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Preface 
 

This thesis is the result of the five years that I spent on my PhD research 

project at the Urban Planning Group of the Eindhoven University of 

Technology. First, I would like to give you some insight into my personal life 

trajectory and the life course events that I experienced during my PhD. This is 

related to the topic of my thesis. Next, I would like to thank everyone who has 

supported and motivated me during this part of my life. Without their help, 

contribution and support I would not have been able to complete the research 

project and this thesis. 

My life trajectory started with my birth on 11th of April 1979 in Oss, where I 

lived with my parents Annie and Wim Verhoeven. In 1980 we moved to our new 

house <housing event> and soon after my brother Peter was born <household 

event>. I will not bother you with all the details and life course events during 

my childhood and adolescent life. Therefore, we skip to the year 2004. In this 

year I received my Master of Science degree at the Eindhoven University of 

Technology <study event>. After my graduation I had to make a decision, either 

leave the University and start a job in the “real world”, or stay at the University 

and start as a PhD student. That way I would be able to finish what I started as 

a Master student. Obviously, I chose the latter option <work event>. In the 

same year I had to hand in my student PT pass and I switched to a discount 

public transport (PT) pass <PT pass event>. During the year 2005 experienced
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several life course events. First, I moved to an apartment building in Eindhoven 

<housing event> and started living together with Mattijs <household event>. 

Next, we got our first car <car availability event> and I cancelled my discount 

pass for public transport <PT pass event>. In 2007, our household income 

increased, because Mattijs started his first job <household income event>. 

Mattijs and I got married in the summer of 2008 <household event> and soon 

after we moved into our newly bought house <housing event>. In the same 

year I purchased a discount pass for the public transport again <PT pass 

event>. In the beginning of 2009, I started a new job before this thesis was 

completely finished <work event>. With this short summary of my life trajectory 

I hope that I have given you a preview of the relevant life course events which 

will be discussed in this thesis.  

I would like to thank a few people at the university for their support and help for 

making this possible. First of all, I would like to thank Professor Harry 

Timmermans, my promotor, for the chance he gave me to finish what I started 

with my Master project. It was a great honour to work with him and during our 

discussions he was always able to point me into the right direction. I really 

appreciate the opportunity he gave me to make a trip around the world during 

my PhD project. I also would like to thank Theo Arentze, my copromotor, for 

the endless support and patience. Theo inspired my during dicussions and was 

always there when I needed help. I really enjoyed our brainstorm sessions after 

which I always had plenty of new ideas and was highly motivated to explore 

these ideas. Harry and Theo thanks for correcting my English and for your 

endless help and support - without this it would not have been possible to finish 

my PhD research.  

I would also like to thank my collegueas of the Urban Planning Group. In 

particular, I want to thank Peter van der Waerden for motivating me during my 

PhD journey. I really enjoyed our conversations and discussions during our 

many lunch-time walks. Sometimes we dicussed things about work, but most of 

the time we spoke about personal things. These discussions always came back 

to human (group) behaviour and decision making processes. Peter, I have got 

two things to say. Thanks for the good time at the University and I hope that we 

keep in touch or work together in the future. Of course I would like to thank “the 

girls” from the secretary for their support, but also their chats at the coffee 

machine. Mandy, Anja, Annemiek and Ingrid thanks for the fun during my time 
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at the university, you made my time more pleasant. From the other Urban 

Planning Group staff members I would like to thanks Astrid Kemperman and 

Aloys Borgers for their company during the many lunch meetings at the 8th 

floor. I enjoyed our discussions and conversations, also on many other 

occasions. Leo van Veghel thanks for the help with the papers and books and I 

owe you an apology for the fact that I went for tea with Peter before you arrived 

at the university in the morning. From the DDSS group I would like to thank 

Joran Jessurun for writing the necessary programs for my research. You were 

always very understandinga and I really appreciate the help - thanks! 

It is impossible to name all the other members of the Urban Planning Group. I 

would like to thank a few people for the interesting conversations, discussions 

and the good times after work: Erik, Nicole, Pauline, Anastasia, Gustavo, 

Oliver, Linda, Caspar and Oswald, thanks guys and girls! A special word of 

thanks to Nicole for reading my draft and final version and correcting my Dutch 

- English. I would also like to thank the initiators and active members of the 

PhD network: Ana, Christina, Paul, Jakob, Christian, Marija, Vincent, Daniel, 

William and Bart.  

I would like to thanks my new bosses Bart van Hussen and Paul van Loon for 

their patience and for the possibility they gave me to finish my thesis during my 

new job. Without this opportunity I would probably still be struggling. 

There are a few friends in my life who I would like to thank for their support, 

interest and understanding that my social life was sometimes on a break: 

Floortje, Hanneke, Marieke, Esther, Manon, Saskia, Loes, Tamara, Sagitta and 

Claudia. I would especially like to thank Manon for designing the cover of my 

thesis. 

Besides my friends special thanks goes to my family for their interest, support 

and understanding: Peter and Mayke, my parents in law Eef and Nelleke, 

Annemarie and Ian and Janneke and Jeroen. I am very grateful to my parents, 

Wim and Annie, who were always there for me. They supported me during 

difficult moments and motivated me to finish this thesis. Thanks for making me 

feel proud of my research. Last but not least, I would like to thank my husband 

Mattijs for his everlasting support during this journey and the trust he had in 

me, even when I was completely broken down. Thanks for understanding and I 

hope we spent the rest of my life trajectory together. I love you. 
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1 | Introduction 
 

 

1 | Motivation  
 

The so-called trip-based approach of transport demand forecasting has been 

frequently used in both academic and applied research in urban and 

transportation planning. It predicts transport demand in independent, 

sequential steps: traffic generation, destination choice, transport mode choice 

and traffic assignment. It has been criticised from different perspectives, the 

most important of which is the understanding that trips are derived from 

people’s need to conduct activities.  

Although seminal work on activity-based modelling can be traced back to the 

1970s, the activity-based approach in urban planning and transportation 

research truly gained momentum in the early 1990s. This approach views travel 

patterns as a manifestation of the organisation of activities in time and space. 

Compared to previous approaches, including the trip-based approach, the 

activity-based approach added complexity to the modelling of transport demand 

by incorporating dependencies between the various choice facets making up an 

activity-travel pattern (transport mode, destination, departure time, etc.) at a 
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higher spatial and temporal resolution. Such added complexity was felt crucial 

for better understanding and assessing the impact of urban and transport 

management programs and to better forecast environmental impacts of 

transportation. Since the early 2000s, several operational activity-based 

models have been developed (e.g. Albatross (Arentze and Timmermans, 2000, 

2004), CEMDAP (Bhat et al, 2004), Famos (Pendyala, Kitamura, Kikuchi, 

Yamamoto, and Fujii, 2005), and the Daily Activity Model (Bowman et al., 

2007)). The activity-based approach has become dominant in academic 

research. 

There is now also evidence of dissemination to planning practice (e.g. Vovsha, 

Bradley, Bowman, 2005; Arentze, Timmermans, Jorritsma and Olde Kalter, 

2008). Regardless of the progress made, operational activity-based models still 

have their limitations. Perhaps the most important of these is that existing 

models simulate the activity-travel patterns of a population for a single day. 

This does not only mean that some bias may be introduced in the simulations 

and forecasts, but also that the models do not allow simulating explicitly how 

individuals and households react to changes in factors influencing their 

organisation and implementation of activity-travel agendas and possibly adapt 

their activity-travel schedules. Acknowledging this limitation, the international 

research community has articulated the need to explore and model dynamics in 

activity-travel patterns along various time horizons. In that context, a distinction 

is made between long-term, mid-term and short-term dynamics. Long-term 

dynamics refer to events, such as moving house and changing jobs that may 

have a long-term impact on and involve a dramatic change in particular aspects 

of activity-travel patterns. In contrast, short-term dynamics relate to non-

structural shifts in planned activity-travel schedules due to unforeseen events. 

Mid-term dynamics are in-between these two extremes and relate to 

incremental adaptations of activity-travel patterns.  

This PhD thesis contributes to this emerging, but still scarce literature. The 

focus of attention is on long-term dynamics. In particular, it will be analysed 

whether life course events are associated with changes in activity-travel 

patterns and how these dynamics can be modelled, using changes in transport 

mode choice as an example. 
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2 | Outline 
 

To that end, the thesis is divided into different parts. In the next chapter a brief 

overview of existing models of transport demand will be provided. It should be 

emphasized from the very beginning that this chapter is not meant to be a 

comprehensive, detailed review of transport choice models. Rather, this 

chapter will discuss in some detail a selection of previous research that has 

direct relevance to the problems that are addressed in this thesis.  

Chapter three then continues by developing the conceptual framework 

underlying this study. This framework consists of two main components. First, it 

conceptualizes the factors influencing life trajectories. Second, it depicts the 

influence of life trajectories on behaviour, in particular transport mode choice.  

Chapter four motivates the approach that is used to model these complex 

dynamics between life course events and transport mode choice decisions. The 

approach is based on Bayesian Belief Networks (BBN), a modelling approach 

that allows estimating and representing the direct and indirect influences 

between a set of categorical variables. The chapter describes the key 

principles underlying Bayesian Belief Networks.  

The different techniques for data collection are described in the fifth chapter. 

An Internet-based survey was used to collect data on current behaviour and 

past events. Information about events was collected using a retrospective 

survey. About 700 respondents participated in the survey. The procedure for 

sampling respondents, details about the Internet-based survey, and sample 

characteristics are also discussed in this chapter.  

Chapter six discusses the results of the analyses and model estimations. First, 

in order to examine whether there is evidence of time effects of occurrences of 

events, a multinomial logit model with time as an explanatory variable is 

estimated. Because the results supported the basic assumptions of time-

related effects, next the two Bayesian networks are extracted from the data 

using structural and parameter learning algorithms. The life trajectory network 

captures the relations between the life course events, current states and the 

history of life course events, while the mode choice network considers the link 

of mode choice with life course events and the states. 
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The goodness-of-fit of the learned Bayesian Belief Networks is discussed in 

chapter seven. This chapter also gives an overview of validation tests of the 

learned Bayesian Belief Networks. The predicted life trajectories are compared 

with the observed life trajectories based on four criteria to assess whether the 

structural characteristics of the life trajectories are predicted correctly. The 

modal split (Car, Public Transport and Slow Transport) of the predicted mode 

choice is compared with the observed mode choice.  

Chapter eight shows how the learned networks can be used in a micro-

simulation to simulate the interdependencies between life course events and 

their impact on transport mode choice. A scenario is described to illustrate the 

simulation of life trajectories and mode choice. This will give further insight in 

the dynamics of the learned network.  

The final chapter of this thesis discusses insights gained by this project, 

reflects on limitations and provides recommendations for further research.  
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2 | Literature 
 

 

1 | Introduction 
 

As indicated in the introduction, this study will examine and model transport mode 

choice in the context of life trajectories. To appreciate the contribution of this thesis 

and to discuss its foundations, this chapter will give a brief overview of existing 

transport choice models and research on life course events.  

Previous research on transport mode choice can be classified into three more or less 

separate lines of research: (1) traditional transport mode choice models; (2) activity-

based models; and (3) more comprehensive models, like dynamic activity-based 

models. Traditionally, transport mode choice was primarily examined as a stand-

alone problem. Given the purpose and destination, the choice of transport mode was 

modelled as a function of the various attributes of the transport mode alternatives.  

Later, when the activity-based approach became increasingly popular in urban 

planning and transportation research, transport mode choice decisions were 

modelled as part of more comprehensive models. Most of these models were cross-

sectional in nature. More recently, some authors, in an attempt to build dynamic 

activity-based models or in better understanding behavioural change, have 
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investigated changes in transport mode choice decisions (Dargay and Vythoulkas, 

1999; Mohammadian and Miller, 2003)  

In this discussion, it will be argued that a life course perspective offers potential 

advantages in understanding and modelling activity-travel decisions, including mode 

choice. In this chapter, some examples of a life course approach applied in domains 

other than transportation will therefore also be summarised and discussed. These 

examples serve to illustrate the potential of the life course perspective. 

The chapter is organised as follows. First, some examples of stand-alone transport 

mode choice models will be discussed. This is followed by a brief description of the 

development of activity-based modelling, including an indication how transport mode 

choice decisions were modelled in some of the best-known activity-based models of 

transport demand. The fourth section then discusses previous research on transport 

mode decisions and change, triggered by particular life course events. After 

discussing the transportation research literature, some examples of a life course 

approach in other domains will be discussed. The chapter is completed by drawing 

some conclusions for the design of this study. 

 

 

2 | Transport mode choice models 
 

Many different models of transport mode choice have been developed in the past; 

attitudinal models (Fishbein and Ajzen, 1975) and random utility models (Ben-Akiva 

and Lerman, 1985) being the most commonly used approaches. In these models, 

mode choice is typically conceptualised as a function of the characteristics of 

alternative travel modes and a set of personal and household characteristics. 

Previous studies, based on the latter two approaches, assumed that these attributes 

generate some utility and that individuals maximize their utility when choosing 

between alternative transport modes, subject to budget constraints. Attitudinal 

models are an exception in that they do not involve maximizing utility, but rather 

assume that transport mode choice is based on a set of attitudes.  
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1 | Attitude models 

The best-known attitude model in transportation research is the Fishbein and Ajzen 

model (1975). The model predicts behavioural intentions, but often it is assumed that 

travellers act on these intentions. The basic structure of the attitude model is 

represented in Figure 2 | 1 with three boxes (1) evaluative beliefs, (2) attitudes 

toward travel alternatives and (3) behavioural intentions.  

The input of the model consists of evaluative beliefs. These beliefs are related to the 

existing choice alternatives known by the respondent. Evaluative beliefs are usually 

measured on point scales. A linear additive combination rule is used in the model to 

combine the separate evaluative beliefs into attitude scores using weights. Next, a 

choice rule is applied to select one alternative from the choice set. For example, the 

alternative with the highest overall attitude score is chosen. The model produces 

subjective output which is closely related to behaviour.  

In the original attitude model (Fishbein and Ajzen, 1975) a person’s attitude toward 

any object j is a function of his beliefs about the object and the evaluation of those 

beliefs. The expectancy-value formulation can be expressed as follows: 

 

∑
=

=
K

k
jkjkj ebA

1
 Equation 2 | 1 

 

 
Figure 2 | 1: Psychological framework for individual’s mode choice  

(after Golob, 1980) 
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where  

jA   = attitude toward object j 

jkb   = belief k about j 

jke   = evaluation of belief k about j 

K  = the number of beliefs 

Attitudes, beliefs and evaluations are usually measured using rating scales. First, 

belief strength is assessed by means of a 7-point scale (e.g., likely-unlikely). 

Respondents are asked to indicate how likely it is that an alternative possesses the 

characteristic. Next, respondents are asked to evaluate the attributes/characteristics, 

using a 7-point evaluative scale (e.g., good-bad). It is uncertain whether these scales 

should be scored in a unipolar fashion (e.g., from 1 to 7, or from 0 to 6) or in a bipolar 

fashion (e.g., from -3 to + 3). It is best to use equal-interval measures. In that case it 

is permissible to apply any linear transformation to the respondents’ ratings without 

altering the measure’s scale properties.  

In the theory of reasoned action (Fishbein and Ajzen, 1975; Ajzen and Fishbein, 

1980) the original model of attitude (A) was extended with behavioural intention (BI), 

and subjective norm (SN). It is assumed that an intention to perform a behaviour (I) is 

related to the attitude toward performing the behaviour (A) and the subjective norm 

for performing the behaviour (SN). The relationship is specified by the equation: 

SNwAwI SNA +=  Equation 2 | 2 

where the ws  are weights determined empirically by means of linear regression. 

Subjective norms indicate whether the behaviour is approved by important others 

(parents, partner, friends, authorities, etc.). The subjective norm (SN) is calculated as 

the sum across referents of the multiplication of the strength of each normative belief 

( N ) approved by referent r and the person’s motivation ( M ) to comply with the 

referent r. Thus: 

∑=
r

rr MNSN  Equation 2 | 3 
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The more social pressure a person experiences to perform the behaviour, the higher 

SN is. To measure SN, respondents rate, with respect to each referent, the degree to 

which the referent would approve or disapprove a given behaviour using a 7-point 

scale. The respondents also rate how much they care whether the referent approves 

or disapproves their behaviour.  

Ajzen (1985, 1991) revised and extended the theory of reasoned action into the 

theory of planned behaviour. “This extension involves the addition of one major 

predictor, perceived behavioural control, to the model. This addition was made to 

account for times when people have the intention of carrying out a particular 

behaviour, but the actual behaviour is thwarted because they lack confidence or 

control over behaviour” (Miller, 2005, p. 127). Three concepts of the theory of 

planned behaviour are described here: (1) attitude toward behaviour, (2) subjective 

norms, and (3) degree of perceived behavioural control. A general rule is: the more 

favourable the attitude and subjective norm with respect to a behaviour, and the 

greater the perceived behavioural control, the stronger an individual’s intention to 

perform the behaviour under consideration (Ajzen, 1991). The relative importance of 

these three concepts in the prediction of intention is expected to vary across 

behaviours and situations. Sometimes only attitudes may have a significant impact 

on intentions. In other situations attitudes and perceived control explain intentions, 

while in other applications all three predictors make independent contributions. The 

theory of planned behaviour is expressed in the following equation: 

PBCwSNwAwI PBCSNA ++=  Equation 2 | 4 

 

Control beliefs are added to the set of beliefs which, according to the theory of 

planned behaviour, determine intention and action. Control beliefs may be based in 

part on past experience with the behaviour or is influenced by second-hand 

information about the behaviour. For example by experiences of friends and 

relatives, and by other factors that increase or reduce the perceived difficulty of 

performing the behaviour in question (Ajzen, 1991). The perception of behavioural 

control (PBC) is calculated given equation 2 | 5. Each control belief (c) is multiplied 

by the perceived power (p) of the particular control factor to facilitate or inhibit 

performance of the behaviour. Beliefs about resources and opportunities are viewed 

as underlying perceived behavioural control. The inclusion of perceived behavioural 
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control has been found to increase the accuracy of predicting behaviour not under 

volitional control (e.g., Fredericks and Dosett, 1983; Schifter and Ajzen, 1985; Ajzen 

and Madden, 1986; Netemeyer, Burton, and Johnston, 1991; Gärling, 1992). The 

perception of behavioural control (PCB) is calculated as follows:  

∑=
k

kk cpPBC  Equation 2 | 5 

where: 

kc = control belief k 

kp  = perceived power of particular control factor about belief k 

 

The theory of planned behaviour provides a useful framework for dealing with the 

complexities of human behaviour. The expectancy-value formulation (attitude model) 

is not able to adequately describe the process of individual beliefs and produce the 

global response. Alternative models were developed to describe (1) the relations 

between beliefs and (2) the global constructs.  

A representative, recent example of the application of attitude theory to transport 

mode choice decision is Wall, Devine-Wright and Mill (2007). Their focus is on 

drivers’ motivations for switching travel modes. Multiple scales were used to measure 

attitudes with respect to transport modes. Principal components analysis was used to 

extract the underlying dimensions. This resulted in a five-factor solution with factors 

representing two norm activating constructs and three planned behaviour constructs. 

Behavioural intention was measured as the intention to maintain or reduce car use. 

The model linking behavioural intention to attitude toward the behaviour, subjective 

norms and perceived behavioural control was estimated using logistic regression. 

The model performed reasonable well. 

The strengths and relevance of these attitudinal models are related to those choices 

where especially social norms play an important role. Compared to other modelling 

approaches, the measurement of attitudes and the estimation of these models, 

ignoring attitudinal differences, is generally weak. 
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2 | Random utility models 

Random utility models are based on the assumption that choice behaviour is the 

outcome of a decision process in which individuals maximize their utility (McFadden, 

1978; Ben-Akiva and Lerman, 1985)). Utility is assumed to consist of a deterministic 

part and an error component described in the following equation: 

ijijij VU ε+=  Equation 2 | 6 

where: 

ijU  = the utility of alternative j evaluated by individual i 

ijV  = observable utility part from the researcher’s perspective 

ijε  = random utility part (non observable by the researcher) 

Similar to attitude models, often a linear function is assumed to capture utility: 

∑=
k

ijkkij XV β  Equation 2 | 7 

where: 

kβ  = estimated weight parameters 

ijkX  = explanatory attributes (variables) of alternative j perceived by individual i 

Different model specifications can be derived based on the assumptions about the 

distribution of these error terms. Most studies have applied a multinomial logit model, 

which can be derived by assuming that the error terms are independently and 

identically Gumbel distributed. (The model can also be derived from other theories, 

but that is beyond the current discussion.) 

The multinomial choice model is given according to the following equation: 

∑
=

=
J

j
ijijij VVP

1'
' )exp(/)exp(  

Equation 2 | 8 
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where ijP is the probability that alternative j is chosen by individual i, and ijV  (j =1, 

…., J) is the systematic component of the utility of alternative j to individual i. For 

each alternative j, ijV  is assumed to be a linear function of appropriate explanatory 

variables. Thus: 

∑
=

=
K

k
ijkkij XV

1

β  
Equation 2 | 9 

where: 

K =   the number of explanatory variables 

ijkX  =  the value of the k-th explanatory variable for alternative j and individual i 

kβ =  a coefficient or parameter of explanatory variable k. 

Traditionally, these models (equation 2 | 7) were estimated on the basis of revealed 

choice behaviour (Louviere, 1988). However, because revealed choice behaviour 

may not necessarily reflect underlying preferences, in the 1970s conjoint 

measurement models were developed. These models were also an answer to the 

weakness of the attitudinal models in terms of measurement. Conjoint measurement 

models are based on stated preferences or choice of respondents for hypothetical 

choice alternatives. First, the set of attributes influencing choice behaviour is selected 

and each attribute is defined in terms of attribute levels. Next, attributes levels are 

combined into profiles according to the principles of experimental design, and 

respondents are asked to rate the profiles on some preference scale or choose from 

a series of constructed choice sets the one they like best.  

A recent example of the multinomial logit model for transport mode choice is Yagi 

and Mohammedian (2007). The utility function was specified in terms of attributes 

related to the travel (travel cost, travel time, and travel distance), household-related 

variables (household income, and vehicle ownership) and individual variables 

(employment status (e.g., full-time, part-time, and student), school type, personal 

income, gender, age, vehicle availability, work/school location, and various types of 

commuting allowance provided by the employer). In addition, some composite 

variables such as travel cost divided by the household income were chosen. The 

model performed satisfactorily. 
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In the standard applications of these models, it is assumed that purpose and 

destination are given. However, it is well-known that destination and transport mode 

choice are strongly interrelated. If the distance is beyond some threshold, the 

probability of choosing slow modes is dramatically reduced. Some authors have 

therefore formulated more advanced (e.g. nested logit) models to capture this 

interdependency. Examples include sequential choice model (Fujii, Kitamura and 

Monma, 1998; Borgers, Timmermans and van der Waerden, 2002), linked model 

methodology (Wen and Koppelman, 2000), flexible frameworks where decision 

structures are estimated simultaneously with the utility functions of choice 

alternatives (Train, 2003), and the co-evolutionary logit model (Krygsman, Arentze 

and Timmermans, 2007). In the next section, more comprehensive models of 

transport are described. 

 

 

3 | Modelling transport mode choice in activity-based 
models 
 

The models discussed in the previous section were also used as a component of 

more comprehensive models of transport demand, predicting not only transport mode 

choice, but also destination and route choice. The so-called four-step modelling 

approach has been dominant in this field of study and is still in practice. In the first 

stage, trips are generated as a function of land use and household characteristics. 

Second, destination choice is modelled to predict where the trip will terminate. In the 

third stage, given the destination, mode choice for a specific trip is predicted with a 

transport mode model. These three separate steps generate an origin-destination 

table, specifying the number of trips between a set of origins and a set of 

destinations. In the last step, these trips are assigned to the network using some 

route assignment algorithm. Because these models are independent, in principle any 

model of transport mode choice can be used in this four-step process. 

Over the years, criticism about this approach increased in academic research and 

gradually this led to the development of so-called activity-based models of transport 

demand. The limitations of the four-step approach may be briefly summarised as 

follows (quoted from McNally and Rindt, 2008, p. 58): 
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1. Ignorance of travel as a demand derived from activity participation decisions. 

2. A focus on individual trips, ignoring the spatial and temporal interrelationship 

between all trips and activities comprising an individual’s activity pattern. 

3. Misrepresentation of overall behaviour as an outcome of a true choice process, 

rather than as defined by a range of complex constraints which delimit choice. 

4. Inadequate specification of the interrelationships between travel and activity 

participation and scheduling, including activity linkages and interpersonal 

constraints. 

5. Misspecification of individual choice sets, resulting from the inability to establish 

choice alternatives available to the decision maker in a constrained environment. 

6. The construction of models based strictly on the concept of utility maximization, 

neglecting substantial evidence relative to alternate decision strategies involving 

household dynamics, information levels, choice complexity, discontinuous 

specifications and habit formation. 

 

Not mentioned before, but equally important, was the lack of interdependencies 

between transport mode choice and other decisions underlying the organisation of 

activities of individuals and households in time and space. The attempts of combined 

modelling of destination and mode choice is a step in this direction but other 

mechanisms such as car allocation in car-deficient households, and the complexity of 

the activity schedule are equally important. 

“The activity approach began as a natural evolution of research of human behaviour, 

in general, and travel behaviour, in particular.” (McNally and Rindt, 2008, p. 59). The 

fundamental idea of the activity approach is that travel decisions are driven by a 

collection of activities that form an agenda for participation. This means that travel 

decisions cannot be analysed on an individual trip basis. Specific travel decisions 

and the choice process associated with travel decisions can be understood and 

modelled only in the context of the entire agenda. “The collection of activities and 

trips actually performed comprise an individual’s activity pattern, and the decision 

processes, behavioural rules, and the environment in which they are valid, which 

together constrain the formation of these patterns, characterize complex travel 

behaviour.” (McNally and Rindt, 2008, p. 59). Over the years, several different 
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modelling approaches have been suggested. Arentze and Timmermans (2002) 

classify these into constraints-based models, utility maximizing models, 

computational process models and micro-simulation models. These four modelling 

approaches are briefly discussed. 

 

1 | Constraint-based models 

Constraint-based models examine whether particular activity patterns can be realised 

within a specific time-space environment. As input these models require activity 

programs: a set of activities of certain duration which are performed at certain times. 

Different models have been developed in the past, like PESASP (Lenntorp, 1976), 

CARLA (Jones, Dix, Clarke, and Heggie, 1983), BSP (Huigen, 1986), and MASTIC 

(Dijst, 1995). These constraints-based models are not able to predict adjustment 

behaviour of individuals. Individuals are likely to change or adjust their activities when 

they are faced with a changing time-space environment. Transport mode choice 

decisions are not explicitly measured in this approach, but rather serve as input to 

assess the feasibility of activity-travel patterns, given a particular transport mode of a 

combination of different modes, and given a set of constraints. 

 

2 | Utility maximizing models 

Following the popularity of utility maximizing theory, discrete choice models were 

extended to include multiple choice facets. These models therefore represent a 

second approach in the development and application of activity-based models of 

transport demand. Utility maximizing theory is based on the assumption that choice 

alternatives can be represented as bundles of attribute values. The part-worth utilities 

are combined into some overall measure of utility according to a simple mathematical 

rule, such as a linear additive rule described in section 2 | 2 and 2 | 3. Often, the 

multinomial logit model is used. This model has a well-known limitation: the so-called 

interdependence from irrelevant alternative property, which states that the odds of 

choosing a particular alternative over another are independent of the size and 

composition of the choice set. It implies that the introduction of a new alternative will 

extract market share from the existing alternatives in direct proportional of their utility. 

In reality, however, one would expect that similar choice alternatives compete more 
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with each other than dissimilar alternatives. The nested-logit model is a solution for 

this problem. Nested-logit models require grouping of similar choice alternatives in 

nests. Choice probabilities are predicted conditionally on the next higher nest. The 

best known activity-based model is the daily activity model (Ben-Akiva, Bowman and 

Gopinath, 1996). Bowman developed a prototype for the Boston area (Bowman, 

1995) and implemented it in Portland (Bowman, Bradley, Shiftan, Lawton, and Ben-

Akiva, 1998). An overview is given in Bowman and Ben-Akiva (1999). Several similar 

models however have been suggested, such as the HCG model (Ettema, Daly, de 

Jong and Kroes, 1997), PETRA (Fosgerau, 1998), COBRA (Wang and Timmermans, 

2000), and Tel-Aviv Metropolitan Area model (Shiftan, Kaplan, and Hakkert, 2003). 

Slightly different, but also based on principles of utility maximization is Prism-

Constrained Activity Travel Simulator (PCATS) and PCASTS-RUM (Kitamura and 

Fujii, 1998) and its variants such as FAMOS (Pendyala, Kitamura and Kikuchi, 2004; 

Pendyala et al., 2005).  

To illustrate how transport mode choice is modelled in these models, the daily activity 

schedule model is used as an example. The individual’s demand for activity and 

travel is represented as a multidimensional choice in the daily activity schedule. This 

means all the combinations of activity and travel that an individual might choose 

during the day are listed. The daily activity pattern is based on tours, which are 

organised in schedules. The following parts can be distinguished in the daily activity 

pattern: (1) a primary activity, (2) the type of tour for the day’s primary activity 

(including number, purpose, and sequence of stops), and (3) the number and 

purpose of secondary tours. The tour schedule consists of choices of destinations for 

activities, mode and timing of the travel. The number of secondary tours is 

determined by the choice of the daily activity pattern. Destination and mode of the 

secondary tours are conditioned upon the choice of a daily activity pattern. Choice of 

mode is modelled for the tour in the destination and mode choice model, instead of 

the usual choice of mode for a trip. 

 

3 | Computational process models 

Utility maximizing models have been criticized by some scholars who argued that 

individuals do not necessarily choose the alternative that generates the highest utility. 

Moreover, utilities are not invariant as implicitly assumed in the above models. 
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Individuals rather apply heuristics that may be context-dependent. These heuristics 

can be represented as “if...then...else” rules, which specify which decision will be 

made under a set of conditions. Rule-based models, sometimes also referred to as 

computational process models, conceptualize choices as outcome of heuristics. A 

large number of rules represent context-specific behaviour in these models. This 

often generates a black box feeling. An advantage of these models is the flexibility in 

defining complex interdependencies among facets of activity-travel patterns and 

other facets. Examples of computational process models are SCHEDULER (Gärling, 

Brännäs, Garvill, Golledge, Gopal, Holm and Lindberg, 1989), which however was 

never operationalised, SMASH (Ettema, Borgers and Timmermans, 1995), 

ALBATROSS (Arentze and Timmermans, 2000) and TASHA (Miller and Roorda, 

2003).  

Using ALBATROSS as an example, transport mode choice was modelled as follows. 

The schedule engine controls a sequence of steps, which intends to simulate the way 

individuals solve the problem or organizing their activities and associated travel in 

time and space. In each step, the schedule engine indentifies the condition 

information required for making principal scheduling decisions. Appropriate calls are 

sent to agents for the required analyses and the obtained information is passed on to 

the rule-based system, which translates returned decisions into appropriate 

operations on the current schedule. An initial schedule is derived based on the 

activity programme in terms of activities that need to be performed that day. 

Scheduled activities can be a result of long–term commitments, household 

constraints and other pre-scheduling decisions. Activities are selected and added to 

the skeleton as fixed activities. Next, the schedule position and profile are determined 

for each added activity.  

The mode choice for primary, out-of-home-work activities is considered first in the 

decision sequence of the scheduling process. The sequence consists of six steps in 

total. In the first step is determined which person can use the car for that specific day. 

The choice set consists of the following options: car driver, car passenger, public 

transport (such as bus, train and taxi) and slow transport (walk and bike). The mode 

options public transport, slow transport and car passenger are always available for 

the system’s choice. The availability of the car depends on the presence of a car in 

the household and possession of a driver’s licence. Characteristics of the partner are 

included. This means that the system is able to consider implications of the choice in 

terms of who is going to use the car for which activity, in cases where there is only 



Chapter 2 |  

 

20 

one car and more driver’s licences. The next decision step handles the selection of 

activities, travel party and duration. Choice of time of the day is decided in the third 

step, and choice of trip-chaining in the next step. The fifth step in the decision 

sequence is the location choice. Choice of transport mode for each trip in the chain is 

last step in the decision sequence. In this step it is assumed that transport mode 

decisions are made at the trip-chain level, instead of the trip level. Two types of trip-

chains are distinguished. The first one includes a primary work activity and the 

second one does not include a work activity, but includes other activities. Mode 

choice for a primary work activity, assigned in the first step of the decision sequence, 

is used as predicted mode for the other activities in the first trip-chain. For the second 

type of trip-chain the mode choice is considered in this step of the process. The 

same mode options as in the first step are available here. The availability of the 

option car driver is evaluated based on the following characteristics: driver’s licence, 

number of cars in the household, and the use of the car by the partner. Only the 

primary work activity of the partner is taken into account, the other activities are not 

known at this stage. Mode choice is modelled in ALBATROSS separate for the 

home-work trips and for the other trips in the chain. Different constraints are taken 

into account when the decision for mode choice is taken. 

 

4 | Micro simulation models 

Although all of the above models may involve simulating the behaviour of individual 

travellers, in addition to these models which are based on certain theoretical 

concepts, other micro simulation models are more data-driven models. Examples 

include ORIENT (Sparmann, 1980), VISEM and PTV VISION (Fellendorf, Haupt, 

Heidl and Scherr, 1997), RAMBLAS (Veldhuisen, Kapoen and Timmermans, 2000), 

TRANSIMS (Wagner and Nagel, 1999) and MATSim (Balmer, Meister, Rieser, Nagel 

and Axhausen, 2008). The Transport Analysis and Simulation System (TRANSIMS) 

was the best-known micro simulation model. The underlying concepts and ideas 

have been transformed into Multi-Agent Transport Simulation (MATSim). 

Functionalities of activity-based travel demand generation, mode choice and route 

assignment and micro simulations are combined. The MATSim approach is iterative 

and the iterative approach is developed into an extension of the assignment 

procedure: The route adaptation process is extended towards other choice 

dimensions, such as time choice, mode choice, location choice. The modelling of 
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transport mode choice in these models varies considerably, but the fundamental 

principles are not different from the treatment in the other modelling approaches. 

This brief literature review shows that activity-based models typically simulate the 

activity-travel patterns of a population for a single day. Long-term decisions of 

individuals and households are not taken into account. The models are not able to 

simulate how individuals and households react to changes, for example, changes in 

their life. Traditional models are static and estimate behaviour in an equilibrium 

situation. In reality, behaviour may not be static but always in motion toward an 

equilibrium situation. These long-term dynamics are studied and modelled in this 

study. 

 

 

4 | Transport mode choice and life course events 
 

All currently fully operational activity-based models of transport demand are cross-

sectional in nature. Future behaviour is predicted based on the relationships 

established at one point in time. Because this assumption obviously has some 

limitations, the development of dynamic activity-based models is one of the current 

research frontiers in transportation research. Arentze and Timmermans (2007, 2008) 

summarise recent development in modelling dynamics along various time horizons. 

Zimmerman (1982) stressed the need to use the life cycle concept and its relation to 

household travel in travel research. This way the manner in which individuals and 

households live over time can be captured, and the question how in each life cycle 

stage their concerns are expressed in travel can be addressed. The theoretical 

framework of mobility biographies is also based on a life course approach (Salomon, 

1983). Note that the words life cycle and life course are used interchangeable. 

Mobility biography refers to the total of an individual’s longitudinal trajectories in the 

mobility domain. Salomon (1983) distinguished three domains: life style, accessibility, 

and mobility. The life style domain consists of three careers: demographic, 

professional and leisure career. Employment location, residential location, leisure 

and other locations careers are part of the accessibility domain. Four careers were 

distinguished in the mobility domain: car ownership, season ticket, holiday travel and 
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daily travel careers. Events in these trajectories are assumed to have an impact on 

daily travel patterns, car ownership and other mobility characteristics. Salomon 

(1983) associated such events in certain life domains with daily mobility behaviour 

first. Salomon’s model was extended by Lanzendorf (2003), who transferred the life 

course approach to individual travel decisions. 

Part of this line of research is concerned with behavioural change. Several studies 

have addressed the questions whether changes in job location or house will trigger 

changes in activity-travel patterns. Residence and places of education and 

employment play an important role in the long-term and mid-term mobility of people 

(Beige, 2008). In line with this notion, several studies have focused on ‘critical’ or 

‘stressful’ events. Van der Waerden and Timmermans (2003; van der Waerden, 

Borgers and Timmermans, 2003) argued that key events and critical incidents may 

be useful in better understanding the dynamics of travel decisions and resources. 

Key events were defined as planned events, like marriage, relocation etc. and critical 

incidents are referred to as unplanned events such as policies or accidents. In their 

studies, only key events were studied, which are referred to as life course events in 

this thesis. A life course event is defined in this study as a major event in a person’s 

life such as marriage or a move that may trigger a process of reconsideration of 

current behaviour. Some events, such as a change in the place of residence, may 

dramatically change the space-time context within which travel decisions have to be 

made. Other life course events, such as a change in car availability, may reduce 

constraints and expand an individual’s choice set. Moving house implies a shift in 

characteristics such as accessibility, distance/travel time relationships and perhaps 

also the utility an individual derives from alternative travel modes. A life course event 

such as changing jobs may also lead to changes in characteristics of travel modes. A 

final example is the birth or adoption of a child, which may induce new activities (e.g. 

day care) that are more difficult to complete using the currently used travel mode.  

A number of significant key events have been described, such as acquisition of a 

driver’s licence, residential relocation and job change (van der Waerden and 

Timmermans, 2003; van der Waerden et al., 2003; Klöckner, 2004). In different 

studies the influence of one particular event, career or resource has been examined. 

For example, Lanzendorf studied the influence of child birth on mobility biographies 

(Lanzendorf, 2006), while Prillwitz and Lanzendorf (2006a) examined the impact of 

life course events on car ownership. Lanzendorf (2006) assumed that the 

maintenance tasks in the household needs to be rearranged after the birth of the first 
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child. He was looking for typical patterns of change around this specific key event 

and the effects on the mobility biography in a long-term perspective. The analyses 

were based on qualitative retrospective interviews with 20 parents with young 

children. The study resulted in three conclusions. First, some typical patterns of 

change were found, although there was no clear indication of increased or decreased 

car use. The car ownership of mothers increased after child birth in comparison with 

time. Second, car use of mothers with more children increased, when the before 

situation (before the birth of the first child) is compared with the after situation (all 

children were older than one year old). Third, there was no difference found in the 

impact of the first or second child on travel patterns. No evidence was found in the 

data that people kept their travel behaviour with the first child more frequently than 

with the second child. 

Prillwitz and Lanzendorf (2006a) studied the influence of four key events in a 

person’s or household’s life on car ownership (and ultimately travel behaviour). The 

four key events that were analysed were: (1) changing number of adults in the 

household, (2) birth of a first child, (3) changing weighted monthly income, and (4) 

residential move. The German Socio Economic Panel was used for binomial probit 

analysis. Empirical results suggest a strong influence of the four key events on car 

ownership growth. Also the household status variables age, number of cars per 

household and weighted monthly income had a strong impact according to both 

analyses. Residential relocation only showed a limited effect. Interactions between 

residential relocation and other key events might be relevant for travel behaviour and 

car ownership and they will study this in the future.  

Stanbridge, Lyons and Farthing (2004) studied the effect of residential move on 

people’s travel behaviour, in particular mode choice. The authors tried to better 

understand the experiential aspects of residential relocation. Their goal was to reveal 

the behavioural processes that took place. A set of qualitative interviews with recent 

home movers, 11 in total, was used. In many instances, people are consciously 

considering the travel mode implications during the course of the moving home. The 

study reported that some people change travel modes for particular journey purposes 

after the residential relocation.  

In addition to this mainly qualitative, analytical work, attempts of modelling the impact 

of life course events on travel choice decisions are rare and to our knowledge, did 

not exist in transportation research at the start of this PhD project. More recently, 
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Beige (2008) studied long-term and mid-term mobility decisions during the life course 

using Hazard models. A retrospective survey, which covered 20 years (1985 – 2004), 

was used for analyses over time and over the life course. Beige distinguished 

residential and occupational behaviour on the one hand and ownership of mobility 

tools on the other hand. The aim of her study was to explore the interrelationships 

between the two aspects of long-term and mid-term mobility, taking the personal and 

familial situation into account and how corresponding events affect long-term and 

mid-term mobility. Analyses over time and over the life course, as well as various 

durations and occurring changes were carried out. Event history analyses were 

applied to the retrospective data. Beige found that the ownership of mobility tools 

was relatively stable over time. Only a small percentage of the respondents (3%) 

varied mobility tool ownership every year. More respondents acquired a car during 

the observed period than abandoned one. Changes in residence, education and 

employment occurred more frequently in this period. She also concluded that 

changes in mobility tools and spatial changes are interconnected. A strong 

relationship between long-term and mid-term mobility was found in this study. 

Ownership of various mobility tools both influences and is influenced by residential 

mobility. Changes concerning locations (residence, education and employment) took 

place more frequently than changes in mobility tool ownership. Beige supports the 

statement that mobility tool ownership can be used as a proxy for the actual 

behaviour (Simma and Axhausen, 2003; Prillwitz and Lanzendorf, 2006b). Actual 

travel behaviour seems to be reconsidered and altered as spatial changes take 

place. No clear statements were made about causal relations between the various 

aspects of long-term and mid-term mobility behaviour as well as the influence of 

other life dimensions (personal and familial events). The impact of one event to 

another event cannot be automatically deduced from the chronological order. 

Individuals sometimes anticipate (future) changes. Age, gender, occupation, income, 

personal situation and familial situation are the most important influencing variables 

that Beige found for the long-term and mid-term mobility decision. Costs were not 

taken into account as explanatory variables. Beige suggests that travel behaviour 

can be influenced by the occurrence of key or life events. Habits and routines are 

broken or weakened at the time of an event. Individuals reconsider their behaviour 

and consciously reflect on their decisions.  

Her study is conceptually very similar to the underpinnings of this study. The main 

difference is that the mobility tools will not be examined in as much detail. In addition, 
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a different modelling approach will be applied. Hazard models often are used to 

examine the dynamics of one event and therefore are less appropriate to model a 

network of changes and how the impact of a single event is disseminated through the 

network. Beige used competing risk analysis in her study, where multiple events of 

different types are taken into account. However, this method does not allow indirect 

influence which can be modelled in Bayesian Belief Networks. 

 

 

5 | Life course approach in other domains 
 

Although the life course approach is relatively new in transportation research, it has a 

longer and stronger tradition in other domains. The life course approach has been 

developed since the early 1980s (Hareven, 1977; Elder, 1985; Willekens, 1991). The 

basic idea underlying this approach is that each human life history is a meaningful 

succession of individual life events within a specific historical and social time (Feijten, 

2005). The importance of taken into account additional characteristics such as timing 

and order of events and the duration of the resulting state, besides the occurrence of 

a life event is stressed in the life course approach (Giele and Elder, 1998). If both 

current circumstances and past experiences are considered, this will lead to a better 

understanding. Earlier life transitions may have a cumulative effect on later life 

(Dykstra and Van Wissen, 1999). 

At the micro-level, life events alter preferences and needs. The resources and 

restrictions of a household determine to what extent it can realise its preferences. At 

the macro-level, economic, social-cultural, and market circumstances determine the 

opportunities and constraints that influence the choice set of individuals. A 

disadvantage of macro or societal approaches is that these models do not permit 

translation into individual behaviour without the danger of ecological fallacy, while 

micro or individual approaches do not include contextual explanations of behaviour.  

Mulder (1993) made four assumptions which were necessary to make the 

combination of a life course and cohort perspective a sensible, useful way of studying 

the behaviour of individuals. The first assumption is that individuals have goals in life. 

The goals are not specific. An example is the set of hierarchically ordered needs from 
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Maslow (1954). General goals become specific goals, which are also called 

preferences. General goals are assumed to be universal, while preferences may vary 

between individuals and during an individual’s life course. The relationship between 

people’s behaviour and their preferences is the basis for the second assumption. It is 

assumed that people behave rationally, in the sense of satisfying behaviour. On the 

one hand, people do not behave very differently from other people in their societal 

context for two reasons: they need social approval and they adopt procedures that 

society makes familiar to them. Individuals are capable of shaping their own 

procedures and re-defining their own preferences. Third, it is assumed that people’s 

past behaviour determines and conditions future behaviour. It is also assumed that 

people sometimes act and think with a long-term perspective in mind. People try to 

shape their lives along reasonable consistent paths. Those paths are referred to as 

careers. Different careers can be distinguished: residential career, household career, 

occupational career, educational career etc.. A life course is defined as an 

individual’s complex system of careers. The last assumption is about societal 

change. These four assumptions about human behaviour imply that people influence 

and are influenced by society through their preference formulation and behaviour. 

The shared (macro-level) societal context defines similar opportunity structures and 

common social norms concerning behaviour and careers for people within one birth 

cohort.  

“The concept of life course is defined as the way in which an individual progresses 

through various stages or statuses in various careers in life without the normative 

connotations often associates with the concept of life cycle” (Mulder, 1993, p. 23). 

Elder (1985) defines life trajectories (similar to career), transitions and events as 

central concepts in the life course. The individual life course is composed of multiple, 

interdependent trajectories. According to Mayer and Tuma (1990) the concept of life 

course refers to the way in which social institutions shape and institutionalize 

individual lives in the interconnected domains of education, family and work. The 

concepts of timing, sequencing, duration and spacing are used to describe the life 

events, transitions and trajectories (Hagestad and Neugarten, 1985). 

Mulder (1993) defines two types of dependence: event dependence and state 

dependence. Event dependence refers to the effect of the occurrence of an event in 

a parallel career such as changing jobs, marriage or divorce. The (long-term) effect 

of occupying a certain state in a career is denoted as state dependence. Careers 

have sometimes a causal relation with each other, for example an event in the 
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household career may force someone to move and this move may in turn result in 

the abandonment of a job. Events in one career often take place at the same point in 

time as the event in the other career. The same point in time is not defined here and 

there may be a time lag in between the two related events. Individuals can react or 

anticipate to changes. Time ordering does not necessarily reflect causal ordering 

(Willekens, 1991). Willekens (1987) observed transitional periods in the life course, in 

which many decisions and changes occur. These periods are typically concentrated 

around adolescence and young adulthood. Parallel careers provide triggers for 

events in other careers and produce individual resources and constraints. Resources 

and constraints are career specific and preferences are individual specific, but they 

can vary during the life course. 

It is necessary to observe a longer period over time to get the full picture of all 

possible effects. For instance, a triggering event may not be synchronized with the 

event and effects of live events on the situation may be either temporary or lasting 

over the life course. Feijten (2005) distinguished two time dimensions: macro-level 

(calendar time and historical time) and micro-level (individual time and timing of a life 

event as age or position within an order). Life events results in states, for example 

the birth of the first child of a married couple results in a household of three persons. 

There are disrupting events, like divorce or widowhood and unemployment, which 

often occur unintentionally and there are planned events, such as marriage, 

relocation etc. The duration of the resulting state can be short (temporary) or long 

(lasting). A state that lasts for a long time creates opportunities for making long-term 

investments that pay off in the long run.  

The influence of personal and collective (cohort) past experiences on present 

behaviour has been studied by Mayer (1986). A commitment is seen as a choice in 

life that ties you to a situation for a long period and you can only leave this situation 

at high costs. On the other hand, an advantage of commitments is that it leads to 

stability. Many people prefer stability in their lives. Commitments in one career can 

also bring stability in another parallel career. This way, commitments can be seen as 

long-term investments that pay off in the long run. People who do not make 

commitments remain initially flexible and are able to react to attractive opportunities 

in several careers. At a certain moment, such people reach stability in their lives as 

well. Stability is attained when no disrupting events occur over a long period of time. 
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As mentioned before the timing of an effect can differ, cause and effect are almost 

synchronized, this means an immediate effect, or it takes a while to evolve, which is 

referred to as a lagged effect. Lagged effects run the risk of remaining unobserved in 

limited retrospective research. There could also be a conflict in causality; this 

happens when people anticipate to something they intend to do in the future or 

something they count on happening in the future. In this case the intention of the 

cause occurs in time before the effect; only the manifestation of the cause comes in 

time after the effect. A reversal of cause and effect may in fact be a case of 

anticipation.  

Full life history data, methods and techniques are necessary for life course research. 

Different aspects can be observed, established or calculated based on life history 

data: the timing of each separate life event, the chronological order of events and the 

time lags between several events. Individuals can be compared concerning the 

timing or order of events. People can be grouped according to who experienced 

certain events and who have not. The ending times of past states can be observed in 

life history data. This means that the period the state lasted can be calculated. In 

cross-sectional data it is impossible to calculate the duration of states.  

Feijten (2005) distinguished three dimensions: timing (immediately / lagged), duration 

(permanent / temporary), order (before: anticipation / after its cause) of events. The 

life course approach emphasizes the mutual influence of parallel life careers on the 

time aspects of life events and the cumulative impact of life experiences in the long 

term. Memory lapses are less of a problem in case of life course events (Van der 

Vaart, 1996). Life course events can be better recollected than other events. 

 

 

6 | Conclusion 
 

Many models of transport mode choice have been developed in the past. Mode 

choice is typically conceptualized as a function of the characteristics of alternative 

travel modes and a set of personal and household characteristics. Adjustment of 

individuals’ behaviour is not included in models described in this chapter. There is a 

need to explore and model dynamics in activity-travel patterns along various time 



                                                                                  Literature 
 

29 

horizons from a transportation perspective. This will lead to dynamic models where 

behavioural change is included.  

Life course may be a valuable approach as suggested by experiences in other 

domains. The context in which mode choice decisions take place is seen, in this 

study, as an individual’s life course. Central concepts in the life course approach are 

life trajectories (similar to career), transitions and events. The individual life course is 

composed of multiple, interdependent careers (i.e. housing, household, education, 

occupational career) which develop over time in parallel. Earlier life transitions may 

have a cumulative effect on later life. The concepts of timing, sequencing, duration 

and spacing are used to describe the life events, transitions and trajectories. 

A modelling approach that allows estimation of direct and indirect effects, inclusion of 

contextual and situation-specific variables, and specification and testing of causal 

mechanisms may offer some advantages. The primary aim of the study is to develop 

the suggested formalism in analysing and predicting dynamic travel mode choice in 

relation to life course events. This fits into the interest in developing dynamic 

integrated land use transportation models. 
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3 | Framework 
 

 

1 | Introduction 
 

As mentioned in the introduction, this thesis contributes to the literature on 

activity-based modelling. More specifically, the focus will be on the dynamics 

underlying activity-travel patterns. Various kinds of dynamics can be 

distinguished. For example, when an individual traveller notices that the actual 

travel time to a particular destination has been longer than expected, he has to 

decide whether or not to shorten the duration of that and / or subsequent 

activities, visit other destinations, drive faster, cancel activities, etc.  This is an 

example of short-term dynamics that involves rescheduling of activities. At the 

other end of the spectrum, a different job location may imply that a habitual 

activity-travel pattern may no longer be very efficient and / or effective. Under 

such circumstances, individuals may need to explore new options and 

permanently reorganise their activities in time and space. Change of job is only 

one of the triggers that may induce individuals and households to reorganise 

their activities in time and space. The specific focus in this thesis is concerned 

with life course events in general that may cause a change in needs or
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preferences and / or influence the constraints that impact on activity-travel 

decisions. Thus, this thesis is based on the assumption that life course events 

may cause individuals and households to change their activity-travel patterns. 

We are interested in developing and testing a modelling approach that allows 

representing and simulating such dynamics. Our special focus is concerned 

with changes in transport mode choice. Before discussing the specific 

modelling approach, the key underlying conceptual considerations will be 

explained. In the next section the principles of adaptation and learning are 

discussed. These underlying principles form the foundation of dynamic activity-

travel patterns, the influence of time is also discussed here. These 

considerations will be combined into a conceptual framework for this study. 

  

 

2 | Adaptation and learning 
 

Adaptation and learning are an integral part of daily life. People have certain 

needs, preferences and expectations and will try to achieve these preferences, 

dependent on the characteristics of their immediate environment. They may not 

know all the options in the beginning, but continued search and exploration of 

new alternatives may ultimately lead to equilibrium in the sense that the utility 

they derive from conducting their activities in time and space is sufficiently 

close to their preferences and expectations. 

Many factors may however distort such equilibrium, leading to a discrepancy 

between needs / preferences and actual utilities, which in turn may lead to 

behavioural change. Van der Waerden et al. (2003) identified two important 

factors which may cause people to reconsider their habitual behaviour: critical 

incidents and life course events. Critical incidents are defined as unexpected 

events such as accidents or unexpected long delays. Life course events are for 

example the birth of a child, change of job, etc. The terms life course events 

and life trajectory events are used interchangeably in this thesis. 

This research project concentrates on life course events and their influence on 

a person’s life trajectory. The life trajectory is seen as the context in which 
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behaviour takes place. The set of conditions influencing choice behaviour may 

change because of a life course event. People can react in different ways. For 

example, responsive behaviour occurs when individuals react to a context that 

has dramatically changed. People may however also change their behaviour in 

anticipation of an expected change. It is assumed that an individual is likely to 

reconsider his / her current choice behaviour after the occurrence of a life 

course event. The change may trigger learning processes so that the 

implications of an event for choice behaviour may materialize gradually over 

time after the occurrence of the event. The assumed effect of events on 

activity-travel decisions is thus captured in terms of the theory of learning and 

adaptation. 

According to this theory, individuals develop and continuously adapt choice 

rules while interacting with their environment. Transport systems and urban 

environments are highly dynamic, non-stationary and uncertain (Arentze and 

Timmermans, 2003). Based on earlier work by van der Waerden and 

Timmermans (2003), van der Waerden et al. (2003) and Verhoeven, Arentze, 

Timmermans and van der Waerden (2005, 2006 and 2007) it is assumed that 

individuals adapt their behaviour such that, given a set of constraints, the utility 

derived from the outcomes of their behaviour meets at least a certain aspiration 

level. Under stationary conditions, after some period of time, individuals will 

show habitual behaviour (Han and Timmermans, 2006). 

The link between this general theory of learning and adaptation and life course 

events is that by learning and adaptation individuals adapt to their environment 

to some extent, and are therefore in some state of equilibrium (that is, they 

exhibit habitual behaviour) until the occurrence of an event causes such an 

amount of change that an individual feels the need to start exploring alternative 

options, implying that they may reconsider their current choices and / or 

resources. Learning would imply that adaptation to new circumstances takes 

time and, hence, that current behaviour cannot be fully understood in terms of 

the current state of the individual and the environment.  

Besides learning processes, other mechanisms may produce temporal effects 

such as delayed responses (people respond to a change only after some time), 

accumulation of stress (people avoid too many changes in a short amount of 

time), etc.. It is assumed that a life course event changes a certain personal 
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situation, i.e., state. Figure 3 | 1 illustrates such influences. A state is defined in 

terms of a set of substates. In this example, the substates are different 

residential conditions, such as independent living, living in a dorm room or 

living with parents.  

Figure 3 | 1 represents (a part of) the life trajectory of one individual: for 

instance, a boy who lives with his parents (substate C) and moves in the third 

quarter of 2003 to his first dorm room (substate B). Soon after this change he 

moves in with his girlfriend (e.g. live together (substate A)). This example 

illustrates transitions between different substates, which describe the 

residential condition of an individual; substate A = independent living (living on 

your own), substate B = student living (living in a dorm room) and substate C = 

parental living (living with parents or guardians). The event describes changes 

in the residential situation. Several different types of substates are possible; for 

example first dorm room, another dorm room, living on your own, renting a 

house, buying a house, etc.  

 

Figure 3 | 1: Effects of an occurrence on one state dimension 

 

 

Figure 3 | 2: Effect of changes of an occurrence on more states 

Event 

     2002             2003         2004 

married married married 

No children 1 child 2 children 

2 members 3 members 4 members 

State 3 

State 2 

State 1 

Event 

     2002             2003         2004 

Event Event 

substate C substate B substate A 
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Figure 3 | 2 illustrates another example of changes in states caused by a life 

course event. In this case, the life course event describes changes in 

household composition. There are different aspects of household composition 

and, hence, dimensions of states, namely the number of household members 

(state 1), the number of children (state 2) and the marital state (state 3). Every 

state has certain substates. For example, the number of household members 

(state 1) has four substates: one member, two members, three members and 

four or more members of the household. Figure 3 | 2 illustrates the changes in 

household composition and the corresponding substates for one individual. In 

this example, the event in the first quarter of 2003 is a birth/adoption of a child. 

This result in a change in state 1: from two members to three members. State 2 

changes from no children to one child, while state 3, the marital state stays the 

same, i.e. married. The second change, the event in the third quarter of 2004, 

is also a birth/adoption of a child. These two changes have no effect on state 3 

(marital state), therefore this state stays the same. In case of a change such as 

getting married, it will only affect state 3 and states 1 and 2 will stay the same. 

Thus not every life course event changes all states. Figure 3 | 1 and Figure 3 | 

2 represent parts of a life trajectory for a single individual. It illustrates the 

impact of occurrences of an event on different substates. This is only an 

example of substates for these two events. Events may however be interrelated 

and have complex relationships with (aspects of) choice behaviour and 

attributes of the person that are not influenced by occurrences of events (e.g., 

age, gender, etc.). 

 

 

3 | Time influence 
 

A basic assumption is that life course events not only change the (personal) 

conditions, but may also trigger adaptation and learning process. Behaviour is 

thus also influenced by time. Through search an individual explores choice 

opportunities in his or her environment and keeps a memory record of the 

varying rewards associated with his actions. Actions that produce positive 

rewards are reinforced and have a higher probability of being repeated in future 
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choice situations under similar conditions, while actions with negative 

outcomes tend to be avoided. In stationary environments, reinforcement 

learning implies that random behaviour will ultimately evolve into habitual 

behaviour. 

In non-stationary environments, a gradually changing environment or 

discrepancies between the changing environments and changing personal or 

household circumstances may imply that the behaviour of interest is no longer 

adequate to cope with the new situation. An individual may then have to 

change one or more facets of his habitual behaviour. Life course events may 

have a similar, but attenuated effect. A dilemma for any individual, who has 

limited knowledge about new circumstances, is the choice between exploration 

and exploiting current knowledge. Selecting actions that have not been tried 

before gives the opportunity of discovering new choices that may yield higher 

rewards than the currently best action. However, this comes with the risk of 

negative experiences. Individuals who wish to avoid such risks may stick to the 

current best choice. Thresholds for reconsidering current choices and the 

thoroughness of search will vary depending on the individual’s tendency to take 

or avoid such risks.   

Although these learning and adaptation process have been studied at some 

length in the transportation research community, especially in the context of 

uncertain travel times (Arentze and Timmermans, 2003; Ettema, Tamminga, 

Timmermans and Arentze, 2005; Ettema and Timmermans, 2006), in this study 

an attempt will be made to model these processes in an explicit manner. It is 

argued that the effects of life course events on behavioural dynamics may 

involve a time gap. 

 

 

4 | Conceptual model 
 

Figure 3 | 3 illustrates the assumption that behaviour is the result of the present 

state of a person and adaptation to a new state after a change caused by an 

event. An event, denoted by E in Figure 3 | 3, affects behaviour (B) in two 
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different ways: firstly through the change of the present state (from S1 to S2) 

and secondly through learning, illustrated with the evolution from B2 to B2’ to 

B2” ending in the equilibrium situation indicated by B2*. The present state is the 

actual environment or context of the person involved; including personal 

characteristics, possession and availability of transport modes, distances to 

different destinations and so on. This present state of a person influences 

behaviour, indicated in the figure with the arrow between S and B. The figure 

illustrates that behaviour can change even though the state stays the same. 

Life course events may change people’s values and judgements, and may 

result in new behaviour. However, this may take time and after a while 

behaviour is in equilibrium again, illustrated in the figure with an asterisk. 

The assumed influence of time, the adaptation and learning process, is 

illustrated in Figure 3 | 4. This example concerns car use. The event in this 

example is change in residential location: the person moved to a new city. 

There is a visual break in the behavioural curve, which is the moment, that 

event (E) occurred. The new situation (S2), after the event, can result for 

example in less car use, which is a new behaviour (B2). People need some time 

to adapt to the new circumstances. In Figure 3 | 4, this is illustrated with the 

time after the event until the equilibrium of the new behaviour (B2*). At first the 

person still takes the car to work (habit). The person is also not very familiar 

with the environment and the possibilities for travelling to work.  

Figure 3 | 3: Conceptual model of the influence of an event 

(E is event, S is state and B is behaviour) 
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Figure 3 | 4: Example of time influence on car use 

 

After a while the person, triggered to explore new options, discovers that there 

is a very good public transport connection from his home location to work and 

decides to choose that alternative option. This results in less car use.  

 

 

5 | Conclusion 
 

This thesis is based on the contention that life course events may trigger 

individuals and households to rethink their habitual activity-travel patterns. It 

may decide them to change one or more facets of their activity-travel patterns. 

A particular event may also lead to other life course events. Thus, life course 

events may have direct and indirect effects on other life course events and on 

activity-travel patterns. 

In addition, it is argued that any modelling attempt should consider possible 

time gaps between life course events and behavioural change. An event does 

not necessarily lead to immediate changes in particular facets of activity-travel 

patterns. Change may increase the pressure on current, habitual patterns. 

However, it may take some time until accumulated pressure induces the 
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consideration and exploration of new alternatives. Habitual patterns may even 

take longer to form due to learning and adaptation. Behavioural change may 

also occur in anticipation of life course events. In this case, the actual 

experiencing of pressure is not the trigger, but rather mental simulation of the 

consequences of possible or likely future scenarios. 

Given this conceptualization, the question then becomes which approach 

should be adopted to model the direct and indirect effects of life course effects 

on travel mode change. This question will be addressed in the next chapter.  
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4 | Bayesian Belief Networks 
 

 

1 | Introduction 
 

The conceptualisation of a set of mutually dependent life course events directly 

and indirectly influencing travel mode choice requires a modelling approach 

that is consistent with these premises. Bayesian Belief Networks (BBN), which 

have been developed in overlapping fields such as Artificial Intelligence and 

Machine Learning, represent such a powerful approach. A Bayesian network is 

a network representation of the interrelationships and conditional dependencies 

between a set of variables (Neapolitan, 1990). This modelling approach is used 

in this research project to represent and simulate life trajectories and the direct 

and indirect effects of life course events on choice behaviour decisions, in 

particular transport mode choice. The potential advantage of BBNs over other 

techniques is that more complex causation patterns can be included and that 

the results can be directly interpreted in terms of the classified events. 
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This chapter is organized as follows. First the formulation and application of 

Bayesian Belief Networks are given. Next, an example of Bayesian Belief 

Networks is illustrated. In the fourth section two algorithms for identifying the 

causal relationships between variables (structure learning) are described: 

search & scoring-based algorithms and dependency-analysis based algorithms. 

The PC algorithm and the NPC algorithm (dependency-analysis based 

algorithms) are described in more detail. Given an identified structure, the 

parameters of the network need to be estimated. The EM algorithm for 

parameter learning, used in this study, is explained in the fifth section. The final 

section draws some conclusions related to our specific approach.  

 

 

2 | Definition of Bayesian Belief Network  
 

Bayesian networks are directed acyclic graphs (DAGs) in which the nodes 

represent variables, the arcs signify the existence of direct causal influences 

between the linked variables, and the strengths of these influences are 

expressed by the forward conditional probabilities (Pearl, 1988). The directed 

acyclic graphs do not allow undirected or bidirectional arcs, nor cyclic feedback 

loops. An arc between two nodes represents a causal relation: the node from 

which the arc originates is called the parent node and the other node is called 

the child node.  A Bayesian network consists of two components: 1) a structure 

component (i.e., the DAG), which specifies the structure of cause-effect 

relationships between the variables; and 2) a parameter component, which 

consists of a set of conditional probability distributions that provide the 

statistical interpretation of the cause-effect dependence relationships depicted 

by the graphical structure.  

The representation of variables (nodes) has several states, which correspond 

with the classes or options of the concerning variable. Each node has an 

underlying conditional probability table (CPT) that describes the probability 

distribution across the states of that specific node for each possible 

combination of states of the parent nodes.  
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The CPT of a node that has no parents is simple: it only contains the states of 

the node itself and the probability distribution across the states, where the sum 

of the probabilities is equal to 1 or to 100% (for each row in the CPT). The CPT 

of a child node is more complicated; the conditional probability table expands 

with the possible state configurations of the involved parent node(s). The CPT 

describes the probability distribution across the states of that specific child 

node for each (combined) state of the parent node(s). Each node has a certain 

probability distribution, which represents probabilities about the likelihood of 

possible outcomes for each node. Prior (unconditional) probability is the 

likelihood that some input parameter will be in a particular state; a conditional 

probability is the likelihood of the state of a parameter given the states of input 

parameters affecting it, and posterior probability is the likelihood that some 

variable will be in particular state. The initial probabilities for a node that has no 

parents correspond exactly with the probability distribution across the states in 

the CPT. Probabilistic reasoning makes use of an elementary relationship in 

probability theory that can be stated as: 

)(
),()|(

BP
BAPBAP =  Equation 4 | 1 

where: 

P(A | B) is the conditional probability of A, given B. It is also called the 

posterior probability because it is derived from or depends upon the specified 

value of B. 

P(A, B) is the joint probability distribution of A and B. 

P(B) is the prior probability or marginal probability of B. It is ‘prior’ in the sense 

that it does not take into account any information about A. 

 

There are two main methods of reasoning (i.e. updating probabilities when 

something changes in the network - new evidence) in Bayesian Belief 

Networks: forward reasoning and backward reasoning. Evidence spreads 

through the network by these two methods. Forward reasoning is triggered by 

new evidence for one or more parent nodes. The probabilities of the involved 
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child nodes (i.e. related nodes) are updated, the probabilities are made 

consistent with the new information (i.e. hard evidence entered into the 

network). Backward reasoning is triggered when new evidence is entered into 

child nodes. Probabilities can be calculated using the logic of the well-known 

Bayes rule: 

)(
)()|()|(

BP
APABPBAP ⋅

=  Equation 4 | 2 

where: 

P(A) is the prior probability or marginal probability of A.  

 

Once a BBN has been compiled the effects of hard evidence entered into one 

or more nodes can be propagated throughout the net, in any direction, and the 

marginal distributions of all nodes are updated. Efficient algorithms for updating 

Bayesian Belief Networks exist. Propagation algorithms were discovered in the 

1980s by researchers. These algorithms are effective for large classes of BBNs 

and are implemented in software tools. This makes it now possible to use 

BBNs to solve complex problems without doing any of the Bayesian 

calculations by hand. At any moment in time all probabilities are consistent with 

all evidence available and states of the CPTs.  

 

 

3 | Illustration of a Bayesian Belief Network 
 

In this section, the use of Bayesian Belief models will be illustrated with a 

simple BBN, using Netica, a software tool for learning and analysing Bayesian 

Belief Networks (Norsys Software Corp, 1997). Note that other BBN software 

tools may have a different layout, which would result in different illustrations. 

The purpose of this example is to illustrate that Bayesian Belief Networks allow 

us to specify and analyze the direct and indirect effects of a series of variables 

on a particular node (choice behaviour of interest).  
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Mode Choice

Car Availability

Car Possession Car Users

Drivers licence

PT pass possession

  

Figure 4 | 1: Simple Bayesian Belief Network 

 

A hypothetical network is shown in Figure 4 | 1. It represents the direct 

influence of car availability, public transport (PT) pass possession and drivers 

licence on mode choice and the indirect influence of car possession and the 

number car users (through car availability) on mode choice. Car availability 

depends on the possession of car(s) in the household and the number of car 

users within the household. This network consists of six nodes, with the 

following states: Car Possession (no car, 1 car, 2 cars, > 2 cars), Car Users (1 

user, 2 users, > 2 users), Car Availability (low, high), PT pass possession (yes, 

no), Drivers Licence (yes, no) and Mode Choice (car driver, car passenger, 

public transport, slow transport).  

The nodes Car Possession and Car Users are the root nodes (no parents). 

They are the parent nodes for the Car Availability node, which is also called 

child node of the previously mentioned nodes. The parent nodes of Mode 

Choice are Car Availability, PT pass possession and Drivers Licence. Mode 

Choice is also called a leaf node (no children). 

The CPT of a node that has no parents (thus root node) only contains the 

states of the node and the probability distribution across the states. The CPT’s 

of the root nodes Car Possession, Car Users, PT pass possession and Drivers 

Licence are illustrated in Table 4 | 1. In this example, the a-priori probability or 
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chance that someone does not owns a car is 8 percent, the chance of owning 

one car is 67 percent, two cars 21 percent, and more than two cars 4 percent 

chance. The a-priori probability or chance that there is one car user is 31 

percent, the chance of two car users is 47 percent, and more than two car 

users 22 percent chance. For PT pass possession the a-priori probability of the 

possession of a pass is 31 percent and respectively 69 percent chance of not 

owning a pass. For drivers licence the a-priori probability of possession is 71 

percent chance and for not owning a drivers licence 29 percent chance.  

The CPT of a child node is more complicated. The conditional probability table 

expands with the states of the involved parent node(s). The CPT describes the 

probability distribution across the states of that specific child node for each 

(combined) state of the parent node(s). Table 4 | 2 and Table 4 | 3 show 

respectively the CPT of the child nodes Car Availability and Mode Choice.  

The sum of all probabilities in each row is 100 percent. The higher the value, 

the higher the probability that this state occurs. If there are parent nodes 

involved, the actual probability depends on the probabilities of the parent 

states. Each node has a certain probability. The initial probabilities for a node 

that has no parents are simple; they exactly correspond with the probability 

distribution across the states as shown in Table 4 | 3. Probabilities of a child 

node depend on the probabilities of the parents. 

 

Table 4 | 1: All CPT’s of the root nodes (probabilities are percentages) 
 

Root nodes States Probabilities (%) 

Car Possession No car 8 

 1 car 67 

 2 cars 21 

 > 2 cars 4 

Car Users 1 user 31 

 2 users 47 

 > 2 users 22 

PT pass Possession Yes 31 

 No 69 

Drivers Licence Yes 71 

 No 29 
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Table 4 | 2: CPT of the node car availability (probabilities are percentages) 
 

Car Possession Car Users Low High 

no car 1 user 100 0 

no car 2 users 100 0 

no car > 2 users 100 0 

1 car 1 user 0 100 

1 car 2 users 50 50 

1 car > 2 users 100 0 

2 cars 1 user 0 100 

2 cars 2 users 0 100 

2 cars > 2 users 50 50 

> 2 cars 1 user 0 100 

> 2 cars 2 users 0 100 

> 2 cars > 2 users 0 100 

 

Table 4 | 3: CPT of the node mode choice (probabilities are percentages) 
 

Car 
Availability 

PT pass 
possession 

Drivers 
Licence 

Car 
Driver 

Car  
Passenger 

Public 
transport 

Slow 
transport 

Low Yes Yes 0 25 50 25 

Low Yes No 0 25 50 25 

Low No Yes 0 33 33 34 

Low No No 0 33 33 34 

High Yes Yes 30 30 30 10 

High Yes No 0 40 40 20 

High No Yes 40 40 10 10 

High No No 0 60 20 20 
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Mode Choice
Car driver
Car passenger
PT
ST

15.5
37.2
26.9
20.4

Car Availability
low
high

40.8
59.2

Car Possession
no car
1 car
2 cars
>2 cars

8.00
67.0
21.0
4.00

Car Users
1 user
2 users
> 2 users

31.0
47.0
22.0

Drivers licence
yes
no

71.0
29.0

PT pass possession
yes
no

31.0
69.0

 

Figure 4 | 2: Compiled Bayesian Belief Network 

 

Figure 4 | 2 gives the probabilities of the compiled network. The probability for 

the state ‘low’ of the car availability node can be calculated given the 

probability distribution of CPT’s in Table 4 | 1, Table 4 | 2 and Table 4 | 3:  

Probability state ‘low’ = (0.08 x 0.31 x 1.0) + ( 0.08 x 0.47 x 1.0) + (0.08 x 0.22 

x 1) + (0.67 x 0.31 x 0) + (0.67 x 0.47 x 0.5) + (0.67 x 0.22 x 1.0) + (0.21 x 0.31 

x 0) + (0.21 x 0.47 x 0) + (0.21 x 0.22 x 0.5) + (0.04 x 0.31 x 0) + (0.04 x 0.47 x 

0) + (0.04 x 0.22 x 0) = 0.408.  

The probabilities for the state ‘high’ can be calculated in a similar way. 

However, because the probabilities sum to one, the probability for the state 

‘high’ is equal to: 1 – 0.408 = 0.592. 

When hard evidence is entered into the network the probabilities for the related 

parent and child nodes are updated according to the Bayesian principle defined 

by Equation 4 | 1 and Equation 4 | 2 . Figure 4 | 3 illustrates the probabilities of 

the BBN when the evidence is entered into the network. The evidence indicates 

that there is one car in the household. The probabilities of the Car Availability 

node can be calculated in the same way, the changed numbers are in bold:  
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Probability state ‘low’ = (0.00 x 0.31 x 1.0) + ( 0.00 x 0.47 x 1.0) + (0.00 x 0.22 

x 1) + (1.00 x 0.31 x 0) + (1.00 x 0.47 x 0.5) + (1.00 x 0.22 x 1.0) + (0.00 x 0.31 

x 0) + (0.00 x 0.47 x 0) + (0.00 x 0.22 x 0.5) + (0.00 x 0.31 x 0) + (0.00 x 0.47 x 

0) + (0.00 x 0.22 x 0) = 0.455. In addition the probability for the state ‘high’ is 

equal to: 1 – 0.455 = 0.545 

Figure 4 | 3 shows the updated probabilities after entering hard evidence into 

the network. The updated probabilities can be compared with the probabilities 

in Figure 4 | 2. The updated probabilities of the nodes Car Users, Drivers 

Licence and PT pass possession are the same. 

Those nodes are not directly related to the node Car Possession, where the 

hard evidence is entered. The probabilities of the other nodes, Car Availability 

and Mode Choice, are updated after the hard evidence ‘1 car’  was entered into 

the network. The probability of the state ‘low’ of the node Car Availability 

increased from 40.8 to 45.5 in the new situation. For the Mode Choice node the 

probability of the option ‘car driver’ and ‘car passenger’ decreased from 

respectively 15.5 and 37.2 to 14.3 and 36.7.  

. 

Mode Choice
Car driver
Car passenger
PT
ST

14.3
36.7
27.8
21.2

Car Availability
low
high

45.5
54.5

Car Possession
no car
1 car
2 cars
>2 cars

   0
 100
   0
   0

Car Users
1 user
2 users
> 2 users

31.0
47.0
22.0

Drivers licence
yes
no

71.0
29.0

PT pass possession
yes
no

31.0
69.0

 

Figure 4 | 3: BBN with entered evidence for node car possession 
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Mode Choice
Car driver
Car passenger
PT
ST

 100
   0
   0
   0

Car Availability
low
high

   0
 100

Car Possession
no car
1 car
2 cars
>2 cars

   0
61.7
31.6
6.76

Car Users
1 user
2 users
> 2 users

48.2
46.4
5.39

Drivers licence
yes
no

 100
   0

PT pass possession
yes
no

25.2
74.8

 
 

Figure 4 | 4: BBN with entered hard evidence for node mode choice 

 

The probabilities for the other options ‘Public Transport (PT)’ and ‘Slow 

Transport (ST)’ increased from respectively 26.9 and 20.4 to 27.8 and 21.2.  

The percentage of increase or decrease (updated probability / former 

probability) is the highest for car driver (decrease) and slow transport 

(increase). 

Backward reasoning is illustrated in Figure 4 | 4. The result of the entered 

evidence ‘car driver’ for the child node Mode Choice is portrayed. The 

probabilities of the parent nodes PT pass possession, Drivers Licence and Car 

Availability, and their parent nodes Car Possession and Car Users are 

automatically updated. Some probabilities increase, like the possession of 1 

car, 2 cars and 2 cars or more in the household, while other probabilities 

decrease, like possession of a public transport pass.  

This section illustrated an example of Bayesian Belief Networks. Parent and 

child nodes in the network are explained and the calculation of probabilities is 

illustrated given the underlying conditional probability tables. It is not always 

easy to construct the structure of a BBN. Fortunately algorithms for structure 

learning exist. These algorithms are described in the next section.  
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4 | Structure learning algorithm  
 

The first step in estimating a Bayesian Belief Network is to identify the 

structural relationships among the variables (structure learning). Over the 

years, several structure learning algorithms have been developed. Two groups 

of algorithms or approaches can be distinguished: search and scoring-based 

algorithms and dependency analysis-based algorithms (also called constraint-

based). These different methods are explained in the next sections.  

 

1 | Search and scoring algorithms 

Scoring-based methods view a Bayesian Network as a structure defining a joint 

probability distribution across the variables included in the network. These 

methods search for the structure that maximizes a goodness-of-fit on the 

observed joint probability distribution in the data. The joint probability 

distribution can be calculated with the following product (e.g. chain) rule: 

)|(),....,,(
1

21 jj

n

i
n XPXXXP Π∏=

=
 

Equation 4 | 3 

 

Where X1, X2….Xn are variables in the network. 
jΠ is the set of parent 

variables of Xj.  

These algorithms start with a graph without any edges between the variables. 

Then, first an edge is added using some search method. Next, a scoring 

method is used to check if the new structure with the added edge is better than 

the old graph. If the new graph is better, a new edge is added and this process 

continues until no new structure is better than the previous structure. To 

evaluate the structure, different scoring criteria have been applied in these 

algorithms, including the Bayesian scoring method. Examples of these 

algorithms are the K2 Algorithm (Cooper and Herskovits, 1992), the HGC 

algorithm (Heckerman, Geiger and Chickering, 1995; Ramoni and Sebastiani, 

1997), the Kutato algorithm (Herskovits and Cooper, 1990) based on entropy-

based methods, Suzuki’s algorithm (Suzuki, 1996), the Lam-Bacchus algorithm 
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(Lam and Bacchus, 1994) and the WKD algorithm (Wallace, Korb and Dai, 

1996) both based on minimum message length methods. Most of these 

algorithms apply heuristic search methods. Node ordering is required to reduce 

the search space.  

 

2 | Dependency analysis algorithms 

These algorithms rely on conditional independence (CI) tests to measure the 

dependency relationships, in contrast with the heuristic search methods used 

on the search and scoring algorithms that optimize a network structure as a 

whole. Examples are the Wermuth-Lauritzen algorithm (Wermuth and 

Lauritzen, 1983), the Boundary DAG algorithm (Pearl, 1988), Algorithm A and 

B (Cheng, 1998), the Constructor algorithm (Fung and Crawford, 1990), the 

SGS algorithm (Spirtes, Glymour and Scheines, 1990), the SRA algorithm 

(Srinivas, Russell and Agogino, 1990), and the PC algorithm (Spirtes, Glymour 

and Scheines, 1991). A basic concept in many algorithms is the mutual 

information between two given nodes, which is defined as: 

)()(
),(log),(),(

, bPaP
baPbaPBAI

ba
∑=  Equation 4 | 4 

where I(A, B) is the mutual information between nodes A and B; a and b 

represent possible states of A and B; P(a, b) is the joint probability of A = a and 

B = b; and P(a) and P(b) are the (marginal) probabilities of these states. 

Existence of mutual information is not a sufficient condition for a link between 

two nodes, as the influence may also run through other nodes. Constraint-

based algorithms use the concept of d-separation: two nodes are d-separated 

when, loosely speaking, they are conditionally independent given possible 

paths through other nodes. The problem of finding the correct structure for a 

given set of variables is a NP-hard problem and therefore existing algorithms 

use heuristic search. 

In this thesis, a dependency analysis algorithm for structure learning is used, 

more specifically, the PC algorithm. This algorithm and the NPC algorithm are 

described in more detail as a representative example of dependency analysis 
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algorithms. The PC algorithm, used in this study, is a variant of the original PC 

algorithm (Sprites, Glymour, Scheines, Heckerman, Meek and Cooper, 2000). 

The basic idea of these algorithms is to derive a set of conditional 

independence and dependence statements by statistical tests. The PC 

algorithm consists of the following steps (Hugin Expert, 1995; Madsen, Lang, 

Kjærulff and Jensen, 2004):  

1. Statistical tests for conditional independence (CI tests) are performed for 

all pairs of variables (except for those pairs for which a structural 

constraint has been specified).  

2. An undirected link is added between each pair of variables for which no 

conditional independences were found. The resulting undirected graph is 

referred to as the skeleton of the learned structure.  

3. Colliders are then identified, ensuring that no directed cycles occur. (A 

collider is a pair of links directed such that they meet in a node.) For 

example, if A and B are dependent, B and C are dependent, but A and C 

are conditionally independent given S (e.g. set of variables), not 

containing B, then this can be represented by the structure A --> B <-- C. 

Collider structures have the unique property that parent nodes A and C 

are mutually dependent only under given states of B. On that basis 

collider structures can be identified. 

4. Next, directions are enforced for those links whose direction can be 

derived from the conditional independences found and the colliders 

identified.  

5. Finally, the remaining undirected links are directed randomly, ensuring 

that no directed cycles occur.  

 

The first two steps are repeated until all possible pairs have been tested. First, 

only pairs are tested (no conditional relations). After that pairs are tested 

conditionally on a third variable. This continues until all pairs have been tested 

conditionally. The following independence testing procedure is used for the first 

step in the PC algorithm: if variable X causes variable Y, it implies a 

probabilistic dependency, P(Y | X) ≠ P(Y). Thus, if the null hypothesis of 

marginal independence of X and Y, H0 : P(Y | X) = P(Y) or P(X, Y) = P(X)P(Y) 
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is rejected, the directed dependence X Y is supported. The structure learning 

algorithms are based on making dependence tests that calculate a test statistic 

which is asymptotically chi-squared distributed assuming (conditional) 

independence. 

One important thing to note about the PC algorithm is that, in general, it will not 

be able to derive the direction of all the links from the data, and thus some links 

will be directed randomly, ensuring that no directed cycles occur. This means 

that the learned structure should be inspected, and if any links seem 

counterintuitive the NPC algorithm (Necessary Path Condition (Steck and 

Tresp, 1999)), which allows the user to interactively decide on the directionality 

of undirected links, could be used instead. Another possibility is to import 

constraints in the structure learning process. Constraints describe where a 

directed or undirected link can not appear.  

The NPC algorithm seeks to repair the deficiencies of the PC algorithm. The 

solution provided by the NPC algorithm is based on the inclusion of a criterion 

known as the Necessary Path Condition. This criterion forms the basis for 

introducing the notion of ambiguous regions, which in turn provide a language 

for selecting among sets of interdependent uncertain links. The resolution of 

ambiguous regions is performed in interaction with the user. In constraint-

based learning algorithms, the skeleton of the graph is constructed by not 

including a link in the induced graph whenever the corresponding nodes are 

found to be conditionally independent. There can, however, be inconsistencies 

among the set of conditional independence and dependence statements (CIDs) 

derived from limited data sets. That is, not all CIDs can be represented 

simultaneously. The inconsistencies are assumed to stem solely from sampling 

noise. The number of inconsistencies in the set of CIDs reflects structural 

model uncertainty. Thus, the number of uncertainties is a confidence measure 

for the learned structure and can as such be used as an indication of whether 

or not sufficient data has been used to perform the learning. The inconsistent 

CIDs produce multiple solutions when inducing a directed acyclic graph (DAG) 

from them. These solutions differ with respect to the set of links included. To 

resolve the inconsistencies, the NPC algorithm relies on user interaction where 

the user gets the opportunity to decide on the directionality of undirected links 

and to resolve the ambiguous regions. An ambiguous region is a maximal set 

of interdependent links, or uncertain links. When the absence of a link (a) 
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depends on the presence of another link (b), and vice versa, a and b are 

defined as interdependent. Both a and b are constitute what is called uncertain 

links. The main goal is to obtain as few and small ambiguous regions as 

possible. It should be noted that deterministic relations between variables will 

also produce ambiguous regions. The user is offered the possibility of providing 

information as to how the ambiguous regions should be resolved.  

The first step in constructing a working BBN is structure learning. The second 

construction step is learning the parameters of the network. The estimation of 

the parameters is described in the next section. 

 

 

5 | Parameter learning algorithm 
 

It is necessary to specify the probability distribution for each node in the 

Bayesian network. If there are no missing values in the data, parameter 

learning is rather straight-forward. Under that condition it simply reduces to 

determine observed conditional frequencies for each child node and its parent 

nodes in the data. However, if there are missing values, estimation methods 

come into play. In the type of BBNs used in this thesis, all variables have 

discrete distributions, which simplify the calculations. As said, when there are 

missing values, the unknown parameters of these conditional  distributions 

must be estimated from data. Different approaches can be used, such as 

maximum entropy, and maximum likelihood. When there are unobserved 

variables the direct maximization of the likelihood is often complex. The 

expectation-maximization (EM) algorithm is an approach to deal with this 

problem (Dempster, Laird and Rubin, 1977; Cowell and Dawid, 1992; Lauritzen, 

1995). The EM algorithm tries to find the model parameters (conditional 

probability distributions) of the network from observed (but often not complete) 

data that maximizes the log likelihood of the current joint probability distribution 

on the case data. The estimated conditional probabilities are improved in each 

iteration. For each iteration, the conditional probabilities will match the data 

increasingly better until no further improvement can be made. It has proven a 

flexible tool for problems involving missing data or incomplete information.  
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The algorithm performs two steps: an expectation (E) step, which computes an 

expectation of the likelihood, and a maximization (M) step, which computes the 

maximum likelihood estimates of the parameters by maximizing the expected 

likelihood found in the E step. The parameters found in the M step are then 

used to begin another E step, and the process is repeated. It is an iterative 

process which continuously improves the resulting conditional probabilities. 

The learning process will terminate when the convergence, defined as the 

difference in log likelihood between two successive iterations, reaches a value 

smaller than the convergence threshold (or earlier, if the maximum number of 

iterations is reached). The algorithm has a few disadvantages: the choice of 

initial parameters may converge to a local optimum (poor choices can lead to 

bad estimations) and the convergence may take a long time.  

If there are no data available for a specific combination of states, the 

probabilities are evenly distributed as this corresponds to probabilities when no 

information is available. For example, Table 4 | 2 shows that the probability 

distribution of car availability will be 50% for every state (low and high) if there 

are no data available for the combination of the following states of the parent 

nodes car possession and car users: one car and two car users or two cars and 

more than two car users. One may argue that the assumption of an even 

distribution when no information on the specific state of the parents is available 

in the dataset is too rigorous. Instead of an even distribution, an overall 

distribution across all cases in the dataset would already be a better estimate 

of the distribution of the actual probabilities. For example, when the overall 

distribution is very skewed, our a-priori expectation would also be that the 

distribution is skewed in the same way when there is no information about the 

parents. Note that this issue is not irrelevant. Unless the dataset is very large 

compared to the number of parents for a node, missing cases for specific 

configurations of a parent are likely. Assuming an even distribution in cases 

where the a-priori distribution is skewed, will lead to biased assessments of 

posterior probabilities in those cases. Therefore, to circumvent this bias, a 

more refined rule is used, i.e. rather than an even distribution, the overall 

distribution of a best a-priori estimate of the actual distribution is preferable.  
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6 | Conclusion   
 

In this chapter, it is argued and shown that in principle Bayesian Belief 

Networks are an appropriate approach to modelling the direct and indirect 

influence of events on other events and mode choice. Structure and parameter 

learning can support the detection and representation of interdependencies in 

collected data in a network. Causal effects can be learned and temporal 

relations can be captured in constraints or domain knowledge, like node 

ordering. 

A Bayesian Belief Network can be empirically derived and used to model and 

simulate life course events and their effects on transport mode choice and 

resource decisions. These networks offer an alternative to familiar hazard 

models, where the duration of some phenomenon (i.e. events) is modelled as a 

function of a set of explanatory variables. BBNs have the potential advantage 

that relatively complex direct and indirect relationships among life course 

events, and between these events and transport-related decisions can be 

captured.  

In this chapter the tools for constructing a Bayesian Belief Network are 

described. The input necessary for structure and parameter learning is data 

and constraints. Data for this study is collected using a retrospective Internet-

based survey. In the next chapter the data collection is described. Constraints 

for the network learning are given in the sixth chapter.  
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5 | Retrospective Internet-based 
survey 
 

 

1 | Introduction 
 

In the previous chapter it was argued that Bayesian Belief Networks represent 

a potentially powerful approach to modelling the impact of life trajectory events 

on dynamic activity-travel patterns. Such networks need as input empirical data 

to learn the structure of the network and the conditional probability tables of the 

variables that are identified to be relevant. Ideally, one would prefer to have a 

panel. However, in practice such samples are difficult to organise and are 

highly demanding in terms of time, money and other resources. 

In the present study, it was therefore decided to use a retrospective survey. 

This means that respondents are invited to recall events they have experienced 

in their past and report relevant details of these events, including their timing. 

Retrospective surveys can be administered in various ways. In the present 

study, an Internet-based survey was designed and implemented. 
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This chapter starts by articulating the data needs. The following section 

discusses the pros and cons of retrospective surveys and the third section 

outlines the features of the Internet-based survey. The procedure, design and 

routing of the survey, response rates and the composition of the sample are 

described in the fourth section. Next, the cleaning of the data is reported. The 

results of a performance test of the retrospective data are presented in the 

sixth section and the chapter ends with the conclusion. 

 

 

2 | Retrospective surveys 
 

Data needs and appropriate data collection depend on the specific purpose of 

the study. In this context, it is important to understand which life trajectory 

events trigger behavioural change. To conduct such analyses, data are 

required about the life trajectory events experienced by individuals and the 

chronological order of these events. Panel data or pseudo-panel data are not 

relevant to collect such data when they are typically not administered to the 

same respondents for a large number of years. In addition to the costs of 

administering a panel, attrition rates of 40% are quite common. Retrospective 

surveys offer an alternative.  

Behrens and Del Mistro (2006) define retrospective surveys as once-off 

surveys of individuals in which respondents are asked to recall past 

behavioural changes and the events and circumstances surrounding these 

changes. The potential advantages of the retrospective surveys method are 

that they do not present great administrative complexity and time delay in data 

collection of panel surveys. On the other hand, because respondents are 

invited to recall phenomena in the past, it goes without saying that the 

reliability of retrospective surveys depends fundamentally on the nature of the 

phenomena about which questions are asked. In general, one may argue that 

individuals build up memory traces about their experiences. Such memory 

traces will be stronger for those experiences that are more important to them, 

e.g., experiences that are unique, dramatic, etc. Vice versa, memory traces of 

insignificant experiences will be weak. Moreover, potentially incomplete or 
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inaccurate responses are likely to occur if the event recalled and the time of 

recollection are far apart. Assuming that data quality, that is memory recall, is 

monotonically related to the strength of the memory trace, the quality of 

retrospective surveys may be sufficient if the retrospective questions are 

concerned with special, memorable events or phenomena, especially when the 

time elapsed between the occurring of the event and the time of the survey is 

not too far apart.  

This logic was supported by Behrens and Del Mistro (2006). They concluded 

based on their retrospective travel survey experiment that even when 

considerable time had elapsed since making a behavioural change, 

respondents did not report uncertainty in their recollection of the number of 

years that had passed since the change. Especially the follow-up telephone 

qualitative interview to explore the reliability of the answers from the surveys 

and to establish how confident respondents were with their answers indicated 

this. An explanation for this finding is that all recalled travel behaviour changes 

were associated with a form of ‘life shock’ or trauma, which are memorable 

events. On the other hand, Baddeley (1979) argued that collecting reliable 

information about experienced events is difficult; respondents often cannot 

recall the events accurately. In an earlier study, Baddeley (1979) concluded 

that forgetting is not uniform. The information about the most recent experience 

of an event is likely to be more accurate and reliable than information about 

earlier occasions. Especially details of a given event are difficult to recall 

accurately. Some memorable personal events are easier to remember.  

Selective memory can play a role when retrospective questions are used. It 

may happen that respondents in fact ‘do-not-know’ the answer. The respondent 

can be stimulated to give an adequate response in several ways (de Leeuw, 

2001): (1) encourage the respondent to use personal records and (2) stimulate 

a more thorough question-answer sequence by using a longer introduction. The 

researcher should be careful to ensure that the respondent understands the 

introduction and the question. Special techniques, like ‘time-line follow-back 

methodology’ and ‘domain-dependent encoding’ of memory, are used to probe 

the memory of respondents and improve their recall. The latter technique uses 

extra introductory questions to bring the respondent back to the situation in 

which the researcher is interested.  
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Experiences from Hollingworth and Miller (1996) showed that a retrospective 

survey proved to be a favourable alternative to a panel survey. Van der Vaart 

(1996) also argued that memory lapses are less of a problem in case of life 

events. Beige and Axhausen (2008) had good experiences with a retrospective 

survey covering a period of 20 years from 1985 to 2004. Thus, this brief 

summary of the literature suggests that retrospective surveys can be a useful 

and adequate tool to collect information about life trajectory events. 

Examples of small scale applications of such surveys focus on non-

standardized interviews, e.g., Baddely (1979) and Lanzendorf (2003). The 

method does not appear to have been applied extensively in practice. For 

model building purposes, however, one needs larger samples. The question 

then becomes whether retrospective surveys can be successfully designed and 

administrated through the Internet. Self-completion mail surveys seem less 

adequate as the protocol for completing the survey is relatively complex. 

Internet-based surveys have the potential advantage that some help and 

consistency checking is possible. 

 

 

3 | Internet-based surveys 
 

In principle, retrospective data can be collected through self-administered 

surveys (mail or internet), face-to-face interviews or telephone interviews. 

Interviews are more time consuming than self-administered surveys and have 

certain disadvantages for collecting retrospective data. Recently, Internet-

based surveys have become quite popular, compared to surveys distributed by 

ordinary mail. Besides the low costs compared to mail and allowing faster 

processing of data and distribution by e-mail, an Internet-based survey has 

some technical advantages which are helpful with respect to collecting 

(retrospective) data.  

As mentioned by De Leeuw (2001), it is important for the designer of the survey 

to fully understand what happens in a question-answer process to stimulate the 

respondent to give an adequate response (Tourangeau, 1984; Strack and 
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Martin, 1987; Schwarz, 1997). First, the respondent has to understand the 

question that determines the intended meaning. After that, the respondent has 

to recall relevant information from their memory. Particularly, with retrospective 

surveys this may be a difficult cognitive task. After retrieval from memory, a 

judgement is ‘computed’. After a personal judgement is formed in the mind of 

the respondent the answer has to be communicated to the researcher. In the 

last step, the respondent may want to edit the response before it is finally 

given, especially with sensitive topics.  

Some technical features of Internet-based surveys make them potentially 

advantageous in this context. These include: (1) extra information can be 

presented in pop-ups to support better understanding of a question, (2) 

dynamic routing, i.e., a dynamic sequence of questions depending on previous 

answers, skip irrelevant questions and different question phrasing, is possible, 

(3) drop down lists can be used to effectively handle pre-coded answers, to 

decrease the process time for respondents, and (4) checking possibilities can 

be used to make sure that answers are in a required range or format (numeric, 

number of characters) or to reduce item non-response if the question is 

mandatory. A disadvantage of these checking possibilities is that warning or 

error messages, where respondents have to return to the question and correct 

their “error” before being allowed to proceed, have been shown to increase 

respondent frustration. Consequently, a number of respondents terminate the 

survey before the end (Best and Krueger, 2004).  

Furthermore, as Christian, Dillman and Smyth (2005) note, “The design and 

visual presentation of survey information, through the manipulation of verbal, 

numeric, symbolic, and graphical languages, can facilitate respondents’ 

answering of survey questions and help them “get it right the first time”. The 

likelihood of receiving error messages, that web survey designers may use to 

decrease item non-response and to verify that answers are in an acceptable 

format, can be reduced by helping respondents. Visual design techniques to 

reduce respondent frustration, increase response efficiency and improve the 

overall survey experience for respondents, can be applied by web survey 

designers. The quality of each answer will be improved, because the 

respondent has more time to understand the question and retrieve and 

compose an answer. Although these advantages of Internet-based surveys 

hold more in general, they arguably are particularly relevant for retrospective 
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surveys given the memory demands these surveys impose. For that reason an 

Internet-based survey was designed to collect data for this study. 

 

 

4 | Design and application  
 

In this section, the details of the Internet-based survey to collect retrospective 

data about life course events are described. The design of the data collection 

instrument required several operational decisions, which are subsequently 

described and motivated in the following subsections. 

 

1 | Life course events 

Based on previous work by van der Waerden and Timmermans (2003) and van 

der Waerden et al. (2003), a list of seven life course events was compiled. 

These seven events are defined as changes in residential location, household 

composition, work location, study location, car availability, possession of a 

public transport pass, and household income. Changes in household 

composition, for example, are marked by births, marriage, divorce, etc. In this 

study, it is believed that these processes are the true markers of an unfolding 

life trajectory. Be it positive or negative, these events are unique and generally 

are the hallmark of individual’s most important life course decisions. Similarly, 

even though perhaps less intense, changes in residential location, a new car, 

change of job, etc. also represent unique events in one’s life that may have 

implications for travel behaviour and mobility. In this study, it is assumed that if 

respondents can be sufficiently motivated to actively participate in the survey 

and can handle the technical challenges induced by Internet surveys, there 

should be no reason to expect any less reliable results for a retrospective 

survey than for any other type of survey.  
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2 | Procedure 

In the Netherlands, people are not always willing to participate in surveys. Of 

course, their willingness depends on several things, such as the topic of the 

survey, the way of approaching the respondent, implications of the results, 

benefits etc. A special procedure was designed to collect as many data as 

possible. Figure 5 | 1 illustrates the four steps of the procedure. 

Step 1: a special TU/e e-mail account was opened for correspondence about 

the survey. The alias of the e-mail (vervoermiddelkeuze@bwk.tue.nl) was 

related to the topic of investigation (vervoermiddelkeuze = transport mode 

choice). This e-mail address makes the project more official for respondents 

and therefore they may feel more obligated to participate. It is more difficult to 

collect e-mail addresses of potential respondents than postal addresses. Many 

people also have a temporal e-mail address for work or private use and change 

them regularly to prevent spam. Nevertheless, e-mail addresses were collected 

in the Netherlands based on the participants of former surveys and connections 

of the University. Approximately 2400 emails were sent with a request to 

participate and to send the mail to at least three other persons within their 

social network. The latter request was our way to reach more potential 

respondents. Two rewards were offered, or at least a chance of a reward. The 

respondents who completed the survey could win one of 50 gift vouchers of 25 

euro’s. If people invited at least three other respondents, who completed the 

survey, they could also win one of 25 gift vouchers of 50 euro’s. These rewards 

were given to motivate potential respondents to encourage more respondents 

to participate. In the first invitation e-mail the procedure was explained, as well 

as the rewards, and the goal of the research. The invitation e-mail included a 

link to a special online form to subscribe to the survey.  

 
 

Figure 5 | 1: Four step procedure 

E-mail with 
unique link to 
Internet-based 

survey 

E-mail mailbox Online Form Internet-based 
Survey 

1 2 3 4 
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It will be evident that the resulting sample is not a random sample. It means 

that if the data are used beyond the sample, appropriate weighting schemes 

need to be applied. The main interest of this PhD study, however, is to explore 

the suggested approach of modelling dynamics. Results are therefore based on 

this sample.  

Step 2: This online form contained the same information as the invitation e-

mail. The form consisted of questions about personal characteristics such as 

first and last name, gender, postal code, year of birth, e-mail address and their 

occupation. Some questions were mandatory, like name and e-mail address. 

People who received an invitation from another respondent could indicate that 

at the bottom of the form. This way the recruitment of other respondents could 

be checked and traced. In total, 939 people agreed to participate.  

Step 3: the 939 respondents received a personal e-mail with a unique link to 

the Internet-based survey. Their first and last names from the online form were 

used to make the invitation e-mail more personal. The advantages of a unique 

link are (1) the survey is linked to a specific and known person, (2) respondents 

could stop and continue at another time (or at another computer), and (3) the 

link was only available once. In that way the respondents could not forward the 

link and there was control over the respondents.  

Step 4: the Internet-based survey consisted of the following components: (i) 

personal and household characteristics; (ii) availability and possession of 

transport modes; (iii) occurrence of life course events, (iv) current travel 

behaviour, (v) perception of trip conditions and (vi) evaluation of the selected 

trip conditions. 

 

3 | Design of the survey 

Because the focus of the study concerns part 3 of the survey, occurrence of life 

course events, only that part will be described in more detail here. All questions 

of the survey are listed in Appendix 1A (in Dutch). 

Respondents were prompted about seven life course events in their life. They 

were asked to indicate whether they experienced each of these events, and, if 

so, to provide additional information in a matrix about the timing of the event 
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(month and year), the cause of the change (i.e., the specific type of event) that 

took place and the before and after situation for every change to a maximum of 

ten changes. Different types of changes involved in an event were defined 

(Figure 5 | 2) so that the respondents could understand what they had to recall. 

It was assumed that the description helped the respondent to recall those 

specific changes of an event.  

First, respondents indicated whether they experienced a change or not. If they 

experienced at least one change, the respondent automatically received the 

matrix question about that particular event. As an example, Figure 5 | 3 

represents the matrix question of change in residential location. All matrices of 

the seven life course events were identically structured. There was one 

exception: the matrix of change in residential location had seven 

topics/questions, whereas the other matrices had only five. 

 

 

Figure 5 | 2: Introduction question on occurrence of an event related to 
residential location 
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The five topics in the matrices referred to: the timing of the event, specifically 

the (1) month and (2) year, (3) the before and (4) after situation and (5) the 

cause of the change (i.e., the specific type of event). The two extra topics in 

this matrix (Figure 5 | 3) were included to collect more specific information 

about the housing situation: (6) housing type and (7) bought / rented residence. 

All questions of the Internet-based survey are illustrated with print screens in 

Appendix 1A, the predefined choice options and all variables are listed in 

Appendix 1B. 

 

 

Figure 5 | 3: Matrix question event related to residential location 

 

bought or rented. 

bought/rented 
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Respondents could indicate a maximum of ten changes, from the most recent 

change to changes in the past. In this study, it is assumed that the information 

about more than ten changes in the past would be less accurate and reliable. 

Moreover, it is unlikely that changes far back in the past influence a person’s 

current travel behaviour. To stimulate the recall process, the matrix started with 

the most recent change. A mix of open ended and pre-coded questions was 

used in the retrospective survey. The question about the occurrence of an 

event was a pre-coded question (Figure 5 | 2), which was mandatory. Some 

questions/columns in the matrix question (Figure 5 | 3) were open ended 

questions. Like before and after situation, the other answers were pre-coded 

(drop down menu). Only the matrices for the life course events housing, work 

and study had open ended answer space in the columns before and after 

situation. The matrices for the other life course events had only predefined 

answer categories, thus also for the before and after situation.  

The matrix questions were not mandatory. If these questions were made 

mandatory, the respondents should indicate ten changes (rows) and should 

answer all questions in each column. This would probably irritate the 

respondent and result in a lower response rate. An option would be to add a 

predefined answer ‘no change’ in each row, but this will require a lot of extra 

time of the respondent to complete each matrix question, which could result in 

prematurely termination of the survey. Figure 5 | 2 and Figure 5 | 3 illustrate 

the questions of change in residential location. The other life course events 

have similar questions.  

 

4 | Routing 

Each part of the survey had a header or an introduction page to give extra 

information about that specific part of the survey. The survey was designed 

with skip-logic or a specific routing. This means that certain irrelevant 

questions were automatically skipped.  
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Figure 5 | 4: Routing part one (personal and household characteristics) 

 

Figure 5 | 4 illustrate the general routing of the first part of the survey: personal 

and household characteristics. The routing depends on the answer of a specific 

question: living situation. The question about the number of household 

members is only relevant for respondents who live on their own (answer 1) or 

live with their parents (answer 3). The question about household income is only 

relevant for respondents who live on their own (answer 1) or occupy a student 

room (answer 2).  

Figure 5 | 5 illustrate the routing of the second part of the survey: availability 

and possession of transport modes. This routing scheme illustrates that certain 

questions were skipped if the answer to the previous question was ‘no’. The 

first question was possession of driver’s licence. If the answer was ‘no’, the 

question about the number of year driver’s licence is irrelevant and was 

skipped. The answer to the third question about possession of one or more car 

within the household determined if the rest of the questions regarding car 

possession and availability were skipped or not. 
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Figure 5 | 5: Routing part two (availability and possession of transport modes) 

 

Figure 5 | 6 illustrates the routing of the third survey component, the 

occurrence of life course events. This routing is more complicated and consists 

of three columns in the figure. The first column illustrates the selection criteria, 

the second column shows the last part of the introduction question (since …, 

see Figure 5 | 2) and the possible answers, and the third column indicates the 

event matrix questions. Only if the answer was ‘at least once’ to the event 

question, respondents filled in the corresponding matrix question (third 

column). Otherwise respondents skipped the matrix question and answered the 

next life course introduction question. Sometimes an event matrix was 

automatically skipped, depending on the answer of the question about their 

living situation (part 1, personal and household characteristics). For example, 

respondents who lived with their parents (living situation = 3) or occupied a 

student room (living situation = 2) skipped the event matrix question about 

change in household composition. It is difficult to remember all changes in your 

parental household or student house and it is not relevant in this study. The 

skip logic for the life course event ‘change in study location’ was based on age 

(asked in part 1, personal and household characteristics, of the survey). 

Respondents born before 1969 skipped the life course question about changes 

in study. The skip logic for the life course event ‘change in car availability’ was 

based on the answer of the question about driver’s licence (part 1, personal 

and household characteristics). The last part of the question, since.., was 
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based on the living condition (part 1, personal and household characteristics). 

The routing was not visible for the respondents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 | 6 : Routing part three (occurrence of life course events) 
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5 | Response rates and sample characteristics 

As mentioned before, a total of 939 respondents registered for the Internet-

based survey. 807 respondents started the survey, while 710 respondents 

completed the whole survey. At two stages the respondents dropped out: 132 

respondents did not start the Internet-based survey, and 97 respondents did 

not complete the survey. Therefore, two levels of nonresponse rate can be 

calculated: nonresponse at the first level, i.e. the percentage of respondents 

who registered for the survey but did not start. The first-level nonresponse rate 

was approximately 14%. The second-level nonresponse rate indicates the 

percentage of respondents who terminated the survey before it was completed. 

This rate is approximately 12%. In total, 75% of the registered respondents 

completed the survey. This is a relatively high percentage. Only the completed 

surveys (710) are used in the analyses. 

As for sample composition, 59 percent were males, while 41 percent were 

females. This is in line with previous findings that Internet-based samples tend 

to be biased in the sense that males are overrepresented in the group of 

internet users. In total, 51.1 percent had a full time job (> 35 hours a week), 9.7 

percent had no job, while the remainder had a part-time job. Of all 

respondents, 59.4 percent has no children, 6.8 percent has one, and 23.1 

percent has two children, while the remainder has more than 2 children. 59.9 

percent of the respondents is married or lives together with a partner. Almost 

everybody owns a driver’s licence (93 percent) and 78 percent of the 

respondents owns at least one car. The possession of a bike is also very high 

(97.2%), and half the sample owns a particular public transport pass.  

The sample is not completely representative of the Dutch population (Centraal 

Bureau voor Statistiek, 2004). The frequency of the personal characteristics 

age, education and household income differ. Younger respondents are 

overrepresented in the sample and the elderly are underrepresented. The use 

of an Internet-based survey in addition to the sampling procedure may have 

contributed to this finding, since not all elderly people posses a personal 

computer and have access to Internet in contrast to most younger people. 

Respondents with a higher education are overrepresented and respondents 

with a lower education are underrepresented. There is also a slight difference 

in car possession between the sample (78%) and the Dutch population (76%) 
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in 1998, but that might be explained by the fact that car possession has been 

increasing.  

 

 

5 | Cleaning data 
 

The data cleaning process consisted of the following steps. First, the 

chronological order of the life course events was checked, and the missing 

data in the life course part were corrected where possible. If it was not possible 

to complete the information, the occurrence was deleted. In addition, the 

consistency within the life course events and the consistency between the 

personal characteristics and the life course event were checked. The data in all 

cases with inconsistency was corrected. There were no cases deleted. 

 

1 | Chronological order events 

The first occurrence (first row) in the life course matrix was the most recent 

occurrence (see Figure 5 | 3). The second row was the occurrence before the 

most recent one, and so on. Not all respondents answered the questions about 

the occurrences of life course events in this particular sequence. Some 

respondents organised their occurrences the other way around. In some cases, 

two occurrences in the same year were entered in the wrong sequential order, 

based on month. The chronological order was checked for all respondents and 

all errors were corrected.  

 

2 | Missing data 

As mentioned before most of the questions were mandatory, except the life 

course matrices (see Figure 5 | 3). If the life course question matrix was made 

mandatory, respondents must indicate ten occurrences and must answer all 

questions for each topic and occurrence. A disadvantage of the setting that the 

life course matrix question was not mandatory is that respondent could skip 
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one or more topics of an occurrence. For example, the respondent answered 

the question about month, year and type of the occurrence, but the respondent 

left the question about before situation and after situation blank. Unfortunately, 

this resulted in missing data. 

There were no serious problems in most cases. Sometimes respondents did 

however not provide all information. The before and after situation should be 

consistent, for example before situation A (most recent occurrence) should 

match after situation B (next occurrence) and so on. These errors can easily be 

corrected and that was done for all incorrect cases.  

Correcting missing data in the column month, year or type is more difficult and 

sometimes impossible. The missing data was corrected where possible to 

complete one occurrence and row in the life course matrix. If that was not 

possible, the occurrence was deleted.  

 

3 | Consistency of data 

The respondents answered some questions about their personal characteristics 

in the first part of the survey. For example, respondents indicated their living 

situation: (1) independent living, (2) student living, of (3) parental living. The 

answer to this question should of course be consistent with the last and thus 

most recent, registered life course occurrence of the corresponding event in 

part three of the survey. For example, the housing event had eight types of 

occurrences which can be recoded into the three living situations. All 

transformations from answer categories into states of life course events are 

described in Appendix 2. 

To check the consistency, the personal characteristics were compared with the 

most recent occurrence of the corresponding life course event. In principle, 

there are two solutions if there was an inconsistency between the personal 

characteristics and the most recent occurrence:  

1. correct the personal characteristics according to the most recent 

occurrence (routing inconsistent) 

2. correct the most recent occurrence according to the personal 

characteristics  (sequence occurrence) 
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The first solution was chosen for all seven life course events except for the 

housing event. If the data for the housing event was corrected according to 

solution one, the routing of the survey was not correct, i.e., inconsistent. For 

example, a respondent answered the question about his living situation with the 

answer student living. According to the most recent occurrence in the housing 

event his living situation was independent. The respondent skipped the 

question about the life course event household because of his answer to the 

question living situation at the personal characteristic part of the survey (see 

Figure 5 | 6). Correcting the personal characteristics in this case will change 

the routing of the respondent and this will result in more problems, like missing 

data for other life course events. 

 

 

6 | Quality of the retrospective data 
 

The performance of the retrospective survey instrument and administration 

procedure was assessed in terms of item non-response, error checking and 

data cleaning, and by applying a binary logit model of the effect of memory on 

reporting of events.  

 

1 | Item non-response 

When interpreting item non-response in the context of retrospective surveys, 

one should realise that respondents may skip questions for a number of 

reasons: (1) by mistake, (2) refuse to answer or (3) unable to provide a correct 

answer. This may be caused by a problem in the question-answer process 

(e.g., by not understanding the question or being unable to retrieve the 

necessary information), the lack of motivation of the respondent, the topic of 

the question (e.g., sensitive issues), or badly designed surveys. Note that 

missing data that is caused by the inability to recall the relevant information is 

of concern here. The matrix questions were not mandatory (see Figure 5 | 3), 

so there exists item non-response in the data.  
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To analyse item non-response, a rate was calculated for every event type. For 

example, 602 respondents reported information about a recent change in their 

housing situation. In the matrix (Figure 5 | 3) they had to answer questions 

about month, year, before situation, after situation and type of change of that 

most recent occurrence. For example, 125 respondents left the question about 

the most recent occurrence of the bought or rented house blank for different 

reasons (e.g., forgot or could not recall etc.). This resulted in an item non-

response rate of over 20 percent indicated in the left column of Figure 5 | 7. For 

event type, every question in the matrix and for every occurrence the item non-

response rate was calculated. The rates are shown in the different graphs, 

Figure 5 | 7 - Figure 5 | 13. The categories displayed on the x-axis are related 

to different questions that were posed for each reported event. The block of 

columns associated with each question, represents the ten possible 

occurrences of a change in every event type. 

Note that the graphs show a percentage. The item non-response was 

calculated as the ratio of the number of cases with item non-response and the 

total number of cases for that change. In one extreme situation, related to the 

tenth occurrence for an event type, a single respondent caused the high 

percentage of item non-response. This respondent left blank the question about 

the type of change for the tenth occurrence of the car availability event. 

Because only one respondent reported ten occurrences for this event, the item 

non-response rate is here 100%. This extreme case is not shown in  

Figure 5 | 11. 
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Figure 5 | 7: Item non-response housing event 
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Figure 5 | 8: Item non-response household event 
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Figure 5 | 9: Item non-response of work event 
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Figure 5 | 10: Item non-response of study event 
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Figure 5 | 11: Item non-response car availability event 
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Figure 5 | 12: Item non-response PT pass event 
 

0

10

20

30

40

50

60

70

month year before after type

pe
rc

en
ta

ge
 m

is
si

ng

 
 

 
 

Figure 5 | 13: Item non-response household income event 
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All graphs indicate that in general the item non-response is low. However, the 

first graph (Figure 5 | 7) suggests some substantial variation in item non- 

response, depending on level of detail. For example, the nonresponse rate for 

the questions about housing type and owned/rented house is higher than the 

nonresponse rate for the other questions month, year, before and after 

situation, and type of change. It suggests that the ease of recalling the various 

aspects of events differs within and between different types of events and 

displays a tendency to increase over the number of events reported from most 

recent to the oldest. It seems that respondents had somewhat more problems 

recalling the specific information about some events that one would assume 

less memorable. Apart from ease of recall, perceived burden of providing the 

answers could have played a role. The housing, work and study event had 

open questions about the before and after situation instead of the drop down 

lists.  

Thus, item non-response exists in our retrospective data, but overall, the 

percentage is relatively low, and more importantly, item non-response tends to 

decrease with increased salience of the event. Based on this performance 

criterion, one can conclude that indeed one does not need to be over 

concerned about respondents’ ability and willingness to recall information 

about major life course events.  

 

2 | Error checking and cleaning 

A second aspect concerns the quality of the response. Because errors and 

inconsistencies exist in all kinds of data, the key question here is whether the 

survey displayed any abnormal amount of inconsistency. To address that 

question, several error checking possibilities were considered. In the matrix 

question, errors possibly may appear as: (1) inconsistencies between the 

before situation of the most recent change (first row) and the after situation of 

the previous change (second row), and (2) changes were not indicated in the 

right order, from recent to previous changes. Possible causes for these errors 

are given and a way to fix these errors is described.  
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Table 5 | 1: Incomplete data (year and type of change) 
 

 Housing Household Work Study Car PT Income 

Cases corrected 2 3 8 4 16 28 16 

Usable cases 4 2 5 0 1 0 0 

Unusable cases 6 0 2 0 4 12 2 

Incomplete cases 
(total) 

12 5 15 4 21 40 18 

 

Findings related to item non-response have already been reported above. This 

further analysis is aimed at checking whether the missing information could be 

corrected based on other information available in the data. Of course, such 

consistency checks not only apply for respondents with missing information, 

but for all respondents.  

Table 5 | 1 indicates the number of incomplete cases for each event based on 

the answers to the questions about year and type of change, which is the sum 

of cases that could be corrected, cases that are usable for analysis and cases 

that are unusable. Ultimately, the maximum number of unusable cases was 

only 12, which is a small percentage of the total number of cases, 710. It 

suggests that overall the quality of the surveys seemed at least satisfactory. 

 

3 | Memory and recording of events 

As mentioned before, a critical factor influencing the usefulness and reliability 

of retrospective surveys concerns the question how well respondents are able 

to retrieve events they experienced in the past from their memory. It is 

hypothesized that it will depend on the nature of the event and on time elapsed 

between moment of recollection (i.e., the moment of completing the survey) 

and the moment a particular event happened. More specifically, it is expected 

that the probability of a reported event will decrease with increasing time 

elapsed between the moment of occurrence and the moment of the survey. 

To test this hypothesis, a binary logit model was estimated to predict the 

probability of reporting an event at a certain year in the past (the queried year). 

For each respondent and each event category, each year in the past 
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constitutes an observation of whether or not the respondent reported an event 

of that category for that year. This means, for example, if a respondent could 

look 15 years back in time regarding a particular event, the data consist of 15 

observations for that respondent and event. A univariate analysis where 

elapsed time is the only explanatory variable in the model is, however, not 

adequate for testing our hypothesis. With varying elapsed time (history) also 

the age of the respondent at the queried year varies simultaneously and, 

obviously, age may have an effect on occurrence probability of an event as 

well. Therefore, to correct for an age effect, the age of the respondent at the 

moment of the queried period (age-event) was also included as an independent 

variable in the model. Finally, education and gender were included to correct 

for demographic attributes. 

Although in this way a correction was made for an ‘age-at-the-queried-period’ 

effect, it should be noted that there is another possible effect of age. That is, if 

the elapsed time is varied, while keeping age at the queried period constant, 

the current age of the respondent is simultaneously varied with the cohort 

group to which the respondent belongs. For example, if older people of today 

experienced an event less often when they were young compared to younger 

people when they were young, then the elapsed-time variable would have a 

negative effect on the probability of the event being reported. Clearly, this 

would not be a memory effect but a cohort group effect. If it were possible to 

include current age as an explanatory variable in the model as well, then this 

cohort effect could be corrected. Obviously, however, this would give 

estimation problems since a linear relationship exists between elapsed time, 

age at queried period and current age. Thus, a correction can be made for age 

at the queried period, which may confound a memory and cohort effect or a 

correction can be made for current age, which may confound a memory effect 

with an age-at-queried-period effect in the estimated coefficient for elapsed 

time. This should be kept in mind when interpreting the results.  

Table 5 | 2 represents the results of the binary logit model. The first row of 

each life course event lists the parameters estimated in the model. Each 

second row of an event shows the p-values.  
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Table 5 | 2: Results binary logit model 
 

 History Age- 
event 

Education Gender Constant Chi 
square 

Log likelihood 

Housing -0.002 -0.064 0.049 0.103 0.457 776.15 11111.610 

 0.343 0.000 0.058 0.000 0.000   

HH -0.014 -0.022 -0.017 0.003 -0.949 56.25 8725.90 

 0.000 0.000 0.583 0.933 0.000   

Work 0.003 -0.046 0.027 0.203 -0.124 301.59 8972.87 

 0.231 0.000 0.361 0.000 0.266   

Study 0.011 -0.124 0.068 0.120 0.757 148.16 3526.20 

 0.368 0.000 0.122 0.013 0.030   

Car -0.014 -0.039 0.001 0.136 -0.637 120.76 5444.28 

 0.001 0.000 0.985 0.001 0.000   

PT -0.090 -0.041 -0.057 0.184 -0.482 607.27 7219.10 

 0.000 0.000 0.099 0.000 0.000   

Income -0.010 -0.040 0.104 0.188 -0.429 161.26 6125.54 

 0.009 0.000 0.005 0.000 0.001   

 

As it appears, the history parameter for the events; household composition 

(household), changes in car possession and availability (car), possession of 

public transport pass (PT), and household income (income) are all negative 

and significantly different from zero. For the events housing (i.e., change in 

residential location), work and study the history parameter is not significantly 

different from zero.  

These results indicate that memory may have an effect in reporting of events in 

case of the household composition, income and transport mode related events, 

whereas it does not seem to play a role in case of housing, work and study 

related events. The negative effect on reporting probability seems to be largest 

for the public transport pass events (parameter = -0.090). In case of household, 

car and income the effect of history is substantially lower than the effect of age-

event. Thus, this analysis suggests that changes in public transport (PT) pass 

are not that memorable. An alternative cohort explanation would be that, over 

the years, availability and use of public transport passes have increased (in the 

Netherlands) and, with that the probability of events related to these PT passes 
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also increased. Keeping in mind the possible confounding of cohort and 

memory effects, it can be noted that nevertheless these findings are consistent 

with the assumption that many life course events are relatively easy to retrieve 

from memory, supporting the potential value of retrospective surveys. 

 

 

7 | Conclusion 
 

If one wishes to include life course or life trajectory events in any analysis or 

model of activity-travel patterns, data on such events should be collected. 

Conventional data collection approaches such as (quasi-)longitudinal personal 

travel data collection methods, including panel surveys, repeated cross 

sectional surveys, and cohort pseudo-panel surveys are typically not collected 

as part of national surveys and moreover require substantial financial 

resources to administer. Potentially, therefore, retrospective surveys, 

especially when administered through the Internet, are a good alternative. One 

would expect that the quality of data coming from a retrospective survey 

depends on the nature of the event about which information is collected and on 

the time elapsed between the occurring of the events and the time of the 

retrospective survey. 

This chapter has reported the operational decisions made with respect to the 

design and administration of an Internet-based retrospective survey, which was 

used to collect data about life course events. In addition, results of analyses 

conducted to assess the reliability and validity of the collected data are 

reported. The results showed that item non-response in general was relatively 

low, especially for those life course events that serve as markers unfolding 

one’s life. Moreover, inconsistencies in the data were not very different from 

experiences with traditional travel surveys and most problems could be 

relatively easy fixed using other pieces of information in the survey. Finally, a 

statistical analysis, albeit not capable of avoiding confounding cohort and 

memory effects, indicated that memory / cohort effects were not found for the 

more salient life course events, such as housing, work and study related 

events.  
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The data of the retrospective Internet-based survey is used as input for the 

learning of the two Bayesian Belief Networks, life trajectory and mode choice. 

The modelling framework, the constraints and the data preparation are 

described in the next chapter. The results of learned Bayesian Belief Networks 

will be reported as well.  
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6 | Learned networks  
 

 

1 | Introduction 
 

In the previous two chapters, it has been argued that Bayesian Belief Networks 

constitute a potentially relevant approach for modelling the complex direct and 

indirect relationships between one or more life course events and transport 

mode choice decisions. In addition, it has been argued that instead of detailed 

panel data, a retrospective survey may have sufficient validity and reliability to 

collect data on life course events. Based on such data, collected through the 

Internet, the results of learned Bayesian Belief Networks will be reported in this 

chapter.  

The chapter is organised into two parts. In the first part, attention is paid to the 

influence of time. This analysis serves as a primary test to examine whether 

temporal effects do play a role. The time influence, registered as time elapsed 

after an occurrence of an event, is examined using a multinomial logit model 

(MNL). The different variables used in the MNL model are described first, 

followed by a description of the results. The operationalisation of the Bayesian
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Belief Networks and their estimating results are described in the second part.  

The second part consists of five sections. First, the modelling frameworks for 

respectively a life trajectory and mode choice network are outlined. The life 

trajectory network captures the relations between the life course events, 

current states and the history of life course events, while the mode choice 

model considers the link of mode choice with life course events and the states. 

The variables and the constraints used in structure and parameter learning are 

explained given the modelling frameworks. The principles of learning are 

described in chapter four of this thesis. In the next section the data preparation 

is described. The data of the Internet-based survey had to be restructured 

before learning of the networks could take place. The learned networks for life 

trajectory and mode choice are discussed in the next sections. The last section 

summarises the most important conclusions of this chapter. 

 

 

2 | Time effects 
 

To analyse the influence of time on mode choice, a multinomial logit model was 

estimated. Three types of independent variables can be distinguished. They 

are referred to as variables X, variables D and variables Z. The independent 

variables consisted of appropriately effect-coded personal characteristics and 

availability and possession of transport modes (variables X), distances to 

different destinations (variables D), and time elapsed since a person 

experienced an event (if any) of each type distinguished (variables Z). The 

importance of using the current state (variables X) as independent variables is 

emphasized in this analysis. These variables capture the effects of a current 

state so that the parameters for time variables (Z) purely represent a time 

effect (e.g., inertia in adaptation to a new state). In sum, the variables X and D 

measure the influence of the existing state on mode choice (from S or S2  on B, 

see Figure 3 | 3), whereas the estimated parameters of Z variables represent 

the time influence, the adaptation process.  

The independent variables X (personal characteristics and possession and 

availability of transport) that are included into the choice model include gender, 
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age, education, income, number of household members, availability of driver’s 

licence, car possession, bike possession, and public transport pass 

possession. In addition to these characteristics, the distance from home to 

work, study, stores, shopping mall and sport centre are used as independent 

variables (D). The respondents estimated the distance to those different 

locations in a matrix question. The time effects (variables Z) were 

operationalised in terms of the following equation: 

)(TLnEZ ∗=  
Equation 6 | 1 

 

where E indicates whether an individual experienced a certain event. If 

someone experienced an event, the value is equal to 1, and if someone did not 

experience that event, the value equals 0.  The variable T corresponds to the 

time elapsed (in months) since the last occurrence or change. In other words, it 

corresponds to the number of months that have passed since a respondent 

experienced that specific event. The log transformation improved the 

goodness-of-fit of the model. 

The dependent variable in the multinomial logit model is transport mode choice. 

This variable has three different choice options: car, slow transport and public 

transport. The respondents provided information with respect to their current 

mode choice behaviour for five different trip purposes. In particular, they 

indicated for each purpose the frequency, travel mode, alternative travel mode, 

destination, departure time from home, arrival time at home, estimated travel 

distance from their home to the destination and estimated travel time. 

Respondents could indicate the trip frequency using their own ‘scale’ (day / 

week / month), and all frequencies were rescaled into a monthly frequency (the 

most used category) to calculate total frequency. The total frequency is 

represented by the sum of frequencies given a particular transport mode across 

different purposes. This total frequency is used as the dependent variable in 

the multinomial logit model. 

Recall that the third part of the survey provided the event-history data for this 

part of the study. For the set of seven predefined events, respondents were 

requested to indicate whether they experienced the event, and, if so, how many 

times it took place, the timing of the event (month and year), what exactly 

changed by the event (before and after situation, for example two people and 
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three people in the household) and the nature of the change that took place 

(for example adoption or birth). Based on this information, the independent 

variable Z was calculated using Equation 6 | 1.  

 

 

3 | Time effect results 
 

The multinomial logit model was estimated using LIMDEP (Econometric 

Software, 2003). Slow mode was used as the base mode for this multinomial 

logit model. The estimated MNL model includes 76 variables and 709 

observations. After 7 iterations, no further improvement in goodness-of-fit could 

be obtained. The log likelihood of the model is -188768.7 and the Rho-Square 

is 0.487. 

 

Table 6 | 1: Part worth utilities variables X and D 
 

Variables X Utility Car Utility PT 

Constant -2.3417 -2.2376 

Males 0.0588 0.0412 

Females -0.0588 -0.0412 

Age (17-24 year) 0.0491 -0.0003 

Age (25-34 years) 0.0416 0.1732 

Age (35-49 years) 0.0393 -0.1111 

Age (50-79 years) -0.1300 -0.0651 

Education (high) 0.1761 0.2969 

Education (low) -0.1761 -0.2969 

Alone, divorced, widow -0.0562 -0.7331 

Married/living together 0.0562 0.7331 

Independent housing 0.3430 -0.4578 

Student housing -0.5563 -0.7418 

Living with parents 0.2133 1.1996 
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Table 6 | 1 continued   

Household of 1 person -0.0745 0.6532 

Household of 2 persons 0.0103 -0.4198 

Household of 3 persons or more 0.0642 -0.2334 

No employed work -0.1712 -0.0111 

Part-time work 0.0173 -0.0257 

Fulltime work 0.1539 0.0368 

Income (medium) -0.0773 -0.0799 

Income (high) 0.0773 0.0799 

Driver’s licence 0.5198 -0.3426 

No driver’s licence -0.5198 0.3426 

Car in possession 1.2185 0.1277 

No car in possession -1.2185 -0.1277 

Car always available 0.7015 0.1375 

Car sometimes available -0.2603 -0.1199 

No car available -0.4412 -0.0176 

No car sharing 0.3223 -0.2568 

Car sharing with 1 person -0.1183 0.0300 

Car sharing with 2 persons or more -0.2040 0.2268 

One car in possession -0.3683 0.2328 

Two cars in possession 0.3683 -0.2328 

Owner of a bike -1.0477 0.0448 

No owner of a bike 1.0477 -0.0448 

No Public Transport (PT) pass 0.7660 -0.5798 

Student PT pass -0.1256 0.4947 

PT subscription -0.3967 1.5600 

Benefit hour pass -0.2437 -1.4749 

Variables D Utility Car Utility PT 

Distance to work 0.0170 0.0214 

Distance to education -0.0030 0.0107 

Distance to the store 0.1834 0.1041 

Distance to shopping area 0.0092 0.0011 

Distance to sport centre 0.0032 -0.0009 
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1 | Personal characteristics and distances 

Table 6 | 1 shows the estimated effects for the variables included in the model. 

The effects of the X and D variables are listed as part worth utilities for mode 

choice car and public transport (PT). Significant variables (alpha of 5%) are in 

bold and the calculated effects are in italic.  

Almost all variables are significant. Both constants, for car and public transport 

(PT), are negative, implying that, all other variables being equal, the modes car 

and public transport are less attractive than the slow transport mode (ST) after 

correcting for distance. All estimated effects are in anticipated direction.  

Table 6 | 1 shows that the utility of the car decreases very slowly with 

increasing age. Figure 6 | 1 illustrates for example the utilities for the different 

transport modes for the variable age. Above 50 years of age the utility for the 

car becomes negative relative to that of slow transport. Public transport has for 

people between 25 and 34 years old a positive utility compared with slow 

transport. This effect can be explained by the fact that Dutch students own a 

student PT pass which allows them to travel for free on PT during weekdays or 

weekends. After 34 years of age, the utility of PT decreases with increasing 

age. Males have an above average preference for both car and PT, while 

females have a below average preference for these modes.  
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Figure 6 | 1: Utilities for the variable age 
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The effects of education are also as expected in the sense that higher 

education results in a higher utility for PT compared to the other modes. Three 

housing situations are distinguished: independent and student housing and 

living with parents. A person who lives independent has a higher than average 

utility for car mode and a lower than average utility of PT. A student has a 

negative utility for the car, while someone who lives with his parent has a 

positive car utility. 

Table 6 | 1 also lists the utilities for the distance variables, almost all utilities 

are significant. A positive utility means that when distance to a destination 

(work, education, store, shopping area or sport centre) increases, the utility of 

the corresponding transport mode also increases. A negative utility indicates a 

negative influence of distance on the utility of that transport mode. With 

increasing distance to education the utility for the car decreases and for 

increasing distance to the sport centre the utility of PT decreases. These 

negative utilities can be explained by the fact that students often do not travel 

by car to school and the sport centre is often more accessible by car or slow 

transport compared to PT. With increasing distance to the store and shopping 

area the utility of the car and PT both increase. Similarly, with increasing 

distance to work the utility of car and PT also both increase. The estimated 

effects for distance are also in the anticipated direction. 

 

2 | Time influence of events  

The events considered were defined as follows: a change in residential location 

means that the respondent moves to a different residential location; a change 

in household composition means in this case an increase in the number of 

household members; a change in work location only included respondents with 

a job; a change in study location included students who started a new 

education or changed school/university; a change in car availability is an 

increase of number of cars or decrease in car users; a change in PT pass 

possession included respondents who possess a PT pass; and a change in 

household income is an increase in income. The results for the event variables 

are listed in Table 6 | 2.  
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Table 6 | 2: Part worth utilities variables Z 
 

Variable Utility Car Utility PT 

Change in residential location -0.0427 -0.0415 

Change in household 0.0331 -0.0586 

Change in work location 0.0587 0.0801 

Change in study location 0.0287 -0.0449 

Change in car availability -0.0232 0.0362 

Change in PT pass possession -0.0454 0.0962 

Change in household income -0.1230 -0.1129 

 

The estimated effects are all significant. Figure 6 | 2 - Figure 6 | 8 display the 

effects of the different events. Slow Transport (ST) is the base in this logit 

model and its utility is always zero. For interpreting this graph, it is important to 

remember that a utility-line below the X-axis means that the more time that has 

elapsed since the most recent experience of event i, the lower the utility 

compared to the utility of ST. Similarly, when the utility-line is above the X-axis, 

an increase in elapsed time results in an increasing utility compared to that of 

ST. The result of experiencing the first life course event, change in residential 

location, is a new residence in a new environment. This change affects 

behaviour of the person involved. Figure 6 | 2 represents the time influence of 

this change. 
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Figure 6 | 2: Change in residential location 
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Figure 6 | 3: Change in household composition 
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Figure 6 | 4: Change in work location 
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Figure 6 | 5: Change in study location 
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Figure 6 | 6: Change in car availability 
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Figure 6 | 7: Change in public transport pass 
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Figure 6 | 8: Change in household income 
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The transport modes car and public transport (PT) both have a decreasing 

utility compared to slow transport (ST). A possible explanation for this effect 

may be found in the adaptation process: first a person takes the car to every 

destination and after a while he/she slowly learns about the new environment 

and probably knows where everything is in the direct environment. After that 

learning process he/she will adapt his or her behaviour to the new 

circumstances and use slow transport more frequently.  

An increase in the number of household members results in a larger 

household. Again, the change in state itself is represented by the X variables 

(household of one person, household of two persons and household of three or 

more persons). Table 6 | 1 shows that an increase in household size results in 

an increase of utility for the car and a decrease (from one to two persons) or 

increase (from two to three or more persons) of utility for PT. The adaptation 

process for this change is shown in Figure 6 | 3. The utility of the car increases 

and the utility of PT decreases, when time since the experience of the event 

increases. This suggests that households only slowly change their behaviour 

towards the new equilibrium whereby the car is used more frequently compared 

to ST or PT.  

The time effect of a change in work locations is illustrated in Figure 6 | 4. The 

utility of the car and PT increases when the time after experiencing a change in 

work location increases. Again, this suggests that people tend to stick to their 

(old) behaviour and only slowly adapt their behaviour to the new 

circumstances.  

When a change in study location occurred longer ago the utility of the car 

increases and the utility of PT decreases, as represented by Figure 6 | 5. A 

possible explanation is as follows: a student in the Netherlands receives a 

student PT pass to travel for free. After starting an educational program or 

changing university, people may at first overreact to the change resulting in 

very frequent use of the PT. After a while they adapt and partly switch back to 

the use of the car.  

Figure 6 | 6 display the results of a change in car availability. It indicates that 

the utility-curve for the car is below the X-axis, meaning that an increase in 

time after experiencing a change in car availability results in a decreasing utility 

compared to that of ST. The utility-curve for PT is above the X-axis, which 
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means an increasing utility with time compared to ST. In this case a change in 

car availability means either an increase in the number of cars or a decrease in 

the number of car users. Again, the effect of the change in state (number of 

cars or car users) on transport mode choice behaviour is given by the 

parameters of the X variables in Table 6 | 1. The graph of Figure 6 | 6 

represents the time effect of this change. The negative effect of time after the 

event on car use may indicate that people overreact to the increase in car 

availability and, then, partly return back to slow mode as time passes.  

The adaptation process after a change in PT pass, in this case buying or 

receiving a Public Transport pass, is revealed in Figure 6 | 7. Time after the 

event has a positive effect on PT and a negative effect on the car compared to 

ST. The effect of the change in state (from no PT pass to student PT pass/PT 

subscription/benefit hour pass) on transport mode choice behaviour is given by 

the parameters of these X variables in Table 6 | 1. People possessing a PT 

pass use the PT more frequently and the car less frequently compared to ST. 

Thus, the time effect suggests that people only slowly adapt their behaviour to 

the new state.  

Figure 6 | 8 illustrates the adaptation process after experiencing an increase in 

household income. Time has a negative effect on both car and PT use. This 

suggests that people respond with an immediate big increase in car or PT use 

to the state change and after a while partly return to slow transport.  

To summarise, all figures show significant temporal effects for the life course 

events on mode choice, after controlling for the other variables. This analysis 

suggests that there are two different ways in which people may react to a 

change (new situation): first people can overreact and after a while they 

(partially) return to their old behaviour and, second, the adaptation takes time 

and people slowly react on the change. All seven life course events had 

significant temporal effects. Moreover, the effects are interpretable as 

particular patterns of adaptation provided, of course, that all co-variants were 

controlled for by the X variables and possible effects of aging are negligible 

within the time spans considered. This provides evidence for the hypothesis 

that transport mode choice behaviour is dynamic and that these dynamics are 

associated with life course events, at least in a statistical sense.  
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4 | Modelling framework life trajectory 
 

As discussed in previous chapters, choice behaviour is assumed to be context 

dependent. A change in the living conditions of a person, like moving to 

another house, city or country, will result in a new context which could impact 

the transport mode choice for all/certain trips. A life course event changes a 

certain personal situation, i.e., state. Besides the assumption that a life course 

event changes a person or household-level state, it is also assumed that 

events may influence each other. When an individual starts with a new job in a 

different location he/she might consider moving to that new location sooner or 

later. In that case the occurrence of a change in work location could trigger a 

change in residential location. Another example of influences between life 

course events is a possible effect of a change in work, for example promotion 

on income. The modelling framework described in the third chapter is 

transformed into two formal Bayesian Belief Network models for network 

learning, illustrated in Figure 6 | 9 and Figure 6 | 10. The first network models 

life trajectories, while the second network is concerned with the impact of these 

events on transport mode choice. The reason for estimating two networks 

rather than a single network including all nodes is that different sets of 

observations were available for life trajectory events and mode choice. Mode 

choice is only available for the base year (2004, the year of data collection). 

Mode choice was not collected in retrospect, because the reliability of such 

data is doubted, especially when linked to the events.  

Figure 6 | 9 shows that two types of variables are included in the life trajectory 

network: (1) personal characteristics, such as gender and age, and (2) 

variables related to life course events (set of nodes within the rectangles). The 

variable of interest is occurrence event. A year is chosen as unit for both 

networks, this refers to one year of a persons life trajectory. Bayesian Belief 

Networks have discrete variables, for this reason the time in the life trajectory 

had to be classified. Too much detail, for example a unit of one month, results 

into a few observations within each unit. A unit of more than one year results in 

a lot of observations within one unit. This will not improve the sensitivity of the 

network. Besides these statistical arguments, the item-nonresponse of year, 

reported in the Internet-based survey, is lower than the reported month (see 
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chapter 5 | 6 | 1). This indicates that the respondents can better recall the year 

in which the event occurred than the month. The month is probably too 

detailed, especially for occurrence that respondents experienced longer ago.  

The other variables are referred to as external variables. The life course events 

are defined with respect to a certain moment in time, t, a certain person and 

type of event (using some classification of events) for which the model intends 

to predict whether or not a change occurred as a particular instance of an 

event of that type. The node occurrence event defines whether there was a 

change at time t for that certain event and what kind of change it was. The 

existing state before time t, e.g., residential situation in case of a housing 

event, is represented by the node labelled state. Time ago (A) and time ago (B) 

define the time elapsed since the last occurrence of certain types of changes A 

and B, respectively before t, such as for an example a decrease (A) or increase 

(B) of the number of family members in a household.  

 

 

 
Figure 6 | 9: Basic structure of the network for life trajectories 
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Of course, the general model, where needed, can be extended with more 

classes, C, D, etc. The history node indicates for how many years ago 

information is available about that event for the person considered. This 

variable defines the range of the time ago variables in the sense that the time 

ago (from t) of the most recent event cannot be longer than the history. If no 

event occurred in this time frame then the state of time ago is defined as 

‘never’ (meaning not in the time frame defined by history). Figure 6 | 9 

illustrates two events, H and W. More events can be included and structured in 

the same way. The dashed arrows represent possible links that could emerge 

from the learning algorithm (structure learning). Note that this includes cross-

relationships between events as well.  

The purpose of the network is to predict for a person if an event will occur at a 

certain time t (node occurrence event) based on the other nodes in the 

Bayesian Belief Network. It is assumed that both the existing state before time t 

(state) and the last occurrence of an event (time ago) may influence the 

probability of the occurrence of an event on time t. If there is a (positive) effect 

of time, the probability of the occurrence of an event at time t increases. On the 

other hand a person can also remain in a certain state and a change becomes 

less likely, due to a stronger commitment to this situation (Elder, 2000).  

Constraints were included in structure learning to prevent that directions of 

links are back-in-time (since links represent causal relationships they, logically, 

cannot run back in time). Furthermore, the following constraints are defined on 

the basis of a distinction between external variables (those that are observed 

when a prediction is to be generated) and target variables (those that are to be 

predicted). In this case, the target variables are the occurrence event nodes 

and the other nodes are the external variables. All external variables can only 

have a link with target variables occurrence event within an event or across an 

event. Links between the external variables are not allowed. The external 

variables age and gender can only have outgoing links to the target variables. 

This is done to prevent the creation of large underlying conditional probability 

tables, while the direction of links have no implications for predictions. The 

possible links, between external variables and the variable occurrence event, 

are represented in Figure 6 | 9 with dashed lines.  
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There are six possibilities for these links (numbers correspond with numbers in 

Figure 6 | 9 and the subscripts H, W refer to event H and event W):  

(1) age / gender  occurrence event 

(2) time agoH  occurrence eventH 

(3) time agoH  occurrence eventW 

(4) stateH  occurrence eventH 

(5) stateH  occurrence eventW 

(6) occurrence eventH  occurrence eventW 

 

Furthermore, links that represent logical relationships are enforced. The logical 

links are represented as black lines in Figure 6 | 9. The logical relationships 

include the following: first, since history determines the range of the time ago 

variables, there is a logical relationship between history and each of the latter 

variables. Second, there is a logical relationship between history and 

occurrence of the event. If an event cannot possibly occur for a given person 

(for reasons described in Chapter 5), then the node history is undefined for that 

person and that specific event. ‘Not applicable’ is coded as a separate class 

(i.e., state) of the history node. This means that there exists a logical 

relationship in the sense that an event cannot occur if history is undefined. For 

each event type, the above variables and logical relationships hold.  

The nodes are described in general terms in the schematic representation of 

the network (Figure 6 | 9). The learned Bayesian Belief Network included all 

seven life course events: change in residential location (in short, housing), 

change in household composition (household), change in work location (work), 

change in study location (study), change in car possession and availability (car 

availability), change in availability of public transport pass (PT pass), and 

change in household income (household income).  
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5 | Modelling framework mode choice 
 

The second network is an extension of the first network, the variable mode 

choice is included in this network (Figure 6 | 10). As mentioned before, choice 

behaviour is context-dependent, this holds for mode choice behaviour as well. 

In this project, it is assumed that the context is represented by a person’s life 

trajectory. For this second network the following constraints are imposed. The 

learned links in the first network are given and used as input for the structure 

learning of the second network. The variable mode choice is the variable of 

interest here and it can only have incoming links. The remaining variables are 

external variables. The node mode choice can have links with all external 

variables, except the history nodes. The possible links, between external 

variables and the variable mode choice, are represented in Figure 6 | 10 with 

dashed lines.  

 

 

Figure 6 | 10: Basic structure of the network for mode choice 
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There are 4 possibilities (numbers correspond with numbers in Figure 6 | 10):  

(1) age / gender  mode choice 

(2) time ago  mode choice 

(3) state  mode choice 

(4) occurrence event  mode choice 

 

 

6 | Data preparation  
 

This section is inserted to explain the preparation of the data before it can be 

used for modelling purposes. Unfortunately, the data from the Internet-based 

survey cannot directly be used as input for the programs used for structure 

learning (HUGIN Expert, 1995). Sometimes the data had to be restructured in a 

different way compared to the data output of the Internet-based survey. The 

different steps in restructuring the data are explained given Figure 6 | 11. This 
figure illustrates the sequence of the various programs that were used. The 

input and output files will be briefly discussed. The most important part of the 

data preparation is restructuring the data into a life trajectory.  

 

Figure 6 | 11: Sequence of the used programs 
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First, the cleaned data is classified into new variables. The classification of 

variables is described in Appendix 2. The output file consists of the following 

variables: age, gender, mode choice, life event (year, type, before and after), 

current state, eventmax, max.  

The second step is building a life trajectory using FORTRAN (Silverfrost, 1999). 

The output consists of the following variables: age, gender, mode choice (only 

for 2004), occurrence events, state, time ago, and history. Using these 

variables, transitions probabilities for one year were derived and served as 

input for the BBN learning. There are seven input- and output files, one for 

every life course event. 

The seven output files were merged into one file in step three. Besides merging 

the files the cases with missing values were deleted from the file. Sometimes 

there was no information available in a certain year causing missing data in the 

FORTRAN output file.  

The fourth step is learning the Bayesian Belief Network (BBN) in HUGIN Expert 

(1995). This process of learning a network is described in the fourth chapter of 

this thesis. The input for BBN learning is a file with the variables age, gender, 

mode choice (only for the second network), occurrence events, state, time ago, 

history and a file with constraints. The constraints are described in the fourth 

and fifth section of the current chapter. 

The learned Bayesian Belief Network is compiled in another program, called 

Netica (Norsys Software Corp, 1997). Netica is more user-friendly to analyse 

the network and to use the network for simulations. All coded nodes names and 

states are changed into text, which is self explanatory. 

The last step in the sequence is the Life Walker program, which is built in Java. 

Two subprograms, basic and predict, are used for testing the network and 

simulation purposes. The ‘basic’ program enters the values of the input file as 

hard evidence into the network. No hard evidence is entered into the network 

for the variables that are predicted with this program (occurrence event nodes). 

The output of the ‘basic’ program is the probability distribution for the 

occurrence event nodes for any given event, person and year.  

The ‘predict’ program can be used to build an individual life trajectory. The 

input is a file with values for all variables in a base year regarding each person 
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of a simulated population, and the values are entered into the network as hard 

evidence. The probabilities of the occurrence event nodes are recalculated, 

and a random number is produced (Monte Carlo simulation) which defines 

which state (in general: no change; change type A; change type B; change type 

C) is chosen for the node occurrence event. Of course, the state with the 

largest probability has the highest chance to be chosen. The occurrence nodes 

can also influence each other directly or indirectly. For that reason, the 

decision sequence of these occurrence nodes is also entered. Before the 

probabilities for the next occurrence event node in the sequence are predicted 

the probabilities are automatically updated given this new hard evidence. In 

this case hard evidence is referred to as selected state of previous occurrence 

event node in the sequence. The sequence is predefined, as follows. The node 

with only outgoing arrows is the first one in the sequence. The input for the 

next year is based on the results of the occurrence node in the previous year. 

For instance, if someone lives in a student room (state) in 2010 and the 

program predicts an occurrence in that same year, for example independent 

living, the state in 2011 will be independent living. So the input for the next 

year is only altered if an occurrence was predicted. Otherwise, only the values 

for the history and time ago nodes are raised with one year. The number of 

years of life trajectory simulation is a variable in the input file. 

Next, the different variables used in the structure learning step are explained. 

The output file in the first step and the input file in the second step contain the 

following variables: age, gender, mode choice, life event (year, type, before 

and after), current state, eventmax, max. Age is a simple translation from year 

of birth. Gender needs no additional preparation. The remainder of the 

variables need some preparation or classification from the survey data to the 

required data for the BBN. The steps will be described later. 

The mode choice node in the Bayesian Belief Network has three states; car, 

slow transport and public transport. In the survey the respondents provided 

information with respect to their current mode choice behaviour for five 

different trip purposes. In particular, they indicated frequency, travel mode, 

alternative travel mode, destination, departure time at home, arrival time at 

home, estimated travel distance from their home to the destination and the 

estimated travel time. Respondents could indicate the frequency using their 

own ‘scale’ (day / week / month). The frequencies were rescaled into monthly 
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frequency, which was the most frequent used category. The six mode options 

in the survey (see Appendix 1B) were classified into the three options, car 

driver and car passenger are recoded into car, bike and walking are recoded 

into slow transport and bus and train are recoded into public transport. The 

mode option with the highest frequencies, across the different trips purposes, is 

set as the overall mode choice.  

The data of the life events is recoded into fewer classes. The seven events 

can be divided into two groups with the same matrix structure in the Internet-

based survey. The first group is the one with the housing, work and study 

event, the other events, household, car availability, PT pass and household 

income are in the second group. In the first group, only the year and type of 

change are used. Appendix 2 represents the classifications of type of change. 

In the second group, the before and after situation are also used besides year 

and type of change. The before and after situation are recoded into new 

classes (see Appendix 2). There are three (new) types of changes in this 

group: decrease, increase and same. This new classification for type of 

changes is based on the transition of the before situation to the after situation. 

For example, if a child is born, the number of household members before is two 

persons and the number of household members after the occurrence is three. 

This means an increase of the number household members. A disadvantage of 

classification is that the original information reported in the Internet-based 

survey will be lost. For example the actual change, like a death in the 

household, a child moving out etc. are both coded as a decrease. 

As explained in section five of the previous chapter, the personal 

characteristics should be consistent with most recent occurrence of the 

corresponding life course event. After cleaning the data no more 

inconsistencies existed. So it does not matter if the current state is based on 

the personal characteristics or the most recent occurrence in the event matrix, 

as in the end the result is the same. 

In Fortran (Silverfrost, 1999) two variables are used: eventmax and max. 

Eventmax defines the number of years back in time with information available 

about that specific occurrence of the corresponding event. Max corresponds 

with the maximum of all eventmaxs. This variable is an extra variable to make 
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sure that a person’s life trajectory for one event has the same number of years 

as another life trajectory based on a different event for the same person.  

The variable eventmax corresponds with the history node in the BBN and 

defines for how many years in the past there is information available (the recall 

period). The calculation of the variable eventmax is described here. First, the 

maximum recall period for one event is calculated, based on the year of the 

last occurrence. For example, if a respondent registered seven changes and 

the last one (oldest occurrence) was in 1985, the maximum is 19 years (given 

the data collection in 2004). The recall period for which the respondent should 

indicate changes/occurrences is not always the same (due to routing and 

questions in the Internet-based survey). This recall period is defined by the last 

part of the question “how many changes occurred, since…”. There were five 

different options: since you left the parental house (Tx), since you live on your 

own (Tz), since you left school (Ty), since you got your driver’s licence (Ti), 

and since your 16th birthday (T16). The age at which someone got his / her 

driver’s licence (Ti) and turned 16 years old (T16) can be calculated given the 

personal characteristics (driver’s licence and year of birth). There is no age 

marker for the first three periods (Tx, Tz and Ty). If the respondent registered 

occurrences for all seven events there is no problem. Only if a respondent 

indicated that no changes occurred, then the period is sometimes undefined, 

depending on the last part of the question “since…”. To solve this problem 

events with an undefined recall period will be related to events with the same 

last part of the question (since…) with a defined recall period. This will be 

explained according to the routing of the survey (Chapter 5 | 4 | 4). There were 

eight possible routings through the survey, depending on the combination of 

the answers to three personal characteristics questions: living situation, age, 

and year of driver’s licence). The first routing will be described here, while the 

other possible routings are illustrated in Appendix 4. A respondent who 

followed routing one has the following characteristics: living situation= 

independent housing, age= > 35 years old, and driver’s licence= yes. Figure 6 | 

12 illustrates the different time lines and recall periods. If a line is blank (white) 

this means that the respondent skipped that specific event question due to the 

predefined routing. The T in the figure illustrates the moment of the data 

collection (2004) and the other indicators (Tx, Ty, Tz and T16) correspond with 

the last part of the question “how many changes occurred, since…”. 
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Figure 6 | 12: Recall periods for routing 1  
 

Tx = leave parental house  Ty = leave school 

Tz = live on your own   Ti = driver’s licence 

T16 = since 16th birthday 
 

In Figure 6 | 12 the recall period for the housing and the household event is the 

same (Tx). In case the respondent did not experience and thus did not report 

household events, the eventmax for the household event can be deduced from 

the eventmax of the housing event. If all related events were left blank and the 

recall period could not be deduced from other corresponding events, the history 

was calculated according to a ‘general’ age. This means that a mean age value 

was calculated based on all respondents. The following mean age value was 

calculated for the different events: Housing from age 21, Household from age 

21, Work from age 23, Car from age 21 and Household Income from age 21. 

This was only used in a few cases (maximum of ten). 

In the second step, a life trajectory was built for every respondent. The max 

value defines the number of rows, i.e. the number of years for the life trajectory 

of every respondent. The variables / nodes used in the BBN are literally 

configured in this second step. For every year in the life trajectory the following 

variables are calculated: age, gender, history, occurrence event, state, and 

time ago for every event type. The building of the life trajectory always starts 

with the year 2004 (moment of the data collection) and it ends when the max 

number of years equals zero. Table 6 | 3 illustrates an example of two life 

trajectory for the housing event. The variable gender is constant during the life 

trajectory, therefore it is not listed in this table. In this case there are three 

types of occurrences: independent housing (1), student housing (2) and 

parental housing (3). These three types correspond respectively with time ago 

A, B, and C. The rest of the variables are self explanatory. 
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Table 6 | 3: Example of database structure for life trajectory housing event 
 

Person Max Age Year History Occur-
rence 

State Time 
ago A 

Time 
ago B 

Time 
ago C 

1 15 32 2004 12 0 1 3 8 0 

1 14 31 2003 11 0 1 2 7 0 

1 13 30 2002 10 0 1 1 6 0 

1 12 29 2001 9 1 2 0 5 0 

1 11 28 2000 8 0 2 0 4 0 

1 10 27 1999 7 0 2 0 3 0 

1 9 26 1998 6 0 2 0 2 0 

1 8 25 1997 5 0 2 0 1 0 

1 7 24 1996 4 2 ? 0 0 0 

1 6 23 1995 3 0 ? 0 0 0 

1 5 22 1994 2 0 ? 0 0 0 

1 4 21 1993 1 0 ? 0 0 0 

1 3 20 1992 0 0 ? 0 0 0 

1 2 19 1991 -1 0 ? 0 0 0 

1 1 18 1990 -2 0 ? 0 0 0 

1 0 17 1989 -3 0 ? 0 0 0 

2 20 42 2004 20 0 1 10 19 17 

2 19 41 2003 19 0 1 9 18 16 

2 18 40 2002 18 0 1 8 17 15 

2 17 39 2001 17 0 1 7 16 14 

2 16 38 2000 16 0 1 6 15 13 

2 15 37 1999 15 0 1 5 14 12 

2 14 36 1998 14 0 1 4 13 11 

2 13 35 1997 13 0 1 3 12 10 

2 12 34 1996 12 0 1 2 11 9 

2 11 33 1995 11 0 1 1 10 8 

2 10 32 1994 10 1 1 4 9 7 

2 9 31 1993 9 0 1 3 8 6 

2 8 30 1992 8 0 1 2 7 5 

2 7 29 1991 7 0 1 1 6 4 

2 6 28 1990 6 1 3 0 5 3 

2 5 27 1989 5 0 3 0 4 2 

2 4 26 1988 4 0 3 0 3 1 

2 3 25 1987 3 3 2 0 2 0 

2 2 24 1986 2 0 2 0 1 0 

2 1 23 1985 1 2 ? 0 0 0 

2 0 22 1984 0 0 ? 0 0 0 
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Age and history of course decrease every year. In some cases the number of 

years of the history variable is not equal to the number of years in the max 

variable. In this case, the max variable is defined by the history value of 

another related event of this person, as explained before. In this case the value 

of history becomes negative at the end of the life trajectory. For example, in 

Table 6 | 3 the value of the history variable becomes negative in the year 1991 

for the first person. The values of the max and history variable for the second 

person are the same.  

When an occurrence took place in a certain year according to the event matrix, 

the type of change is registered in the column occurrence event with the same 

classification (1, 2 and 3) as described for the time ago A, B and C variables. 

Sometimes two occurrences of one event took place in the same year. In this 

case only the most recent occurrence of that event is registered in the life 

trajectory. The state in the first year (2004) is based on the current state in the 

input file. If an occurrence took place in a certain year, the state variable is 

changed according to the occurrence. For example, in Table 6 | 3 the first 

person experienced a change in housing in the year 2001. He started to live on 

his own, this is listed in the table as independent living which corresponds with 

1. The state in this same year is based on the previous occurrence, if there is 

any. For example, the previous occurrence was in 1996, for the first 

respondent, when the respondent moved to a student room (occurrence is 2). 

The state in the years from 1996 to 2001 was therefore student housing, which 

correspond with 2 in the state variable. Before 1996 no occurrence happened, 

so the state up to 1996 is unknown. For the event in the first group (housing, 

work and study event) the state is always based on the previous occurrence. 

While for the other events, household, car availability, PT pass and household 

income, the state is based on the before situation of the same occurrence. In 

this case the state variable is never unknown or missing. 
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7 | Learned life trajectory network 
 

As described before, in total 710 respondents completed the Internet-based 

survey. 701 surveys were used to build life trajectories for these respondents. 

Some respondents have a life trajectory of three years, while others have a life 

trajectory of 20 years, and everything in between. In total, the life trajectories 

resulted in 7649 cases, where the unit of observation is a year and a person. 

The learning of the network is based on these cases. 

Hugin was used to build and estimate the Bayesian Belief Network for the life 

trajectory, using the input data and constraints described earlier in the fourth 

section of this chapter. The level of significance was set to the standard value 

of 0.01 for the learning process. Figure 6 | 13 illustrates the learned network 

with 42 nodes and 75 learned links. Note that 42 links were predefined as 

constraints within an event: 19 links history node  the time ago A/B/C nodes, 

19 links time ago A / B / C nodes  state node, and 4 links history node  

occurrence event node. Besides the predefined links 33 links were learned. 

These learned links can be divided into five different categories:  

(1) links within an event : (time agoH  occurrence eventH and stateH  

occurrence eventH) 

(2) links across events (not including links between the event nodes): (time 

agoH  occurrence eventW and stateH  occurrence eventW) 

(3) links between the event nodes: occurrence eventH  occurrence eventW 

(4) links with the personal characteristics nodes: (age / gender  occurrence 

event) 

(5) links between the personal characteristics nodes 

H and W refer to event H and event W. 
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Figure 6 | 13: Learned life trajectory network 
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The 33 learned links were distributed across these five categories, as follows: 

15 links were learned within an event, 5 links across events, 8 links between 

the event nodes, 4 links with the variable age, and 1 link was learned between 

the personal characteristics.  

A link between time ago or state node and occurrence event node (category 1) 

means that there is a direct impact of a time ago or state variable on an 

occurrence event. For example, this may describe a higher probability for a 

housing occurrence (independent living) when a last occurrence (independent 

living) was more than three years ago. The absence of a link does not 

necessarily mean that there is no relation or influence. There can also be an 

indirect relation between nodes. For example, in the chain time ago  State  

occurrence event, the state node is the intermediate node and there exists an 

indirect relation between the time ago node and the occurrence event node via 

the State node. Almost all state nodes have a link with the event node (within 

an event), except housing and study. This means that there is no direct link 

between the previous state and the occurrence of an event for the housing and 

study event. Most time ago nodes show a direct link with the occurrence event 

nodes. In total 10 links were learned of the 19 possible links. 

Some state or time ago nodes of one event have a direct link with another 

Occurrence event node (Category 2). These links indicate that different events 

are also related. The learned network included the following links: household 

state is linked to occurrence event nodes of the housing and household income 

events. Time ago of work event (employed) has a direct link with the 

occurrence event nodes of housing and household event.  

The links between occurrence event nodes (Category 3) indicate that the 

occurrence of one event influences the occurrence of another event. This 

relation should be investigated in more detail, because the absence of an 

occurrence (no change) is also a state of the occurrence event node. This 

means that the relation can also mean that the absence of an occurrence of 

one event can influence an occurrence or the absence of an occurrence of 

another event. The direction of the arc is not that important, as the child node 

can also influence the probabilities of the parent node. The following eight 

relations are learned in the network: 1 housing event – household event; 2 

housing event – work event; 3 household event – car availability event; 4 
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household event – household Income event; 5 work event – public transport 

pass event; 6 work event – household income event; 7 study event – public 

transport pass event, and 8 car availability event – household income event. All 

relations between the occurrence event nodes seem logical.  

As for category 4, the node age is linked to four occurrence event nodes, 

namely: housing event, household event, work event and household income 

event. This may mean that a specific event occurs at a specific age, for 

example, student housing before the age of 25 years old. All relations between 

the node age and the occurrence events nodes should be investigated further 

to describe the effect of age on the occurrence of an event. 

Between the external variables (Category 5) there is a link between Age and 

Gender. This does not mean that gender influences age or the other way 

around, but rather it describes the association of these variables in the sample. 

 

 

8 | Learned mode choice network 
 

This second network examines if and how life trajectory events impact on 

transport mode choice. Life trajectory decisions, as discussed in the previous 

section, include socio-demographic events, long-term decisions such as 

residential and job choice and resource decisions, such as car purchasing 

behaviour, that are all assumed to influence transport mode choice decisions. 

In order to examine the impact of these life trajectory decisions, a network is 

derived that includes transport mode choice as a node in the network. This 

second network is based on 701 cases. As explained before, in this research 

project, there is only one observation per respondent on mode choice. The 

respondents only reported about their mode choice in the year of the survey, 

2004. 

Figure 6 | 14 illustrates the learned mode choice network with 43 nodes and 79 

learned links. 75 links were already learned in the first network and 4 extra 

links were learned with the node mode choice.  
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Figure 6 | 14:  Learned mode choice network 
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All 4 links originate in state nodes: housing state, car availability state, public 

transport pass state and household income state. This means that the current 

state (of these events) is related to mode choice. It seems logical that car 

availability and public transport state relate to the choice set which has an 

impact on mode choice. The relation between housing state, household income 

state and mode choice is also explainable. 

In order to use more data, all CPTs of the life trajectory network were copied 

into this network, except of course the CPT of mode choice which does not 

exist in the first network. The links with the variable/node mode choice are 

learned and it is assumed that these relations are the same in other years. 

 

 

9 | Conclusion 
 

This study seeks to apply Bayesian Belief Networks in estimating direct and 

indirect effects of life course events on transport mode choice. However, in 

order to test whether time has an effect, first a simple multinomial logit model 

was estimated. The results support the contention that a certain time influence 

exists. However, such models can only represent direct effects of a set of 

predictor variables on a target variable and, hence, are too restricted for the 

model development purpose of this thesis. To reveal direct and indirect 

relationships at the same time, Bayesian networks were learned from data.  

Time is not modelled continuously, like in hazard models. A year is chosen as 

unit for these models, this is indicated with one year of a persons life trajectory. 

The respondents could better recall the year in which the event occurred than 

the month. The sequence of two or more events can not be determined within 

one year with these models. As mentioned before individuals can react or 

anticipate to changes. Time ordering does not necessarily reflect causal 

ordering. 

Two networks were estimated: the first network can be used to simulate a 

person’s life trajectory and the second network can be used to predict mode 

choice for an individual at a certain time given his / her life trajectory. Both 
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network models were successfully learned from the data and the learned links 

could be explained. It is important to emphasize that certain logical 

relationships had to be inserted as constraints in the modelling approach. 

These constraints are enforced and therefore the nature and significance of 

these links are not determined by the value of the relevant association 

measures. 
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7 | Validation  
 

 

1 | Introduction 
 

The previous chapter has reported both learned Bayesian Belief Networks and 

described the learned links. In this chapter, the goodness-of-fit of the learned 

Bayesian Belief Networks is discussed. A relatively satisfactory goodness-of-fit 

does not necessarily mean that the models are capable of representing a 

complete life trajectory and most importantly the effects of life trajectories on 

transport mode. Further validation along these lines is thus required. 

This chapter describes the results of such validation tests. More specifically, 

the predicted life trajectories and mode choices are compared with the 

observed life trajectories and mode choice as stated in the Internet-based 

survey. The validation tests for the life trajectory model are based on the 

following set of criteria; number of occurrences (in short ‘count’), interval times 

between occurrences of events (in short ‘interval time’), simultaneous 

occurrences of events (in short ‘synchronic events’), and sequence of 

occurrences of events (in short ‘sequence’). These criteria correspond more or 

less with the three dimensions Feijten (2005) distinguished. Interval times and
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synchronic events refer to timing and duration of events. Sequence is related to 

the order of events. For the mode choice model the modal split (car, public 

transport and slow transport) is compared in the year 2004. 

The chapter is organised as follows. First, the necessary input for a simulation 

is explained. In the next section the validation results of the life trajectory 

network are described. First, the log likelihood for this network is calculated. 

Next, an example life trajectory is given which is used for the other validation 

tests. This is followed by a discussion of the log likelihood of the mode choice 

network and the comparison of the modal split. The last section contains the 

conclusions and summarises the most important results.  

 

 

2 | Input simulation 
 

The Life Walker program, which was described briefly in Chapter 6 | 6, has 

been developed to simulate the trajectories. Figure 7 | 1 illustrates the 

simulation sequence. The learned Bayesian Belief Network is used to simulate 

transitions in a particular year. The input for the next year is based on these 

simulation results of the occurrence event nodes in the current year. Thus, the 

input for the next year is only altered if an occurrence was predicted. In that 

case the state of the corresponding event is updated according to the predicted 

occurrence. For example, if an increase of household members (occurrence 

event) is predicted in 2000, the number of household members (state event) in 

the year 2000 (before the occurrence) is increased for the year 2001.  

Otherwise, if no occurrence is predicted in the current year, only the values for 

the history and time ago nodes are raised by one year. The values of the 

history nodes are of course raised by one year regardless of the outcome of 

the predicted occurrences. If an occurrence is predicted in 2000, the 

corresponding time ago node is set to one year for the following year (2001).  
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Figure 7 | 1: Subprogram ‘predict’ 

 

The input of a simulation consists of the input of all variables/nodes in the 

network except the nodes that will be predicted during the simulation process. 

Occurrence event nodes will not be used as input when simulating a life 

trajectory. Because a life trajectory consists of several years, the simulation 

has to run for a number of years.  

The occurrence of an event in year t depends on the predicted probabilities for 

that event given all variables/nodes in the network. Monte Carlo simulation is 

used to sample a specific state for the occurrence event node. Only one state 

of an event can be chosen in one year. Of course, there could be more than 

one occurrence predicted in one year for different events (indicated earlier with 

synchronism). For example, in one year a change in household and a change 

in housing can be predicted. A year is chosen as time measurement, within that 

year there is no order between occurrences.  

Because the process is probabilistic, different simulation runs lead to different 

results. For validation purposes, five simulations were run. The input for every 

simulation run is the same: a set of 700 cases. Each case corresponds with 

one respondent in the sample. The values for every node in the life trajectory 

model, except the occurrence event nodes, are listed in the input file: age, 

gender, history, time ago and state variables. The number of years for the life 

trajectory simulation is a variable in the input file. All life trajectories are 

simulated until the year 2004. For example, for one person this results in a life 

trajectory of 18 years, while for another respondent the life trajectory may 

consist of only five years. In every simulation run the same number of cases is 

generated. The output file consists of 7648 cases, where one case corresponds 

with one year of a person’s life trajectory.  

 

Input 
year t 

Predict 
Program 

Output  
year t 

Input  
year t +1 

Predict 
Program 

Output   
year t+1 
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3 | Validation life trajectory network 
 

In this section different validation test are described. The total sample (i.e. all 

life trajectories from the 700 respondents) is used for structure and parameter 

learning of both networks. There is no hold-out sample used for validation 

purposes. The goal of this section is to illustrate a method of validation, in this 

case different tests for validation of the life trajectory network, and not to 

describe the definitive validation of the network. In this section, first the log 

likelihood is calculated for three models: null-model, overall model and 

prediction model. Next, an illustration is given of an example life trajectory, 

which is used for the explanation of the four validation tests (count, interval 

time, synchronism and sequence).  

 

1 | Goodness-of-fit 

To assess the goodness-of-fit of the learned network regarding the prediction 

of events, the log likelihood is calculated for each event separately, based on a 

prediction sequence. The sequence starts with an event with no incoming links 

from other event nodes and continues with events which only have links from 

the event nodes which precede in the sequence. If this rule is not applied the 

influence of occurrence event nodes cannot be taken into account. The 

occurrence event nodes of car availability and public transport pass event have 

no incoming links of the other occurrence event nodes (see Figure 6 | 13). 

These two events have to come first in the sequence, while the order of these 

events is interchangeable. Second in line are the occurrence nodes household 

income and study with only one incoming link from respectively the car 

availability event and the PT pass event. The household and work events are 

next. They have respectively incoming links from the car availability & 

household income events and the public transport pass & household income 

events. Last in the sequence is the occurrence node housing, which has 

incoming links of the household and work events. The chosen sequence is the 

public transport pass event, car availability event, study event, household 

income event, work event, household event and housing event.  
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To predict the probabilities for the first event in the sequence (public transport 

pass), hard evidence for all nodes was entered into the network, except for all 

nodes in the prediction sequence (occurrence event nodes). The probabilities 

for the second event in the sequence were predicted given hard evidence for 

all nodes of the network including the public transport pass event, except the 

other event nodes that follow later in the sequence, and so on.  

Log likelihood values were calculated for three models: null-model, overall 

model and prediction model. In the null-model uniform distributions were 

chosen, implying that every option has the same chance. In the overall model 

the probabilities were distributed according to the overall probability distribution 

in the data set. The probabilities in the prediction model were based on the 

simulations with the network.  

To illustrate the calculation of the log likelihood Table 7 | 1 illustrates the first 

three cases of the simulation results for the prediction for the study event. The 

first three columns list the simulated probabilities and the next three columns 

list the probabilities derived from the data collection. The simulation results 

listed in this table for all three options (A, B and C) have a value above zero. In 

the Internet-based survey only one occurrence was reported in one year. This 

means that the probabilities of the occurred event (A, B or C) are one and the 

other two probabilities have the value zero. 

The log likelihood was calculated for every event and for every model (e.g., null 

model, overall model and prediction model). The calculated log likelihoods are 

listed in Table 7 | 2. 

 

Table 7 | 1: Illustration part of the prediction model (study event) 
 

Prediction (Simulation) Observed (Survey data) 
Log 

likelihood Probability 
A 

Probability 
B 

Probability 
C 

Probability 
A 

Probability 
B 

Probability 
C 

0.965986 0.0170068 0.017007 1 0 0 -0.03461 

0.999998 0.000001 0.000001 1 0 0 -2E-06 

0.965986 0.0170068 0.017007 1 0 0 -0.03461 

…. …. …. …. … … … 

Sum      -273.936 
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The first column lists the number in the prediction sequence. For every event 

the log likelihood value decreases if the values for the null model are compared 

to those of the overall model and the prediction model. The lowest log 

likelihood values are in the column of the prediction model. In general, a lower 

log likelihood indicates a better performance of the model. To express the 

improvement of the models into a value (goodness-of-fit), the Rho-Square 

statistic was calculated. This is the ratio of the log likelihood for the considered 

model and the log likelihood for the null model. The closer the value is to 1, the 

better the performance of the model. In case of a perfect goodness-of-fit, the 

log likelihood of the prediction model is equal to zero and Rho-Square is equal 

to 1. 

Two Rho-Squares were calculated, the first one is the ratio between the log 

likelihood of the prediction and null-model, and the second one is the ratio 

between the log likelihood of the prediction and overall model. The values of 

the first Rho-Squares in Table 7 | 2 are relatively high, all above 0.68. This 

indicates that the Bayesian network model out performs the null-model. The 

values of the second Rho-Square are lower, but all values are above 0.20. This 

indicates, based on generally accepted norms, that the models perform well. 

In the next subsections the four validation test are described. First, one 

example life trajectory is given. A part of this life trajectory is used to describe 

each particular validation test. 

 

Table 7 | 2: Log likelihood values life trajectory network 
 

 Event Null-model Overall
model 

Prediction
model 

First  
Rho-Square 

Second  
Rho-Square 

7 Housing -10602.40 -3193.79 -1819.90 0.8284 0.4302 

6 Household -10602.40 -3767.82 -1883.04 0.6843 0.5002 

5 Work -8402.19 -3422.19 -2652.44 0.9674 0.2249 

3 Study -8402.19 -417.56 -273.94 0.8224 0.3440 

2 Car Availability -10602.40 -2714.49 -2162.44 0.7960 0.2034 

1 PT pass -10602.40 -1645.47 -1183.69 0.8884 0.2806 

4 Household Income -10602.40 -3184.56 -1749.95 0.8349 0.4505 
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2 | Example life trajectory 

To compare the observed life trajectories from the Internet-based survey with 

predicted life trajectories five simulations were run. The number of years for the 

prediction of the life trajectory with the simulation is unique for each person in 

the sample. The number of years corresponds with the number of years of the 

observed life trajectory. For example, a person reported a life trajectory for 

twelve years, from 1992 until 2004. A life trajectory was also predicted for 

these same years. All years of the simulated life trajectory were analysed and 

compared with the observed life trajectory according to a set of validation tests: 

(1) number of occurrences, (2) interval times between occurrences of events, 

(3) simultaneous occurrences of events, and (4) sequence of occurrences of 

events. 

Figure 7 | 2 illustrates an example of a life trajectory for one person over twelve 

years. Each event has a time line, and a year is visualized with a vertical line. 

The bold vertical lines indicate that an occurrence took place in that particular 

year.  

 

Figure 7 | 2: Life trajectory seven events 
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This person experienced in total 15 occurrences during these twelve years. The 

numbers in the figure correspond with the different event specific occurrences 

(i.e. subevents). The numbering starts at the first occurrence of the housing 

event and ends at the last occurrence of the household income event. In total 

there are 19 different subevents (see Appendix 3). This life trajectory is used in 

this section as an example to explain the different validation tests. 

 

3 | Analysis simulations: Count 

The first validation test is whether the total number of years with an occurrence 

is successfully reproduced by the network. The life trajectories of the 700 

individuals in the sample produce 7648 years (i.e. person-years) in total. In 

every year an occurrence could happen or not. The frequency is the sum of all 

person-years when an occurrence happened across the (sub)events. The 

observed frequencies are compared with the frequencies of the simulations. 

Two classification levels are distinguished for the frequencies:  

1. person-years with / without occurrences (including subevents)  

2. person-years with / without occurrences (not including subevents)  

All years are taken into account in both levels, including the person-years 

where no occurrence happened. At the first level all available information is 

taken into account. That is, the level of detail of the subevents is also included. 

For example, for the housing event this means the number of person-years is 

summed for the following subevents: no change; change, independent housing; 

change, student housing; change, parental housing. In the second level, there 

is no distinction between the subevents. For example, the number of person-

years of the three states of the housing event (change, independent housing; 

change, student housing; change, parental housing) are aggregated into one 

value. This means that there is only a distinction between no change (e.g., no 

occurrence) and change (e.g., occurrence). Chi-Square was calculated to test 

whether the model is capable of reproducing the observations. The larger Chi-

Square value, the greater the evidence against the null hypothesis (H0): no 

difference between the predicted and observed observations. Table 7 | 3 

provides the results for the first level: person-years with / without occurrences 

(including subevents). The first column lists the event with all states (no 
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occurrence and all subevents). The second column shows the total number of 

counts in the observed life trajectories and the third column presents the 

percentage of the total count within each event. The total counts for the 

predicted life trajectory is shown in the fourth column and the percentage of the 

total count within an event is listed in the fifth column. The Chi-Square and its 

p-value are listed in the last two columns. Table 7 | 4 reports the results for the 

second level: person-years with / without occurrences (not including 

subevents). 

 

Table 7 | 3: Results count level 1 (including subevents)  
 

Housing observed % predicted % Chi Square p-value 

no occurrence 6708 0.877 33731 0.882   

independent housing 850 0.111 3980 0.104   

student housing 71 0.009 420 0.011   

parental housing 19 0.002 109 0.003   

Total 7648 1.000 38240 1.000 52.263 0.156 

Household observed % predicted % Chi Square p-value 

no occurrence 6654 0.87 33691 0.881   

decrease 310 0.041 1334 0.035   

increase 627 0.082 2920 0.076   

same 57 0.007 295 0.008   

Total 7648 1.000 38240 1.000 92.178 0.027 

Work observed % predicted % Chi Square p-value 

no occurrence 6520 0.853 32501 0.85   

employed 1072 0.14 5445 0.142   

unemployed 56 0.007 294 0.008   

Total 7648 1.000 38240 1.000 0.384 0.944 

Study observed % predicted % Chi Square p-value 

no occurrence 7583 0.992 37931 0.992   

studying 24 0.003 115 0.003   

not studying 41 0.005 194 0.005   

Total 7648 1.000 38240 1.000 0.1401 0.987 
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Table 7 | 3 continued       

Car availability observed % predicted % Chi Square p-value 

no occurrence 7057 0.923 35181 0.92   

Decrease 150 0.02 701 0.018   

Increase 259 0.034 1377 0.036   

Same 182 0.024 981 0.026   

Total 7648 1.000 38240 1.000 23.044 0.512 

PT pass observed % predicted % Chi Square p-value 

no occurrence 7336 0.959 36458 0.953   

Stop 100 0.013 602 0.016   

Start 116 0.015 626 0.016   

Change 96 0.013 554 0.014   

Total 7648 1.000 38240 1.000 54.444 0.142 

Household Income observed % predicted % Chi Square p-value 

no occurrence 6847 0.895 34215 0.895   

Decrease 43 0.006 235 0.006   

Increase 215 0.028 1028 0.027   

Same 543 0.071 2762 0.072   

Total 7648 1.000 38240 1.000 0.7788 0.8545 
 

A p-value < 0.05 (if alpha is 5% is applied) means that the null-hypothesis is 

rejected, and hence that the observed and simulation frequencies differ 

significantly. In Table 7 | 3 all significance values of the Chi-Square are above 

0.05 except the one for the household event. The number of person-years with 

a decrease and increase in the number of household members is 

underestimated in the simulation. For all other events the simulation produces 

the same percentage of person-years with and without an occurrence. The 

occurrence is defined here as subevents, this means that the number of 

person-years with a specific subevent is predicted 

In Table 7 | 4 the events household and PT pass event have a significance 

value below 0.05. In case of the household event, the person-years with 

occurrences are under predicted in the simulation and for the PT pass event 

the person-years with occurrences are over predicted. In general, the life 

trajectory model reproduced the number of person-years with and without 

occurrences in the life trajectories quite well. 
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Table 7 | 4: Results count level 2 (not including subevents)  

Housing observed % predicted % Chi Square p-value 

no occurrence 6708 0.877 33731 0.882   

occurrence 940 0.123 4509 0.118   

Total 7648 1.000 38240 1.000 15.194 0.218 

Household observed % predicted % Chi Square p-value 

no occurrence 6654 0.87 33691 0.881   

occurrence 994 0.13 4549 0.119   

Total 7648 1.000 38240 1.000 72.738 0.007 

Work observed % predicted % Chi Square p-value 

no occurrence 6520 0.853 32501 0.85   

occurrence 1128 0.147 5739 0.15   

Total 7648 1.000 38240 1.000 0.3357 0.562 

Study observed % predicted % Chi Square p-value 

no occurrence 7583 0.992 37931 0.992   

occurrence 65 0.008 309 0.008   

Total 7648 1.000 38240 1.000 0.138 0.710 

Car availability observed % predicted % Chi Square p-value 

no occurrence 7057 0.923 35181 0.92   

occurrence 591 0.077 3059 0.08   

Total 7648 1.000 38240 1.000 0.6439 0.422 

PT pass observed % predicted % Chi Square p-value 

no occurrence 7336 0.959 36458 0.953   

occurrence 312 0.041 1782 0.047   

Total 7648 1.000 38240 1.000 49.322 0.026 

Household Income observed % predicted % Chi Square p-value 

no occurrence 6847 0.895 34215 0.895   

occurrence 801 0.105 4025 0.105   

Total 7648 1.000 38240 1.000 0.0185 0.892 
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 4 | Analysis simulations: Interval times  

The first validation test only compared the number of occurrences in the 

observed and the predicted life trajectories. The moment in time was not taken 

into account. This second validation test analyses the interval times between 

occurrences within one event and between occurrences of two different events. 

It is important to know whether the network predicts the same interval times as 

were reported in the observed life trajectory. The timing of occurrences is 

analysed given two interval types. The different intervals are explained given 

the example life trajectory. Mean values are calculated for every interval type. 

An independent samples t-test is used to test whether the means of the two 

independent random samples (observed and predicted sample) are statistically 

different. It is important to note that there is no distinction between the type of 

occurrences, implying that all subevents as mentioned before are listed as 

occurrences without further qualification in this analysis.  

 

1 | Interval times within an event 

Figure 7 | 3 illustrates a part of the life trajectory graphed in Figure 7 | 2. This 

part shows that this person experienced three housing occurrences in the years 

1995, 1998 and 2002. Three intervals are distinguished here: start interval, 

sequence interval and end interval. While only one interval (i.e. sequence 

interval) was used in the analysis between the observed and predicted life 

trajectories. The interval from the start (beginning of the life trajectory) to the 

first occurrence is named start interval. In case there was an occurrence in the 

first year of the life trajectory there is no start interval. The same holds for the 

end interval, which is the interval between the most recent occurrence and the 

end of the life trajectory. These two intervals are not taken into account in this 

analysis. The start and end moment of the life trajectory are completely 

random. Both are determined in the survey, the start interval can be defined by 

the occurrence of another (related) event, by routing of the survey, the end 

interval is established by the moment of the data collection. The first 

occurrence in the life trajectory is not predicted given the previous occurrence, 

because this occurrence is not known. For these reasons, the start and end 

interval are not taken into account here.  
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Figure 7 | 3: Interval time within an event 

 

The interval between two occurrences of the same event is called sequence 

interval. If there are no occurrences in a person’s life trajectory registered, no 

sequence intervals exist. In this example there are two sequence intervals: 

three and four years. The mean value of the sequence intervals in this example 

is 3.5 years. 

 

2 | Interval times between events 

Figure 7 | 4 illustrate a part of the total life trajectory portrayed in Figure 7 | 2. 

Two events are listed, the first one is the housing event and the second one is 

the household event. In total, four types of intervals are distinguished here: 1) 

start interval, 2) end interval, 3) sequence interval, and 4) interval between two 

events. The first three intervals are the same as in Figure 7 | 3. Only the 

interval between occurrences of two different events is new here. 

The new interval between events is further explained given Figure 7 | 4. It is 

assumed that an occurrence of the household event in year t triggered an 

occurrence of the housing event in year t + 3. In this example the interval time 

between housing and household is three years. There are two ways to 

calculate the intervals between these two events. The different intervals are 

illustrated with solid and dashed lines in Figure 7 | 4. First, the housing event is 

set as a reference (solid lines) and second the household event is set as 

reference (dashed lines). This results in different intervals.  

 

Housing 

1995 1998 2002 
Start 

 

Sequence 
 

End 
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Figure 7 | 4: Interval time between events 

 

In the example life trajectory in Figure 7 | 4, there are three occurrences of the 

housing event, but only one occurrence is preceded by an occurrence of the 

household event (solid line). The housing occurrence in the year 2002 is 

preceded by a household occurrence in the year 1999. Thus, the interval is 

three years. There are three intervals in this example for the household event 

(dashed line). The occurrence in 1998 was preceded by a housing occurrence 

in 1995 and the housing occurrence in 1998 happened prior to the household 

occurrences in 1999 and 2002. This results in intervals of respectively three, 

one and four years.  

The mean value is calculated for all intervals and life trajectories. The mean 

value for the observed life trajectory is compared with the mean values of the 

predicted life trajectory using a t-test. Note that in the year 1998 and 2002 two 

occurrences took place within the same year. It is impossible to tell which 

occurrence happened first in that year. For this reason these relations, 

occurrences in the same year, are discussed separately in the next subsection.  

 

3 | Results for all intervals  

Only the mean sequence intervals and the mean interval between two events 

are analyses. Table 7 | 5 lists the means and number of the intervals of the 

observed life trajectories and Table 7 | 6 lists all information for the predicted 

life trajectories. The sequence intervals are in the diagonal of the table and the 

intervals between two events are in the other cells of the table. The upper part 

Household 

Housing 

1995  1998   2002 

1998 1999  2002 
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of the tables contains the mean values and the lower part lists the total number 

of intervals. The total of Table 7 | 6 is the sum of five simulations. 

The null hypothesis (H0) is that the model predicted the observed means of 

intervals well (µ1 = µ2). The independent sample t-test checks whether the 

predicted and observed means are equal. Table 7 | 7 lists the results of the t-

test.  

Table 7 | 5: Interval times (observed data) 
 

 Means  Housing HH Work Study Car PT Income 

Housing 4.5 4.4 3.4 3.2 5.4 3.5 3.8 

HH 5.2 4.5 4.3 3.8 5.7 4.2 5.1 

Work 5.0 5.4 3.9 2.8 6.2 4.1 5.2 

Study 1.6 2.1 1.7 2.3 1.7 1.9 1.9 

Car  5.6 5.9 4.8 3.3 5.2 4.0 5.6 

PT pass 5.5 4.8 4.1 3.5 6.7 3.8 5.1 

Income 4.6 5.2 4.3 3.0 5.6 3.8 4.8 

 intervals Housing HH Work Study Car PT Income 

Housing 531 466 549 45 337 158 453 

HH 615 629 621 29 445 178 524 

Work 684 596 740 44 424 188 539 

Study 20 14 12 7 14 10 14 

Car  329 309 350 27 279 126 322 

PT pass 177 149 185 31 112 120 165 

Income 435 400 434 34 311 148 457 
 
 
Table 7 | 6: Interval times (predicted data) 
 

 Means  Housing HH Work Study Car PT Income 

Housing 4.7 4.5 3.7 2.4 5.7 4.7 4.6 

HH 5.4 4.7 4.5 2.8 6.6 5.7 5.4 

Work 5.4 5.2 4.4 2.2 6.4 5.1 5.3 

Study 2.2 2.1 2.2 2.2 2.8 2.4 2.4 

Car  5.9 5.6 5.0 1.9 5.5 5.6 5.9 

PT 5.6 5.3 4.3 2.2 6.3 4.4 5.3 

Income 5.0 4.9 4.4 2.6 6.1 4.9 4.9 
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Table 7 | 6 continued       

intervals Housing HH Work Study Car PT Income 

Housing 2510 2117 2801 105 1816 727 2192 

HH 2728 2817 3043 72 2068 833 2477 

Work 3206 2949 3792 70 2363 1077 2889 

Study 104 73 111 28 69 42 88 

Car  1569 1513 1710 37 1381 558 1399 

PT 1011 889 1143 53 715 827 929 

Income 1958 1824 2083 69 1488 597 2175 
 
 
Table 7 | 7: Results t-test for all interval times  
 

 Housing HH Work Study Car PT Income 

Housing 0.18 0.45 0.11 0.03 0.36 0.00 0.00 

HH 0.46 0.28 0.22 0.08 0.002 0.00 0.32 

Work 0.10 0.28 0.006 0.10 0.47 0.001 0.65 

Study 0.07 0.91 0.21 0.91 0.003 0.29 0.29 

Car  0.45 0.36 0.37 0.006 0.45 0.00 0.33 

PT pass 0.89 0.26 0.53 0.015 0.55 0.11 0.65 

Income 0.17 0.23 0.55 0.28 0.13 0.001 0.83 

 

All significance values below 0.05 are bold in Table 7 | 7. In these cases the 

null hypothesis is rejected (alpha of 5% is applied), which means that the 

difference between the observed mean intervals and the predicted mean 

intervals is significant. The difference between the observed mean intervals 

and the predicted mean intervals is significant for 12 out of 49 intervals. In 

general, three interval times are underestimated and the other nine intervals 

are overestimated. The overestimations and underestimations are discussed in 

more detail for each interval group (sequence interval and interval between two 

events). In the sequence interval group there is one overestimation. The 

observed interval for the work event is 3.9 (Table 7 | 5) while the predicted 

interval is 4.4 (Table 7 | 6). A total of 11 out of 42 intervals in the last group 

(i.e. intervals between two events) are significantly different. The 

overestimations and underestimations of these intervals are described, without 

reference to the interval times in Table 7 | 5 and Table 7 | 6.  The following 
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intervals are underestimated: (1) housing and study, (2) car availability and PT 

pass, and (3) PT pass and study. The network overestimates the interval 

between (1) housing and PT pass, (2) housing and household income, (3) 

household and car availability, (4) household and PT pass, (5) work and PT 

pass, (6) study and car availability, (7) car availability and study, and (8) 

household income and PT pass. 

There are more overestimated intervals than underestimated intervals. This 

indicates that the predicted time interval between two events is longer than 

reported in the survey. In general, the model can estimate more or less the 

same interval times for the other events. The most difficult interval to estimate 

is the interval between an event and the PT pass event. The model needs 

further improvement especially for this event. 

 

5 | Analysis simulations: Synchronic events  

As mentioned before, a time interval does not exist when two events occur in 

the same year. The time order within one year is no longer traceable due to 

recoding of the data according to the chosen perspective of one year. If 

occurrences were reported in the same year in the Internet-based survey, it is 

important that the network can reproduce this synchronism. Figure 7 | 5 

illustrate a part of the example life trajectory graphed in Figure 7 | 2. Two 

events, housing and household, are illustrated here. In the year 1998 as well 

as in the year 2002 two occurrences happened in the same year. This is 

referred to as synchronic events. 

 

Figure 7 | 5: Events in the same year 

Household 

Housing 

1995              1998                 2002 

                              1998        1999      2002 
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Table 7 | 8 shows the number of synchronic events .Table 7 | 9 lists the number 

of observed occurrences for each event with no event occurrence as well as 

occurrences with one or more other occurrences. The total here is the sum of 

the previous rows; this number exceeds the total number of occurrences 

reported. The last row in the table indicates the number occurrence reported in 

the Internet-based survey (see Table 7 | 4). The probability of synchronic 

events depends on the total number of events. For example, when a housing 

event happened the probability of a household occurrence in the same year is 

the ratio between synchronic events (housing and household) and the total 

number of occurrence (housing). In this example this is 288 / 940 = 0.31. Table 

7 | 10 lists all probabilities. In Table 7 | 11 – Table 7 | 13 the same information 

is listed for the predicted events: synchronic events, the number of synchronic 

events, and probabilities of synchronic events.  

 

Table 7 | 8: Synchronic events frequencies (observed data) 
 

Observed Housing HH Work Study Car PT Income 

Housing  288 271 32 178 87 240 

HH 288  213 12 207 60 276 

Work 271 213  27 160 145 359 

Study 32 12 27  14 25 27 

Car 178 207 160 14  66 186 

PT pass 87 60 145 25 66  112 

Income 240 276 359 27 186 112  
 

Table 7 | 9: Synchronic events more than two in one year (observed data) 
 

Observed Housing HH Work Study Car PT Income 

no other event 384 426 457 13 196 75 186 

1 event 236 272 361 8 155 92 252 

2 events 168 165 180 20 120 77 206 

3 events 96 81 78 13 74 34 104 

4 events 45 40 41 6 37 24 42 

5 events 10 9 10 4 8 9 10 

6 events 1 1 1 1 1 1 1 

Total 1096 1056 1175 137 811 495 1200 

Occurrences 940 994 1128 65 591 312 801 
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Table 7 | 10: Synchronic events probabilities (observed data) 
 

Observed Housing HH Work Study Car PT Income 

Housing 0.00 0.31 0.29 0.03 0.19 0.09 0.26 

HH 0.29 0.00 0.21 0.01 0.21 0.06 0.28 

Work 0.24 0.19 0.00 0.02 0.14 0.13 0.32 

Study 0.49 0.18 0.42 0.00 0.22 0.38 0.42 

Car 0.30 0.35 0.27 0.02 0.00 0.11 0.31 

PT pass 0.28 0.19 0.46 0.08 0.21 0.00 0.36 

Income 0.30 0.34 0.45 0.03 0.23 0.14 0.00 

 

Table 7 | 11: Synchronic events frequencies (predicted data) 
 

Simulations Housing HH Work Study Car PT Income 

Housing  1021 1134 59 529 252 820 

HH 1021  838 50 615 208 966 

Work 1134 838  53 668 588 1574 

Study 59 50 53  32 85 39 

Car 529 615 668 32  151 805 

PT 252 208 588 85 151  211 

Income 820 966 1574 39 805 211  
 

Table 7 | 12: Synchronic events more than two in one year (predicted data) 
 

Observed Housing HH Work Study Car PT Income 

no other event 2110 2174 2523 118 1373 758 1303 

1 event 1404 1435 2012 108 923 677 1475 

2 events 649 630 847 51 484 244 875 

3 events 276 242 284 22 212 86 302 

4 events 65 63 68 8 62 13 66 

5 events 5 5 5 2 5 4 4 

6 events 0 0 0 0 0 0 0 

Total 4509 4549 5739 309 3059 1782 4025 

Occurrences 3815 3698 4855 318 2800 1495 4415 
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Table 7 | 13: Synchronic events probabilities (predicted data) 
 

Observed Housing HH Work Study Car PT Income 

Housing 0.00 0.23 0.25 0.01 0.12 0.06 0.18 

HH 0.22 0.00 0.18 0.01 0.14 0.05 0.21 

Work 0.20 0.15 0.00 0.01 0.12 0.10 0.27 

Study 0.19 0.16 0.17 0.00 0.10 0.28 0.13 

Car 0.17 0.20 0.22 0.01 0.00 0.05 0.26 

PT pass 0.14 0.12 0.33 0.05 0.08 0.00 0.12 

Income 0.20 0.24 0.39 0.01 0.20 0.05 0.00 

 

Table 7 | 14: Results p-values for the binomial test 
 

Observed Housing HH Work Study Car PT Income 

Housing  0.000 0.000 0.000 0.000 0.000 0.000 

HH 0.000  0.000 0.270 0.000 0.000 0.000 

Work  0.000  0.000 0.000 0.000 0.000 

Study 0.000 0.226 0.000  0.000 0.000 0.000 

Car 0.000 0.000 0.000 0.000  0.000 0.000 

PT pass 0.000 0.000 0.000 0.000 0.000  0.000 

Income 0.000 0.000 0.000 0.000 0.000 0.000  

 

Table 7 | 14 illustrates the results of the binomial test. A p-value of 0.000 

indicates a significant difference between the observed and predicted 

probability of synchronic events. In almost all cases there is a significant 

difference. The probability of the synchronic events household and study is an 

exception. The values 0.270 and 0.226 indicate that there is no significant 

difference. This means the model is successful in predicting these synchronic 

events. In general the model is less successful in predicting correctly the 

observed synchronic events. 

 

6 | Analysis simulations: Sequence (SAM) 

Occurrences in the life trajectory took place in a certain order or sequence. In 

order to compare the sequence of the observed life trajectory with the life 
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trajectory of the simulations, the Sequence Alignment Method (in short SAM) 

was used. Different sequences can be configured from the example life 

trajectory (Figure 7 | 2). Three different sequences were constructed and 

analysed.  

The first sequence option (labelled as OccurrenceOnly) is constructed with no 

reference to a year. This means that only the occurrences are listed in the 

sequence. There is no distinction in subevents in the sequence. The seven 

events: Housing, Household, Work, Study, Car availability, PT pass and 

Household Income correspond respectively with the numbers 1 - 7. All 

occurrences of events are listed in one sequence. When two or more events 

occur in one year the order of events that is listed above is used. In the second 

year (1994) two occurrences happened, a change in study and PT pass 

circumstances. The occurrence of the study events results in the ’4’ of the 

sequence followed by the ‘6’ of the occurrence of the PT pass event. Next, two 

housing occurrences happened in year 1995 and 1998, which result in two ‘1’’s 

in the sequence and so on. 

OccurrenceOnly: 4 6 1 1 2 2 3 4 6 7 1 2 5 6 7 

 

The next sequence (labelled as SubstatesOnly) is a more detailed description 

of the first sequence. The subevents are listed in this sequence. There is still 

no reference to the year of occurrence, just like in the OccurrenceOnly 

sequence. The occurrence of the study event in Figure 7 | 2 is referred to as 

‘9’, the first number in the sequence. ‘18’ is the last number in the sequence, 

this number is related to the occurrence in household income in the last year of 

the life trajectory (2004). 

SubstatesOnly: 9 15 1 2 5 4 7 10 16 18 2 5 12 14 18 

 

The last sequence (labelled as Life Trajectory) is a numerical translation of the 

time lines in the life trajectory (Figure 7 | 2). This sequence consists of seven 

strings with twelve numbers. The bold lines in the life trajectory represent an 

occurrence and the type of occurrence (subevent) is given by a number. This 

number is copied into in the strings of the life trajectory. The other lines 
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represent years were no occurrence happened; these years are represent in 

the sequence strings by zeros.  

Life Trajectory: 0 0 1 0 0 2 0 0 0 2 0 0 

 0 0 0 0 0 5 4 0 0 5 0 0 

 0 0 0 0 0 0 0 0 7 0 0 0 

 0 9 0 0 0 0 0 0 10 0 0 0 

 0 0 0 0 0 0 0 0 0 12 0 0 

 0 15 0 0 0 0 0 0 16 0 14 0 

 0 0 0 0 0 0 0 0 18 0 0 18 

 

Sequence alignment methods calculate the similarity between two sequences 

in terms of the number of operations that is required to equalize the two 

sequences. The operations involve adding, deleting, and swapping. In 

principle, different weights can be attached to these operations. Sequence 

alignment methods were originally developed for uni-dimensional sequences 

(Kruskal, 1983; States and Boguski, 1991). Joh, Arentze and Timmermans 

(2001) further expanded these methods to the case of multidimensional 

sequences. The Life Trajectory sequence can be viewed as a multidimensional 

profile. In this case, two different sequence alignment methods were applied: 

UDSAM (the sum of uni-dimensional sequence alignments) and DPSAM 

(Dynamic programming-based multidimensional sequence alignment method 

(Joh et al., 2001)). The UDSAM measure calculates the alignment costs of 

each uni-dimensional sequence and the sum of these measures across all 

dimensions is taken as a measure of distance or dissimilarity between two 

multidimensional patterns. The DPSAM measure compares sequences on 

multiple dimensions simultaneously, taking dependencies between the 

dimensions into account. To speed up computing time, the specific method 

applied searches only one trajectory for each event-type, which is closest to 

the diagonal of the two-dimensional comparison table of each event-type when 

integrating uni-dimensional operations into multidimensional ones, (Joh et al., 

2001). 

In our analyses, a weight of one was used for additions and deletions, while 

swapping received a weight of two (it can be seen as a combined deletion and 

addition operation). Thus, the SAM measure for each sequence alignment is 
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the weighted total number of additions, deletions and swapping operations 

required to make the two sequences identical. A higher number implies that the 

two sequences are less identical. The value of SAM (costs to align the 

sequences) will increase when the level of detail increases. It is difficult to 

analyse the SAM value if there is no comparison or range from the minimum to 

maximum SAM value. For this reason, a minimum and maximum were 

calculated and the mean of all SAM values was compared to this range.  

Given the three sequences, four analyses were executed. The UDSAM 

measure is used for the OccurrenceOnly sequence and the SubstatesOnly 

sequence. Both sequences are uni-dimensional. The Life Trajectory sequence 

is analysed two times: first as an entity with the DPSAM method (multi-

dimensional) and second for each event separately with UDSAM method (uni-

dimensional). The Life Trajectory sequence is multi-dimensional given the 

seven strings which represent the different time lines in the life trajectory. 

The calculation of the SAM value for sequence one and two is explained given 

an example (Figure 7 | 6). This figure illustrates an observed and predicted 

sequence for one person. Every vertical line in the figure indicates an 

occurrence. The observed sequence consist of eight occurrences and the 

predicted sequences has twelve occurrences in total.  

The minimum SAM values means that the sequences are very similar (identical 

if they are of equal length). This means in this example that eight occurrences 

in both sequences (observed and predicted) are the same. Only four 

occurrences had to be inserted or deleted, this depends on the point of view. If 

the observed sequence should match the predicted sequence then occurrences 

are inserted and if the predicted sequence should match the observed 

sequence then occurrences are deleted. The minimum SAM value in this 

example is four. The maximum SAM value is obtained if the sequences are 

highly dissimilar. This means in this example that the occurrences in one  

 

 

Figure 7 | 6: Two sequences without reference to years 

Predicted 

Observed 
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sequence (observed or predicted) does not occur in the other sequence at all. 

In this case, all occurrences in the sequence are deleted and occurrences that 

correspond with the other sequence are inserted. If the observed sequence 

should match the predicted sequence first all eight occurrences are deleted 

and then twelve occurrences are inserted. The maximum SAM value is in this 

example is eight plus twelve, thus twenty. In the calculation of the minimum 

and maximum SAM value the prediction of the length of the sequence is not 

taken into account. The count validation test already checked this aspect 

(length of sequence). The SAM value is indicated with a percentage, calculated 

as: percentage SAM value = (SAM value - SAM valuemin) / SAM valuerange  

The lower the percentage the closer the SAM value is to the minimum SAM 

value, thus the better the performance. In total 3495 cases were analysed. In 

some cases, the length of the observed or predicted sequence is zero. This 

means that no occurrences were observed or predicted for that person. These 

cases, in total 723, were not included in the analysis. In total, 2772 cases were 

analysed. 

 

Table 7 | 15: Results OccurrenceOnly sequence (UDSAM) 
 

 Minimum Maximum Mean Std. Deviation 

Length sequence 1 31 8.54 5.83 

Minimum SAM 0 28 3.73 3.73 

Maximum SAM 2 62 17.08 11.66 

SAM range 2 60 13.35 10.14 

SAM value 0 31 8.48 5.74 

SAM percentage 0 1 0.35 0.26 
 

Table 7 | 16: Results SubstatesOnly sequence (UDSAM) 
 

 Minimum Maximum Mean Std. Deviation 

Length sequence 1 31 8.54 5.83 

Minimum SAM 0 28 3.73 3.73 

Maximum SAM 2 62 17.08 11.66 

SAM range 2 60 13.35 10.14 

SAM value 0 37 9.79 6.69 

SAM percentage 0 1 0.45 0.28 
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The results of the analysis of the OccurrenceOnly sequence option are listed in 

Table 7 | 15, while Table 7 | 16 shows the results for the SubstatesOnly 

sequence option. Of course, the values for the length of the sequences, the 

minimum and maximum SAM value and the SAM range are the same for the 

OccurrenceOnly and SubstatesOnly sequence option. Those values are listed 

in the first four rows of the tables. 

The percentage of the analysis of OccurrenceOnly and SubstatesOnly 

sequence are both below 0.5. The mean percentage of the SubstatesOnly 

sequence option (0.45 in Table 7 | 16) is higher than the mean percentage of 

the OccurrenceOnly sequence option (0.35 in Table 7 | 15). This can be 

explained by the difference in level of detail between the two sequence options. 

More detail in the sequence means a higher probability of differences between 

the sequences, which leads to a higher SAM (and SAM percentage) value. 

The length of each string in the Life Trajectory sequence option is the same for 

the observed and predicted sequences. If a person reported a life trajectory of 

twelve years the predicted life trajectory also consists of twelve years. 

Therefore, the minimum SAM value is always zero. SAM values were 

calculated for 3495 cases. The total length among the 3495 cases varied from 

1 year to 40 years. The maximum SAM values are calculated as follows: 

SAMmax = length sequence x 2 x 7. The multiplication with 2 is for replacing a 

value in the sequence and the multiplication with 7 is for every event. This is 

rather straightforward and a simple calculation, DPSAM methods is not taken 

into account in this calculation. The SAM percentage is calculated as described 

before. Table 7 | 17 reports the results of the Life Trajectory sequence. 

The mean value of the total SAM value based on the uni-dimensional (UDSAM) 

method is higher (15.91) than the mean value based on the multidimensional 

method (10.35). In general, the DPSAM value is always below the sum of 

UDSAM or it can exactly match the sum. The mean value of the SAM 

percentage  (DPSAM) is close to zero. The last column in Table 7 | 17 lists the 

number of cases with a SAM value of zero. The results indicate that the study 

event and the PT pass event were simulated most closely by the Bayesian 

Belief Network.  
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Table 7 | 17: Results Life Trajectory sequence  
 

DPSAM analyses Minimum Maximum Mean Std. 
Deviation 

Zero 
SAM 

Length sequence 1 40 10.93 10.37  

Minimum SAM 0 0 0.00 0.00  

Maximum SAM 14 560 152.98 145.12  

DPSAM analyses      

SAM value 0 49 10.35 9.04  

SAM percentage 0 0.14 0.08 0.04  

UDSAM analyses      

SAM value Housing 0 20 2.75 2.83 1179 

SAM value Household 0 18 3.00 3.32 1393 

SAM value Work 0 20 3.24 3.59 1369 

SAM value Study 0 6 0.32 0.83 2984 

SAM value Car 0 26 2.36 2.73 1353 

SAM value PT pass 0 16 1.54 2.33 2033 

SAM value Income 0 20 2.70 3.11 1422 

SAM value total 0 66 15.91 13.68  

 

Highest SAM measures were obtained for the work event and the household 

event, suggesting that the Bayesian network was relatively less successful in 

correctly simulating the timing of occurrences and/or sequence of these event 

types.  

Based on the SAM measures, it is difficult to tell whether faulty predictions are 

caused by (1) predicting the wrong subevent or (2) predicting a wrong timing of 

the subevent. Overall, however, the results of the SAM analyses demonstrate 

that the learned Bayesian Belief Network predicts the sequence of the 

occurrences in the life trajectories relatively well. 

 

 

 



                                                                                  Validation 

147 

4 | Validation mode choice network 
 

In this section, first the log likelihood will be discussed for three models: null-

model, overall model and prediction model. Mode choice was only registered in 

the year of the retrospective Internet-based survey (2004). This means that the 

observed data for mode choice is limited to one year. Beside the goodness-of-

fit, one test is executed. The observed modal split in 2004 is compared with the 

predicted modal split.  

 

1 | Goodness-of-fit 

One way of assessing the validity of the learned network is to use the values 

for all variables/nodes in the network in the year 2004, except mode choice, 

and predict the posterior probabilities of a particular transport mode choice in 

the year 2004, given this hard evidence. In this case, the hard evidence 

corresponds with the situation in the corresponding year.  

The network was used to calculate the posterior probabilities for every case 

given the hard evidence. To check the performance of this mode choice model 

the log likelihood value for three models (null-model, overall model and 

prediction model) was calculated. Table 7 | 18 lists the values for the different 

models. In the overall model, the probabilities were distributed according to the 

overall probability distribution. Figure 6 | 14 illustrates the following distribution: 

car = 0.480, ST = 0.382 and PT = 0.138. Two Rho-Squares were calculated, 

the first one is the ratio between the log likelihood of the prediction model and 

null-model, and the second one is the ratio between the log likelihood of the 

prediction model and overall model. The value of both Rho-Squares is reported 

in Table 7 | 18. Both Rho-Square values of the model are above 0.36, which 

indicate that the model performs relatively well. 

 

Table 7 | 18: Log likelihood values mode choice network 
 

 
Null model Overall Prediction First  

Rho-Square 
Second  

Rho-Square 

Mode Choice -769.03 -697.57 -439.84 0.4281 0.3695 
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2 | Mode choice in 2004 

Monte Carlo sampling  is used to select an individual’s mode choice based on 

the predicted posterior probabilities. The predicted modal split can be 

calculated given the individuals’ mode choices. The observed modal split in 

2004 is compared with predicted modal split to show how the model can be 

used for simulation. The results are shown in Table 7 | 19 and Table 7 | 20.  

Only one Monte Carlo simulation was run. In 64 percent of the cases the 

predicted individual’s mode choice corresponds with the observed individual’s 

mode choice (not shown in any table). However, it can be calculated by the 

ratio of the sum of the values in the diagonal (199 + 220 + 29 = 449) and the 

total (700). Table 7 | 20 reports a relatively small over prediction of public 

transport at the expense of the other two mode choices car and slow transport.  

 

Table 7 | 19: Mode choice in 2004 (observed and predicted) 
 

  

observed mode 

Car PT ST Total 

predicted mode 

Car 199 69 23 291 

PT 70 220 37 327 

ST 23 30 29 82 

Total 292 319 89 700 

 

Table 7 | 20: Modal split in 2004 (observed and predicted) 
 

Mode  observed % predicted % Difference prediction 

Car 292 0.417 291 0.416 -0.001 Under prediction 

PT 319 0.456 327 0.467 0.011 Over prediction 

ST 89 0.127 82 0.117 -0.010 Under prediction 

Total 700 1.000 700 1.000   
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5 | Conclusion 
 

The log likelihood values regarding the prediction of the occurrence of events 

and mode choice indicate that both networks perform relatively well. In this 

chapter, it was investigated whether the life trajectory model was capable of 

representing a complete life trajectory. The predicted life trajectories are 

compared with the observed life trajectories as stated in the Internet-based 

survey. Aspects of the life trajectory that were used for validation were the 

number of occurrences, interval times between occurrences of events, 

simultaneous occurrences of events and sequence of occurrences of events. 

The modal split (car, Public Transport and Slow Transport) of the predicted 

mode choice was compared with the observed mode choice. The results of the 

four validation tests are summarised.  

(1) Results indicate a slight under prediction of the number of occurrences for 

the household event and an over prediction of the PT pass event at one of the 

three levels of detail. Thus, the life trajectory model reproduced the number of 

occurrences in the life trajectories quite well.  

(2) Two interval times were tested: the sequence interval and intervals between 

two events. In general, the model predicted more or less the same interval 

times for the events, except for the PT pass event.  

(3) The results of the validation test showed that the network was less 

successful in predicting correctly the observed synchronic events.  

(4) The sequence of events is another important aspect of a life trajectory. The 

results of the Sequence Alignment Method demonstrated that the Bayesian 

Belief Network more of less reproduced the sequence of events as registered 

in the observed life trajectory. Three levels of detail were tested, the first two 

have no reference to the year of the occurrence and the difference between the 

two levels is the level of detail (without or with subevents). The third level had a 

reference to the year of the occurrence and included all subevents. The results 

of the analyses of all three levels illustrate that the network predicts the 

sequence of the occurrences in the life trajectories relatively good. 

For the mode choice network, the test of validity involved examining whether 

modal split was predicted correctly in the simulation. Results of this illustration 
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indicated a small over prediction of public transport and under prediction of car 

and slow transport. This suggests that the mode choice network is able to 

simulate more or less the same mode choice as registered in the data.  

This chapter illustrated the method of validation for both networks. As 

mentioned before, no hold-out sample was used. A new data collection is 

necessary for external validation.  
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8 | Application 
 

 

1 | Introduction 
 

In the previous chapter the goodness-of-fit of both networks is discussed as 

well as the results of validation tests for the life trajectory and the mode choice 

network. This chapter illustrates the use of both networks. The application of 

both networks is clarified in two ways. First, the network can be used to study 

direct and indirect effects of variables on other variables in the network. 

Second, the network can be used for simulation purposes. For example, life 

trajectory and mode choice dynamics of new inhabitants in a neighbourhood 

can be simulated using both networks together. Mode choice is predicted for 

every year of the predicted life trajectory. The influence of predicted mode 

choice in the previous year is also taken into account given a parameter.  

This chapter starts with an example that illustrates how hard evidence can be 

inserted in the life trajectory network for the four states of the housing event 

(i.e. no change, independent housing, student housing and parental housing) to 

simulate direct and indirect effect on the other nodes. The evidence is  
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discussed for the seven occurrence event nodes. Next, in the mode choice 

network, the influence of hard evidence is illustrated with the node car 

availability state as an example. Here the mode choice probabilities are given 

for two situations (i.e. before and after entering evidence). The use of the 

networks to simulate full life trajectories is discussed in section four. Details are 

illustrated in section five, which describes a scenario that is used for simulating 

life trajectories and mode choice until the year 2019. One personal life 

trajectory is discussed as an example and mode choice is predicted given three 

different parameter values. The chapter ends with a short summary and 

conclusions.  

 

 

2 | Hard evidence  life trajectory network 
 

The indirect and direct influence of variables / nodes on other variables/nodes 

in the network can be analysed when hard evidence is entered into the 

network. When hard evidence for one variable / node is entered into the 

network the probabilities for all other variables/nodes will be updated. The 

effect of entering hard evidence into the network can give more insight in the 

influence and relationship between variables / nodes. As mentioned in the 

introduction hard evidence is entered in the life trajectory network for the four 

states of the housing event. Direct and indirect effect on the seven occurrence 

event nodes is registered with (changed) probabilities.  

Figure 8 | 1 shows only a small part of the complete life trajectory network. The 

nodes of interest (i.e. the occurrence event nodes) are illustrated. This figure 

portrays the situation when no evidence is entered into the network.  

Figure 8 | 2 shows the updated probabilities for all seven nodes after the 

evidence “change, independent housing” is entered into the network. The node 

that contains the hard evidence is coloured grey and the probability for that 

particular state is set to 100.  

Table 8 | 1 lists the probabilities for all occurrence event nodes without and 

with evidence entered into the network. The first column lists all seven 
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occurrence event nodes with their classes (e.g. states). The second column 

consists of the probabilities for all nodes (and states) when no evidence is 

entered into the network. The next four columns illustrate the new and updated 

probabilities when hard evidence for different states of the housing event node 

is entered into the network, as an example. The state with value 1 (in the last 

four columns) corresponds with the hard evidence entered into the network. 

The other states of the same node have automatically the value 0. In this 

example, hard evidence was entered four times into the network, once for 

every state of the housing event node.  

 

Housing Event
No change
Change, independent housing
Change, student housing
Change, parental housing

88.5
10.6
0.61
0.23

Work Event
No change
Change, employment
Change, unemployment

84.9
14.2
0.86

Houshold Event
No change
Change, decrease members
Change, increase members
Change, same members

87.8
3.41
8.06
0.69

Study Event
No change
Change, study
Change, no study

99.3
0.30
0.40

Household Income Event
No change
Change, decrease household i...
Change, increase household in...
Change, same household inco...

88.1
1.13
2.40
8.39

PT PassEvent
No change
Change, stop PT pass
Change, start PT pass
Change, change PT pass

94.2
1.99
2.34
1.51

Car Availability Event
No change
Change, decrease car availabil...
Change, increase car availability
Change, same car availability

92.4
1.94
3.18
2.47

                   

Housing Event
No change
Change, independent housing
Change, student housing
Change, parental housing

   0
 100

   0
   0

Work Event
No change
Change, employment
Change, unemployment

79.6
19.6
0.88

Houshold Event
No change
Change, decrease members
Change, increase members
Change, same members

80.1
5.60
13.0
1.35

Study Event
No change
Change, study
Change, no study

99.3
0.30
0.41

Household Income Event
No change
Change, decrease household i...
Change, increase household in...
Change, same household inco...

84.9
1.29
3.46
10.4

PT PassEvent
No change
Change, stop PT pass
Change, start PT pass
Change, change PT pass

93.5
2.15
2.70
1.61

Car Availability Event
No change
Change, decrease car availabil...
Change, increase car availability
Change, same car availability

91.4
2.10
3.53
2.96

 

Figure 8 | 1: No evidence entered    
into the life trajectory network 

Figure 8 | 2: Evidence “independent 
housing” entered into the network 
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Table 8 | 1: Updated probabilities hard evidence Housing event 
 

Events no 
evidence 

Evidence=  
no change 

Evidence= 
independent 

housing 

Evidence= 
student 
housing 

Evidence= 
parental 
housing 

Housing  

No change 0.885 1 0 0 0 

Independent 0.106 0 1 0 0 

Student housing 0.006 0 0 1 0 

Parental housing 0.002 0 0 0 1 

Household  

No change 0.878 0.887 0.801 0.911 0.862 

Decrease 0.034 0.032 0.056 0.029 0.023 

Increase 0.081 0.075 0.130 0.052 0.110 

Same members 0.007 0.006 0.014 0.007 0.005 

Work  

No change 0.849 0.856 0.796 0.830 0.761 

Employment 0.142 0.136 0.196 0.145 0.232 

Unemployment 0.009 0.009 0.009 0.025 0.007 

Study  

No change 0.993 0.993 0.993 0.993 0.993 

Study 0.003 0.003 0.003 0.003 0.003 

No study 0.004 0.004 0.004 0.004 0.004 

Car Availability  

No change 0.924 0.925 0.914 0.924 0.920 

Decrease car 0.019 0.019 0.021 0.019 0.021 

Increase car 0.032 0.031 0.035 0.032 0.033 

Same car 0.025 0.024 0.030 0.025 0.026 

PT Pass  

No change 0.942 0.943 0.935 0.938 0.933 

Stop PT pass 0.020 0.020 0.022 0.021 0.023 

Start PT pass 0.023 0.023 0.027 0.025 0.030 

Change PT pass 0.015 0.015 0.016 0.016 0.015 

HH Income      

No change 0.881 0.885 0.849 0.887 0.852 

Decrease 0.011 0.011 0.013 0.012 0.012 

Increase 0.024 0.023 0.035 0.021 0.031 

Same household 0.084 0.082 0.104 0.081 0.104 
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The initial probabilities (e.g. before hard evidence is entered into the network) 

and the updated probabilities (e.g. after hard evidence is entered into the 

network) are compared to analyse the influence of the housing event node. If 

the probabilities for a certain state increase then the hard evidence has a 

positive influence on that particular state. A lower probability indicates a 

negative influence.  

Overall, the probabilities do not change substantially. A few examples with 

positive and negative influence of hard evidence are described below. The hard 

evidence “independent housing” results in higher probabilities for the 

household states “decrease members”, “increase members” and “same 

members”. This means, in this example, that the occurrence of living 

independently influences the number of household members. These two events 

can happen at the same time (e.g. in the same year). On the one hand, the 

hard evidence “student housing” has a positive influence on the probabilities for 

the work state “unemployment”.  

The hard evidence “student housing” has a negative influence on the 

probability for the household state “decrease members” and “increase 

members”. This means that the initial probability becomes smaller after hard 

evidence is entered into the network. This seems logical: when a person moves 

to a student house the number of household members is set to one. This 

implies that an increase in the number of members is less likely. The hard 

evidence “parental housing” results in a lower probability for the household 

state “decrease members” and at the same time a higher probability for the 

household state “increase members”. Moving to the parents’ place often means 

an increase in the number of household members; a decrease in the number of 

household members is less likely.  

In this example, only the influence of the housing event node on other 

occurrence event nodes in the network is discussed. The housing event seems 

to influence the household and the work events. All other probabilities show no 

major influence of the housing event. The rest of the occurrence event nodes 

can be analysed the same way as described here. 
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3 | Hard evidence  mode choice network 
 

To illustrate the use of the model, in the same way as explained in the previous 

section, hard evidence is entered into the mode choice network. The node of 

interest here is mode choice. Four state nodes have a direct link with mode 

choice (see Figure 6 | 14): housing state, car availability state, PT pass state 

and household income state. As an illustration, hard evidence is entered into 

this network for the node car availability state.  

Figure 8 | 3 illustrates a part of the mode choice network. In this situation no 

hard evidence is entered into the network. Figure 8 | 4 shows the same part of 

the network when hard evidence is entered into the network. In this example 

“no car” is entered as evidence. All probabilities are automatically updated and 

the probability for the mode choice option “car” is reduced from 48.0% to 

9.93%. This newly updated probability does not equal 0%, while there is no car 

available. That seems strange, but in fact it is explainable. The mode choice 

option “car” consist of two options: car as driver and car as passenger. The 

latter option is always available even when there is no car available in that 

particular household. This results in a probability higher than 0% for the mode 

choice option “car”.  

 

Housing State
Independent
Student
Parental

89.4
8.10
2.53

Car Availability State
no car
car users > cars
car users = cars
car users < cars

11.5
51.5
34.2
2.79

PT Pass State
No PT pass
PT pass

63.3
36.7

Houshold Income State
=< modal income
> modal income

30.2
69.8

Mode Choice
Car
PT
ST

48.0
38.2
13.8

 

Housing State
Independent
Student
Parental

89.4
8.10
2.53

Car Availability State
no car
car users > cars
car users = cars
car users < cars

 100
   0
   0
   0

PT Pass State
No PT pass
PT pass

63.3
36.7

Houshold Income State
=< modal income
> modal income

30.2
69.8

Mode Choice
Car
PT
ST

9.93
78.5
11.5

 

Figure 8 | 3: No evidence entered    
into the mode choice network 

Figure 8 | 4: Evidence “no car” 
entered into the network 
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Table 8 | 2: Updated probabilities hard evidence car availability state 
 

Mode Choice No 
evidence 

Evidence= 
no car 

Evidence= 
car users> 

cars 

Evidence= 
car users= 

cars 

Evidence=     
car users      

< cars 

Car 0.480 0.099 0.444 0.631 0.851 

Slow Transport 0.382 0.785 0.397 0.248 0.086 

Public Transport 0.138 0.115 0.159 0.121 0.063 

 

Table 8 | 2 shows the probabilities for mode choice without and with evidence 

entered into the network. In the second column, the probabilities without 

evidence are listed. The next four columns illustrate the updated probabilities 

when hard evidence for different “car availability” states are entered into the 

network.  

The initial probabilities and the updated probabilities are compared to analyse 

the influence of the car availability state. A positive influence of the hard 

evidence means that the updated probabilities are higher than the initial 

probabilities and a negative influence means a lower probability.  

The initial probability of the mode choice “slow transport” increases from 0.382 

to 0.785 when the hard evidence “no car” is entered into the network at the car 

availability state node. At the same moment the probability for the mode choice 

“car” decreases substantially, whereas the probability for “public transport” as 

mode choice option decreases a little. These influences seem logical.  

In the following situation, when there are more cars in the household than car 

users (last column), the probabilities for the “car” increase from 0.480 (initial 

probability) to 0.851 (updated probability). In this situation, the probabilities for 

the other two mode choice options (slow transport and public transport) 

decrease. These influences also seem logical. Influences from other (state) 

nodes on mode choice are not discussed in this section, but they can be 

analysed the same way. 
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4 | Conditional mode choice  

 

As mentioned before, mode choice can only be predicted for a certain year 

given the life trajectory of previous years with the mode choice network. 

Obviously there is also an influence of the chosen mode in the previous year(s) 

on the mode choice in the current year. Since there is no data of previous 

years in terms of mode choice, this conditional dependency cannot be 

represented in the BBN estimated. In this section, it is illustrated how the 

influence of mode choice in the last year can be taken into account when 

predicting mode choice in the current year, by representing the degree of 

conditional dependency as a parameter.  

Figure 8 | 5 illustrates that given the available data mode choice can be 

predicted using the mode choice network in the year for which mode choice 

data is available. However, as illustrated in Figure 8 | 6 mode choice in any 

given year may also be influenced by mode choice in a previous year. In order 

to incorporate the influence of the mode choice in the previous year the 

following method is suggested. 

 

 

 

 

 

Figure 8 | 5: Mode choice without influence mode choice previous year 

 

 

 
Figure 8 | 6: Mode choice with influence mode choice previous year 
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The method is based on a distinction of two hypothetical, extreme cases of 

behaviour. In the first extreme, the individual is maximally consistent in the 

sense that he/she will always choose the same transport mode as in the 

previous year when there are no changes in conditions. In the second extreme, 

the individual is minimally consistent in the sense that mode choice in the 

previous year has no influence at all on choice probabilities in the current year. 

In reality, the behaviour will be somewhere in between these two extremes. 

The method uses a parameter (alpha) that indicates on a zero-one scale the 

degree of history dependence. Alpha = 1 represents absence of influence and 

alpha = 0 means a maximum influence of the previous year choice on the 

current choice. Posterior probabilities for mode choice can be calculated for 

each extreme case (as explained below) and actual probabilities can then be 

determined by calculating a weighted average of the probabilities across the 

two extremes using alpha as a weight. 

Given this approach, what remains to be defined is a method to determine 

choice probabilities for the two extreme cases. The method proposed is based 

on the following reasoning. The absence of influence case (alpha = 1) is 

straightforward: since there is no influence of history the choice probabilities 

correspond to the choice probabilities generated by the Bayesian Belief 

Network (which assumes the same). The full influence case (alpha = 0) is more 

complicated. That is to say, if the BBN does not predict a change in choice 

probabilities, because no state change occurred, then full influence simply 

means that the individual chooses the same mode as in the year before, 

implying that probabilities reduce to a zero-one distribution. However, if there is 

a state change then choice probabilities change and even if the influence of 

last year is maximal there is still some proportion of individuals (facing the 

same circumstances) that do change. In other words, the posterior probabilities 

are constrained by the requirement that across all individuals under same 

conditions the probabilities should summate to the probabilities predicted (for 

that year) by the BBN. The following equations define how posterior 

probabilities (conditional upon last year choices) are defined based on this 

logic. Note that under both alpha = 0 and alpha = 1 the resulting probabilities 

are consistent with those generated by the BBN. The BBN probabilities are 

realised only in a different way: all individuals stick maximally to their last 

choice versus all individuals act as if they are unaware of previous choices. 
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Since the probabilities for both extremes are consistent with the BBN 

prediction, the weighted averages determined by alpha are so too. The 

posterior probabilities can be calculated given the following equations: 

jij PP =|
0 i∀
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where: 

mode has three options: car, PT, and ST 

iP
  = a-priori probability of mode i in year t  

jP
  = a-priori probability of mode j in year t+1 

ijP |
0

 = conditional probability of mode j given mode i in the alpha = 0 situation 

ijP |
1

 = conditional probability of mode j given mode i in the alpha = 1 situation 

α
 = alpha value 

 

 In this way, the following conditions are met: 
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The process of calculating the conditional mode choice is illustrated given 

Figure 8 | 7. The simulation results for four successive years provide 

probabilities for mode choice in year 1, 2, 3 and 4. In the first year, the mode 

choice is determined using Monte Carlo simulation for the probabilities results 

of the simulation in the corresponding year (illustrated in the first row of the 

Figure 8 | 7). Mode choice, in the other years, is calculated as described. Thus, 

the posterior probabilities are calculated and Monte Carlo simulation is used to 

predict the mode choice. 

In the next section the conditional mode choice is calculated given three 

different alpha values.  

 

 

Figure 8 | 7: Calculation of mode choice for several years 
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5 | Scenario simulation 
 

To illustrate the application of both models a scenario is developed. One 

simulation run is used to illustrate this scenario. New houses are built every 

year in the Netherlands. Sometimes there is no space left in the city which 

results in housing developments outside the city (centre). Those developments 

are referred to as VINEX in the Netherlands, which is an abbreviation of Vierde 

Nota Extra. Houses are built for different target groups. It is interesting to study 

the different life trajectories of the inhabitants of those new housing 

developments and their mode choice. For example, these dynamics are at the 

moment not taken into account in the calculation of the traffic performance of a 

certain neighbourhood. 

In this illustration, it is assumed that ten inhabitants move into their houses in 

the new neighbourhood in 2009. Life trajectories are predicted for these ten 

inhabitants for eleven years, until the year 2019. The input for the life trajectory 

network consists of values for all variables/nodes in the life trajectory network, 

except the occurrence event nodes. This means that hard evidence is entered 

for the current situation (state nodes), the time ago an event occurred (time 

ago variables), for how many years ago information is available about that 

event (history nodes), and for age and gender (personal characteristics). The 

occurrence of the seven events nodes is predicted for all years. Remember 

only one simulation run is used in this example. This scenario illustrates the 

application of the models and is not meant to illustrate differences in the 

simulations.  

Although the simulation involves all years, only three moments in time are 

illustrated here: the states of the ten inhabitants in the new neighbourhood in 

the first year (2009), in the year 2013 and finally in the last year (2019). Table 

8 | 3 lists the states in the first year at the start of the simulation. In Table 8 | 4 

the states in the year 2013 are listed and Table 8 | 5 illustrates the year 2019.  
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In 2009 40% of the inhabitants are females and 60% males. There are no 

persons younger than 25, 30% of the persons are between 25 and 31 years of 

age, 10% is older than 46 and the remaining inhabitants (60%) are between 32 

and 46 years of age. All persons live independently, one person has a one 

person household, 60% of the inhabitants have a two-person household, one 

person has a three-person household and the rest (20%) belongs to a 

household of four or more household members. One person is unemployed and 

nobody is studying. 40% of the inhabitants has more car users in the household 

than cars and 60% has an equal number of car users and cars. Three persons 

have a PT pass, and all persons have an above modal household income.  

 

Table 8 | 3: States in year 2009 
 

Age Gender Housing HH Work Study Car PT 
pass Income 

30 Female independent 2 employed Not 
studying 

Car users 
< cars 

PT 
pass 

> modal 
income 

33 Female independent 3 employed Not 
studying 

Car users 
< cars 

No PT 
pass 

> modal 
income 

41 Female independent 4 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

56 Male independent 2 unemployed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

36 Male independent 2 employed Not 
studying 

Car users 
< cars 

PT 
pass 

> modal 
income 

30 Female independent 2 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

37 Male independent 5 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

32 Male independent 2 employed Not 
studying 

Car users 
< cars 

No PT 
pass 

> modal 
income 

31 Male independent 2 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

42 Male independent 1 employed Not 
studying 

Car users 
= cars 

PT 
pass 

> modal 
income 
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Table 8 | 4: States in year 2013 
 

Age Gender Housing HH Work Study Car PT 
pass Income 

34 Female independent 2 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

37 Female independent 4 employed Not 
studying 

Car users 
< cars 

No PT 
pass 

> modal 
income 

45 Female independent 4 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

60 Male independent 2 unemployed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

40 Male independent 2 unemployed Not 
studying 

Car users 
< cars 

PT 
pass 

< modal 
income 

34 Female independent 3 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

41 Male independent 3 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

< modal 
income 

36 Male independent 2 employed Not 
studying 

Car users 
< cars 

No PT 
pass 

> modal 
income 

35 Male independent 2 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

46 Male independent 2 employed Not 
studying 

Car users 
= cars 

PT 
pass 

> modal 
income 

 
Table 8 | 5: States in year 2019 
 

Age Gender Housing HH Work Study Car PT 
pass Income 

40 Female independent 1 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

42 Female independent 4 employed Not 
studying 

Car users 
< cars 

No PT 
pass 

> modal 
income 

51 Female independent 3 employed Not 
studying 

Car users 
= cars 

PT 
pass 

> modal 
income 

66 Male independent 2 unemployed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

46 Male independent 2 unemployed Not 
studying 

Car users 
< cars 

PT 
pass 

< modal 
income 

40 Female independent 4 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

47 Male independent 4 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

42 Male independent 1 employed Not 
studying 

Car users 
< cars 

No PT 
pass 

> modal 
income 

41 Male independent 2 employed Not 
studying 

Car users 
= cars 

No PT 
pass 

> modal 
income 

52 Male independent 1 employed Not 
studying 

Car users 
= cars 

PT 
pass 

> modal 
income 
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In the year 2013, every inhabitant will be four years older. This will result in no 

persons younger than 31; 10% will be older than 46 and the rest (90%) will be 

between 32 and 46 years of age. In the simulation, the housing situation will 

not change for these inhabitants. The one-person household is predicted to 

change into a two-person household. In total, four household are simulated to 

change in these five years. In one household, the number of household 

members is predicted to decrease, while in the other three households the 

number of members is predicted to increase. In the simulation, someone will 

lose his job before the year 2013. This will result in two persons who will be 

unemployed in 2013. There are no changes predicted related to study. Car 

availability is predicted to increase for one person, while for the other 

inhabitants car availability will remain stable. Only for one person a change in 

PT pass is simulated. This person will no longer posses a PT pass; her car 

availability will increase. This means that the PT pass will be exchanged for an 

extra car. The modal household income of the person who will be unemployed 

in 2013 is predicted to decrease.  

In the year 2019, four persons will be older than 46 and the rest (60%) will be 

between 32 and 46 years of age. The housing situation is predicted to be 

independent for all inhabitants. Compared to the situation in 2013, the number 

of household members is predicted to decrease in four households and 

increase in two households. The work and study states will the same as in the 

year 2013. The car availability state, PT pass state and household income will 

be the same as six years before. 

The simulated life trajectory of the one inhabitant is illustrated in Figure 8 | 8. 

The states of all events are on the x-axis, the names are listed on the right side 

of the figure. Each line in the figure refers to an event (i.e., career). For 

example the top line illustrates the household career for this person. The 

blocks, squares etc. correspond with an occurrence. Sometimes an event 

immediately results in a different state and sometimes not. The number of 

household members decreases from two to one household member. The other 

events in this life trajectory do not affect the corresponding states. The 

occurrence in the PT pass career in 2011 does not change the possession of 

the PT pass. The mode choice was also predicted in a simulation for these ten 

inhabitants for every year of the life trajectory. Figure 8 | 9 – 8 | 11 illustrate 

mode choice for this one person. 
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Figure 8 | 8: Simulated life trajectory of person one 

 

Figure 8 | 9 shows that this person is predicted to switch a few times between 

different transport mode options. First, a switch is predicted from car in 2009 to 

Public Transport in 2010. Next, the person is predicted to switch back to the 

car in 2011 and in the following year the person is simulated to switch to Slow 

Transport. After one year there is a predicted switch back to the car and this 

mode is predicted to be used until 2018. In 2019, the person will use Public 

Transport as the main transport mode. 

Figure 8 | 10 shows the results for a lower alpha value of 0.5. In this case, only 

two switches are predicted. This person is simulated to switch from car in 2009 

to public transport in 2010 and in 2011, a switch back to car as main transport 

mode is predicted. For the rest of the simulated time period, transport mode 

remains stable.  

Figure 8 | 11, which is based on an alpha value of 0.2 shows no switch 

between the different transport modes. The person uses the car as the main 

transport mode during these ten years. 
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Figure 8 | 9: Mode choice person one with alpha value 0.8 

 

Figure 8 | 10: Mode choice person one with alpha value 0.5 
 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 | 11: Mode choice person one with alpha value 0.2 
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These three figures illustrate the effect of the alpha value. The lower the alpha 

value, the less switching behaviour is predicted. In this example (alpha = 0.2), 

the transport mode in the first year determines the mode choice for all other 

years. The higher the alpha value, the more switching behaviour is predicted.  

The transport mode choice for all ten inhabitants during the eleven years is 

reported in three tables (Table 8 | 8 - Table 8 | 10). The three tables illustrate 

the same effect as indicated in the three figures of person’s one mode choice. 

 

Table 8 | 6: Mode choice with alpha value 0.8 
 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

car PT car ST car car car car car car PT 

car car car PT car car car PT car PT PT 

car car car car car car car PT car ST ST 

car car car car car car car car car car PT 

car PT PT PT car car PT PT car ST ST 

car car car car car car car car car car PT 

car car car PT car car car PT car PT PT 

car car car PT car car car PT car PT PT 

car car car car car car car car car car PT 

car PT car ST car car car PT car ST ST 
 

Table 8 | 7: Mode choice with alpha value 0.5 
 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

car PT car car car car car car car car car 

car car car car car car car car car car PT 

car car car car car car car car car PT ST 

car car car car car car car car car car car 

car PT PT PT car car car PT car PT ST 

car car car car car car car car car car car 

car car car car car car car car car car car 

car car car car car car car car car car PT 

car car car car car car car car car car car 

car car car car car car car car car PT ST 
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Table 8 | 8: Mode choice with alpha value 0.2 
 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

car car car car car car car car car car car 

car car car car car car car car car car car 

car car car car car car car car car car Car 

car car car car car car car car car car Car 

car car car PT PT PT PT PT PT PT PT 

car car car car car car car car car car Car 

car car car car car car car car car car Car 

car car car car car car car car car car Car 

car car car car car car car car car car Car 

car car car car car car car car car car Car 

 

Less switching between transport mode choice options are predicted for a 

lower alpha values (Table 8 | 8), while a higher alpha value results in more 

switching behaviour (Table 8 | 6). Modal split for the different years in the 

simulation is not compared, it is a small simulation sample.  

 

 

6 | Conclusion 
 

This chapter illustrated the use of the life trajectory model and the mode choice 

model to analyse direct and indirect effects of variables on other variables in 

the network. Two examples of entering hard evidence into the network were 

used for illustration purposes. In the life trajectory network, the influence of the 

housing event node on the other occurrence event nodes is simulated and in 

the mode choice network the effect of car availability state on mode choice is 

explained. Changed probabilities (e.g. updated probabilities) can be higher or 

lower than the initial probabilities, indicating respectively a positive or negative 

impact of the hard evidence.  
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In the life trajectory network, there is an influence of the housing occurrence 

event on the household and work events. The housing occurrence event 

showed no major influence on the other occurrence event nodes. Entering hard 

evidence for other nodes in the network can indicate different direct and 

indirect influences. The influence from the car availability state on mode choice 

in the mode choice network is explainable. The influence of other nodes in the 

network was not included in this example. 

In the real-world, people often make a decision about mode choice for a certain 

trip (for example the work trip) once and do not reconsider all mode options 

every day. This is habitual behaviour, which can be represented with the 

influence of mode choice in the previous year on mode choice in the current 

year. In the mode choice network, there is no link or influence of mode choice 

in the previous year on mode choice in the current year. However, the posterior 

mode choice can be calculated given a set of equations. The impact of the 

influence is controlled with a parameter (alpha value). The higher the alpha 

value, the lower the influence of mode choice in the previous year.  

Both networks are used for simulation purposes. The life trajectory and mode 

choice dynamics of ten new inhabitants in a neighbourhood were simulated for 

the formulated scenario. The life trajectory and the yearly mode choice of these 

inhabitants are predicted for eleven years, from 2009 until 2019. The current 

states in every year of the life trajectory give insight in the housing situation, 

the household composition, the work and education situation and the resources 

like car availability, PT pass possession and the household income of these ten 

inhabitants. The life trajectory gives insight in the dynamics of the seven 

careers of these inhabitants. A person’s life trajectory indicated that an 

occurrence of an event does not necessarily result in a change in the 

corresponding state.  

As mentioned before, there is no information available about the alpha value. 

Research is necessary to estimate alpha. Mode choice data has to be collected 

for at least two successive years. The context is of course also relevant. 

Information about the life course events and states in those years needs to be 

collected as well.  
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9 | Discussion and conclusions 
 

 

1 | Introduction 
 

This thesis contributes to the literature on activity-based modelling. More 

specifically, the focus is on the dynamics underlying activity-travel patterns. 

The specific focus in this thesis is concerned with life course or life trajectory 

events that may cause changing needs or preferences and/or influence the 

constraints that impact activity-travel decisions. This thesis is based on the 

assumption that life trajectory events may cause individuals and households to 

change their activity-travel patterns. A modelling approach that allows 

representing and simulating such dynamics was developed and tested in this 

thesis. Our special focus was on changes in transport mode choice. In this last 

chapter the most important results are summarised first. A short discussion 

follows and possible directions for future research are described.  
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2 | Short summary (conclusions) 
 

Traditionally, transport mode choice was primarily examined as a stand alone 

problem. Given a purpose and destination, the choice of transport mode was 

modelled as a function of the various attributes of the transport mode 

alternatives. Later, transport mode choice decisions were modelled as part of 

more comprehensive models (activity-based approach). There is a need in the 

transport research community to explore and model dynamics in activity-travel 

patterns along various time horizons. This will lead to dynamic models of 

behavioural change. In this thesis it is argued that a life course perspective 

offers some potential advantages in understanding and modelling activity-travel 

decisions, including transport mode choice. Central concepts in the life course 

approach are life trajectories, transitions and events. An individual life course is 

composed of multiple, interdependent careers (i.e. housing, household, 

education, occupational career) which develop over time in parallel. Earlier life 

transitions may have a cumulative effect on later life. The concepts of timing, 

sequencing, duration and spacing are used to describe life events, transitions 

and trajectories.  

The assumed effect of events on activity-travel decisions is captured in terms 

of a theory of learning and adaptation. Individuals develop and continuously 

adapt choice rules while interacting with their environment. The context is non-

stationary, uncertain and highly dynamic and therefore it is assumed that 

individuals adapt their behaviour. Under stationary conditions, individuals will 

show habitual behaviour after some period of time. A life course event is seen 

as a trigger that may induce individuals and households to reorganise their 

activities in time and space. A particular event may also lead to other life 

course events. Thus, life course events may have direct and indirect effects on 

activity-travel patterns. An event does not necessarily lead to immediate 

changes in particular facets of activity-travel patterns. Behavioural change may 

also occur in anticipation of life course events.  

Bayesian Belief Networks is the approach adopted in this thesis to model the 

direct and indirect effects of life course effects on transport mode choice. More 

complex causation patterns can be included and results can be directly 

interpreted in terms of the classified events. Such networks need as input 
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empirical data to learn the structure of the network and the conditional 

probability tables of the variables that are identified to be relevant.  

Data was collected using a retrospective Internet-based survey. Retrospective 

surveys, especially when administered through the Internet, are a good 

alternative for (quasi-)longitudinal data collection methods, like panel surveys, 

repeated cross sectional surveys, and cohort pseudo-panel surveys. One would 

expect that the quality of data coming from a retrospective survey depends on 

the nature of the event about which information is collected and on the time 

elapsed between the occurring of the events and the time of the retrospective 

survey. The quality of the data was tested and the results were positive. In 

case of life course events memory lapses are less of a problem. Life course 

events can be better recollected than other events. In this study, the results of 

the reliability and validity tests of the collected data showed that item non-

response in general was relatively low, especially for those life course events 

that serve as markers unfolding one’s life. A statistical analysis suggested that 

memory / cohort effects were not found for the more salient life course events, 

such as housing, work and study related events. Memory may have an effect in 

reporting of events in case of income and transport mode related events (car 

availability and PT pass). The study illustrated that certain details of events, 

such as housing type and housing state are more difficult to recall.  

The time effect of an influence of life course events on mode choice was tested 

with a simple multinomial logit model. The results support the conclusion that a 

certain time influence exists in the response to events. The data of the 

retrospective Internet-based survey was used as input for two Bayesian Belief 

Networks, a life trajectory and a mode choice network. A year is chosen as the 

unit of analysis for these networks. Both networks were successfully learned 

from the data. The first network can be used to simulate a person’s life 

trajectory and the second network can be used to predict mode choice for an 

individual at a certain time given the individual life trajectory.  

The goodness-of-fit of the learned Bayesian Belief Networks was assessed on 

the basis of the log likelihood statistic. The values indicated that both networks 

perform relatively well. It was also investigated whether the life trajectory 

network was capable of reproducing observed characteristics of complete life 

trajectories. The observed and predicted life trajectories were compared in 



Chapter 9 |  

 

178 

terms of the following criteria: the number of occurrences, interval times 

between occurrences of events, simultaneous occurrences of events and 

sequence of occurrences of events. The life trajectory network reproduced the 

number of occurrences in the life trajectories quite well. In general, the network 

predicted more or less the same means of interval times for the events, except 

for the PT pass event. The network was less successful in predicting correctly 

the observed incidence of synchronic events. The results of the sequence 

alignment analysis indicate that the network predicts the sequence of the 

occurrences in the life trajectories relatively good. The modal split (car, public 

transport and slow transport) of the predicted mode choice was compared with 

the observed mode choice. Results indicated a relatively small over prediction 

of public transport and under prediction of car and slow transport. This 

suggests that the mode choice network is able to simulate more or less the 

same mode choice as registered in the data. 

The learned networks were used to study direct and indirect effects of one 

variable on other variables in the network. The described effects seem logical. 

A simulation illustrated the dynamics of the lives of ten inhabitants of a newly 

build neighbourhood. It showed that, insight in dynamics of life trajectory 

events and mode choice can lead to a better understanding which can support 

the development of better or different policy measures.  

 

 

3 | Discussion and future research 
 

This study has indicated that Bayesian Belief Networks (BBNs) are a potentially 

powerful approach for modelling direct and indirect influences between 

variables. The potential advantage of BBNs over other techniques, like hazard 

models and multiple-spell duration models, is that more complex causation 

patterns can be included and that the results can be directly interpreted in 

terms of the classified events. On the other hand, whereas duration model have 

been explicitly developed for addressing time and duration, Bayesian Belief 

Networks have not. The Bayesian Belief Networks developed in this study rely 

on a translation of continuous time variables into discrete categories. The 
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reason is that many of the algorithms work best when a finite number of parent 

states is considered. However, continuous variables may provide a 

behaviourally more realistic representation of human behaviour. In duration 

modelling, for example hazard models, time can be handled as continuous 

variable. The choice of one year as the unit of observation was an operational 

decision. This choice will impact the conditional probabilities and will also 

impact the number of zero cells. It is important therefore to systematically 

investigate the sensitivity of predictions for the choice of time resolution.  

In any case, a difficulty of life course analysis may be the lack of longitudinal 

data. In the context of this study for example, in the Netherlands data about the 

occurrences of life course events, such as housing, household, work, study, car 

availability, public transport pass and household income were not available. 

Retrospective surveys administered through Internet, as used in this study, 

may be the best alternative, but are not without limitations. Crucial in this 

context is the way in which memory is triggered. In our survey, respondents 

answered questions about seven life course events separately, in seven 

matrices. Sometimes an occurrence in one career is related to occurrences in 

another career. The memory of one event can therefore also be triggered by 

the recollection of another event. Placing occurrences of different careers on 

an interactive time line may offer some advantages compared to the technique 

used in this study. Every event (e.g. career) can have a separate time line, but 

all time lines are in one computer screen. This technique can also be applied to 

collect information about other activity-travel behaviour aspects in retrospect. 

Respondents can link their behaviour to life course events, which can be 

recollected very well. Of course, it is important to use an appropriate time 

period for recollection. This means that the time elapsed between the 

behaviour of interest (or phenomena) and the time of the survey should not be 

too long. Future research should systematically compare the performance of 

alternative recall triggers. 

In this study there was no information available about the underlying reasons of 

occurrences of events. Therefore, it was not possible to investigate if 

occurrences were in anticipated direction or not. People can react or anticipate 

to the occurrence of events. If questions about the underlying reasons would 

be asked, analyses on pro-active versus reactive behaviour can be conducted.  
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The results of our pilot studies indicated that people had substantial difficulty in 

recalling their use of transport mode. For that reason, in the retrospective 

Internet-based survey respondents had to answer questions about their mode 

choice for different purposes at the time of data collection (and not in 

retrospect). This decision implies however that the direct and indirect influence 

of other events on changes in transport mode choice was not part of the model. 

To alleviate this problem, a modelling strategy was developed to incorporate 

the influence of mode choice in the previous year on the current year. The 

parameter representing this influence could not be estimated. This limitation 

means that either it is necessary to further explore other options for collecting 

information about the transport mode careers (and other facets of activity travel 

patterns for that matter), or to collect data to estimate the temporal influence 

parameter. If it can be assumed that this influence does not change 

significantly over time, data of mode choice for two consecutive years would 

suffice. Alternatively, assuming that recall of car purchasing behaviour has a 

higher reliability, car purchases can be treated and modelled as events, while 

transport mode choice can be modelled as a function of available resources, 

and the usual attributes. 

Although this thesis was positioned in the context of dynamic activity-based 

models of transport demand, only transport mode choice was deliberately 

considered to explore the modelling approach. Future research should however 

also consider other facets used in activity-travel models, like location choice, 

duration, etc.. Provided data about these facets are available, these facets can 

be added to the mode choice network in the future.  

The validation tests reported in this thesis are based on the same sample (700 

respondents) used for the learning of both networks. This means that the 

validation results are limited and therefore preliminary. If a larger sample would 

be available, it would be better to divide the data collection into two samples 

(training and testing data). One sample can then be used for the modelling 

(training) and the other sample can be used for validation purposes (testing). 

Over fitting may have occurred, since splitting the sample was assumed not to 

be realistic.  

Further extension of the networks could also include the reaction of individuals 

to changes in the transportation system, spatial or economical context. It is 
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interesting for example to study whether people adapt their behaviour when 

new mode options become available or when public transport options for 

certain trips are more frequently available.  

Finally, the current networks are based on individual life trajectories and not on 

trajectories of households. Households are a combination of one or more 

individuals and can be formed, dissolved, split in two or combined. Therefore, it 

is difficult to model life trajectories for households. Decisions made during the 

life course are often household decisions. In the current model, there is no 

guarantee of consistency between events of multiple individuals from the same 

household. The model can be extended with other household characteristics 

and the past experiences of household occurrences. Another interesting 

extension is the link between social networks and life trajectories of people. 

People exchange information with each other through social interaction. Social 

networks are also dynamic and change over time. In future research it is 

important to extend the network in this way. It could lead to better simulation 

results for dynamic behaviour.  
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Appendix 
 

This appendix consists of four parts. The first part illustrates the Internet-based 

survey which took place in 2004. All questions were in Dutch. First, the print 

screens of the survey are given. They give insight in the structure of the survey 

and questions asked (Appendix 1A). Next, a list with variables and classes is 

given (in English) for a more detailed insight into the collected data (Appendix 

1B). The second part illustrates the classification of the data collection into life 

course events. This means that the type of occurrence defined in the Internet-

based survey are combined into new classes. For example, in the Internet-

based survey there was a distinction between moving to a student room for the 

first time or for a second (or more) time. Both answer categories are combined 

into the occurrence student housing. All these translations are listed in 

Appendix 2. The routing of the Internet-based survey, as explained in chapter 

six, is illustrated in Appendix 3. In total there were eigth possible routings in the 

Internet-based survey. One routing is explained in chapter six, all routing . are 

illustrated in Appendix 4.  
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Appendix 1A | Questions Internet-based survey 
Household and personal characteristics: gender, year of birth, zipcode, 
education, living conditions, marital state, number of children, household 
members, hours of paid work, household income. 
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Availability of transport mode: possession of driver’s licence (and year), 
numbers of cars in the household, availability car, sharing car with others, 
possession of a bike, possession of a public transport pass; 
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Occurrence of lifecycle events: (a) change in residential location, (b) change in 
household composition, (c) change in work location, (d) change in study 
location, (e) change in car possession and availability, (f) change in availability 
of public transport pass, and (g) change in household income.  

Respondents indicated whether they experienced these events, and, if so, they 
indicated in a matrix the timing of the event (month and year), the cause of the 
change (i.e., the specific type of event) that took place and the before and after 
situation for every change to a maximum of ten changes.  
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Current travel behaviour per trip purpose: (a) work, (b) study, (c) grocery, (d) 
shopping and (e) sport.  

The respondent answered for each trip purpose questions in a matrix about trip 
frequency, mode choice, alternative mode choice, destination, travel distance, 
travel time and they also indicated the start time for the trip from home to their 
destination and for the trip back to home.  
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Perception of trip conditions: (a) comfort, (b) safety, (c) privacy, (d) 
environmental damage, (e) expenses, and (f) time.  

The respondents scored the different trip conditions with a score of 0 – 100 
(unfavourable – favourable) depending on different situations, like mode choice 
or a combination of mode choice and weather conditions. 
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Stated preference part was used for evaluation of the selected trip conditions. 
The stated preference part of the survey used an orthogonal fraction of a full 
factorial design to generate profiles in terms of the benefit variables. 
Respondents were asked to indicate their preference for each profile on a 0-
100 scale. 
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Appendix 1B | Variables Internet-based survey 
 

For every part of the survey the variables and the classes are listed here. The 
predefined answers are between brackets. If there was no list with answers it is 
noted with [open question]. 

 

Part 1: Personal and household characteristics 

Gender [Male; Female] 

Year of Birth [open question] 

Zip code [open question] 

Education [in Dutch: wetenschappelijk onderwijs; hoger beroepsonderwijs; 
hoger algemeen en voorbereidend wetenschappelijk onderwijs; middelbaar 
beroepsonderwijs; middelbaar algemeen voortgezet onderwijs; lager 
beroepsonderwijs; basis onderwijs; other, like…] 

Living situation [independent living ; student living ; parental living] 

Marital state [alone; living together; married; divorced; widow/widower; 
different, like…] 

Number of children [none; one child; two children; more than two children, …] 

Number of persons in the household [open question] 

Work hours [no paid job; < 11 hours a week; 12 – 19 hours a week; 20 – 34 
hours a week; > 35 hours a week] 

Household income [below 1 x modal income; around 1 x modal income; 
between 1 and 2 x modal income; around 2 x modal income; above 2 x modal 
income; I don’t know] Modal income was defined as +/- 25.000 euro bruto/year  

 

Part 2: Possession and Availability Transport Modes 

Driver’s licence [yes; no] 

Number of years driver’s licence [open question] 

One car in possession of the household [yes; no] 

Car available [yes, always; yes, after some consideration; no] 

Car sharing with .. others [open question] 

Total number of cars in the household [open question] 

Possession of a bike [yes; no] 

Possession of PT pass [None; OV student pass; OV year pass; NS year pass; 
Yearly route pass, Monthly route pass; benefit hours pass; City or region pass; 
different, like…] 
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Part 3: Occurrence Lifecycle Events 

1. Housing event 

Experienced an occurrence [never; a few times] 

Timing: since leaving parental house OR since age 16 

 

Month [No idea; list with all months] 

Year [choice of years] 

Before situation [open question] 

After situation  [open question] 

Type of change [first student room; another student room; living on your own; 
living together; rent a house; buy a house; live with parents; different] 

Housing type [studentroom; flat; appartement; terrace house; semi-detached 
house; detached house; place for elderly people; different] 

Payment [rented; bought]  

 

2. Household event 

Experienced an occurrence [never; a few times] 

Timing: since living independent  

 

Month [No idea; list with all months] 

Year [choice of years] 

Before situation [open question] 

After situation  [open question] 

Type of change [birth/adoption; leaving parental house; living together; 
breaking up; getting married; getting divorced; passing of family member; 
person moving in; person leaving; different] 
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3. Work event 

Experienced an occurrence [never; a few times] 

Timing: since leaving school  

 

Month [No idea; list with all months] 

Year [choice of years] 

Before situation [open question] 

After situation  [open question] 

Type of change [first job; another job; job transfer; temporarily no job; 
retirement; different] 

 

4. Study event 

Experienced an occurrence [never; a few times] 

Timing: since age 16 

 

Month [No idea; list with all months] 

Year [choice of years] 

Before situation [open question] 

After situation  [open question] 

Type of change [change school location; start new study; quit study; 
graduation; start course/certificate; start course/certificate; different]  

 

5. Car availability event 

Experienced an occurrence [never; a few times] 

Timing: since living independent OR leaving parental house OR driver’s licence 

 

Month [No idea; list with all months] 

Year [choice of years] 

Before situation [no car; one car, one car user; one car, > one car user; two 
cars, one car user; two cars, two car users; two cars, > two car users ] 

After situation [no car; one car, one car user; one car, > one car user; two 
cars, one car user; two cars, two car users; two cars, > two car users ] 

Type of change [more car users; less car users; more cars; less cars]  
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6. PT pass event 

Experienced an occurrence [never; a few times] 

Timing: since age 16 

 

Month [No idea; list with all months] 

Year [choice of years] 

Before situation [None; OV student pass; OV year pass; NS year pass; Yearly 
route pass, Monthly route pass; benefit hours pass; City or region pass; 
different] 

After situation [None; OV student pass; OV year pass; NS year pass; Yearly 
route pass, Monthly route pass; benefit hours pass; City or region pass; 
different] 

Type of change [start PT pass, stop PT pass] 

 

7. Household Income 

Experienced an occurrence [never; a few times] 

Timing: since living independent OR leaving parental house 

 

Month [No idea; list with all months] 

Year [choice of years] 

Before situation [below 1 x modal income; around 1 x modal income; between 
1 and 2 x modal income; around 2 x modal income; above 2 x modal income]  

After situation [below 1 x modal income; around 1 x modal income; between 1 
and 2 x modal income; around 2 x modal income; above 2 x modal income]  

Type of change [extra person in household with income; fewer persons with 

income; salary raise; different] 
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Part 4: Transport Mode Choice 

Five different trip purposes: work, study, groceries, shopping and sport 

Frequency [open question] every … [day; week; month; year] 

Main transport mode [not applicable; car as driver; car as passenger; bike; 

walking; train; bus; different] 

Alternative transport mode [not applicable; no alternative; car as driver; car 

as passenger; bike; walking; train; bus; different] 

Destination [open question] 

Departure time [not applicable; before 9h00; between 9h00 - 12h00; between 

12h00 – 16h00; between 16h00 – 19h00; after 19h00] 

Departure time return [not applicable; before 9h00; between 9h00 - 12h00; 

between 12h00 – 16h00; between 16h00 – 19h00; after 19h00] 

Distance [open question] 

Travel time [open question] 

 

Part 5: Judgement (CPT) 

Safety: car as driver; car as passenger; bike; bus; train 

Privacy: car as driver; car as passenger; bike; bus; train 

Environment: car as driver; car as passenger; bike; bus; train 

Comfort: car; bike with rain; bike with dry weather and 10 degree; bike with dry 
weather and 20 degree; PT with rain without transfer; PT with rain and one 
transfer; PT with rain and two transfers; PT with dry weather without transfer; 
PT with dry weather and one transfer; PT with dry weather and two transfers 

Costs: car; bus; train 

Travel time: car; bike; bus; train 

 

Part 6: Judgement (stated preference) 

Nine designs with six aspects (safety; comfort; privacy; environment; costs and 

travel time) of two levels (80=favourable, 20=not favourable) 
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Appendix 2 | Classification life course events 
 

Classes of the Internet-based survey are on the left side and the new classes 
are on the right side. The question type of change from the matrix question is 
recoded into 2 or 3 classes. 

 

Event: Housing (type of change) 

1 = first student room   2 = student housing 

2 = move to other student room     2 = student housing 

3 = independent living       1 = independent housing 

4 = living together   1 = independent housing 

5 = rent a house    1 = independent housing 

6 = buy a house      1 = independent housing 

7 = moving in with parents     3 = parental housing 

8 = other        1 = independent housing 

 

Event: Work (type of change) 

1 = first job    1 = employed 

2 = different job    1 = employed 

3 = job transfer    1 = employed 

4 = temporarily no job   2 = unemployed 

5 = retirement    2 = unemployed 

6 = other        1 = employed 

 

Event: Study (type of change) 

1 = change education center  1 = studying 

2 = start a new education  1 = studying 

3 = stop with education   2 = not studying 

4 = graduate     2 = not studying 

5 = start with certificate/course  1 = studying 

6 = stop with certificate/course  2 = not studying 

6 = other        2 = not studying 
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Classes of the Internet-based survey are on the left side and the new classes 
are on the right side. Before and After situations are recoded into new classes. 

 

Event: Household (Before/After) 

# Household members   1 = one person  

      2 = two persons 

      3 = three persons 

      4 = four+ persons 

 

Classification is the last step. This means that a transfer from for example 4 to 
5 persons is listed as occurrence “change, increase of number of household 
members” (instead of “change, same number of household members” from 4+ 
persons to 4+ persons). 

 

Event: Car availability (Before/After) 

1 = no car    0 = no car 

2 = 1 car, 1 car user   2 = # cars = # car users 

3 = 1 car, > 1 car user   1 = # cars < # car users 

4 = 2 cars, 1 car user   3 = # cars > # car users 

5 = 2 cars, 2 car users   2 = # cars = # car users 

6 = 2 cars, > 2 car users   1 = # cars < # car users 

 

Event: Public transport pass (Before/After) 

1 = no pass    0 = no PT pass 

2 = OV student pass   1 = PT pass 

3 = OV year pass (all PT)  1 = PT pass 

4 = NS year pass (only train)  1 = PT pass 

5 = year route pass   1 = PT pass 

6 = month route pass   1 = PT pass 

7 = month pass    1 = PT pass 

8 = discount pass   1 = PT pass 

9 = City or Region pass (bus)  1 = PT pass 

10 = other    1 = PT pass 
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Event: Household Income (Before/After) 

1 = below modal income   1 = class one (<= modal income) 

2 = 1x modal income   1 = class one (<= modal income) 

3 = between 1x and 2x modal income 2 = class two (> modal income) 

4 = 2x modal income   2 = class two (> modal income) 

5 = above 2x modal income  2 = class two (> modal income) 
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Appendix 3 | List of occurrences and states of all life 
course events 
 

In the first colum the occurrences are listed and in the second column the 
different event states are listes. In the thesis there is often a referrence to 
subevent. The numbers used for these subevents are listed in the left column.  

 

Housing event 

     No change        independent living 

 1  Change, independent housing      student living 

 2  Change, student housing      parental living 

 3  Change, parental housing 

 

Household event 

     No change        one household member 

 4  Change, decrease household members     two household members 

 5  Change, increase household members     three household members 

 6  Change, same household members     four or more household members 

 

Work event 

     No change        employed 

 7  Change, employment       unemployed 

 8  Change, unemployment 

 

Study event 

     No change        studying 

 9  Change, study       not studying 

10 Change, no study 
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Car availability event 

     No change        no car  

11 Change, decrease car availability     car users > cars 

12 Change, increase car availability     car users = cars 

13 Change, same car availability      car users < cars 

 

PT pass event 

     No change        No PT pass 

14 Change, stop PT pass      PT pass 

15 Change, start PT pass   

16 Change, change PT pass  

 

Household Income event 

     No change        < = modal income 

17 Change, decrease household income     > modal income 

18 Change, increase household income  

19 Change, same household income  
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Appendix 4 | Routing Internet-based survey 
 

Routing 1  

living situation= independent housing (1)  

age => 35 years old (2) 

driver’s licence= yes (Y) 

 

Event  recall period   routing      

Housing since Tx= leaving parental house (living situation=1) 

Household since Tx= leaving parental house (living situation=1) 

Work   since Ty= leaving school 

Study  skipped    (age=2) 

Car availability since Tz= living independent  (living situation=1) 

        (driver’s licence=Y) 

PT pass since age 16  

Household Income since Tz= living independent  (living situation=1) 

 

 

Tx = leave parental house   

Ty = leave school 

Tz = live on your own    
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Routing 2 

living situation= independent housing (1)  

age => 35 years old (2) 

driver’s licence = no (N) 

 

Event  recall period   routing      

Housing since Tx= leaving parental house (living situation=1) 

Household since Tx= leaving parental house (living situation=1) 

Work   since Ty= leaving school 

Study  skipped    (age=2) 

Car availability skipped    (living situation=1) 

        (driver’s licence=N) 

PT pass since age 16  

Household Income since Tz= living independent  (living situation=1) 

 

 
Tx = leave parental house   

Ty = leave school 

Tz = live on your own    
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Routing 3 

living situation= independent housing (1)  

age < 35 years old (1) 

driver’s licence = yes (Y) 

 

Event  recall period   routing      

Housing since Tx= leaving parental house (living situation=1) 

Household since Tx= leaving parental house (living situation=1) 

Work   since Ty= leaving school 

Study  since age 16    (age=1) 

Car availability since Tz= living independent  (living situation=1) 

        (driver’s licence=Y) 

PT pass since age 16  

Household Income since Tz= living independent  (living situation=1) 

 

 
Tx = leave parental house   

Ty = leave school 

Tz = live on your own    
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Routing 4 

living situation= independent housing (1)  

age < 35 years old (1) 

driver’s licence = no (N) 

 

Event  recall period   routing      

Housing since Tx= leaving parental house (living situation=1) 

Household since Tx= leaving parental house (living situation=1) 

Work   since Ty= leaving school 

Study  since age 16    (age=1) 

Car availability skipped    (living situation=1) 

        (driver’s licence=N) 

PT pass since age 16  

Household Income since Tz= living independent  (living situation=1) 

 

 
Tx = leave parental house   

Ty = leave school 

Tz = live on your own    
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Routing 5 

living situation= student housing (2)  

age < 35 years old (1) 

driver’s licence = yes (Y) 

 

Event  recall period   routing      

Housing since Tx= leaving parental house (living situation=2) 

Household skipped    (living situation=2) 

Work   since Ty= leaving school 

Study  since age 16    (age=1) 

Car availability since Tx= leaving parental house (living situation=2) 

        (driver’s licence=Y) 

PT pass since age 16  

Household Income since Tx= leaving parental house (living situation=2) 

 

 
Tx = leave parental house   

Ty = leave school 
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Routing 6 

living situation= student housing (2)  

age < 35 years old (1) 

driver’s licence = no (N) 

 

Event  recall period   routing      

Housing since Tx=leaving parental house (living situation=2) 

Household skipped    (living situation=2) 

Work   since Ty=leaving school 

Study  since age 16    (age=1) 

Car availability skipped    (living situation=2) 

        (driver’s licence=N) 

PT pass since age 16  

Household Income since Tx= leaving parental house (living situation=2) 

 

 
Tx = leave parental house   

Ty = leave school 
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Routing 7  

living situation= parental housing (3)  

age < 35 years old (1) 

driver’s licence = yes (Y) 

 

Event  recall period   routing      

Housing since age 16    (living situation=3) 

Household skipped    (living situation=3) 

Work   since Ty= leaving school 

Study  since age 16    (age=1) 

Car availability since Ti= driver’s licence  (living situation=3) 

        (driver’s licence=Y) 

PT pass since age 16  

Household Income skipped    (living situation=3) 

 

 
Ty = leave school    

Ti = driver’s licence 
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Routing 8  

living situation= parental housing (3)  

age < 35 years old (1) 

driver’s licence = no (N) 

 

Event  recall period   routing      

Housing since age 16    (living situation=3) 

Household skipped    (living situation=3) 

Work   since Ty= leaving school 

Study  since age 16    (age=1) 

Car availability skipped    (living situation=3) 

        (driver’s licence=N) 

PT pass since age 16  

Household Income skipped    (living situation=3) 

 

 
Ty = leave school 
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Summary 
Modelling life trajectories and mode choice using Bayesian Belief Networks 

 

Traditionally, transport mode choice was primarily examined as a stand alone 

problem. Given a purpose and destination, the choice of transport mode was 

modelled as a function of the various attributes of the transport mode 

alternatives. Later, transport mode choice decisions were modelled as part of 

more comprehensive models (activity-based approach). There is a need in the 

transport research community to explore and model dynamics in activity-travel 

patterns along various time horizons. This will lead to dynamic models of 

behavioural change. In this thesis, it is argued that a life course perspective 

offers some potential advantages in understanding and modelling activity-travel 

decisions, including transport mode choice. Central concepts in the life course 

approach are life trajectories, transitions and events. An individual life course is 

composed of multiple, interdependent careers (i.e. housing, household, 

education, occupational career) which develop over time in parallel. Earlier life 

transitions may have a cumulative effect on later life. The concepts of timing, 

sequencing, duration and spacing are used to describe life events, transitions 

and trajectories.  

The assumed effect of events on activity-travel decisions is captured in terms 

of a theory of learning and adaptation. Individuals develop and continuously
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adapt choice rules while interacting with their environment. The context is non-

stationary, uncertain and highly dynamic and therefore it is assumed that 

individuals adapt their behaviour. Under stationary conditions, individuals will 

show habitual behaviour after some period of time. A life course event is seen 

as a trigger that may induce individuals and households to reorganise their 

activities in time and space. A particular event may also lead to other life 

course events. Thus, life course events may have direct and indirect effects on 

activity-travel patterns. An event does not necessarily lead to immediate 

changes in particular facets of activity-travel patterns. Behavioural change may 

also occur in anticipation of life course events.  

Bayesian Belief Networks is the approach adopted in this thesis to model the 

direct and indirect effects of life course effects on transport mode choice. More 

complex causation patterns can be included and results can be directly 

interpreted in terms of the classified events. Such networks need as input 

empirical data to learn the structure of the network and the conditional 

probability tables of the variables that are identified to be relevant.  

Data was collected using a retrospective Internet-based survey. Retrospective 

surveys, especially when administered through the Internet, are a good 

alternative for (quasi-)longitudinal data collection methods, like panel surveys, 

repeated cross sectional surveys, and cohort pseudo-panel surveys. One would 

expect that the quality of data coming from a retrospective survey depends on 

the nature of the event about which information is collected and on the time 

elapsed between the occurring of the events and the time of the retrospective 

survey. The quality of the data was tested and the results were positive. In 

case of life course events memory lapses are less of a problem. Life course 

events can be better recollected than other events. In this study, the results of 

the reliability and validity tests of the collected data showed that item non-

response in general was relatively low, especially for those life course events 

that serve as markers unfolding one’s life. A statistical analysis suggested that 

memory / cohort effects were not found for the more salient life course events, 

such as housing, work and study related events. Memory may have an effect in 

reporting of events in case of income and transport mode related events (car 

availability and PT pass). The study illustrated that certain details of events, 

such as housing type and housing state are more difficult to recall.  
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The time effect of an influence of life course events on mode choice was tested 

with a simple multinomial logit model. The results support the conclusion that a 

certain time influence exists in the response to events. The data of the 

retrospective Internet-based survey was used as input for two Bayesian Belief 

Networks, a life trajectory and a mode choice network. A year is chosen as the 

unit of analysis for these networks. Both networks were successfully learned 

from the data. The first network can be used to simulate a person’s life 

trajectory and the second network can be used to predict mode choice for an 

individual at a certain time given the individual life trajectory.  

The goodness-of-fit of the learned Bayesian Belief Networks was assessed on 

the basis of the log likelihood statistic. The values indicated that both networks 

perform relatively well. It was also investigated whether the life trajectory 

network was capable of reproducing observed characteristics of complete life 

trajectories. The observed and predicted life trajectories were compared in 

terms of the following criteria: the number of occurrences, interval times 

between occurrences of events, simultaneous occurrences of events and 

sequence of occurrences of events. The life trajectory network reproduced the 

number of occurrences in the life trajectories quite well. In general, the network 

predicted more or less the same means of interval times for the events, except 

for the PT pass event. The network was less successful in predicting correctly 

the observed incidence of synchronic events. The results of the sequence 

alignment analysis indicate that the network predicts the sequence of the 

occurrences in the life trajectories relatively good. The modal split (car, public 

transport and slow transport) of the predicted mode choice was compared with 

the observed mode choice. Results indicated a relatively small over prediction 

of public transport and under prediction of car and slow transport. This 

suggests that the mode choice network is able to simulate more or less the 

same mode choice as registered in the data.  

The learned networks were used to study direct and indirect effects of one 

variable on other variables in the network. The described effects seem logical. 

A simulation illustrated the dynamics of the lives of ten inhabitants of a newly 

build neighbourhood. It showed that, insight in dynamics of life trajectory 

events and mode choice can lead to a better understanding which can support 

the development of better or different policy measures.  
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