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SPECTRAL GAP OF THE ERLANG A MODEL

IN THE HALFIN-WHITT REGIME∗

By Johan S. H. van Leeuwaarden† and Charles Knessl‡

Eindhoven University of Technology and University of Illinois at Chicago

We consider a hybrid diffusion process that is a combination of
two Ornstein-Uhlenbeck processes with different restraining forces.
This process serves as the heavy-traffic approximation to the Marko-
vian many-server queue with abandonments in the critical Halfin-
Whitt regime. We obtain an expression for the Laplace transform of
the time-dependent probability distribution, from which the spectral
gap is explicitly characterized. The spectral gap gives the exponential
rate of convergence to equilibrium. We further give various asymp-
totic results for the spectral gap, in the limits of small and large
abandonment effects. It turns out that convergence to equilibrium
becomes extremely slow for overloaded systems with small abandon-
ment effects.

1. Introduction. Within the fields of stochastic processes and queue-
ing theory, the Halfin-Whitt regime refers to a mathematical way of es-
tablishing economies-of-scale in many-server queueing systems like call cen-
ters (see [13]). The Halfin-Whitt regime in fact prescribes a scaling under
which the many-server systems converge to limiting processes, which are for
most systems diffusion processes. This paper deals with many-server sys-
tems in the Halfin-Whitt regime with the additional feature that customers
are impatient, and may abandon the system without being served. For such
systems with abandonments, we are interested in the spectral gap, which
is inversely related to the relaxation time or the speed at which a system
reaches stationarity. A large relaxation time in general indicates that replac-
ing time-dependent characteristics by their stationary counterparts might
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lead to poor approximations. As it turns out, the rate at which customers
renege (abandon the system) greatly influences the relaxation time.

In recent years, a large number of papers have dealt with the influence of
reneging or abandonments on the system behavior (see, e.g., [8, 15, 35, 36,
37, 41, 42]), and it is widely accepted that reneging is indeed one of the main
factors driving the system performance. One of the key insights is that the
system behavior strongly depends on whether it is stable or overloaded. By
stable we mean that it can serve all customers, even if none of the customers
would abandon the system. The spectral gap (or relaxation time) is also
very different for stable or overloaded systems. In fact, we find that stable
systems have a relatively short relaxation time, whereas the relaxation time
of overloaded systems can become extremely large, particularly when the
reneging rate is small.

The model we shall consider is the M/M/s +M system, better known
as the Erlang A model. This model is a standard Markovian many-server
queueing system with Poisson arrivals, exponential service times, s servers,
and with the additional feature that customers that are waiting in the
queue abandon the system after exponentially distributed reneging times.
The queue length process in the Erlang A model, denoted by (Q(t))t≥0, is a
birth-death process. Whitt [36] (see also [38] and [19]) derived a fluid approx-
imation for the the steady-state behavior of the overloaded Erlang A model,
and he further showed that a diffusion limit might provide refined approxi-
mations. Garnett, Mandelbaum and Reiman [15] proved a diffusion limit for
the Erlang A model in the critical regime. In particular, they showed that
under certain conditions a sequence of normalized queue length processes
converges to a certain diffusion process (X(t))t≥0. These conditions are in
fact the ones that correspond to the Halfin-Whitt regime, in which the arrival
rate λ and the numbers of servers s are scaled such that, while both λ and s
increase toward infinity, the traffic intensity ρ0 = λ/s approaches one, with

(1) (1− ρ0)
√
s→ β, β ∈ (−∞,∞).

The diffusion process (X(t))t≥0 is a combination of two Ornstein-Uhlenbeck
(OU) processes with different restraining forces, depending on whether the
process is below or above zero. The number of customers in the Erlang A
model can be roughly expressed as s+

√
sX(t) for s sufficiently large. The dif-

fusion process is generally easier to study than the birth-death process, and
can thus be employed to obtain simple approximations for the system be-
havior. The steady-state distribution of the diffusion can be easily obtained
(see (6) below), but less is known about the time-dependent behavior. In
this paper we shall present an explicit and asymptotic characterization of
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the spectral gap of (X(t))t≥0. The spectral gap of the diffusion process pro-
vides an understanding of the relaxation times for the Erlang A model in the
Halfin-Whitt regime. Most importantly, we shall study in detail the impact
on the spectral gap of the capacity parameter β and the reneging rate η,
which shall enhance our understanding of how the Erlang A model behaves
for positive/negative β and small/large values of η.

The diffusion process (X(t))t≥0 also applies to the G/M/s+M system, in
the same asymptotic limit, which was proven by Whitt [37]. Stochastic pro-
cesses for more general systems with abandonments were obtained recently
by Dai, He and Tezcan [8] for the G/Ph/s +M system. In this case, the
limiting process is still a diffusion process, but it becomes multi-dimensional.
Zeltyn and Mandelbaum [42] derived approximations for the M/M/n + G
in the Halfin-Whitt regime. In case of general service times, the limiting
process is not even a diffusion process (see e.g. [27, 37] for cases without
reneging). Therefore, the one-dimensional diffusion process (X(t))t≥0 strikes
the proper balance between simplicity and tractability, while retaining the
essential features of abandoning customers in many-server systems.

The Erlang A model is particularly interesting, as it incorporates three
classical queueing systems as special cases. In the case of no reneging (with
η = 0) the Erlang A model reduces to the Erlang C model, or M/M/s sys-
tem. Halfin and Whitt [17] established that the limiting process behaves as a
Brownian motion above zero and an OU process below zero. In [23] we have
referred to this process as the Halfin-Whitt diffusion. For η = 1 the Erlang
A model becomes an infinite server queue orM/M/∞ system, for which the
stochastic-process limit is known to be an OU process [18]. For η → ∞ the
Erlang A model becomes the Erlang B model orM/M/s/s system, in which
case the stochastic-process limit is a reflected OU process (see [12, 24, 35]).
For the diffusion approximations, we show the η → ∞ reduction in Section
3.3. Our analysis of the spectral gap of (X(t))t≥0 provides results for each
of these three cases.

Mathematically, determining the transient distribution for the present
diffusion process involves analyzing a Schrödinger type equation (see Section
4) with a piecewise parabolic potential function, or, equivalently, a Fokker-
Planck equation with a piecewise linear drift (see (2) and (3) below). Such
problems arise in a variety of other applications, such as linear systems
driven by white noise [3, 2], the Kramers’ problem [26] and escape over
potential barriers [22]. Invariably, the solution involves the parabolic cylinder
functions, and these we discuss in detail in Section 5.

The key in determining the spectral gap is in fact determining the Laplace
transform of the transient probability distribution over time. The spectral
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gap then follows from the dominant singularity of the Laplace transform. The
main results are presented in Section 2, the three special cases (η = 0, 1,∞)
are discussed in Section 3 and the proofs are given in Section 6. Before the
proofs we give some basic background on Schrödinger equations (Section 4)
and parabolic cylinder functions (Section 5), whose properties are heavily
used later. In Section 7 we establish monotonicity properties of the spectral
gap.

2. Main results. The diffusion process (X(t))t≥0 is a Markov pro-
cess on the real line with continuous paths and density p = p(x, t) =
p(x, t;x0;β, η) that satisfies the forward Kolmogorov equation

(2)
∂p

∂t
= − ∂

∂x
[a(x)p] +

∂2p

∂x2
,

where

(3) a(x) =

{
−β − ηx, x ≥ 0,
−β − x, x ≤ 0,

and (with δ(·) the Dirac function and px = ∂p/∂x)

p(x, 0) = δ(x − x0),(4)

p(0+, t) = p(0−, t), px(0
+, t) = px(0

−, t),(5)

and p(x, t) must decay as x→ ±∞. The limiting distribution of the diffusion
process is (see [15])

(6) p(x,∞;x0;β, η) = C

{
e−

1
2
ηx2

e−βx, x > 0,

e−
1
2
x2

e−βx, x < 0,

where C−1 =
∫∞
0 e−

1
2
ηx2

e−βxdx+
∫ 0
−∞ e−

1
2
x2

e−βxdx.
As shall be discussed in Section 4, this problem has a purely discrete

spectrum for all η > 0, and it is confined to the real axis. The spectral gap
can thus be defined as the absolute value of the least negative eigenvalue
of the operator in the right-hand side of (2). It governs the asymptotic
rate of convergence to the stationary distribution. An alternative description
of the spectral gap is the absolute value of the singularity closest to the
imaginary axis in the range Re(θ) < 0 of the Laplace transform p̂. Denote
this dominant singularity by θ̂ and the spectral gap by r(β, η). The relaxation
time, which measures the time it takes for the system to approach its steady-
state behavior, is defined as (see [4, 7])

(7) τ = inf{T : p(x, t;x0;β, η) − p(x,∞;x0;β, η) = O(e−t/T )},
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and hence τ−1 = −Re(θ̂) = r(β, η). For this problem θ̂ is real, so that
−θ̂ = r(β, η). Our definition of the relaxation time in (7) assumes the initial
condition p(x, 0) = δ(x − x0) in (4), and then the approach to equilibrium
is governed by λ1 = r. But we could certainly have initial conditions that
would lead to a faster approach. For example, if p(x, 0) = p(x,∞) then
p(x, t) = p(x,∞) for all t and equilibrium is attained instantaneously. We
could also have initial distributions p(x, 0) that have zero projections on,
say, the first L eigenfunctions, and then the sums in (31) and (32) below
would be replaced by

∑∞
n=L+1 e

−λntcnφn(x), where the cn may be computed
in terms of p(x, 0). Then the approach to equilibrium would be governed by
eigenvalue λL+1.

Here is the main result:

Theorem 1. The spectral gap of the diffusion process (X(t))t≥0 is given

by r(β, η) = −θ̂ where θ̂ is the least negative solution to V(θ; η, β) = 0 with

V(θ; η, β) = −√
ηD−θ(−β)D′

−θ/η(
β√
η )−D′

−θ(−β)D−θ/η(
β√
η )(8)

Dν(z) the parabolic cylinder function with index ν and argument z, and

D′
ν(z) =

d
dzDν(z). If β = 0, solving V = 0 is equivalent to finding the roots

of

(9)

√
η

Γ( θ
2η )Γ(

1+θ
2 )

+
1

Γ(θ2)Γ(
1
2 + θ

2η )
= 0.

We also note that the result in (8) corresponds to taking the limit of
the discrete queueing model with the scaling in (1) and then (7) examines
what happens for large times. We show in Appendix D that (8) may also be
obtained from the exact solution of the M/M/s +M queue. We have

Proposition 2. The spectral gap in the discrete M/M/s+M model is

the least negative solution to

(10) ∆(θ) = Fs(θ)Hs−1(θ)−Hs(θ)Fs−1(θ) = 0,

where Fn and Hn are the contour integrals in (202) and (204). For s→ ∞,

with ρ0 = 1 − β/
√
s and θ = O(1), the roots of ∆(θ) may be approximated

by those of V in (8). This shows that the exchange of the limit in (1) and of

large time is permissible in this particular case.

Theorem 1 is an implicit description of the spectral gap, and it can be
used to calculate r(β, η) numerically or asymptotically. For some values of
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Fig 1. Spectral gap r(β, η) for β ∈ [−2, 3] and η ∈ (0, 3].

β and η the spectral gap is shown in Figure 1. We observe that the spectral
gap decreases with β if η > 1 and increases with β if η < 1. If η = 1 the
spectral gap is r(β, 1) = 1 for all β, since then the problem reduces to a
standard Ornstein-Uhlenbeck process (see Section 3.2). This suggests that
for systems with a large reneging rate, increasing the load (increasing ρ0 and
decreasing β) leads to shorter time scales for achieving equilibrium, while
the opposite it true for small reneging rates. We also see that r increases as
a function of η. Later, we establish the monotonicity of r with β, which is
suggested by the numerical results in Figure 1 (see Section 7).

To further substantiate our findings, we accompany the observations from
Figure 1 by results for the spectral gap in various asymptotic regimes. In
order to do so we assume that η → 0 (small abandonment rate). The asymp-
totics for η → ∞ can be obtained from the following important symmetry
result, which we establish in Section 6.

Proposition 3. For the density p there holds the symmetry relation

(11) p(x, t;x0;β, η) =
√
η · p(−x√η, tη;−x0

√
η;−β/√η, 1/η).

For V in (8),

(12) V(θ; η, β) = −√
η · V(θ/η; 1/η;−β/√η)

and consequently,

(13) r(β, η) = η · r(−β/√η, 1/η).



SPECTRAL GAP OF THE ERLANG A MODEL 155

Table 1

Five asymptotic regimes

range of β asymptotic result

β < 0 (14)
β > β∗ = 1.85722 . . . (15)-(17)

0 < β < β∗ (18)
β = γ

√
η = O(

√
η) (19)

β − β∗ = η1/3W = O(η1/3) (23)-(25)

Next we give five different asymptotic results for r(β, η) as η → 0. Then,
from (13) we can immediately get results for η → ∞. We shall consider five
ranges of β, with β < 0, β ≈ 0, 0 < β < β∗, β ≈ β∗ and β > β∗. Here, β∗ is
the smallest positive solution to D′

β2/4(−β) = 0. We summarize in Table 1
the five cases and where the asymptotic result may be found.

Proposition 4. For β < 0 the spectral gap behaves asymptotically as

r(β, η) ∼ η with the correction term

(14) r(β, η) − η ∼ −β
√
η√

2π
e−

β2

2η

[
1 + βe

β2

2

∫ β

−∞
e−

u2

2 du

]
,

and hence r − η is exponentially small as η → 0.

Proposition 4 describes the part at the far right end of Figure 1, where
r increases linearly with η. Since β < 0, the diffusion process is mostly in
the positive part of the state space, since the process has a positive drift
for 0 < x < −β/η and an equilibrium point at x = −β/η = |β|/η ≫
1. Hence, particularly when there is little reneging, one has to be far up
in the state space before the process starts stabilizing. For the underlying
queueing model, this scenario corresponds to large queues building up until
enough customers renege so that the situation stabilizes. For this scenario,
the spectral gap r = O(η) suggests large relaxation times. Note also from
(6) that the steady-state distribution concentrates about x = −β/η. Table 2
compares exact and asymptotic results for β = −1.

We next consider β positive and sufficiently large, where we obtain a very
different result for r.

Proposition 5. For β > β∗ = 1.85722 . . . and η → 0

(15) r(β, η) = r0(β) +A(β)η +O(η2),

where r0(β) is defined implicitly as the minimal positive solution to

(16) D′
r0(−β) =

√
β2/4− r0Dr0(−β).
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Table 2

Results for β = −1

β = −1
η r(β, η)− η (14)

0.500 2.50092·10−2 3.57325·10−2

0.400 1.91877·10−2 2.48906·10−2

0.300 1.16366·10−2 1.42105·10−2

0.200 4.29814·10−3 5.04257·10−3

0.100 2.64792·10−4 2.92685·10−4

0.050 1.32910·10−6 1.39448·10−6

0.025 4.25017·10−11 4.47665·10−11

p1(β)

p2(β)

p3(β)

p4(β)

p5(β)p5(β)

β

p = β2/4p

Fig 2. Solutions to
√

β2/4− pDp(−β) = D′
p(−β).

The correction term is given by

(17) A(β) =
1

2

β −
√
β2 − 4r0

β2 − 4r0
Dr0(−β)

[∂Ṽ
∂p

∣∣∣
p=r0(β)

]−1
,

where Ṽ(p, β) = D′
p(−β)−Dp(−β)

√
β2/4− p (so that Ṽ(r0(β), β) = 0). We

later show in Appendix E that A(β) > 0 so that r(β, η) − r0(β) is positive

for sufficiently small η.

The equation (16) corresponds to the discrete part of the spectrum of the
Halfin-Whitt diffusion with no reneging (i.e., with η = 0 in (3)); see the
discussion after Proposition 13. The various solution branches of (16) are
demonstrated in Figure 2, where we plot the implicit function Ṽ(p, β) = 0
for β, p > 0.
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Table 3

Results for β = 2

β = 2
η r(β, η) r0(β)

0.5000 0.98463 0.93229
0.2500 0.97072 0.93229
0.1000 0.95576 0.93229
0.0500 0.94741 0.93229
0.0250 0.94150 0.93229
0.0100 0.93671 0.93229
0.0050 0.93470 0.93229
0.0025 0.93356 0.93229
0.0010 0.93282 0.93229

Proposition 5 applies to the flat part in Figure 1. Indeed, when β is large
enough, the spectral gap is hardly influenced by η. The diffusion process will
spend most time below zero, near x = −β. A likely queueing scenario would
be that queues hardly ever build up, which makes the impact of reneging
customers negligible. As the spectral gap is O(1), we expect relaxation times
that are O(1). While asymptotically r(β, η) ranges from r0(β) to 1, numer-
ically this corresponds to the interval (β2∗/4, 1) = (.86231, 1), which is quite
small, leading to the flatness of the surface in Figure 1 for β > β∗. Table 3
compares exact and asymptotic results for β = 2.

We next consider β > 0 but with β < β∗, in which case (16) has no
positive solutions.

Proposition 6. For 0 < β < β∗ = 1.85722 . . . and η → 0,

(18) r(β, η) =
1

4
β2+η2/3|a0|

(
β

2

)2/3

+ 1
2η

(
|a0|+ β

Dβ2/4(−β)
D′

β2/4
(−β)

)
+O(η4/3),

where a0 = max{z : Ai(z) = 0} = −2.33810 . . . is the least negative root of

the Airy function.

From Proposition 6 we see that the asymptotic series now involves powers
of η1/3, which illustrates the lack of analyticity of r(β, η) at η = 0. Now
r(β, η) ∼ β2/4 and for η = 0 the spectral gap is in fact exactly 1

4β
2 (see

Section 3.1). Table 4 compares exact and asymptotic results for β = 1.
When β becomes small, both (14) and (18) become invalid, as the correc-

tion terms become larger than the leading term. Then a separate analysis
leads to the following result.



158 J. S. H. VAN LEEUWAARDEN AND C. KNESSL

Table 4

Results for β = 1

β = 1
η r(β, η) (18)

0.5000 0.87510 1.1778
0.2500 0.72686 0.83452
0.1000 0.54242 0.56732
0.0500 0.44074 0.44990
0.0250 0.37193 0.37593
0.0100 0.31673 0.31836
0.0050 0.29217 0.29306
0.0025 0.27664 0.27713
0.0010 0.26450 0.26472

Proposition 7. Assume that β is small, such that β = γ
√
η = O(

√
η)

(β = 0 ↔ γ = 0). Then

(19) r(β, η) ∼ ηR(γ),

where R is the minimal positive solution to

(20) γDR(γ) = D1+R(γ).

Equation (20) has infinitely many positive solutions, whose existence fol-
lows from ODE theory, as discussed in (55)-(57). Note that using the rela-
tions (68) and (69) below, (20) is equivalent to DR+1(γ) + 2D′

R(γ) = 0 or
D′

R(γ) +
1
2γDR(γ) = 0. Also, R = 0 is a solution for any γ. In Figure 3 we

illustrate the solution branches of (20) in the (γ,R) plane, for R > 0.
For R 6= 0, (20) is also equivalent to DR−1(γ) = 0, and then the solutions

are precisely the positive eigenvalues of the reflected Ornstein-Uhlenbeck
process (see the discussions in Section 3.2 and surrounding (55)-(57) in Sec-
tion 4). If γ = 0 we can use (67) to compute DR−1(0) and its roots are
R = 2, 4, 6, . . ., so that the spectral gap is r(β, η) ∼ 2η if β = 0 or β = o(

√
η).

For certain special values of γ 6= 0 we can also get some of the eigenvalues
more explicitly. For example, we know from (64) that D2(z) is proportional
to the Hermite polynomial He2(z) = z2 − 1, so that D2(1) = 0, and then
R(1) = 3 is the minimal root of (20). We also have D2(−1) = 0 so that
when γ = −1, R = 3 is a root of (20), but the minimal positive solution to
(20) is R(−1) ≈ 1.3882 (which is illustrated in Figure 3).

In Appendix A we establish:

Proposition 8. For γ → ±∞, R behaves as

(21) R− 1 ∼ − γ√
2π
e−γ2/2, γ → −∞
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6

7

γ

R

Fig 3. A sketch of the solution branches of equation (20) for R > 0.

and

(22) R =
γ2

4
+ |a0|

(γ
2

)2/3
[1 + o(1)], γ → +∞.

Thus the approximation r ∼ ηR on the γ-scale in Proposition 7 asymp-
totically matches to the results in Propositions 4 and 6. In fact, in view of
(22) the first two terms in (18) are a special case of (19), but this is not true
for the third (O(η)) term in (18). Note that ηγ2/4 = β2/4, ηγ2/3 = η2/3β2/3,
and if (14) is expanded for small β, r− η agrees with η(R− 1) for γ → −∞,
in view of (21).

The results in (21) and (22) are also consistent with Figure 1, which
suggests that r(0, η) increases as a concave function of η. The queueing
counterpart is such that the load is one, and hence the reneging is necessary
to alleviate the system. As η becomes larger, more customers will leave the
system, which reduces the queue lengths and, as seen from Proposition 7,
shortens the relaxation times.

Table 5 displays numerical results for γ = 1, 0,−1.
It remains to consider the case when β ≈ β∗. Note that the correction term

A(β) in (15) develops a singularity as β ↓ β∗, since r0(β) → r0(β∗) = β2∗/4.
Also, the third (O(η)) term in (18) becomes singular as β ↑ β∗, since by
definition β∗ satisfies D′

β2
∗/4

(−β∗) = 0. Thus both (15) and (18) cease to be
valid near β = β∗ and we need a new expansion in this transition range.
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Table 5

Results for γ = 1, 0,−1

γ = 1 γ = 0 γ = −1
η r(β, η) ηR(γ) r(β, η) ηR(γ) r(β, η) ηR(γ)

0.50000 0.81266 1.50000 0.65385 1.00000 0.54816 0.69412
0.25000 0.53164 0.75000 0.38029 0.50000 0.29242 0.34706
0.10000 0.24948 0.30000 0.16989 0.20000 0.12408 0.13882
0.05000 0.13266 0.15000 0.08929 0.10000 0.06399 0.06941
0.02500 0.06896 0.07500 0.04619 0.05000 0.03273 0.03471
0.01000 0.02848 0.03000 0.01902 0.02000 0.01337 0.01388
0.00500 0.01446 0.01500 0.00965 0.01000 0.00676 0.00694
0.00250 0.00731 0.00750 0.00488 0.00500 0.00340 0.00347
0.00100 0.00295 0.00300 0.00197 0.00200 0.00137 0.00139

Proposition 9. For β ≈ β∗ such that β−β∗ = η1/3W with W = O(1),
and η → 0,

r(β, η) =
1

4
β2∗ + η1/3W

β∗
2

+ η2/3

(
1

4
W 2 − χ(W )

(
β∗
2

)2/3
)

+O(η),(23)

=
1

4
β2 − η2/3

(β∗
2

)2/3
χ(W ) +O(η),

where χ is the maximal solution to

(24) Ai′(χ) +
( 2

β∗

)1/3
· L ·W · Ai(χ) = 0

with

(25) L =
1

Dβ2∗/4
(−β∗)

(
d

dβ
[D′

β2/4(−β)]
∣∣∣
β=β∗

)
= 2.73875 . . . .

If W = 0 (β = β∗), then χ(0) = max{z : Ai′(z) = 0} = −1.01870 . . ., and as

W → +∞, χ→ +∞.

As discussed in (58)-(60) in Section 4, the Sturm-Liouville ODE theory
guarantees that there are infinitely many real solutions to (24). The solution
branches of (24) are illustrated in Figure 4.

We also note that if we order the roots of Ai(z) = 0 as 0 > a0 > a1 > · · ·
and the roots of Ai′(z) = 0 as 0 > b0 > b1 > · · · , these roots interlace as
0 > b0 > a0 > b1 > a1 > · · · , and this fact can be used to establish more
directly that (24) has infinitely many solution branches, for any fixed W .

We have thus obtained the asymptotic connection between Propositions
5 and 6. Numerical results for the case β = β∗ are given in Table 6.
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Fig 4. A sketch of the solution branches of Ai′(χ) +wAi(χ) = 0.

Table 6

Results for β = β∗

β = β∗
η r(β, η) β2

∗/4 (23)

0.5000 0.97803 0.86231 1.48841
0.2500 0.95673 0.86231 1.25673
0.1000 0.93129 0.86231 1.07644
0.0500 0.91493 0.86231 0.99721
0.0250 0.90139 0.86231 0.94729
0.0100 0.88770 0.86231 0.90845
0.0050 0.88016 0.86231 0.89138
0.0025 0.87462 0.86231 0.88062
0.0010 0.86966 0.86231 0.87225

This concludes our asymptotic analysis of the spectral gap in Theorem 1.
The proof of Theorem 1 follows immediately from an explicit expression for
the Laplace transform p̂ of the transient density, defined by

(26) p̂(x; θ) =

∫ ∞

0
e−θtp(x, t;x0;β, η)dt, Re(θ) > 0.

Defining the auxiliary function M by

M(θ; η, β) =
√
ηD−θ(β)D

′
−θ/η(

β√
η )−D′

−θ(β)D−θ/η(
β√
η ),(27)

we have the following result:
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Theorem 10. Consider x0 < 0, with V in (8) and M in (27), and

assume that Re(θ) > 0.

(i) For x > 0,

p̂(x; θ) = e
1
2
β(x0−x)e

1
4
(x2

0−ηx2)
D−θ(−x0 − β)D−θ/η(

ηx+β√
η )

V(θ; η, β) .(28)

(ii) For x < x0,

p̂(x; θ) =e
1
2
β(x0−x)e

1
4
(x2

0−x2)Γ(θ)D−θ(−x− β)√
2π

×
(
D−θ(x0 + β) +D−θ(−x0 − β)

M(θ; η, β)

V(θ; η, β)

)
.(29)

(iii) For x0 < x < 0,

p̂(x; θ) =e
1
2
β(x0−x)e

1
4
(x2

0−x2)Γ(θ)D−θ(−x0 − β)√
2π

×
(
D−θ(x+ β) +D−θ(−x− β)

M(θ; η, β)

V(θ; η, β)

)
.(30)

The proof of Theorem 10 is presented in Section 6.2. Note that the results
for x0 > 0 follow immediately from the symmetry relation (11).

From (28)-(30) we see that singularities of p̂ may arise either due to those
of Γ(θ) (which occur at θ = 0,−1,−2, . . .) or from the zeros of V(θ; η, β) = 0.
But in Appendix B we establish:

Proposition 11. The singularities of (28)-(30) are precisely the solu-

tions to V(θ; η, β) = 0.

Hence, the large-time behavior of the diffusion process is dominated by
the least negative zero of V, which gives the result on the spectral gap in
Theorem 1.

From (28)-(30), by evaluating the contour integral for the inversion of the
Laplace transform p̂(x; θ), we can obtain a spectral expansion of the form
(31)

p(x, t) = p(x,∞) + e
1
2
β(x0−x)e

1
4
(x2

0−ηx2)
∞∑

n=1

e−λntψ−
n (x0)ψ

+
n (x), x > 0,

and

(32) p(x, t) = p(x,∞)+e
1
2
β(x0−x)e

1
4
(x2

0−x2)
∞∑

n=1

e−λntψ−
n (x0)ψ

−
n (x), x < 0,
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where

(33) ψ+
n (x) =

√
kn
Dλn/η(

ηx+β√
η )

Dλn/η(
β√
η )

, x > 0,

(34) ψ−
n (x) =

√
kn
Dλn(−x− β)

Dλn(−β)
, x < 0,

and

(35) kn =
1

∆∗
n

Dλn(−β)Dλn/η

( β√
η

)
, ∆∗

n =
∂V(θ; η, β)

∂θ

∣∣∣
θ=−λn

.

The eigenfunctions ψ±
n then satisfy the orthogonality relation

(36)

∫ 0

−∞
ψ−
n (x)ψ

−
m(x)dx+

∫ ∞

0
ψ+
n (x)ψ

+
m(x)dx = δ(n,m).

When η = 1 we have λn = n, kn = D2
n(β)/(n!

√
2π), and Dn(β) = e−β2/4×

Hen(β) so that (36) reduces to

(37)

∫ ∞

−∞

1

n!
√
2π

Hen(x+ β)Hem(x+ β)e−
1
2
(x+β)2dx = δ(n,m).

Note that the pole at θ = 0 of (28)-(30) corresponds to the steady state
behavior p(x,∞), while the poles at θ = −λN and their residues lead to the
decaying terms in (31) and (32). However, the spectral expansion does not
yield any more insight than (28)-(30).

3. Three special cases. We shall now consider the three special cases
of the diffusion process that arise by setting η equal to zero, one and infinity.

3.1. The Halfin-Whitt diffusion. As η → 0 we end up with a process that
behaves like a Brownian motion with drift above zero and like an Ornstein-
Uhlenbeck process below zero. In [23] we have called this diffusion process the
Halfin-Whitt diffusion, after Halfin and Whitt [17] who identified this process
as a heavy-traffic limiting process for the GI/M/s system. The mean hitting
time of the Halfin-Whitt diffusion was obtained in Maglaras and Zeevi [25].
Gamarnik and Goldberg [14] were the first to identify the spectral gap of
the M/M/s system, asymptotically in the Halfin-Whitt regime.
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Theorem 12 (Gamarnik and Goldberg [14]). Let β∗ = 1.85722... rep-
resent the smallest positive solution to D′

β2/4(−β) = 0. The spectral gap of

the M/M/s system, asymptotically in the Halfin-Whitt regime, is given by

(38) r(β, 0) =

{
1
4β

2, 0 < β ≤ β∗,
r0(β), β ≥ β∗.

To establish Theorem 12, Gamarnik and Goldberg used the framework of
Karlin and McGregor [20] for birth-death processes, and the result of Van
Doorn [9] on the spectral gap of the M/M/s system. In [14] the starting
point is the discrete M/M/s model, and its spectral gap is then analyzed in
the Halfin-Whitt regime (1). An alternative proof of Theorem 12 was given
by the authors in [23] by deriving the expression for the Laplace transform p̂
of the transient density in the diffusion limit, which shows that the limits of
large time and (1) may be, in this case, interchanged. Below we summarize
the main result in [23].

Proposition 13. For x0 < 0 and x > 0 the Laplace transform of the

transient density for the Halfin-Whitt diffusion with η = 0 is

p̂(x; θ) = e
1
4
x2
0e

1
2
βx0

D−θ(−β − x0)

D−θ(−β)
e−

1
2
xβ−x

√
θ+β2/4

√
θ + β2/4−D′

−θ(−β)/D−θ(−β)
.(39)

In Appendix C we show that (39) indeed follows by letting η → 0+ in (28).
From (39) we see that there is a branch point at θ = −β2/4, and this will
lead to a continuous spectrum in the range Im(θ) = 0 and Re(θ) ≤ −β2/4.
There is a pole at θ = 0 if β > 0, while if β < 0 the pole is absent. Note that
D0(−β) = exp(−β2/4). Other poles may occur at the roots of (16), which
we studied analytically and numerically in [23] (see also Figure 2).

3.2. Free-space OU process. When η = 1 it immediately follows from
the process description that the diffusion process (X(t))t≥0 reduces to a
free-space OU process, for which it is known that (with x> = max(x, x0),
x< = min(x, x0))

p̂(x; θ) =
1√
2π
e

1
4
(x2

0−x2)e
1
2
β(x0−x)Γ(θ)D−θ(x> + β)D−θ(−x< − β).(40)

Indeed, this result also follows from Theorem 10 using the Wronskian iden-
tity in (70), which shows that

(41) V(θ; η, β) →
√
2π

Γ(θ)
, η → 1.



SPECTRAL GAP OF THE ERLANG A MODEL 165

Expression (40) is obtained for example in [34], in the context of the har-
monic oscillator (see (46)-(50) below). Also, M → 0 (cf. (27)) as η → 1
and then (40) follows from (28)-(30). It is easy to invert the Laplace trans-
form (40), as its poles are at zero and at all negative integers. Hence, (see,
e.g., [21]), for x ∈ R,

(42) p(x, t;x0;β, 1) =
e

1
4
(x2

0−x2)e
1
2
β(x0−x)

√
2π

∞∑

n=0

Dn(x0 + β)Dn(x+ β)

n!
e−nt.

Here Dn(z) = e−z2/4Hen(z) where Hen(·) is the nth Hermite polynomial.
Alternatively, there is the closed-form expression, for x ∈ R,

(43) p(x, t;x0;β, 1) =
1√
2π

√
1

1− e−2t
exp

[
−(x+ β − (x0 + β)e−t)2

2(1 − e−2t)

]
.

3.3. Reflected OU process. As η → ∞, the process will spend all its
time below zero, and hence (X(t))t≥0 reduces to a reflected OU process (see
Ward and Glynn [35], Linetsky [24] and Fricker et al. [12]). In this limit we
have D−θ/η(β/

√
η) → D0(0) = 1 and

√
ηD′

−θ/η(β/
√
η) → −β/2, and then,

using (68),

V(θ; η, β) → θD−1−θ(−β), η → ∞,(44)

M(θ; η, β) → θD−1−θ(β), η → ∞,(45)

which can be used to simplify (29) and (30). Then the solution agrees with
that in Xie and Knessl [40, Eq. (4.3.2)].

4. Schrödinger equations and spectral properties. Here we give
some basic background on spectral properties that are relevant to PDE’s
such as (2). In particular we show that the discreteness of the spectrum for
any η > 0 follows from classic results on the Schrödinger equation.

We set p = e−λtφ(x) where λ is a spectral or eigenvalue parameter.
Then (2) and (3) lead to

φ′′(x) + (β + x)φ′(x) + (λ+ 1)φ(x) = 0, x < 0,(46)

φ′′(x) + (β + ηx)φ′(x) + (λ+ η)φ(x) = 0, x > 0,(47)

and the interface conditions are φ(0−) = φ(0+) and φ′(0−) = φ′(0+). Fur-
thermore, we can transform (46) and (47) into the self-adjoint form by set-
ting

(48) φ(x) =

{
e−βx/2e−x2/4ψ(x), x < 0,

e−βx/2e−ηx2/4ψ(x), x > 0,



166 J. S. H. VAN LEEUWAARDEN AND C. KNESSL

which leads to the Schrödinger equation

(49) − ψ′′(x) +V(x)ψ(x) = Eψ(x), −∞ < x <∞,

where E and λ are related by

(50) E = λ+
1

2
,

and the “potential” function V(x) is

(51) V(x) =

{
1
4(β + x)2, x < 0,
1
4(β + ηx)2 + 1−η

2 , x > 0.

We also require the eigenfunctions ψ(x) to satisfy ψ(0+) = ψ(0−), and
ψ′(0+) = ψ′(0−). Since the problem is defined over the entire real line, addi-
tional conditions must be imposed at x = ±∞, and most often it is required
that ψ(x) ∈ L2(−∞,∞), i.e.,

∫∞
−∞ |ψ(x)|2 dx < ∞. However, for parabolic

and piecewise parabolic potentials, such as the one in (51), this condition is
equivalent to simply rejecting solutions of (49) that have Gaussian growth
as x→ ±∞.

We note that if the potential V(x) were exactly quadratic, say V(x) =
x2/4, then the problem is just the quantum harmonic oscillator (or, for
our application, the standard Ornstein–Uhlenbeck process), and then the
eigenvalues are EN = N + 1/2 and the corresponding eigenfunctions are
ψN(x) = cNe

−x2/4HeN(x), where cN is a normalizing constant and HeN(x)
is the Nth Hermite polynomial. Thus the spectrum is purely discrete for
quadratic potentials.

We can also view the differential equation in (49) as constituting a sin-
gular Sturm–Liouville boundary value problem. The study of such problems
dates back to the work of Sturm in the nineteenth century, and they are
discussed in detail in the books of Titchmarsh [34], Stakgold [29], Reid [28]
and Coddington and Levinson [6, Chapters 7–12]. The problem in (49) is
singular since it is defined over the infinite interval x ∈ (−∞,∞).

Singular Sturm–Liouville problems are classified as either of limit circle
or limit point type. For limit point problems the condition that the solution
be square integrable is sufficient to determine it, while limit circle problems
require a more explicit boundary condition at the singular point(s) (which
are at x = ±∞ for (49)).

Since Sturm–Liouville problems and Schrödinger equations are self-adjoint,
their spectra are confined to the real axis. Singular problems may have both
discrete and continuous spectra. However, there is a general result, originally
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due to Weyl, with simplified proofs by Titchmarsh appearing in [32, 33] (see
also the book [34]), that guarantees that (49) will have a purely discrete
spectrum. This needs only the conditions that

(i) V(x) be finite on finite intervals.
(ii) V(x) → +∞ as x→ ±∞.

Our potential in (51) clearly satisfies these conditions and thus has a purely
discrete spectrum, for any η > 0. The fact that V(x) has a jump disconti-
nuity at x = 0 does not affect the spectrum; it only means that some jump
conditions must be specified at x = 0. However, if η = 0, then the potential
does not grow at x = +∞, and then in fact, as we discussed in [23], the prob-
lem has a continuous spectrum in the range λ > β2/4 (E > β2/4 + 1/2),
and may also have any number of discrete eigenvalues, depending on the
value of β. Much of the asymptotic work here assumes that η → 0+, so we
are looking at a very singular limit where the discrete spectrum begins to
resemble a continuous one, in certain ranges of λ.

For the problem in (51) the smallest eigenvalue is E0 = 1/2 (thus λ0 = 0)
with the corresponding eigenfunction being the piecewise Gaussian

(52) ψ0(x) =

{
e−βx/2e−x2/4, x < 0,

e−βx/2e−ηx2/4, x > 0,

and this corresponds to the steady state distribution in our model.
Given the discrete spectrum we order the eigenvalues EN as

(53)
1

2
= E0 < E1 < E2 < · · · < EN < . . .

with λN = EN − 1/2. By general results for Sturm–Liouville problems the
sequence {EN} satisfies EN → ∞ as N → ∞. Also, for every eigenvalue there
is only one linearly independent eigenfunction, so all eigenvalues are simple.
This can be shown directly from (49), for if ψ(x) and ψ̃(x) corresponded
to the same eigenvalue E, then ψ̃(x)ψ′′(x) − ψ̃′′(x)ψ(x) = d

dx

[
ψ̃(x)ψ′(x) −

ψ̃′(x)ψ(x)
]
= 0 so that the Wronskian ψ̃ψ′ − ψ̃′ψ is a constant, say c. But

by letting x→ ±∞ we conclude that c = 0 so that

(54) ψ̃2(x)
d

dx

[
ψ(x)

ψ̃(x)

]
= 0

and thus ψ̃ must be a multiple of ψ. Since V (x) in (51) is discontinuous
at x = 0, we can use (54) to conclude that ψ(x) = kψ̃(x) for x > 0 and
ψ(x) = k′ψ̃(x) for x < 0, but then continuity of ψ, ψ̃ at x = 0 forces k = k′.
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There are two other singular Sturm–Liouville problems that are relevant
to the analysis here. First consider

(55) −Ψ′′(X) +

[
1

4
(X + γ)2 − 1

2

]
Ψ(X) = ẼΨ(X), 0 < X <∞

with the boundary condition

(56) Ψ′(0) +
γ

2
Ψ(0) = 0.

This problem has a regular point at X = 0, where a standard boundary
condition is applied, and a singular point at X = ∞, where we require that
Ψ(X) ∈ L2(0,∞). This is a singular problem of limit point type at X = ∞
which may be explicitly solved in terms of parabolic cylinder functions, with
Ψ(X) = D

Ẽ
(X + γ). Then (56) leads to the eigenvalue condition

(57) D′
Ẽ
(γ) +

γ

2
D

Ẽ
(γ) = 0.

The results of Weyl and Titchmarsh again guarantee that the problem
has a purely discrete spectrum and thus an infinite sequence of eigenvalues
{ẼN}. Also, Ẽ0 = 0 is the lowest eigenvalue with Ψ0(X) = e−(X+γ)2/4. Note
that (57) is essentially the same as equation (20) in Proposition 7, since
D′

Ẽ
(γ) = 1

2γDẼ
(γ) − D

Ẽ+1
(γ). Thus the existence of infinitely many real

solutions to (20) follows from Sturm–Liouville ODE theory, though in the
next section we shall also show that it follows from the oscillatory nature of
the parabolic cylinder functions, as functions of their index Ẽ.

Another singular Sturm-Liouville problem is

(58) − ψ′′(x) + xψ(x) = Eψ(x), 0 < x <∞

with the boundary conditions

(59) ψ′(0) + ω ψ(0) = 0

and ψ(x) ∈ L2(0,∞). Here ω is a real parameter. Again, since V (x) = x
grows linearly as x → ∞ and x = 0 is a regular point, we have a purely
discrete spectrum. But (58) is related to the Airy equation, with solutions
proportional to Ai(x−E), and the eigenvalues are determined by (59), hence

(60) Ai′(−E) + ωAi(−E) = 0.

But (60) is equivalent to equation (24) in Proposition 9, so again ODE theory
can be used to establish the existence of infinitely many solutions. Note also
that if ω = 0 the eigenvalues are the roots of Ai′(·), while if ω = ∞ the
eigenvalues are the roots of Ai(·).
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To summarize we have given some basic background on Sturm-Liouville
theory, and on Schrödinger equations and their spectral properties, that are
useful in the present investigations. In particular this theory guarantees in-
finitely many discrete solutions to the equations that arise in Propositions 6
and 7, and in Theorem 1.

5. Parabolic cylinder functions and their properties. The parabolic
cylinder equation is the second order ordinary differential equation

(61) y′′(z) +
(
p+

1

2
− z2

4

)
y(z) = 0,

where z is a complex variable and p is a parameter. Since (61) has no singular
points (except at z = ∞) its solutions are entire functions of z (see [6]).

One solution of (61) is denoted by Dp(z), which is called a parabolic
cylinder function of order p, and it is defined by the integral representation

(62) Dp(z) =
1

i
√
2π
ez

2/4

∫

Br
upe−zueu

2/2 du.

Here Br is a vertical Bromwich contour on which Re(u) > 0, and the branch
of up will be defined by up = |u|pei arg(u) where −π < arg(u) ≤ π. Then the
integrand in the right-hand side of (62) is analytic exterior to the branch cut
where Im(u) = 0 and Re(u) ≤ 0. The function Dp(−z) provides a second
linearly independent solution to (61), so that

(63) c1Dp(z) + c2Dp(−z)

is the general solution, with c1 and c2 being complex constants. When p =
0, 1, 2, . . . is a non-negative integer we can obtain Dp(z) in a closed form as

(64) Dp(z) = DN(z) = e−z2/4HeN(z); N = 0, 1, 2, . . .

where HeN(·) is the Nth Hermite polynomial. Note that if p = N the in-
tegrand in (62) becomes an entire function of u. Here we use the notation
He(·) for the Hermite polynomials, so that He0(z) = 1, He1(z) = z and in
general HeN(z) ∼ zN as z → ∞. When p = N, DN(−z) = (−1)NDN(z) and
another linearly independent solution must be used in (63), but we shall not
need it in the present analysis. The function Dp(z) is real valued when z
and p are real. As discussed in [31], Dp(z) is an entire function of both p
and z, and indeed one can easily compute derivatives of all orders from the
integral representation in (62). For example, we have

(65) D′
p(z) =

∂

∂z
Dp(z) =

1

i
√
2π
ez

2/4

∫

Br

(z
2
− u
)
upe−zueu

2/2 du
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and

(66)
∂

∂p
Dp(z) =

1

i
√
2π
ez

2/4

∫

Br
up(log u)e−zueu

2/2 du.

In (66) log u is real for u real and positive, and analytic exterior to the cut
Im(u) = 0, Re(u) ≤ 0.

If z = 0 the integrals in (62) and (65) may be expressed in terms of the
Gamma function, with

(67) Dp(0) =

√
π2p/2

Γ
(1−p

2

) , D′
p(0) =

−√
π2(p+1)/2

Γ
(−p

2

) .

Since Γ(z) has simple poles at z = 0,−1,−2, . . . it follows that Dp(0) has
simple zeros at p = 1, 3, 5, . . . , whileD′

p(0) has simple zeros at p = 0, 2, 4, . . . .
This also shows that the functions in (67), as functions of p, tend to oscillate
for p > 0, but have one sign for p < 0 (actually, for all p < 1 for Dp(0)).
Also, in view of the growth of Γ(z) as z → +∞, the functions in (67) decay
very rapidly for p→ −∞.

Using (62) and (65) we can easily derive the recurrence relations

D′
p(z) +

1

2
zDp(z)− pDp−1(z) = 0,(68)

D′
p(z)−

1

2
zDp(z) +Dp+1(z) = 0,(69)

which we shall use in the present analysis.
The Wronskian of Dp(z) andDp(−z) is defined asDp(z)D

′
p(−z)+D′

p(z)×
Dp(−z) and it has a very simple form, with

(70) Dp(z)D
′
p(−z) +D′

p(z)Dp(−z) = −
√
2π

Γ(−p) ,

which vanishes if p = 0, 1, 2, . . . . We also note that Dp(z) and D
′
p(z) cannot

both vanish simultaneously. For if Dp(z∗) = D′
p(z∗) = 0 for some p and

z∗, then (61) shows that D′′
p(z∗) = 0. Then repeated differentiation of (61)

would show that all derivatives of Dp(z) vanish at z = z∗. Then we could
expand Dp(z) in Taylor series about z = z∗ to conclude that Dp(z) = 0 in
some neighborhood of z = z∗. But since Dp(z) is an entire function of z this
would imply that Dp(z) is identically zero, which is clearly not the case.

To better understand the behavior of these special functions, many asymp-
totic formulas have been derived for z and/or p large. We summarize some
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of these below, since they are used to establish our main results. First, for
z large and positive, we have (see for example [16, p. 1093])
(71)

Dp(z) = zpe−z2/4

[
1− p(p− 1)

2z2
+O(z−4)

]
, z → ∞, | arg(z)| < 3π/4.

A more general result, which allows z to be negative, is the following (see
for example [16, p. 1094]):

Dp(z) = e−z2/4zp
[
1− p(p− 1)

2z2
+O(z−4)

](72)

−
√
2π

Γ(−p)e
pπiez

2/4z−p−1
[
1+O(z−2)

]
, z → ∞,

π

4
< arg(z) <

5π

4
.

Here we let z = |z|ei arg(z) where | · | denotes the complex modulus.
The limit of z large and negative corresponds to setting arg(z) = π in (72),

and then the leading term becomes

(73) Dp(z) ∼
√
2π

Γ(−p)e
z2/4(−z)−p−1, z → −∞,

which holds as long as we are away from the zeros of 1/Γ(−p), which occur
at p = 0, 1, 2, . . . . If p = N = 0, 1, 2, . . . we have Dp(z) = e−z2/4 HeN (z) and
then (71) holds for all values of arg(z).

In some of the analysis that follows we will need to consider cases where
p is not exactly a non-negative integer, but is very close to one. For p 6= N

the first series in (72) has Gaussian decay as z → −∞ (O(e−z2/4)), while
the second series in (72) (cf. also (73)) has Gaussian growth as z → −∞.
But if p is very close to an integer these two terms may be of comparable
magnitude. For example if p = ε is small Γ(−p) ∼ −1/ε and if ε → 0 and
z → −∞ in such a way that ez

2/2ε is O(1), then the two parts of (72) are
roughly comparable.

The asymptotic results in (71)–(73) follow easily by expanding (62), using
techniques for the asymptotic evaluation of integrals, such as the saddle
point method and singularity analysis. General references for such methods
are the books of Bleistein and Handelsman [5], Wong [39], Szpankowski [30],
and Flajolet and Sedgewick [11]. The integrand in (62) has a saddle point
at u = z and a branch point at u = 0, and one of these (or both) determines
the asymptotic behavior of Dp(z) as z → ∞, for any direction arg(z) in the
complex plane. The saddle leads to (71) and the first part of (72), while the
branch point leads to (73) and the second part of (72).
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We next consider a fixed (real) z and expand Dp(z) in the limits of p →
±∞. Then

(74) Dp(z) ∼
1√
2
exp

[p
2
log(−p)− p

2
+ z

√−p
]
, p→ −∞,

(75)

Dp(z) =
√
2 exp

[p
2
log p− p

2

] [
cos
(
p
π

2
−√

pz
)
+O

(
p−1
)]
, p→ +∞.

From (75) we see faster than exponential growth with p, coupled with os-
cillations, in view of the trigonometric factor. Near a zero of the cosine the
O(p−1) error term may become important, and it may be also explicitly
obtained. Thus Dp(z) has an infinite number of zeros as p increases toward
+∞, for any fixed real z. This is in sharp contrast to viewing Dp(z) for a
fixed p as a function of z, in which case it has at most finitely many zeros.
It is known [1, p. 696] that Dp(z) has no zeros in the range p+ 1/2 < z2/4.
Also, (75) shows that the large zeros can be estimated by

(76) p = 2M+ 1 + 2
z

π

√
2M + 1 +O(1), M → ∞.

The results in (74) and (75) may be obtained, for example, by expanding the
integral in (62). When p → −∞ the asymptotics are governed by a single
saddle point at u =

√−p, while as p→ +∞ two saddle points, at u = ±i√p,
contribute.

We next consider asymptotic limits where p and z are simultaneously
large, restricting ourselves to real p and z. The results quoted below are
taken out of Abramowitz and Stegun [1], where we note that in [1] the
results are given for the function U(a, z), which is related to Dp(z) by
U(a, z) = D−a−1/2(z), or Dp(z) = U(−p − 1/2, z). A complete summary
of the asymptotics of U is also given in Temme [31].

When p+1/2 > 0 and z2−4p is large and positive, the so-called Darwin’s
expansions apply, where [1, pp. 689–690]

Dp(z) =

√
Γ(p+ 1)

(2π)1/4
(
z2 − 4p − 2

)−1/4

(77)

× exp

[
−1

4
z
√
z2 − 4p − 2 +

(
p+

1

2

)
log

(
z +

√
z2 − 4p− 2√
4p + 2

)]

×
[
1 +O

((
z2 − 4p

)−3/2
)]
,
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and for p+ 1/2 < 0 and z2 − 4p large and positive

Dp(z) =
(2π)1/4√
Γ(−p)

(
z2 − 4p − 2

)−1/4

(78)

× exp

[
−1

4
z
√
z2 − 4p − 2 +

(
p+

1

2

)
log

(
z +

√
z2 − 4p− 2√−4p− 2

)]

×
[
1 +O

((
z2 − 4p

)−3/2
)]
.

The results in (77) and (78) apply for |z| → ∞ and p→ ±∞ with z2/(4|p|)
fixed, and are uniform in the interval z2/(4|p|) ∈ [1 + ε,∞) for any ε > 0.
The expressions in (77) and (78) are more uniform than (71), (73) and (74),
and contain these as special cases.

Now consider z and p large with z2−4p→ −∞. For p > 0 the appropriate
expansion is now [1, p. 690]

Dp(z) ∼
2
√

Γ(p+ 1)

(2π)1/4
(
4p+ 2− z2

)−1/4

(79)

× cos

[
πp

2
− z

4

√
4p+ 2− z2 −

(
p+

1

2

)
sin−1

(
z√

4p+ 2

)]
.

Here sin−1(·) ∈ (−π/2, π/2). The result in (79) is uniform for p → ∞ and
z → ±∞ for intervals where z2/(4p) ∈ [0, 1 − ε] for any ε > 0, except if
we are at or near a zero of the cosine function, in which case the correction
term(s) to (79) must be considered.

For a fixed large z, p has to increase past approximately z2/4 in order
for the zeros of Dp(z) to become evident. The expansions in (77) and (79)
develop non-uniformities when z2/(4p) ≈ 1 and there yet other expansions
apply. The following result [1, p. 689] is more uniform and applies for all
z2/(4p) ∈ [0,∞], as long as p and |z| are large:

(80) Dp(z) ∼ 2p/2Γ

(
p+ 1

2

)
(4p+ 2)1/6

(
τ

ξ2 − 1

)1/4

Ai
(
(4p + 2)2/3 τ

)
,

(81) ξ =
z√

4p+ 2
,

and

τ = −
(
3

8
cos−1(ξ)− 3ξ

8

√
1− ξ2

)2/3

, ξ ≤ 1,(82)
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τ =

(
3

8
ξ
√
ξ2 − 1− 3

8
cosh−1(ξ)

)2/3

, ξ ≥ 1.(83)

Here Ai(·) is the Airy function, which has the following asymptotic behaviors
as z → ±∞ (see [1, p. 448])

Ai(z) ∼ 1

2
√
π
z−1/4 exp

(
−2

3
z3/2

)
, z → +∞(84)

Ai(z) ∼ 1√
π
(−z)−1/4 sin

(
2

3
(−z)3/2 + π

4

)
, z → −∞.(85)

For p → ∞ with a fixed τ > 0, we can simplify (80) by using (84) to
approximate the Airy function, and then we obtain (77) as a special case,
when ξ > 1.

Similarly, for ξ < 1, we can use (85) to approximate the Airy function
in (80) and then (80) reduces to (79), up to a Stirling approximation for the
Gamma factors. When ξ = 1 (τ = 0) or ξ ≈ 1 we can also simplify (80)
considerably. Suppose that p → ∞ and τ → 0 in such a way that p2/3τ is
fixed. Setting

(86) p =
z2

4
−
(z
2

)2/3
δ

with δ fixed as z → ∞, we have (4p+2)2/3τ ∼ δ and then (80) simplifies to

(87) Dp(z) ∼ e−z2/8
(z
2

)p√
2π
(z
2

)1/3
Ai(δ),

We shall use (87) to establish Propositions 6 and 9.
We have thus summarized the various “uniform” asymptotic approxi-

mations to Dp(z), where both z and p become large. Despite the seeming
complexity of these results, they are easily obtained from (62) via the saddle
point method. Indeed, setting u = zv (with z > 0) in (62) leads to

(88) Dp(z) =
zp+1ez

2/4

i
√
2π

∫

Br
ez

2Φ(v;z,p)dv, Φ(v) =
p

z2
log v +

v2

2
− v.

The saddle point equation is Φ′(v) = 0 which is the quadratic equation

(89) v2 − v +
p

z2
= 0 ⇒ v = v± ≡ 1

2

[
1±

√
1− 4pz−2

]
.

To expand the integral in (88) for z → ∞, p → ∞ with p/z2 fixed we find
that for 4p/z2 < 1 the real saddle at v = v+ determines the asymptotic
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behavior, and we ultimately obtain (77), up to a Stirling approximation of
Γ(p+1) and the equivalence z2−4p−2 ∼ z2−4p. In contrast, when 4p/z2 > 1
two complex saddles, at 1

2

[
1± i

√
4pz−2 − 1

]
, contribute to the asymptotics

and then we obtain (79). The transition range in (87) corresponds to 4pz−2 ≈
1 and then the two saddles coalesce to form a higher order saddle, and such
transitions invariably involve Airy functions (see Chapter 9 in [5]).

We have discussed here only approximations to Dp(z), but some of our
main results involve also the derivative D′

p(z) (see, for example, Theorem 1).
Its asymptotics follow from the integral in (65), but the same results can be
obtained by formally differentiating the results forDp(z), as in this case term
by term differentiation of the asymptotic series is permissible. For example,
the logarithmic derivatives of Dp(z) and Ai(z) satisfy

D′
p(z)

Dp(z)
= −z

2
+
p

z
+
p(p− 1)

z3
+O

(
z−5
)
, z → +∞,

Ai′(z)

Ai(z)
= −

√
z − 1

4z
+O

(
z−5/2

)
, z → +∞,

(90)

and later we shall make use of these results.

6. Proofs.

6.1. Proof of Proposition 3. Here we establish the symmetry relations
(11)-(13). These may be obtained without solving explicitly for p(x, t). Con-
sider the problem in (2) with p = p(x, t;x0;β, η) and set

(91) x = − x′√
η
, t =

t′

η
, β = −β′√η, x0 = − x′0√

η

with

(92) p(x, t;x0;β, η) = R(x′, t′;x′0;β
′, η′).

Then (2) becomes

ηRt′ = ηRx′x′ + ηβ′Rx′ + x′Rx′ +R, x′ > 0,

ηRt′ = ηRx′x′ + ηβ′Rx′ + η[x′Rx′ +R], x′ < 0,(93)

where Rx′ = ∂R/∂x′ and the initial condition becomes

R
∣∣
t′=0

= δ
(x′0 − x′√

η

)
=

√
ηδ(x′0 − x′) =

√
ηδ(x′ − x′0),(94)

where we have used the scaling law of the delta function.
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Dividing (93) by η and setting R =
√
ηR̃ we see that p and R̃ satisfy the

same problem in the x′, t′ variables, with η replaced by 1/η. Hence

(95)
1√
η
R(x′, t′;x′0;β

′, η′) = p(x′, t′;x′0;β, 1/η
′)

and then (92), with (95) and (91), is equivalent to (11).
To establish (12) we again replace β by −β′√η and also set θ = ηθ′. Then

using (8) we obtain

V(θ; η, β) =−√
ηD−ηθ′(β

′√η)
[
− d

dβ′
D−θ′(−β′)

]

+
1√
η

d

dβ′

[
D−ηθ′(β

′√η)
]
D−θ′(−β′)

=
√
ηD−ηθ′(β

′√η)D′
−θ′(−β′) +D′

−ηθ′(β
′√η)D−θ′(−β′)

=−√
ηV(θ′; 1/η, β′) = −√

ηV(θ/η; 1/η,−β/√η),(96)

which establishes (12). Then since by definition r = r(β, η) is the minimal
negative root of V = 0, the right-hand side of (96) has a root where −θ/η =
r(−β/√η, 1/η) and then (13) follows immediately.

6.2. Proof of Theorem 10. We let p̂(x; θ) =
∫∞
0 e−θtp(x, t)dt and note

that p̂ will be analytic in the right half-plane Re(θ) > 0. If p satisfies (2) its
Laplace transform satisfies

(97) θp̂(x; θ)− δ(x− x0) = − d

dx
[a(x)p̂(x; θ)] +

d2p̂(x; θ)

dx2
,

where

(98) − d

dx
[a(x)p̂(x; θ)] =

{
(xη + β) d

dx p̂(x; θ) + ηp̂(x; θ), x > 0,

(x+ β) d
dx p̂(x; θ) + p̂(x; θ), x < 0.

Assume that x0 < 0 and x > 0, so that δ(x − x0) = 0. By writing p̂ =
e−ηx2/4e−βx/2v(x; θ), (97) reduces to the differential equation

(99) v′′(x; θ) +
(
1
2η − θ − 1

4(xη + β)2
)
v(x; θ) = 0, x > 0,

where v′ = dv/dx. This is the parabolic cylinder equation (Erdelyi [10],
p. 116) and as we discussed in Section 5 two linearly independent solutions
(at least for Re(θ) > 0) are given by

(100) D−θ/η(
xη+β√

η ), D−θ/η(
−xη−β√

η ).
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Thus we write

(101) p̂(x; θ) = γ4(θ)e
−ηx2/4e−βx/2D−θ/η(

xη+β√
η ), x > 0,

as the second solution in (100) must be rejected due to its Gaussian growth
(see (73)). For x < 0 we must use the second expression in (98), and then
solve (99) with η = 1. Now we reject solutions with Gaussian growth as
x→ −∞, so that for x < x0 the appropriate solution to the second equation
in (98) (using (99) with η = 1) is

(102) p̂(x; θ) = γ1(θ)e
− 1

4
x2

e−
1
2
βxD−θ(−β − x), x < x0 < 0.

But in the range x0 < x < 0 the solution will involve both of the parabolic
cylinder functions D−θ(−β − x) and D−θ(β + x), hence

(103) p̂(x; θ) = e−
1
4
x2

e−
1
2
βx [γ2(θ)D−θ(−β − x) + γ3(θ)D−θ(β + x)] .

The functions γj(θ) are determined from continuity conditions at x = 0 and
x = x0 (cf. (4) and (5)). Continuity of p̂ and d

dx p̂ at x = 0 leads to

γ2D−θ(−β) + γ3D−θ(β) = γ4D−θ/η(
β√
η ),(104)

−γ2D′
−θ(−β) + γ3D

′
−θ(β) = γ4

√
ηD′

−θ/η(
β√
η ).(105)

Continuity of p̂ at x = x0 yields

γ1D−θ(−β − x0) =γ2D−θ(−β − x0) + γ3D−θ(β + x0),(106)

and the jump condition of d
dx p̂ at x = x0, i.e.,

(107) p̂(x+0 ; θ)− p̂(x−0 ; θ) = −
∫ x+

0

x−
0

δ(x− x0)dx = −1,

leads to

−e 1
4
x2
0e

1
2
βx0 =− γ2D

′
−θ(−β − x0) + γ3D

′
−θ(β + x0) + γ1D

′
−θ(−β − x0).

(108)

Here we used (102) to compute p̂(x−0 ), (103) to compute p̂(x+0 ), multiplied

(107) by e
1
4
x2
0e

1
2
βx0 , and used also (106). Equations (104)-(106) and (108)

give a 4× 4 linear system for the γj , whose solution leads to Theorem 10.
We note that the calculations assumed that Re(θ) > 0. If Re(θ) ≤ 0 the

4 × 4 system may become singular, and in fact this occurs when θ = 0 and
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at the eigenvalues −θ = λN , N ≥ 1. Theorem 10 thus gives the Laplace
transform p̂ for Re(θ) > 0, and then the expression can be analytically
continued to the left half-plane, since we know how to continue the parabolic
cylinder functions, which are entire functions of θ. After the continuation,
locating the singularities in (28)-(30) in the range Re(θ) ≤ 0 can be used,
for example, to obtain the spectral representation in (31).

6.3. General considerations for establishing Propositions 4-9. Here we
discuss some general principles about solving V = 0 in Theorem 1, for the
minimal root r(β, η), in the limit of η → 0+. As discussed in Section 4,
general results for Schrödinger equations and Sturm-Liouville problems show
that the roots of V = 0 are all on the real axis, and that the sequence of
roots (or eigenvalues) −θN = λN satisfies λN → ∞ as N → ∞, for any fixed
β and η > 0. Also, we know from Section 4 that the roots are all simple,
and thus ∂V/∂θ 6= 0 when θ = −λN .

Consider r as a function of β and η. Then V(−r(β, η); η, β) = 0 and by
implicit differentiation we obtain

(109)
∂V
∂θ

∣∣∣
θ=−r

· ∂r
∂β

+
∂V
∂β

= 0

and since ∂V/∂θ|θ=−r 6= 0 we can use this relation to compute ∂r/∂β (for
any β and any η > 0). By taking higher order derivatives of V = 0 with
respect to β, a similar argument shows that r has derivatives of all orders
with respect to β. Also, by differentiating V = 0 implicitly with respect to
η, we conclude that r has derivatives of all orders with respect to η, for
any η > 0. Thus r(β, η) is infinitely smooth for all real β and for η > 0,
and this is true for the higher roots also. Note that since Dp(z) is an entire
function of both p and z (see [31]), V is an entire function of θ and β, and
real analytic for η > 0. However, the limit η → 0+ is quite singular, as we
shall show.

The above discussion shows that the roots of V = 0 vary smoothly with
β and η, and a root cannot simply appear/disappear, say at some critical
value ηc. Thus for η → 0+ the roots have to lie in some range(s) of θ. In
Section 5 we gave detailed results of the different asymptotic expansions of
the parabolic cylinder functions Dp(z), for different ranges of p, z. Applying
these results to the equation V = 0, the function V can be approximated
by simpler functions in the limit of η → 0+, but these approximations are
different in different ranges.

Different expansions arise for the ranges −θ = O(η), 0 < −θ < β2/4,
−θ ≈ β2/4 and −θ > β2/4. Depending on the value of β, we shall need to
consider different ranges of −θ in order to locate the minimal root.
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In what follows we shall use the following principle: suppose the equation
F (u, ǫ) = 0 has roots uj = uj(ǫ) which depend on the small parameter ǫ,
and these roots are smooth functions of ǫ. Also, suppose that F (u, ǫ) is an
analytic function of both u and ǫ, with an expansion of the form

F (u, ǫ) = F0(u) + ǫF1(u) +O(ǫ2).(110)

Then if F0(u) has a simple root at u∗ then F (u, ǫ) has a root close to u∗ for
ǫ→ 0. The same conclusion holds if F is not analytic in ǫ, but has an asymp-
totic expansion of the form (110), where the expansion holds uniformly on
some (finite) u interval that contains u∗. In our case −θ plays the role of u
and ǫ will correspond to η or a fractional power of η, such as

√
η or η1/3.

6.4. Proof of Proposition 7. For β = O(
√
η) and η → 0+, we shall show

that V = 0 has solutions in the range −θ = O(η). We use the facts that
D0(0) = 1 and D′

0(x) ∼ −x/2 as x → 0. We let η → ∞ and from (8) we
obtain

V(θ; η, β) → β

2
D−θ(−β)−D′

−θ(−β), η → ∞.(111)

The error term in (111) is uniformly O(η−1) on finite θ intervals, and we
note that the right-hand side of (111) is an entire function of θ, as will be
the error terms.

Then the symmetry relation for V in Proposition 3 implies that if we scale
θ = ηS and β = γ

√
η we obtain

V(θ; η, β) ∼ −√
η
[
D−S(γ)

γ

2
+D′

−S(γ)
]
, η → 0,(112)

with an error term that is uniformly O(η) on finite intervals of S and γ.
Proposition 7 follows upon setting S = −R and using the identity D1−S(γ)+
D′

−S(γ) =
1
2γD−S(γ) (see [16], p. 1066).

Finally, we show that for β = O(
√
η) and η → 0+, there can be no roots

of V = 0 in (8), other than θ = 0, in the range θ = o(η). Consider the scales
θ = Θ(ηM ) for M > 1, setting θ = θ∗η

M . Then we have

V = −√
ηD−θ∗ηM (−√

ηγ)D′
−θ∗ηM−1(γ)−D′

−θ∗ηM
(−√

ηγ)D−θ∗ηM−1(γ).
(113)

Then both θ∗η
M and θ∗η

M−1 are small and expanding the parabolic cylinder
functions in (113) in Taylor series in both index and argument yields

V =−√
η
[
D0(−

√
ηγ) +O(θ∗η

M )
]
D′

−θ∗ηM−1(γ)

−
[
D′

0(−
√
ηγ) +O(θ∗η

M )
]
D−θ∗ηM (γ)
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= θ∗η
M−1/2 d

dp

[
D′

p(γ) +
γ
2Dp(γ)

] ∣∣∣
p=0

[1 + o(1)]

= θ∗η
M−1/2D−1(γ)[1 + o(1)],(114)

where the error term is o(1) for η → 0+ and this is uniform in finite θ∗
intervals. But then we conclude that θ∗ = 0, contradicting our assumption
that there is a root in the range θ = Θ(ηM ) for M > 1. To obtain the last
expression in (114) we also used the recurrence (68).

The calculation that led to (114) only used the fact that θ and θ/η are
both small. Indeed, for any θ = o(η) we obtain (114) with θ∗η

M replaced by
θ. Thus if there is a root in any range where θ = o(η), we again conclude
that θ = 0. Hence, there can be no roots in ranges where θ = Θ( η

log(1/η) ),

θ = Θ( η
log log(1/η) ), etc.

6.5. Proof of Proposition 5. Here we establish Proposition 5. We repre-
sent the parabolic cylinder function (see also (62) and (88)) by the contour
integral

D−θ/η

( β√
η

)
=
eβ

2/4η

i
√
2π

∫

C
t−θ/ηe

− β√
η
t
et

2/2dt

=
eβ

2/4η

i
√
2π

η
θ
2η

− 1
2

∫

C
exp

[
1
ηφ(z;β, θ)

]
dz,(115)

where φ = 1
2z

2−βz−θ log z and C is a vertical Bromwich contour with Re(t)
(or Re(z)) larger than zero. Now assume that θ + β2/4 > 0 and η → 0+.
From the discussion in Section 5 we can use (78) (or the more uniform result
in (80)) to approximate D−θ/η(β/

√
η) in this range. We briefly derive the

asymptotic formula below.
The integrand in (115) has a saddle point where φ′(z) = 0, which occurs

at

(116) z∗ =
1

2

[
β +

√
β2 + 4θ

]
.

For β2 + 4θ > 0 this saddle point lies on the real axis and the directions of
steepest descent are arg(z− z∗) = ±π/2. Then expanding φ in Taylor series
about z = z∗ and noting that

∫

C
eφ(z∗;β,θ)/η exp

[
1

2η
φ′′(z∗;β, θ)(z − z∗)

2

]
dz

= exp

[
1

η

(
1

2
z2∗ − βz∗ − θ log z∗

)] √
2πη i√

φ′′(z∗;β, θ)
,(117)
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we obtain

D−θ/η

( β√
η

)
∼ eβ

2/4ηη
θ
2η

(
1 +

θ

z2∗

)−1/2
exp

[
1
η (

1
2z

2
∗ − βz∗ − θ log z∗)

]
.

(118)

In view of (65), the integral representation of D′
−θ/η(β/

√
η) corresponds to

multiplying the integrand in (115) by (β/2−z)/√η (after scaling t = z/
√
η).

Then again applying the saddle point method we see that the leading term
in the expansion of

√
ηD′

−θ/η(β/
√
η) is essentially the same as (118), with

the additional factor β/2− z∗, and thus

√
ηD′

−θ/η(β/
√
η)

D−θ/η(β/
√
η)

∼ β

2
− z∗ = −1

2

√
β2 + 4θ.(119)

In (119) we divided by D−θ/η(β/
√
η), since this is nonzero in the range

θ+β2/4 > 0, as discussed in Section 5. Using (119) we see that V = 0 leads
to (after dividing by D−θ/η(β/

√
η))

D−θ(−β)
√
β2/4 + θ −D′

−θ(−β) +O(η) = 0.(120)

For η → 0 we obtain the limiting equation in (16). Up to now the calculation
did not distinguish between β < β∗ or β > β∗, but in the former case (16)
(or (120) with η = 0) has no roots (other than θ = 0 if β > 0). By computing
the first correction term in (118), which is O(η) relative to the leading term,
we can refine (119) to

√
ηD′

−θ/η(β/
√
η)

D−θ/η(β/
√
η)

= −
√
β2/4 + θ − η

β2 + 4θ

(β
2
−
√
β2/4 + θ

)
+O(η2).

(121)

Here the error is uniform for η → 0 with
√
β2/4 + θ > ǫ > 0. However, the

asymptotics break down as β2/4 + θ → 0, and a separate analysis is needed
for locating the roots of V = 0 in the range −θ ≈ β2/4, which we carry out
in the proofs of Propositions 6 and 9. With (121) we can improve (120) to

D−θ(−β)
√
β2/4+ θ−D′

−θ(−β)+
D−θ(−β)η
β2 + 4θ

(β
2
−
√
β2/4+ θ

)
+O(η2)= 0.

(122)

Then the leading term in (15) follows by letting η → 0 in (122), and the
correction term follows by dividing (122) by η and then letting η → 0 and
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−θ → r0 simultaneously, noting also that

lim
η→0,−θ→r0

1

η

[
D−θ(−β)

√
β2/4 + θ −D′

−θ(−β)
]

= lim
η→0,−θ→r0

[
−1

η
Ṽ(−θ, β)

]
=
∂Ṽ
∂θ

∣∣∣
−θ=r0

· lim
η→0

[
r(β, η) − r0(β)

η

]
,(123)

where by definition in (15), A(β) = limη→0[r(β, η)− r0(β)]/η.

6.6. Proof of Proposition 4. For β < 0 we analyze the range θ = O(η),
and we shall see that there are roots in this range. Note that for β > 0
the calculation in the previous subsection (since (119) applies for θ = O(η))
shows that the only root in this range is at θ = 0. Since we are examining
ranges where θ is small, we again use the fact that D−θ(−β) is an entire
function of θ, and hence by Taylor series, noting that D0(−β) = e−β2/4 and
D′

0(−β) = 1
2βe

−β2/4, we have

1√
η

d
dβD−θ(−β)
D−θ(−β)

=
1√
η

[
−β
2
− θR(β) +O(θ2)

]
,(124)

where (with z = −β)

R(β) = − d

dp

D′
p(z)

Dp(z)

∣∣∣∣
p=0

= − ez
2/2

i
√
2π

∫

C

1

t
et

2/2−ztdt

= −eβ2/2

∫ β

−∞
e−u2/2du.(125)

We then rewrite V = 0 as

1√
η

d
dβD−θ(−β)
D−θ(−β)

D−θ/η(β/
√
η) = D′

−θ/η(β/
√
η)

=
1√
η

[
−β
2
− θR(β) +O(θ2)

]
D−θ/η(β/

√
η),(126)

and rearranging terms we obtain

√
η
d

dβ
D−θ/η(

β√
η ) +

β

2
√
η
D−θ/η(

β√
η ) =

−θ√
η
R(β)D−θ/η(

β√
η ) +O(θ2).(127)

Note that θ = 0 is a solution to (127). Now consider θ < 0 with −θ = −qη =
O(η). For β < 0 and η → 0, (73) shows that

Dq(β/
√
η) = Dq(−|β|/√η) ∼

√
2π

Γ(−q)e
β2/(4η)(−β/√η)−q−1(128)
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as long as q 6= 0, 1, 2, . . .. Using a similar formula for D′
q(β/

√
η) we then

have

D′
q(β/

√
η)

Dq(β/
√
η)

∼ β

2
√
η
, q 6= 0, 1, 2, . . . .(129)

But then (126) cannot be satisfied asymptotically. We conclude that if V = 0
has roots in the range θ = O(η) they must occur where −θ/η = q ≈ 1, 2, . . .
(in addition to the root at θ = 0). To obtain the minimal root we examine
the range where q ≈ 1, thus setting q = 1 + ε where ε = ε(η) → 0 (which
corresponds to −θ = η+ ηε(η)). Then (127) is equivalent to the asymptotic
relation

√
η
d

dβ

[
e

β2

4ηD1+ε(
β√
η )

]
∼ √

ηe
β2

4η R(β)D1+ε(
β√
η ).(130)

For a fixed β < 0 we have β/
√
η → −∞ and we use the asymptotic

expansion of Dp(z) as z → −∞ which applies as z → −∞ (arg(z) = π) in
(72), even if p is close to a positive integer. With p = 1 + ε we have

ez
2/4D1+ε(−|z|) =

√
2π|z|−ε−2

Γ(−1− ε)
ez

2/2
[
1 +O(z−2)

]

+ z1+ε

[
1− ε(1 + ε)

2z2
+O(z−4)

]
.(131)

For ε small we furthermore approximate Γ(−1 − ε) by ε−1 + O(1), which
follows from the Laurent expansion of Γ(z) near z = −1. We thus obtain
from (131)

e
β2

4ηD1+ε(
β√
η ) ∼

β√
η
+

η

β2

√
2πεe

β2

2η(132)

and since term by term differentiation is permissible (see the discussion in
Section 5)

√
η
d

dβ

[
e

β2

4ηD1+ε(
β√
η )

]
∼ 1 +

√
2πεe

β2

2η

√
η

β
.(133)

Using (132) and (133) in (130) we see that ε must be roughly of the order
exp(−β2/2η); more precisely,

ε(η) ∼ − β√
2πη

e
−β2

2η [1− βR(β)](134)

and then −θ = η(1 + ε) leads to Proposition 4.
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We have thus shown that for β < 0 there is a root of V = 0 where
θ = O(η) with θ ∼ −η. Now we show that there can be no roots in the range
θ = o(η), other than θ = 0 (which is an exact root for all η and β). For
β < 0, β/

√
η → −∞ and we use (73) and set θ = θ∗η

M . Thus

D−θ∗ηM−1(−|β|/√η) ∼ exp
(β2
4η

) √
2πη

−βΓ(θ∗ηM−1)

∼ θ∗η
M−1

√
2πη

−β exp
(β2
4η

)
,(135)

since 1/Γ(p) = p+O(p2) by Taylor series. Then using an analogous formula
for D′

−θ/η(·) and approximating D−θ∗ηM (−β) ∼ e−β2/4 and D′
−θ∗ηM

(−β) ∼
1
2βe

−β2/4 we obtain

V = e−β2/4θ∗η
M−1/2 exp

(β2
4η

)√
2π[1 + o(1)].(136)

This asymptotic relation holds for θ∗ fixed, η → 0, and the o(1) error term
holds uniformly on finite θ∗ intervals. But since the leading term is propor-
tional to θ∗ we again conclude that θ∗ = 0, contradicting our assumption
that a root has θ = Θ(ηM ) forM > 1. IfM = 1 the first asymptotic relation
in (135) still holds and then we would find that V is proportional to 1/Γ(S)
(with now θ = Sη), which has roots at S = 0,−1,−2, . . .. The first root
regains θ = 0, the second is the spectral gap we analyzed above, and the
roots θ ∼ −Nη for N ≥ 2 correspond to the higher eigenvalues.

The expansion in (136) relies only on θ/η being small. For any θ = o(η)
we again obtain (136), with θ∗η

M replaced by θ, and this excludes roots
where θ/η = o(1), except for θ = 0.

6.7. Proofs of Propositions 6 and 9. We analyze V = 0 for η → 0 and
0 < β ≤ β∗. We can no longer use (118) to approximate the parabolic
cylinder function, as we will have θ̂ ∼ −β2/4. This corresponds to two
saddle points in (115) (at 1

2 (β ±
√
β2 + 4θ)) coalescing, see the discussion

in Section 5 below (87). Now we must approximate D−θ/
√
η(β/

√
η) and its

derivative by Airy functions. We use the following proposition, which follows
from [1, p. 689], and was discussed in (80)-(87).

Proposition 14. If A,B → ∞ with A = −1
4B

2 + (12B)2/3δ and δ =
O(1),

D−A(B) = e−B2/8
( 2

B

)A√
2π
(B
2

)1/3

×
[
Ai(δ) +

1

24/3B2/3

(
δ2Ai(δ)− 2Ai′(δ)

)
+O(B−4/3)

]
(137)
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D′
−A(B) = e−B2/8

( 2

B

)A√
2π
(B
2

)2/3

×
[
Ai(δ) +

1

24/3B2/3

(
δ2Ai′(δ) − 2δAi(δ)

)
+O(B−4/3)

]
.(138)

The error terms in (137) and (138) are uniform on finite δ intervals.

We let A = θ/η, B = β/
√
η, δ = χ, and note that

θ

η
= −β

2

4η
+

β2/3χ

22/3η1/3
⇒ θ = −β

2

4
+
(β
2

)2/3
η2/3χ.(139)

We rewrite V = 0 as

−D′
−θ(−β)D−θ/η(β/

√
η) =

√
ηD′

−θ/η(β/
√
η)D−θ(−β)(140)

and recall that, by definition, β∗ is the minimal root of D′
β2/4(−β) = 0.

For −θ = β2/4 + O(η2/3) we use (137) and (138) in (140) and cancel some
common factors to obtain

[
−D′

β2/4(−β) +O(η2/3)
]

×
[
Ai(χ) + 2−4/3β−2/3η1/3(χ2Ai(χ)− 2Ai′(χ)) +O(η2/3)

]
,

=
√
η
(β
2

)1/3
η−1/6

[
Dβ2/4(−β) +O(η2/3)

]

×
[
Ai′(χ) + 2−4/3β−2/3η1/3(χ2Ai′(χ)− 2χAi(χ)) +O(η2/3)

]

= O(η1/3).(141)

The error terms are uniform on finite χ intervals. The equation (141) applies
both for 0 < β < β∗ and β ≈ β∗, but its solution is different for these two
cases. For 0 < β < β∗ the first factor in the left-hand side of (141) is O(1),
while it is o(1) if β = β∗ (or β ≈ β∗).

First we consider 0 < β < β∗. The right-hand side of (141) is O(η1/3)
so that χ must be such that the left-hand side vanishes (to leading order
in η), which implies that Ai(χ) = 0. Thus χ must be close to a root of
the Airy function, and the maximal root occurs at a0 = −2.33810 . . .. To
obtain a more precise estimate we let χ− a0 = η1/3χ1(β, η) so that Ai(χ) ∼
η1/3χ1(β, η)Ai

′(a0) as η → 0. Then (141) becomes

−D′
β2/4(−β)η1/3

[
χ1(β, η)Ai

′(a0)−2−1/3β−2/3a0Ai
′(a0)+O(η1/3)

]

= −
(β
2

)1/3
η1/3

[
Ai′(a0) +O(η1/3)

]
Dβ2/4(−β).(142)
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Dividing (142) by η1/3 and letting η → 0 we conclude that χ1(β, η) → χ1(β)
as η → 0, with

χ1(β) = a0β
−2/32−1/3 −

(β
2

)1/3Dβ2/4(−β)
D′

β2/4
(−β) .(143)

This leads to (18) and completes the proof of Proposition 6.
We next consider β ≈ β∗. Then Dβ2/4(−β) 6= 0 and by Taylor series we

have

−
D′

β2/4(−β)
Dβ2/4(−β)

= −L(β − β∗) +O((β − β∗)
2),(144)

where L is given by (25). Thus if we scale β−β∗ = η1/3W the left and right-
hand sides of (141) are both O(η1/3) and we obtain the limiting equation

(145) − L ·W ·Ai(χ) = (β∗/2)
1/3Ai′(χ),

which defines χ implicitly in terms of W , and leads to Proposition 9.
Finally, we show that when β > 0 the equation V = 0 can have no roots

in the range θ = o(1). We consider scales of the form θ = θ∗η
M with M > 0

and exclude the possibility of roots that have θ = Θ(ηM ). We write

V = D−θ/η(
β√
η )
[ d
dβ
D−θ(−β)−

√
ηD−θ(−β)

D′
−θ/η(

β√
η )

D−θ/η(
β√
η )

]
(146)

and use (90) which for θ, η = o(1) yields

D′
−θ/η(

β√
η )

D−θ/η(
β√
η )

= − β

2
√
η
− θ

β
√
η
+O(θ

√
η, θ2/

√
η).(147)

Also, using (68) gives

d

dβ
D−θ(−β) +

β

2
D−θ(−β) = θD−θ−1(−β) ∼ θD−1(−β).(148)

Using (147) and (148) in (146) yields, to leading order in η, for θ = θ∗η
M ,

V = θ∗η
MD−θ∗ηM−1( β√

η )
[
β−1e−β2/4 +D−1(β)

]
[1 + o(1)].(149)

For M > 1 and η → 0 we can approximate D−θ∗ηM−1( β√
η ) ∼ exp[−β2/(4η)],

for M = 1 we have D−θ∗ηM−1( β√
η ) ∼ exp[−β2/(4η)](√η/β)θ∗ , while for

0 < M < 1 we must approximate the parabolic cylinder function using the
result in (118), which applies for large index and large argument. But in all
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cases the approximation leads to V in (149) being proportional to θ∗ with a
positive multiplier. Thus we again conclude that θ∗ = 0, contradicting the
existence of the root(s) where θ = Θ(ηM ) for any M > 0. Note that unlike
β ≤ 0, the scale θ = Θ(η) does not lead to roots, but only a change in the
expansion of D−θ∗ηM−1( β√

η ).

In obtaining (149) we used only the fact that θ = o(1). For any θ = o(1),
(149) holds, with θ∗η

M replaced by θ. Again, the expansion of D−θ/η(β/
√
η)

will be different as θ/η → 0, θ/η → ∞, or θ/η = Θ(1), but the first multi-
plicative factor in (149) (= θ∗η

M = θ) shows that there can be no roots in
any range where θ = o(1), except for the root at θ = 0.

7. Monotonicity of the spectral gap. The surface sketched in Fig-
ure 1 suggested certain monotonicity properties of r(β, η), and these were
partially confirmed by the various asymptotic formulas in Section 2. We now
establish these analytically, for all values of (β, η). We shall obtain:

Proposition 15. Let sgn(z) = +1 if z > 0, sgn(z) = −1 if z < 0 and

sgn(0) = 0. Then

(150) sgn

(
∂r

∂β

)
= − sgn(η − 1).

Hence, for a fixed η < 1 the spectral gap r is an increasing function of β,
while it decreases with β for fixed η > 1. If η = 1, r(β, 1) = 1 is constant.

To establish this result it is useful to set

(151) V (P ; η, β) = V(θ; η, β), θ = −P

and then in view of Theorem 1

(152) V (r(β, η); η, β) = 0.

By implicit differentiation of (152) we have

(153)
∂V

∂P

∣∣∣∣
P=r

· ∂r
∂β

+
∂V

∂β

∣∣∣∣
P=r

= 0.

By definition, r is the minimal positive solution of V (P ; η, β) = 0 and we also
note that V (0; η, β) = 0, as θ = 0 is a simple pole of p̂(x; θ) in Theorem 10,
which corresponds to the steady state limit in (6). Thus P = 0 and P = r
are consecutive zeros of V (P ; η, β) = 0. To determine the sign of ∂r/∂β
in (153) requires that we know the signs of ∂V/∂P and ∂V/∂β at P = r.
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For the former we can compute ∂V/∂P using the expression in Theorem 1
and the integral respresentations in (62), (65) and (66). However, an indirect
argument leads immediately to the value of sgn(∂V/∂P |P=r).

The solutions of V = 0 for P ≥ 0 correspond to poles of the Laplace
transform p̂(x; θ) in Theorem 10 and these are the eigenvalues λN for N ≥ 0,
with λ0 = 0 and λ1 = r. From the general theory of the one-dimensional
Schrödinger equation, the eigenvalues are all simple (see the discussion below
(53)) and the equation V = 0 has simple zeros. Hence, ∂V/∂P |P=r 6= 0. We
also note that if V had, say, a double zero at P = r, then (28) would
imply that the spectral expansion of p(x, t) would involve the terms e−λ1t =
e−rt and also te−rt, and this would contradict the self-adjointness of the
Schrödinger equation in (49). Now, since P = 0 and P = r are consecutive
simple zeros on the real axis of the entire function V (as a function of P )
we must have

(154) sgn

(
∂V

∂P

∣∣∣∣
P=r

)
= − sgn

(
∂V

∂P

∣∣∣∣
P=0

)
.

Computing the right-hand side of (154) is much easier than computing the
left-hand side, as we show below.

We define the functions I(z) and J(z) by

I(z) =
∂

∂P
DP (z)

∣∣∣∣
P=0

=
ez

2/4

i
√
2π

∫

Br
(log u)e−zueu

2/2 du,(155)

J(z) =
ez

2/4

i
√
2π

∫

Br
u(log u)e−zueu

2/2 du.

Then we expand V in (151) in Taylor series about P = 0 to obtain

V = −√
η
[
D0(−β) + PI(−β) +O(P 2)

]
(156)

×
[
D′

0

(
β√
η

)
+
(z
2
I(z)− J(z)

)∣∣∣
z=β/

√
η

P

η
+O(P 2)

]

−
[
D′

0(−β) +
(z
2
I(z) − J(z)

)∣∣∣
z=−β

P +O(P 2)

]

×
[
D0

(
β√
η

)
+ I

(
β√
η

)
P

η
+O(P 2)

]
.

Using D0(z) = e−z2/4, D′
0(z) = −z

2
e−z2/4 we obtain from (156)

∂V

∂P

∣∣∣∣
P=0

= exp

(
−β

2

4η

)
[βI(−β) + J(−β)](157)

− 1√
η
e−β2/4

[
β√
η
I

(
β√
η

)
− J

(
β√
η

)]
.
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But an integration by parts shows that

zI(z)− J(z) =
ez

2/4

i
√
2π

∫

Br
(z − u) log(u)e−zueu

2/2 du(158)

=
ez

2/4

i
√
2π

∫

Br
log(u) d

(
−e−zueu

2/2
)

=
ez

2/4

i
√
2π

∫

Br

e−zu

u
eu

2/2 du

= ez
2/4

∫ ∞

z
e−ξ2/2 dξ.

Here we also used the fact that a parabolic cylinder function of order P = −1
can be expressed in terms of the standard error function, or probability
integral. Using (158) in (157) we have

∂V

∂P

∣∣∣∣
P=0

= −
[
exp

(
β2

4
− β2

4η

)∫ ∞

−β
e−ξ2/2 dξ

(159)

+ exp

(
−β

2

4
+
β2

4η

)∫ ∞

β/
√
η
e−ξ2/2 dξ

]

= − exp

(
−β

2

4η
− β2

4

)[∫ ∞

0
e−βξe−ηξ2/2 dξ +

∫ 0

−∞
e−βξe−ξ2/2 dξ

]

so that ∂V/∂P |P=0 < 0 and hence, in view of (153) and (154),

(160) sgn

(
∂r

∂β

)
= − sgn

(
∂V

∂β

∣∣∣∣
P=r

)
.

Now,

∂V (P ; η, β)

∂β
=

√
ηD′

P (−β)D′
P/η

(
β√
η

)
(161)

−DP (−β)D′′
P/η

(
β√
η

)
+D′′

P (−β)DP/η

(
β√
η

)

− 1√
η
D′

P (−β)D′
P/η

(
β√
η

)
.

Using the parabolic cylinder equation D′′
P (z) =

(
1
4z

2 −P − 1
2

)
DP (z) we can

simplify (161) to
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∂V

∂β
=
η − 1

η

[
√
ηD′

P (−β)D′
P/η

(
β√
η

)
+

(
β2

4
− P

)
DP (−β)DP/η

(
β√
η

)]
.

(162)

When P = r we can further use the fact that V (r; η, β) = 0 to simplify
the right side of (162). We will need to separately consider the two cases
Dr(−β) = 0 (a degenerate case that occurs rarely) and Dr(−β) 6= 0 (which
is typical).

In the degenerate case we have

(163) sgn

(
∂V

∂β

∣∣∣∣
P=r

)
= sgn(η − 1) · sgn

(
D′

r(−β)
)
· sgn

(
D′

r/η

(
β√
η

))
,

and thus

(164) sgn

(
∂r

∂β

)
= − sgn(η − 1) sgn

(
D′

r(−β)
)
sgn

(
D′

r/η

(
β√
η

))
.

We note that if Dr(−β) = 0 then certainly D′
r(−β) 6= 0, as discussed in

Section 5 below (70). But if both V = 0 and Dr(−β) = 0 then certainly
Dr/η(β/

√
η) = 0. In the non-degenerate case we can rewrite V = 0 as

(165)

√
ηD′

r/η

(
β√
η

)

Dr/η

(
β√
η

) = −D
′
r(−β)

Dr(−β)
.

Using (165) in (162) and (160) we conclude that

sgn

(
∂r

∂β

)
= sgn(η − 1) · sgn (Dr(−β))

(166)

· sgn
(
Dr/η

(
β√
η

))
· sgn

{(
r − β2

4

)
(Dr(−β))2 +

(
D′

r(−β)
)2
}
.

We proceed to determine the signs of the various terms in (164) and (166).
It proves useful to understand the behaviors of r(β, η) as β → ±∞ for

a fixed η. By a calculation completely analogous to that used to establish
Proposition 4, we find that

(167) r(β, η)− η ∼ (1− η)
√
η

(−β)
√
2π

exp

(
−β

2

2η

)
; η 6= 1, β → −∞.
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Whereas Proposition 4 applies for η → 0 with fixed β < 0, (167) applies
for fixed η as β → −∞. By expanding (14) for β → −∞ and (167) as
η → 0 we see that the two agree in this intermediate limit. Thus for β large
and negative, r is exponentially close to η, as could be expected since then
almost all of the probability mass in the model migrates to the range x > 0.
A similar analysis as β → +∞ shows that

(168) r(β, η)− 1 ∼ η − 1

β
√
2π
e−β2/2; η 6= 1, β → +∞,

which can also be obtained simply by using (167) and the symmetry relation
in (13). For β large and positive the probability mass migrates to the region
x < 0. Note that (167) and (168) suggest that ∂r/∂β has the oppositive sign
as η − 1, at least for |β| sufficiently large, and this we proceed to establish
for any β.

Returning to (166) we proceed to show that Dr(−β) and Dr/η(β/
√
η) al-

ways have opposite signs. In general, suppose that we have two real analytic
functions F (x) and G(x). The ratio F (x)/G(x) can only change sign at a
point x∗ where F (x∗) = 0 with G(x∗) 6= 0, or G(x∗) = 0 with F (x∗) 6= 0,
or, possibly, where F and G both vanish but have zeros of different orders.
Thus if F (x) and G(x) are non-zero, or if their only zero(s) coincide and they
are of the same order, then F (x)/G(x) cannot change sign. Then determin-
ing sgn(F (x)/G(x)) requires only that we evaluate the ratio at a particular
point, which could be x = ±∞. But, we showed below (164) that Dr(−β)
and Dr/η(β/

√
η), as functions of β for a fixed η > 0, can only vanish simul-

taneously. Furthermore, if Dr(−β) vanishes at some βc, then for β near βc
but β 6= βc we can rewrite the equation V(r; η, β) = 0 as

(169)
Dr(−β)

Dr/η(β/
√
η)

= − D′
r(−β)√

ηD′
r/η(β/

√
η)
.

Then letting β → βc leads to

(170) lim
β→βc

[
Dr(−β)

Dr/η(−β/
√
η)

]
= − D′

rc(−βc)√
ηD′

rc/η
(βc/

√
η)

where rc = r(βc, η). But (170) shows that Dr(−β) and Dr/η(β/
√
η) must

vanish to the same order at β = βc (in fact they must have simple zeros
there). Thus we conclude that Dr(−β)/Dr/η(β/

√
η) cannot change sign. To

determine this constant sign we can let either β → +∞ or β → −∞ as
then we have asymptotic formulas for r. Using (168), (73) and the fact that
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D1(−β) = −βe−β2/4 we find that

(171)
Dr/η(β/

√
η)

Dr(−β)
∼ −β

1
η
−1
η
− 1

2η exp

[
1

4

(
1− 1

η

)
β2
]
, β → +∞

and thus Dr/η(β/
√
η) and Dr(−β) have opposite signs as β → +∞, and

thus this is true for all β. Note also that for β → −∞, (167) and (71) lead
to

(172)
Dr/η(β/

√
η)

Dr(−β)
∼ −(−β)1−η 1√

η
exp

[
1

4

(
1− 1

η

)
β2
]
, β → −∞

and this verifies the conclusion about opposite signs. We have thus simplified
(166) to

(173) sgn

(
∂r

∂β

)
= − sgn(η−1) sgn

{(
r − β2

4

)
(Dr(−β))2 +

(
D′

r(−β)
)2
}

in the non-degenerate case. In the degenerate case we conclude from (170)
that D′

rc(−βc) and D′
rc/η

(βc/
√
η) have the same sign, and then (164) shows

that sgn(∂r/∂β) = − sgn(η − 1), which establishes Proposition 15.
It remains to show that the last factor in (173) has always positive sign.

Let us define

(174) H(P, z) =

(
P − z2

4

)
D2

P (z) +
[
D′

P (z)
]2
,

and we consider H as a function of both P and z. We clearly have H(P, 0) =
PD2

P (0) + [D′
P (0)]

2 > 0 for P > 0, with H(0, 0) = 0. Also, H(0, z) = 0 for
all z, in view of (64). We consider P > 0 and z > 0.

We shall show that H(P, z) > 0 for all z ≥ 0 when P > 0. For z → ∞ the
estimate in (90) leads to

(175)

(
D′

P (z)

DP (z)

)2

=
z2

4
− P +

P

z2
+O

(
z−4
)

and then from (174) and (71)

(176) H(P, z) ∼ D2
P (z)

P

z2
∼ Pz2P−2e−z2/2, z → +∞

so that H is positive for z sufficiently large. By differentiating (174) with
respect to z we obtain

∂H
∂z

= 2DP (z)D
′
P (z)

(
P − z2

4

)
− z

2
D2

P (z) + 2D′′
P (z)D

′
P (z)(177)
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= − z

2
D2

P (z)−DP (z)D
′
P (z)

= − PDP (z)DP−1(z).

Here we also used (61) and the recurrence (68). From (177) we conclude
that H has maximum or minimum values at roots of DP (z) and DP−1(z),
as functions of z. As discussed in Section 5, there are at most finitely many
of these. But if DP (z∗) = 0 for some z∗ then D′

P (z∗) 6= 0 and H(P, z∗) =

[D′
P (z∗)]

2 > 0. If DP−1(z̃) = 0 for some z̃ then (174) and (68) show that

H(P, z̃) =

(
P − z2

4

)
D2

P (z̃) +
[
D′

P (z̃)
]2

(178)

= PD2
P (z̃),

which is again positive for P > 0. Note that we cannot have simultaneously
DP−1(z̃) = 0 = DP (z̃), for then (68) would imply that D′

P (z̃) = 0 also.
We have thus shown that H(P, z) is (for P > 0) positive at z = 0 and as
z → +∞, and also H > 0 at any maximum/minimum value of H. We then
conclude that

(179) H(P, z) > 0 for P > 0 and z ≥ 0.

Note that if H becomes negative at some z = z′ then H would need to reach
a minimum value at a point z′′ where H < 0, since for sufficiently large z
we again have H > 0.

Now we let P = r(β, η) > 0 and z = −β and use (174) and (179) in (173)
to conclude that

sgn

(
∂r

∂β

)
= − sgn(η − 1), β ≤ 0

and we have thus established Proposition 15 for β ≤ 0 and all η > 0. To show
the result holds also for β > 0, we need only use the symmetry relation in
(13), which shows that if r increases with β for β < 0 and 0 < η < 1, (resp.
η > 1) then r will decrease with β for β > 0 and η > 1 (resp. 0 < η < 1).

Alternately, we can use the relation (169) (in the non-degenerate case)
and (173) to conclude that

sgn

(
∂r

∂β

)
= − sgn(η− 1) sgn

{(
r − β2

4

)[
Dr/η

(
β√
η

)]2
+η

[
D′

r/η

(
β√
η

)]2}
(180)

and apply (179) with P = r/η > 0 and z = β/
√
η > 0. This concludes

the proof of Proposition 15, which was suggested by our numerical and
asymptotic results.
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APPENDIX A

We now prove Proposition 8. First consider γ → −∞. Since (20) is equiv-
alent to DR−1(γ) = 0 for R 6= 0, the asymptotic formula in (73) shows that
DR−1(γ) is positive for γ → −∞, unless Γ(1−R) is singular, and the mini-
mal singularity occurs at R = 1. For R close to 1 we must use the asymptotic
formula in (72), with arg(z) = arg(γ) = π. Then DR−1(γ) = 0 implies that

(181) e−γ2/4γR−1 ∼
√
2π(−γ)−Reγ

2/4 −1

Γ(1−R)
, γ → −∞.

Then using Γ(1−R) = (1−R)−1 +O(1) as R→ 1, (181) leads to

(182) R− 1 ∼ −γe−γ2/2

√
2π

, γ → −∞

which is the result in (21).
Now consider the limit γ → +∞. For a fixed R the asymptotic formula in

(71) shows that DR−1(γ) ∼ γR−1e−γ2/4, γ → +∞, which is strictly positive.
Thus to capture the zeros of DR−1(γ) in this limit R must be itself large, so
that we enter the oscillatory range of the special function. As discussed in
Section 5 the transition to oscillatory behavior occurs when R ≈ γ2/4 and
then we can approximate DR−1(γ) by Airy functions, with the leading term
given in (87). Thus with R = γ2/4 − (γ/2)2/3δ and γ → ∞ the minimal
root corresponds to the maximal root of Ai(δ) = 0, which occurs at δ = a0,
leading to (22).

APPENDIX B

We discuss the singularities of (28)–(30) in the complex θ-plane and thus
establish Proposition 11. As discussed in Section 5, D−θ(β) is an entire
function of θ, so that the only singularities of (28) are the zeros of V(θ; η, β).
The existence of an infinite sequence of zeros and the fact that they lie on
the real axis (Im(θ) = 0) follows from standard ODE theory, which was
discussed in Section 4.

Now consider (29) and (30). The factor Γ(θ) has simple poles at

(183) θ = 0,−1,−2,−3, . . . .

If θ = −M , M ≥ 0 we can simplify V by using (64), so that

V(−M ; η, β) = −√
ηHeM (−β)e−β2/4D′

M/η

(
β√
η

)
(184)

+
d

dβ

[
HeM (−β)e−β2/4

]
DM/η

(
β√
η

)
.
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Similary, (27) and (64) lead to

M(−M ; η, β) =
√
ηHeM (β)e−β2/4D′

M/η

(
β√
η

)
(185)

− d

dβ

[
HeM (−β)e−β2/4

]
DM/η

(
β√
η

)
.

Then we use HeM (−β) = (−1)MHeM (β), as the Hermite polynomials are
odd/even functions according as M is odd/even, and comparing (184) to
(185) we find that

(186) V(−M ; η, β) = (−1)M+1M(−M ; η, β); M = 0, 1, 2, . . . .

From (186) we conclude that either V and M are both zero at θ = −M ,
or neither is zero. If θ = −M and V(−M ; η, β) 6= 0, then M/V = (−1)M+1.
But then

DM (x0 + β) +DM (−x0 − β)
M(−M ; η, β)

V(−M ; η, β)

= e−(β+x0)2/4
[
HeM (x0 + β) + (−1)M+1HeM (−x0 − β)

]
= 0(187)

so that the last factor in (29) vanishes, and thus θ = −M is not a pole of
(29). Similarly, θ = −M will not be a pole of (30). This shows that θ = −M
can only be a pole of (29) and (30) if θ = −M and V and M simultaneously
vanish.

Conversely, suppose that V and M both vanish, say at some θ = θ∗. First
we assume that none of the three D−θ∗(−β), D−θ∗(β) and D−θ∗/η(β/

√
η)

are zero. Then the equations M = V = 0 may be rearranged to give

(188) −
D′

−θ∗
(−β)

D−θ∗(−β)
=
D′

−θ∗
(β)

D−θ∗(β)
=

√
η
D′

−θ∗/η
(β/

√
η)

D−θ∗/η(β/
√
η)
.

But the first equality in (188), along with the Wronkskian identity in (69),
leads to

(189) 0 = −D′
−θ∗(−β)D−θ∗(β) −D−θ∗(−β)D′

−θ∗(β) =

√
2π

Γ(θ∗)
.

But then Γ(θ∗) must be infinite, which leads us back to the case −θ =M =
0, 1, 2 . . . which we already discussed.

Finally suppose that D−θ∗(−β) = 0. Then certainly D′
−θ∗

(−β) 6= 0,
and V = 0 implies that D−θ∗/η(β/

√
η) = 0, and then M = 0 leads to

D−θ∗(β) = 0. But then (189) again leads to the conclusion that θ∗ =
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−M = 0,−1,−2, . . . . Starting with the assumption that D−θ∗(β) = 0 or
D−θ∗/η(β/

√
η) = 0 leads ultimately to the conclusion that all three denom-

inators in (188) must vanish, and then again (189) leads to θ∗ = −M .
We have thus shown that simultaneous zeros of V and M can occur only

if θ = 0,−1,−2, . . . . Indeed this does occur precisely when θ = 0, which
corresponds to the steady state limit p(x,∞). In all cases we showed that
a singularity of (29) or (30) necessarily has V = 0. Thus the equation in
Theorem 1 captures all of the singularities of p̂(x; θ).

APPENDIX C

We consider the expressions in (28)–(30), in the limit η → 0+, and thus
establish Proposition 13. In this limit we can simplify D−θ/η

(
(ηx+ β)/

√
η
)

using the asymptotic formula in (78). We can also use (65) to obtain an
analogous formula for D′

−θ/η(β/
√
η). Let us assume first that θ is positive

and real. The expansion (78) follows from a saddle point approximation
to (62), as discussed in (78) and below. The expansion of D′

p(z) for z, p → ∞
with z2/p > 4 is the same as that of Dp(z), except that the factor z/2 − u
in the integrand in (65) becomes frozen at the saddle u = zv+ = 1

2

[
z +√

z2 − 4p
]
. It follows that

(190)
D′

p(z)

Dp(z)
∼ −1

2

√
z2 − 4p; z, p → ∞,

z2

p
> 4

and hence (setting z = β/
√
η and p = −θ/η with η → 0+)

(191)

√
ηD′

−θ/η

(
β√
η

)

D−θ/η

(
β√
η

) → −1

2

√
β2 + 4θ as η → 0+.

A similar argument shows that

(192)

D−θ/η

(
β + ηx√

η

)

D−θ/η

(
β√
η

) → e−x
√

θ+β2/4 as η → 0+.

Then writing V as

V = −D−θ/η

(
β√
η

)[
D′

−θ(−β) +
√
η
D′

−θ/η

(
β/

√
η
)

D−θ/η

(
β/

√
η
)D−θ(−β)

]
(193)

∼ D−θ/η

(
β√
η

)[
−D′

−θ(−β) +
1

2

√
β2 + 4θD−θ(−β)

]
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we see that as η → 0 the expression in (28) becomes that in (39). We also
have

(194)
M
V →

D′
−θ(β) +

√
θ + β2/4D−θ(β)

−D′
−θ(−β) +

√
θ + β2/4D−θ(−β)

, η → 0+

which can be used to obtain the limits of (29) and (30), and this agrees
with the results we obtained in [23]. Throughout this calculation we divided
several times by D−θ/η

(
β/

√
η
)
, which was permissible since, for θ > 0, we

are outside of the oscillatory range of the special function, as we discussed
in Section 5.

APPENDIX D

Here we discuss the discrete M/M/m+M model. We shall obtain an ex-
plicit, albeit complicated, expression for the Laplace transform (over time)
of pn(t) = Prob[N(t) = n | N(0) = n0], where N(t) is the number of
customers in the system. Then we will give an alternate derivation of Theo-
rem 1, by evaluating the discrete model in the limit m→ ∞ with ρ = λ/µ =
m+O(

√
m). The analysis here closely parallels the proof of Theorem 10, so

we just give the main points.
We solve the following infinite system of ODEs (we assume time is scaled

to make the service rate µ = 1, so that ρ = λ):

(195) p′0(t) = p1(t)− ρp0(t)

(196) p′n(t) = ρ [pn−1(t)− pn(t)]+ (n+1)pn+1(t)−npn(t), 1 ≤ n ≤ m− 1,

(197) p′m(t) = ρ [pm−1(t)− pm(t)] + (m+ η)pm+1(t)−mpm(t),

p′n(t) = ρ [pn−1(t)− pn(t)] + [m+ (n−m+ 1)η] pn+1(t)(198)

− [m+ (n −m)η] pn(t), n ≥ m+ 1

with the initial condition pn(0) = δ(n, n0). We need to consider the cases
n0 < m and n0 > m separately, as the discrete model has no analog of the
symmetry relation in Proposition 3.

Introducing the Laplace transform p̂n(θ) =
∫∞
0 e−θtpn(t) dt, we first con-

sider the case 0 < n0 < m and then (195)–(198) become

(199) 0 = p̂1 − (ρ+ θ)p̂0
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(200) − δ(n, n0) = ρp̂n−1 − (ρ+ θ + n) p̂n + (n+ 1)p̂n+1, 1 ≤ n ≤ m− 1

(201)
0 = ρp̂n−1 − [ρ+ θ +m+ (n−m)η] p̂n + [m+ (n−m+ 1)η] p̂n+1, n ≥ m.

We solve (199)–(201) using a discrete Green’s function approach. We begin
by introducing the functions Fn, Gn,Hn, In; these are defined by the contour
integrals

Fn(θ) =
1

2πi

∫

C0

eρz

zn+1(1− z)θ
dz(202)

=

n∑

ℓ=0

ρn−ℓ

(n − ℓ)!

(θ + ℓ− 1)(θ + ℓ− 2) . . . (θ + 1)θ

ℓ!
,

(203) Gn(θ) =
1

2πi

∫

C1

eρz

zn+1(z − 1)θ
dz,

(204) Hn(θ) =
1

2πi

∫

C1

eρz/η

(z − 1)θ/ηzn+1−m
z−m/η dz,

(205) In(θ) =
1

2πi

∫

C2

eρz/η

(1− z)θ/ηzn+1−m
z−m/η dz.

Here C0 is a small loop about z = 0, C1 goes from −∞ − iε to −∞ + iε,
encircling z = 1, while C2 goes from −∞− iε to −∞+ iε encircling z = 0.
The contours C1 and C2 are sketched in Figure 5, and in (203) we use the

0 1

0 1
Re(z)

Im(z)

C1

Re(z)

Im(z)

C2

Fig 5. A sketch of the branch cuts and the contours C1 and C2.
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branch (z − 1)−θ = |z − 1|−θ exp[−iθ arg(z − 1)] with −π < arg(z − 1) ≤ π;
in (204) (z − 1)−θ/η = |z − 1|−θ/η exp[−iθη−1 arg(z − 1)] and z−m/η =
|z|−m/η exp[−imη−1 arg z] with −π < arg z ≤ π; and in (205) (1− z)−θ/η =
|1− z|−θ/η exp

{
−iθη−1[arg(z − 1)− π]

}
(so that 1−θ/η = 1 for θ > 0). Note

that if η = 1 then Gn = Hn and Fn = In (then the contour C2 in (205) may
be deformed to C0).

We can easily verify that Fn and Gn satisfy the homogeneous form of
(200) (with δ(n, n0) replaced by zero) and thus give two linearly independent
solutions of this difference equation. Similarly, Hn and In give two solutions
to (201). We use the functions in (202)–(205) to construct p̂n(θ), making use
of (197) (or (201) with n = m) to relate the ranges n < m and n > m. The
analysis is completely analogous to the proof of Theorem 10 in Section 6, so
we give below only the final result:

(206) p̂n(θ) =
n0!

m!
ρm−n0−1 Fn0

Hn

FmHm−1 −HmFm−1
, n ≥ m;

(207)

p̂n(θ) =
n0!Γ(θ)e

−ρ

ρn0+θ
Fn0

[
Gn +

HmGm−1 −GmHm−1

FmHm−1 −HmFm−1
Fn

]
n0 ≤ n ≤ m;

(208)

p̂n(θ) =
n0!Γ(θ)e

−ρ

ρn0+θ
Fn

[
Gn0

+
HmGm−1 −GmHm−1

FmHm−1 −HmFm−1
Fn0

]
, 0 ≤ n ≤ n0.

Here we suppressed the dependence of Fn, Gn, Hn on θ.
The above holds for all 0 ≤ n0 ≤ m, and if n0 = m (starting with all

servers occupied but an empty queue), (207) is not needed, and then p̂n(θ)
somewhat simplifies, to

(209) p̂n(θ) =
ρ−1

FmHm−1 −HmFm−1

{
FmHn, n ≥ m

HmFn, 0 ≤ n ≤ m.

Note that (206), (207) and (208) are similar in form to (28), (30) and (29),
respectively, with HmGm−1 − GmHm−1 and FmHm−1 − HmFm−1 playing
the roles of M and V. The functions in (202)–(205) are all entire functions
of θ, and the singularities of p̂n(θ) are determined by the equation

(210) Fm(θ)Hm−1(θ)−Hm(θ)Fm−1(θ) = 0.

For initial conditions n0 > m we need to solve (199)–(201), but now with
the left-hand side of (200) replaced by zero and the left-hand side of (201)
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replaced by −δ(n, n0). For n0 ≥ m the final result is

p̂n(θ) =
1

ρ
e−ρ/η

(
η

ρ

)n0−1−m+(θ+m)/η

Γ

(
θ

η

)
Γ

(
n0 + 1−m+

m

η

)
(211)

×
[
In0

+
ImFm−1 − Im−1Fm

FmHm−1 −HmFm−1
Hn0

]
Hn, n ≥ n0;

p̂n(θ) =
1

ρ
e−ρ/η

(
η

ρ

)n0−1−m+(θ+m)/η

Γ

(
θ

η

)
Γ

(
n0 + 1−m+

m

η

)
(212)

×
[
In +

ImFm−1 − Im−1Fm

FmHm−1 −HmFm−1
Hn

]
Hn0

, m ≤ n ≤ n0;

p̂n(θ) =
1

ρ

(
ρ

η

)m−n0 Γ(n0 + 1−m+m/η)

Γ(1 +m/η)

Hn0
Fn

FmHm−1 −HmFm−1
,(213)

0 ≤ n ≤ m.

When n0 = m, (212) is not needed and then (211) and (213) reduce to (209).
Again the singularities are determined by (210).

Now we evaluate these results in the limit of m→ ∞ with the scaling

(214) n = m+
√
mx, n0 = m+

√
mx0, ρ = m−

√
mβ,

where x, x0, β are O(1). We shall thus give an alternate derivation of Theo-
rems 1 and 8 of Section 2. Let us also scale z = 1− ξ/

√
m in the integrands

in (202)–(204). Noting that

ρz − n log z = (m−
√
mβ)

(
1− ξ√

m

)
− (m+

√
mx) log

(
1− ξ√

m

)(215)

= ρ+ (x+ β)ξ +
1

2
ξ2 + o(1)

we obtain a limiting form of (202):

Fn(θ) ∼
mθ/2eρ√
2πm

1√
2πi

∫

Br
ξ−θe(x+β)ξeξ

2/2 dξ(216)

=
mθ/2eρ√
2πm

e−(x+β)2/4D−θ(−x− β).

Here we used the integral representation in (62) for the parabolic cylinder
function D. In (216) Br is a vertical contour with Re(ξ) > 0, which can
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be used to approximate C0 in (202) with this scaling of z. A completely
analogous expansion of (203) leads to

(217) Gn(θ) ∼
mθ/2eρ√
2πm

e−(x+β)2/4D−θ(x+ β),

and, after some calculation, we obtain from (204)

(218) Hn(θ) ∼
√

η

2πm
eρ/η

(
m

η

)θ
2η

exp

[
−(ηx+ β)2

4η

]
D−θ/η

(
ηx+ β√

η

)
.

Using (204) and Stirling’s formula we also have

(219)
n0!

m!
ρm−n0−1 ∼ 1

m
eβx0ex

2
0/2.

Next we consider the limiting form of (210). Noting that Fm − Fm−1 can
be computed from (202) by multiplying the integrand by 1− z and setting
n = m, we have

FmHm−1 − Fm−1Hm(220)

= Hm(Fm − Fm−1)− Fm(Hm −Hm−1)

∼ Hm
eρmθ/2

√
2πm

e−β2/4D1−θ(−β)

+ Fm
eρ/η√
2πm

√
η

(
m

η

) θ−η
2η

e−β2/(4η)D1−θ/η

(
β√
η

)

∼ 1

2π
mθ/2

(
m

η

) θ
2η

eρ(1+1/η)e−β2/4e−β2/(4η)

√
η

m3/2
V(θ; η, β)

where V is as in Theorem 1. Here we also used (216), (218) and (69).
An analogous approximation to HmGm−1−GmHm−1 can be used to show

that

(221)
HmGm−1 −GmHm−1

FmHm−1 −HmFm−1
→ M(θ; η, β)

V(θ; η, β) .

Then using (216)–(219) and (221), we see that the expressions in (206)–
(208) reduce to those in (28)–(30), up to a factor of 1/

√
m in the former,

which arises due to the fact that pn(t) is normalized by a sum over n while
p(x, t) is normalized by an integral over x. We have thus given an alternate
derivation of Theorem 10. Note that all of the asymptotic calculations do
not involve scaling time t or the transform variable θ.
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Finally, we discuss the uniformity of the approximation in (220) for small
values of θ. This will show that ∆(θ) = ∆(θ;m,β, η) ≡ FmHm−1−Fm−1Hm

can have no roots form→ ∞ in ranges where θ = o(1). We set ρ = m−β√m
and consider finite intervals of β and η, with η > 0. First we note that, using
(202) and (204) (with n = m and then n = m− 1)

Fm(0) =
ρm

m!
, Hm(0) =

(ρ
η

)m/η 1

Γ(m/η + 1)
,

(222)

Hm−1(0) =
(ρ
η

)m/η−1 1

Γ(m/η)
.

It follows that Fm(0)Hm−1(0) = Fm−1(0)Hm(0) and thus ∆(0;m,β, η) = 0
for all values of m,β, η. The pole at θ = 0 corresponds to the steady state
limit, which exists for all m and β, for η > 0. We expand ∆ for fixed finite
β and fixed η > 0, as m → ∞, which will refine the leading order result in
(220) and show that the higher order terms remain smaller than the leading
term, for θ = o(1) as m→ ∞. Setting z = 1− ξ/√m in the integral in (202)
leads to

m−θ/2Fm(θ) =
eρ√
m

∫

C′
eξ

2/2eβξξ−θF(ξ;m)dξ,(223)

where C ′ is the image of the contour C0 and

F(ξ;m) =
(
1− ξ√

m

)−1
exp

[
−

√
mξ − ξ2

2
−m log

(
1− ξ√

m

)]

=
(
1− ξ√

m

)−1
exp

[ ∞∑

l=3

ξl

l(
√
m)l−2

]

= 1 +

∞∑

j=1

Pj(ξ)m
−j/2,(224)

where Pj(ξ) is a polynomial in ξ of degree 3j. We have P1(ξ) = ξ + 1
3ξ

3,
P2(ξ) = ξ2 + 7

12ξ
4 + 1

18ξ
6, etc. Using (224) and some contour deformation

(as |z| < 1 in (202) implies asymptotically that Re(ξ) > 0), we obtain the
asymptotic series

m−θ/2Fm(θ) ∼ eρ√
m

[ 1√
2π
e−β2/4D−θ(−β) +

∞∑

j=1

m−j/2fj(θ, β)
]
,(225)

where

fj(θ, β) =
1

2πi

∫

Br+

Pj(ξ)e
ξ2/2eβξξ−θdξ(226)
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and Re(ξ) > 0 on the vertical contour Br+. Since the Pj are polynomials, the
integral in (226) is a finite sum of parabolic cylinder functions of different
orders (for example f1 involves D1−θ(·) and D3−θ(·)), and thus each fj is an
entire function of θ. A completely analogous calculation shows that

m−θ/2[Fm(θ)−Fm−1(θ)] ∼
eρ

m

[ 1√
2π
e−β2/4D1−θ(−β)+

∞∑

j=1

m−j/2fj(θ−1, β)
]
.

(227)

Next consider Hm(θ) (setting n = m in (204)) in the same asymptotic
limit. Now we scale z = 1 + ξ

√
η/m and obtain

(m
η

)−θ/(2η)
Hm(θ) =

√
η

m
eρ/η

∫

C′
1

eξ
2/2eβξξ−θH(ξ;m)dξ,(228)

with

H(ξ;m) =
(
1 +

√
η

m
ξ
)−1

exp
[√m

η
ξ − ξ2

2
−m log

(
1 +

√
η

m
ξ
)]

= 1 +

∞∑

j=1

P̃j(ξ; η)m
−j/2,(229)

where P̃j are again polynomials in ξ. Then we obtain the asymptotic expan-
sion of (228) as

(m
η

)−θ/(2η)
Hm(θ)(230)

∼
√
η

m
eρ/η

[ 1√
2π
e−β2/(4η)D−θ/η(

β√
η ) +

∞∑

j=1

m−j/2hj(θ, β, η)
]
.

where

hj(θ, β, η) =
1

2πi

∫

Br+

P̃j(ξ, η)e
ξ2/2e−βξ/

√
ηξ−θ/ηdξ(231)

so again hj is a finite sum of parabolic cylinder functions of different indices,
all with argument −β/√η. A completely analogous calculation shows that

(m
η

)−θ/(2η)
[Hm−1(θ)−Hm(θ)]

(232)

∼ η

m
eρ/η

[ 1√
2π
e−β2/(4η)D1−θ/η(− β√

η ) +
∞∑

j=1

m−j/2hj(θ − η, β, η)
]
.
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Combining (225)-(227) with (230)-(232) leads to a refinement of (220) into
a full asymptotic expansion of ∆(θ;m,β, η) in powers of m−1/2. Then we
can replace V in (220) by

V(θ; η, β) +
∞∑

j=1

m−j/2Vj(θ; η, β)(233)

where

Vj(θ; η, β) =

j∑

k=0

[hk(θ, β, η)fj−k(θ − 1, β) + hk(θ − η, β, η)fj−k(θ, β)].

(234)

Here V0 = V and f0 and h0 can be identified from (225) and (230). For (234)
we see that each Vj is a finite sum of products of two parabolic cylinder
functions, possibly of different indices and arguments. Thus each Vj is an
entire function of θ, and the expansion in (233) is uniform in finite β, θ, η
intervals, with η > 0. Setting θ = 0 and using the fact that ∆(θ), which is
itself and entire function of θ, vanishes for all values of m,β, η, we conclude
that Vj(0; η, β) = 0 for each j. From (159), V has a simple zero at θ = 0
and then Vj for j ≥ 1 have zeros of orders ≥ 1. Thus for any θ = o(1) as
m→ ∞ the correction terms in (233) remain smaller than the leading term,
and thus ∆(θ) cannot have a zero for θ = o(1), except the one at θ = 0. We
have thus shown that for fixed β, fixed η > 0, and m→ ∞ the zeros of ∆ in
(220) in the range θ = Θ(1) must approach the zeros of V, and that ∆ has
no zeros where θ = o(1), except for θ = 0.

APPENDIX E

Here we establish the positivity of the correction term in (15). We thus
take β > β∗ and show that A(β) > 0.

We begin by noting that Ṽ(0, β) = 0 and Ṽ(r0(β), β) = 0, and since r0(β)
is the minimal positive solution of Ṽ(p, β) = 0 it follows that 0 and r0(β)
are consecutive zeros of Ṽ(p, β). These zeros are necessarily simple, due to
the general results for the one-dimensional Schrödinger equations that we
discussed in Section 4 (see the discussion surrounding (54)). It follows that

(235) sgn
(∂Ṽ
∂p

∣∣∣
p=0

)
= −sgn

(∂Ṽ
∂p

∣∣∣
p=r0(β)

)
.

The right-hand side of (235) appears in A(β) in Proposition 5, but the left-
hand side is much easier to determine. Using (125) and the definition of Ṽ
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in Proposition 5, we have

∂Ṽ
∂p

∣∣∣
p=0

=
∂

∂p
[D′

p(−β)−Dp(−β)
√
β2/4− p]

∣∣∣
p=0

(236)

= D0(−β)
∂

∂p
[−
√
β2/4− p+D′

p(−β)/Dp(−β)]
∣∣∣
p=0

=
[ 1
β
+ eβ

2/2

∫ β

−∞
e−u2/2du

]
e−β2/4 > 0.

Here we also used the facts that β > 0 and Ṽ(0, β) = 0. From (235) and
(236) we conclude that

(237) sgn
(∂Ṽ
∂p

∣∣∣
p=r0(β)

)
= −1.

If we can show that Dr0(−β) < 0 for all β > β∗ then (17) shows that
A(β) > 0.

Consider F(β) = Dr0(β)(−β) as a function of β. As discussed in Section
6.3, F(β) is an infinitely smooth function of β. This function cannot change
sign, for if F(β̃c) = 0 for some β̃c then Dp(−β) = 0 for p = r0(β̃c) and also,
since Ṽ(r0(β), β) = 0, D′

p(−β) = 0. But Dp and D′
p cannot simultaneously

vanish, as discussed in Section 5 below equation (70). To determine the
constant sign of F(β) we need only evaluate this at one particular point.
For example, when β = 2 then r0 ≈ .9323 and Dr0(β)(−β) ≈ −.8275. We
can also let β → ∞ and use the facts that r0(β) → 1 and Dr0(β)(−β) ∼
−βe−β2/4 < 0. Thus sgn(Dr0(β)) = −1, and (17) and (237) show that
sgn(A(β)) = +1.
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