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Summary

Multi-scale Modelling of Thermal Shock Damage in

Refractory Materials

Refractories are high-temperature resistant materials used extensively in many engi-
neering structures and assemblies in a wide spectrum of applications ranging from
metallurgical furnace linings to thermal barrier coatings. Such structures are of-
ten exposed to severe thermal loading conditions in the form of rapid temperature
changes (thermal shock) and/or temperature cycles. The understanding and mod-
elling of the failure processes are definitely necessary to achieve reliable life-time
predictions of the existing structures and to develop design rules for improvement.

Due to their high temperature resistance, alumina based refractory ceramics with
a porous granular microstructure being far from homogenous are commonly used
in the applications as mentioned above. In such heterogeneous material systems,
local thermal expansion (CTE) mismatches, non-uniformities and anisotropy of the
different constituents naturally lead to the appearance of internal stresses which are
essentially the driving mechanisms for micro-cracking and damage. Under highly
transient external thermal loading conditions, the resulting heterogeneous tempera-
ture distribution may lead to a complicated mechanical response along with a non-
uniform mechanical and physical property degradation accompanied by irreversible
geometry changes. The altered distribution of the mechanical properties dictates
the macroscopic response when the external loading is further varied. Therefore, a
strong coupling between the evolving microstructure and the macroscopic response
arises. Moreover, microstructural configurational changes may trigger a significant
interaction between the mechanical and thermal fields, for instance due to a reduced
heat transport across a damaged interface. Therefore, an approach taking into ac-
count these mechanisms sufficiently well would render a versatile tool to improve
the understanding of the influence of mechanical and thermal properties at the con-
stituent level and their mutual interaction from a microstructural perspective.

In this thesis, a concurrent multi-scale framework for the thermo-mechanical analy-
sis of heterogeneous materials is proposed, with a particular focus on coarse grained
refractory ceramics. The framework is essentially based on a rigorous extension of
the well established FE2 computational homogenization technique, where the local
macroscopic response is determined through the solution of a boundary value prob-
lem defined on a representative volume of the underlying microstructure. At first,
the computational homogenization ideas are explored in the context of pure heat con-
duction processes in heterogeneous solids. Subsequently, the framework for coupled

ix



x SUMMARY

thermo-mechanical analyses is constructed by combining the first order mechanical
homogenization with the dual procedure developed for heat conduction, within an
operator-split (or staggered) solution algorithm which is composed of incrementally
uncoupled nested (FE2) solution blocks for thermal and mechanical equilibrium sub-
problems.

For predictive computations, the mechanical and thermophysical properties of in-
dividual phases and interfaces at the microstructural level are required, which is a
distinctive characteristic of such a multi-scale approach. Due to the lack of material
data, particularly for interfaces, direct numerical simulations (DNS) are exploited to
identify the parameters inversely by using a limited set of molten aluminium ther-
mal shock test results. On the basis of a microstructure composed of mutually non-
contacting large grains embedded in a homogeneous matrix reflecting a compound
of very fine grains, molten aluminium thermal shock tests are reproduced in full
detail under realistic boundary conditions and a computational procedure is devel-
oped to determine the damage distribution along the specimen which is compared
to experimental results. The failure mechanisms at the matrix-grain interface level
are resolved by introducing thermo–mechanical cohesive zone elements not only ca-
pable of accounting for the mechanical decohesion but also including the reduced
heat transport through the mechanically damaged interfaces. Fine scale micro-cracks
within the matrix are smeared out by using a well-established continuum damage
mechanics formulation which is free of any pathological localization and mesh sen-
sitivity problems. Direct numerical simulation of thermal shock tests has also served
for the investigation of short range effects (due to the local CTE mismatch) and long
range effects (elastic fields accompanying the temperature gradient) on the resulting
thermo-mechanical damage profile, through variations of different microstructural
material parameters.

In the last part of the thesis, predictive capabilities of the developed analysis frame-
work are assessed by means of the two–scale analysis of a real size ladle refractory
lining, based on the microstructural parameters identified through direct numerical
simulations.



CHAPTER ONE

Introduction

In materials engineering, the term ‘refractory’ is used to indicate the class of mate-
rials which are resistant to harsh thermal environments and typically used in high
temperature applications. The performance of high temperature resistant materials
is decisive on the reliability and functionality of many engineering structures ranging
from industrial furnace linings to thermal barrier coatings.

Under operation conditions, for instance in industrial furnaces, the temperatures
reach extremely high values, which requires materials with high melting and trans-
formation temperatures. Furthermore, there are other adverse effects, e.g. chemical
interaction with the molten metal and slag, which threaten the integrity of the ma-
terial and influences the selection of the material system for a specific application.
Therefore, manufacturing and selection of high temperature resistant materials is a
multi-faceted problem governed by multiple criteria.

Manufacturing of refractory materials is heavily based on oxides, e.g. Al2O3, due to
their relatively high melting temperatures. Through the sintering process, individual
grains of the initial mix build up a coherent, unified microstructure as exemplified in
figure 1.1. Under severe thermal conditions, the overall material response is dictated
by the collective behaviour of individual components and interfaces.

When a refractory material experiences a temperature change, due to its heteroge-
neous microstructure, individual phases with different thermal expansion charac-
teristics tend to expand/contract in a different way from the neighbouring phases,
leading to micro-stresses. Furthermore, a temperature change within the material, in
general, occurs in a non-uniform way due to sudden changes of the ambient temper-
ature, e.g. thermal shock type loading. Non-uniformity of the temperature change
induces non-uniform thermal strains and in turn micro-stresses within the material.
As the stresses reach significant levels, damage and cracking at the micro level initi-
ates which is the basis for mechanical and physical property degradation observed
at the macro level. Models incorporating the associated micro-mechanisms would be

1



2 1 INTRODUCTION

(a) (b)5 mm 1 mm

Figure 1.1: Typical microstructure of coarse grained refractory ceramics (Alumina-
mullite composite), (a) light microscope image, (b) TEM image

instrumental to investigate the microstructural effects on the macroscopic properties
and are desirable to assess the significance of microstructural parameters in view of
designing an optimum microstructural lay-out for a particular application.

The development of analysis and predictive tools to determine the thermo-
mechanical response of refractory materials have elucidated researchers for many
years starting with the early works of Kingery and Hasselmann, [1–3]. In these
works, quenching tests on fine grained technical ceramics were conducted and in-
teresting relations between average grain size and residual strength were observed.
Considering an equivalent homogeneous medium, analytical techniques based on
linear elasticity and fracture mechanics were developed and confronted with the
quenching test results. However, capturing the peculiar microstructural dependency
of residual strength was out of scope with the analysis approaches developed. Dif-
ferent characteristic parameters reflecting different regimes, e.g. crack initiation and
crack propagation, were devised to rank the resistance of materials under thermal
shock loading conditions. However, contradictory rankings result [3–5], which indi-
cated the necessity to unify the elaboration of different regimes as done in [6]. That
study serves well to classify the materials in terms of thermal shock resistance on the
basis of ‘homogenized’ macroscopic properties without giving any attention to the
heterogeneous microstructure of refractories.

Focusing on the micro-mechanisms under uniform temperature change, analyses of
geometrically simplified microstructural systems, e.g. a single grain embedded in a
matrix or an array of hexagonal grains, have been carried out, [7–10]. These stud-
ies were useful to capture the grain size dependency of thermally induced micro-
cracking, critical sites of crack initiation, the influence of mechanical and thermal
anisotropy. Making use of the cohesive zone concept in a finite element framework,
geometrically more complex granular assemblies were analyzed to investigate the
sensitivity of microstructural parameters, [11, 12]. In these studies, the boundary
conditions were prescribed whereas in a real material system, the strain and tem-
perature change at a certain material point is intimately related to the local material
properties. Under highly transient external thermal loading conditions, the result-
ing heterogeneous temperature distribution may lead to a complicated mechanical
response and a non-uniform mechanical and physical property degradation accom-
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panied by irreversible geometrical changes. An altered distribution of properties dic-
tates the macroscopic response when the external loading is further varied. There-
fore, a strong coupling between the evolving microstructure and the macroscopic
response arises. For a realistic analysis, the link between the macro scale boundary
conditions and the microscopic response should be constructed in a consistent way.

Concurrent multi-scale methods, which have been an active research field in the last
decade, address the coupling of hierarchical scales with a wide range of constitu-
tive models and damage mechanisms that can be embedded into the fine scale be-
haviour of heterogeneous materials, [13–20]. Instead of using a classical constitutive
law at the macro scale, the macroscopic stresses are obtained from the solution of a
boundary value problem (BVP) defined on a representative volume of the underlying
material. Relying on the well-established constitutive descriptions that can be used
for experimentally identified individual phases, the empirical character associated
with phenomenological modeling approaches for heterogeneous material systems,
is reduced. As opposed to classical constitutive models, mechanical and thermo-
physical properties of the individual phases and interfaces are necessary to construct
this framework and to carry out predictive computations. For well-identified phases,
existing material data bases are quite useful but determination of interface character-
istics and very fine composite phase characteristics are not straightforward and poses
some experimental challenges as well. At the current state, inverse methods of pa-
rameter identification seem to be the only alternative which requires direct numerical
simulation (DNS) techniques in the context of heterogeneous material system char-
acterization.

Scope and Outline of the Thesis

In this thesis, a concurrent multi-scale framework for the thermo-mechanical analysis
of heterogeneous materials is proposed along with a methodology to identify the pa-
rameters of a typical refractory material by means of a direct numerical simulation
(DNS) technique. Focusing on coarse-grained refractory ceramics, first the failure
mechanisms at the microstructural level are worked out by means of proper consti-
tutive descriptions. To this end, in the second chapter, a thermo-mechanical cohesive
zone formulation is presented, addressing not only the mechanical decohesion but
also the reduced heat transport through the material interfaces. Due to the lack of
material parameters at the microstructural level, a limited set of molten aluminium
thermal shock test results are used to determine the material parameters inversely
in chapter 3. A direct numerical simulation (DNS) technique is employed where the
test specimens are reproduced in full detail and the essential micro-damage mech-
anisms are incorporated by means of thermo-mechanical cohesive zone elements at
the interfaces and an implicit gradient damage mechanics formulation for the matrix.
Following the thermal loading history, in order to determine the thermal shock dam-
age along the sample, an equivalent procedure is developed and the results are com-
pared with the experimentally determined damage distributions based on dynamic
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Young’s Modulus measurements. Furthermore, the influence of various parameters
on the resulting damage profiles are investigated with the same direct numerical sim-
ulation framework. In chapter 4, exploiting the ideas of computational homogeniza-
tion techniques for purely mechanical problems, an appropriate multi-scale frame-
work is developed for heat conduction in heterogeneous solids. Subsequently in
chapter 5, the framework for thermo-mechanical analyses is constructed by com-
bining the first order mechanical homogenization with the procedure developed for
heat conduction, within an operator-split solution algorithm which is composed of
incrementally uncoupled nested (FE2) solution blocks for thermal and mechanical
equilibrium subproblems. Thereafter, the predictive capabilities of the developed
analysis framework are assessed by means of a two-scale analysis of a real size ladle
refractory lining, in combination with microstructural parameters identified through
direct numerical simulations. Finally the thesis closes with a conclusion and outlook
chapter, in which the significance, advantages and disadvantages of the proposed
framework are highlighted along with reflections on possible improvements and is-
sues that can be addressed in future work.



CHAPTER TWO

A Thermo-mechanical Cohesive Zone
Model 1

Abstract

In this chapter, a cohesive zone formulation that is suitable for the thermo-
mechanical analysis of heterogeneous solids and structural systems with contact-
ing/interacting components, is presented. Well established traction-opening re-
lations are adopted and combined with micromechanically motivated heat flux-
opening relations reflecting the evolving heat transfer through the interfaces. The fi-
nite element approach for a coupled analysis within an operator-split solution frame-
work is presented and demonstrated with an example problem.

1Based on: I. Özdemir, W.A.M. Brekelmans, M.G.D. Geers (2008). A Thermo-mechanical Cohesive
Zone Model. to be submitted.
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6 2 A THERMO-MECHANICAL COHESIVE ZONE MODEL

Figure 2.1: Cohesive cracking in different materials, reproduced from [21]

2.1 Introduction

For heterogeneous materials and multilayered structural systems, in general, inter-
faces are the weakest links. Knowledge and understanding of thermo-mechanical
and physical features and behaviour of interfaces are of utmost importance to im-
prove the performance and reliability of these material systems and engineering
structures.

The basic tool for predicting failure of interfaces is linear elastic fracture mechan-
ics (LEFM), which is limited essentially by the bulk constitutive response and the
size of the fracture process zone as compared to the crack size. Furthermore, the
LEFM solution cannot capture the real stress distribution at the vicinity of the crack
tip. These limitations have been removed by the introduction of the ‘cohesive zone’
concept, which basically removes the crack tip singularity by employing a traction-
opening law that reflects the limited strength of the material and the mechanisms
of load transfer taking place within the fracture process zone, see figure 2.1. Typi-
cally, the interfacial details are not resolved explicitly and the associated load transfer
mechanisms are lumped into cohesive zone constitutive relations (traction-opening
relations). This approach has been used successfully for the prediction of failure of
interfaces subjected to many different boundary conditions, see [21,22] and the cited
references therein.

A vast amount of literature exists starting with the seminal work of Xu and Needle-
man [23], whereby the majority of papers focuses on the mechanical characteristics of
the interfaces only. However, for a large number of cases, the actual loading case also
includes severe temperature changes (thermal shock) and thermal cycles (thermo-
mechanical fatigue) exposed to the system. As discontinuities (cracks) initiate and
propagate, they act as barriers for heat flow, therefore affecting the evolving temper-
ature profile within the solid. This clearly influences the thermal strains and may
alter the mechanical response significantly in return. Meso-level modeling of con-
crete failure under fire and the reliability analysis of thermal protection layers are
two examples which necessitate a proper thermo-mechanical interface description at
different scales as presented in [24] and [25].

Within the framework of continuum thermodynamics, a thermo-mechanical inter-
face description with damage is presented in [26], though it lacks some physical mo-
tivation for certain arguments. Similarly, the authors of [27] present a continuum
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interface model which is to some extent, independent of the bulk, equipped with its
particular thermodynamical potentials and connected/coupled to the bulk by cer-
tain assumptions. Furthermore, it requires some extra effort to convert the formu-
lation into a favorable format considering implementation aspects, [28]. Motivated
by ductile fracture problems, [29] presents a similar formulation in the sense that the
interface has its own thermodynamical potentials and an efficient discretization is
realized within an X-FEM framework.

Alternatively, [30] proposes a micromechanically motivated thermo-mechanical co-
hesive zone description for fiber-reinforced ceramic matrix composites, which how-
ever does not take into account the thermal strains of the bridging fibers. Pursu-
ing a phenomenological approach, the same authors presented a model, [25], [30]
where the heat transfer along the interface is neglected. Though it is sufficient for
the loading conditions considered in these studies, in some other cases (e.g. mode II
dominated situations), a more rigorous heat flow analysis may become necessary.

Considering idealized load and heat transfer mechanisms suggests to construct the
thermal response of all micro-mechanisms and separating materials involved as the
basis for quantifying heat transfer across the cohesive zone. Therefore, the conduc-
tivity of the bridging fibers or fibrils and the air within the crack enclosure deter-
mines the conductivity attributed to the cohesive zone model, see figure 2.1. Fur-
thermore, thermal expansion of these microstructural components reveals itself as
thermal strains in the corresponding traction-opening law and has to be taken into
account properly. Moreover, in analogy with the mechanical response, at the crack
tip a singularity in the temperature gradient arises [31], which can be effectively han-
dled by introducing the thermal/cohesive zone concept.

It is the aim in the present chapter to develop a physically motivated, complete
thermo-mechanical cohesive zone model including its finite element formulation,
which can be used at the meso-level modeling of heterogenous materials and multi-
layered structures.

In the next section, the heat transfer across a partially open interface is presented
which is the basis for the heat flux-opening relations. The mechanical counter part of
the problem is presented in section 3 within a thermo-mechanical context for the sake
of completeness. Thereafter, a finite element formulation, which uses the presented
interface constitutive laws and a solution algorithm based on the operator-split tech-
nique, is briefly summarized. An example problem is elaborated to demonstrate the
merits of the presented formulation.

2.2 Interface Heat Conductance and Thermal Expan-
sion

In case of heat flow, across a partially open cohesive crack, a temperature jump be-
tween the two faces of the discontinuity is observed since the coupling between the
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further loading

~t

~n
~m

(−)

(+)

JθK = θ+ − θ−

~m =
~x
+−~x

−

||~x+−~x−||

Figure 2.2: Discontinuity splitting a material point

interfacial load and heat transfer mechanisms are not explicitly resolved in a cohe-
sive zone model. It is important to note that the heat flux through crack bridging
matter (e.g. fibrils) has a certain direction which has to be properly accounted for in
a coarse scale cohesive zone model.

To this end, the temperature jump is defined as a vectorial quantity according to

J~θK = JθK~m (2.1)

where JθK = θ+ − θ− is the temperature difference between the two material points
(depicted as + and −), which were sharing the same position prior to the appearance
of the discontinuity and ~m is the unit vector directed along the line connecting these
two points as shown in figure 2.2. The temperature jump is intimately linked to the
heat conduction taking place within the crack, both through the bridging solid parts
and air filling the crack enclosure. In fact upon further loading, the crack bridging
material gradually disappears and the effective conductance diminishes due to the
loss of a heat conducting solid medium. The concept of thermal damage mechanics
fits very well to quantify the reduction in effective conductivity, i.e. the heat flow
conducted through the interface solid connections/links can be expressed as,

~qs = −(1 − d)ksJ~θK (2.2)

where d is the damage variable further discussed in section 3 and ks is an effec-
tive thermal conductivity that is largely determined by the conductivity of the crack
bridging structures, their fraction within the unit cohesive surface and their geo-
metric layout. Since cohesive surfaces lack the third dimension (the thickness), ks

of equation (2.2), is in fact a heat conductance coefficient, quantifying the heat trans-
ported between the two surfaces that is proportional to the conductivity of the bridg-
ing solid fractions and inversely proportional with the thickness of the interface. The-
oretically, perfectly conducting interfaces should have infinitely large ks values but
in a computational setting sufficiently large values should be adopted instead, see
section 4.

At this stage, it is more appropriate to decompose the heat flux vector into a normal



2.2 INTERFACE HEAT CONDUCTANCE AND THERMAL EXPANSION 9

and a tangential component as,

qs
n = −(1 − d)ks JθK ~m · ~n (2.3a)

qs
t = −(1 − d)ks JθK ~m · ~t (2.3b)

where ~n and~t are unit normal and tangent vectors shown in figure 2.2. It is important
to note that both components are representing the heat transported from one side
to the other side of the cohesive crack. The proposed form for the interfacial heat
conduction preserves the geometrical information which can be linked to the current
geometry of material crack bridging structures in an average sense.

Heat conducted through air contributes to the normal component of the heat flux.
Approximating the temperature difference in normal direction by JθK ~m ·~n, heat con-
ducted through air can be expressed as

qg
n = −kgJθK ~m · ~n (2.4)

Additionally, heat is transported also by radiation between the two faces of the crack,
but this contribution is very small as reported in [25] and is not taken into account
here. Therefore, the normal and tangential components of the interface heat flux can
be written as

qn = − ((1 − d)ks + kg) JθK ~m · ~n (2.5a)

qt = −(1 − d)ksJθK ~m · ~t (2.5b)

where qn and qt are defined as heat fluxes in ~n and ~t direction, respectively. The
magnitude of the interface heat flux which is the heat transported from one side of
the crack to the other side is,

qi =
√

q2
n + q2

t (2.6)

In case of load reversal, the crack tends to close but the real contact area is limited
by the surface asperities. When the two crack surfaces touch, the real contact local-
izes at certain spots due to the surface roughness. Then the contact conductance is
a combination of contact pressure dependent spot conductance and the conductance
through the gas in the cavities formed in between the asperities, [25, 32]. Obviously,
such a model requires detailed information about the crack surface characteristics.
Since the contact conductance is mainly governed by the ratio of the actual contact
area to the total interfacial area, the concept of a contact damage dc can be used to
handle crack closure. Assuming that, the contact tangential openings are not signif-
icant (in other words ~m and ~t are mutually perpendicular), the components of the
interface heat flow vector are defined as

qn,c = − ((1 − dc)ks) JθK ~m · ~n (2.7a)

qt,c = 0 (2.7b)
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−

+
thermally expanded state

l
γ

Figure 2.3: Free thermal expansion of a bridging fiber

Since the fraction of crack bridges are expected to be dominant in crack closure as
well, one can assume that dc ≈ d, as long as full separation did not occur.

In figure 2.3, an idealized situation, with a cohesive crack and a bridging fiber is
shown. It is assumed that the fiber is free to expand or contract without any me-
chanical constraints and a temperature difference is applied to the system leading to
the deformed configuration as shown in figure 2.3. Due to thermal expansion and
temperature difference, the fiber elongates or shortens, which results in an incre-
ment/decrement in the normal and tangential openings. Since fibers or other crack
bridging structures are not explicitly resolved in a cohesive zone approximation of
the interface, a correction needs to be made to account for the interfacial opening as
a result of thermal expansion effects in the (constrained) interface. To this purpose,
‘temperature jump openings’ are introduced, discriminating the openings due to me-
chanical and thermal loading. Focusing on the deformed geometry and assuming a
linear temperature profile along the fiber, when the temperature of the positive side
is increased by JθK, one can write for a single fiber:

0.5αJθKlsinγ = ∆T
n (2.8a)

0.5αJθKlcosγ = ∆T
t (2.8b)

where α is the coefficient of thermal expansion (CTE) of the fiber, JθK is the tem-
perature difference, γ is the angle shown in figure, and ∆T

n and ∆T
t are normal and

tangential openings due to the temperature jump, respectively.

For the cohesive zone description, lsinγ and lcosγ correspond to the current normal
and tangential openings, respectively. Since the previous analysis is based on a sin-
gle fiber only, the CTE of the fiber should be replaced by a more representative value,
since the collective response of many crack bridging agents, their geometric arrange-
ment and volumetric fraction influences the openings due to the temperature jump.
Therefore in a more general format, equation (2.8a) and (2.8b), are reformulated as

∆T
n = αintJθK∆n (2.9a)

∆T
t = αintJθK∆t (2.9b)

where αint is the CTE of the interface, ∆n and ∆t are the current normal and tangential
openings, respectively. In [26], the openings due to the temperature jump appear
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Figure 2.4: Solid body partially separated by a cohesive crack and interface continuity
conditions

naturally as a result of the general interfacial free energy expression.

In the following section, the thermo-mechanics of a solid separated by an interface
is elaborated both in strong and weak form. Thereafter, the presented concepts are
recast in a discretized format suitable for application within a finite element frame-
work.

2.3 Thermo-mechanics

In figure 2.4, a body partially separated by a cohesive crack across the internal bound-
ary Γi is shown. In a geometrically nonlinear setting, the mechanical equilibrium in
terms of the Cauchy stress tensor σ is written as,

~∇ · σ +~b = ~0 (2.10)

where ~∇ is the gradient with respect to the current configuration and ~b is the body
force vector. At the cohesive crack, the traction continuity condition,

~t+ = −~t− (2.11)

has to be satisfied where the superscripts +&− indicate approaching to the interface
from + and − sides (see figure 2.4) respectively.

In the absence of internal heat sources, the thermal equilibrium in current configura-
tion is expressed as,

ρcvθ̇ + ~∇ · ~q = 0 (2.12)

where ρ is the density and cv is the heat capacity of the material. Furthermore, taking
the inflowing heat as positive, the heat flux vector ~q has to satisfy the continuity
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condition

q+
i = −q−i (2.13)

everywhere along the cohesive crack. By applying the Galerkin procedure, the weak
forms of the balance equations are obtained as,

∫

V

σ : ~∇δ~udV =

∫

V

~b · δ~udV +

∫

Γt

~̄t · δ~udΓ +

∫

Γ+
i

~t+ · δ~u+dΓ +

∫

Γ−

i

~t− · δ~u−dΓ

(2.14a)
∫

V

ρcvθ̇δθdV +

∫

V

~q · ~∇δθdV =

∫

Γq

q̄δθdΓ +

∫

Γ+
i

q+
i δθ+dΓ +

∫

Γ−

i

q−i δθ−dΓ

(2.14b)

which can be (by using equation 2.11 and 2.13) expressed as

∫

V

σ : ~∇δ~udV =

∫

V

~b · δ~udV +

∫

Γt

~̄t · δ~udΓ +

∫

Γ+
i

~t+ ·
(

δ~u+ − δ~u−
)

dΓ (2.15a)

∫

V

ρcvθ̇δθdV +

∫

V

~q · ~∇δθdV =

∫

Γq

q̄δθdΓ +

∫

Γ+
i

q+
i

(

δθ+ − δθ−
)

dΓ (2.15b)

Here, Γt̄ and Γq̄ are the parts of the boundaries where the prescribed traction (~̄t) and
prescribed normal heat fluxes (q̄) are applied. The boundary integrals over Γ+

i in
equation 2.15a and 2.15b are the non-standard extra terms due to the cohesive crack,
detailed further hereafter.

Considering a discretization by 2-noded elements for a 2-D problem as shown in
figure 2.5, the surface integral over Γi in equation (2.15a) is converted into the form,

∫

Γ+
i

~t+ ·
(

δ~u+ − δ~u−
)

dΓ =

nel
∑

k=1

∫

Γk
e

tδ∆dΓ (2.16)

where nel is the number of interface elements in the discretization, t = [tn tt] and
δ∆ = [δ∆n δ∆t]

T . As shown in figure 2.5, ∆n and ∆t are defined with respect to
the local coordinate system defined on the mid-plane of the interface element. tn
and tt are the normal and tangential components of ~t+ with respect to the same local
coordinate system. The determination of tn and tt requires constitutive relations in
terms of openings, for which the improved Xu-Needleman law [33],

tn =
φn

δn

(
∆n,m

δn

)exp(−
∆n,m

δn

)exp(−
∆2

t,m

δ2
t

) (2.17a)

tt = 2
φt

δt

(
∆t,m

δt

)(1 +
∆n,m

δn

)exp(−
∆2

t,m

δ2
t

)exp(−
∆n,m

δn

) (2.17b)
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is adopted with the proper replacements ∆n,m and ∆t,m which are defined as

∆n,m = ∆n − ∆T
n (2.18a)

∆t,m = ∆t − ∆T
t (2.18b)

1−

2−

2+

1+

~m1
~m2

∆t

∆n
~t

~n

+

+

−

−

1 2

Figure 2.5: Two noded interface element, unreformed and deformed configurations

Typical traction-opening relations, with an unloading-reloading cycle are shown in
figure 2.6. The irreversible behaviour is based on a single history parameter ∆max,
representing the maximum effective opening reached during the loading history
whereby the effective opening is defined as

∆eff =
√

β2∆2
t + ∆2

n (2.19)

where β is a scaling parameter and taken as 0.5 in this work. Loading takes place
when ∆eff = ∆max and ∆̇eff ≥ 0 and unloading (or reloading) when ∆eff < ∆max.
The traction expressions in case of unloading and the corresponding material tan-
gents are given in the appendix 2.6.

The damage parameter d introduced in equation (2.2), is defined as the ratio of ∆max

∆cr

with the critical effective opening,

∆cr =
√

β2∆2
t,cr + ∆2

n,cr (2.20)

where ∆t,cr and ∆n,cr are the tangential and normal openings corresponding to small
traction values (in this work 0.1tmax

t and 0.1tmax
n ) in the post-peak regime of the trac-

tion opening curves, respectively. It is ensured that, d ≤ 1.0 in case of excessive
openings. The interface integral of equation (2.15b) is expressed as

∫

Γi

qi

(

δθ+ − δθ−
)

dΓ =

nel
∑

k=1

∫

Γk
e

qiδJθKdΓ (2.21)
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Figure 2.6: Left: normal traction-opening relation; Right: tangential traction-opening
relation

In a discrete setting, the temperature jump vector introduced in equation (2.1), is
expressed as

~JθK = N1 (θ1+ − θ1−) ~m1 + N2 (θ2+ − θ2−) ~m2

with ~m1 =
~x1+ − ~x1−

||~x1+ − ~x1− ||
and ~m2 =

~x2+ − ~x2−

||~x2+ − ~x2− ||

(2.22)

where N1 and N2 are the standard 1-D shape functions. With this approximation, at a
particular integration point p, the normal and tangential components of the interface
heat flux vector can be evaluated as

qn = ((1.0 − d)ks + kg) ~JθK|p · ~n (2.23a)

qt = (1.0 − d)ks
~JθK|p · ~t (2.23b)

On the basis of equations (2.6) and (2.23), the interface heat flux is determined.

The presented element is implemented in a commercial FE software environment
and the coupled thermo-mechanical analysis is carried out with a staggered solution
scheme. In each load increment, two uncoupled sub-problems, namely the thermal
and mechanical equilibrium are solved by the Newton-Raphson method, sequen-
tially. The material tangent operators of the interface elements are presented in the
appendix 2.6.
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2.4 Thermo-mechanical Analysis of a Granular Mi-
crostructure

Due to their high temperature resistance, technical ceramics are used as the base ma-
terial for specific structural parts and in some cases they are used as coating layers to
protect vulnerable components from adverse effects of severe temperature changes.
They have a granular microstructure with typical grain dimensions in the micron
range or larger. An idealized example case focusing on the thermo-mechanical anal-
ysis of such a microstructure is presented in order to investigate the influence of
thermo-mechanical cohesive zone description on the evolution of the thermal fields.

A small sub-domain of a coating layer, with the geometry and granular microstruc-
ture shown on the right-hand side of figure 2.7, is extracted in order to conduct the
thermo-mechanical analysis. The microstructure is composed of single crystal alu-
mina grains with a tetragonal crystal structure. The corresponding anisotropic me-
chanical constants are taken to be c11 = 465 GPa, c22 = 465 GPa, c33 = 563 GPa,
c12 = 124 GPa, c13 = 117 GPa, c44 = 233 GPa and the conductivities in the principal
directions are given as 38 W/mK and 10 W/mK [34]. The heat capacity and den-
sity values are cv = 1200 J/kgK, ρ = 2700 kg/m3 and the principal values of the
anisotropic thermal expansion coefficients are 7.9 10−6 1/K and 8.8 10−6 1/K. The
orientation of the principal axis within each alumina grain is taken to be random
and the difference between the neighbouring grains are large enough to exclude the
presence of a certain texture within the microstructure. The top boundary is exposed
to a ramp type prescribed temperature boundary condition which reaches the peak
temperature of 1000 ◦C within 4 seconds and which is kept constant until the end
of the loading duration of 10 s. The bottom surface is kept at 20 ◦C throughout the
analysis. Mechanically, periodic boundary conditions are applied on the left and
right boundaries as shown in the figure. Plane strain conditions are assumed and the
thermo-mechanical cohesive zone elements are placed along the grain boundaries.

coating layer

0.01mm

0.04mm

T0

T0

TF

10 sΓL ΓR
ΓL and ΓR: periodic

ΓL and ΓR: insulated

displacement b.c.

Figure 2.7: Thermo-mechanical analysis of a granular microstructure; geometry and
boundary conditions
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The ks value for the interfaces is determined on the basis of the conductivity val-
ues for the bulk material and the characteristic openings for the interfaces calculated
from the energies and maximum traction values. Furthermore, in case of mechani-
cally intact interfaces, the influence of ks on the resulting temperature profile should
be very small which can be monitored on the basis of temperature jumps across
the interfaces. As the ks value is taken larger, the temperature jump diminishes
and in the limit of infinitely large ks, the temperature jump becomes zero. There-
fore some preliminary analysis is carried out to determine the ks values resulting in
ks = 5 103 W/mm. It is also observed that the influences of ∆T

n and ∆T
t are negligibly

small therefore interface thermal expansion, αint, is taken to be zero. Keeping the
values of φn = 40 J/m2 and φt = 80 J/m2 the same, two different analyses are carried
out with tmax

n = 100 MPa , tmax
t = 200 MPa and tmax

n = 800 MPa , tmax
t = 1600 MPa,

respectively.
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Figure 2.8: From left to right: Temperature (◦C), magnitude of heat flux (W/mm2),
interface damage for ductile interface; tmax

n = 100 MPa , tmax
t = 200 MPa
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Figure 2.9: From left to right: Temperature (◦C), magnitude of heat flux (W/mm2),
interface damage for brittle interface; tmax

n = 800 MPa, tmax
t = 1600 MPa
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These values are comparable with the values given in [12] which focuses on the re-
sponse of fine grained alumina samples under dynamic mechanical loading. Obvi-
ously the former case leads to a more ductile interface response since smaller maxi-
mum traction values are used with the same energies.

In figure 2.8 and 2.9, the resulting temperature profiles, magnitude of the heat flux
vectors along with the interfacial damage distribution are shown for both cases. As a
matter of fact, as the interfacial damage increases, the heat flow through the interface
becomes more difficult. Therefore one expects some sharp temperature discontinu-
ities as suggested by the more ductile case which has more severe interface damage.
Furthermore, the correlation between the damage and the magnitude of the heat
flux distribution suggests that as the crack further opens up, heat flow is redirected
to more conductive regions. A comparison of heat flow patterns for the two cases
clearly shows this effect, as the heat follows the intact path in case of more severe
interface damage. Furthermore, as shown in figure 2.10, in case of strong interface
damage, the temperature jumps along the interfaces could reach very significant lev-
els, which in turn will influence the local mechanical response as well which is hardly
applicable here as no mechanical load is imposed.
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Figure 2.10: Temperature profile along the mid-section

2.5 Conclusion and Outlook

Motivated by the thermal shock analysis of heterogenous materials, a thermo-
mechanical cohesive zone description is presented which is suitable for the analysis
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of material interfaces at different scales, ranging from grain boundaries to multiply
structural components. The physical heat transport mechanisms are taken into ac-
count within the limitations of a macroscopic cohesive zone formulation. As shown
by the example problem, the evolution of mechanical damage might influence the
thermal field quantities both qualitatively and quantitatively. As the heat conduc-
tion characteristics evolve due to interfacial damage, the heat flow pattern and local
stress state might change significantly. Therefore, the proposed formulation assists
in acquiring a better understanding of the failure initiation and propagation under
severe thermal loading conditions. Furthermore, the efficiency of protective layers
in terms of thermal performance can be investigated in a better way and can be opti-
mized. Temperature dependency of the interface parameters, e.g. fracture energies,
can be incorporated in the formulation easily provided that these dependencies are
known. In conclusion, the thermo-mechanical analysis of material interfaces can be
done in an effective way using the proposed formulation.

2.6 Appendix

The solution of the mechanical and thermal equilibrium equations are conducted
within an incremental-iterative framework by means of the Newton-Raphson
method. Since the problem is solved by an operator-split technique, incrementally
the mechanical and thermal equilibrium equations are solved in an uncoupled way.
The material tangent relations of the traction-opening relations, which are necessary
for the consistent linearization of the mechanical equilibrium equations are given
first.

In case of loading, the derivatives

∂tn
∂∆n,m

=
φn

δn

exp

(

−
∆n,m

δn

) (

1

δn

−
∆n,m

δ2
n

)

exp

(

−
∆2

t,m

δ2
t

)

(2.24a)

∂tn
∂∆t,m

=
φn

δn

exp

(

−
∆n,m

δn

) (

−2
∆n,m

δn

∆t,m

δ2
t

exp

(

−
∆2

t,m

δ2
t

))

(2.24b)

∂tt
∂∆t,m

=

(

1 +
∆n,m

δn

)

exp

(

−
∆n,m

δn

)

exp

(

−
∆2

t,m

δ2
t

)

2
φt

δ2
t

(

1 − 2
∆2

t,m

δ2
t

)

(2.24c)

∂tt
∂∆n,m

=
φt

δn

(

∆n,m

δn

) (

−2
∆t,m

δ2
t

)

exp

(

−
∆n,m

δn

)

exp

(

−
∆2

t,m

δ2
t

)

(2.24d)

are used to construct the material tangent operator. In case of unloading and reload-
ing, there might be discontinuities in the traction-opening relations whenever the
reloading direction differs from the unloading direction, see [35]. To prevent such
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artificial jumps, the tractions are defined as:

tunl
n =

∆eff

∆max

tn
(

∆∗n,m, ∆∗t,m
)

(2.25a)

tunl
t =

∆eff

∆max

tt
(

∆∗n,m, ∆∗t,m
)

(2.25b)

(2.25c)

where

∆∗n,m =
∆max

∆eff

∆n (2.26a)

∆∗t,m =
∆max

∆eff

∆t (2.26b)

and ∆max is the maximum effective opening reached during the history and ∆eff is
the current effective opening, both based on mechanical openings. The correspond-
ing derivatives are:

∂tn
∂∆n,m

=
∂tn

∂∆∗n,m

+
∆n,m

∆max∆eff

tn −
∆2

n,m

∆2
eff

∂tn
∂∆∗n,m

−
∆n,m∆t,m

∆2
eff

∂tn
∂∆∗t,m

(2.27a)

∂tn
∂∆t,m

=
∂tn

∂∆∗t,m
+ β2 ∆t,m

∆max∆eff

tn − β2
∆2

t,m

∆2
eff

∂tn
∂∆∗t,m

− β2∆n,m∆t,m

∆2
eff

∂tn
∂∆∗n,m

(2.27b)

∂tt
∂∆t,m
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∂tt
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t,m
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(2.27c)

∂tt
∂∆n,m

=
∂tt
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+
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∆max∆eff

tt −
∆2
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∆2
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∂tt
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−
∆n,m∆t,m

∆2
eff

∂tt
∂∆∗t

(2.27d)

The expression for ∂tt
∂∆∗

t,m
and the other comparable terms are identical to the cor-

responding expressions given above provided that, for example ∆t,m and ∆n,m are
replaced by ∆∗t,m and ∆∗n,m.

The linearization of the thermal equilibrium requires the sensitivity of the interface
heat flux with respect to temperature jump. In case loading and unloading, the
derivative,

∂qi

∂∆θ
=

1

2

1
√

q2
n + q2

t

(

2qn((1 − d)ks + kg)~m · ~n + 2qt(1 − d)ks ~m · ~t
)

(2.28)

is used in the solution of the linearized thermal equilibrium equations. In case of
contact, the derivative takes the following form,

∂qi

∂∆θ
=

1

2

1

qn

(2qn((1 − dc)ks)~m · ~n) (2.29)





CHAPTER THREE

Modelling Thermal Shock Damage in
Refractory Materials via Direct

Numerical Simulation (DNS) 1

Abstract

In this chapter, a computational investigation on thermo-mechanically induced dam-
age in refractory materials resulting from severe thermal shock conditions is pre-
sented. On the basis of an idealized two-phase material system, molten aluminium
thermal shock tests [36] are computationally modeled by means of direct numeri-
cal simulations (DNS). The interfacial and bulk damage evolution within the ma-
terial are described by thermo-mechanical cohesive zones and continuum damage
mechanics (CDM), respectively. Reported experimental results [36] are used to iden-
tify the parameters of the model. Furthermore, a parametric study is carried out
to investigate the relative significance of various microstructure parameters in the
context of thermal shock response.

1Based on: I. Özdemir, W.A.M. Brekelmans, M.G.D. Geers. Modelling Thermal Shock Damage in
Refractory Materials via Direct Numerical Simulation. to be submitted.
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3 MODELLING THERMAL SHOCK DAMAGE IN REFRACTORY MATERIALS VIA DIRECT

NUMERICAL SIMULATION (DNS)

3.1 Introduction

In metal production plants, molten metal is transported and processed by means of
structures made of high temperature resistant (refractory) materials. Under opera-
tion conditions, these structures are exposed to rapid temperature changes (thermal
shock) and temperature change cycles, mainly due to contact with molten metal. Re-
fractories with a high Alumina (Al2O3) content and relatively large grained ceramics
are used for the production of such structures. Making use of raw base materials in
the production of these ceramics, the resulting microstructures are far from homoge-
neous.

When a heterogeneous material system experiences a temperature change, a stress
field develops depending on the boundary conditions, the coefficient of thermal ex-
pansion (CTE) mismatch between the phases and the uniformity/non-uniformity
of the temperature change within the domain of interest. To illustrate the essen-
tial mechanisms of the internal stress development, a representative two-phase ma-
terial system of isotropic phases (both mechanically and thermally) is considered
as shown in figure 3.1. In case of identical CTE’s, a uniform temperature change
within the body in combination with the given boundary conditions would lead to a
stress free expansion or contraction. If a difference between the CTE’s exists, under
the same loading and boundary conditions, a self-equilibrated internal stress profile
develops due to the mechanical strains resulting from non-uniform thermal expan-
sion/contraction. Similarly, a non-uniform temperature change, e.g. occurrence of
a temperature gradient, under certain external constraints, leads to internal stresses
even in the case of matching CTE’s. Therefore for common engineering materials
and loading conditions, there are two mechanisms which lead to internal stresses.
The first mechanism is associated with the CTE mismatch of the phases and the sec-
ond mechanism is related to gradients in the resulting temperature profile which
lead to non-uniform expansion or contraction. In this simple reasoning, it is im-
plicitly assumed that the interface remains mechanically intact and acts as a perfect
heat conductor. However, in real material systems, in general, the interfaces degrade
mechanically after a certain threshold and consequently lose their ability to transmit
stresses and to act as a perfect conductor. Therefore, when the thermal loading condi-
tions reach significant levels, the initiation and propagation of material failure is dic-
tated by the collective behavior of the interfaces, individual phases, and the contrast
in their mechanical and thermo-physical properties and fracture characteristics. For
example, the average grain size dependency of residual strength observed in quench-
ing tests on fine grained technical ceramics [4, 37, 38], illustrates the microstructure-
property relation under thermal shock conditions. The micromechanical origin of
cracking in fine grained material systems upon temperature change has been inves-
tigated by relatively simple micromechanical models (semi-) analytically in [7, 9, 10].
The characteristics of the solutions, e.g. stress singularities, were particularly useful
to understand the significant role of grain size and to identify the potential sites of
crack nucleation. Computational models have been used to investigate more com-
plex geometries and different boundary conditions at the micro level often relying on
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y

Figure 3.1: Two-phase material system with different CTE’s, (a) initial configuration
(b) Uniform temperature change, (c) Temperature gradient in y direction
(dashed lines correspond to the deformed shape)

the concept of a representative volume elements (RVE) and extracting macroscopic
elastic properties, [39].

Approaching the problem from the macro scale, to enhance the understanding and
modeling of thermo-mechanically induced damage, such as failure of refractory lin-
ings [40] and concrete failure under high temperatures [41, 42], predictive compu-
tational tools within the framework of continuum damage mechanics, have been
developed. In such approaches, the heterogeneous microstructure is replaced by an
equivalent ‘homogeneous’ material, which inevitably implies the loss of information
associated with the heterogeneous nature of the microstructure. In some of these
models, the local mechanisms, e.g. stresses due to a CTE mismatch, are smeared out
by some extra terms in damage evolution laws in a phenomenological way, see [43].
These approaches are computationally feasible tools for damage analysis of engineer-
ing structures but rather limited for the investigation of fundamental mechanisms
determining the behaviour at the level of the microstructure.

Multi-scale computational models incorporating fine-scale physical mechanisms in
their coarse-scale constitutive response are an accurate and feasible alternative for
the analysis of engineering structures, see [44]. However, the capabilities of such
models heavily depend on the proper characterization of micro scale material param-
eters. Direct measurement of physical properties at the scale of individual phases and
interfaces, e.g. strength of an interface, is still a challenging task for experimentalists.
Therefore, direct numerical simulations (DNS) within an inverse analysis framework
constitute an alternative to determine these parameters, at least the correct order of
magnitude, which can be a reliable data base for a multi-scale model.

To investigate the influence of microstructural parameters and to improve the un-
derstanding of material response under thermal loading conditions, thermal shock
experiments are reproduced in a computational setting through fully resolved Direct
Numerical Simulation (DNS) models.

In the next section, the composition of the material microstructure is presented.
Then, the experimental characterization and conducted experiments are summa-
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Chemical Composition
(Relative weight of components)
Al2O3 90.9 %
SiO2 8.8 %
Na2O 0.2 %

Volumetric Composition
(Volume percentages)

Alumina 59 %
Mullite 41 %

Table 3.1: Initial chemical composition and final volume fractions

rized. Thereafter, the construction of the DNS model, the constitutive modeling of
each phase and the solution procedure are outlined. Parameters of the model are
determined on the basis of an equivalent static procedure, which is detailed in sec-
tion 3.4.5. Then, the focus is shifted on the influence of different material parameters,
which is particularly relevant for the industry that processes these refractories. The
chapter is closed by the summary and conclusions.

3.2 Material Microstructure

The initial chemical composition of the considered batch with a certain grading of
particles is given in table 3.1. The mixture is first mechanically pressed in a mould,
resulting in a ‘green product’ and then sintered at 1900 ◦C - 2000 ◦C to achieve a
certain coherence and strength. During the sintering process (phase), fine SiO2 (ap-
proximately 0.2 µm) and Al2O3 particles react and result in a composite of mullite
(3Al2O32SiO2) which is by weight 71.8 % Al2O3 and 28.2 % SiO2. Accordingly, the re-
sulting product consists of 35.5 % Mullite with a very fine microstructure and 64.5 %
Al2O3 of various particle sizes. However, the reaction of SiO2 and Al2O3 is never fully
complete and additionally an amorphous glass phase is formed consisting mainly
of Al2O3, SiO2 and impurities. In the following sections, the presence of this glass
phase is neglected. Based on the measurements given in [45], the difference between
the theoretical and measured density reveals that there exists a porosity of approxi-
mately 14 %. Furthermore, it can be safely assumed that relatively large Al2O3 par-
ticles (particles of 3 mm and 0.875 mm respectively) are free of any porosity. Repre-
sentative images of the resulting microstructure is given in figure 3.2.

3.3 Experimental Characterization of Thermal Shock
Response

Experimental investigations dealing with the thermal shock response of refractory
materials are extensively reported in the literature, see [36] and the references cited
therein. Typically, down-quenching experiments have been conducted by using dif-
ferent quenching mediums ranging from water to molten salt. For up-quenching,
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(a) (b)5 mm 1 mm

Figure 3.2: Microstructure of the material, (a) light microscope image (b) TEM image

burners, molten metals and other techniques and devices have been utilized. Due
to difficulties associated with the determination of the heat transfer conditions, these
methods are not really suitable to adequately quantify the thermal shock response of
different material systems.

Motivated by the shortcomings of the existing methods, mainly in realizing repro-
ducible heat transfer conditions, in [36] refractory specimens were subjected repeat-
edly to surface contact with molten aluminium followed by passively cooling of the
samples in ambient air. By measuring the transit time of longitudinal ultrasonic
waves at various locations on the samples, the local damage is characterized in terms
of reduction in the dynamic Young’s modulus. The use of transit time measurement
techniques to determine the damage in refractory materials with coarse grains is val-
idated by independent experiments, see [36]. The test set-up, the so-called ‘molten
aluminium thermal shock test’ is schematically shown in figure 3.3. An equivalent
computational testing procedure is developed starting with a DNS model of the ex-
periment as presented in the next section.
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Figure 3.3: Molten aluminium thermal shock test set-up
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3.4 Direct Numerical Simulation (DNS) of Thermal
Shock Experiments

As shown in figure 3.2, the resulting microstructure is composed of two distinguish-
able phases at a mm scale. Relatively large grains are identifiable, which can be
assumed to be embedded in a compound of fine grains that constitute a rather mono-
lithic continuous phase, i.e. the matrix. Therefore the microstructure is idealized as
a two phase composite with large, non-interacting grains of two different sizes (3
mm and 0.875 mm respectively), embedded in a matrix of Al2O3 and mullite which
is in fact the sintered, continuous structure of grains smaller than 0.5µm. Therefore,
grains, matrix and their interfaces are the three distinct components which collec-
tively determine the response of the material and have to be addressed in the com-
putational model.

Due to unaffordable computational costs of a 3-D model, a fully detailed 2-D model
of the test sample is constructed as shown in figure 3.4. To this end, volume fractions
and basic geometrical information is used to construct, geometrically and physically
representative volumetric units of the material. To achieve a geometric randomness
in the distribution of the particles, four geometrically different unit volumes and
their arbitrarily rotated versions are combined to built-up the full DNS model.

−

+

~t+

~t−

q
+

i

q
−

i

110 mm

25 mm

Grain

Figure 3.4: Direct numerical simulation model and traction and heat flux conditions
across a grain-matrix interface

The sample is brought into contact with the molten aluminium reservoir (which is
at 1000 ◦C) for 20 minutes (‘thermal shock phase’). This is followed by a passive
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‘cooling phase’ of 48 hours at room temperature (25 ◦C). The heat transfer charac-
teristics between the sample and the reservoir are identified in [46] and resulted in
temperature dependent heat transfer coefficient according to

h = 204.56 + e0.0082θf [W/m2 K] (3.1)

where θf is the film temperature defined as θf = 0.5(θambient + θsurface). The same
study revealed that the heat loss from the sample during passive cooling takes place
at a very slow rate compared to the thermal shock phase and therefore this stage is
not really relevant as far as damage initiation and evolution is concerned. Half of
the sample is modeled due to symmetry and rigid body motions are properly con-
strained as shown in figure 3.4. Sides and top surfaces of the sample are thermally
insulated which is reflected by imposing heat flux free boundary conditions on these
surfaces. The stress/strain state is assumed to satisfy plane strain conditions, which
is of course an approximation since the real stress state is 3-D due to loading con-
ditions and specimen dimensions. The results of a 2-D analysis are reliable for a
qualitative investigation and they are representative in terms of trends in damage
distribution as a function of the model parameters.

A thermo-mechanical analysis is carried out to determine the evolution of stresses,
damage and temperature within the domain. Based on the conservation of linear
momentum and energy, the quasi-static mechanical equilibrium in terms of Cauchy
stresses

~∇ · σ +~b = ~0 (3.2)

and the transient heat conduction equation,

ρcvθ̇ + ~∇ · ~q = 0 (3.3)

apply. In here, ~b is the body force vector, ~∇ is the gradient operator with respect to
the current configuration, cv is the heat capacity, ρ is the density, θ is temperature
and ~q is the heat flux vector. In addition to external boundary conditions, along the
material interfaces between the grains and the matrix, the conditions,

~t+ = −~t− and q+
i = −q−i (3.4)

have to be satisfied, where~t and qi are the tractions and interface heat fluxes as shown
in figure 3.4. Furthermore subscripts and superscripts + and − indicate that the
interface is approached from two different bulk sides of the interface. Solution of
these equations requires the constitutive laws for σ, ~q and in the context of thermo-
mechanical cohesive interfaces also for ~t and qn. In the following subsections, the
constitutive laws for each phase, (grains, matrix and interfaces) are summarized.
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3.4.1 Grains

In figure 3.5, microscopic images of thermally shocked samples are shown. As far
as large alumina grains are concerned, these images support that micro-cracking oc-
curs along the boundaries of large grains while the grains themselves remain intact.
In addition to these experimental investigations, analytical studies on simplified ma-
terial systems [7], reveal that above a critical grain size, upon a uniform temperature
change, the cracking occurs along matrix-grain interfaces. Therefore the large alu-
mina grains are assumed to behave elastic and not damaging. Based on the data
given for 99.5 % pure alumina technical ceramics, the Young’s modulus is taken to
be 400 GPa with the corresponding temperature dependency as shown in figure 3.6.
The same reference suggests a temperature independent value of 0.28 for Poisson’s
ratio. Similarly, temperature dependent conductivity, heat capacity and CTE of the
grains are given in figure 3.7, based on the data given in [reference]. A linear relation
between the Cauchy stresses and logarithmic strains is adopted and heat fluxes are
determined by Fourier’s law of heat conduction.

Figure 3.5: Microstructure after thermal shock (arrows indicating cracks)

3.4.2 Matrix

The failure within the matrix takes place through a distributed micro-cracking mech-
anism. In spite of remarkable achievements in the modeling of discontinuities by
novel discretization techniques (X-FEM, generalized FEM), the resolution of com-
plex micro-cracking processes such as multiple micro-cracking and crack bridging
can not be tackled trivially with the aid of these tools. Therefore the failure of ma-
trix phase is handled in an average sense by using a continuum damage mechanics
(CDM) approach.

The volumetric percentages of mullite, alumina and porosity within the matrix are
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Figure 3.6: Temperature dependency of Young’s Modulus (E) and coefficient of ther-
mal expansion (α), left column for matrix, right column for grains; based
on [47–50]

74.48 %, 11.52 % and 14 %, respectively. Mechanical and thermo-physical properties
of the matrix are determined by the rule of mixtures, whereby the percentages of alu-
mina and porosity are low in the matrix mixture. The resulting properties and their
temperature dependencies are given in figure 3.6 and 3.7. As micro-cracks nucleate
and propagate within the matrix phase, the coherent structure disintegrates and the
stiffness of the matrix decreases. Continuum damage mechanics provides a versatile
and computationally feasible framework to model the failure process in an average
sense, in a continuum setting without resolving the discontinuities explicitly. The
isotropic damage (D) is introduced as a field variable, which governs (determines)
the current material stiffness as,

E = (1 − D)E0 (3.5)

where E is the current stiffness tensor. The evolution of damage represents the on-
set or ‘nucleation’ of micro-cracks and the material gradually loses its stiffness un-
til a complete crack is formed at D= 1. The propagation is governed by the lo-
cal stress/strain distribution within the close vicinity of the process zone. It can
be shown easily that damage models based on a classical local continuum descrip-
tion yield results that are dependent on the spatial discretization. More precisely,
the results converge to a non-physical solution upon mesh refinement, while less
and less energy (zero in the limit) for crack propagation is required. By introducing
non-locality in the damage law, either through spatial averaging or through gradient
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Figure 3.7: Temperature dependency of conductivity (K) and heat capacity (cv), left
column for matrix, right column for grains; based on [50–53]

terms, these non-physical results are avoided.

In here, the damage evolution is expressed as a function of a nonlocal equivalent
strain and the damage increases as soon as the nonlocal equivalent strain level
surpasses the maximum nonlocal equivalent strain value attained during loading
history. In an implicit gradient formulation [54], non-local equivalent strain, ǭ,
which governs the evolution of damage, is determined through the solution of the
Helmholtz equation,

ǭ − l2∇2ǭ = ǫ̃ (3.6)

which is driven by the local equivalent strain ǫ̃ in the right-hand side. In equation
3.6, ∇2 is the nabla operator and l is the internal length scale. Since the non-local
strain is not given explicitly in terms of ǫ̃ and its derivatives, but obtained through
the solution of equation 3.6 over the domain, the resulting formulation is referred
to as the implicit gradient formulation distinguishing it from explicit formulations
existing in the literature.

The solution of equation (3.6) requires the definition of proper boundary conditions
on the external boundaries and the boundaries between the matrix and the non-
damaging grains, which are commonly adopted the natural boundary conditions,

~∇ǭ · ~n = 0 (3.7)
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Based on [55], the equivalent local strain is defined as,

ǫ̃ =
k − 1

2k(1 − 2ν)
I1 +

1

2k

√

(k − 1)2

(1 − 2ν)2
I2
1 −

12k

(1 + ν)2
J2 (3.8)

where I1 and J2 are the first invariant of the strain tensor and second invariant of the
deviatoric strain tensor, respectively. Under uni-axial loading conditions, the equiv-
alent local strain is defined such that, a compressive stress of kσ leads to the same
damage growth as a tensile stress of σ. The characteristic large ratio of compressive
strength vs. tensile strength of quasi-brittle materials is incorporated by the variable
k = fc

ft
. The particular damage law used here has the form,

D =







0 if κ < κ0

( κ−κ0

κf−κ0
)γ if κ > κ0

1 if κ > κf

which is complemented with the conventional loading/unloading conditions,

κ̇ ≥ 0, ǭ − κ ≤ 0, κ̇(ǭ − κ) = 0 (3.9)

κ0 denotes the damage initiation threshold and κf is the upper bound leading to a
critical damage equalling unity. A constant-ǫ̃ curve and the damage evolution law
are shown in figure 3.8. As the Poisson’s ratio (ν) approaches to 0.5 and/or under
strongly deviatoric strain states, special care has to be taken since the expression
within the square root might become undefined or negative.
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3.4.3 Interfaces

Since the mechanical behaviour and heat transfer mechanisms heavily depend on the
status of the interfaces, the modeling and characterization of the interfaces are cru-
cial. Refractory materials exhibit a quasi-brittle response upon mechanical loading
which indicates that the micro-cracking mechanisms have a cohesive nature due to
crack bridging mechanisms, connecting the surfaces of newly forming micro-cracks.
Therefore, the interfaces between the grains and the matrix are modeled as thermo-
mechanical cohesive zones where the load and heat transfer mechanisms weaken
as the opening between the two faces of the newly forming crack (crack increment)
increases. Direct experimental characterization of the interfaces still remains a chal-
lenging task for the experimentalists since it is intrinsically difficult to develop an
experimental set-up and suitable samples that enable reliable measurements at such
small scales. Therefore, the parameters of the traction-opening laws are determined
inversely by using the thermal shock test results.

The cohesive nature of interfaces are described by the well-established mechanical
interface relations through which the damage at the micro-crack tip is lumped into
traction-opening relations. These relations are typically characterized by the shape
of the response curve, fracture energy and the peak traction values. As reported in
[22], the decisive parameters are the fracture energy and the strength of the interface
rather than the particular formulation of the traction opening law. Therefore, in this
chapter, normal and tangential tractions are described by the smooth expressions
(improved Xu–Needleman traction–opening laws, see [56]),

tn =
φn

δn

(

∆n

δn

)

exp

(

−
∆n

δn

)

exp

(

−
∆2

t

δ2
t

)

(3.10a)

tt = 2
φt
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) (
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)
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−
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δ2
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)

exp

(

−
∆n

δn

)

(3.10b)

where φn and φt are the fracture energies in pure opening and pure sliding modes,
respectively [33]. δn and δt are the mechanical openings in normal and tangential di-
rections as shown in figure 3.9, in a finite element discretization setting. For a consis-
tent description of unloading-reloading, a damage parameter based on the definition
of an effective opening measure,

∆eff =
√

∆2
n + β2∆2

t with β = 0.5 (3.11)

is introduced and the maximum effective opening attained is traced at every inte-
gration point of the interface element. Loading takes place when ∆eff = ∆max and
∆̇eff ≥ 0 and unloading (or reloading) when ∆eff < ∆max. In the context of thermo-
mechanical loading, the heat conduction through the interfaces will decrease as well
if the opening increases. In fact, the heat transfer through the solid phase is ob-
structed and the air filling the crack will act as a substitute secondary conducting
medium for the heat flow between the two faces of the crack. To quantify the heat
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flow along the interfaces on the basis of physical mechanisms, the mechanical in-
terface description is supplemented with a thermal interface element description as
presented in [57] where the heat flux through the interface is defined as,

qi =
√

q2
n + q2

t (3.12)

with the components

qn = ((1 − d)ks + kg) JθK ~m · ~n (3.13a)

qt = (1 − d)ksJθK ~m · ~t (3.13b)

to be determined at each integration point based on the interpolation

~JθK = N1 (θ1+ − θ1−) ~m1 + N2 (θ2+ − θ2−) ~m2

with ~m1 =
~x1+ − ~x1−

||~x1+ − ~x1− ||
and ~m2 =

~x2+ − ~x2−

||~x2+ − ~x2− ||

(3.14)

JθK is the temperature difference between two material points on opposite faces of
the discontinuity which were coincident before the crack separated them, see figure
3.9. ks and kg are the conductance of the interface due to solid crack bridging mech-
anisms and the gas filling the cavity, respectively. The interface conductance can be
considered as a penalty parameter which enforces an identical temperature value at
both sides in the case of an undamaged interface. The interfacial damage parameter

d of equation 3.12 is defined as the ratio
∆max

eff

∆crt
where

∆crt =
√

∆2
n|0.1tmax

n
+ β2∆2

t |0.1tmax
t

(3.15)

and∆n,t|0.1tmax
n,t

corresponds to the normal and tangential openings corresponding
to the residual values 0.1tmax

n and 0.1tmax
t in the post-peak regime of the traction-

opening curves, respectively. In case of crack closure, the contact conductance is
mainly governed by the ratio of the actual contact area to the total interface area.
A contact damage variable representing this ratio can be used in the case of crack
closure as,

qn,c = − ((1 − dc)ks) JθK ~m · ~n (3.16a)

qt,c = 0 (3.16b)

Since the fraction of crack bridges are expected to be dominant in crack closure as
well, one can assume that dc ≈ d, as long as full separation did not occur.
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Figure 3.9: Two-noded interface element, undeformed and deformed configurations

3.4.4 Solution procedure

In addition to the quasi-static equilibrium and the heat balance, the nonlocality
(Helmholtz) equation has to be fulfilled at every material point of the matrix. The
quasi-static equilibrium equation and the Helmholtz equation are coupled through
the direct dependence of stresses on the damage field and the dependence of damage
values on the nonlocal equivalent strains.

An incremental-iterative solution procedure within a finite element framework, is
adopted to solve the three coupled field equations. Here, instead of solving the cou-
pled equations in a combined way, the global problem is split-up into three incre-
mentally uncoupled problems

∫

V

~q · ~∇δθdV =

∫

Γq

q̄δθdΓ +

∫

Γi

(qn|+(δθ+ − δθ−)dΓ (3.17a)

∫

V

σ : ~∇δ~udV =

∫

V

~b · δ~udV +

∫

Γt

~̄t · δ~udΓ +

∫

Γi

~t|+ · (δ~u+ − δ~u−)dΓ (3.17b)

∫

Vm

ǭδǭdV −

∫

Vm

l2~∇ǭ · ~∇δǭdV =

∫

Vm

ǫ̃δǭdV (3.17c)

where Γq̄ and Γt̄ are the parts of external boundaries where the heat fluxes and the
tractions are prescribed, respectively. Γi is the area of the grain-matrix interfaces and
Vm is the matrix volume. These equations are solved sequentially within a time in-
crement. Therefore, on a mechanically frozen state, the heat conduction equation
is solved and the temperature profile is updated accordingly. Thereafter, the stress
analysis is carried out with the updated temperature values but assuming a frozen
damage state. Finally, the Helmholtz equation is solved with the equivalent strain
values which are the driving force for the evolution of non-local equivalent strains.
Typical increment of the resulting algorithm is summarized in table 3.2. The outlined
solution procedure, has been successfully used in the context of numerical damage-
plasticity simulations [58, 59]. The main disadvantage of the above operator-split
solution procedure is its conditional stability which requires sufficiently small time
steps. However, as soon as non-linearities are triggered, the incremental-iterative
framework requires small time steps in any case. Therefore, the operator-split tech-
nique does not substantially increase the real computational costs.



3.4 DIRECT NUMERICAL SIMULATION (DNS) OF THERMAL SHOCK EXPERIMENTS 35

Table 3.2: Staggered solution scheme for the thermo–mechanically induced damage
analysis

Next increment

I. Thermal pass :

(a) Next iteration

⊲ assemble the tangent conductivity

⊲ solve the system and update θ

⊲ loop over all integration points and calculate heat flux and tangent conductivity

⊲ assemble the internal nodal fluxes

⊲ check for convergence, if not repeat step (a), else continue

II. Mechanical pass :

(b) Next iteration

⊲ assemble the tangent stiffness

⊲ solve the system and update u

⊲ loop over all integration points and calculate stresses and material tangent

⊲ assemble the internal nodal forces

⊲ check for convergence, if not repeat step (b), else continue

III. Non–local field pass :

⊲ assemble the system matrices (left–hand side of equation 3.17c) based on updated geometry

⊲ assemble the right–hand side of equation 3.17c based on the updated local equivalent strain ǫ̃

⊲ solve the system, update ǭ, κ and D

⊲ continue with the next increment

3.4.5 Parameter identification procedure

As concisely mentioned in section 3.3, use is made of ultrasonic wave propagation
measurements on thermally shocked specimens at various locations along the height
as shown in figure 3.3; for a detailed treatment see [36]. Based on the wave speed
measurements, the dynamic Young’s modulus is calculated using an inverse method.
The same procedure is repeated for undamaged samples and based on the Young’s
moduli ratio, the damage distribution curve along the height has been determined.

To use the experimental results as a reference to identify the parameters of the nu-
merical model, the following static analysis procedure is pursued. From the compu-
tational model (DNS model), subjected to the thermal shock history, uni-axial ‘spec-
imens’ are cut out at the locations corresponding to the positions of the transducers
used for the measurements. The cross-section of the uni-axial specimens is deter-
mined by the size of the transducer. The damage and interface opening histories are
transferred to these uni-axial specimens.

After extraction of these specimens, they are exposed to uni-axial tensile loading,
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Figure 3.10: Equivalent static procedure

from which the axial static stiffness of the damaged specimen is determined and
compared with the axial stiffness of the corresponding undamaged specimen, see
figure 3.10.

Following this procedure, the damage evolution law and interface parameters are
tuned towards the computational results presented on figure 3.11(a). Internal length
scale of the matrix damage model is taken as 0.4 mm based on the edge length of the
small grains which is linked to the stress ligaments developing between the grains.
Preliminary computations indicated that the damage values at locations far from
the thermally shocked end of the specimen are essentially determined by the matrix
damage parameters κ0 and κf . These values are taken as 0.08 10−5 and 0.09 10−2

which yielded good agreement with the experimental results.

Computational results capture the experimentally observed trends well whereas
quantitatively the results are over estimating the damage distribution particularly in
the close neighborhood of the thermally shocked end of the sample. In this context,
it is important to re-emphasize the fact that the experimental measurements result
in dynamic Young’s modulus whereas the computational results are static values.
Typically, the dynamic modulus tends to be smaller than the one estimated from the
static modulus [36], as done in the model.

It is important to note that the computational results could have been reproduced
by using a different set of parameters. In other words, the identified parameters are
non-unique essentially due to the lack of experimental data.

3.4.6 Parametric study

To investigate the influence of different material parameters, a parametric study is
carried out which uses the equivalent static procedure as the basis for damage quan-
tification.

Fully resolved models are particularly powerful in capturing the direct influence of
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Figure 3.11: (a) Damage distribution along the height, experimental vs. computed
results (b) Damage distribution with different interface parameters

parameters which are difficult to incorporate into equivalent homogenous contin-
uum models. In this context, first the mechanical strength of the interfaces is con-
sidered. In figure 3.11(b), computational results with 4 different parameter sets are
presented. The model without mechanical interfaces (fully bonded) yields the lower
bound solution (parameter set 4), as seen from the figure. The damage values in the
close vicinity of the thermally shocked end are increasing as the strength of the inter-
faces increases with the same fracture energies (more brittle interface). The resulting
damage distribution for the bottom strip is shown in figure 3.12 for two different
cases. As seen from the figure, islands of fully damaged zones are formed for higher
strength values.

In fact, the damage is initiated in the compression regions between the grains. As the
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Set 1 Set 2 Set3 Set4 Set 5

φn(J/m2) 25 25 25 - 25

φt(J/m2) 50 50 50 - 50
tmax
n (MPa) 42 14 56 - 700

tmax
t (MPa) 84 28 112 - 1400

κ0 0.08 10−5 0.08 10−5 0.08 10−5 0.08 10−5 0.08 10−5

κf 0.09 10−2 0.09 10−2 0.09 10−2 0.09 10−2 0.09 10−2

γ 0.95 0.95 0.95 0.95 0.95
l(mm) 0.4 0.4 0.4 0.4 0.4

Table 3.3: Model parameters used for different cases

(a) (b)

Figure 3.12: Damage distribution at the bottom strip of the sample, (a) based on pa-
rameter set 1 (b) based on parameter set 2

(a) (b)

Figure 3.13: Damage distribution at the bottom strip of the sample, (a) based on pa-
rameter set 5 (b) based on parameter set 4 (without interfaces)
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interface becomes more brittle, especially the tangential openings (sliding) of the in-
terfaces located on the faces of larger grains get larger (compared to the more ductile
case) whereby the grains tend to rotate due to geometric lay-out. It means that the
compressive action between the grains and the matrix becomes pronounced, leading
to high damage values. The damage spreads to a certain area as the compressive
region evolve as the matrix damages. Accordingly, as the traction strengths are fur-
ther increased as done with parameter set 5, the failure pattern disappears, see figure
3.13, as the tangential opening values become very small since almost all of the in-
terfaces remain within the pre-peak, stiff regime of the traction-opening relations.
In the limit, the pattern should approach to the case where there are no interfaces
in the system (i.e. fully bonded), which is presented in figure 3.13. Motivated by
the ‘short range’ and ‘long range’ effects introduced in section 3.1, the influence of
the CTE mismatch between the grains and the matrix (‘short range’ effect) is inves-
tigated next. As shown in figure 3.14(a), in case of identical CTE’s, damage values
are much smaller than in the reference case. On the other hand, a slight increase in
the CTE mismatch yields a considerable difference in the resulting damage profile,
which indicates a strong sensitivity.

In figure 3.14(b), the damage values obtained by increasing the matrix stiffness are
compared with the reference solution (parameter set E 1 and E 2, table 3.5). A more
stiff matrix results in reduced damage values throughout the specimen.

A 1 A 2 A 3 K 1 K 2 K 3

φn(J/m2) 25 25 25 25 25 25

φt(J/m2) 50 50 50 50 50 50
tmax
n (MPa) 14 14 14 14 14 56

tmax
t (MPa) 28 28 28 28 28 112

κ0 0.08 10−5 0.08 10−5 0.08 10−5 0.08 10−5 0.08 10−5 0.08 10−5

κf 0.09 10−2 0.09 10−2 0.09 10−2 0.09 10−2 0.09 10−2 0.09 10−2

γ 0.95 0.95 0.95 0.95 0.95 0.95
l(mm) 0.4 0.4 0.4 0.4 0.4 0.4

Km(W/m2K) 7.91 7.91 7.91 7.91 79.1 79.1

Kg(W/m2K) 38.90 38.90 38.90 38.90 389.0 389.0
Em(GPa) 215.14 215.14 215.14 215.14 215.14 215.14
Eg(GPa) 400 400 400 400 400 400
αm(1/K) 4.56 10−6 4.56 10−6 4.56 10−6 4.56 10−6 4.56 10−6 4.56 10−6

αg(1/K) 5.3 10−6 4.56 10−6 5.472 10−6 5.3 10−6 5.3 10−6 5.3 10−6

Table 3.4: Model parameters used for different cases (room temperature values)

The ‘long range’ effect is associated with the temperature gradient which is deter-
mined by the diffusivity of the material and the heat transfer conditions across the
boundaries. To investigate this effect, the conductivities of the both phases have been
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Figure 3.14: (a) Damage distribution as a function of CTE mismatch (b) Damage dis-
tribution as a function of matrix stiffness

increased significantly as reported in table 3.4 (parameter set K 1 and K 2). The re-
sulting temperature profile along the indicated section for two cases are shown in
figure 3.15. In case of higher conductivities, the temperature difference between the
top and bottom faces of the specimen gets considerably smaller compared to the ref-
erence case, which also implies a deformation mode closer to a homogenous state.
The resulting damage values are shown in figure 3.16. This result suggests that as the
temperature profile gets milder, the damage values tend to be smaller and approxi-
mately constant throughout the specimen. To investigate the influence of interfaces
when the material is highly conductive, another set of computations is carried out
as given in table 3.4 (parameter set K 3). The results given in figure 3.16(b) suggests
that as the material gets more conductive, the influence of interface parameters be-
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E 1 E 2

φn(J/m2) 25 25

φt(J/m2) 50 50
tmax
n (MPa) 14 14

tmax
t (MPa) 28 28

κ0 0.08 10−5 0.08 10−5

κf 0.09 10−2 0.09 10−2

γ 0.95 0.95
l(mm) 0.4 0.4

Km(W/m2K) 7.91 7.91

Kg(W/m2K) 38.90 38.90
Em(GPa) 215.14 322.71
Eg(GPa) 400 400
αm(1/K) 4.56 10−6 4.56 10−6

αg(1/K) 5.3 10−6 5.3 10−6

Table 3.5: Model parameters used for different cases (room temperature values)
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Figure 3.15: Temperature profile at the end of loading history for parameter set K 1
and K 2

come negligible since the two data sets are almost coincident. As the deformation
approaches to a homogenous state, the interfacial characteristics become less influ-
ential.
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Figure 3.16: (a) Damage distribution for a more conductive material, (b) influence of
the interface strength in case of more conductive material

3.5 Summary and Conclusion

On the basis of an idealized two phase material system, direct numerical simulations
are used to investigate the thermal shock response of refractory ceramics. Molten
aluminium tests are reproduced within a computational framework and the param-
eters of the model are identified relying on a static equivalent computational pro-
cedure. Furthermore the influence of certain material parameters are investigated
qualitatively.

On the basis of this parametric study, it can be concluded that:

• In case of strong temperature gradients, the damage evolution is markedly sen-
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sitive to the CTE mismatch between the phases. Damage values increase sig-
nificantly as a result of a slight change in the contrast between the CTE of the
phases.

• The brittleness of the interfaces has a strong influence as long as there exists a
strong temperature gradient. More brittle interfaces (with a limited strength)
yield higher damage values. However, as the temperature profile gets milder,
the influence of the mechanical characteristics of the interfaces become less sig-
nificant.

• For highly conductive materials, the damage distribution tends to be uniform
throughout the specimen. The influence of interface parameters diminishes
since the deformation mode is approaching a homogenous state and the dam-
age values are smaller since the CTE mismatch is the only mechanism of the
damage evolution.

• Increasing the stiffness of the matrix has a favorable effect in the context of
thermal shock response since the damage values are getting smaller.

Obviously, a more extensive parametric study can be carried out to investigate the
relations between different parameters. Nevertheless, the modeling approach and
the parametric study provides information on the mechanisms of damage evolution
and the significance of certain parameters of the material system of interest. Such
information can not be extracted on the basis of a continuum model which does not
consider the heterogeneities explicitly. Furthermore, the identified parameters can
be useful in a multi-scale modeling framework.
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CHAPTER FOUR

Computational Homogenization for
Heat Conduction in Heterogeneous

Solids 1

Abstract

In this chapter, a multi-scale analysis method for heat transfer in heterogeneous
solids is presented. The principles of the method rely on a two-scale computational
homogenization approach which is applied successfully for the stress analysis of
multi-phase solids under purely mechanical loading. The present chapter extends
this methodology to heat conduction problems. The flexibility of the method permits
one to take into account local microstructural heterogeneities and thermal anisotropy,
including nonlinearities which might arise at some stage of the thermal loading his-
tory. The resulting complex microstructural response is transferred back to the macro
level in a consistent manner. A proper macro to micro transition is established in
terms of the applied boundary conditions and likewise a micro to macro transition
is formulated in the form of consistent averaging relations. Imposition of boundary
conditions and extraction of macroscopic quantities are elaborated in detail. A nested
finite element solution procedure is outlined and the effectiveness of the approach is
demonstrated by some illustrative example problems.

1Based on: I. Özdemir, W.A.M. Brekelmans, M.G.D. Geers (2008). Computational Homogenization
for Heat Conduction in Heterogeneous Solids. International Journal for Numerical Methods Engineering,
130(3).
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4.1 Introduction

Materials with a high temperature resistance are indispensable in many engineering
applications. Refractories used in furnace linings, thermal coatings and microelec-
tronic components are just a few examples indicating the wide range of applications
where a structure is exposed to strong temperature changes and cycles. The materials
selected for such applications are generally far from being homogeneous due to their
multi-phase, porous microstructure. Under severe thermal conditions, it is well doc-
umented that the damage mechanism originates from the induced stress gradients,
the thermal expansion anisotropy and the non-uniformity and mismatches between
the constituents at the meso or micro level [7]. Therefore an accurate prediction of
the deterioration process and failure of such components requires a comprehensive
understanding of the temperature distribution at all relevant levels of observation,
e.g. at the meso and micro level.

Initial research efforts to analyze the behavior of heterogeneous solids were based
on variational principles which resulted in bounds for the effective material prop-
erties [60]. The approach has been applied to thermo-elasticity problems to derive
bounds for the thermal expansion coefficient and was further improved to yield
tighter bounds on the effective properties [61, 62]. In order to obtain closed form
expressions for effective properties rather than bounds, analytical models were de-
veloped that are mainly based on the solution of the problem of an inclusion in
an infinite medium. A concise overview of different approaches in the context of
heat conduction problems and a comparative study are presented in [63]. However,
the predictions of these analytical and variational approaches are restricted to rela-
tively simple geometries with a simple material response, not yielding accurate re-
sults when the contrast between the properties of the constituents is large, or when
non-continuous interfaces are present.

Asymptotic homogenization approaches, which were originally developed for the
solution of differential equations with periodic coefficients, have been exploited for
the determination of the (mechanical) constitutive tensor of composites with a pe-
riodic microstructure. The method is based on an asymptotic expansion of the un-
known field with respect to a micro-scale length parameter, yielding homogenized
properties upon truncation of higher-order terms. Due to its generality, this approach
is also applicable to different field problems as for instance heat conduction prob-
lems [64], including higher order models used to capture size effects [65].

The finite element solution of the fine-scale problem considered in an asymptotic ho-
mogenization framework, from which the relevant material characteristics were ob-
tained numerically, led to the homogenization approach which is introduced in [66].
The method has been extended for thermo-mechanics and the heat conduction prob-
lem in [67–70]. This solution strategy departs from the asymptotic expansion of the
temperature field in addition to the displacement field and ends up with a homog-
enized thermal conductivity and thermal expansion coefficients which in turn are
used for the solution of the macroscopic thermo-mechanical problem [71, 72]. How-
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ever, the problems considered were restricted to small strain linear thermo-elasticity
and constant conductivity. Moreover, the steady-state heat conduction problem was
the main point of interest whereas for some cases the transient effects are pronounced
and non-negligible, e.g. in the case of thermoshock.

Relying on the steady evolution of computational tools, analysis methods which are
based on the determination of the response from the underlying physics at the finer
scales, according to a so-called multi-scale approach, have become feasible. The ba-
sic idea is to construct a link between two scales and investigate the interaction be-
tween the microstructure and the resulting macroscopic property by using basic ma-
terial models at the level of single phases on the micro-scale. A particularly relevant
strategy is the computational homogenization approach [15–18,73–75], which can be
considered as a variant of a global-local analysis. Essentially, the macroscopic pre-
dictions are not based on closed-form constitutive equations but the entire material
response is computed numerically at each material point by detailed modeling of the
microstructure at the point under consideration.

Due to its high computational cost, some alternatives trying to approximate the prob-
lem at the micro level with a reduced number of unknowns have been constructed
[76, 77]. A particularly relevant one is presented in [76] in which the microstructure
is divided into subcells with an assumed order of temperature distribution, in which
the unknown coefficients are determined by enforcing the compatibility conditions
at the subcell walls. Temperature dependency of conductivity is taken into account.
The procedure circumvents the heavy computational work but deviates from the ex-
perimental data for some geometrical configurations, e.g. twisted yarns. Microstruc-
tural details and accuracy of the temperature field at the micro level is important for
failure scenarios which initiate from a micro mechanism, e.g. debonding at a fiber
matrix interface [78]. Therefore, detailed microstructural information, which can be
incorporated via computational homogenization, is essential for reliable material re-
sponse predictions. Furthermore, novel approximate techniques may be properly
assessed by taking the computational homogenization results as a reference.

Almost all material properties depend on temperature. Hence a comprehensive un-
derstanding and modeling of the governing phenomena within a multi-scale for-
malism requires reliable temperature information at all relevant scales. The goal of
the present contribution is to construct a computational homogenization approach
for the coupled multi-scale analysis of evolving thermal fields in heterogeneous
solids with complex microstructures including temperature and orientation depen-
dent conductivities. The proposed framework is based on principles used in the
computational homogenization approach for stress analyses as presented in [17] and
up to the authors’ knowledge has not been introduced for thermal problems before.
It will be shown that, the construction of the framework for heat conduction prob-
lems poses some fundamental differences compared to its mechanical counterpart
and therefore requires a comprehensive treatment.

The chapter is outlined as follows. In the next section, the basic principles and as-
sumptions are introduced. Then the problems at the two levels are defined, i.e. at
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macro and at micro scale. Scale transitions are presented in terms of appropriate
boundary conditions and the consistency of the bridging structure is shown on the
basis of physically motivated principles. The two scale computation strategy with a
nested solution algorithm is briefly described thereafter. Finally, the applicability and
the potential of the method is demonstrated on the basis of two example problems
followed by some concluding comments.

4.2 Preliminaries

Computational homogenization is a multi-scale analysis approach in which the ma-
terial response is obtained from the underlying microstructure by solving a boundary
value problem defined on a representative volume of the microstructure. Although
multiple scales can be embedded within the framework, in this particular case, two
distinct levels (scales) are considered which will be referred to as the macro level for
the engineering structure and the micro level for the typical fine scale microstructure
of the material under investigation. As will be clarified shortly, there are some basic
principles to be taken into account in the definition and distinction of the different
scales. First, the fundamental steps of the computational homogenization will be
introduced as schematized in figure 4.1.

As illustrated in figure 4.1, idealization and discretization of an engineering structure
towards the solution of a boundary value problem results in a computational model
which is used to predict the response, e.g. mechanical or thermal, of the structure
under certain loading conditions. To begin with, computational homogenization re-
quires the definition of a microstructural representative volume element (RVE) where
characteristic physical and geometrical properties of the fine scale (different phases,
internal boundaries, flaws etc.) are embedded. The scale bridging from macro to
micro is achieved by the formulation of consistent boundary conditions in terms of
macroscopic quantities passed to the micro level (RVE input, shown as step I in figure
4.1). Then, the microscopic field excited by the prescribed boundary conditions is re-
solved by a proper discretization technique applied to the micro-scale BVP (step II in
figure 4.1). The resulting microscopic quantities are used to extract the macroscopic
quantities (step III in figure 4.1) via a consistent averaging scheme. Furthermore, the
linear relation between infinitesimal variations of the RVE output quantities in rela-
tion to infinitesimal variations of the input quantities are extracted, i.e. the tangent
operator.

In fact, the relevant quantities at both scales involved in the boundary value problem
statement are resolved numerically by the finite element method.

The scale separation made in such a framework relies on some basic assumptions.
The composition of any heterogeneous solid can generally be considered as an as-
sembly of different phases, imperfections, flaws and interfaces. However, as the
characteristic dimensions of these microstructural features are still much larger than
the molecular dimensions, the use of a continuum approach at this level remains
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Figure 4.1: Schematic representation of the computational homogenization scheme

justified. Meanwhile, the microscopic length scale is often much smaller than the
characteristic length over which the macroscopic excitation varies in space. The dis-
tinct hierarchy of scales is known as the principle of scale separation. This principle
states that the characteristic length scale over which the macroscopic field variables
vary, should be much larger than the size of the microscopic volume considered.
In other words, macroscopic quantities are nearly constant at the level of an RVE.
Consequently, the presented framework looses its reliability and validity as the spa-
tial profile of the macroscopic temperature gradient gets steeper within typical RVE
sizes used in the model.

In a conventional heat conduction analysis, the conductivity tensor determining the
heat flux vector is expressed in closed form in terms of material parameters and state
variables which requires dedicated experimental investigations especially for hetero-
geneous materials. However, in computational homogenization, the heat flux vector
and conductivity tensor are extracted from the solution of a micro heat flow analysis
carried out at the RVE level. To elaborate the principles further, a rectangular 2D
RVE will be considered in the sequel, without loss of generalization to three dimen-
sional cases. In a computational finite element setting, at each macroscopic integra-
tion point, temperature and temperature gradient will be calculated through interpo-
lation of the (iteratively corrected) nodal temperature data. This set of macroscopic
data is used to define the boundary conditions to be imposed on the microscopic
problem associated with this particular integration point. After solving the micro-
scopic RVE boundary value problem (BVP), the macroscopic heat flux is obtained
by volume averaging the resulting heat flux field over the RVE and the macroscopic
(tangent) conductivity is extracted from the microstructural conductivity. Due to the
negligibly small size of the microstructural domain, the heat conduction at the micro
level will be assumed to be insensitive to the time variations of the heat storage at this
level. In other words, it may be assumed that a steady-state micro temperature pro-
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file is reached instantaneously. Additionally, the thermal constitutive behaviour of
each phase at the micro level is assumed to be known, which in general is governed
by Fourier’s law of heat conduction. On the other hand, the macroscopic heat flow
problem remains completely general, i.e. transient with any kind of boundary condi-
tions and does not require an explicitly formulated thermal constitutive behaviour.

Following the proper definitions of the problem at both scales in sections 4.3.1 and
4.3.2, the micro to macro scale transition (step I) will be elaborated in section 4.4.1.
Next, a consistent scheme for the micro to macro transition will be introduced in
section 4.4.3. The solution of the boundary value problem at the micro level (step II)
and the extraction of the macroscopic quantities (step III) will be treated in section
4.5 in detail.

In what follows, the superscript or subscript ‘M’ denotes macroscopic quantities
whereas a lower case ‘m’ will be the indicator for microscopic quantities, includ-

ing some differential operators, e.g. the gradient operator ~∇M or ~∇m. Following
conventions are used in the notations of vectors, tensors and related products:

- scalars a

- vectors ~a

- second order tensors A

- matrices and rows/columns A or a

- ~a ·~b = ai bi

- A · ~a = Aij aj ~ei

At both scales, the componentwise representation of the vectors, tensors and gradi-
ent operators are based on a common cartesian basis with the triad, ~e1, ~e2, ~e3.

4.3 Formulation of the Thermal Problem at Both
Scales

4.3.1 Micro-scale problem

The micro scale problem is defined on a representative volume element (RVE), where
physical and geometrical properties of the material microstructure components are
embedded. The choice of the RVE is a delicate task, particularly for materials with
random microstructures, see e.g. [79]. Here it is assumed that the appropriate RVE
has already been selected.

Due to negligibly small RVE size, the time variation of the heat storage may be ne-
glected within the microstructural domain (see section 4.2). This assumption leads
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Figure 4.2: Micro-domain

to the steady-state micro thermal equilibrium which is expressed as

~∇m · ~qm(~x) = 0 (4.1)

where ~qm is the microscopic heat flux vector. In a two-dimensional context, a rectan-
gular micro domain is shown in figure 4.2. The volume of the RVE is designated by
V and the boundaries, Γ, are labeled with L(left), R(right), T(top) and B(bottom). The
same convention is also used for the unit outward normal vectors along the bound-
aries, e.g. ~nL. Four corner points are numbered in counter-clockwise direction start-
ing from the lower left corner as shown in figure 4.2. For the solution of equation (4.1)
in V, the boundary value problem needs to be complemented with proper boundary
conditions which can be formulated in terms of a prescribed temperature or a pre-
scribed normal heat flux on the boundary Γ. As mentioned in section 4.2, the thermal
characterization of the microstructural components is described by Fourier’s law of
heat conduction, through which the microscopic heat flux ~qm can be determined. It
is important to note that there are no a priori restrictions on the specification of the
constitutive laws and material parameters (e.g. constant, temperature dependent
and/or anisotropic) other than the basic thermodynamical limitations.

4.3.2 Macro-scale problem

At the macro level, the heat balance equation takes the general time dependent form
according to

(ρcv)M θ̇M + ~∇M · ~qM = 0 (4.2)

where θM , ~qM and (ρcv)M represent the temperature, the heat flux and the heat ca-
pacity, respectively. This balance equation is to be complemented by macroscopic
boundary conditions and additionally by initial conditions. Within a general setting,
numerical approximation techniques (i.c. the finite element method) have to be used
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to solve the macroscopic heat flow problem.

Within the proposed computational homogenization procedure the heat flux is ob-
tained from the solution of the micro-scale thermal problem, which is defined on the
underlying microstructure. In addition to the macroscopic heat flux, the discretized
weak form of the macroscopic governing equation requires the homogenized con-
ductivity for the solution of the resulting system of equations. The evaluation of the
macroscopic heat flux and the extraction of the macroscopic conductivity are elabo-
rated in the following sections.

For the determination of the macroscopic heat storage to be substituted in eq. (4.2)
the following volume averaging is proposed

(ρcv)M =
1

V

∫

V

(ρcv)mdV (4.3)

which can be also obtained by the asymptotic homogenization method as done in
[64]. This equation reflects that the heat capacity is consistently preserved upon scale
bridging. In a computational context, in addition to the macroscopic heat flux and
the conductivity, also the macroscopic volumetric heat capacity parameter, i.e. (ρcv)M

in eq. (4.3) should be extracted from the micro level in case of a macroscopically
transient problem.

4.4 Scale Transitions

4.4.1 The macro-micro scale transition

Within the framework of a multi-scale analysis, the actual microscopic temperature
profile, θm(~x) with ~x the position vector, can be decomposed without loss of general-
ity in a spatially linear mean (macroscopic) field and a fluctuation field θf (~x) as

θm(~x) = θk
m + ~∇MθM · (~x − ~xk) + θf (~x) (4.4)

which can be interpreted as a perturbation of a mean (macroscopic) field with a fluc-
tuation at the micro scale due to variations in material properties (e.g. conductivity)
within the RVE. In eq. (4.4), θk

m is the temperature at an arbitrary point, ~xk, within
the RVE and yet undetermined.

More conveniently, the microscopic temperature profile can be expressed with re-
spect to the temperature value of corner 1 according to

θm(~x) = θ1
m + ~∇MθM · (~x − ~x1) + θf (~x) (4.5)

which can simply be accomplished using the difference of the temperature value of
corner 1 and the temperature value of any other arbitrary point according to eq. (4.4).
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In eq. (4.5), θ1
m is the microscopic temperature value at corner 1 with position vector

~x1.

The temperature profile at the micro level results from the imposed boundary con-
ditions and the distinct conductivities of the microstructural phases, which may be
temperature dependent. Therefore, the determination of the reference temperature
in the micro domain, which has been indicated by θ1

m, is important for an adequate
and unique solution. To this end, an additional constraint, which enforces the con-
sistency of the stored heat at the macro and the micro level is proposed

(ρcv)MθM =
1

V

∫

V

(ρcv)mθmdV (4.6)

in addition to the macroscopic heat capacity already introduced in eq. (4.3). This con-
dition is sufficient to obtain a unique temperature profile and enforces a temperature
distribution that respects the consistency of the stored heat at micro and macro level.
It will be referred to as the thermal energy consistency condition in the following
sections.

The driving mechanism for heat conduction is the temperature gradient developing
in the volume as a result of the boundary conditions. Therefore, an important char-
acteristic of the scale transition between the micro and the macro level is the transfer
of temperature gradients. Recalling that the temperature field is additively split in
its macro and micro contributions (see eq. (4.4)) the volume averaged micro temper-
ature gradient can be written as

1

V

∫

V

~∇mθmdV = ~∇MθM +
1

V

∫

Γ

θf~ndΓ (4.7)

where the volume integral involving the fluctuation field is converted into a bound-
ary (Γ) integral with the aid of the Gauss divergence theorem.

The gradient ~∇MθM reflects the thermal effect of the macroscopic heat flow which
has to be transferred through the boundary conditions to the RVE. A scale transition
relation that enforces the macroscopic temperature gradient to equal the volume av-
erage of its microscopic counterpart is therefore introduced. This condition leads to
the constraint

∫

Γ

θf~ndΓ = ~0 (4.8)

which can be satisfied by different sets of RVE boundary conditions.
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4.4.2 Micro-scale RVE boundary conditions

If the scale transition constraint (4.8) is written explicitly as

∫

ΓL

{θL
f − θR

f }~n
LdΓ +

∫

ΓB

{θB
f − θT

f }~n
BdΓ = ~0 (4.9)

it is immediately clear that the sufficient conditions, in terms of macroscopic and
microscopic quantities, can be formulated as

θR
m − θL

m = ~∇θM · (~xR − ~xL) (4.10a)

θT
m − θB

m = ~∇θM · (~xT − ~xB) (4.10b)

These are the so-called periodic boundary conditions which naturally result in anti-
periodic normal flux boundary conditions

qL
mn

= −qR
mn

(4.11a)

qT
mn

= −qB
mn

(4.11b)

according to the heat flux balance. In eq. (4.11) the normal heat flux components

over the boundaries, q
(L,R,T,B)
mn , are defined as

q(L,R,T,B)
mn

= ~q (L,R,T,B)
m · ~n (L,R,T,B) (4.12)

It is trivial that, under steady state conditions the inflowing heat flux should be equal
to the outgoing flux.

Based on the macro to micro transition structure, different boundary conditions sat-
isfying eq. (4.8) can be constructed, e.g. θf = 0 on Γ for prescribed temperature
boundary conditions. Alternatively, it is possible to prescribe flux boundary condi-
tions in terms of the macroscopic heat flux. However, in the sequel of this chapter,
periodic boundary conditions will be used, since it is known that they provide the
best approximation for a fixed RVE size in a purely mechanical analysis, see e.g. [80].
Note that the periodic boundary conditions have a purely mathematical motivation
and therefore do not imply any kind of geometric restrictions on the micro-domain,
e.g. geometrically periodic RVE.

4.4.3 The micro-macro scale transition

The second law of thermodynamics leads to Fourier’s inequality, in its standard form
given by

−
1

θ
~∇θ · ~q ≥ 0 (4.13)
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which is essentially the entropy change due to heat conduction. Eliminating the
temperature appearing in the denominator (as proposed in [81]) and enforcing the
consistency of the entropy change at the macro and the micro level, one can write

1

V

∫

V

~∇mθm · ~qmdV = ~∇MθM · ~qM (4.14)

stating that the entropy change due to heat conduction at the macroscopic point level
should be consistent with that of the underlying microstructure. Since the scale
bridging relation for the temperature gradient is already introduced, according to
the equations (4.7) and (4.8), the entropy consistency condition constitutes the basis
for linking micro and macro heat flux fields. For the following considerations it is
more appropriate to transform the left-hand side of eq. (4.14) according to

1

V

∫

V

~∇mθm · ~qmdV =
1

V

∫

Γ

θmqmndΓ (4.15)

for which the identity ~∇m · (θm~qm) = ~∇mθm · ~qm due to the balance of heat, has been
used.

Additionally, to be exploited in the following, the volume averaged microscopic heat
flux field can be written as

1

V

∫

V

~qmdV =
1

V

∫

Γ

~xqmndΓ (4.16)

with the aid of the identity

~∇m · (~xm~qm) = ~∇m~xm · ~qm + ~xm (~∇m · ~qm) = ~qm (4.17)

which holds in view of the heat balance and the identity ~∇m~xm = I. In the case
of periodic temperature and the associated anti-periodic normal heat flux boundary
conditions, the volume averaged micro entropy change (the right-hand side of eq.
(4.15)) can be expressed as

1

V

∫

Γ

θmqmndΓ = (3.18)

1

V
~∇MθM ·

∫

ΓL

(~xL − ~xR)~qm · ~nLdΓ +
1

V
~∇MθM ·

∫

ΓB

(~xB − ~xT )~qm · ~nBdΓ =

~∇MθM ·
1

V

∫

Γ

~xqmndΓ = ~∇MθM ·
1

V

∫

V

~qmdV
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Comparing eq. (4.18) with eq. (4.14) and eq. (4.15) leads to the identification

1

V

∫

V

~qmdV = ~qM (4.19)

showing the equivalence of the volume averaged micro heat flux field and the macro-
scopic heat flux. If investigated for other boundary conditions, the scale bridging
strategy leads to the same consistent result that the macroscopic heat flux is equal to
the volume averaged microscopic heat flux field over the RVE domain.

4.5 Two-Scale Numerical Solution Strategy

Once the boundary conditions for the RVE and the constitutive laws for each con-
stituent of the microstructure are defined, the boundary value problem at the micro
level can be solved by the finite element method numerically. The 2D RVE problem
will be elaborated, where its extension to 3D is relatively straightforward.

4.5.1 RVE boundary value problem

The discretization of the weak form of the microscopic heat balance equation leads
to a system of (non-)linear algebraic equations in the unknown nodal temperatures
stored in the column θ, which can be written as

q
int

(θ) = q
ext

(4.20)

Eq. (4.20) states that the externally applied nodal heat fluxes are equilibrated by
the nodal internal fluxes. The system is excited by the macroscopic loading term
ΥM , a column consisting of the macroscopic temperature and the components of the
macroscopic temperature gradient with respect to the base vectors {~e1, ~e2}

ΥM =





θM

(~∇MθM )1

(~∇MθM )2



 (4.21)

According to the scale separation adopted, these quantities remain constant at the
level of the microscopic problem for a single macroscopic incremental iteration. The
temperature column is next decomposed in, θe, the nodal temperatures at the edge
nodes (excluding nodes located at the four corners of the RVE), θi, internal nodal
temperatures (excluding nodes located at the RVE boundaries) and θc, the nodal tem-
peratures of the corner nodes. The columns q

int
and q

ext
are split up likewise. In case

of temperature dependent conductivities at the micro level, the equilibrium solution
satisfying eq. (4.20) can be obtained iteratively using a classical Newton-Raphson
scheme. To this purpose, the system of equations (4.20) is linearized with respect
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to the incremental estimates θk, which yields the following system for the iterative
corrections δθ

K δθ = q
ext

− q
int

(θk) (4.22)

where the matrix K is defined by

K =
∂q

int

∂θ
|θk (4.23)

The resulting system of equations takes the following decomposed format





Kee Kei Kec

Kie K ii Kic

Kce Kci Kcc









δθe

δθi

δθc



 =





qext

e

0
qext

c



 −





qint

e
(θk)

qint

i
(θk)

qint

c
(θk)



 (4.24)

To proceed further, the column θe is subdivided in a first sub-column with the inde-
pendent values θn containing the nodal temperature unknowns of the left and bottom
edges and a second sub-column with the dependent degrees of freedom θd (i.e. the
nodal temperature unknowns of the right and top edges which will be eliminated by
a master-slave approach via tying relations). To ease the implementation, the RVE
domain is discretized in such a way that the nodes on opposite sides match geomet-
rically. The periodic boundary conditions applied to the edge nodes lead to a set of
constraints of a non-homogeneous type which can be expressed as

θr = θl + Crl ΥM (4.25a)

θt = θb + Ctb ΥM (4.25b)

where Crl and Ctb are the coefficient matrices of the tying relations, resulting from
eq. (4.10). Consequently, the edge degrees of freedom θe can be expressed as

θe = T θn + GΥM (4.26)

where the matrices T and G are implicitly defined through the above relations. Note
that periodicity assumption induces that the external nodal heat flux column qext

e
on the right-hand side of eq. (4.24) reflects anti-periodicity (see eq. (4.11)). Using
this information and the introduced transformation (eq. (4.26)), the equation system
(4.24) can be condensed to following form





T T Kee T T T Kei T T Kec

Kie T Kii Kic

Kce T Kci Kcc









δθn

δθi

δθc



 =





−qint

n
− qint

d

−qint

i

qext

c
− qint

c



 (4.27)

qint

n
and qint

d
appearing on the right hand side are the corresponding sub-columns of

the internal nodal heat flux column of edge nodes introduced as qint

e
in eq. (4.24). Due
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to the structure of the transformation matrix T T and the anti-periodicity condition,
the non-zero entries of the column qext

e
cancel out and therefore do not appear in

equation system (4.27). Note that, variations δθe, are purely expressed in δθn since
the variations of the macroscopic quantities, δΥM , are zero upon solving the micro
problem. Further on, the periodic temperature boundary conditions for the corner
nodes lead to three independent equations according to

θ2 = θ1 + (ΥM)2 l1 (4.28a)

θ3 = θ1 + (ΥM)2 l1 + (ΥM)3 l2 (4.28b)

θ4 = θ1 + (ΥM)3 l2 (4.28c)

Finally, the equation system is completed by the stored heat consistency condition
eq. (4.6), which, upon discretization, can be written as

C θ = (ΥM)1 (4.29)

where C is the coefficient row corresponding to this constraint. In a variational form,
the four equations (eq. (4.28) and eq. (4.29)) can be compactly expressed as

[

M ce M ci M cc

]





δθe

δθi

δθc



 =
[

M ce T M ci M cc

]





δθn

δθi

δθc



 = 0 (4.30)

where the matrices M (ce, ci, cc) contain the coefficients corresponding to this set of con-
straints. By replacing the last four (corner node) equations in (4.27) by the set of 4
equations (4.30), the resulting system can be solved in a straight forward manner
since the right-hand side is known. Using this solution, the column θ is updated
followed by a re-evaluation of the internal nodal fluxes. The iterative process is re-
peated until the right-hand side gets sufficiently small.

4.5.2 Extraction of the macroscopic heat flux

After a microstructural heat conduction analysis has been performed, the macro-
scopic heat flux vector is extracted through volume averaging. This is done by nu-
merically evaluating the boundary integral in the right hand side of eq. (4.16) which
will be further simplified in the following.

With the aid of the anti-periodic heat flux boundary conditions (see eq.(4.11)), eq.
(4.16) can be formulated as

~qM = (~xL − ~xR)

∫

ΓL

qL
mn

dΓ + (~xB − ~xT )

∫

ΓB

qR
mn

dΓ + ~xc qext

c
(4.31)

which, upon discretization and due to thermal equilibrium, takes the following final
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form

~qM =
1

V
((~xL − ~xR)

∑

qext

L
+ (~xB − ~xT )

∑

qext

B
+ ~xc qext

c
) (4.32)

In eq. (4.32), qext

L
and qext

B
are the columns of nodal heat fluxes developing at the

left and bottom edges, respectively. Using the obtained complete nodal temperature
column θ at the micro level, the internal and external nodal heat flux columns can
be obtained by simple substitution into eq. (4.20). The summations in eq. (4.32) are
to be performed over the components of the corresponding columns. The last term
~xc qext

c
(with ~xc, a row with corner node position vectors) represents the contribution

of the heat fluxes at the corner nodes. Eq. (4.32) can be conveniently expressed in a
matrix-column format as

q
M

=
[

Ln Lc

]

[

qext

n

qext

c

]

(4.33)

where Ln and Lc are implicitly defined. Eq. (4.33) is exploited for the evaluation of
the macroscopic heat flux. In the next section, this expression will be used as the
point of departure for the calculation of the macroscopic (tangent) conductivity.

4.5.3 Extraction of the macroscopic conductivity

To solve the macroscopic problem, a relation between the variation of the macro-
scopic heat flux and the variation of the macroscopic temperature gradient in the
form

δq
M

= KM δ(∇MθM ) (4.34)

should be constructed, where KM is the macroscopic (tangent) conductivity at inte-
gration point level of the macroscopic discretization. To this end, the variation of the
macroscopic heat flux expression in its matrix-column format (eq. (4.33)) is taken:

δq
M

=
[

Ln Lc

]

[

δqext

n

δqext

c

]

(4.35)

Although ΥM was fixed during incremental iterations at the microscopic level, the
converged micro equilibrium state can be used to determine the effect of the varia-
tions in the macroscopic quantities on the resulting micro heat flux field. Obviously,
this step is essential for the determination of the macroscopic conductivity. There-
fore, eq. (4.26) is again linearized, but this time with the variation δΥ included:

δθe = T δθn + GδΥM (4.36)

This variation is substituted into eq. (4.24) where the right-hand side vanishes since
the conductivity terms in (4.24) are taken in a converged state of the RVE problem.
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Condensation of the result, using the anti-periodicity conditions, (eq. (4.11)) reveals





T T Kee T T T Kei T T Kec

Kie T Kii K ic

Kce T Kci Kcc









δθn

δθi

δθc



 = −





T T Kee G
Kie G
Kce G



 δΥM (4.37)

from which, the variations δqext

n
and δqext

c
can be extracted as

[

δqext

n

δqext

c

]

=

[

−T T Kee G
−Kce G

]

δΥM (4.38)

Using this information in eq. (4.35) finally yields the macroscopic tangent conductiv-
ity as

KM = (−Ln T T Kee G − Lc Kce G) (4.39)

4.5.4 Nested solution strategy

After having examined each of the ingredients of the homogenization scheme sepa-
rately, the global algorithmic framework is outlined in the following.

The temperature field on the macroscopic domain is spatially discretized by finite
elements and in case of transient problems, a proper numerical time integration
scheme is introduced to convert the governing differential equations into a fully dis-
crete form. Thermal boundary conditions are parameterized in a (pseudo-)time set-
ting and applied incrementally. For transient cases, the macroscopic problem should
be complemented by initial conditions. Assuming that the time discretization is done
in a convenient way, the (non-)linear equations resulting from the heat balance have
to be solved with an incremental-iterative (if necessary) solution procedure. To in-
corporate the constitutive behaviour (relating the macroscopic temperature gradient
and the macroscopic heat flux), an RVE is attributed to each macroscopic integration
point which is subdivided in finite elements.

At the micro level, the macroscopic temperature gradient is used to formulate the
boundary conditions to be imposed on the RVE and the macroscopic temperature
is supplied to the thermal energy consistency condition rendering the microscopic
temperature profile unique. Upon the solution, the macroscopic heat flux vector
and the macroscopic conductivity are extracted as outlined in section 4.5 and trans-
ferred to the macroscopic level (integration point). In case of transient problems, the
macroscopic heat capacity is calculated through volume averaging (eq. (4.3)) and
also passed to the macro level.

Upon completing the RVE computations, the macroscopic heat flux vector and the
macroscopic heat capacity are available at each integration point and the macroscopic
nodal heat balance can be evaluated. If the heat balance is satisfied (within the limits
set by a predefined convergence criterion), the next time increment can be computed.
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Otherwise, the iterative macroscopic temperature field has to be updated using the
macroscopic (tangent) conductivities which are already available in each integration
point from the micro level analysis.

The high computational effort can be reduced by parallel computing which has a
simple algorithmic structure due to the proposed solution procedure. In a parallel
computing framework, the macroscopic mesh (data) is handled by a single master
processor and the micro level problems are distributed to the slave processors which
receive (RVE input) and send data (RVE output) to the master processor. The slave
processors do not need to communicate with each other and therefore the parallel
algorithm turns out to be very effective and simple, see [18, 75] for equivalent me-
chanical problems.

4.6 Two-scale Homogenization Examples

The proposed algorithm is implemented in a commercial finite element software
framework (MSC Marc) through user defined material routines. To illustrate the ap-
plicability of the proposed method and to emphasize its added value, two examples
are worked out in this section.

For both examples the time integration is achieved by the backward-Euler integra-
tion scheme.

4.6.1 Thermal homogenization in a cellular foam-like struc ture

The first problem analyses the temperature evolution through the thickness of a wall,
which serves as a separation and fire retardance unit and which is made of a closed-
cell aluminium foam. The structural details and boundary conditions are depicted
in figure 4.3. Due to the assumed boundary conditions, the macroscopic system can
be modeled as a one-dimensional heat conduction problem over the wall thickness
of 150 mm. On the outer side of the wall, a convection boundary condition with a
film coefficient of 50 W/m2K is used, combined with an ambient temperature T0 =
20 ◦C. The inner face of the wall is exposed to a final temperature TF equal to 400 ◦C
starting from an initial temperature of 20 ◦C. The final temperature level is reached
in 1 second and it is kept constant thereafter, see the left-hand side of figure 4.3. A
typical strip of the macroscopic domain is discretized by 32 4-noded quadrilateral
elements with 4 integration points (total dofs = 66) and a constant time step size of
0.5 is used. The microscopic mesh consists of 652 elements (total dofs = 702).

Aluminium foams have favorable heat isolating and fire retardance properties and
are classified by their basic cell geometry. Here, a perfect hexagonal geometry (h = l)
is considered, see figure 4.3, with a relative density equal to 0.05, which is essentially
the ratio of solid volume with respect to the total cell volume. In reality, three mecha-
nisms of heat transfer (conduction, convection and radiation) take place at the micro
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Figure 4.3: Typical hexagonal structure and the representative volume element (i.e. a
unit cell) selected

level. For the geometry and the cell type as selected here, the contribution of con-
vection and radiation can be neglected (see [82] for details). Therefore, a hexagonal
RVE composed of a solid skeleton and air through which heat can be transferred
by conduction only is considered. Both constant and temperature dependent con-
ductivities are considered. For the temperature dependent case, a temperature vs.
conductivity relation is given in the right-hand side of figure 4.3, showing an im-
proved conductivity at increasing temperature. In the constant conductivity case, a
conductivity of 200 W/mK is taken for the solid skeleton, which is the value cor-
responding to approximately 200 ◦C in figure 4.3. For air, the conductivity value is
taken as 0.025 W/mK. For the solid skeleton, the density and heat capacity values are
taken to be 2700 kg/m3 and 940 J/kgK respectively. For air, the values used are 1.25
kg/m3 and 1005 J/kgK, respectively. Therefore memory effects mentioned in [64]
do not appear since the ratio (cv)air/(cv)alum. is also low, see [64] for the details. For
constant conductivity case, the computation time can be reduced extensively since
it is sufficient to obtain the homogenized conductivity just once from the analysis of
the microstructure under arbitrary loading conditions. Therefore the computational
cost for constant conductivity case is comparable with that of a conventional finite
element analysis. However, in case of temperature dependent conductivities at the
micro level, the computational cost increases considerably, for this particular case ap-
proximately 40 hours on a single processor machine for 150 time steps. In figure 4.4,
a comparison of temperature profiles at different times, for a constant and for a tem-
perature dependent conductivity is presented. For comparison purposes, the result
based on the conductivity obtained from the rule of mixtures (using the constant av-
erage conductivity) is also presented. It is clear from figure 4.4 that, the comparison
of constant conductivity case and the rule of mixtures results reveals that the rule of
mixture solution overestimates the temperature values considerably.

For the constant conductivity case, a good agreement between the macroscopic con-
ductivity obtained here and the one given in reference [83], is obtained. The latter
results are based on an analytical approach mainly valid for small k/l (k: thickness
of the solid skeleton, see figure 4.3) ratios. However, for larger k/l ratios, the ana-
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Figure 4.4: Comparison of temperature profiles over the thickness at different times

lytical model (reference [83]) and our findings deviate since the analytical model is
based on a one dimensional heat conduction along the solid skeleton parts.

4.6.2 Thermal homogenization in refractory-like material s

The second problem specification is inspired by the furnace linings used in steel pro-
duction plants. Typically, refractory bricks with a granular microstructure are used
for the linings. Due to the production stages and an inherent anisotropic (mechani-
cally and thermally) granular structure, a material microstructure composed of dis-
cretely connected (or disconnected) grains with different principal heat conduction
directions should be dealt with. Schematically, the rotated coordinate systems, see
figure 4.5, represent the anisotropy of each grain of the microstructure. To obtain a
better understanding of the effect of the anisotropy, two different cases are consid-
ered. In the first case, the scatter of the principal directions between the grains is
taken to be small. This reflects a strong texture, where the principal directions of
any grain are close to those of the neighboring grains, the difference lying within
a range of 10 degrees. In the second case, the principal directions of the grains are
taken randomly. Additionally, to make a comparison, the temperature profile is also
computed using the conductivities obtained by the rule of mixtures. Further on, to
investigate qualitatively the effect of thermo-mechanical damage (i.e. disconnected
grains) due to abrupt temperature changes and cycles, a pre-damaged RVE with a di-
agonal crack (see figure 4.5) is introduced. The domain within the crack is assumed
to have the properties of air which are already given in the previous example. The
structure is modeled as a two dimensional problem with boundary conditions as in-
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Figure 4.5: Ladle structure and RVE composed of grains with an anisotropic heat con-
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dicated in figure 4.5. Starting from an initial temperature of 20 ◦C, the inner faces
of the structure are exposed to a final temperature of 800 ◦C, reached in 2 seconds
and kept constant thereafter. The reference conductivity tensor is taken to be or-
thotropic with principal values of 38 W/mK and 10 W/mK. The density and heat
capacity are taken to be 1820 kg/m3 and 120 J/kgK, respectively. The macroscopic
mesh consists of 3125 4-noded quadrilaterals with 4 integration points (total dofs =
3276) and the micro-domain is divided into 1305 elements with the total dofs number
of 1348. As mentioned in the previous example, due to constant conductivities, com-
putation times are comparable with those of the conventional FE analysis. In figure
4.6, the temperature profiles along the cross-section indicated are compared at t=50
s, for small-scatter and random anisotropy. For the small-scatter case (shown left)
the results following the rule of mixtures and the computational homogenization are
obviously close since the microstructure is more or less homogeneous in terms of its
global conductivity. However in the large-scatter case (shown right), the differences
are pronounced; where the computational homogenization results reflects the mi-
crostructural information more adequately. For both cases, the effect of pre-damage
which leads to locally reduced conductivities can clearly be observed in the temper-
ature profiles. Evidently, the rule of mixtures cannot discriminate between these two
cases which locally differ up to 100 ◦C. In figure 4.7, the distribution of the temper-
ature and the magnitude of the heat flux at the micro level are shown for t=2 s. The
microstructural profiles depicted are taken at a distance of 0.3 m from the top edge
of the structure on the inclined wall. Obviously, the temperature distributions be-
come less smooth as scatter and damage are introduced in the microstructure. The
crack acts as a barrier for the heat flow and therefore the heat is forced to flow over
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Figure 4.6: Comparison of the temperature distribution for a small-scatter RVE (left)
and a large-scatter RVE (right) at the indicated cross-section

the intact narrow top and bottom regions. These microstructural phenomena are
particularly important in the case of temperature induced stress fields, as needed in
thermo-mechanical damage predictions. The latter is an important issue in assessing
thermo-shock damage in refractories.

4.7 Summary and Conclusion

In this contribution, a multi-scale analysis method for the heat conduction in hetero-
geneous solids is presented. The approach is based on a two level homogenization
strategy, which incorporates a rigorous scale transition. The heat conduction prob-
lem is treated consistently at two distinct scales which are linked by the outlined
scale bridging scheme. The macro to micro transition is achieved through the RVE
boundary conditions introduced, whereas the micro to macro transition results from
proper averaging relations. The macroscopic (tangent) conductivity is derived in
a consistent manner. Finally, a nested finite element solution scheme is presented
and implemented into a FE framework. As shown by the example problems, the
method offers the possibility to include a microstructural morphology and a temper-
ature dependent microstructural material behavior and transfers the microstructural
response properly to the macro level. Original aspects and the added values of the
proposed approach are:

• A rigorous method for the heat conduction analysis in heterogeneous solids
has been developed. The approach is particularly superior when the coupling
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Figure 4.7: Comparison of the temperature fields (in ◦C) and the magnitude of the
heat flux vector (in W/m2) distribution at RVE level (top row, tempera-
tures and bottom row, heat fluxes)

between micro and macro scales becomes stronger, e.g. in case of a temperature
sensitive microstructural response or materials with evolving microstructure.

• Anisotropy, nonlinearity and microstructure morphology can be easily intro-
duced and investigated effectively. Particularly, temperature dependent con-
ductivity problems which cannot be handled by classical homogenization tech-
niques, can easily be dealt with.

• The method offers considerable potential for thermo-mechanical damage pre-
dictions when combined with mechanical homogenization, with the capability
to capture and quantify the interaction between thermal and mechanical fields.

• Results obtained through the proposed methodology may serve as a reference
for any other simplified homogenization scheme.

The proposed method, when combined with mechanical homogenization, consti-
tutes a powerful tool, especially at high temperatures where the material properties
become strongly dependent on the temperature. The influence of microstructural
evolution (e.g. damage and micro-cracking) on the mechanical and thermal fields
and their interaction can be introduced and treated effectively. This enhances the un-
derstanding and modeling of failure phenomena and opens the possibility to identify
some interesting mechanisms of failure initiation and field interaction effects which
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cannot be captured and described trivially without incorporating the relevant mi-
crostructural details, as done here.





CHAPTER FIVE

FE2 Computational Homogenization
for the Thermo-mechanical Analysis

of Heterogeneous Solids 1

Abstract

This chapter presents a two-scale thermo-mechanical analysis framework for hetero-
geneous solids based on a computational homogenization technique. The evolution
of the mechanical and thermal fields at the macroscopic level is resolved through
the incorporation of the microstructural response. Within the proposed multi-scale
approach, the temperature dependent non-linear thermo-mechanical response is ac-
counted by solving a boundary value problem at the micro scale, the results of which
are properly averaged and transferred to the macro level in a consistent way. The
framework does not require explicitly determined homogenized material properties
(e.g. macroscopic thermal expansion coefficients) since no constitutive equations are
required for the macroscopic stresses and heat fluxes at the macro level. A nested
finite element solution procedure with an operator split implementation is outlined
and the effectiveness of the approach is demonstrated by illustrative key examples.

1Based on: I. Özdemir, W.A.M. Brekelmans, M.G.D. Geers (2008). FE2 Computational Homoge-
nization for the Thermo-mechanical Analysis of Heterogeneous Solids. Computer Methods in Applied
Mechanics and Engineering, 130(3).

69



70
5 FE2 COMPUTATIONAL HOMOGENIZATION FOR THE THERMO-MECHANICAL ANALYSIS OF

HETEROGENEOUS SOLIDS

5.1 Introduction

In a wide spectrum of engineering structures and assemblies, premature failure of
components is frequently due to severe thermal loading conditions in the form of
rapid temperature changes (thermal shocks) and temperature cycles. Variations of
the operating temperature of a material is mostly accompanied by physical and ge-
ometrical changes at some scale. In heterogeneous systems, local thermal expan-
sion mismatches and thermal anisotropy of different constituents naturally triggers
the appearance of internal stresses. Under highly transient external thermal loading
conditions, the resulting heterogeneous temperature distribution may lead to a com-
plicated mechanical response and a non-uniform mechanical and physical property
degradation accompanied by irreversible geometrical changes. The altered distri-
bution of mechanical properties dictates the macroscopic response as the external
mechanical loading is further varied as well. Therefore, a strong coupling between
the evolving microstructure and the macroscopic response arises. Moreover, mi-
crostructural configurational changes may trigger a significant interaction between
the mechanical and thermal fields, for instance, in the form of a reduced heat transfer
across a damaged interface. Due to the aforementioned complications, the thermo-
mechanical analysis of heterogeneous material systems constitutes a challenging
task.

Numerous homogenization techniques have been developed to predict the effective
mechanical and thermo-physical properties of materials with complex microstruc-
tures. Early research work [60,61] resulted in bounds for the effective material prop-
erties which are particularly suitable for relatively simple geometries and a restricted
class of constitutive models for the phases. More general asymptotic homogeniza-
tion approaches were exploited for the determination of the mechanical and thermal
constitutive tensors of composites with a periodic microstructure. Starting with the
work of Guedes and Kikuchi [66], the use of computational techniques within the
homogenization theory has received considerable attention including applications
to other field problems [68, 71, 84, 85]. Recently the focus has shifted to extend the
theory and solution algorithms to the nonlinear and inelastic range [86–88]. A sub-
class of computational homogenization techniques which addresses both the influ-
ence of the microstructure and the coupling with the resulting macroscopic response
is presented in [15–17, 74, 75]. In this multi-scale approach, the macroscopic mate-
rial response is obtained from the underlying microstructure by solving a boundary
value problem defined on a representative volume element (RVE) of the material.
The detailed treatment with underlying principles is described in [18]. At present,
this method has been applied successfully for (I) stress and structural damage anal-
ysis [17,19,75], (II) the mechanical analysis of structured thin sheets (shells) [20], (III)
failure analysis of cohesive interfaces [89] and (IV) heat conduction analysis in het-
erogenous solids [90]. In this chapter, the multi-scale framework is extended to the
fully coupled thermo-mechanical analysis of heterogeneous material systems includ-
ing an appropriate solution algorithm.

The interaction of the thermal and mechanical fields within a multi-scale model-
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ing framework requires comprehensive treatment and depends on the characteristic
micro-failure mechanisms. For typical high temperature resistant materials (e.g. re-
fractory ceramics), micro-failure mechanisms such as debonding of the grain-grain
interfaces, evolve at an apparent microstructural level, which motivates a two-level
treatment as adopted in the following sections. Furthermore, damage and failure at
the micro level takes place without significant inelasticity (e.g. plasticity), which im-
plies that the effect of mechanical energy dissipation on the thermal field is negligible
and therefore not taken into account in the analysis. Similarly, the reduction of the
heat flow as a result of mechanical damage is not explicitly considered although the
constructed framework can easily accommodate such coupling effects. Before pro-
ceeding further, the essential points on which the proposed framework differs from
the existing approaches can be summarized as:

• The proposed approach does not require macroscopic material properties such
as the homogenized coefficient of thermal expansion as opposed to other alter-
native homogenization schemes.

• The framework has the flexibility to include a non-linear and temperature
dependent thermo-mechanical material response at the microstructural level,
which is transmitted to the macro level in a consistent way. Furthermore, for
different combinations and types of constitutive equations at the micro level,
re-derivation of certain effective quantities (expressions) is not necessary.

• The presented solution algorithm resolves the interaction of the fields in a
proper way and can accommodate thermo-mechanically induced coupling
mechanisms accompanying microstructural evolution.

The presentation of the chapter is organized as follows. After the introduction of the
assumptions in the next section, the thermo-mechanical analysis problems at micro
and macro levels are formulated in section 5.3. Then, the scale transition structure
is summarized in section 5.4. Thereupon, a two-scale solution strategy is presented
which leads to an operator-split nested finite element solution algorithm further de-
tailed in section 5.5. Illustrative examples are presented in section 5.6, followed by
the discussion and conclusion section.

5.2 Preliminaries

In this chapter, a first order theory is adopted for both the mechanical and ther-
mal homogenization procedure which hinges on the principle of scale separation
[17, 75, 90]. A first order theory for mechanical homogenization implies that the
macroscopic deformation gradient varies mildly and therefore deformation localiza-
tion (softening) is excluded from the considerations. However, for typical high tem-
perature resistant structures, the onset of softening is practically the end of service
life (failure) since after the onset the bearing capacity is very limited. Theoretically,
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the principle of scale separation assumes an infinitesimally small underlying fine
scale structure (infinitesimal neighbourhood of a material point) though finite sized
RVE’s are used in real predictive computations. As a matter of fact, at the micro level,
it is assumed that a steady-state temperature profile is attained instantaneously in
virtue of the negligibly small size of the RVE. As will be clarified in section 5.5, the
RVE analysis is performed to extract macroscopic stresses, heat fluxes and associated
tangent operators. Therefore, the RVE analysis can be partly considered as a substi-
tute for the so-called ‘algorithmic stress update boxes’ (stress integration algorithms)
derived from phenomenological models for which the body forces and heat sources
are irrelevant [91]. Furthermore, for stationary mechanical loading, inertia effects are
neglected.

5.3 Micro and Macro-scale Problem Formulations

5.3.1 Micro-scale problem

The evolution of thermal and mechanical fields at the micro level is defined and
monitored on a representative volume element (RVE) provided with the essential
physical and geometrical information about the microstructural components. Partic-
ularly for materials with random microstructures, the choice of the RVE is a delicate
task. The difficulty arises due to the fact that RVE should be statistically representa-
tive of all microstructural heterogeneities and at the same time remain small enough
so that the principle of scale separation is not violated. Furthermore the RVE re-
sponse should be independent of the applied boundary conditions. A detailed dis-
cussion and relevant techniques to determine the RVE size is given in [92, 93] and
the references therein. Here, it is assumed that an appropriate RVE has already been
selected. In figure 5.1, the reference and current configuration of a microstructured
2-D domain is shown where the subscript ‘0’ is used for referential quantities. For
a particular material point P, the underlying 2-D initially square RVE is depicted in
both configurations, for which V and Γ are the current volume and boundary of the
micro-domain, respectively. The RVE boundary is further split up into ΓL for the left
side of the boundary, ΓR for the right, etc. The thermal and mechanical characteri-
zations of the phases at the RVE level are described by their respective constitutive
relations. Note that there are no a priori restrictions on the specification of the consti-
tutive laws and material parameters (e.g. temperature dependent, anisotropic, etc.)
other than the fundamental thermodynamical limitations.
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Figure 5.1: Macroscopic and microstructural domain

In a geometrically non-linear setting, in the absence of body forces and inertia effects,
the mechanical equilibrium at the micro domain takes the form,

~∇m · σm = ~0 (5.1)

in which σm is the microscopic Cauchy stress tensor defined by the corresponding
constitutive law whose description might be anisotropic and depending on the tem-

perature and a set of internal variables. In (5.1), ~∇m indicates the gradient operator
with respect to the current micro-domain. The mechanical RVE problem is comple-
mented with standard boundary conditions, for which periodic boundary conditions
provide the best approximation [80]. Based on the assumptions introduced in section
5.2, the steady-state heat balance at the micro level is expressed as,

~∇m · ~qm = 0 (5.2)

where ~qm is the microscopic heat flux vector. To construct a well-posed problem, the
balance equation is to be complemented with the temperature and heat flux bound-
ary conditions. The specific form of the boundary conditions will be outlined in
section 5.4.

5.3.2 Macro-scale problem

At the macro level, the mechanical equilibrium has an identical structure as at the
micro level

~∇M · σM = ~0 (5.3)

which is complemented by the macroscopic mechanical boundary conditions. In the
absence of heat sources, the conservation of thermal energy equation at the macro
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level takes the general time dependent form according to,

(ρcv)M θ̇M + ~∇M · ~qM = 0 (5.4)

where θM , ~qM and (ρcv)M represent the temperature, the heat flux and the heat stor-
age capacity, respectively. In addition to proper thermal boundary conditions, also
initial conditions have to be specified for the temperature distribution at the macro
level.

Within the proposed computational homogenization procedure, the macroscopic
Cauchy stress and the macroscopic heat flux are obtained from the solution of
the micro-scale thermo-mechanical problem defined on the underlying microstruc-
ture (RVE). In addition to these flux quantities, the discretized weak forms of the
macroscopic governing equations require the macroscopic (tangent) conductivity, the
macroscopic mechanical tangent stiffness and the macroscopic heat storage capacity
(ρcv)M to enable the solution of the resulting system of equations. Consistent deriva-
tions of these macroscopic quantities are elaborated in the following sections.

5.4 Scale transitions

5.4.1 The macro-micro scale transition

Within the framework of a first order multi-scale analysis, the actual microscopic
displacement and temperature fields at a location ~x in the current configuration can
be decomposed without loss of generality as,

~um(~x) = (F M − I) · ( ~X − ~X1) + ~uf(~x) (5.5a)

θm(~x) = θ1
m + ~∇MθM · (~x − ~x1) + θf (~x) (5.5b)

in a macroscopic contribution and a fluctuation field (subscript ‘f’) that represents
the fine scale deviations with respect to the average fields as a result of the varia-
tions in material properties within the RVE. In equations (5.5), the displacement ~um

and the temperature θm are presented with respect to the corresponding values of

corner 1. In equation (5.5a), ~X denotes the position vector in the reference config-
uration, whereas in equation (5.5b) the current position vector, ~x, is used implying
that two different configurations are involved for the decomposition of displacement
and temperature fields, respectively. For equation (5.5a), although other referential
or spatial kinematic quantities could be used, the description in terms of F M and
referential position vectors leads to compact scale transition relations, [18]. For the
decomposition (5.5b), a formulation based on the current configuration is preferred
since a fully referential description requires pull-back of the primary quantities (tem-
perature gradient and heat fluxes) leading to more complicated scale bridging rela-

tions. To suppress the rigid body translation, corner 1 is taken to be fixed, ~uf(~x1) = ~0,
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whereas the rigid body rotation is excluded by the periodic displacement constraint
introduced further on. However, fixing the temperature level for the RVE is less triv-
ial. The temperature profile at the micro level results from the imposed boundary
conditions and the distinct conductivities of the microstructural phases, which may
be temperature dependent. Therefore, the determination of the reference tempera-
ture in the micro-domain which has been indicated by θr

m is required for a reliable
solution. To this end, an additional constraint,

(ρcv)MθM =
1

V

∫

V

(ρcv)mθmdV (5.6)

is proposed. This condition is sufficient to obtain a unique temperature profile and
enforces a temperature distribution that respects the consistency of the stored heat at
micro and macro level.

In computational homogenization, the macro-to-micro transition is achieved by en-
forcing the conditions,

F M =
1

V0

∫

V0

F mdV0 (5.7a)

~∇MθM =
1

V

∫

V

~∇mθmdV (5.7b)

which essentially imposes a volumetric averaging of the primary deformation char-
acteristics (F , deformation gradient) and the essential driving forces for the heat flow

(~∇θ, temperature gradient), bridging the two scales.

The substitution of equations (5.5) into the scale transition relations equations (5.7)
leads to the conditions,

∫

Γ0

~ufdΓ0 = ~0 (5.8a)

∫

Γ

θfdΓ = 0 (5.8b)

which are the basis for different types of boundary conditions that can be imposed
at the micro level. For instance, enforcing periodic fluctuation fields results in

~uL
f = ~uR

f → ~uR = ~uL + (F M − I) · ( ~XR − ~XL) (5.9a)

~uT
f = ~uB

f → ~uT = ~uB + (F M − I) · ( ~XT − ~XB) (5.9b)

θL
f = θR

f → θR = θL + ~∇MθM · (~xR − ~xL) (5.9c)

θT
f = θB

f → θT = θB + ~∇MθM · (~xT − ~xB) (5.9d)

which are known to yield better convergence to apparent macroscopic properties

as compared to other options (e.g., fully prescribed boundary conditions: ~uf = ~0
and θf = 0 on Γ), see [80]. Periodically micro-fluctuating temperature boundary
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conditions result in non-homogenous linear relations between the temperatures of
the opposite edges which are similar to the constraints arising in second order com-
putational homogenization [94]. Therefore, the stored heat consistency condition
(equation (5.6)) and the periodically micro-fluctuating temperature boundary condi-
tions lead to a time-independent (steady-state) temperature profile dictated by the
macroscopic temperature, macroscopic temperature gradient and local conductivi-
ties within the RVE. However, it is important to note that the macroscopic tempera-
ture and the temperature gradient changes as the macroscopic loading is further var-
ied. Therefore, the ‘steady-state’ problem is driven by some non-stationary macro-
scopic quantities and ‘time-independency’ is just to emphasize that the microscopic
temperature profile does not evolve as long as the macroscopic loading is kept at the
same level. It is worth to note that the current geometry of the RVE influences the
thermo-mechanical response through the imposition of the boundary conditions in
the current state, equations (5.9c) and (5.9d). Furthermore, particularly in the vicin-
ity of macroscopic Dirichlet boundary conditions, the temperature gradient can vary
rapidly so that the principle of scale separation might be violated. In other words,
the variation of the macroscopic temperature profile should be mild enough as com-
pared to the RVE dimensions so that the macroscopic temperature gradient can be
taken as constant over an RVE area. This is a limitation of the proposed method.
Due to the different configurations employed, referential and current volume inte-
grals are used in equations (5.7a) and (5.7b) from which boundary integrals (5.8a)
and (5.8b) are obtained, respectively.

5.4.2 The micro-macro scale transition

For the determination of the macroscopic heat storage capacity (ρcv)M , used in equa-
tion (5.4), the following volume averaging is proposed

(ρcv)M =
1

V

∫

V

(ρcv)mdV (5.10)

which is fully in line with the equivalent result obtained through an asymptotic ho-
mogenization method [64]. This equation implies that the heat capacity is consis-
tently preserved upon scale bridging.

The micro-to-macro transition is essentially based on two principles. The mechan-
ical coupling hinges on the macro-homogeneity (Hill-Mandel) condition, written in
terms of the work conjugate pair F (deformation gradient tensor) and P (1st Piola-
Kirchhoff stress tensor) as,

P M : δF M =
1

V0

∫

V0

P m : δF mdV0 (5.11)

The symbol ‘:’ indicates the double contraction and for second order tensors yields,
A : B = Aij Bij. This principle simply expresses the volumetric consistency of the
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macroscopic internal virtual work and that of the underlying microstructural vol-
ume.

For the thermal part, the motivation originates from the 2nd law of thermodynamics,
which requires a positive entropy change due to heat conduction. Enforcing the vol-
umetric consistency of the micro and macro entropy increase due to heat conduction
leads to,

~∇MθM · ~qM =
1

V

∫

V

~∇mθm · ~qmdV (5.12)

which is the basis for the micro-to-macro transition in the context of the conservation
of thermal energy. Note that equation (5.12) is not exactly the entropy statement (no
temperature scaling applied), but is nevertheless well motivated, see [81].

It can be shown that for each of the boundary conditions of interest, the scale bridging
principles lead to [18, 90],

P M =
1

V0

∫

V0

P mdV0 (5.13a)

~qM =
1

V

∫

V

~qmdV (5.13b)

From equation (5.13a) the macroscopic Cauchy stresses are obtained by the standard
relation σM = 1

detFM

P M · F T
M , where F

T
M is the transpose of F M .

5.5 Two-scale Numerical Solution Framework

Since analytical solutions are limited to relatively simple geometries and constitutive
relations, a general approximate solution procedure is pursued on the basis of the fi-
nite element method at both scales (FE2). Both mechanical and thermal boundary
conditions are parameterized in a (pseudo-)time setting and applied incrementally.
Furthermore, in case of transient thermal problems, a proper numerical time inte-
gration scheme is introduced to convert the spatially discretized rate equations into
a fully discrete form. Non-linear equations resulting from the mechanical and heat
balances have to be solved with an incremental-iterative solution procedure. To in-
corporate the constitutive behaviour at the macro level, an RVE is associated to each
macroscopic integration point.

The interaction between the mechanical and thermal fields through the temperature
induced stresses, temperature dependent material properties and the influence of ge-
ometrical changes (large displacements and internal discontinuities) on the thermal
field leads to a coupled problem at both micro and macro levels.

The implementation of the coupling between both fields is based on an operator-split
approach in which two sub-problems are solved sequentially leading to two incre-
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mentally uncoupled balance equations. For this purpose, a thermal balance with an
updated and frozen mechanical field is solved, followed by a mechanical equilibrium
problem with an updated and frozen thermal field. The resulting numerical scheme
has a simple structure with symmetric system matrices but is only conditionally sta-
ble. Since an incremental-iterative solution scheme already requires small time steps
to handle the nonlinearities, the operator-split approach does not necessarily involve
higher computational costs.

In the following sections, the macroscopic boundary value problem (BVP) and the
microscopic BVP are further elaborated within the aforementioned framework.

5.5.1 Macroscopic boundary value problem

As a result of geometrical and/or material nonlinearities, the resulting balance equa-
tions are non-linear as well and have to be solved by a Newton-Raphson technique
in an incremental-iterative way. In the current increment, at iteration k, estimates

are denoted as u(k) for the nodal displacements and θ(k) for the nodal temperatures,
where a bar under a symbol is used to indicate columns (representation of vectors
with respect to a certain basis in matrix notation) and matrices. Upon linearization,
the out-of-balance (residual) nodal forces and heat fluxes have to vanish, i.e.

rmech(u
(k)) = f

int
(u(k)) − f

ext
→ rmech(u

(k)) + δrmech = 0 (5.14a)

rth(θ
(k)) = q

int
(θ(k)) − q

ext
→ rth(θ

(k)) + δrth = 0 (5.14b)

where δrth and δrmec are the iterative updates of the nodal heat fluxes and forces
which tend to zero within the limit of the adopted convergence norm. Using an
updated Lagrangian framework (whereby the current configuration is taken as the
reference for volume integration, [95]), the corrections δrth and δrmech are expressed
in the nodal variations δu and δθ as

δrmech =

nel
∑

e=1

[
∫

V e

(

BT CM B + HT S H
)

dV

]

δu (5.15a)

δrth =

nel
∑

e=1

[
∫

V e

(

1

∆t
(ρ cv)M NT N + BT KM B

)

dV

]

δθ (5.15b)

A backward Euler time integration scheme is employed to construct the fully dis-
crete system of equations (5.15b). The key ingredients of these equation systems
(equations (5.15a) and (5.15b)) are the macroscopic spatial material tangent stiffness
in Voigt notation CM , the macroscopic heat storage capacity (ρ cv)M and the macro-
scopic tangent conductivity KM , respectively. In a standard manner, spatial deriva-
tives of the shape functions are placed in matrix B and the matrix N is composed
of the shape functions. Furthermore, the second term in the integrand of (5.15a) is
the so called initial stress component of the tangent stiffness for which H and S are
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defined as,

H =









N1,x 0 N2,x 0 · · ·
N1,y 0 N2,y 0 · · ·
0 N1,x 0 N2,x · · ·
0 N1,y 0 N2,y · · ·









and S =

[

σM 0
0 σM

]

with σM =

[

σ11 σ12

σ21 σ22

]

(5.16)

for a two dimensional discretization [96], where σM is the macroscopic Cauchy stress
matrix.

The solution algorithm for time step [tn to tn+1] is depicted in table 5.1 (the symbols
are defined in the following sub-sections). At the macro level, each increment con-
sists of a ‘thermal pass’ and a ‘mechanical pass’ for which the heat fluxes, stresses
and relevant tangent operators are extracted from the RVE level problem.In the fol-
lowing sections, essential components of the multi-scale solution scheme will be ex-
plained in more detail. The high computational cost of this scheme can be reduced
substantially by parallel computing. Although an implicit solution algorithm is pre-
sented here, explicit time marching which requires much smaller time steps, could
be equally used. However, this wouldn’t bring considerable gain since the compu-
tational burden is on the solution of RVE level problem but not on the extraction of
macroscopic tangent stiffnesses and the solution of the macroscopic systems.

It is worth to note that a staggered approach with a proper bookkeeping allows the
use of different time stepping for mechanical and thermal problems. This might
be particularly useful in case of Dirichlet type thermal boundary conditions at the
beginning of the loading history.

5.5.2 RVE level boundary value problem

Essential components of the macroscopic solution procedure (fluxes and tangent op-
erators) require the solution of the micro level BVP’s for both macroscopic thermal
and mechanical passes. Similar to the macro level BVP, a finite element solution pro-
cedure is adopted for the micro BVP’s including the extraction of the macroscopic
heat fluxes, stresses and tangent operators.

RVE-BVP coupled to the macroscopic thermal pass

This section is essentially based on the computational homogenization scheme intro-
duced in [90]. Related details are therefore not given here.

On an updated micro-domain (RVE at tn passed to micro level in the macroscopic
thermal pass, see table 5.1), the discretization of the weak form of the microscopic
heat balance equation leads to a system of (non)-linear algebraic equations in the
unknown nodal temperatures θ, which can be written as,

q
int

(θ) = q
ext

(5.17)
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Table 5.1: Two scale staggered solution scheme for the thermo-mechanical analysis

MACRO MICRO

Next increment

I. Thermal pass :

(a) Next iteration

⊲ assemble the tangent conductivity

⊲ solve the system and update θM

⊲ loop over all integration points
θM , ~∇MθM

−−−−−−−−−−−→
RVE at tn ⊲ solve the RVE problem

~qM , KM
←−−−−−−−−−

⊲ calculate macroscopic heat flux and
conductivity

⊲ store ~qM and KM

⊲ end integration point loop

⊲ assemble the internal nodal fluxes

⊲ check for convergence, if not repeat step (a), else continue

II. Mechanical pass :

(b) Next iteration

⊲ assemble the tangent stiffness

⊲ solve the system and update FM

⊲ loop over all integration points
∆FM , θM ,~∇MθM

−−−−−−−−−−−−−−−−−−→
RVE at tn ⊲ solve the RVE problem

σM , AM
←−−−−−−−−−−−−−−
updated RVE state

⊲ calculate the macroscopic stresses
and stiffness tensor (AM )

⊲ store σM and AM

⊲ end integration point loop

⊲ assemble the internal forces

⊲ check for convergence, if not repeat step (b),
else save updated RVE state at tn+1 and start new increment

expressing that the externally applied nodal heat fluxes are equilibrated by the nodal
internal fluxes. The system is excited by the macroscopic loading term ΥM , a column
consisting of the macroscopic temperature and the components of the macroscopic
temperature gradient with respect to the base vectors ~e1, ~e2

ΥM =





θM

(~∇θM )1

(~∇θM )2



 (5.18)

which is imposed on the system through the periodically micro-fluctuating temper-
ature boundary conditions (see equations (5.9c), (5.9d)) and the stored heat consis-
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tency condition (see equation (5.6)). In case of temperature dependent conductivities
at the micro level, the equilibrium solution can be obtained iteratively using a clas-
sical Newton-Raphson scheme. To this purpose, equation (5.17) is linearized with
respect to the incremental estimates θk, which yields the following system for the
iterative corrections δθ

Kδθ = q
ext

− q
int

(θk) (5.19)

where the tangent conductivity matrix K is defined by K =
∂q

int

∂θ
|θk .

In order to impose the periodically micro-fluctuating temperature boundary condi-
tions, linear dependencies are introduced in the system in a classical manner. To ease
the implementation, the RVE domain is discretized in such a way that the nodes on
opposite sides match geometrically, see figure 5.2. The periodically micro-fluctuating
boundary conditions applied to the edge nodes (θe, excluding the corner nodes) lead
to a set of linear constraint equations of a non-homogeneous type which can be ex-
pressed as,

θe = T θn + GΥM (5.20)

where T and G are the coefficient matrices of the tying relations and θn is the column
with the independent (master) degrees of freedom (left and bottom edges, excluding
corner nodes). With the introduced transformation, the explicit form of the parti-
tioned system of equations is given as,





T T KeeT T T Kei T T Kec

KieT Kii Kic

KceT Kci Kcc









δθn

δθi

δθc



 =





−qint

n
− qint

d

−qint

i

qext

c
− qint

c



 (5.21)

where qint

n
(independent, left and bottom edges) and qint

d
(dependent, right and top

edges) appearing on the right hand side are the corresponding sub-columns of the in-
ternal nodal heat flux column of edge nodes. In equation (5.21) the subscript ‘i’ refers
to the internal (not located on the boundaries) degrees of freedom and subscript ‘c’
designates the quantities associated with corner nodes, see figure 5.2.

Further on, the periodically micro-fluctuating temperature boundary conditions for

the corner nodes (e.g. θ2 = θ1 + ~∇MθM ·(~x2−~x1)) and the stored heat consistency con-
dition (equation (5.6)) lead to four independent equations which can be compactly
expressed in a variational (incremental or iterative) form as,

[

M ce M ci M cc

]





δθe

δθi

δθc



 =
[

M ce T M ci M cc

]





δθn

δθi

δθc



 = 0 (5.22)

where M (ce, ci, cc) are the coefficient matrices. Using these constraints, the resulting
system of equations can be solved and an update for the unknown temperature col-
umn θ is obtained, [90].
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ΓL ΓR

ΓB

ΓT

1 2

34

Left and bottom (independent)

Right and top (dependent)

Corner

Internal

Figure 5.2: Discretized RVE example

Extraction of the macroscopic heat flux

As shown in reference [90], after discretization, the volume averaging relation for ~qM

can be expressed as,

~qM =
1

V

(

(~xL − ~xR)
∑

qext

L
+ (~xB − ~xT )

∑

qext

B
+ ~xT

c qext

c

)

(5.23)

where, qext

L
and qext

B
are the columns of nodal heat fluxes at the left and bottom edges,

respectively. The summations are performed over the components of the correspond-
ing columns. The last term ~xc qext

c
(with ~xc, a column with corner node position vec-

tors) represents the contribution of the heat fluxes at the corner nodes. Eq.(5.23) can
be conveniently expressed in components using a matrix-column format as,

q
M

=
[

Ln Lc

]

[

qext

n

qext

c

]

(5.24)

where Ln and Lc are implicitly defined.

Extraction of the macroscopic conductivity

To solve the macroscopic problem, a relation between the variation of the macro-
scopic heat flux and the variation of the macroscopic temperature gradient is re-
quired, which is written as

δq
M

= KM δ(∇MθM ) (5.25)

where KM is the macroscopic (tangent) conductivity at integration point level of the
macroscopic discretization. To this end, the variation of the macroscopic heat flux
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expression equation (5.24) is taken:

δq
M

=
[

Ln Lc

]

[

δqext

n

δqext

c

]

(5.26)

Considering the system of equations in a converged micro energy balance state [90],
the variations δqext

n
and δqext

c
can be extracted as,

[

δqext

n

δqext

c

]

=

[

−T T Kee G
−Kce G

]

δΥM (5.27)

where the variations of the macroscopic quantities (loading terms) are involved. Us-
ing this relation in equation (5.26) finally yields the macroscopic tangent conductivity
as,

KM = (−Ln T T Kee G − Lc Kce G) (5.28)

RVE-BVP coupled to the macroscopic mechanical pass

On an updated micro-domain (RVE at tn passed to micro level in the macro-
scopic mechanical pass, see table 5.1), the system is excited by the periodically
micro-fluctuating displacement boundary conditions (see equations (5.9a) and (5.9b))
which can be expressed in a constraint form as,

~xR = ~xL + ~x2 − ~x1 (5.29a)

~xT = ~xB + ~x4 − ~x1 (5.29b)

where ~xL, ~xR, ~xB and ~xT denote current position vectors of the periodic points of the
corresponding boundaries and ~xi, i = 1, 2, 4 are the position vectors of the corner
nodes 1, 2 and 4 (see figure 5.2). Furthermore, with the updated temperature and
temperature gradient calculated at each macroscopic integration point, the periodi-
cally micro-fluctuating temperature profile is enforced within the micro-domain as
explained in section 5.5.2. The resulting thermo-mechanical problem is solved in a
staggered way.

The discretization of the weak form of the microscopic equilibrium equation yields
a system of (non-)linear algebraic equations in the nodal displacements u which can
be written as,

f
int

(u) = f
ext

(5.30)

with f
int

and f
ext

, the internal and external nodal forces, respectively. Linearization
leads to the system of equations, as expressed in equations (5.14a) and (5.15a), written
in a compact form as

Kδu = δr (5.31)
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where δr is the column with the out of balance residual forces. As a result of the
periodically micro-fluctuating displacement boundary conditions, the displacement
vectors of the corner nodes 1,2 and 4 are kinematically fully prescribed by,

~ui = (F M − I) · ~Xi (5.32)

where the node corresponding to corner 1 is fixed to eliminate rigid body transla-
tions. The displacement of the node located at corner 3 is fully described by the
displacement of corner 2 and corner 4. Therefore it is not an independent quantity
anymore and consequently does not appear in the equations. Furthermore, as em-
phasized in the macroscopic thermal pass, the discretization of opposite sides of the
RVE matches geometrically.

In the discrete setting, periodically micro-fluctuating displacement boundary con-
ditions are handled through standard linear dependencies, δud = Cidδui with ui the
independent displacement degrees of freedom (dofs) and ud the dependent dofs, mu-
tually linked through the linear dependency matrix Cdi. Eliminating the dependent
dofs from equation (5.31) leads to a condensed system

K∗δui = δr∗ (5.33)

which is further decomposed to account for the different contributions emanating
from the macroscopically prescribed dofs, δup and the remaining free dof variations,
δuf . At equilibrium of the RVE, this partitioned system reads,

[

K∗pp K∗pf

K∗fp K∗ff

] [

δup

δuf

]

=

[

δf ∗
p

0

]

(5.34)

where δf ∗
p

corresponds to the variations of the external forces at the prescribed nodes.

By condensing out the free degrees of freedom from the system, a reduced stiffness
matrix linking δf∗

p
and δup can be obtained as,

K∗Mδup = δf ∗
p

with K∗M = K∗pp − K∗pf(K
∗

ff)
−1K∗fp (5.35)

which will be used for the extraction of the macroscopic material tangent.

Extraction of the macroscopic stresses

The volume average of the microscopic 1st PK stresses can be converted into the
following integral form,

P M =
1

V0

∫

Γ0

~p ~XdΓ0 (5.36)
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for which the microscopic equilibrium and the identity ~∇0
~X = I are used and ~p is

defined as ~p = P m · ~N , where ~N is the unit outward normal to Γ0, [18]. After the solu-
tion of the micro-BVP, it can be verified that, in case of periodically micro-fluctuating
displacement boundary conditions, the boundary integral (equation (5.36)) takes the
following simple form,

P M =
1

V0

∑

i=1,2,4

~fi
~Xi (5.37)

where ~fi, i=1,2,4 are the external forces at the three prescribed corner nodes, [18]. The
macroscopic Cauchy stresses can be obtained from P M by a classical push-forward
σM = 1

detFM

P M · F T
M .

Extraction of the macroscopic stiffness

For a constitutive relation formulated in the conjugate pair P and F , the material
tangent is the fourth order tensor A which satisfies the linear relation,

δP = AM : δF (5.38)

Reconsidering equation (5.37), in a variational format,

δP M =
1

V0

∑

i=1,2,4

δ ~fi
~Xi (5.39)

in combination with the expression for δf ∗
p

(see equation (5.35)) and δ~uj = δF M ·

~Xj, with j = 1, 2, 4 leads to the consistent tangent operator AM (see [17, 18] for the
derivation) according to

AM =
1

V0

∑

i

∑

j

( ~Xi K
∗( ij)
M

~Xj)
LC i, j = 1, 2, 4 (5.40)

where the left conjugation implies, TLC
ijkl = Tjikl. K∗M is a 6 × 6 matrix for a 2-D RVE

configuration and K
∗ (ij)
M is a square sub-matrix of K∗M corresponding to the dofs of

the nodes i and j (i, j = 1, 2, 4).

Once AM is obtained, the required material tangent in an updated Lagrangian frame-
work can be derived through a push-forward (see [97]) written in index notation as

Cpqmn = FqJ ApJmS FnS − Jδmp σnq (5.41)

where Cpqmn is the material tangent consistent with equation (5.15a), J = det F M and
δmp is the Kronecker delta.
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5.6 Two-scale Homogenization Examples

The proposed two-scale thermo-mechanical framework has been implemented in a
commercial FE environment (MSC MARC), and is next demonstrated by two exam-
ple problems. The selected problems are 2-D, preferred due to computational cost
reasons, although the presented framework is applicable to 3-D cases as well.

5.6.1 Thermo-mechanically loaded plate

In figure 5.3, a long plate, made of boron fiber reinforced aluminum is shown. The
fibers are unidirectionally oriented parallel to the z-axis. The plate is clamped on its
side surfaces and exposed to a rapidly increasing uniform temperature and mechan-
ical load on the top surface. The final temperature of 250 ◦C is reached in 10 seconds
(in 50 steps) on the top surface whereas the temperature at the bottom surface is kept
constant at T0 = 20 ◦C. The uniformly distributed mechanical load has a final value
of 100 N/m2, which is reached in 10 seconds as well. The problem can be ideal-
ized as a plane strain problem (no deformation in z-direction) and due to symmetry,
only one half of the plate is modeled with 120 eight-noded elements with a reduced
integration scheme. The boundary conditions and the dimensions are sketched in
figure 5.3. It is assumed that the geometrical pattern of the fibers is regular so that
the underlying microstructure can be fully described by a two-phase unit cell visu-
alized in figure 5.3, which serves as the representative volume element (RVE) for the
microstructural computations.

q
f

Planar view
X

X

Y

Y

X

Y

Z

0.165 mm

0.165 mm 0.102 mm

RVE

0.03 m

Symmetry Axis

T0

0.6 m

Temperature

Time

Time

T0

TF

Dist. Load

q

Figure 5.3: Thermo-mechanically loaded plate; geometry, boundary conditions and
RVE

Mechanically, the boron fibers are linearly elastic with a modulus of elasticity E = 385
GPa, Poisson’s ratio ν = 0.2, and a coefficient of thermal expansion α = 5.0 10−6/◦C.
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The aluminum matrix is taken to be elasto-plastic with isotropic hardening. The cor-
responding mechanical parameters for the matrix are, E = 75 GPa, ν = 0.33, α = 2.36
10−5/◦C, with a yield stress σy =300 MPa and a hardening modulus h = 150 MPa.
Thermally, both constituents are described by Fourier’s law with the temperature in-
dependent material data for the fibers, given by their conductivity K = 38 W/mK
and their heat capacity, cv =1.3 kJ/kgK. The corresponding material data set for the
matrix is, K = 247 W/mK and cv =0.9 kJ/kgK. The densities used for the heat stor-
age capacity calculations are ρ =2600 kg/m3 for the fibers and ρ =2700 kg/m3 for
the matrix, respectively. At the RVE level, 4-noded quadrilaterals with a constant
dilatation formulation are used for the discretization. A convergence criterion which
compares the maximum residual and maximum reaction forces, is used at the RVE
level and the ratio is forced to be smaller than 10−8, in order to obtain accurate results
for quantities to be transferred to the macro level. The same convergence criterion
with a threshold of 10−3 is used at the macro level.
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Figure 5.4: Two scale solution via computational homogenization at t=10.0 seconds

For comparison purposes, the same problem is analyzed with a Taylor approach and
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a modified Sachs approach. Basically, the Taylor approach assumes that: (I) me-
chanically both phases experience the same deformation and (II) thermally the same
temperature gradient is effective within each phase. Therefore traction and heat flux
continuity across the fiber matrix interface will be violated. On the other hand, the
classical Sachs approach enforces that stresses and fluxes are same in both phases
while the ‘macroscopic’ displacement gradient and the temperature gradient are as-
sumed to be the weighted sum (by volume fractions) over the two phases. Here a
slight modification is introduced assuming that the rotation tensors in both phases
are identical. It is noteworthy to mention that most relatively simple and more accu-
rate alternative methods [98, 99] are applicable only in a uni-axial stress/strain state.

In figure 5.4, the deformed configuration of the plate with the resulting von Mises
stresses is presented and two RVE’s which are located at the integration points A and
B are depicted. Both the mechanical and thermal fields are shown. From the plastic
strain distribution at the micro level, it can be concluded that the matrix experiences
severe yielding particularly at the locations of large curvature (e.g., integration point
A).
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Figure 5.5: Horizontal reaction force and bending moment at the mid-section (sym.
axis)

The horizontal reaction force and the bending moment per unit length in z-direction
developing at the mid-section (symmetry axis) are presented graphically in figure
5.5. On the horizontal axis, the vertical displacement of the mid-section is given
(through the thickness, the variations of the vertical displacements are negligible).
The responses obtained through the Taylor assumption and modified Sachs approach
are also depicted. For the Taylor solution, (where both phases experience the same
deformation) the relatively stiff fiber contributes excessively to the cross-sectional re-
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sistance which leads to high axial and bending stiffnesses, reflecting the well-known
Taylor upper bound. The Sachs assumption leads to a very compliant structure
which does not show any yielding with a smaller axial force and bending moments,
typically associated with the lower bound. As expected, the computational homog-
enization scheme provides a solution in between these two bounds, yet obviously
substantially different. Furthermore, to assess the chosen time step size, the problem
is solved for four different step sizes which has yielded 25, 50, 100 and 200 steps.
The vertical displacement of the mid-section for four different cases is presented in
figure 5.6 which clearly shows the convergence of the displacement. Furthermore,
the graph also indicates that the chosen step size is sufficiently small to avoid insta-
bilities.
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Figure 5.6: Vertical displacement at the mid-section (sym. axis) vs. number of time
steps

5.6.2 Thermally shocked channel

In the second example, the thermo-mechanical analysis focuses on a long channel,
which is typically used for hot molten metal transport as shown in figure 5.7. Due to
symmetry and the high channel length, the problem is idealized as a plane strain
problem of the half-width channel for which the corresponding dimensions and
boundary conditions are sketched in the figure. The channel is exposed to a tem-
perature shock at the inner surface which reaches a final temperature TF of 500 ◦C in
4 seconds starting from an initial temperature T0 of 20 ◦C. The outer surface is kept
at its initial temperature level throughout the entire loading history.

Due to its high temperature resistance, an alumina based refractory ceramic is typi-
cally used for this type of structures. The underlying microstructure is of a granular
type with directionally distinct characteristics resulting from the raw base materi-
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Figure 5.7: Channel exposed to thermal shock; geometry, boundary conditions and
RVE’s

als and the production process. The RVE’s used for the microstructural representa-
tion are also shown in figure 5.7. To investigate the effect of prior damage on the
thermo-mechanical response, an ‘intact RVE’ as well as a diagonally cracked RVE are
considered. The crack in the latter is modeled by assuming a locally degenerated
mechanical stiffness and thermal properties of air within the crack domain. Both
mechanically and thermally, it is assumed that individual grains at the RVE level
have an anisotropic behaviour. The principal directions of anisotropy are differently
oriented from grain to grain as indicated in figure 5.7.

Based on the crystal structure (tetragonal) of Alumina [100], anisotropic mechanical
constants equal to c11 = 465 GPa , c22 = 465 GPa, c33 = 563 GPa, c12 = 124 GPa, c13 =
117 GPa, c44 = 233 GPa are used [34]. The principal values of the conductivity tensor
are 38 W/mK and 10 W/mK. Heat capacity and the density are taken to be cv = 120
J/kgK and ρ = 2700 kg/m3, respectively. The principal directions of the grains are
distributed randomly. Both at micro and macro level, the same convergence norms
as used in the first problem are employed.
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Figure 5.8: Macroscopic equivalent von Mises stresses obtained by computational ho-
mogenization; (a) based on intact RVE (b) based on pre–damaged RVE
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To investigate qualitatively the effect of thermo-mechanical damage (i.e. discon-
nected grains) e.g. due to abrupt temperature changes and cycles, the equivalent
macroscopic response is also predicted using the RVE with prior damage (see figure
5.7). In figure 5.8, the resulting von Mises stresses obtained at the end of the loading
history are visualized. As seen from the contour plot, the maximum stress values are
reached on the horizontal part of the channel and the inclined part experiences lim-
ited stresses due to the lack of boundary constraints there. Mechanically, the crack
leads to a more flexible response which results in larger displacements.

In figure 5.9, the temperature and the equivalent von Mises stresses in a typical cross-
sections are presented. The difference between the maximum stresses obtained by
the rule of mixture (which is presented for comparison purposes) and the computa-
tional homogenization is about 30 % which would make a significant difference for
crack initiation predictions. The difference between the two solutions for the tem-
perature profile reaches about 10 % at the centre of the cross-section which remains
significant.

In figure 5.10, the microscopic von Mises stresses and the temperature profiles of the
intact and pre-damaged RVE’s, which are located at the same macroscopic position,
are depicted. Obviously, the crack leads to a significant change in the thermal and
mechanical response, both qualitatively and quantitatively.

5.7 Summary and Conclusion

Motivated by the results obtained in [17,75] and [90], a two-scale analysis framework
for the thermo-mechanical analysis of heterogeneous solids has been presented.
Thermo-mechanical approaches at both scales are treated consistently and linked
by a rigorous scale bridging procedure. Using an extended computational homoge-
nization framework, macroscopic thermal and mechanical excitations are passed to
the micro level through appropriate RVE boundary conditions. The resulting micro-
scopic response is homogenized to the macro scale by means of consistent averaging
relations. Tangent operators for a coupled FE2 solution strategy are derived in a
consistent manner. An operator-split implementation has been elaborated, separat-
ing thermal and mechanical passes. As demonstrated by the example problems, the
method resolves the interaction between the mechanical and thermal fields at the mi-
cro level, accounting for temperature dependent microscopic properties. Both coarse
scale and fine scale results are revealed, providing insight on the structural level and
the material level in a simultaneous manner. Original aspects and the added values
of the proposed approach are:

• A rigorous method for the thermo-mechanical analysis of heterogeneous solids
has been developed, which does not require explicit macroscopic (homoge-
nized) quantities such as an effective thermal expansion coefficient.

• Anisotropy, nonlinearity and temperature dependence of both mechanical and
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Figure 5.9: Temperature profile and equivalent von Mises stresses along the depicted
cross-section

thermal material characteristics can be introduced at the micro level with var-
ious morphologies enabling an effective structure-property analysis. Classi-
cal homogenization techniques are inadequate in this context if temperature
dependent and mechanically non-linear micro-phase properties have to be re-
solved.

• The interaction between the thermal and mechanical fields is tackled at the
micro level and the proposed algorithmic framework has the potential to in-
clude further interactions which may result from microstructural evolution
(e.g. thermo-mechanical damage and debonding). Failure mechanisms induce
a strong coupling between micro and macro scales for which this approach is
undoubtedly beneficial.
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Figure 5.10: Comparison of RVE responses located at the same macroscopic location

• Results obtained through the proposed methodology may serve as a reference
for alternative simplified homogenization schemes.

For typical high temperature resistant materials, the failure cannot really be qualified
as perfectly brittle, however, the microstructural evolution can be modeled by the
use of cohesive zones along the interfaces and diffusive thermo-mechanical damage
within different phases. In combination with these techniques, the proposed method
can be used to investigate the effect of microstructural variables (both geometrical
and physical) on the macroscopic failure initiation including the relation to the un-
derlying thermal and mechanical microstructural evolution. This allows to enhance
the understanding and modeling of failure and clarifies the active field interaction
effects. These insights cannot be extracted from a single scale phenomenological
modeling approach.





CHAPTER SIX

Multi-scale Thermo-mechanical
Analysis of a Ladle Refractory Lining 1

Abstract

In this chapter, the thermo-mechanical analysis of a refractory ladle structure is car-
ried out by the multi-scale framework outlined in chapter 4 and chapter 5. On the
basis of the material microstructure and constitutive models employed in chapter 3,
a representative volume element is constructed and a 2-D model of a refractory ladle
under pre-heating conditions is analyzed.

1Partially reproduced from: I. Özdemir, W.A.M. Brekelmans, M.G.D. Geers. Multi-scale Thermo-
mechanical Analysis of a Ladle Refractory Lining. To be submitted.
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6.1 Introduction

Ladles are long, slender structures typically used to transport molten metal between
different units in metal processing plants. As schematically shown in figure 6.1, the
cross-section consists of multiple layers and for the most inner layer, coarse-grained
alumina based refractory materials are used. Under operation conditions, ladles are

steel casing

insulation layers

refractory layer

Figure 6.1: Ladle structure and typical cross-section

first pre-heated before they are exposed to molten metal. In this chapter, the thermo-
mechanical analysis of a real size ladle structure under pre-heating conditions is car-
ried out using the multi-scale framework presented in chapter 4 and chapter 5. The
RVE level microstructural modelling employs the constitutive models and the iden-
tified parameters presented in chapter 3.

In the next section, an idealized 2-D representative volume element (RVE) is intro-
duced. Then, the macroscopic boundary value problem along with the loading con-
ditions are specified. Thereafter the analysis results at both scales are presented.

6.2 Representative Volume Element

Referring to chapter 3, the selected microstructure is idealized as a two-phase sys-
tem where two different sizes of alumina grains are embedded in a matrix which is
in fact the representation of a relatively fine grained continuous phase of mullite and
small alumina. Based on the volume fractions, the initial grain size distribution and
the chemical composition, the representative volume element shown in figure 6.2 is
constructed. It should be emphasized that the determination of the RVE size is a
rather delicate task and requires an extensive analysis. Furthermore, the representa-
tiveness in case of a coupled problem is another issue which hasn’t been addressed
so far in the literature and is a potential research question for future studies. Here,
the geometrical information on the microstructure is taken as the basis for the RVE,
whereby the size is deliberately kept reasonable taking into account the limitations of
the computational resources. Therefore the results of the analysis are only indicative
from a qualitative perspective.
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5 mm 6 mm

6 mm

Figure 6.2: Light microscopy image of the microstructure and the simplified repre-
sentative volume element

The mechanical and thermal constitutive descriptions for each phase and the inter-
faces have been presented in chapter 3 and therefore not repeated here. Since an
implicit gradient damage mechanics formulation is used for the matrix, the multi-
scale analysis framework should be extended such that the ‘RVE-BVP coupled to the
macroscopic mechanical pass’ (see section 5.5.2) is now a three field problem and the
Helmholtz equation (equation (3.17c)) is to be embedded into the staggered solution
procedure at the micro level after the solution of the thermal and mechanical fields,
successively. The solution procedure and the associated boundary conditions for the
Helmholtz equation are presented in chapter 3.

The implementation of the heat storage consistency condition used in chapter 4 and
5 assumes a temperature independent heat storage capacity. Therefore, instead of the
temperature dependent heat capacities used in chapter 2, for the grains and the ma-
trix, temperature independent heat capacities of 953.2 J/kg K and 1137 J/kg K are
used, respectively. For other material properties, temperature dependent data is
given in the figures 6.3 and 6.4 (identical to the data used in chapter 2). The frac-
ture energies and the maximum traction values for the cohesive interfaces are taken
as φn = 25 J/m2, φt = 50 J/m2, tmax

n = 14 MPa and tmax
t = 28 MPa, respectively.

6.3 Macroscopic Boundary Value Problem

The ladle structure is idealized as a plane strain configuration and only half the cross-
section is modeled due to the symmetry, as shown in figure 6.5. A two-scale analysis
is performed for the inner refractory layer whereas the remaining insulation layers
and the steel casing (see figure 6.1 or figure 6.5) are analyzed by a conventional finite
element method approach assuming linear elastic behaviour implemented by the
temperature independent material parameters given in table 6.1. For the macroscopic
discretization within the refractory layer 141 8-noded reduced integrated quadrilat-
erals are used. For the RVE level model, 4-noded quadrilaterals and 2-noded inter-
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Figure 6.3: Temperature dependency of Young’s Modulus (E) and the coefficient of
thermal expansion (α), left column for the matrix, right column for the
grains; based on [47–50]
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Figure 6.4: Temperature dependency of the conductivity (K) left column for the ma-
trix, right column for the grains; based on [50–53]

face elements (totally 1118 elements) are employed.

As shown in figure 6.5, the structure is mechanically supported and a convective type
boundary condition is applied on the inner surface with a heat transfer coefficient of
h = 1.5 W/m K. Initially, the temperature throughout the structure is 25 ◦C. The
ambient temperature is taken to be 1100 ◦C and the duration of the heat transfer is 12
hours, which is completed in 60 time steps.
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Figure 6.5: Dimensions, boundary conditions and discretization

Steel casing Insulation layers
E(GPa) 205 220

ν 0.3 0.25
α(1/K) 1.23 10−5 4.5 10−6

K(W/m K) 50 2.5
cv(J/kg K) 447 1000
ρ(kg/m3) 7850 2975

Table 6.1: Material parameters used for different layers

6.4 Analysis Results

The multi-scale analysis is carried out up to the moment of the macroscopic localiza-
tion. In figure 6.6, macroscopic temperature distribution and equivalent von Mises
stress distribution is shown, when the temperature at the surface of the lining reaches
326.4 ◦C. At this stage the macroscopic temperature gradient is large, which has a
marked influence on the micro-mechanical response. Since the macroscopic temper-
ature gradient reaches its maximum during the initial phase of temperature loading,
the matrix and interface damage evolution in the RVE are likely dominant.

The corresponding RVE responses at two representative macroscopic integration
points are given in figures 6.7, 6.8, 6.9 and 6.10, respectively. In addition to vari-
ous mechanical and thermal quantities (see figure 6.7 and figure 6.9), the evolution
of matrix and interfacial damage are resolved at the RVE level.

These results can be beneficial to investigate the potential crack initiation locations
and the role of the geometry of the microstructural constituents, e.g. grain sizes,
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Figure 6.6: Macroscopic response when the maximum temperature at the surface of
the lining reaches to 326.4 ◦C, (a) temperature (◦C) (b) equivalent von
Mises stress (MPa)

which can be varied to retard the damage initiation and evolution. As seen in figure
6.8 and 6.10, the effective openings along the larger grain-matrix interfaces are more
significant and initiate earlier than those of smaller grains. As far as the damage
evolution is concerned, the compressive regions between the large grains and the
surrounding smaller grains are the critical zones, which is also closely related with
the evolution of interfacial damage. The interplay between the interfacial and the
matrix damage in conjunction with the grain size and distances between them can be
further investigated to optimize the microstructural response under thermal loading
conditions. Furthermore, all the parametric variations carried out in chapter 3, can
be incorporated within the multi-scale analysis framework as well.

Figure 6.7: Microscopic response at the depicted macroscopic integration point; left:
equivalent von Mises stress (MPa), right: temperature (◦C)
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Figure 6.8: Microscopic response at the depicted macroscopic integration point; left:
damage, right: effective interface opening (mm)

Beyond the initiation of macroscopic localization, the scale separation is violated and
the physical representativeness of the microscopic response is lost. As soon as the
macroscopic localization is triggered, the macroscopic deformation gradient varies
non-smoothly (as compared to RVE size) within the localization region, violating the
basic assumption of macro-micro scale bridging structure. It is also important to note
that the precise onset of localization is not further investigated here, since this may
be quite sensitive to the boundary conditions applied to the RVE.

Figure 6.9: Microscopic response at the depicted macroscopic integration point; left:
equivalent von Mises stress (MPa), right: temperature (◦C)
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Figure 6.10: Microscopic response at the depicted macroscopic integration point; left:
damage, right: effective interface opening (mm)

6.5 Summary and Conclusion

In this chapter, the proposed multi-scale framework along with the identified pa-
rameters in chapter 3, is used to analyze the macroscopic response of a refractory
lining of a real size ladle. Using certain idealizations, a representative volume ele-
ment is constructed where essential damage mechanisms are incorporated. Within
the limitations of the underlying theory (principle of scale separation), the proposed
methodology can be used to investigate qualitatively the influence of different micro-
scopic parameters, both geometrical and physical, on the initiation of macroscopic
unstable crack. The presented case study highlights the potential of the proposed
multi-scale analysis framework to investigate the thermo-mechanical damage mech-
anisms at the micro level along with the parameter variations. The link between the
macroscopic response and the microstructure can be systematically examined in the
context of thermal shock type loading conditions.



CHAPTER SEVEN

Conclusion and Outlook

The research work presented in this thesis aimed to develop a multi-scale frame-
work to model thermo–mechanical behaviour of refractory type heterogeneous ma-
terials, under severe thermal loading conditions. To this end, with a particular focus
on coarse grained refractory ceramics, a number of different aspects have been ad-
dressed at two distinct scales. The multi-scale paradigm based on the computational
homogenization technique has been extended for thermal and thermo-mechanical
analyses of heterogeneous solids. The description of the decohesion process at the
grain–matrix interface level is enhanced with a thermal/cohesive zone concept by
which the obstruction of heat transport through damaging material interfaces can be
taken into account. For the majority of the multi–scale models, the predictive capa-
bilities rely on the availability of the local mechanical and thermo-physical properties
at the constituent level. In the research described in this thesis these properties have
been determined through direct numerical simulations of molten aluminium thermal
shock tests. Finally, the developed framework is assessed by means of the two–scale
analysis of a real size ladle refractory lining, based on the identified microstructural
parameters.

As far as the developed computational tools are concerned, the essential characteris-
tics and the findings can be summarized as follows:

• The presented thermo-mechanical cohesive zone description is suitable for the
analysis of material interfaces at different scales. The physical heat transport
mechanisms are taken into account within the limitations of a macroscopic co-
hesive zone formulation. As the heat conduction characteristics evolve due
to interfacial damage, the heat flow pattern and local stress state may change
significantly. Therefore, the proposed formulation assists in acquiring a better
understanding of the failure initiation and propagation under severe thermal
loading conditions.

• A rigorous multi–scale strategy for the heat conduction analysis in heteroge-

103



104 7 CONCLUSION AND OUTLOOK

neous solids has been developed. The approach is particularly superior when
the coupling between micro and macro scales becomes stronger, e.g. in case
of a temperature sensitive microstructural response or for materials with an
evolving microstructure.

• A rigorous method for the thermo-mechanical analysis of heterogeneous solids
has been developed, which does not require explicit macroscopic (homoge-
nized) quantities such as an effective thermal expansion coefficient.

• Anisotropy, non–linearity and temperature dependence of both mechanical
and thermal material characteristics can be introduced at the micro level with
various morphologies enabling an effective structure–property analysis. Clas-
sical homogenization techniques are inadequate in this context if temperature
dependent and mechanically non–linear micro–phase properties have to be re-
solved.

• The interaction between the thermal and mechanical fields is tackled at the
micro level and the proposed algorithmic framework has the potential to in-
clude further interactions which may result from microstructural evolution
(e.g. thermo-mechanical damage and debonding).

• Results obtained through the proposed methodology may serve as a reference
solution for alternative simplified homogenization schemes.

Based on a geometrically simplified microstructure, a limited set of parametric stud-
ies has been conducted through a direct numerical simulation technique. The follow-
ing conclusions have been drawn for a two–phase material system under thermal
shock loading conditions:

• In case of strong temperature gradients, the damage evolution is markedly sen-
sitive to the CTE mismatch between the phases. Damage values increase sig-
nificantly as a result of a slight change in the difference between the CTE of the
phases.

• The brittleness of the interfaces has a strong influence as long as there exists a
strong temperature gradient. More brittle interfaces (with a limited strength)
yield higher damage values. However, as the temperature profile gets milder,
the influence of the mechanical characteristics of the interfaces becomes less
significant.

• For highly heat conductive materials, the damage distribution tends to be uni-
form throughout the specimen. The influence of the interface parameters di-
minishes since the deformation mode is approaching a homogenous state. The
damage values are smaller due to the fact that the CTE mismatch is the only
source of the damage evolution.

• Increasing the stiffness of the matrix has a favorable effect in the context of the
thermal shock response since the damage values become smaller.
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A more extensive parametric study can be carried out to investigate the distinct ef-
fects of different parameters. In this context, the direct numerical simulation ap-
proach and the parametric study provide information on the mechanisms of damage
evolution and the significance of certain parameters of the material system of inter-
est.

The two-scale analysis of a ladle refractory lining has demonstrated the capabilities
of the proposed framework in terms of the representation of micro failure mech-
anisms that can be accommodated at a RVE level. Furthermore, it is shown that
the approach has the potential to assess the influence of different geometrical and
physical microstructural parameters in order to retard the initiation of a macroscopic
unstable crack.

The main criticism on computational homogenization techniques, namely the com-
putational cost, still holds with an increased expense due to the multi-scale and
multi-physics nature of the studied problem. Although substantial gains in com-
putational times can be achieved by parallel computing and selective use of com-
putational homogenization as done in this thesis, a 3-D multi-scale analysis is still
prohibitive.

On the theoretical side, probably more important issues have to be addressed since
the proposed framework has certain limitations which can be summarized as fol-
lows:

• The proposed multi–scale approach relies on a first order computational ho-
mogenization framework both for the thermal and mechanical sub–problems.
This implies that the macroscopic temperature and strain fields should vary
mildly as compared to the microstructural size, more specifically within an
RVE size. This imposes limitations on the macroscopic temperature and dis-
placement profiles that can be handled accurately. With respect to the thermal
shock conditions, this is a severe restriction. The proposed framework can be
extended to handle steep macroscopic temperature profiles following an ap-
proach similar to the second order computational homogenization for mechan-
ical problems [75]. However, it should be kept in mind that such an approach
would have certain limitations as well and addressing extremely sharp temper-
ature profiles would necessitate some hybrid technique which combines fully
resolved models with a multi-scale approach.

• Throughout the thesis, it is assumed that an adequate RVE has been selected
although this is a delicate task. The representativeness of the RVE impacts on
the predictive capabilities of the model. Furthermore, the coupled problem
brings a new challenge into play which is to determine a representative RVE in
a thermal, mechanical and thermo–mechanical analysis context. The simplest
approach would be to decouple the fields and to establish the appropriateness
of RVE’s on the basis of thermal and mechanical sub–problems. However, this
seems to be yet an open problem and might require more attention in the future.

• The analysis results presented in this thesis are mainly qualitative. Experimen-
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tal identification of material parameters at micro-scale is intrinsically difficult
and has to be addressed in order to obtain quantitative predictions. Further-
more, in combination with well–identified RVE’s and local material properties
at the micro–level, a 3-D analysis is necessary since generalization of 2–D anal-
ysis results is difficult due to the geometrically complex nature of refractory
microstructures.
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Samenvatting

Met ‘vuurvast’ wordt een klasse van materialen aangeduid die bestendig zijn te-
gen (zeer) hoge temperaturen. Deze materialen worden uitgebreid gebruikt in aller-
lei technische constructies voor een breed spectrum van toepassingen, bijvoorbeeld
in de procesindustrie voor de wandbekleding van ovens of voor de realisering van
een warmte-isolerende laag. Zulke structuren worden vaak blootgesteld aan extre-
me thermische belastingen in de vorm van snelle temperatuurwisselingen (‘thermo-
shock’) niet zelden in de vorm van een cyclisch proces. Begrip van de mechanismen
die leiden tot falen en de modellering ervan zijn noodzakelijk om betrouwbare le-
vensduurvoorspellingen te kunnen doen voor bestaande constructies en om voor-
schriften voor het ontwerp van nieuwe constructies te ontwikkelen.

In verband met de hoge bestendigheid tegen thermische belasting is gebruik van
vuurvast in de vorm van op aluminiumoxide gebaseerd keramiek, met een verre
van homogene poreuze korrelachtige microstructuur, algemeen als gangbaar te be-
schouwen voor de bovengenoemde toepassingen. In dergelijke heterogene materi-
alen zullen de aanwezige discontinuı̈teiten in de componentspecifieke thermische
uitzettingscoëfficiënten en andere verschillen in de (richtingafhankelijke) materiaal-
eigenschappen leiden tot het optreden van interne spanningen. Deze interne span-
ningen kunnen scheurvorming op micro-niveau en andere schade veroorzaken. Bij
hoge tijdsafhankelijke thermische belasting zal de resulterende heterogene tempe-
ratuurverdeling leiden tot een gecompliceerde mechanische respons, gekenmerkt
door een niet-uniforme degradatie van de mechanische en fysische eigenschappen
en gepaard gaande met onomkeerbare geometrieveranderingen. Veranderingen in
de verdeling van de materiaaleigenschappen zijn van grote invloed op de macro-
scopische respons bij verdere voortzetting van de externe belasting. Daarom is de
macroscopische respons sterk gekoppeld aan de evoluerende microstructuur. Bo-
vendien kunnen microscopische structuurveranderingen tot een aanzienlijke inter-
actie leiden tussen mechanische en thermische velden, bijvoorbeeld in de vorm van
een reductie van warmtetransport door schade ter plaatse van contactoppervlakken.
Een procedure waarbij met de verschillende mechanismen op een correcte wijze re-
kening wordt gehouden vormt een geschikt gereedschap om begrip te verkrijgen van
de microstructurele invloed van de mechanische en thermische eigenschappen van
de diverse componenten en hun interactie.
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In dit proefschrift is gekozen voor een zogenaamde ‘concurrent multi-scale’ bena-
dering (een opzet gekarakteriseerd door berekeningen op het niveau van meerdere
lengteschalen, waarbij simultaan aan punten op macroscopisch niveau een microsco-
pisch volume-element wordt toegekend) speciaal gericht op grofkorrelig vuurvast
keramiek. De werkwijze is in essentie gebaseerd op een rigoureuze uitbreiding van
de ruim ingeburgerde FE2 numerieke homogenisatietechniek waarbij de lokale ma-
croscopische respons wordt bepaald op basis van de oplossing van een randwaarde
probleem gedefinieerd voor een representatief volume-element uit de onderliggende
microstructuur. In eerste instantie wordt de numerieke homogenisatie uitgewerkt in
de context van processen met zuivere warmtegeleiding in heterogene vaste stof me-
dia. Daarna volgt de strategie ten behoeve van thermo-mechanische analyses door
de eerste-orde mechanische homogenisatie te combineren met de ontwikkelde proce-
dure voor warmtegeleiding, in de vorm van een ‘operator-split’ oplossingsalgoritme
bestaande uit incrementeel ontkoppelde vernestelde (FE2) deeloplossingen voor de
thermische en mechanische balansvergelijkingen.

Om voorspellende analyses uit te kunnen voeren moeten voor de individuele com-
ponenten op microstructureel niveau en de grensvlakken de mechanische en ther-
mische eigenschappen beschikbaar zijn; dit is karakteristiek voor de gehanteerde
multi-scale aanpak. In verband met een gebrek aan relevante kwantitatieve gegevens
van de materialen en speciaal van de interfaces wordt een directe numerieke simu-
latie (DNS) techniek gevolgd om de materiaalparameters op een inverse manier te
identificeren, met gebruik van meetresultaten verkregen uit een beperkte set thermo-
shock (via gesmolten aluminium) experimenten. Uitgaande van een microstructuur
bestaande uit onderling niet-rakende grote korrels ingebed in een homogene matrix
die model staat voor een samenstelling van zeer kleine korrels, wordt een thermo-
shock test met behulp van realistische randvoorwaarden tot in detail numeriek gesi-
muleerd. Op basis van de resultaten wordt een aanvullende berekening uitgevoerd
leidend tot een maat voor de schade die vergeleken kan worden met uit het expe-
riment volgende schadegegevens. De faalmechanismen optredend in de interface
tussen matrix en korrels worden verdisconteerd door de introductie van zogenaam-
de ‘thermo-mechanische cohesive zone’ elementen die niet alleen de degeneratie van
de mechanische samenhang representeren, maar ook het verminderde warmtetrans-
port over de mechanisch beschadigde grensvlakken in rekening brengen. Het effect
van microscopisch kleine scheurtjes in het matrixmateriaal wordt denkbeeldig uitge-
smeerd door gebruik te maken van klassieke concepten uit de ‘continuüm damage
mechanica’ in een zodanige formulering dat ongewenste pathologische lokalisering
van de deformatie en mesh-afhankelijkheid worden vermeden. De directe numerie-
ke simulatie van thermo-shock experimenten heeft ook geleid tot inzicht in de ‘short
range’ effecten (afkomstig van de lokale verschillen in thermische uitzetting) en ‘long
range’ effecten (als gevolg van gradiënten in de temperatuur) op de resulterende ver-
deling van thermo-mechanische schade, op basis van variaties van de verschillende
microstructurele materiaalparameters.

In het laatste gedeelte van dit proefschrift komt ter sprake hoe de hier ontwikkelde
numerieke methodiek kan worden ingezet ten behoeve van voorspellingen over het
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thermo-mechanisch gedrag van vuurvast configuraties. Voor een realistisch voor-
beeld, de vuurvast bekleding van een gietpan, wordt dit gedrag onderzocht waarbij
op twee niveau’s analyses zijn uitgevoerd. De microstructurele parameters zijn daar-
bij gekwantificeerd via directe numerieke simulaties.
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