whose position has already been described, in terms of variables 

characterizing the relative motion. For systems without kinematically closed 

chains, these variables are independent. The resulting equations of motion are a set 

of differential equations of minimal dimension. In systems with kinematically closed 

chains, the closed ebains are first opened by cutting the chains imaginarily. Then, 

the kinematics can be described in terms of the variables which characterize the 

relative motion of the bodies. Accounting for the cuts renders these variables 

dependent. For some mechanica! systems with a simple geometrie configuration 

only, this dependency can be eliminated. However, in general the resulting 

equations will be too involved. Therefore, the dependency is usually taken into 

account separately by means of constraint equations just as with the global 

description. As compared with the global description, the number of constraint 

equations going with the relative description is small; however, they involve the 

kinematic variables of all the bodies in a closed chain whereas in the global 

description only the kinematic variables of pairs of interconnected bodies are 

involved. The resulting equations of motion are a set of mixed differential-algebraic 

equations like with the global description. The relative description is used by, 

among others, Wittenburg (1977), Ruston and Passerclio (1979), Sol (1983), 

Schiehlen (1984), and Singh et al. (1985). 

A combination of the global description and the relative description has been 

presented by Haug and McCullough (1986). They derived the equations of motion 

for recurring subsystems with a particular kinematic structure using the relative 

description. Special purpose modules are used to evaluate these equations of 

motion. The result is added to the equations of motion of the remairring part of the 

system whose kinematics is described using the global description. They observed a 

vastly improved computational efficiency as compared to a program based on the 

global description (McCullough and Haug, 1986). 

The second important item is the mechanica/ principle used for deriving the 

equations of mot ion. Several papers (e.g. Schiehlen, 1981; Kane and Levinson, 1983; 

and Koplik and Leu, 1986) deal with the question: Which mechanica! principle 

yields equations of motion in the least tedious way and having the simplest form? 

However, this is only anitem of argument when the relative description is used for 

descrihing the kinematics of the mechanica! system, because some principles, for 
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example Lagrange's equations of motion, take the kinematics of the systern into 

account from the start. When the global description is used, all mechanica! 

principles yield without any trouble the equations of rnotion. In case the relative 

description is used, a variational forrnulation is most suited, such as Lagrange's 

form of d' Alembert's principle (Witten burg, 1977), Kane's method of generalized 

speed (Kane, 1968), and Jourdain's principle (Schiehlen, 1986). 

The third important item is the influence of deformability of bodies. Many 

papers deal with the dynamic analysis of mechanica! systems that contain 

deforrnable bodies. Most papers use the same description of the kinernatics of 

deformable bodies: the displacernents of particles of a deformable body are resolved 

into displacements due toa rigid body motion of the body and displacements due to 

deformation of the body. This resolution is done in such a way that the strain­

displacement relations rnay be linearized in case the strains are smal!. Further, 

most papers use Galerkin's rnethod for obtaining an approximate solution of the 

equations of motion in the space domain. This involves an expansion of the 

displacements due to deformation of the body in a linear combination of linearly 

independent displacement fields. The papers differ in the way these displacement 

fields are generated: this is most often done by either the finite element method 

(Song and Haug, 1980; Thompson and Sung, 1984; Turcic a.nd Midha, 1984a, b; 

Van der Weeën, 1985) or the modal method (Sunada and Dubowsky, 1981, 198:3; 

Yoo and Haug, 1986a, b, c; Agrawal and Shabana, 1985). The papers differ further 

in the degree to which the coupling between rigid body motion and displacements 

due to deforrnation is included. The most sirnple ana.lysis metbod considers only the 

quasi-static deflection caused by the inertia forces due to the motion which follows 

from a kinematic analysis of a conesponding rigid body model. Erdman and Sandor 

(1972) refer to such an analysis as elastodynamic ana.lysis. In a more refined 

analysis, the inertia contribution conesponding to the displacements caused by 

deformation are also taken into account (Thompson and Sung, 1984; Turcic and 

Midha, 1984a, b). The most refined analysis departs from unknown rigid body 

rnotions and includes all coupling terms (Song and Haug, 1980; Sunada and 

Dubowsky, 1981, 1983; Yoo and Haug, 1986a, b, c; Agrawal and Shabana, 198.5; 

Van der Weeën, 1985; Lilov and Wittenburg, 1986; Koppens et al., 1988). 

The subjects of difference and resemblance of the numerous papers on the 

dynamics of systems of deformable bodies do not become clear from the literature. 

It is the purpose of this thesis to give a unified description of the dynamics of 

systerns of deformable bodies. From this description the various descriptions that 

can be found in the literature can be derived. It is expected that this wil! increase 
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the insight into the various descriptions. 

The dynamics of an individual deformable body is presented in chapter 2. The 

displacements of the body are resolved into displacements · due to deformation and 

displacements due to a rigid body motion. The order in which the displacements of 

the body are resolved is opposite to the usual order. This provides that the rotation 

tensor that describes the rigid body motion can be readily factored out of the 

deformation tensor, and that there is no need to introduce time differentiation of 

the displacements due to deformation relative to a rotating frame. However, the 

order of this resolution is immaterial for the ultimate equations of motion. The 

resolution of displacements of the body is ambiguous. Conditions are imposed on 

the displacement field due to deformation in order to get a unique resolution. Two 

types of conditions are described, namely conditions on displacements of selected 

material points of the body and conditions on the mean displacementsof the body. 

Starting from the equations of motion of a partiele of the body, a variational 

formulation for the equations of motion of the body is derived. lt is shown that the 

equations of motion become considerably simpler when the displacements due to 

deformation satisfy the conditions on the mean displacements of the body. The 

equations of motion contain partial derivatives with respect to material 

coordinates. In general, such equations admit no closed-form solution. In view of 

this, approximate equations of motion are derived u&ing Galerkin's method. This 

involves approximating the displacements due to deformation as a linear combina­

tion of assumed displacement fields. The above description of the kinematics of the 

body and the derivation of the equations of motion are done in terms of veetors and 

tensors in their symbolic form. Finally, the ultimate equations of motion are 

written in terms of the components of veetors and tensors relative to an 

orthorrormal right-handed inertial base. It is shown that it is preferabie to write the 

equations of motion in terms of the components of the angular velocity vector 

above the more used first and second time derivatives of angular orientation 

variables. 

The most simple material behaviour is used namely isotropie linear elastic 

material behaviour, because the emphasis of this thesis is on the description of the 

dynamics of deformable bodies. Ho wever, anisotropic, nonlinear elastic, or visco­

elastic material behaviour can be introduced without insurmountable difficulties by 

introducing the proper constitutive relation. 

In chapter 3, three procedures for generating assumed displacement fields for 

approximating the displacements due to deformation are reviewed. The assumed­
modes method can be used for regularly shaped bodies. The assumed displacement 
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fields are analytic functions of the material coordinates. It is limited in scope 

because regularly shaped bodies are rare in practice. The finite element method is a 

more versatile method. It consists of subdividing the body into regularly shaped 

volumes. The displacements within such a volume can be easily approximated by 

analytic functions. These are chosen such that compatibility of displacements of 

neighbouring volumes can be easily ensured. However, the finite element metbod 

generally leads to a model with many degrees of freedom. These can be reduced by 

using a reduced set of linear combinations of finite element displacement fields. 

This approach is known as the modal synthesis method. lt combines the versatility 

of the finite element method and the efficiency of the assumed-modes method. 

The equations of motion of a system of oodies are considered in chapter 4. 

Boclies may be interconnected by energetic, active, and kinematic connections. The 

contribution of energetic and active connections can be readily introduced into the 

equations of motion of the single bodies. Kinematic connections render the variables 

that describe the motion of the individual bodies dependent. From examples for 

pairs of interconnected boclies it is shown how equations can be obtained that 

describe this dependency. It appears that the essential difference between the global 

description and the relative description is that for the latter approach extra 

variables are introduced to define the relative motion of the pair of bodies. This 

allows to write the rigid body motion of one body explicitly in terms of the 

remairring variables that describe the motion of the two boclies and the variables 

that describe their relative rnotion. From these equations it is possible to partition 

the variables into dependent variables and independent variables. The variational 

form of the equations of motion of the systern of boclies is given. Using the 

partitioning of variables into dependent and independent variables, the equations of 

motion of the system of bodies can be written in terrus of the independent variables. 

It is shown that these equations can be generated the same way for both the global 

description and the relative description. However, for the relative description use 

can be made of the fact that the rigid body motion can be solved frorn the 

equations that descri he the dependency of variables due to kinematic connections. 

In chapter 5, an assessment is given of descriptions and approximations. In 

section 5.2, potential savings of comput.ation time from using the mean displace­

ment conditions for the assumed displacement fields are evaluated. The finite 

element method and the modal synthesis metbod are considered in section 5.3 and 

section 5.4, respectively. Special attention is paid to preventing rigid body motions 

in the displacement field due to deformation. The effect of the frequently used 

lumped mass approximation is considered in section 5.4. The displacements due to 
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deformation have been approximated by a linear combination of assumed displace­

ment fields. Due to this approximation, some effects, such as for example the 

stiffening of a rotary wing due to centrifugal forces, are not present. This is 

discussed in section 5.5. In section 5.6 a procedure is presented for correcting 

eigenfrequencies going with a specific set of assumed displacement fields that do not 

agree with the actual eigenfrequencies. This procedure is used for alliviating the 

integration time step reducing effect of high frequencies. The numerical experiments 

presented in this chapter are done with the version of DADS for three-dimensional 

problems (CADSI, 1988). This general purpose multibody program is basedon the 

global description. The subroutines that evaluate the equations of motion of a 

deformable body are replaced by subroutines based on the equations of motion 

presented in chapter 2. The salution algorithm used by DADS is described by Park 

and Haug (1985, 1986). 

In this thesis, veetors and tensors are used in their symbolic form. Advantages 

of using the symbolic form over the component form are the notational convenience 

and the absence of the need to specify vector bases. Once the equations of interest 

are derived, they must he written in component form to allow for their numerical 

evaluation. In section A.2 some definitions and properties related to veetors and 

tensors are given. For a more detailed treatment the reader is referred to Malvern 

(1969) or Chadwick (1976). 
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chapter 2 

The equations of motion of a deformable body 

2.1 Introduetion 

The equations of motion of a deformable body constitute a building block for the 

equations of motion of a system of deformable bodies. They relate the acceleration 

of the body and the forces acting on the body. The motion of the body can be 

obtained by integration of the equations of motion. 

In section 2.2 a description is given of the kinematics of a deformable body. 

Starting from the equations of motion of a partiele of the body, the weak form of 

the equations of motion is derived in section 2.3. Since, in genera!, a closed-form 

solution to these equations does not exist, approximate equations of motion based 

on Galerkin's metbod are presented in section 2.4. The component form of the 

resulting equations of motion is presented in section 2.5. 

2.2 The kinematics of a deformable body 

A body consists of solid matter that occupies a region of the three-dirnensional 

space. Following the customary simplifying concept of matter in continuurn 

mechanics, bodies are assumed to be continuous, i.e. the atomie structure of matter 

is disregarded. An element of a body is called a particle. The region of a Euclidean 

point space occupied by the particles of a body is referred to as the current 

configuration of the body. A partiele is identified by the position vector of the 

conesponding point of the Euclidean point space. 

In solid mechanics it is customary to campare the current configuration of a 

body with a configuration of which all relevant quantities are known, the reference 

configuration. Usually, the unstressed state of the body is chosen as reference 

configuration. There is a continuons one-to-one mapping which maps the reference 

configuration onto the current configuration. 

At first sight it is natura! to describe the displacement field of a body with the 

displacement veetors of the particles relative to their position in the reference 

configuration. However, this has two drawbacks. Firstly, due to large rotations it is 

necessary to use nonlinear strain-displacement relations even when the strains are 

smal!. Secondly, discretization of a contim10us body (which is necessary in order to 

be able to analyze the behaviour of the body with a computer) involves expressing 
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the motion in terms of a (by preference) Hnear combination of independent 

displacement fields; this is only possible for some special bodies, such as a bar an<j. a 

triangular plate with in-plane deformations. At first sight this is not a serious 

restrietion since bodies can be built up from such special bodies, i.e. fini te elements. 

However, this will result generally in a model with many degrees of freedom. Time 

integration of the equations of motion going with such a model is impractical. One 

might consider reducing the number of degrees of freedom by a linear transforma­

tion mapping the finite element nodal displacements onto generalized body degrees 

of freedom. Motions going with these body degrees of freedom may be for instanee 

normal modes of free vibration. In order to be able to represent all possible motions 

of the body as close as possible, it is necessary to include motions that describe 

rigid body motions. However, in general it is not possible to describe large rigid 

body rotations as a linear combination of the finite element nodal displacements. 

These drawbacks are not present when the displacements of the body are resolved 

into displacements due to rigid body motion and displacements due to deformation. 

Consider a body 9J with mass min its configuration Gt at time t (see fig. 2.1). 

Let t be the position vector of an arbitrary partieleP of the body, measured from 

an inertial point 0. Let G be a time-independent reference configuration of which 

all relevant quantities are known. Let x be the position vector relative to 0 of the 

point of G corresponding to P. A continuous one-to-one mapping exists which maps .. .. . .. .. (.. ) x onto r, I.e. r "" r x,t . 

Fig. 2.1 Mapping of 9J from reference configuration onto current configuration 
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The body in Gt can be considered as the result of a deformation of the body in 

G with displacement field u(x,t), foliowed by in Succession a rigid body rotation 

about 0 defined by the proper orthogonal tensor Q(t), and a rigid body translation 

defined by the vector ê(t) 

r(x,t) = ê(t) + Q(t)·{x + u(x,t)}. (2.1) 

The vector df between t.wo neigbbouring points in Gt and the vector dx between 

the corresponding points in Gare related by 

ctr = Q(t)·{dx + u(x+dx,t) ii(x,t)}. (2.2) 

This equation can be rewritten as 

(2.3) 

where, for infinitesimally smal! dx, F is the deforrnation tensor by 

(2.4) 

Here, V is the gradient operator referred to G. 

The acceleration and a virtual displacement of a partiele are obtained by 

differentiating (1) twice with respect to time and by taking the variation of (1), 

respectively. This yields 

•• •• + • .. 

.. .. Q {.. [.. (.. ..)] .. (.. .. ) .. .. .. } r = c + · w x w x x + u + w x x + u + 2w x u + u , (2.5) 

or = bê + Q·{O?t x c:x + ii) + óil}, (2.6) 

where w and 67r are the axial veetors of the skew-symmetric tensors Qc · Q and 

Qc · óQ, respectively. 

The angular velocity vector w differs from the usual angular velocity vector, 

which is defined as the axial vector of Q· Qc. The reason for introducing this 

alternative angular velocity vector is that then the rotation tensor Q can be 

factored out in (5) which is advantageous in the derivation of the equations of 

rnotion. The same applies for the virtual rotation vector Mr. 

The displacement field of the body bas been resolved into a displacement field 

due to deformation defined by ii and a displacement field due to a rigid body 

motion defined by c and Q. In order to get a unique resolution, the displacement 

field due to deformation is not allowed to represent a rigid body motion. Two kinds 
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of conditions for preventing rigid body motioru; can bo found in literature, namely, 

condîtions for displacements of selected particles of tbe body and conditions lor 

mean displac\lffients of the body (Koppens et aL, 1988). The first kind of conditions 

is used by, among others, Sunada and Duhowsky (1981), Singh et al. (1985), 

Agrawal and Shabana (1985), and Haug et al. (1986). The secoud kind of conditions 

is used by Agrawal and Shabana (1985), McDonough (1976), and others. 

Conditions for displacem.ents of selected particles. This kind of conditions is also 

used in finito element analyses of structures (Przemieniecki, 1968). It cornes to 

prescrihing displacements due t.o deformation of a numher of selected particles to 

prevent rigid body motion. For example, the displacements due to deformation of 

one partiele ~ are required to be zero: 

(2. 7) 

Now, the body can still perfarm rigid body rotations around Pc- Hence, in addition, 

rigid body rotations have to be prevented. Thïs may be achieved by constraining 

the rotatien of a hody-fixed frame (cf. Singh et al., 1985), or by prescrihing 

displacement components of other partïcles. In the latter case rigid body motions 

can be preven ted hy prescrihing altogelher six suitably chosen displacement 

components. When additional displacement components are prescribed, only a 

restricted class of all possible displacement fJelds cao he descri bed. 

Conditions for m.ean dispiacemenis ojthe body. A rigid body translation involves 

a displacement of the centre of mass. Consequently, a displar.ement field ii cannot 

represent a rigid body translation when ït does not cause a displacement of the 

centre of mass. This cao he expresscd mathematicaJly as 

f p ii cLQ = 0, 
g 

(2.8) 

where p is the mass deusîty of G and n is the refercnce volume. Thc translation 

vector è wiJl represent the traru;lation of the centre of mass of the body when this 

condition is used, 

The displacement field due to an infinïtesimally smal! rigid body ·rotation 

around 0 can.be represented by the vector field 

(2.9) 

wherc x is the rotatien angle and eis a unit vector paraHel to the rotation a.xis. Jt 
can ho seen that the displacements due to this rigid body rotation are perpendicular 

to x. Consequently, a displacement field n cannot repcesent a rigid body rotation 
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whcn it is on R mean parallel to x. This can be expressed mathematica.lly as 

r . . . 
).,PX <u dfl = 0. 
!l 

(2.10) 

(p bas been used as a weighting factor in order to cancel some terms in t.he 

equations of motion.) Examples of displacement fields satisfying (8) and (10) are 

modes of free vibrat.ion (Ashley, 1967). 

When in addition to condition (8), the centre of mass in the relerenee 

conflguration is ebasen to coincide with 0, some more terros in the equations of 

motion will cancel. 

2.3 The eouations of motion of a deformable body 

The equations repreaenting local balance of linear momenturn at an interior point of 

the body referring to the relerenee configuration are given by (cf. Malvern, 1969) 

(2.11) 

• where T is the second Piola-Kirchhoff stress tensor and b is a specific body laad 

vector. lt is preferabie starting from the equations of motion in this farm tostarting 

from the more well-known Cauchy's equations of rnotion, because the latter would 

require a transformation of variables referrîng to the current configuration onto 

variables referring to the reference configuration. This transformation has a.lready 

been carried out for the equations of motion inthefarm (ll). 
The body is assumed to be stress-free in tbe reierenee configuration. Then, lor 

isotropie linear elastic material b€haviour, T is related to the strain by (cl. Gurtill, 

1981) 

T = 2 IJ E + À tr(E) I, (2.12) 

where f1 and A are the Lamé elastic consta.nts, I is the identity tensor, and Eis the 

Green-Lagrangestrain tensor, defined by 

E t{Fc·F I}. (2.13) 

Camparing this expressimt with the expression lor the deformation tensor ( 4) 

reveals that thc Green-Lagrange strain tensor does not depend on the rigid body 

motion. (13) may be linearized in case the gradients of the displacements due to 

deformation are smal!. In genera!, this would nat be allowable in case the 

displaoements had not been resolved into displacements due to a rîgid body motion 
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and displacements due to deformation. 

The equations of motion of the body can be obtained by scalar multiplication of 

(11) with arbitrary test functions iP. The resulting product is identically zero 

because (11) is identically zero. Consequently, integration of this product over the 

volume of the body yields 

L {v. CT. r) + pb -Ph. iP <ID = o. 
u 

(2.14) 

The test functions will be restricted to functions for which this integral exists. 

Following the customary procedure in solid mechanics, the test functions are chosen 

from the space of variations of the displacement field of the body. Such a variation 

is denoted by tft. 
The continuity requirements for r can be lowered by integrating the first term 

of (14) by parts. This leads to more severe requirements on the continuity of the 

test functions but when the test functions are chosen from the space of variations of 

the displacement field of the body, these requirements will be satisfied. As stated 

by Zienkiewicz (1977), the solution to the resulting equation, the so-called weak 

form of (ll), is often more realistic physically than the solution to the original 

problem (11 ). Application of the divergence theorem to the first term yields 

-lT:óEd!l+ fph·lffdn- ip;·fl<ID+ .f.<F·T·n)·lftdr o, (2.15) 
u u u r 

where r is the surface of G and i:i is the unit outward normal vector to r. The 

surface integral varrishes for that part of the surface where the displacements are 

prescribed sirree there tft 0. On the remairring part of the surface, I', a surface load 

of p per unit of undeformed area is prescribed and T has to satisfy 

12 

Substituting (5), (6), (12) and (16) into (15) yields 

-i {2 p, E + À tr(E) I}:óE d!l 
u 

+ 6ê· {F-m~ Q· [ w x {w x (Xo+Û0)} + i1 x (x0+Û0) + 2w x iÏ0 + iio]} 
ct { .. (.. .. ) (Qc :;) .. { (.. .. .. ..) .. } (.. .. .. ..) -> + o11'· M- x0+u0 x ·c - w x t x+u,x+u ·w - t x+u,x+u ·w 

(2.16) 

- 2t(ïi.X+û). w- v(X+û,ä)} 

- óû0• { Qc. ~} + w· { t( óii,x+u). w} + iir. v( óii,x+ii) + 2w· v{ óii,il) 



where 

F ipb dQ +Lp df, 
n r 

M: = JP {(x+ii) x (Qc·b)} dn + L{(x+ii) x (Qc·p)} dî:', 
n r 

x0 =lp x dil, 
n 

u0 = Jpu dn, 
n 

t(a,b) iP {(a· b)I- ah} dil 
n 

...... 
Jp(axb)dil v(a,b) 
n 

.... 
V a,b, 

.. .. 
V a,b. 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

The first term of (17) represents the variation of the strain energy 8U of the body 

due to a virtual displacement óf. In general, this expression is too complicated to 

evaluate; consequently approximations are used instead. For example the 

expression for the Green-Lagrange strain tensor (13) is aften linearized. Also the 

body may be approximated by a two- ( one-) dimensional body in case one ( two) 

dimension(s) of the body is (are) considerably smaller compared with the other two 

(one) dimensions using an assumption from which the displacementsof an arbitrary 

material point of the body can be written in terms of the displacement of a plane 

(line). With such a two- (one-) dimensional body goes an approximate expression 

for its strain energy. An example of such a body is a plate (beam). 

As has been mentioned already at the end of section 2.2, some terms will cancel 

in the equations of motion when the mean displacement conditions (8) and (10) are 

used for eliminating rigid body motions. Substitution of successively (8) into (21 ), 

and (10) into (23) yields 

.. .. 
u0 = 0. (2.24) 

v(x,ii) o. (2.25) 

Consequently, also the time derivatives and variations of u0 and v(x,ü) vanish. 
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When the centre of mass of the reference confuguration is chosen to coincide with 

0, also 

~0 = 0. 

Substitution of (24)-(26) into (17) yields 

-i {2 p, E + ,\ tr(E) I}:óE dQ 
Q 

+ óê·{F m~} 

d {M.. .. { c· ...... ) .. 1 ( ........ ) -+ c-+ .... ) .. ..c .. :;)} + 01r· - w x t x+u,x+u · w - t x+u,x+u · w- 2t u,x+u · w- v u, u 

. . 
+ w·{t(bÛ,~+u)·w} + w·v(bÛ,û) + 2w·v(bÛ,û) 

(2.26) 

(2.27) 

From a comparison of the coefficients of óê in (17) and (27), it is observed that in 

(27) the rotation and the displacement due to deformation are not coupled with the 

translational motion. Oomparing the coefficients of tnr reveals that the coupling 

between the rotational and the translational motion has vanished and that the 

coupling between the rotational motion and the displacement due to deformation is 

reduced. To conclude, also coupling due to terms that involve bÛ is reduced. All 

this may be advantageous in the numerical evaluation of the equations of motion 

since firstly, less terms have to be evaluated and secondly, the mass matrix has 

become more sparse. This is investigated more closely insection 5.2. 

2.4 Apnroximate equations of motion: Galerkin's method 

The weak form of the equations of motion of a single body have been presented as 

equations (17) in the preceding section. The contribution of the displacement due to 

deformation û makes that in general a closed-form solution to this equation does 

not exist or is not feasible. That is why one resorts to an approximate solution for 

ii. This solution is sought in a certain N-dimensional vector space of vector-valued 

functions defined on Q. Then it can be represented as a linear combination of N 

functions that constitute a base of this vector space. In general (17) will not be 

satisfied by this approximate solution for any variation. In solid mechanica one 

usually only requires that (17) is satisfied for variations that can be written as a 
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linear combination of the N base functions. From this condition the N unknown 

coefficients in the approximate solution can be determined. This procedure is 

known as Galerkin's metbod (Zienkiewicz, 1977). It leads to a system of ordinary 

differential equations which can be solved with numerical integration routines. 

The above-mentioned vector space must be chosen such that its elements satisfy 

the same kinematic conditions as û. Further, its elements must be continuons and 

once piecewise continuous1y differentiable such that (17) can be evaluated. In case 

the body has been approximated by a one- or two-dimensional body, the 

accompanying approximate expression for the strain energy may contain secoud 

order derivatives of the displacement field u. Then the elements of the vector space 

and their first derivatives must be continuous, and their second derivatives must be 

piecewise continuous. 

Let *(x) be a column matrix of N vector-valued functions ~i(x), i = 1, 2, .... , N, 

that constitute a base of the N-dimensional vector space of vector-valued functions. 

Then, following Galerkin's method, both û and bû are approximated by a linear 

combination of these base functions: 

N 
-+,.. ~ ... -+ T -+ ... 
u(x,t) Rl k ai(t) <I>i(x) = g (t) p(x), (2.28) 

i 1 

N 

tû(x) Rl L 5aj ~Jiê) 8gT *(x), (2.29) 
i 1 

where g(t) is a column matrix of generalized displacements ai(t), i = 1, 2, ... , ~, 

and bg is a column matrix of the arbitrary constants 8ai(t), i 1, 2, ... , N. Bubsti­

tution of these equations into (17) yields the variational form of the equations of 

motion for the approximated displacement fields (28) and (29): 

+81i-·{M-D1 x(Qc·ê) iilx(J·w)-J·~-2{(_ll)2)·w gl:Q3} 

+bgT{r-~·(Q·Ç2)+w·(I)2·w) ~·:03+2w·(Q7Q)-.Qsg-} ro, (2.3o) 

where 

(2.31) 
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M =lP {x x (Qc·b)} dO+ L{x x (Qc·p)} <lf 
o r 

+ rl ip {~x (Qc·b)} dO+ rl L{~ x (Qc·p)} dÏ\ 
o r 

ê1 = ipx do, 
ll 

C2 ip~ dO, 
0 

c3 = iP {(x·x)I- xx} do, 
(} 

C4 lPH~·x)I-~it}<ID, 
o 

~ = ip{(~·~T)l-~~T} d!1, 
o 

i .... T .CS = p { ~ • ~ } dO, 
ll 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

An underscore and a wavy underscore in these expressions denote an N x N matrix 

and an N x 1 column matrix, respectively. The quantities (34)-(41) are time­

independent and consequently they have to be evaluated only once at the start of a 
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numerical simulation. They can be determined once the base functions ~(x) have 

been chosen. 

2.5 Approximate eguations of motion in component form 

The equations of motion as presented in the preceding section are in symbolic 

vector/tensor form. For computational purposes these equations must be rewritten 

in terms of the components of the veetors and tensors relative to some base. All 

veetors and tensors can easily be written in terms of their components relative to an 

inertial base thanks to the fact that the reference configuration is inertial. 

Consequently, there is noneed to specify the base relative to which a certain vector 

or tensor is written. This is in contrast to the usual description found in the 

literature where both an inertial base and a body-fixed base is are introduced 

(Casey, 1983; Sol, 1983; Mclnnis and Liu, 1986). 

Let the veetors and tensors be written in terms of their components relative to a 

right-handed orthorrormal inertial base Ç. The components of veetors and tensors 

wiJl be stored in, respectively 3 x 1 column matrices and 3 x 3 matrices. Veetors 

in cross-product terms are replaced by the matrix representation of the correspond­

ing skew-symmetric tensors which will be denoted by a wavy superscript (cf. A.l). 

Elements of the matrices defined in the preceding section are indicated by their row 

and column indices in order to obtain equations of motion in a forrn suitable for 

computer implementation. Using this notation and making use of the fact that 
-> ->T ( ) 12 • 12 I, the third-order unit matrix, the equations of motion 30 become in 

component form 

DÇT{f mÇ .Q[.i!:!.i!:! 1)1- .Ü1~ + 2.il:!f á(j)Ç2(j) + f ä(j)Ç2(j)]} 

+ 81l { M- .Ül.QT ç .i!:! J. \!)- J.~- 2{y á(j)Ih(j)}w r ä(j)Q3(j)} 

+ r 8a(i){f(i) Ç~(i).QTÇ + WT!h(i)W- l)~(i)~ + 2\!)Tf á(j)Ç7(i,j) 

-1 öWCs(i,j)} = ru. (2.46) 

These equations cannot be integrated because the components of the angular 

velocity vector, w, cannot be integrated to obtain angular displacements, sirree they 

are non-integrable combinations of the first time derivatives of angular displace­

ments. These angular displacements are required for evaluating the rotation matrix 

.Q. For this reason, differential equations must be added from which the angular 
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displacements ean be obtained. 

V arious kinds of angular displaeements are in use, such as Euler angles, Bryant 

angles and Euler parameters (Wittenburg, 1977). The rotation matrix Q written in 

terms of Euler angles or Bryant angles contains the sine and eosine of these angles. 

Evaluation of these goniometrie functions is laborious. These goniometrie functions 

cause also a swell of terms when the first or second time derivative of Q is required. 

In addition, these angular displacements may suffer from singularities. Due to these 

drawbacks usually Euler parameters are preferable. A disadvantage of Euler 

parameters is that they are dependent. 

The required differential equations for Euler parameters, which have been 

derived in appendix B, are 

. .l.QT g = 2- !é), (2.47) 

where 

(2.48) 

is a column matrix with Euler parameters, and 

n [ -ql qo q3 -q2] 
~ -q2 -q3 Qo ql · 

-Qs q2 -ql qo 

(2.49) 

In literature, w and (gare often written in terms of the angular displacements 

and their first and second time derivatives. This leads to more extended equations 

of motion. Moreover, when Euler parameters are used as angular displacements, an 

extra equation of motion is obtained. From this and in view of the results described 

by Nikravesh et aL (1985) for rigid bodies, it is discouraged to write the equations 

of motion in terms of the angular displacements and their first and second time 

derivatives. 

However, the equations of motion on which the computer program DADS is 

based are written in terms of Euler parameters and their first and second time 

derivatives. Adapting the program to the above given preferenee would involve 

rewriting the program entirely. Because of the lack of the required souree code and 

because of the large amount of work involved, the equations of motion are written 

partially in terms of Euler parameters, such that only a small part of the program 

has to be rewritten. From this the extra equation of motion that has been 

mentioned above is introduced. This makes the program less efficient. Consequently 
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the computation times reported in chapter 5 are longer that those which would 

have been obtained with a rewritten program. However, the conclusions regarding 

computation time presented in chapter 5 are not affected. 

From appendix B, Ins and \61 can be written in termsof the Euler parameters as 

\61 2Qg. 

Substitution into ( 46) yields 

liç} { t"- mÇ- Q [ ~ ~ l)l 2.Ü&g + 2~ f ó:(j)Ç2(j) + r ö:(j)Ç2(j)]} 

+ 28qTQT{~1- Ï!1 QTÇ Iid J. i#- 2JGq- 2{~ à(j)J22(j)}'I,J- ~ ö:(j)l)3(j)} 
- - J J 

+ ~ Óa(i){f(i)- Ç~(i)QT I:;+ \6lJ..h(i)'I,J- 2l)~(i)Qq + 2'1,JT~ à(j)Ç7(i,j) 
1 - J 

(2.50) 

(2.51) 

-y ö:(j)C8(i,j)} = bU. (2.53) 

These equations are somewhat less extended than those obtained by Yoo and 

Hang (1986a, b) as aresult of the fact that terms involving '#are not replaced by 

their counterpart in terms of Euler parameters and as aresult of the fact that some 

terms in their equations of motion would have cancelled when they had taken into 

account that <jTg is zerointheir expression for the kinetic energy. As a consequence 

they have an additional time-independent term as compared to the time-indepen­

dent terms given above. 

These equations have been implemented in the computer program DADS-3D, 

replacing the routines based on the equations of motion of Yoo and Haug (1986a, 

b). Two additional versions have been created in order to investigate the feasibility 

of the mean displacement conditions for eliminating rigid body motions: in one 

version only the multiplications involving Ç1, Ç2(i), and Ç6(i) are skipped in order 

to study the advantage of having simpler equations of motion separately; in the 

other version also the increased sparseness of the mass matrix is taken into account 

in solving the equations of motion. 
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chapter 3 

Generating base functions 

3.1 Introduetion 

In the preceding chapter the displacement field of a body has been resolved into a 

displacement field due to a rigid body motion and a displacement field û due to 

deformation. The instantaneous displacement field u is an element of a vector space 

of vector-valued functions defined on Q which represent displacement fields that do 

not contain a rigid body motion. In section 2.4 this vector space has been replaced 

by an N -dimensional vector space. Any element of this vector space can be written 

in the form of a linear combination of base functions of this vector space. In case 

this vector space has been chosen properly the linear ·Combination will be a good 

approximation of the actual solution. 

In this chapter three methods for generating base functions will be discussed, 

namely the assumed-modes method, the finite element metbod and the modal 

synthesis method. From examples it will be illustrated how the time-independent 

inertia coefficients (2.34)-(2.41) and the stiffness terms originating from the 

variation of the strain energy can be derived for these base functions. 

3.2 The assumed-modes metbod 

In the assumed-modes method analytic base functions are used that are defined on 

the entire volume of the body. These can only be generated for regularly shaped 

bodies: these are bodies with a geometry that can be described analytically. 

Consequently, the assumed-modes metbod is restricted to such regularly shaped 

bodies. Advantage can he taken of knowledge of the behaviour of û by chosing a 

vector space that resembles the actual solution well. Then a good approximation 

can be obtained with only a few base functions. A more accurate solution will he 

obtained when the number of base functions is increased. However this is at the 

expense of an increase of the required computation time. Depending on the nature 

of the base functions, and the mass and stiffness distributions, the time-independent 

inertia and stiffness termscan be evaluated analytically or they must be determined 

numerically. 
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Example: uniform beam 

A uniform beam made of homogeneaus material has been selected to illustrate the 

assumed-modes method because of its simple geometry and sirree parts of 

mechanica! systems can often he modelled as a uniform beam. Consider the uniform 

beam of length tand mass m shown in fig. 3.1. We choose a reference configuration 

G with straight elastic axis and with its centre of mass coinciding with an inertial 

point 0. Introduce an orthorrormal right-handed vector base ~, such that i\ is 

parallel to the elastic axis of the beam. Consider in the first instanee only 

displacements due to deformation in the plane spanned by e1 and e2. Using the 

Bernoulli-Euler beam theory, only the displacementsof theelastic axis need to be 

considered. The elastic axis is assumed to be inextensible. 

Fig. 3.1 Deformed beam and its reference configuration 

The position vector of an arbitrary partiele on theelastic axis of the beam in its 

reference configuration and its displacement vector due to deformation are resolved 

into their components in the base ~- This yields 

(3.1) 

(3.2) 

where Ç is the dimensionless distance in the reference configuration of an arbitrary 

partiele on the elastic axis measured from the centre of mass and made dimension­

less with t/2, and v( Ç,t) is the transverse deflection of points on theelastic axis. 

The rotary inertia of the cross-section of the beam will be neglected and the 

expression for the strain energy of the beam which wiJl be used is 
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1 

u= (4EI3jt3) j{lPvjaÇZ}2dÇ, (3.3) 
-1 

where El3 is the rigidity of the beam for bending in a plane perpendicular to ih. 
What choice will be appropriate for the vector space of functions for approxi­

mating the transverse deflections depends on the deflections which are to be 

expected. These deflections depend on the load on the beam which consists of load 

due to the acceleration of the beam, applied load, and load due to connections with 

other bodies. The acceleration due to rigid body motion varies linearly along the 

axis of the beam as can be easily veryfied from (2.5). The static deflection going 

with the conesponding inertia forces varies along the axis of the beam as a quintic 

polynomial. In table 3.1 the error of the eigenfrequencies, obtained with the 

assumed-modes metbod using quintic polynomials, of a uniform beam for various 

boundary conditions and made dimensionless with the corresponding analytic eigen­

frequencies are presented. It can be concluded that quintic polynomials give a good 

approximation for the lowest eigenfrequencies. Applied concentrated loads and load 

due to connections at the ends of the beam cause a deflection which varies along the 

axis of the beam as a cubic polynomial. Consequently the vector space of quintic 

polynomials is capable of approximating the transverse deflections of uniform 

beams in many situations. 
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Table 3.1 Dimensionless error of approximated eigenfrequencies 

i 1 2 

I C-C .003 .020 
I C-P .001 .015 

C-G .000 .011 

I C-F .000 .006 

F-P .000 .004 

P-G .000 .003 

P-F .002 .025 

G-G .000 .038 

G-F .000 .017 

F-F .009 .030 

3 4 

.738 

.078 

.027 1.329 

.484 .748 

.079 .640 

.574 1.102 

.095 

.071 1.186 

.847 1.280 

I 

C = clamped 

P = pinned 

G guided 

F free 



Consicter the arbitrary quintic polynomial 

(3.4) 

Deflections approximated with such a polynomial include also rigid body motions, 

which are not allowed in the displacement field û as has been discussed in the 

preceding chapter. When base functions are selected that do not contain rigid body 

motions, also the linear combinations (2.28) and (2.29) will be free of rigid body 

motions. For the present example the mean displacement conditions wil! be used to 

eliminate rigid body motions since these conditions yield the most simple equations 

of motion. Condition (2.8) applied to the quintic polynomial ( 4) leads to 

a0 + (1/3)~ + (1/5)a4 = 0. (3.5) 

Condition (2.10) leads to 

(1/3)a1 + (1 /5)a3 + (1/ï)a5 = 0. (3.6) 

Displacement fields of quintic polynomials (4) that satisfy (5) and (6) are free of 

rigid body motions. 

A base of the space of quintic polynomials that satisfies these conditions can be 

chosen in many ways. In order to minimize the number of nonzero terms in the 

mass matrix the base functions will be chosen orthogonal. Consequently, the 

off-diagonal termsof the rnadal mass matrix (2.41) will vanish. Base functions will 

be chosen to be either odd or even in order to be able to take advantage of possible 

symmetry and in order to make subsequent derivations easier. The base that has 

beenchosenon account of these conditions is 

(3. 7) 

(3.8) 

(3.9) 

(3.10) 

These polynomials are normalized such that they equal 1 for Ç 1. These functions 

are plotted in fig. 3.2. 
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~~L -1 1 

Fig. 3.2 Quintic polynomial base functions 

The transverse deflections of the beam due to deformation, parallel to ês can he 

approximated by the same base functions with ih replaced by és. Using this base 

for approximating the displacements due to deformation, the non-zero time­

independent quantities (2.34)-(2.41) are 

Cs (.... .. .. ) t2/ e2e2+e3e3 m 12, (3.11) 

~ [; :J~T~ [ Mê2ê2 Mê2ê3 ] 

Mê3ê2 
.. .. , 

Me3e3 

(3.12) 

.. [ 9 M ] .. .Q7 et, 
-M 9 

(3.13) 

[; :]. (3.14) 

where 

1/5 0 0 0 

0 1/7 0 0 
M=m 0 0 1/9 0 (3.15) 

0 0 0 1/11 

Using equation (3) to evaluate the strain energy, the expression for the variation of 
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tbe strain energy becomes 

OU= ógT [ ~3 
Q l g, 
K2 

(3.16) 

wbere 

144 0 480 

0 1 EI. 0 1200 0 3360 
=-1 

{la 480 0 5520 0 . 

0 3360 0 18480 

(3.17) 

3.3 Tbe finite element metbod 

Tbe finite element metbod is extensively used for tbe determination of tbe dynamic 

behaviour of structures. Basically, the finite element metbod as described in this 

section for approximating the displacement field due to deformation is tbe same as 

the regular finite element metbod. However, because of the subdivision of 

displacements, extra inertia properties of the fini te elements are required (Shabana, 

1986). In this section an overview of the general procedure of the finite dement 

metbod is given. For a more detailed treatment the reader is referred to the 

literature which is plentiful available, e.g. Przemieniecki (1968), Ziekiewicz (1977), 

and Rao (1982). The derivation of the element properties is illustrated for a truss 

element with linearand quadratic shape functions. 

Tbe assumed-modes method as presented in the preceding section is inadequate 

for most practical problems since most bodies encm1ntered in practice are not 

regularly shaped. The finite element methad provides a way of generating base 

functions for arbitrarily shaped bodies. The basic idea is to subdivide bodies into 

small polyhedral parts called finite elements. For such elements it is possible to 

generate base functions. In general it is not possible to built up the volume of a 

body exactly with such elements due to the sha.pe of the body. This error will 

deercase when the number of elementsis increased. 

On each finite element a number of points is selected, the nodes, usually 

situated on the boundary of the element. Nodes on the common boundary of 

neighbouring elements must coincide. In order to achieve this, the nodes on the 

boundaries are chosen in a systematic way, for instanee at vertices. In order to 

satisfy the continuity requirements in a systematic way the base functions are 

chosen such that they are equal to unity at one node and zero at all the other 
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nodes; they are only nonzero for the elements to which the node belongs except for 

the boundaries that do not contain the node. Since base functions extend only over 

elements with common nodes, base functions defined on elements that have no 

common nodes are orthogonal which renders the inertia and stiffness matrices of the 

finite element model of the body sparse. Because base functions are such that they 

are equal to unity at just one node and zero at all the other nodes, the coefficients 

of the base functions in the approximation for the displacement field ii (2.28) 

repreaent noclal displacements. Consequently, the componentsof the nodal displace­

ments relative to a common base can be used as the unknown coefficients in the 

linear combination (2.28). The functions defined on an element are called the 

element shape functions. A base function corresponding to a node is the junction of 

the element shape functions which equal unity at that node. 

In general, a more accurate solution will be obtained when the number of finite 

elements is increased. In order to ensure convergence, the shape functions must be 

such that displacement fields can be described that correspond to a rigid body 

motion of the element, and displacement fields that correspond to a constant strain 

condition (Zienkiewicz, 1977), next to the continuity requirements. One often 

prefers to use polynomials as shape functions because inertia and stiffness properties 

can then be evaluated in closed form. The required minimum degree of these 

polynomials is determined by the convergence requirements on the shape functions. 

In general, for a given desired accuracy of the solution the total number of 

unknowns in a problem can be reduced when the degree of the polynomial is 

increased especially when the gradient of the displacement field varies sharply. 

However this leads to less sparse matrices and the effort required for formulating 

and evaluating the element inertia and stiffness properties increases. Consequently 

numerical experiments are necessary todetermine whether it is advantageous to use 

polynomials with a higher degree than required. The number of nodes and the 

degree of the polynomial are linked in such a way that the total number of noclal 

displacements équals the number of coefficients in the polynomial. 

The exact expression for the variation of the strain energy as gîven by the first 

term of (2.17) and its linearized counterpart contain only first order spatial 

derivatives of the displacement field due to deformation. Consequently the base 

functions must be continuons and piecewise continuously differentiable. Linear 

polynomials are the lowest degree polynomials that meet these requirements. An 

example of a class of elements that use linear polynomials are the simplex elements 

shown in fig. 3.3. 

Their shape functions are the same for all displacement components. As a result 
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Fig. 3.3 Simplex elements 

the displacement field within the element can be easily written in terms of the 

nodal displacement components relative to a base common for all elements. The 

shape functions can be used for interpolating the position vector of an arbitrary 

partiele of the element from the position veetors of the nodes of the element in the 

reference configuration. When both the displacement field and the position vector 

are written in terms of their components relative to a common base then there will 

be no need to transferm the element properties to a conunon base. This applies to 

all elements with shape functions that are independent of the orientation of the 

element. 

Sirree the shape functions of these elements can describe large rigid body 

motions of the element, they can be used to describe the displacement field of a 

body without resolving the displacements into rusplacements due to a rigid body 

motion and displacements due to deformation. In fact this is dorre in literature for 

analyzing mechanica! systems, e.g. the truss element considered by Jonker (1988). 

However, many regular finite elements are not capable of descrihing large rigid 

body rotations. Consequently special elements must be derived in case the displace­

ment field of a body is not resolved into displacements due to a rigid body motion 

and displacements due to deformation. Jonker (1988) presented a spatial beam 

element for this purpose. The advantage of such an element description is that the 

contribution of the inertia of a body is taken into account by the assembied mass 

matrix, and the equations of motion of a system of boclies are ordinary differential 

equations which can be obtained by the regular assembly process. However, this has 

the two already mentioned drawbacks: firstly, nonlinear strain-displacement 

relations have to be used even when the strains are smal! and secondly, it is not 

possible to reduce the number of degrees of freedom using the rnodal synthesis 

method to be described in the next section. This way of description, i.e. without 

resolving the displacement field of the body, is not further considered in this thesis. 

One may prefer to use different shape functions because the behaviour of one 
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displacement component is different from the behaviour of other components. This 

occurs especially with one- or two-dimensional elements in a space of higher 

dimension. Particularly the behaviour of tangential displacements and transverse 

displacements generally differ: a transverse displacement field that causes bending 

must satisfy more severe continuity requirements because the expression for the 

variation of the strain energy due to bending contains secoud order derivatives, 

whereas its counterpart for tangential displacements contains first order 

derivatives; in case no bending is allowed the displacement field must be such that 

the element remains straight, i.e. the transverse displacement must vary linearly 

whereas the tangential displacement may be described by a higher degree 

polynomial. The shape functions are such that only infinitesimally small rigid 

rotations of the element can be described. When different shape functions are used 

it is necessary to transform quantities from an element base to a base common to 

all elements. 

For all finite elements inertia properties have to be evaluated such that the 

time-independent inertia coefficients (2.34)-(2.41) can be determined. Only .Q8 is 

required for regular finite elements; the other coefficients are required as a result of 

the resolution of displacements into displacements due to rigid body motion and 

displacements due to deformation. The inertia and stiffness properties of an entire 

body can be obtained by adding the contribution of all elements. This process is 

identical to the assembly process of the standard finite element method. Rigid body 

motions of the assembied finite element model can be prevented in the same way as 

is customary for the standard fini te element method. 

The derivation of the element inertia and stiffness properties will be illustrated 

with two examples each from one of the two categodes of elements discussed above, 

namely a uniform pin-jointed truss element with respectively a linearly and a 

quadratically varying displacement field. 

Example 1: linear pin-jointed truss element 

Consider the uniform pin-jointed truss element of length .t and mass m shown in 

fig. 3.4. For a truss element at least two nodes have to be introduced in order to be 

able to describe displacement fields that correspond to a rigid body motion of the 

element and displacement fields that correspond to a constant strain condition: 

with two nodes correspond six unknown displacements; five are required to describe 

a rigid body motion (a truss element has only five rigid degrees of freedom since a 

rotation about its axis is immaterial), consequently one degree of freedom is left for 

descrihing a constant strain condition. Introduce two nodes situated at the 
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Fig. 3.4 Linear truss element 

endpoints of the element. The constant strain condition corresponds to a linearly 

varying displacement along the axis of the element. From this the displacement of a 

partiele P of the element can be written in terms of its nodal displacements 

(3.18) 

where Ç is the distance between P and node 0 in the undeformed configuration and 

made dimensionless with t. This equation can be rewritten in a form equivalent to 

(2.28) 

T [(1-Ç)ll.. T .. 
u(Ç,t) = [ y~(t) y 1(t)] Ç I ç eQ' (t) eil?(Ç), (3.19) 

where y0 and y1 are the matrix representation of u0 and u1 relative to an inertial 

base ~; the subscript e refers to the contribution of the element to the quantity 

concerned. The shape functions of this element are (1-Ç) ~ and Ç Ç. 
The position vector of an arbitrary partiele in the reference configuration can be 

expressed in terms of the position veetors of the nodes in the referenee configuration 

.. T T [(1-Ç)Il.. T .. 
x(Ç) = [ ~o ~h] Ç I Ç = e~ eil?(Ç), (3.20) 

where ~0 and ~1 are the matrix representation of the position veetors of the nodes in 

the referenee configuration. From this description of the displacement field of the 

truss element, its inertia and stiffness properties can be evaluated. Substitution of 

(19) and (20) into the time-independent inertia coefficients (2.34)-(2.41) yields 

(3.21) 
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(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

m [ 2I I] eik= 6 ' I 2I 
(3.28) 

The matrix & is the regular mass matrix of a truss element (Przemieniecki, 1968). 

The linearized expression for the strain energy of a truss element is 
1 

U = ~~ J { B(ii · l)/ oe}2dÇ = e!l eK eQ', (3.29) 
0 

where EA is the extensional rigidity of the truss element and l is a unit vector 

parallel to the element in the reference configuration 

(3.30) 

and 

(3.31) 

with 

(3.32) 
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e.K. is the regular stiffness matrix of a bar element (Przemieniecki, 1968). 

Example 2: quadratic pin-jointed truss element 

When a truss element is loaded by a distributed axial load or when it is not 

uniform, it may be advantageous to approximate the displacement field with a 

quadratic or higher degree polynomial. Consider the case with a quadratically 

varying displacement field. In order to remain straight, the transverse displacement 

field must vary linearly along the axis of the element. Consequently, the axial and 

transverse displacement fields must be interpolated differently. The displacement of 

a partieleP on the element can be written in the form (see fig. 3.5) 

û(Ç,t) = (1-Ç) û0(t) + Ç i11(t) + 7(t) 4Ç(l-Ç)t*, (3.33) 

where 1 is a generalized displacement and e* is a unit vector which is parallel to the 

element in its deformed configuration. The polynomial in the last term has been 

chosen such that it equals zero in the endpoints of the element. An extra node with 

unknown axial displacement must be introduced in order to be able to rewrite this 

expression in terrus of unknown nodal displacements. However, the element 

properties will become more involved when they are referred to unknown nodal 

displacements as compared to the unknowns introduced in (33). Therefore the 

element properties will be derived using (33). 

Equation (33) is not of the form (2.28) because e* depends on iio and Û1. When 

the rotation of the element caused by deformation is smal!, t* equals approximately 

f., i.e. the unit vector which is parallel to the element in its undeformed 

configuration. Therefore {*is replaced by f. Using this approximation, (33) can be 

written in the form 

Fig. 3.5 Quadratic truss element 

31 



[ 

{1-Ç)l 

û = [ y~ 'Y vi J 4Ç{1-Ç)fr ~. 

ç I 
(3.34) 

where f is a column matrix with the components of Ê relative to ~. This coefficient 

is the result of the transformation from an element base to a common base ~. 

The position vector of an arbitrary material point can be expressed in terrus of 

the position veetors of the end nodes using (20). 

The inertia and stiffness properties of the quadratic truss element can be 

evaluated from this description of the displacement field. Substitution of (20) and 

(34) into the time-independent inertia coefficients (2.34)-(2.41) yields 

r[I] .. !me~ I ~' (3.35) 

m T .. 

[ 
31 l 

0 :~ ~. (3.36) 

(3.37) 

(3.38) 

rl lOt; 51 [ wee' 
lO .... T 

5 .. , ]] 
~~ f 

lOt;::~T 
.!), = :ffi- 1:~' 16 lOt;T f~ + 10{T~~T 16~T.Ó.~ (3.39) 

lOt; lOl 5~f lO .... r 10~~T ~~ f 

-[ 2. 2,;l]~. .. m T:; 
(3.40) eÇ6 -0 2t;~~ 

2~ 
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'"1 m T:; 
0 

T:; 
30 10~-~ 10~-~ , 

10ik 10§ 

(3.41) 

10€ 1 
16 lO{T . 

lOf lOl 

(3.42) 

The linearized expression for the strain energy of this quadratic truss element is 

u ~~ f {a(u· r)/8Ç} 2d{ = H y~ I Yi' J eK [~i ' 
0 T 

Yt 

(3.43) 

where the element stiffness matrix eK is given by 

(3.44) 

A is defined by (32). 

The element properties referred to nodal displacements can be calculated from 

these element properties. However, this is not necessary when the extra node is not 

coupled to other elements. In general, elements will not be coupled via the extra 

node sirree that causes a jump in the gradient of the displacement field which 

cannot be described by (34). In order to show what transformation is required for 

replacing the generalized displacement 1 by nodal displacements, "f must be written 

in terms of nodal displacements. Introduce an extra node at { t. Let the axial 

displacement at this node be ü. This displacement must be equal to the axial 

displacement obtained from (34) for { t. Hence 

(3.45) 

Consequently, the column matrix with the generalized displacements and the 

column matrix of nodal degrees of freedom are related by 

[ T TJ [ T - TJ Yo 'Y Y1 = Yo u llt I, (3.46) 
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where 

r 

I -h 0 l 
I= -_oo_T 1 _~I-T , 

-h 

(3.47) 

In order to transfonn the element properties to their counterpart with respect to .. .. 
noclal displacements, the column matrices eÇ2, eÇ4 and eÇ6 must be premultiplied 

.. 
with I and the matrices ~' eQ7, e.Qg and eK must be premultiplied with I and 

postmultiplied with TT. 

3.4 Modal synthesis metbod 

For boclies with a complex geometry, the finite element metbod generally leads to 

models with many degrees of freedom. This is undesirable from a computation costs 

point of view: in determining the transient response of a model many equations of 

motion must be integrated, and many degrees of freedom lead to a large variation 

of eigenfrequencies which reduces the integration time steps. Consequently, a 

reduction of degrees of freedom is desirable. The usual procedure to achieve this, 

which is called the modal synthesis method, is to use a set of linear combinations of 

the base functions generated with the finite element method. Such linear 

combinations of finite element base functions may be regarcled as numerically 

generated base functions which are the counterpart of the analytic base functions 

considered in section 3.2. This approach combines the efficiency of the 

assumed-modes metbod and the versatility of tbe fini te element method . .. 
Let ai> be an n x 1 column matrix of the assembied finite element shape 

functions of a body. Then a reduced set of base functions can be obtained with the 

transformation 

{3.48) 

.. 
where t is an N x 1 column matrix of base functions and ~ is an n x N matrix of 

constants. The columns of ~ contain nodal displacements. In general N will be much 

smaller than n. The time-independent coefficients for this new set of base functions 

can be obtained from the assembied time-independent coefficients obtained with the 
.. -+ ~T 

finite element method by premultiplying aÇ2, aç4 and aç6 with ~ , and 
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premultiplying a.Q5, a.6ï, a.Qs and aK with and postmultiplying the result with L;. 
An issue of primary concern of the modal synthesis method is the selection of 

the matrix L;. To take full advantage of the modal synthesis metbod one should 

select the matrix L; such that only a small number of base functions can describe the 

displacement field due to deformation of the body satisfactorily. What choice will 

be most appropriate depends on the problem at hand. The most widely used choices 

originate from the reduction procedures used in structural dynamics. 

The standard procedure to determine an approximate solution of the transient 

response of structures under time-dependent loads is to express the displacement of 

the structure as a linear combination of a reduced set of modes of free vibration 

(Przemieniecki, 1968). The corresponding set of equations of motion are uncoupled 

and its solution can be easily obtained. Complex structures are often regarcled as an 

assembly of substructures. The defonnation of each substructure is represented by a 

linear combination of deformation modes. These modes are chosen such that the 

equations of motion of the complete structure can be easily obtained from the 

equations of motion of the substructures (component mode synthesis method). 

Craig (1981) gives an overview of such modes. 

The modes used in structural dynamics have distinct properties which facilitate 

solving the equations of rnotion. But these properties are not necessarily relevant in 

solving the equations of motion of a mechanica! system. Modes of free vibration do 

not uncouple the equations of motion (2.30) because of the coupling of displace­

ments due to deformation and displacements due to a rigid body motion. Moreover, 

the instantaneous modes of free vibration of a body in a system of bodies depend on 

the instantaneous configuration of the system, especially when it has a tree 

topology. Consequently there is no motive to prefer modes of free vibration above 

other displacement fields. Likewise the properties of the modes used in the 

component mode synthesis method are not relevant. For all that, these modes have 

been used by several investigators: Agrawal and Shabana (1985), and Singh et al. 

(1985) used modes of free vibration; Sunada and Dubowsky (1981, 1983) used 

component modes. 

Yoo and Haug {1986a, 1986c) recognized that less modes are required when in 

the case of the presence of concentrated loads, the static deformation due to such 

loads is included. Also for structural dynamic problems a more accurate solution 

may be obtained when static deformation modes are included (Kline, 1986). Indeed 

those modes should be used which can represent the actual deformation of the body 

best. The selection of deformation modes will be discussed in section 5.4 with the 

help of some examples. 
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chapter 4 

The equations of motion of a system of bodies 

4.1 Introduetion 

The equations of motion of a single isolated deformable body have been derived in 

chapter 2. In the present chapter the equations of motion of a system of intercon­

nected bodies will be considered. These can be obtained from the equations of 

motion of the single bodies by taking the forces caused by the connections into 

account. 

Connections can be subdivided into energetic, active and kinernatic connections 

(Sol, 1983). The forces caused by energetic and active connections can be obtained 

frorn constitutive equations. It will be assumed that forces caused by kinematic 

connections do not enter into the constitutive equations such as may be the case for 

Coulomb friction forces. The forces caused by energetic and active connections can 

be deterrnined at the outset and consequently they can be taken into account by 

introducing thern into the load integrals of (2.15). 

Kinernatic connections restriet relative rnotions of interconnected bodies. 

Consequently displacernents of bodies are dependent. The equations relating 

displacernents of kinernatically connected bodies are called constraint equations. 

Only constraint equations of the forrn 

0(~,t) = 0 (4.1) 

will be considered, where 8(~,t) is an algebrak function which is once continuously 

differentiable with respect to its argurnents and ~ is a column matrix of all scalar 

variables that are introduced to describe the kinernatics of the systern of bodies, 

narned the generalized displacernents of the systern of bodies. Kinernatic 

connections with constraint equations of this forrn or that can be reduced to this 

forrn are called holonornic. If a constraint equation does not contain time explicitly, 

it is called scleronornic; otherwise it is called rheonornic. Porces going with 

kinernatic connections, constraint forces, cannot be deterrnined at the outset. They 

rnay be introduced as additional unknowns. A practical way of doing this is by 

rneans of the Lagrange multiplier rnethod (Meirovitch, 1970). Then variations of 

the generalized displacements of the systern of bodies rnay be chosen arbitrarily. 

They rnay also be chosen such that the eenstraint equations are not violated. 
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Variations of the generalized displacements which are consistent with the constraint 

equations are termed virtual displacements. The work done by all constraint forces 

due to virtual displacements equals zero (Rosenberg, 1977) and consequently these 

forces do not appear in the assembied variational form of the equations of motion. 

In section 4.2, energetic and active connections will be considered. The 

constraint equations for kinematic connections differ for the relative and the global 

description. This will be illustrated in section 4.3. Procedures for obtaining 

generalized virtual displacements will be given in section 4.4 for the relative and 

the global description. These are used for obtaining the equations of motion of a 

system of bodies. 

4.2 Energetic and active connections 

The forces caused by both energetic and active connections can be obtained from 

constitutive equations, which relate the forces, the relative displacements and 

veloeities of the interconnected boclies and the time history of these quantities, and 

external parameters. The difference between energetic and active connections is 

that the former do not increase the total mechanica! energy of the system of bodies, 

whereas the latter may increase the total mechanica! energy. Examples of energetic 

connections are springs and viscous dampers; an example of an active element is an 

actuator. The derivation of the contribution of energetic and active connections to 

the equations of motion of a system of boclies is demonstrated with a linear spring, 

a linear viscous damper and an actuator. 

Consider the bodies ,2i and ,2i interconnected by a linear spring, a linear 

viscous damper and an actuator as shown in fig. 4.1. Let the spring, the damper, 

Fig. 4.1 Conneetion of spring, damper and actuator 
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and the actuator be attached to~i at material point pi and to~i at material point 

Pi. The position veetors of these points are r; and r~, respectively. The distance t 
of the interconnected points is given by 

(4.2) 

The force caused by this conneetion can be deterrnined with the constitutive 

equation 

(4.3) 

where k is the spring coefficient, to is the free spring length, c is the viscous 

damping coefficient, and &. is the actuator force. The force on ~i is directed frorn 

pi toPi; the force on~i is directed opposite: 

pci = (F;;/t) (r~ r;), 

FJ = (F;;/t) (r; r~). 

(4.4) 

(4.5) 

These concentrated forces can be considered as volurne or surface loads by 

representing thern as spatial Dirac delta functions in their points of application. 

The contribution of these forces to the equations of motion can be obtained by 

substituting thern into the expressions for the generalized forces (2.31 )-(2.33). This 

yields for body i 

pi= (F;;/t) (r~- r~), 

M:i = (Fc/t) C*·t +u;) x {Qic·(r~- -r;n, 
fi = (Fcft) i; ·{QiC.(t~ r;)}, 

(4.6) 

(4.7) 

(4.8) 

where i~ is the position vector of pi in the reference configuration and ii~ is the 

displacement of pi due to deforrnation of .ll'i. The expression for the contribution of 

the conneetion force to the generalized forces of body j are obtained frorn these 

equations by interchanging i and j. 

4.3 Kinernatic connections 

Kinernatic connections restriet relative rnotions of interconnected bodies. The 

relation between the generalized displacernents of a pair of kinernatically connected 

boclies are given by constraint equations. The expressions for the constraint 
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equations of a specific kinematic conneetion differ for the global and the relative 

description. In the global description it is customary to relate the displacement 

fields u(x,t), the rotation tensors Q(t) and the translation veetors c(t) of the pair of 

interconnected bodies. In the relative description it is customary to write the 

rotation tensor Q(t) and the translation vector c(t) of one body in terrus of Q(t) 

and c(t) of the other body, the displacement fields u(x,t) of both bodies, and some 

variables, equal in number to the number of relative degrees of freedom of the 

interconnected bodies, which can describe their relative motion. The description of 

a kinematic conneetion using the global and the relative description will be 

illustrated for a spherical joint. 

Example: spherical joint 

Consider the bodies $i and $Î interconnected by a spherical joint shown in fig. 4.2. 

A spherical joint forces the two boclies to have two coinciding material points. Let 

this be pi for body$; and pi for body $Î. The constraint equation fora spherîcal 

joint using the global description can be written as 

(4.9) 

Fig. 4.2 Spherical joint 

When the relative description is used, variables must be introduced with which the 

motion of $Î relative to $i can be described. $Î is free to rotate relative to $;. 

Therefore a rotation tensor Qii(t) is introduced which defines the rigid body 

rotation of $i relative to $i. Using this relative rotation tensor, Qi(t) can be 

written in termsof Qi(t) and Qii(t): 

( 4.] 0) 
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Substitution of (10) into (9) yields for the translation vector of .î/j 

(10) and (11) constitute the relative description of a spherical joint. 

The relative rotation tensor qii(t) as used in the above description of a 

spherical joint does not represent the relative rotation within the joint. The way Sol 

(1983) and Singh et al. (1985) nse the relative description, relative motion meaus 

relative motion within the joint. However, this leads to more involved expressions 

for a spherical joint. Only when the relative motion within the joint is of interest it 

may be advantageous to use the relative motion within the joint. 

Also when the global description is used, it may be advantageous or even 

necessary to introduce variables which deseribe the relative motion of kinematieally 

connected bodies. An example of such a conneetion is a translational joint (Li and 

Likins, 1987; Hwaug aud Haug, 1987). 

Example: translational joint 

Consider the bodies $i aud .î/j interconnected by a translational joint shown in fig. 

4;.3. Material point pj of $j eau slide along a guideway on $i. When $i is in the 

referenee configuration, it is assumed that the guideway is straight aud $i does not 

rotate around the guideway when it slides along it. The translational joint is 

modelled as a deformable line ( the centreline of the guideway) and a muff which 

eau only slide along that line; the muff rotates with the line as if it were rigidly 

Fig. 4.3 Translational joint 
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attached to it. Let this line in the reference configuration he parallel to a unit 

vector f. The relative motion can he described by one variable, namely the distance 

s between the muff and some reference point pi on the line. Due to the translational 

joint, a material point of $i must coincide with material point Pj. The position 

vector of this material point in the reference configuration is 1t + s€, where 'X~ is 

the position veetor of pi in the reference configuration. The eonstraint equation 

which describes that these material points must eoineide is 

Further, the points of contact cannot rotate relative to one another. It is assumed 

that the orientation of the bodies in the reference eonfiguration has been chosen 

such that there is no relative rotation within the translational joint. Then the 

corrE>,sponding constraint equation is 

(4.13) 

where Ri(ï1i('X~+s'f,t)) and Ri(u.Ï(x~,t)) account for the rotation due to deformation 

at the contact points. This equation ean he rewritten as 

( 4.14) 

These are nine equations; only three of them are independent due to properties of 

rotation tensors. In principle an arbitrary triplet may he ehosen. However, because 

generally the rotation tensors due to deformation are linearized the equations on 

the diagorral of the matrix representation of this equation cannot be satisfied and 

corresponding off-diagonal terms are dependent. When this is taken into account in 

seleeting eenstraint equations, the remaining independent constraint equations are 

the same as those presented by Hwang and Haug (1987). 

In general it is not possible to eliminate the variabie s from these constraint 

equations. Consequently, for deriving the constraint equations in the global 

description of a translational joint, it is necessary to introduee a variabie whieh 

destribes the relative motion. 

The eonstraint equations for a translational joint in the relative description are 

obtained by solving ci(t) and Qj(t) from (12) and (13). This yields 

ci(t) ci(t) + Qi(t). {'X~+ sê + ûi()(~+sÊ,t)} 

- Qi(t)·Ri(ïJi(x~+s'f,t))·Ric(ui(xt,t))·{x~ + i1i(x~,t)}, (4.15) 
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( 4.16) 

In the relative description, the order of the bodies matters as will become clear in 

the next section. When the opposite order of bodies is selected the relative 

description of a translational joint becomes 

ci(t) = ëj(t) + Qj(t). {x~+ i1j(x~,t)} 

-Qj(t)·Rj(û.i(x~,t))·Ric(ûi(x~+sl,t))·{x~ + s~ + ûi(x~+s~,t)}, (4.17) 

4.4 The equations of motion of a system of bodies 

The equations of motion in component form of a body, which is part of a system of 

bodies, can be written symbolically (cf. 2.46) 

( 4.19) 

where e;ç is a column matrix of the generalized constraint forces that act on the 

body. Using the generalized principle of d 'Alembert (Meirovitch, 1970) the 

equations of motion for a system of NB bodies become 

( 4.20) 

The contribution of the constraint forces cancels only when the variations of the 

generalized displacements satisfy the variation of the constraint equations with 

time held fixed. This variation can be written in the form 

H/Jr:= Q, ( 4.21) 

where H is the m x n Jacobian matrix of the constraint equations of rank m, and D?; 

is an n x 1 column matrix which contains variations of all generalized displacements 

of the system of bodies; m is the number of constraint equations and n is the 

number of generalized displacements. The rank of the Jacobian will be less than m 
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when the constraint equations are dependent or incompatible. In the former case, 

some of the constraint equations can be ignored such that the new Jacobian has full 

row rank; the latter case refers to an inconsistent set of constraint equations which 

allows no solution. Using (21 ), variations of m generalized displacements can be 

written in terms of variations of the remaining n - m generalized displacements. 

The latter are independent and may be chosen arbitrarily. The procedure for parti­

tioning the virtual displacements into dependent and independent displacements 

differs for the global and the relative description. These two approaches will be 

considered more closely in the next two sections. 

4.4.1 The global description 

Wehage and Haug (1982) have presented an automatic procedure for partitioning 

displacements into dependent and independent displacements called the generalized 

coordinate partitioning method. They decompose the Jacobian .H using full row and 

column pivoting into matrices 1, !lu, and 1F such that 

J, ( 4.22) 

where 1 and !lu are nonsingular lower and upper triangular m x m matrices, 

respectively, and the symbol "' denotes that the matrices on either side are equal 

apart from a possibly different order of columns due to the decompositioning of .H. 
The elements of 8?; going with !lu, 8y, can be written in terms of the remaining 

elements {jy because !lu is nonsingular: 

8y=- (4.23) 

Substitution of in Succession n - m linearly independent combinations 8y and the 

conesponding variations Ó\J into (20) leads to n - m equations of motion. Usually, 

in succession one component of Jy is chosen equal to one and the remaining 

components are set equal to zero. 

The resulting equations of motion contain still the dependent displacements and 

their time derivatives 1j and ij. The dependent displacements can be solved frorn the 

constraint equations. Since these are generally nonlinear algebraic equations this 

must be done iteratively. 1j and ij can be written in terms of y and y using, 

respectively, the first and second time derivative of the constraint equations. Using 

these, y can be solved from the equations of motion. Then y eau be integrated using 

a standard numerical integration algorithm such as the variabie order explicit 

predictor/implicit corrector algorithm DE (Shampine and Gordon, 1975). 
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The efficiency of the procedure outlined above is limited by the requirements for 

iterative solution of the dependent generalized displacements from the constraint 

equations. This problem may be alleviated by using the relative description. 

Another approach is to supplement the equations of motion with the second 

time derivative of the constraint equations and to integrate both the independent 

and the dependent displacements. This makes solving of the constraint equations 

and their first time derivative for the dependent displacements and their first time 

derivative superfluous. However, because of numerical errors, the constraint 

equations will be violated. Baumgarte (1972, 1978) proposed to replace the secoud 

time derivative of the constraint equations by the alternative equation 

~(~,t) + 2a$(~,t) + f12<1(~,t) Q, (4.24) 

where <1 is a column matrix of the constraint functions, ~ is a column matrix of the 

generalized displacements of the system of bodies, and a and /3 are positive 

constants. This approach is referred to as the constraint violation stabilization 

method. Usually a is chosen equal to /3 which corresponds to a critically damped 

system. Due to the extra terms, additional eigenfrequencies are introduced. A 

solution to this problem is proposed by Baumgarte (1978). A shortcoming of 

Baumgarte's approach is the issue of cboosing proper values of a and /3. Chang and 

Nikravesh (1985) proposed a modification of Baumgarte's metbod where the 

constauts a and /3 are adjusted each integration time step. However, numerical 

errors accumulate due to lack of positive error control of the constraint violation 

stabilization method. 

Park and Haug (1985, 1986) proposed a bybrid metbod that is the fusion of the 

generalized coordinate partitioning metbod and the constraint violation 

stabilization method. They partitioned the generalized displacements into 

dependent and independent displacements, and integrated both types of 

displacements using the extra terms in (24). Error control is imposed only on the 

independent displacements. The dependent generalized displacements are corrected 

by solving them from tbe constraint equations if the violation of the constraint 

equations exceeds a specified error tolerance. Numerical experiments done by Park 

and Haug reveal tbat this is required for only a small number of times which makes 

their approach more efficient than the generalized coordinate partitioning method. 

Their metbod (and the generalized coordinate partitioning method) succeed in 

solving problems where the constraint viola.tion method fails due to lack of positive 

error control, which makes the hybrid method more stabie than tbe constraint 

vialation stabilization method. 
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4.4.2 The relative description 

When the relative description is used, the relative motion of a pair of kinematically 

connected bodies must be described such that the rigid body motion of one body 

can be expressed explicitly in termsof the rigid body motion of the other body, the 

displacement fields due to deformation of both bodies, and variables that describe 

the motion of the bodies relative to one another (cf. (10)-(11), (15)-(16), and 

(17)-(18)). When the system of bodies does not have kinematically closed chains, 

the motion of any body of the system can be written explicitly in terms of 

independent generalized displacements thns avoiding the need to solve the 

constraint equations iteratively. 

Consicter a system of bodies without kinematically closed chains. Assume the 

system has a tree topology, i.e. one can go from one body toanother along a unigne 

alternating sequence of bodîes and kinematic connections. In case such a sequence 

does not exist, the system may be thought of to consist of several trees or, 

kinematic connections with six degrees of freedom may be introduced in order to 

create such a sequence. The position of one body of a tree, the reference body, is 

described relative to an inertial space. In ca.<>e the tree contains a body whose 

position is prescribed, that body should be selected as the reference body. The 

posit.ion of the other bodies are described in succession relative to a body whose 

posit.ion has been described already and with which it is joined by a kinematic 

connection. Starting from the reference body, the motion of a partienlar body of the 

system can be written in terms of the translation vector and the rotation tensor of 

the reference body, the displacement fields dne to deformation, and the variables 

that describe the relative motion of the bodies on the path to the body at hand. All 

these variables are independent and may therefore be varied arbitrarily. Linearly 

independent virtual displacements can be obtained by letting in succession the 

variation of one of these variables eqnal to one and the remaining equal to zero. 

The accompanying dependent virtual displacements can best be computed 

recursively, i.e. the virtual displacements of a partienlar body are calculated from 

the virtual displacement of the contiguons body, starting from the reference body, 

and the variation of the variables that describe the relative motion of the bodies on 

the path to the body at hand. 

Substitution of in succession a set of linearly independent virtual displacements 

into (20) leads to the equations of motion of the system of bodies. These still 

contain dependent displacements, namely the translation veetors and the rotation 

tensors of the bodies and their first and second time derivative. They can be 

evaluated recursively using the constraint equations of the kinematic connections 
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and their first and secoud time derivative. The translation vector and the rotation 

tensor of a body are explicitly given by the constraint equations. Consequently, 

there is no need to solve constraint equations iteratively and the resulting equations 

of motion are a set of ordinary differential equations. 

The partitioning of displacementsas proposed by Wehage and Haug (1982) will 

lead to the same equations of motion as described above when the same description 

of the kinematic connections is used and the same independent displacements are 

selected. Therefore the relative description can be implemented without insur­

mountable difficulties in a general-purpose computer program based on the global 

description, thus leading to a general-purpose computer program based on the 

relative description. 

The generalized displacements which have been introduced above for descrihing 

the kinematics of a system of deformable bodies, namely the translation vector and 

the rotation tensor of the reference body, the displacement fields due to 

deformation, and all variables that describe the relative motion of kinematically 

connected bodies, are not independent when the system has kinematically closed 

chains. The expression for the relationship of these generalized displacements can 

be obtained from the compatibility conditions at one fictitious cut for each 

kinematically closed chain. Either a kinematic conneetion (Wittenburg, 1977; Singh 

et al., 1986) or a body (Lilov and Chirikov, 1981; Samin and Willems, 1986; 

Wittenburg, 1987) may be cut imaginarilly. In the farmer case, the constraint 

equations are of the type as is used in the global description, i.e. there are no 

variables introduced that describe the relative motion in the cut joint. For each cut 

chain, the required number of constraint equations equals at most six minus the 

number of degrees of freedom of the cut connection; this number may be less when 

some of the compatibility conditions are already satisfied. In genera!, it is difficult 

to formulate these constraint equations in an automatic way. 

The constraint equations can be obtained more easily when a body is cut, i.e. 

two translation vectors, ê and c', and two rotation tensors, Q and Q', are 

introduced for the cut body; the displacement fields due to deformation are not 

affected by the cut. From the compatibility conditions, these translation veetors 

and rotation tensors satisfy 

ê c', (4.25) 

Q=Q'. (4.26) 

By recursive use of the relative description of the kinematic connections in the 
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kinematically closed chain, c' and Q' can be written in terms of c, Q, the 

displacement fields due to deformation, and the variables that describe the relative 

motion of the bodies. This leads to six constraint equations. This number exceeds 

the number of constraint equations needed when a kinematic conneetion is cut 

because in the latter case no variables have been introduced to describe the relative 

motion of the bodies joined by the cut connection. 

Having the constraint equations available, the generalized displacements can be 

partitioned into independent and dependent displacements by for instanee the 

procedure of Wehage and Haug (1982), which has already been outlined in section 

4.4.1. Substitution of in Succession a set of all independent combinations of a 

varlation of the independent displacements and the corresponding varlation of the 

dependent displacements and of the variables that describe the rigid body motion of 

all bodies except the reference body, into (20) leads to the equations of motion of 

the system of bodies. The resulting equations of motion contain still the dependent 

variables and their first and second time derivative. These can be eliminated by 

solving them from the constraint equations and their first and second time 

derivatives. Sirree the constraint equations are nonlinear this must be done 

iteratively. This may be overcome by using the hybrid methad of Park and Haug 

(1985, 1986). 

The variables that describe the rigid body motion of all bodles except the reference 

body, and their first and second time derivatives, can be eliminated by recursive 

use of the constraint equations and their first and second time derivatives. 
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chapter 5 

Assessment of descriptions and approximations 

5.1 Introduetion 

In this chapter miscellaneous topics related to the analysis of the dynamic 

behaviour of systems of deformable boclies are considered. In section 5.2 possible 

savings of computation time by using base functions for approximating the 

displacement field due to deformation that satisfy the mean displacement 

condi1iions (2.8) and (2.10) are investigated. The finite element method and the 

modal synthesis metbod are considered insection 5.3 and 5.4, respectively. Special 

attention is paid to preventing rigid body motions in the displacement field due to 

deformation. The effect of the frequently used lumped mass approximation is 

considered in section 5.4. In section 5.5 the influence of nonlinearities going with 

the displacement field due to deformation are considered. A procedure for 

correcting eigenfrequencies going with base functions that do not agree with the 

actual eigenfrequencies is presented in section 5.6. This procedure is used for 

alleviating the integration time step reducing effect of high frequencies. 

The numerical examples presented in this chapter are carried out with the 

version of DADS (CADSI, 1988) for three-dimensional problems on a VAX 8530. 

The required CPU time for a specific problem depends on several input parameters. 

The reported CPU times apply for default values of the error tolerances, only 

binary output, no reaction forces, and a maximum integration time step size which 

is equal to the print interval. 

5.2 Mean displacement conditions 

In order to investigate possible merits of using base functions that satisfy the mean 

displacement conditions (2.8) and (2.10), the slider-crank mechanism shown in fig. 

5.1 is analyzed. lt consists of a rigid crank with length 0.15 m, a deformable 

connecting rod, and a rigid sliding block with mass equal to half the mass of the 

connecting rod. The connecting rod has a length t 0.3 m and a circular cross 

section with diameter d 0.006 m. It is made of steel with a modulus of elasticity 

E = 0.2*1012 N/m2 and a mass density p = 7.87*103 kgfm3• Axial deformation of 

the connecting rod is neglected. The crank rotates with a constant angular velocity 

fl = 150.0 radfs. In the initia! configuration, the connecting rod is straight and it is 
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Fig. 5.1 Planar slider-crank mechanism 

in a direct line with the crank. lts velocity field corresponds with that of a rigid 

connecting rod. Starting from this initial configuration, the deflection v of the 

middle of the connecting rod during 0.06 s is computed. Output is requested for 

every 0.0002 s. This problem has also been considered by Bakr and Shabana (1986) 

and Jonker (1988). 

The reference configuration of the connecting rod has been chosen analogous to 

fig. 3.1. The displacements due to deformation of the connecting rod are 

approximated by the four quintic polynomials (3. 7)-(3.10). Subsequently, in order 

to investigate the influence of the number of flexible bodies, the connecting rod is 

assumed to be built up of two identical rigidly connected deformable beams. In 

order to keep the total number of base functions constant, the displacements due to 

deformation of these beams are approximated by the two cubic polynomials (3. 7)­
(3.8). These two cases have been analyzed with the three versions of DADS 

mentioned at the end of section 2.5. 

The version of DADS that does not take advantage of zero terms used 223 s and 

238 s CPU time to compute the response for the quintic polynomial and the cubic 

polynomial approximation, respectively. The version that takes only advantage of 

the zero terms was somewhat faster: 0.97, respectively 0.96, times the conespond­

ing CPU times given above. The version that takes also advantage of the increased 

sparseness of the mass matrix used 0.92, respectively 0.96, times the conesponding 

CPU times given above. The reduction of required CPU time are of the same order 

of magnitude as those obtained by Koppens et al. (1988) with the version of DADS 

for two-dimensional problems. 
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Fig. 5.2 Assumed modes solution using cubic and quintic polynomials 

In fig. 5.2 the dimensionless deflection v / t of the middle of the connecting rod is 

plotted versus the angle over which the crank has rotated. The response related to 

the quintic polynomial approximation deviates from the response conesponding to 

the cubic polynomial approximation. This can be attributed to nonlinearities which 

are taken into account for the cubic polynomial approximation because the connect­

ing rod bas been modelled as two rigidly connected beams as will be explained in 

section 5.5. The response conesponding to the cubic polynomial approximation is 

indistinguishable from the linear solution obtained by Jonker (1988). 

The above slider-crank mechanism is actually a two-dimensional mechanism. A 

three-dimensional slider-crank mechanism is considered by Jonker (1988) (cf. fig. 

5.3). It has the same dimensions and initia! configuration as the above slider-crank 

mechanism. 

The reference configuration of the connecting rod bas been chosen analogous to 

fig. 3.1. The displacements due to deformation of the connecting rod are approxi­

mated by the four quintic polynomials (3.7)-(3.10) and the conesponding four 

quintic polynomials for displacements in the êa direction. The connecting rod has 

also been divided into two identical rigidly connected deformable beams. The 

displacements due to deformation of these beams are approximated by the two 

cubic polynomials (3.7)-(3.8) and the corresponding two cubic polynomials for the 

displacements in the êa direction. These two cases have been analyzed with the 

three versionsof DADS mentioned at the end of section 2.5. 
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Fig. 5.3 Spatial slider-crank mechanism 

The version of DADS that doesnottake advantage of zero terms required 1016 s 

and 1224 s CPU time to compute the response for the quintic polynomial and the 

cubic polynomial approximation, respectively. The version that takes only 

advantage of the zero terms was somewhat faster: 0.99, respectively 0.98, times the 

conesponding CPU times given above. The version that takes also advantage of the 

increased sparseness of the mass matrix used 0.83, respectively 0.82, times the 

conesponding CPU times given above. 

Fig. 5.4 shows the components in ê2 and e3 direction of the dimensionless 

deflection of the middle of the connecting rod versus the crank angle. The deviation 

of the responses going with the quintic polynomial approximation and the cubic 

polynomial approximation can be attributed to nonlinearities which are taken into 

account for the cubic polynomial approxirnation because then the connecting rod is 

modelled as two rigidly connected beams. The two-beams salution is close to the 

nonlinear salution obtained by Jonker (1988). The difference is of the sameorder of 

magnitude as the difference shown in fig. 5.4. 

From the above results it can be concluded that only a small reduction of 

required CPU time is obtained when advantage is taken of zero terms. This 

reduction becomes larger when the number of assumed displacement fields is 

increased. For a small number of assumed displacement fields, the saving of 

computation time is obtained from evaluating the equations of motion; for a large 

number of assumed displacement fields the time-saving is obtained from solving the 

equations of motion. 
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Fig. 5.4 Assumed modes solution using cubic and quintic polynomials 

5.3 The finite element metbod 

In the preceding section analytic functions have been used as base functions for 

approximating the displacement field due to deformation. However, as has been 

mentioned in chapter 3, this approach is only applicable for regularly shaped 

bodies. For complex shaped bodies, the finite element method is more appropriate 

for generating base functions. This method will be illustrated for the planar 

slider-crank mechanism considered in the preceding section. The finite element that 

has been used is described in appendix C using linearized strain-displacement 

relations. Axial deformation of the connecting rod is suppressed. 
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Fig. 5.5 Finite element solution: simply supported conditions 

Fig .. 5.5 shows the dimensionless deflection vjt of the middle of the connecting 

rod for the case in which rigid body motions of the displacement field due to 

deformation are prevented by prescrihing the deflection of the endpoints of the 

connecting rod. This case h&'l been analyzed with the connecting rod divided into 

one, two, three, and four elements, respectively. The solutions for the three- and 

four-element subdivision are indistinguishable which indicates that a converged 

solution has been abtairred for the three-element subdivision. This solution is 

indistinguishable from the quintic polynomial salution presented in the preceding 

section. The CPU times required for obtaining the salution for the one-, two-, 

three-, and four-element subdivision are respectively, 86 s, 283 s, 683 s, and 1455 s. 

The planar slider-crank mechanism has also been analyzed for the case in which 

rigid body motions of the displacement field due to deformation are prevented by 

prescrihing the deflection and the rotation of the endpoint of the connecting rod 

that is attached to the crank. (This may seem an odd choice. However, it simplifies 

formulating the constraint equations of two interconnected bodies because the 

displacements due to deformation of just one body are involved. In fact, this is used 

in formulating the equations of motion by the computer programs TREETOPS and 

CONTOPS (Singh et al. (1985, 1986)). This case has been analyzed with the 

connecting rod divided into one, two, three, and four elements, respectively. Fig. 

5.6 shows the dimensionless deflection v / t of the middle of the mnnecting rod. The 

solutions obtained for the three- and four-element subdivision are indistinguishable 

which indicates that a converged solution has been obtained for the three-element 
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Fig. 5.6 Finite element solution: one-sided built in conditions 

subdivision. The CPU time required for obtaining the salution for the one-, two-, 

three-, and four-element subdivision are respectively, 81 s, 244 s, 580 s, and 1294 s. 

The results shown in fig. 5.5 and fig. 5.6 differ. The slider"crank mechanism is 

too complex to trace the cause of this discrepancy. For this reasou the deformable 

beam shown in fig. 5. 7 is considered. This beam and the connecting rod of the 

slider-crank mechanism are identical. In the initial configuration the beam is 

straight and its velocity is zero. The beam will bend under the action of gravity. 

The displacement field due to deformation is approximated with three finite 

elements using linearized strain-displacement relations. Rigid body motions of the 

displacement field due to deformation are prevented by prescrihing either both 

endpoint deflections or the deflection and the rotation of the left endpoint. Three 

values of the axial force F are considered: F 0 N, F -200 N, and F = 200 N. 

(The order of magnitude of the axial force in the connecting rod of the slider-crank 

mechanism is 102 N.) 

F F • • 

Fig. 5. 7 Simply supported beam 
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Fig. 5.8 Deflection of simply supported beam: one-sided built in conditions 

Fig. 5.8 shows the dimensionless deflection vjt of the middle of the beam for the 

above three values of the axial force F in case the deflection and the rotation of the 

left endpoint are prescribed. The mean value of the dimensionless deflection for 

F = 0 N agrees with the dimensionless static deflection of the beam: 

(v8/t) = (5/24)pt3g/Ed2 60.3*10-6. The period of the response agrees with the 

analytic value of the period going with the lowest natura! frequency of the beam: 

Ta= (8f';r)(t2/d).fii{E 7.58*10-3 s. The deflection and the period become smaller 

when a compressive load (F = -200 N) is applied, whereas the deflection and the 

period increase when a tensile load (F = 200 N) is applied! This is opposite to what 

happens in reality. This can be explained with the help of fig. 5.9. It shows the 

beam in a deflected configuration, and the reference configuration of the beam after 

a rigid body motion which corresponds to this deflected configuration. Forces 

normal to this reference configuration cause a deflection of the beam. The applied 

force F has a component normal to this reference configuration. For a positive value 

of F, this component wil! increase the deflection of the beam; for a negative value of 

F, this component will decrease the deflection of the beam. This agrees with the 

numerical results presented in 5.8. For small deflections of the beam, the 

component of the applied force normal to the reference configuration is proportional 

to this deflection. Consequently it behaves as if it arises from a linear spring with a 

negative stiffness coefficient for a positive value of F, and a positive stiffness 

coefficient fora negative value of F. This explains the change in eigenfrequency due 

to the application of an axial force. 
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Fig. 5.9 Components of the axialload parallel and normal to the 

reference configuration 

All this does not happen when the beam is analyzed with rigid body motions of 

the displacement field due to deformation eliminated by prescrihing the deflection 

of the endpoints of the beam, because in that case the axial force is parallel to the 

reference configuration. This is confirmed by the results obtained for the case with 

prescribed endpoint deflections which are for all three values of F identical to the 

above result for F 0 N. 

From this result, it may be expected that the results for the slider-crank 

mechanism for both sets of conditions will agree better in case the axial forc~ is 

smaller. This will be the case when the slider is lighter. In order to verify this 

anticipation, the slider-crank mechanism is analyzed with a slider mass equal to 

zero. The results for both sets of conditions are shown in fig. 5.10. It can be seen 

that the results agree much better, which supports the above explanation. 
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Fig. 5.10 Finite element solution: slider mass equal to zero 
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Another numerical experiment reveals an interesting phenomenon. The rigid 
-> 

body properties m, C1 and C3 of the connecting rod are set equal to zero, and a 

rigid body with mass properties identical to those of the connecting rod is rigidly 

attached to the connecting rod at the endpoint with prescribed deflection and 

rotation. The results obtained for this problem are indistinguishable from those 

obtained with prescribed endpoint deflection and rotation, which indicates that 

these two problems are identicaL The forces that are necessary for the motion of 

the extra body are reacted by a concentrated force and moment at the endpoint of 

the connecting rod. Since both problems are identical, this occurs also wherr rigid 

body motions are prevented by prescrihing endpoint deflection and rotation of the 

connecting rod. Sirree in reality there is no concentrated moment at the end of the 

connecting rod, this may lea.d to incorrect results. 

5.4 The modal synthesis metbod 

From the CPU times reported in the preceding section it can be concluded that the 

CPU time required for a finite element analysis is about directly proportional to the 

square of the number of degrees of freedom. A regularly shaped body such as the 

connecting rod does not need to be divided into many elements. However, complex 

shaped boclies must be divided into many elements in order to be able to describe 

the shape of the body sufficiently accurate. The salution of the conesponding 

equations of motion requires much computation time. Therefore it is desirabie to 

reduce the number of degrees of freedom in order to shorten the required 

computation time. The modal synthesis methad can be used for this purpose. The 

effectiveness of the modal synthesis method depends to a great extent on a proper 

choice of base functions for approximating the displacement field due to 

deformation. Considerations that lead to a specific choice of base functions are 

given in subsection 5.4.1 for the planar slider-crank mechanism. In subsection 5.4.2 

the conditions that are used for eliminating rigid body motions are considered. An 

approximate metbod for obtaining the time-independent inertia coefficients (2.34)­

(2.41), the lumped mass approximation, is investigated in subsection 5.4.3. 

5.4.1 Selection of base functions 

In selecting base functions for the connecting rod, the forces that cause the 

deformation must be considered. In order to identify the importance of different 

farces causing the deformation, fig. 5.11 gives the total deflection of the middle of 

the connecting rod obtained with three finite elements (cL fig. 5.5), and the quasi-
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Fig. 5.11 Deflection of the middle of the connecting rod 

static deflection resulting from the inertia load and the corresponding reaction 

forces at the endpoints of the connecting rod that go with the motion which follows 

from a kinematic analysis of the corresponding slider-crank mechanism with a rigid 

connecting rod (elastodynamic deflection, cf. appendix D). It can beseen that the 

main contribution can be attributed to the load arising from the rigid body motion 

of the connecting rod. This inertia load is a distributed load varying linearly along 

the axis of the connecting rod as bas been mentioned already in section 3.2. It can 

be subdivided into a eonstant distributed load and a linearly distributed load that 

is antisymmetrie relative to the middle of the connecting rod (fig. 5.12). The 

deflection of the middle of the connecting rod due to the antisymmetrie load is zero. 

Consequently only the deflection resulting from the uniform load is of interest when 

one is concerned with the deflection of the middle of the connecting rod. The slider­

crank mechanism has been analyzed using the deflection of the connecting rod 

+ 

Fig. 5.12 Resolution of load into symmetrie and antisymmetrie component 
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resulting from a uniform load as base function for the connecting rod. This 

displacement field has been determined using a four-element subdivision. The 

response obtained with this displacement field is indistinguishable from the 

response obtajned with the connecting rod divided into three finite elements. 

However, the required CPU time equals 59 s which is only 0.09 times the CPU time 

used for the finite element analysis with three elements. The rednetion is even 

larger when the CPU time used for the modal synthesis analysis is compared with a 

finite element analysis without constraining the axial deformation of the connecting 

rod: the required CPU time for the modal analysis amounts then 0.02 times the 

required CPU time for the finite element analysis. It is more precise to sustain the 

latter rednetion because modes of deformation cannot be readily eliminated from a 

finite element model. From this result it can be concluded that a substantial 

rednetion of required CPTJ time can be obtained with the modal synthesis method. 

A significant portion of the response of the connecting rod arises from its 

fundamental eigenfunction. The result obtained with just the static displacement 

field of the connecting rod resulting from a constant distributed load is so close to 

the total response because this displacement field is close to its fundamental 

eigenfunction. The magnitude of the contribution of the fundamental eigenfunction 

is determined by the exciting load, and the initial displacement field due to 

deformation and the conesponding velocity field of the connecting rod. The main 

exciting load consists of the inertia load and the corresponding reaction forces at 

the endpoints of the connecting rod that go with the rigid body motion of the 

connecting rod. The response due to this exciting force will be close to the quasi­

static response, because the main frequency of the excitation (0 = 150.0 radjs) is 

well below the fundamental frequency of the connecting rod 

(v = ( ilj4)(djt2).fETii 829.2 rad/s). For this reason the portion of the response 

of the connecting rod going with the fundamental eigenfunction is mainly due to the 

initia! displacement field due to deformation and the conesponding velocity field of 

the connecting rod. The initia! conditions used in the above analysis are not 

realistic. This follows also from experimental results presented by Sung et al. 

(1986). The influence of initia! conditions will fade away due to damping and the 

response will become nearly periodic in process of time. Such a periodic response 

wil! be obtained immediately when the analysis is started using proper initial 

conditions. It may be expected that these initia! conditions wil! be close to the 

conditions which follow from a quasi-static analysis. From a quasi-static analysis 

follows that the initia! deflection of the middle of the connecting rod equals 0 m, 

and the initia! velocity equals (15/128)p03t 5jEd2 = 1.05 mjs (cf. D.ll). Fig. 5.13 
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Fig. 5.13 Influence of initial condition on deflection 

shows the dimensionless deflection of the middle of the connecting rod using these 

initial conditions for the displacement field due to deformation. The response is now 

almost periodic. It can be seen that the contribution of the fundamental 

eigenfunction has become much smaller, indicating that the response of the 

connecting rod is mainly due to the quasi-static response. 

Some investigators (for irtstance Agrawal and Shabana, 1985; Singh et al., 1985) 

use eigenfunctions as base functions. These do not necessarily represent the actual 

displacement field due to deformation of a body well, especially when concentrated 

forces are applied. Moreover, the eigenfm1ctions of a specific body of a system of 

bodies may change when the configuration of the system changes. This can be 
illustrated with the two-link robot shown in fig. 5.14. The two links are identical 

Fig. 5.14 Two link robot arm 
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Fig. 5.15 Eigenfunctions of inner link 

with the exception of the bending stiffness which is assumed to be infinite for the 

outer link. The angles e1 and e2 are kinematically driven. Consider the cases with e1 

constant, and fh = 0, respectively 82 = 1r. 

Fig. 5.15 shows the first and second eigenfunction of the inner link for these two 

situations. It can be seen that especially the second eigenfunction depends on the 

configuration of the robot arm. This example illustrates that it may be difficult to 

decide which eigenfunctions should be used. 

However, it is not difficult to decide which static displacement fields will 

describe the actual displacement field of the inner link probably wel!. The outer 

link applies a force and a moment to the inner link. Consequently the two static 

displacement fields resulting from either a concentrated force or a moment applied 

at the endpoint of the inner link will probably be a good approximation of the 

displacement field of the inner link. In any case they describe the quasi-static 

deflection due to the force and moment from the outer link exactly. 

Fig. 5.16 shows the approximated eigenfunctions of the inner link for ez = 0 

using the above suggested base functions. The fundamental eigenfunction is 

indistinguishable from the exact eigenfunction. The second eigenfunction is close to 

the exact eigenfunction. The approximated eigenfunctions for fh 1r are indistin­

guishable from the corresponding exact eigenfunctions. Consequently the above 

suggested base functions give also a good approximation of the dynamic behaviour 

of the inner link. 

The load applied to a specific body should be considered in selecting base 

functions for approximating its displacement field. One should consider to use also 

eigenfunctions as base functions in case the frequency of the excitation is close to an 

eigenfrequency of the body. 
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Fig. 5.16 Approximated eigenfunctions of the inner link for ()2 0 

5.4.2 Elimination of rigid body motions 

The base function used in the above analysis of the slider-crank mechanism does 

not contain a rigid body motion because the deflections at the endpoints of the 

connecting rod are equal to zero. The results obtained with the finite element 

metbod are incorrect in case rigid body motions are prevented by prescrihing the 

endpoint deflection and rotation of the connecting rod as has been discussed in 

section 5.3. In order to investigate whether this is also the case when the modal 

synthesis metbod is used, the planar slider-crank mechanism is analyzed using 

eigenfunctions of the connecting rod going with zero deflection and rotation of the 

endpoint that is attached to the crank. 

Fig. 5.17 shows the dimensionless deflection of the middle of the connecting rod 
in case two, respectively three eigenfunctions are used as base functions. These 

eigenfunctions have been determined with the connecting rod divided into four 

finite elements. The solid curve is the response obtained with the finite element 

metbod using a three-element approximation with rigid body motions eliminated by 

prescrihing the endpoint deflection and rotation (cf. fig. 5.6). lt can be concluded 

that the solution using the eigenfunctions of the cantilever connecting rod converges 

to this finite element solution when the number of eigenfunctions is increased. 

Consequently, the model using eigenfunctions suffers from the same problems as the 

fini te element model. 

Agrawal and Shabana (1985) obtained simHar results in case they approximated 

the displacement field due to deformation with eigenfunctions of the cantilever 

connecting rod. They attributed these incorrect results to the fact that these 

eigenfunctions poorly represent the deflected shape of the connecting rod. In order 
to show that this explanation is incorrect, the conditions that are used for 

eliminating rigid body motions are changed. This is done by adding small rigid 

body motions to the original base functions. This transformation does not change 
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Fig. 5.17 Modal synthesis solution using eigenfunctions of cantilever beam 

the shape of the base functions. Such a transformed set of base functions ~*(x) ca.n 

be written a.s 

.... ... ... ... .... .... ... 
tg*(x) p(x) + Po+ 1} x x, (5.1) 

where ~0 represents rigid body tra.nsla.tions a.nd ~ x x represents small rigid body 

rota.tions. (Actua.lly, the base functions ~(x) are not necessarily small. This 

depends on how they have been normalized. However, the base functions multiplied 

by the conesponding generalized coordinates {t( t) are sma.ll. Consequently, the rigid 

body motions that are added to the original base functions are not necessarily 

sma.ll. But, when multiplied by the genera.lized coordinates q(t), they aresmalland 

therefore the rigid body rotation that is added to the original base functions may be 

written as ~ x x.) The unknown small rigid body translations and rotations follow 

from the conditions that are used for eliminating rigid body motions. Consider for 

instanee the case for which these conditions are the mean displacement conditions 

(2.8) and (2.10). Substitution of (1) into (2.8) and (2.10) yields, respectively 

.. 
0, (5.2) 

.. 
0. (5.3) 

.. .. 
Po and 1} can be solved from these equations because C3 is a positive-definite tensor 
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Fig. 5.18 Fundamental and modified eigenfunction of cantilever beam 

(it is the inertia tensor of the body in the reference configuration). Substitution of 

the result into (1) yields the modified base functions. Fig. 5.18 shows the 

fundamental eigenfunction of the cantilever connecting rod and the base function 

that is obtained using the above transformation. 

The slider-crank mechanism has been analyzed using eigenfunctions of the 

connecting rod going with zero deflection and rotation of the endpoint that is 

attached to the crank after the above described transformation. The deflection of 

the middle of the connecting rod obtained with two, respectively three of such base 

functions is given in fig. 5.19 . The solid curve is the response obtained with the 

finite element method using a three-element approximation with rigid body motions 

eliminated by prescrihing the deflection of the endpoints of the connecting rod ( cf. 

.02,--~---r---~----r---~----~ 

----- finite element solution (fig. 5.5) 

- --- --2 modes 
.01 

• • · • • • • • · 3 modes 

v/1 

.0 

-.01 

.0 21Y 
CRANK ANGLE [rad) 

Fig. 5.19 Modal synthesis solution using modified eigenfunctions of cantilever beam 
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fig. 5.5). It can be seen that the salution obtained with modified eigenfunctions 

converges to this finite element solution. 

This leads to the condusion that the solution obtained with eigenfunctions of 

the cantilever connecting rod converges also to the correct salution provided 

suitable conditions are used for eliminating rigid body motions. However, when 

compared with the static deflection mode used in the beginning of this section, 

more base functions are needed because the eigenfunctions of the cantilever 

connecting rod do represent the deflected shape of the connecting rod worse. 

5.4.3 Lumped mass approximation 

In the preceding part of this section, the time-independent inertia coefficients 

(2.34)-(2.41) have been assembied from the conesponding coefficients of the beam 

element, which have been evaluated analytically. In literature a lumped mass 

approximation is frequently used (Sunada and Dubowsky, 1981, 1983; Yoo and 

Haug, 1986a, 1986b). The advantage of that approach is that the time-independent 

coefficients can be computed from nodal displacements and nodal masses which can 

be determined with a standard finite element computer program. It may be 

expected that a lumped mass approximation is less accurate than a consistent mass 

approximation. In order to evaluate the consequences of using a lumped mass 

approximation, the planar slider-crank mechanism of fig. 5.1 is considered. The 

displacement field due to deformation is approximated with the static displacement 

field resulting from a uniform load that has been used in subsection 5.4.1. 

From subsection 5.4.1 it can be concluded that a fom-element subdivision of the 

connecting rod yields a sufficiently accurate base function and conesponding time­

independent inertia coefficients when a consistent mass approximation is used. Fig. 

5.20 shows the dimensionless deflection of the middle of the connecting rod in case a 

lumped mass approximation is used. The results are obtained in case the base 

function is obtained with a four-element subdivision and a.n eight-element 

subdivision, respectively. The result going with the eight-element subdivision is 

indistinguishable from the result obtained with the three-element subdivision shown 

in fig. 5.5. The computation of the response going with a four-element subdivision 

and an eight-element subdivision took 59 s, respectively 62 s CPU time. 

From these results it can be concluded that when compared with the consistent 

mass approximation, the lumped mass approximation may require a finer 

subdivision into elements for determining base functions in order to obtain the 

corresponding time-independent coefficients sufficiently accurate. This is not a 

severe dismerit because the bodies encountered in practice have generally a complex 
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Fig. 5.20 Modal synthesis solution using lumped mass approximation 

shape which requires already a fine subdivision into elements in order to describe 

their shape sufficiently accurate. Moreover, a finer subdivision requires only a small 

increase of required CPU time because the time-independent coefficients are 

evaluated only once. Observing this and in view of the fact that a lumped mass 

approximation is more versatile (a consistent mass approximation requires a library 

of time-independent coefficients of elements), a lumped mass approximation is 

preferabie to a consistent mass approximation when the modal synthesis methad is 

used. However, one should be aware that a finer subdivision into elements may be 

required than is needed for obtaining the base functions with sufficient accuracy. 

5.5 Nonlinearities conesponding to displacements due to deformation 

Because of the linearization of the strain-displacement relations and the 

approximation of the displacement field due to deformation by a linear combination 

of assumed displacement fields, there is no coupling between the transverse 

displacements and the axial displacements of the beam element used in the 

preceding sections. In reality, however, such a coupling may exist. For instance, an 

axial force changes the transverse stiffness of a beam, and transverse displacements 

give rise to axial displacements. These two items will be considered in this section. 
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5.5.1 Nonlinear strain-displacement relations 

From the results presented by Bakr and Shabana (1986) it can be concluded that 

for the planar slider-crank mechanism considered in the preceding sections, 

nonlinear strain-displacement relations must be used in order to predict correctly 

the transverse deflection of the connecting rod. The axial force F is required in 

determining the geometrie stiffness matrix going with the nonlinear strain­

displacement relations ( cf. appendix C). This force can be obtained from the a,xial 

deformation of the connecting rod. For this reason, the a,"i:ial deCormation wil! be 

included in the analysis. 

The planar slider-crank mechanism considered in the preceding sections is 

analyzed using the finite element properties going with the nonlinear strain­

displacement relations. The transverse displacement field is approximated by the 

static displacement field used in section 5.4. The axial displacement field is 

approximated by the static displacement field resulting from a constant axial force. 

Both displacement fields are obtalned using a four-element approximation. Fig. 5.21 

shows the deflection of the middle of the conm~cting rod obtained with the analyses 

using linearized and nonlinear strain-displacement relations. It can be seen that the 

nonlinear terms have a significant influence on the response and consequently 

linearization of the strain-displaeement relations is not allmvabie for the present 

problem. 
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Fig. 5.21 Influence of nonlinearities 
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The linear solution obtained for the case in wbich tbe connecting rod is divided 

into two identical beams using a cubic polynornial approximation of the displace­

ment field due to deformation (cf. fig. 5.2) is close to the nonlinear solution shown 

in fig. 5.21. This can be explained with the help of fig. 5.22. It shows a current 

configuration of the connecting rod (solid curve), and the reference configuration 

after the rigid body motion corresponding to this current configuration ( dasbed 

lines). The difference between these configurations represents displacements due to 

deformation. These are mucb smaller when the connecting rod is divided into two 

beams. Consequently, linearization of strain-displacement relations is allowable for 

much larger deflections of the connecting rod in case it is approximated witb a 

number of beams. However, then it is not possible to reduce the number of degrees 

of freedom using the modal synthesis method. Because of the required computation 

time, an analysis based on the modal synthesis metbod combined witb nonlinear 

strain-displacement relations is preferabie to an analysis based on dividing the 

connecting. rod into a number of beams combined witb linearized strain­

displacement relations. 

one-beam approximation 

two-beams approximation 

Fig. 5.22 Displacements due to deformation when tbe connecting 

rod is divided into several beams 

5.5.2 Nonlinear combinations of assumed displacement fields 

The displacement field due to deformation bas been approximated by a linear 

combination of assumed displacement fields (cf. 2.28). However, it may he 

necE>.ssary to include also nonlinear terms in order to predict the dynamic bebaviour 

of bodies correctly. Tbis may be the case for instanee for rotating beams. 
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Fig. 5.23 Cantilever beam 

Transverse displacementsof a beam give rise to a.xial displacements. This can be 

illustrated with the cantilever beam shown in fig. 5.23. Assume that the elastic a.xis 

of the beam is inextensible. When higher order terms are neglected, the a.xial 

displacement field u due to the transverse displacement field v is given by 

U= (5.4) 

where s is the distance, measured along the elastic a.xis of the beam, between the 

built in end and an arbitrary point on the elastic a.xis. 

When the transverse displacement field of the beam due to deformation is 

approximated by a linear combination of assumed displacement fields, the corre­

sponding a.xial displacement field will be a quadratic function of the coefficients of 

the assumed displacement fields; the coefficients in this quadratic function depend 

on the assumed displacement fields. Such an ax.ial displacement field cannot be 

taken into account when displacement fields due to deformation are approximated 

by a combination of assumed displacement fields. Generally, the nonlinear 

terms are negligible. However, this may be inadmissible for a beam that rotates 

about an a.xis which is perpendicular to its elastic a.xis. The nonlinear terms that 

account for the a.xial displacements due to the transverse displacements lead to 

terms in the equations of motion that are linear in the coefficients of the assumed 

displacement fields, namely w· { t( ÓÛ,x)} · w, and ~. v( ÓÛ,bX) ( cf. 2.17). The first 

term accounts for the centrifugal stiffening of the beam. The influence of neglecting 

this term will be illustrated with a numerical example. 

Consider the cantilever beam shown in fig. 5.23. lts properties are identical to 

those of the connecting rod used in previous examples. The beam rotates with a 

constant angular velocity about an a.xis which is perpendicular to the undeformed 

beam and which passes through the built in end of the beam. In order to excite the 

beam, it is subjected to the acceleration of gravity which is parallel to the a.xis of 

rotation. Only transverse deflections are considered. The displacement field due to 
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deforma.tion is a.pproxima.ted by the eigenfunctions corresponding to the cantilever 

bea.m. Analyses for several valnes of the a.ngula.r velocity show no dependency of the 

response on the angula.r velocity which ca.n be attributed to the missing of the 

centrifugal stiffening term. 

This failure may be partially obviated by cha.nging the conditions for eliminat­

ing rigid body motions in the displacement field due to deformation such tha.t the 

rigid body motion going with a deflection of the bea.m cause displacements towards 

the a.xis of rotation. This ma.y be achieved for instanee by cha.nging to the mea.n 

axis conditions using eqs. (5.1)-(5.3). Fig. 5.24 shows the displacement of the 'free 

end of the beam parallel to the axis of rotation for an angular velocity of 150.0 

rad/s (dashed curve). It has been obtained with the two lowest eigenfunctions of 

the cantilever beam transformed according to eqs. (5.1)-(5.3). Increasing the 

number of assumed displacement fields does not change the response, which 

indicates that a converged solution is obtained for two assumed displacement fields. 

The dot and clash curve represents the response obtained in case the two lowest 

eigenfunctions of the cantilever bea.m are used. Comparison of the two curves shows 

that the eigenfrequency is higher and the deflection is smaller when the tra.nsformed 

eigenfunctions are used. This is what should happen when the beam rotates. 

Linearized strain-displa.cement relations have been used for the above-described 

analysis. Consequently, the stiffening of the beam due to a.n a.xial tensile force is 

not taken into account. In order to study the influence of this force, the rotating 

beam has also been a.nalyzed using nonlinea.r strain-displacement relations. The 

a.xial force, which is required for determining the geometrie stiffness matrix ( cf. 
*E -3 
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Fig. 5.24 Deflection of the endpoint of the rotating beam 
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appendix C), is obtained from the axial deformation of the beam. For this purpose, 

an extra assumed displacement field is used which represents the quasi-static 

displacement field of the beam resulting from the inertia forces which arise from a 

rotation of the beam in case it is undeformed. The response of the endpoint of the 

beam for this approximation is given by the solid curve in fig. 5.24. As can be seen 

it is not allowable to use linearized strain-displacement relations for this problem. 

Another way to obviate the absence of quadratic terms in the displacement field 

due to deformation is to divide the beam into a number of parts. As has been 

mentioned in the preceding subsection, the displacements due to deformation are 

then much smaller. Hence, also the conesponding axial displacements due to the 

transverse displacements will be much smaller and are consequently negligible for 

much larger deflections. The rotating beam has been approximated by dividing it 

into three identical parts. The displacements due to deformation of these parts are 

approximated by the cubic polynomials (3. 7)-(3.8). The response obtained for this 

approximation is given by the dotted curve of fig. 5.24. As can be seen the 

agreement between the three beam approximation and the approximation obtained 

with the transformed eigenfunctions using nonlinear strain-displacement relations is 

good. 

Terms in the equations of motion that are linear in the displacements due to 

deformation are discarded due to the approximation of the displacement field due 

to deformation by a linear combination of a set of assumed displacement fields. For 

a rotating beam, the influence of these terms is taken into account when use is 

made of nonlinear strain-displacement relations and assumed displacement fields 

that satisfy the mean displacement conditions. More research is necessary to find 

out whether this holds more generally. When this is not the case, also nonlinear 

terms must be included for the approximation of displacement fields due to defor­

mation. 

5.6 Shifting of frequencies 

5.6.1 Tuning of frequencies 

One is often more concerned with the dynamic behaviour of the system of bodies as 

a whole rather than with the displacement field of the individual bodies. The 

displacements of the points of the bodies that are connected to other bodies should 

be approximated well in order to have a good approximation of the global motion of 

the system of bodies. Due to the connections, concentrated loads act on the bodies 
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Fig. 5.25 Cantilever beam 

at these points. The corresponding quasi-static displacement field due to 

deformation is a linear combination of the displacement fields resulting from 

concentrated loads applied at these points. However, these displacement fields do 

not necessarily approximate the dynamic behaviour well. A procedure is proposed 

in this section for improving the approximation of this dynamic behaviour. 

Consider the cantilever beam shown in fig. 5.25. It has the same properties as 

the connecting rod used in previous examples. The beam is initially straight and 

has zero velocity. The applied moment equals 1.0 Nm. The quasi-static deflection is 

described without error when the displacement field is approximated with the static 

displacement resulting from a moment applied at the free end of the beam. 

However, the eigenfrequency corresponding to this displacement field ( v = 375.7 

radfs) does not agree with the fundamental frequency of the beam (v = 295.4 

rad/s), which leads to a discrepancy of the deflection of the endpoint of the beam. 

This is illustated by fig. 5.26. It shows the dimensionless defiection obtained with 

the finite element metbod using four elements (solid curve) and the response 

obtained with the above mentioned displacement field (dot and dash curve). It can 

be seen that the amplitude of the deflection obtained with this displacement field 

agrees well, but the corresponding frequency is too high. 

A procedure to shift the approximate frequency to the fundamental frequency 

consists of multiplying the modal mass going with the static displacement field by 

the square of the ratio of the approximate frequency and the fundamental 

frequency: (375.7/295.4)2• The result obtained with the static displacement field 

using this modified modal mass is given by the dotted curve shown in fig. 5.26. It 

can be seen that the modification of the modal mass leads to a much better 

approximation. 

The approximation will also be better when the displacement field of the beam 

is approximated by a linear combination of displacement fields. Consicter for 

instanee the case in which, next to the above used static displacement field 

72 



V/l 

.02 
fem solution 

modal 

.01 improved 

.0 

TIME (s) 

Fig. 5.26 Influence of modifying mass matrix: one mode solution 

resulting from a moment applied at the free end of the beam, the static 

displacement resulting from a transverse force applied at the free end is used. Fig. 

5.27 shows the response obtained with these two displacement fields (dot and dash 

curve) and the response obtained with the finite element method using four 

elements (solid curve). It can be seen that the approximation is now much better. 

This is primarily due to the fact that the lowest eigenfrequency conesponding to 
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Fig. 5.27 Influence of modifying mass matrix: two mode salution 
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the two displacement fields approximation is close to the fundamental frequency of 

the beam. 

The solution using two displacement fields can be improved with the above­

described shifting procedure. The two displacement fields are orthogonalized before 

the procedure is applied. This is accomplished by using them as base functions of 

the space of eigenfunctions of the beam. The coefficients of the approximate 

eigenfunctions relative to this base follow from the eigenvalue problem going with 

the approximate equations of motion of the beam 

(5.4) 

where .Qs and K represent the modal mass matrix and the modal stiffness matrix, 

respectively, going with the two static displacement fields. The two approximate 

eigenfunctions which result from this analysis are used as base functions. From this 

eigenvalue problem follows also an approximation of the two lowest eigenfrequen­

cies of the beam. The modal masses going with the approximate eigenfunctions are 

multiplied by the square of the ratio of the corresponding approximate eigenfre­

quency and the corresponding exact eigenfrequency. 

This procedure is applied to the above two static displacement fields. The 

results obtained with the approximate eigenfunctions are identical to the result 

obtained with the two static displacement fields, because they span the same vector 

space of functions. The result obtained after modifying the modal masses is given 

by the dotted curve in fig. 5.27. It can heseen that the modification of the modal 

masses leads to a better approximation. 

From the above it can he concluded that a more accurate discription of the 

dynamic behaviour of a body can be obtained by shifting the approximate 

eigenfrequencies of the body to its exact eigenfrequencies. However, more research 

is needed to fully understand the proposed procedure and to justify its application. 

It is feit that the procedure can also be used for improving the approximate solution 

of the dynamic behaviour of a body which is part of a system of bodies. An 

alternative application of the procedure is given in the next subsection. 

5.6.2 Lowering of frequencies 

The procedure that has been presented in the preceding subsection can also be used 

to lower high frequencies in a model of a system of bodies. This may he desirabie 

because high frequencies slow down the integration process. The modal synthesis 

metbod is often used to reduce the number of degrees of freedom. The 
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eigenfrequendes conesponding to the retained displacement fields are generally low. 

However, sometimes it may be beneficia! to retain displacement fields with which 

correspond high frequencies. For example, an axial displacement field was included 

in determining the nonlinear response of the planar slider-crank mechanism in 

subsection 5.5.1 in order to determine the axial load in the connecting rod. The 

frequency related to this displacement field is high as compared with the freqnency 

going with the transverse deflection of the connecting rod, which slows down the 

integration process. It is not important that the freqnency corresponding to the 

axial displacement field is approximated correctly because the axial displacement 

field is of minor importance for the deflection of the connecting rod; only its mean 

value should be correct in order to obtain an accurate mean valne of the axialload. 

The procedure presented in the preceding section is applied to the modal mass 

conesponding to the axial displacement field of the connecting rod for the problem 

considered in subsection 5.5.1. The modal mass is multiplied by respectively 10.0, 

25.0, 50.0, and 100.0. The CPU times required for the analyses are respectively 0.5, 

0.4, 0.3, and 0.2 times the CPU time required for the analysis using a consistent 

modal mass. The deflection of the middle of the connecting rod is not influenced 

when the modal mass is multiplied by 10.0 or 25.0; the response is slightly different 

when the multiplier equals 50.0 or 100.0. This may be attributed to the fact that 

the frequency is shifted too close to the eigenfrequency related to the transverse 

deflection of the connecting rod. 

It can be concluded that a high eigenfrequency can be lowered by multiplying 

the modal mass by a factor > l.O. This factor should be such that the lowered 

frequency does not approach the eigenfrequencies conesponding to relevant 

displacement fields too close. The lowering of frequencies leads to CPU time 

savings. 
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chapter 6 

Concluding remarks 

6.1 Conclusions 

In this thesis, a mathematica! model is presented for determining the dynamic 

behaviour of a deformable body which forms part of a system of bodies. For 

descrihing the kinematics of the body, its displacement field is resolved into a 

displacement field due to a rigid body motion and a displacement field due to 

deformation. The displacement field due to deformation is chosen such that it does 

not contain rigid body motions. Two kinds of conditions are considered to achieve 

this, namely conditions for displacements of selected particles of the body and 

conditions for mean displacements of the body. The latter conditions lead to 

simpler equations of motion. The displacement field due to deformation is approxi­

mated by a linear combination of a number of assumed displacement fields. Three 

methods are considered for generating such displacement fields, namely the as­

sumed-modes method, the finite element method, and the modal synthesis method. 

The simplification of the equations of motion when the mean displacements 

going witb tbe displacement field due to deformation are chosen equal to zero, leads 

to a computation time r~uction of a few decades of per cents in the most 

favourable case. For the systems investigated in this thesis the dynamic behaviour 

is approximated better when the displacement field due to deformation is 

approximated by assumed displacement fields witb mean displacements equal to 

zero. Caution must be taken in preventing rigid body motions of tbe displacement 

field due to deformation by prescrihing displacements of selected particles of the 

body, since the solution of the dynamic behaviour may be incorrect. 

Tbe assumed-modes metbod is only feasible for regularly shaped bodies. Tbe 

finite element metbod and tbe modal syntbesis metbod can be used for bodies witb 

arbitrary shape. Tbe finite element metbod leads often to a model with many 

degrees of freedom. Tbe solution of sucb a model requires much computation time. 

The modal synthesis metbod can tben be used to reduce tbe number of degrees of 
freedom sucb tbat tbe required computation time is cut down. The effectiveness of 

tbe modal syntbesis metbod depends to a great extent on a proper cboice of tbe 

assumed displacement fields. Such a cboice can generally be made in advance on tbe 

basis of the load on the body. The lumped rnass approximation which is frequently 

used in literature is feasible for determining time-independent mass coefficients 
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from displacement fields which have been determined with a standard finite 

element program. One should bear in mind that a finer subdivision into elements 

may be required than would be necessary for determining the displacement fields 

sufficiently accurate. 

A metbod is proposed to improve approximations for descrihing the dynamic 

behaviour of a body for a specific set of assumed displacement fields. This method 

has been used successfully for reducing the required computation time by lowering 

irrelevant high frequencies. 

6.2 Suggestions for further research 

In section 2.5, the equations of motion of a body are written in terms of Euler 

parameters and their first and second time derivatives in order to allow their 

implementation in the computer program DADS. This leads to four equations that 

describe the rotational motion of the body whereas three equations suffice. 

Consequently, a constraint equation must be introduced which takes the dependen­

cy of these equations into account. The equations of motion are simpler when they 

are written in terms of the angular velocity vector and its first time derivative. 

Further, time derivatives of eenstraint equations are more easily formulated in 

terms of the angular velocity vector and its first time derivative. All this and the 

results obtained by Nikraveshet aL (1985) indicate that a computer program based 

on the equations of motion in terms of the angular velocity vector and its first time 

derivative will be more efficient. This may be a fruitful topic for further research. 

Computer programs for the analysis of the dynamic behaviour of multibody 

systems are based on either the global description or the relative description. The 

description given by Haug and McCullough (1986) may be regarded as an irnpulse 

to arrive at a program which is based on a synthesis of the global description and 

the relat.ive description. They derived the equations of motion of recurring 

subsystems in terrus of variables that describe the relative motion of the 

interconnected boclies in the subsystem and implemented them into the multibody 

program DADS, which is based on the global description. This approach could be 

extended such that it is not necessary to derive the equations of motion of a specific 

subsystem in symbolic form and to implement them into a multibody program. 

This requires the addition of a module that automatically evaluates the equat.ions 

of motion of any subsystem using the relative description. Perhaps it is even 

possible to give guidelines on which description is most efficient for a specific 

system. These can then be used by the program to select the most efficient 

description automatically. 
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The constraint equations for kinematic connections which are implemented in 

computer programs that are based on the global description are generally written in 

terms of the kinematic variables of the interconnected bodies. These equations 

cannot be solved explicitly for specific variables. However, they can be solved 

explicitly when variables that describe the relative motion of the interconnected 

bodies are introduced such as is done in the relative description. This can be used in 

solving the equations of motion of multibody systems with a tree structure, by 

circumventing the need to solve the constraint equations iteratively and to 

partition variables into dependentand independent variables numerically. Actually, 

such a description leads to the relative description within a program based on the 

global description. It can be implemented without difficulty in a multibody 

program such as DADS, since some kinematic connections are already described 

using the variables that describe the relative motion of the interconnected bodies. 

Therefore, research should be devoted to a solution procedure that takes advantage 

of the fact that the constraint equations can be solved explicitly. 

A good choice of assumed displacement fields for a specific body can generally 

be made on the basis of the load on the body. This presents no difficulties when the 

type of load does not change much. However, the selection of assumed displacement 

fields is not straightforward when the type of load changes considerably. This may 

be the case when the point of application of the load changes, such as occurs for a 

body which is interconnected by a translational joint to another body. The best 

choice for a set of assumed displacement fields depends on the instantaneous 

location of the point of contact. Such a dependency cannot be accounted for with 

the description given in this thesis because the assumed displacement fields are 

taken invariable. Wang and Wei (1987) presented a mathematica! modelfora beam 

which takes a change of assumed displacement fields into account. They approxi­

mated the displacement field of the beam with instantaneous eigenfunctions. 

However, the instantaneous eigenfrequencies go to infinity when the point of 

contact approaches the end of the beam which slows down the integration process. 

Another option might be to waive the wish to use an instantaneous good set of 

assumed displacement fields and use displacement fields that do not change. This 

approach has been foliowed by Hwang and Haug (1987). A failure of this approach 

is that the displacement fields due to deformation of the body on both sides of the 

translational joint are coupled, which may lead to incorrect results. Further, it may 

be necessary to include a relatively large number of assumed displacement fields 

which leads to long computation times. The selection of assumed displacement 

fields for bodies with the above discribed loading requires further research. 
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appendix A 

Mathematica! notation 

A.1 Matrices 

An m x n matrix is defined as a set of objects arranged in m rows and n colunms. 

The objects may be for instanee scalars, vectors, tensors or matrices. Matrices will 

be designated by an underscore; for legibility, column matrices will be designated 

by a wavy underscore. Matrices are sametimes denoted by the elernents enclosed in 

brackets. A typieal element of a matrix is denoted by the matrix syrnbol sub­

scripted by its row and column nurnber. The column number 1 for elements of a 

column matrix wil! be ornitted. The name-giving of special rnatrices and operations 

on rnatrices agree with the norrnally used definitions (cf. e.g. Arnold; 1962). 

Multiplication of a matrix with another object is evaluated by the common 

multiplication rule of matrix algebra with the understanding that the operatien on 

the elements of the matrix and the other object is governed by the operator 

between the matrix and the object. For example, when the elements of the matrix 

and the object are vector quantities, then a · indicates that the resulting matrix 

elements are scalars obtained from scalar multiplication of the elements of the 

matrix and the objects. 

The skew-symmetric 3 x 3 matrix that corresponds to a 3 x 1 column matrix ~ 

in accordance with the definition 

(A.l) 

is given a wavy superscript in order to discrirninate it from other matrices. The 

elementsof IJ. may be scalars, veetors or tensors. 

A.2 Veetors and tensors 

Veetors are entities defined in a Euclidean vector space that possess both mag­

nitude and direction. They are often visualized by an arrow that is pointing in the 

direction associated with the vector and that has a length equal to the magnitude of 

the vector. Veetors will be designated by letters with an arrow as superscript. 
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Veetors as used in this thesis have the usual properties (cf. e.g. Newell, 1962). 

The scalar product of an arbitrary pair of veetors a and b is denoted by a· b. It 
is a scalar with magnitude equal to the product of the magnitude of the two veetors 

and the eosine of the angle between the vectors. 

The vector product of an arbitrary pair of veetors a and b is denoted by a x b. It 
is a vector perpendicular to the two veetors with magnitude equal to the product of 

the magnitude of the two veetors and the sine of the angle between the two vectors; 
... ~ ... ... 

the sense of the vector is such that a, b and a x b make a right-handed system. 

The tensor product of an arbitrary pair of veetors a and b is denoted by ab. lt is 

a linear vector operator, called dyad, that can be used to form for instanee the 

scalar product with an arbitrary vector ê yielding a vector such that 

...... -t ....... 
(ab)·c = (b·c)a, (A.2) 

.. ...... .. ..... 
c·(ab) = (a·c)b. (A.3) 

A secoud order tensor is a linear combination of dyads. In this thesis only 

secoud order tensors are used. They are identified by boldface letters. Such as for 

dyads, secoud order tensors can be used to form scalar products with an arbitrary 

vector yielding a vector. This vector follows from the definitions of the scalar 

product of a dyad and a vector. 

The product of two second order tensors, A and B, is denoted by A· B. It is a 

second order tensor such tbat 

... ... ... ... 
a·(A·B)·b = (a·A)·(B·b) (A.4) 

for all veetors a and b. .. .. .. 
The trace of a tensor A, denoted by tr( A), is a scalar sucb that for a· (b x c) f. 0 

(A·a)·(b x ê) + a·{(A·b) x ê} + a·{b x (A·ê)} = tr(A) a·(b x ê) (A.s) 

.. .. .. 
This scalar does not depend on a, b or c. 

The scalar product of two secoud order tensors, A and B, is denoted by A:B. It 

is a scalar such that 

A:B = tr(A·B). (A.6) 

The conjugale tensor of an arbitrary tensor A, denoted by Ac, is a secoud order 

tensor sucb that 
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(A.7) 

for all veetors a and b. 
The second order unit tensor I and the second order zero tensor 0 are defined by 

the requirements that 

I·a = a·I =a, (A.S) 

and 

... .. .. 
O·a=a·O=O (A.9) 

for all veetors a. 
A tensor is called symmetrie when it equals its conjugate. A tensor is called 

skew-symmetric when it equals the negative of its conjugate. A vector a is 
associated with a skew-symmetric tensor A, such that 

(A.lO) 

for all veetors b. a is termed the axial vector of A. 

Some useful identities are 

.. .. "') .. ~ ... a·(b x c =(a x b)·c, (A.ll) 

(A.12) 

a x {b x (a x b)} = b x {a x (a x b)}. (A.l3) 

The matrix representation of an arbitrary vector c relative to a base ~ is given 

by 

[. . a1• c 

ça ... ... ... ... 
(A.l4) a2·c !J.·C. 

... ... a3 ·c 

The matrix representation ç_ab of an arbitrary tensor C relative to the bases (! and 

Sis given by 
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-+ -+T = !!-·C·g. (A.15) 

In this thesis the matrix representation of all veetors and tensors are relative to the 

same base, namely an orthorrormal right-handed inertial base ~. Consequently there 

is no need to specify the base that is used for determining the matrix representa­

tion. 
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appendix B 

Description of rotational motion in terniS of Euler parameters 

From Euler's theorem, a rotation about a fixed point may be conceived as the 

result of a rotation about a unique axis passing through that point (Wittenburg, 

1977). Let the direction of that axis be defined by the unit vector e and the angle of 

rotation by X· Then from fig. B.l the position vector of an arbitrary material point 

P in its reference configuration, x, and the position vector of P after a rotation 

about an axis passing through an inertial point 0, t, are related by the equation 

t x+ (1- cosx)w + sinx v, (B.l) 

where v is perpendicular to the plane spanned by x and e, a.nd ,-v is perpendicular to 

e and v; the length of both v and w equal the radius of the circle traversed by P due 

to the rotation. From this v and w can be written in termsof e and x. This yields 

-> -> ... v ex x, 

-+ ... -+ ... (.. ...) w=exv=ex exx. 

Fig. B.l Rotation about e 

~ 
e 

(B.2) 

(B.3) 
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Substitution of (2) and (3) into (1) yields 

.. .. .. (.. ..) .. .. r = x + 2q x q x x + 2q0q x x, (B.4) 

where 

q0 cos(x/2), (B.5) 

q ê sin(x/2). (B.6) 

~ and the components of q relative to an arbitrary orthonormal inertial base ~ are 

called Euler parameters. Since ê is a unit vector, the Euler parameters are related 

by 

2 .... 
qo+q·q=l. (B.7) 

For any vector a and q there exists a skew-symmetric tensor R such that 

(B.8) 

From this equation it can be shown that R is related to the components of q 
relative to the base ~ by 

(B.9) 

Substitution of {8) into (4) yields 

(B.lO) 

Oomparing this expression with the expression for a rigid body rotation 

(B.ll) 

reveals that 

Q = I+ 2R· R + 2q0R. (B.l2) 

Substitution of (9) into (12), using (7), yields for the components of Q relative to ~ 
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[ 

qÖ + qf - q~ q5 

2( qlq2 + q0q3) 

2(ql~- q0q2) 

2( qlq2 - q0q3) 2( qlq3 + q0q2) 

qÖ - q1 + q~ q~ 2(q2q3- qûql) (B.13) 

2( q2q3 + QoQ 1) qfi - qÎ q~ + q§ 

The angular velocity vector wis the axial vector of Qc · Q. Aftersome algebrak 

manipulation, using (7) and its first time derivative, the following result can be 

obtained 

... 2 ... TG. W= § _g, 

where 

and 

[ 
-ql Qo Q3 -q2] 

= -qz -q3 Qo ql · 

-q3 q2 -qt Qo 

Similarly, the virtual angular rotation equals 

lt may be verified that 

Qg= Q. 

Consequently the expression for the angular acceleration becomes 

(B.14) 

(B.15) 

(B.l6) 

(B.l7) 

(B.18) 

(B.19) 

The component form of (14) relative to ~ is obtained from scalar premultiplication 

of (14) by ~. This yields 

(B.20) 

where '!!is the column matrix of the componentsof w relative to ~. Solving (20) and 

the first time derivative of (7) for g yields 

(B.21) 
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appendix C 

Beam element 

The objective of this appendix is to present a beam element with uniform cross 

section that can be used for modeHing straight beams that deform in just one plane. 

The displacements due to deformation are assumed to satisfy the Bernoulli-Euler 

hypothesis. 

Consider the beam element of length t and mass m shown in fig. C.l. An 

inertial base ~ and an inertial point 0 are chosen such that el and the line 

connecting 0 with an arbitrary point of the elastic axis in the reference 

configuration are parallel to the elastic axis in the reference configuration. In each 

node three degrees of freedom are introduced in order to be able to satisfy the 

continuity requirements between elements. The position vector of an arbitrary 

point P of the elastic axis in the reference configuration can be expressed in terms 

of the noclal position veetors 

(C.l) 

where Ç is the distance between node 0 and P which has been made dimensionless 

Fig. C.l Beam element 
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with t. The displacements between the nodes are interpolated with the usual 

Hermite polynomials 

.. T .. 
u(Ç,t) = eQ: (t) e<P(Ç), (C.2) 

where 

(C.3) 

e~( Ç) [(1-Ç)el (1-3ç2+2Ç3)e2 .€.( Ç-2Ç2+Ç3)ê2 

{e1 (3e-2çJ)e2 t( -e+Ç3)ê2 ] r. (C.4) 

Using this approximation of the displacement field due to deformation, the 

time-independent inert ia coefficients (2.34 )-(2.41) become for this beam element 

(C.5) 

(C.6) 

(C.7) 

(C.8) 

(C.9) 

(C.lO) 

(C.ll) 

(C.l2) 

where 
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2 1 

0 0 

0 0 
Mt (m/6) 1 2 ' 

(C.l3) 

0 0 

0 0 

0 0 

21 9 

3t 2t 
M2 = (m/60) 0 0 ' 

(C.l4) 

9 21 

-2t -3t 

2 0 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
Ms = (m/6) 1 0 0 2 0 0 ' 

(C.15) 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 156 22t 0 54 -13t 

0 22t 4t2 0 13t -3t2 

~ (m/420) 0 0 0 0 0 0 (C.16) 

0 54 13t 0 156 -22t 

0 -13t -3t2 0 -22t 4t2 

0 0 0 0 0 0 

21 0 0 9 0 0 

3t 0 0 2t 0 0 
~ = (m/60) 0 0 0 0 0 0 (C.17) 

9 0 0 21 0 0 

-2t 0 0 -3t 0 0 

The expression for the strain energy of a beam, using linearized strain-

displacement relations, is given by 
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1 1 

U1 !(EA/t) J (àu/iJÇ)2dÇ + !(EI/t3
) J (0Zv/iJÇ2?dÇ, (C.l8) 

0 0 

where u and v are respectively the a:x:ial and the transverse displacement field of the 

beam. Substitution of the displacement field (2) into this expression yields 

UI .l T K 
ze9' e- e9', (C.l9) 

where is the usual element stiffness matrix given by 

7 0 0 -7 0 0 

0 12 6t 0 -12 6t 

0 6t 4t2 0 -6( 2t2 

(EI/t 3) 
-Î 0 0 7 0 0 (C.20) 

0 -12 -6t 0 12 -6t 

0 6t 2t 2 0 -6( 4t 2 

with ~/ At 2/T. 
An approximate expression for the strain energy, using nonlinear strain­

displacement relations, is given by (Przemieniecki, 1968) 

1 

Uni U1 + !(EA/t2
) J (àu/oÇ)(IN/iJÇ)2dÇ. (C.21) 

0 

Substitution of the displacement field (2) into this expression yields 

(C.22) 

where J{G is the geometrie stiffness matrix of the beam element given by 

0 0 0 0 0 0 

0 36 3( 0 -36 3( 

0 3( 4t2 0 -3( -(2 

J{G (F /30t) 0 0 0 0 0 0 
(C.23) 

0 -36 -3t 0 36 -3t 
0 3( -(2 0 -3t 4(2 

where F = (EA/t)/(u1 - u0). F represents the axial force in the beam element. 
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appendix D 

Elastodynamic rumlysis of a slider·crank mechanism 

An elastodynamic analysis of a system of bodies consistsof determining the motion 

of the system in case its bodies are rigid, followed by determining the quasi-static 

deformation of the bodies resulting from the load which goes with the rigid body 

motion. This can be done analytically for a planar slider-crank mechanism with a 

uniform deformable connecting rod because of its simple geometry. 

Consider the planar slider-crank mechanism shown in fig. D.I. The length of the 

crank equals a times the length t of the connecting rod with 0 < a < 1. From 

geometrie considerations follows 

sin 0 = a sinnt, (D.l) 

where n is the constant angular velocity of the crank. From this equation follows, 

using the relation sin2 0 + cos2 0 = 1 

(D.2) 

The sign is correct for any value of t because -7r/2 < 0 < 1rj2. Differentiating (1) 

once with respect to t yields 

ó = a n cosnt f cos 0 . (D.3) 

Differentiating (3) once with respect tot and using (1 )-(3) yields 

(D.4) 

Fig. D.l Planar slider-crank mechanism 
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The position vector of an arbitrary material point of the connecting rod is given 

by 

r ={at cosnt + Ç t cosO}e1 + {(1-Ç)t sinO}e2, (D.5) 

where Çt is the distance between the material point and the left end of the 

connecting rod. Differentiating (5) twice with respect tot yields 

{(1-Ç)t (-è2sin0 + ÖcosO)}ê2. (D.6) 

For determining the transverse deflection of the connecting rod, the component of 

the acceleration perpendicular to the connecting rod is required. It can be obtained 

from the scalar product of the acceleration and the unit vector n which is 

perpendicular to the connecting rod and is defined by 

(D.7) 

Taking the scalar product of r and n yields 

a= r ·n =-a n 2t cosnt sinO- tè2sin0 cosO - Çtë + të cos20. (D.S) 

The component of the acceleration perpendicular to the connecting rod varies 

linearly between the endpoints. It can be resolved into a symmetrie- and an anti­

symmetrie contribution. The magnitude of the symmetrie contribution equals the 

acceleration of the middle of the connecting rod. Substitution of Ç = t into (8), and 

using (1)-(4) yields 

a= -tan2t sinnt {2(acosnt + cosO) + (a2-1) jcos3 0}. (D.9) 

The connecting rod may be considered to be simply supported. The load going 

with the antisymmetrie contribution of the acceleration does not cause a deflection 

of the middle of the connecting rod. The deflection resulting from the symmetrie 

contri bution of the acceleration can be obtained from beam theory. This yields for a 

connecting rod with a bending rigidity EI 

v = -(5/384)amt3/EI. (D.10) 

Fig. D.2 shows the dimensionless elastodynamic deflection vj(n2mt4/EI) of the 

middle of the connecting rod fora= 0.25, 0.5, and 0.75. 

The initia! velocity of the displacement field due to deformation can be obtained 
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Fig. D.l Elastodynamic deflection of the middle of the connecting rod 

from differentiation of (10) once with respect to t and substituting t = 0 s. This 

yields 

(D.ll) 

where ä0 is the time derivative of the mean acceleration for t = 0 s, given by 

(D.l2) 
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Samenvatting 

In dit proefschrift wordt een wiskundige beschrijving gegeven van het dynamisch 

gedrag van stelsels van onderling verbonden vervormbare lichamen. 

Het verplaatsingsveld van een lichaam wordt opgesplitst in een verplaatsings­

veld als gevolg van een beweging als star lichaam en een verplaatsingsveld als 

gevolg van vervorming. Om deze opsplitsing eenduidig te maken, wordt van het 

verplaatsingsveld als gevolg van vervorming geëist dat het geen beweging als star 

lichaam representeert. Dit kan worden bereikt door Of verplaatsingen als gevolg van 

vervorming van een aantal materiële punten of gemiddelde verplaatsingen als 

gevolg van vervorming, voor te schrijven. 

Uitgaande van de bewegingsvergelijkingen voor een infinitesimaal volume­

element van het lichaam wordt een variationele formulering voor de bewegingsver­

gelijkingen van het vrijgemaakte lichaam afgeleid. Deze vergelijkingen zijn 

eenvoudiger indien de gPmiddelde verplaatsingen als gevolg van vervorming gelijk 

aan nul zijn. Een benaderingsoplossing voor de bewegingsvergelijkingen wordt 

verkregen door het verplaatsingsveld als gevolg van vervorming te benaderen met 

een lineaire combinatie van een aantal aangenomen verplaatsingsvelden. Drie 

methoden voor het genereren van dergelijke verplaatsingsvelden worden beschreven, 

namelijk de "assumed-modes" methode, de eindige elementen methode en de 

"modal synthesis" methode. 

V oor het opstellen van de bewegingsvergelijkingen van het lichaam zoals het 

voorkomt in een stelsel van lichamen, moet rekening worden gehouden met verbin­

dingen met andere lichamen. Energetische en actieve verbindingen kunnen in 

rekening worden gebracht door de krachten die zij veroorzaken toe te voegen aan de 

krachten op het vrijgemaakte lichaam. Kinematische verbindingen beperken de 

bewegingsvrijheid van de onderling verbonden lichamen. Dit kan in rekening 

worden gebracht met constraintvergelijkingen, waarmee de variabelen die de 

kinematica van het stelsel van lichamen beschrijven, kunnen worden onderverdeeld 

in afhankelijke en onafhankelijke variabelen. Het is handig om bij het formuleren 

van de constraintvergelijkingen, variabelen te introduceren die de relatieve bewe­

ging van de verbonden lichamen ten opzichte van elkaar beschrijven. 

Het eenvoudiger zijn van de bewegingsvergelijkingen wanneer de gemiddelde 

verplaatsingen als gevolg van vervorming gelijk aan nul zijn gekozen, leidt in het 

gunstigste geval tot een rekentijdbesparing van enkele tientallen proeen ten. Van 
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de in dit proefschrift onderzochte systemen wordt het dynamisch gedrag beter 

benaderd indien verplaatsingsvelden als gevolg van vervorming worden benaderd 

met aangenomen verplaatsingavelden waarvan de gemiddelde verplaatsingen als 

gevolg van vervorming gelijk aan nul zijn. Het voorkomen van bewegingen als star 

lichaam in .het verplaatsingaveld als gevolg van vervorming door het voorschrijven 

van componenten van verplaatsingen van materiële punten moet behoedzaam 

gebeuren omdat de oplossing voor het dynamisch gedrag onjuist kan zijn. 

De "assumed-modes" methode is alleen geschikt voor lichamen met een 

eenvoudige vorm. De eindige elementen methode en de "modal synthesis" methode 

kunnen worden gebruikt voor willekeurig gevormde lichamen. De eindige elementen 

methode blijkt al snel tot een model te leiden met veel vrijheidsgraden hetgeen 

lange rekentijden veroorzaakt. De "modal synthesis" methode kan dan met vrucht 

worden gebruikt om het aantal vrijheidsgraden te verkleinen en daarmee de 

benodigde rekentijd te reduceren. De effectiviteit van de "modal synthesis" 

methode hangt voor een belangrijk deel af van goed gekozen aangenomen verplaat­

singsvelden. Een geschikte keuze kan in het algemeen worden gemaakt op grond 

van de op het lichaam werkende belasting. Een benadering met geconcentreerde 

massa's blijkt erg geschikt te zijn om, uitgaande van met een standaard eindig 

elementenpakket bepaalde verplaatsingsvelden, tijdsonafhankelijke massatraag­

heidstermen in de bewegingsvergelijkingen te bepalen. Bedacht moet worden dat 

dan een fijnere elementenverdeling noodzakelijk kan zijn dan nodig is voor het 

voldoende nauwkeurig bepalen van de verplaatsingsvelden. 

Tot slot wordt een methode voorgesteld waarmee, bij gegeven verplaatsings­

velden, de benaderingsoplossing voor het dynamisch gedrag van een lichaam kan 

worden verbeterd. Deze methode is met succes gebruikt voor het verkorten van de 

benodigde rekentijd door het verlagen van niet-relevante hoge frequenties. 
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STELLINGEN 

behorende bij het proefschrift 

THE DYNAMICS OF SYSTEMS OF DEFORMABLE BODlES 

L Het is efficiënter om in bewegingsvergelijkingen van lichamen de rotatie­

beweging te schrijven in termen van hoeksnelheden dan in termen van tijdsafge­

leiden van variabelen die de rotatiebeweging beschrijven. 

Dit proefschrift, hoofdstuk 2. 

2. Eigentrillingsvormen en/ of component modes worden vaak gebruikt voor het 

benaderen van verplaatsingen als gevolg van vervorming van vervormbare licha­

men die deel uitmaken van mechanische systemen. Echter, zij zijn hiervoor vaak 

minder geschikt. 

Dit proefschrift, hoofdstuk .). 

3. Het beschrijven van niet-kinematische verbindingen als kinematische verbin­

dingen om een multibody-systeem met een boomstructuur te krijgen is vanuit een 

numeriek oogpunt een slechte werkwijze. 

Wittenburg, J., 1977, Dynamics of Systems of Rigid Bodies, B. G. Tenbner, 

Stuttgart. 

4. Het opstellen van bewegingsvergelijkingen voor mechanische systemen met 

behulp van de vergelijking van Lagrange is vaak omslachtig in vergelijking met 

andere methoden uit de analytische mechanica en kan tot complexere bewegings­

vergelijkingen leiden. 

Schieblen, W., 198,1, "Dynarnics of Complex Multibody Systems," SM 

Archives, VoL 9, pp. 159-195. 

5. De bewering van Wehage en Haug, en Nikraveshen Hang dat niet-standaard 

kinematische verbindingen moeilijk kunnen worden geïmplementeerd in een 

programma dat is gebaseerd op de relatieve beschrijvingswijze, is onjuist. 

Nikravesh, P. and Hang, E. J., 1983, "Generalized Coordinate 



Partitioning for Analysis of Mechanica! Systems with Nonholanomie 

Constraints," J. of Mechanisms, Transmissions, and Automation in Design, 

Vol. 105, pp. 379-384. 

Wehage, R. A., and Haug, E. J., 1982, "Generalized Coordinate Partitioning 

for Dirneusion Reduction in Analysis of Constrained Dynamic Systems," J. 

of Mechanica/ Design, Vol. 104, pp. 247-255. 

6. De in de eindige elementenmethode gangbare benaming "gegeneraliseerde 

knooppuntskrachten" is misleidend voor elementen met inwendige knooppunten 

daar deze suggereert dat dit in de knooppunten aangrijpende geconcentreerde 

krachten zijn. 

Przemieniecki, J. S., 1968, Theory of Matrix Structural Analysis, 

McGraw-Hill, New York. 

7. Het introduceren van vectorbases alvorens de theorie op te stellen door 

mensen die de voorkeur geven aan het werken met vectoren en tensoren in 

symbolische vorm, is in strijd met hun voorkeur. 

Sol, E. J., 1983, Kinematics and Dynamics of Multibody Systems, proefschrift 

Technische Universiteit Eindhoven, Eindhoven. 

8. Door het toenemend gebruik van de computer voor het berekenen van het 

gedrag van constructies neemt het belang van het kunnen schatten van dat 

gedrag toe. 

9. De toenemende individualisering in de maatschappij veroorzaakt een 

spanningsveld omdat mensen behoefte hebben aan waardering van anderen. 

10. Ter bescherming van mensen die liever niet roken zouden de Nederlandse 

Spoorwegen het opschrift "bij vol balkon liever niet roken" moeten vervangen 

door "verboden te roken". 

11. Het plaatsen van een vraagteken of uitroepteken aan het begin van een zin 

vergroot het leesgemak. 




