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Abstract—This paper presents the design and implementation of
RELTEQ, a timed event management algorithm based on relative
event times, supporting long event interarrival time, long lifetime
of the event queue, no drift and low overhead. It is targeted at
embedded operating systems.

RELTEQ has been conceived to replace and improve the existing
timed event management approach in µC/OS II, a real-time oper-
ating system used by one of our industrial partners. Experimental
results confirm a lower overhead of the proposed method in terms
of processor requirements compared to the existing approach.

I. INTRODUCTION

Real-time systems need to schedule many different timed
events (e.g. programmed delays, arrival of periodic tasks, budget
replenishment, time keeping). On contemporary computer plat-
forms, however, the number of hardware timers is usually limited,
meaning that events need to be multiplexed on the available
timers. Typical requirements of real-time systems on timed event
management are support for (i) high resolution event times, (ii)
long event interarrival time, (iii) long system lifetime, (iv) low
overhead, and (v) no drift.

This work is performed in the context of the CANTATA [CAN-
TATA, 2006] project in cooperation with an industrial partner in
the surveillance domain. Their current system is implemented on
top of the µC/OS II operating system [Labrosse, 1998], which
supports only delay events. Every delay event is represented with
a separate counter, which is decremented upon every tick, hence
the tick handler complexity is linear in the number of events.

In order to use a combination of periodic tasks and reser-
vations to exploit fluctuating network bandwidth [Holenderski
et al., 2008] and implement it in µC/OS II we need a general
mechanism for different kinds of timed events.

Event queues are a common method for multiplexing many
events on a single timer. In this paper we present a design and
implementation of an event queue satisfying the above real-time
requirements while reducing the processor and memory overhead
compared to existing solutions.

The arrival time of event ei is denoted as ti. An event queue
stores the events in a queue sorted by their arrival time. The event
time can be expressed in absolute or relative terms.

Most computer platforms have a clock, which monitors the
oscillations of a crystal and periodically increments a counter
[Liu, 2000]. The clock can be programmed to generate an
interrupt when the counter reaches a certain expiration count,
called the expiration time. The combination of a clock and an

This work has been supported in part by the Information Technology for
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expiration time is called a timer. A timer can be either one-shot
or periodic. A one-shot timer is set to expire once. A periodic
timer will expire periodically with the expiration time defining
the interval between two consecutive expirations. The interrupt
generated by a periodic timer is called a tick.

The clock granularity (i.e. the interval between two consecutive
increments of the counter) determines the resolution of timers (i.e.
the smallest interval between two different time values measured
by the timer). The resolution of event times is derived from the
timer driving the event queue. Usually a one-shot timer will offer
a higher event resolution than a periodic timer.

Managing the timed events in the event queue can be consid-
ered independently from the driving timer.

The main contribution of this paper is the design and im-
plementation of RELTEQ, an event queue based on relative
event times, which in contrast to existing approaches satisfies the
above real-time requirements without tradeoffs. We implemented
RELTEQ in µC/OS II on top of a periodic timer.

The remainder of this paper discusses related work in Section
II, causes and measures for avoiding drift in Section III, and the
RELTEQ event queue in Section IV an evaluation in Section VI.

II. RELATED WORK

A. Time models

Linear time model: Typical operating systems for medium size
machines use a linear time model, where time is represented using
an n-bit variable.

The disadvantage of a linear time model is that it imposes a
finite lifetime: the system cannot represent times past 2n. In case
of 16-bit time representation and 1 millisecond clock granularity
the system has a lifetime of about one minute. Increasing the
lifetime requires either using a larger number of bits or setting
a lower time resolution. Unfortunately, both solutions can be
inappropriate for an embedded system with stringent memory
requirements and real-time constraints.

Circular time model: The circular time model handles the
overflow condition occurring when the n-bit variable used to
represent the system time passes from 2n − 1 to 0.

Linear time models are limited to a fixed time interval; they
do not allow to schedule events later than 2n. Circular time
models can be visualized as a sliding window, where the window
size represents the maximum event interarrival time. As time
progresses and events are executed, the time interval is shifted,
allowing to schedule events beyond 2n. Using the circular time
model the maximum event interarrival time is 2n−1, since at least
one bit is necessary to discriminate between different cycles.
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RELTEQ is based on a circular time model while reducing the
overhead for handling overflows.

B. Absolute times

Time is always expressed relative to some reference. In case
of absolute times the reference time is usually implicit. For
example, the standard time measure in many modern computers
is expressed in terms of seconds since 0:00 on January 1st, 1970.
However, since the reference time does not change, the number
of bits required to represent the absolute time monotonically
increases with later events, which in the case of the linear time
model leads to limited system lifetime. The circular time model
gets rid of the life time limitation at a cost of reduced maximum
interval between events.

Examples of real-time systems with the circular time model and
absolute event times are the extension of VxWorks with hierarchi-
cal scheduling in [Behnam et al., 2008] and RTLinux [RTLinux,
2007]. The SHaRK real-time operating system [SHaRK, 2006],
[Gai et al., 2001] uses absolute arrival times and allows to choose
between an implementation on top of a periodic or a one-shot
timer. The arrival times are represented by a pair of long integers
(seconds, nanoseconds). The event queue is implemented as a
single list.

[Carlini and Buttazzo, 2003] present the Implicit Circular
Timers Overflow Handler (ICTOH). It requires managing the
overflow at every time comparison and is limited to timing
constraints which do not exceed 2n−1. [Buttazzo and Gai, 2006]
present an implementation of ICTOH minimizing the time han-
dler overhead.

C. Relative times

In case of relative times the reference time is explicit. In the
µC/OS II [Labrosse, 1998] and Resource Kernel [Rajkumar et al.,
1998] real-time operating systems, the arrival time of every event
is relative to the current time. It is implemented by representing
each arrival time with a counter which is decremented upon every
periodic timer tick. Since the reference time (i.e. the current
time) is constantly increasing, relatively few bits are required to
represent the arrival times. However, this approach incurs large
performance overhead, since at every tick the arrival times of all
events in the event queue have to be decremented.

RELTEQ, which is based on relative times as well, provides
long event interarrival times and long system lifetime, while
minimizing the memory requirement compared to absolute event
times, and processor requirements compared to the current µC/OS
II implementation based on relative times.

Figure 1 compares existing time models, where I is the
maximum interval between any two events in the queue, L is
the system lifetime, and P is the largest time which can be
represented. In case of n-bits P = 2n.

Note that according to [Carlini and Buttazzo, 2003] their
approach has a lower memory and processor overhead than [Park
et al., 2001].

III. DRIFT AND ITS CAUSES

Absolute jitter defines the bound on the error between computer
time and wall clock time [Klein et al., 1993]. A timed event

Model I L event time
Linear P P absolute

[Fonseca, 2001] P/4 ∞ absolute
[Carlini and Buttazzo, 2003] P/2 ∞ absolute

[Park et al., 2001] P ∞ absolute
µC/OS II P ∞ relative
RELTEQ ∞ ∞ relative

Fig. 1. Time model comparison. I is the maximum interval between any two
events in the queue, L is the system lifetime, and P is the largest time which
can be represented.

management system is said to have drift if the absolute jitter is
unbounded. We can identify the following causes for drift:

1) Hardware is inaccurate.
2) Granularity of event times is not a multiple of the granu-

larity of the clock.
3) One-shot timer is programmed by setting the next expira-

tion time relative to the current time.
4) Granularity of event times is not a multiple of the granu-

larity of the tick. 1

The first two causes derive from the limitations of the hardware
and pose limitations on the application and are outside the scope
of this paper. The other two causes can be addressed by proper
programming measures.

The third cause describes a scenario where upon timer ex-
piration the one-shot timer is programmed by setting the next
expiration time to the next event, followed by handling the
current event. Depending on whether the event times are absolute
or relative, setting the next timer expiration time may require
computing the difference between the next and current event,
or simply taking the next event time, respectively. In both cases
there is the overhead of setting the timer and possible interference
form higher priority interrupts or disabling of timers, which will
accumulate over time and thus lead to drift.

One possible solution for the drift problem of the one-shot
timer is using a periodic timer instead. A fine granularity of the
periodic timer will allow a high resolution of the events, but will
come at a high overhead, which results in a tradeoff.

Another solution is to use a High Precision Event Timer
(HPET) [Intel, 2004], which is present on many modern com-
puters with Intel processors. It avoids the drift problem of a
one-shot timer by expressing the expiration time in terms of
crystal oscillations. The HPET is programmed by setting the next
expiration time relative to the last expiration.

The fourth drift cause is due to events arriving in between
ticks. Such events will be handled upon the next tick, which in
case of relative event times may lead to accumulation of drift. It
can be remedied by expressing the next event time in absolute
terms, bounding the jitter by at most one tick.

In the remainder of this paper we assume that the hardware is
accurate, that the granularity of the clock is sufficient to express
the event times, and that the event queue is driven by a periodic
timer (since this is also the case in µC/OS II).

1Note that the clock granularity determines the resolution of timers, while the
timer resolution determines the resolution of events.
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IV. RELTEQ

The main idea behind RELTEQ is to use relative event times
and to insert “dummy” events to extend the maximum interarrival
time between proper events.

Rather than storing the event times relative to the current time,
like it is done in µC/OS II, RELTEQ stores the arrival times of
events relative to each other, by expressing the arrival time of an
event relative to the arrival time of the previous event, with the
arrival time of the head event being relative to the current time,
as shown in Figure 2.

Two operations can be performed on an event queue: new
events can be inserted and the head event can be popped. When
inserting a new event ei, the event queue has to be traversed,
accumulating the relative times of the events until a later event
ej is found, with tj < ti, where ti and tj are both absolute times.

Fig. 2. Example of the RELTEQ event queue.

Unbounded interarrival time between events

For an n-bit time representation, the maximum interval be-
tween two consecutive events in the queue is 2n. This is already
an improvement on the circular time models presented in Section
II-A, where the maximum interval between any two events is
2n−1. RELTEQ allows for arbitrary interval between any two
events by inserting ”dummy” events, as shown in Figure 3.

Fig. 3. Example of (a) an overflowing relative event time (b) RELTEQ inserting
a dummy event to handle the overflow.

If t represents the event time of the last event in the queue,
then an event ei with a time larger than 2n relative to t can be
inserted by first inserting dummy events with time 2n at the end
of the queue until the remaining relative time of ei is smaller or
equal to 2n.

The first event

In order to avoid drift due to events arriving between two ticks
(as described in Section III), the arrival time of the first event is
expressed in absolute time.

Since the event time of the first event is stored as an absolute
time it may overflow. We address this issue by inserting dummy
events at times when the absolute time would overflow, as shown
in Figure 4.

Fig. 4. Example of (a) overflowing absolute time of the first event (b) RELTEQ
inserting a dummy event to handle the overflow.

The time will overflow once in 2n ticks (assuming an n-bit
time representation), requiring to insert one dummy event every
2n ticks. Since the number of proper events within that time
interval is likely to be high, the overhead of using dummy events
to handle absolute time overflows is small.

Implementation

We have implemented RELTEQ on top of the µC/OS II
rel-time operating system. Similar to the standard µC/OS II
implementation of delay events, the RELTEQ events (i.e. periodic
task arrival and delays) are stored in the Task Control Blocks
(TCB), which is a structure managed by µC/OS II for keeping
track of task parameters, such as priority, blocking state, etc. As
currently one queue is used per event type, the TCB structure
is extended to contain information for n events (where n is the
number of different kinds of events).

Each event contains the following information
• Link to TCB containing the next event of this type
• Link to TCB containing the previous event of this type2

• Timestamp associated with this event (relative to previous
event)

For every type of event, a Queue structure is defined, which is
basically a pointer to the TCB containing the first event.

The Queue structures together with the event information in
the TCBs form a double linked list for each queue. By storing
the event information inside of the µC/OS II TCBs, we won’t
need to store any pointers to the task associated to the event. The
event kind is stored only once, in the Queue structure.

The field that was originally used for storing the delay (in the
TCB) in µC/OS II is now no longer used.

As the TCBs are used to store the events, one event of every
type can be stored per task (i.e. each task can have 1 Period Event
and 1 Delay Event at the same time, just like µC/OS II can have
only delay ’event’ / task). Keeping the number of RELTEQ events
limited also imposes an upper bound on memory usage and queue
processing time.

The set delay function of µC/OS II has also been changed:
instead of setting the delay value in the TCB, it inserts a Delay
Event in the RELTEQ Queue. Delays larger than 2n are handled
in the same way as in standard µC/OS II: looping over as many
delays of 2n as necessary (the current implementation does not
support dummy events).

2The previous pointer is currently only used for removing events (a delay event
can be removed by other means than simply being due and handling, e.g. when
the time-out for a semaphore is removed).
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The tick interrupt service routine of µC/OS II has been replaced
with a routine to handle all the due events and update the queue.

The RELTEQ source code can be downloaded from [RELTEQ,
2009].

V. DISTINCTION BETWEEN EVENT QUEUE AND TIMER

We can identify two layers in the RELTEQ architecture: the
timed event management, as discussed in this paper, is happening
on the event queue layer, while the timer expiration is managed
by the timer layer. Ideally it should be possible to implement
the RELTEQ algorithm on top of different timers with minimal
effort.

The choice of data structures of the event queue will have
an impact on the memory requirements of the whole timed
event management system and the performance of inserting new
events. The time representation of events in the queue will have
consequences for the fourth drift cause in Section III, while the
first three drift causes can be countered by appropriate choice of
the timer. In the RELTEQ approach the real-time requirements
of long event interarrival time and long system lifetime are
addressed on the event queue level.

The resolution of events is determined by the timer driving
the event queue, in particular by the granularity of the periodic
timer or the resolution of the one-shot timer. The particular timer
choice will also have impact on the overhead of programming the
timer and the overhead of interference due to timer expirations.

VI. EVALUATION

We verified by experiment that the RELTEQ implementation
in µC/OS II does not suffer from larger overhead than the current
µC/OS II implementation.

The experimental setup consisted of one low priority task τl
with a fixed computation time (a loop with a fixed iteration count)
and 59 higher priority instances of a task τd which would loop
over a delay command. We ran the same task set under µC/OS
II with RELTEQ and the standard µC/OS II, and compared the
response time of τl. Since the system was fully utilized during the
response time of τl, the difference in its response time represents
the overhead of the tick handler handling the delay events of the
high priority instances of τd.

Our initial results, based on a tick period of 1ms and delays
of 200 ticks times the priority of the task (priorities ranged from
1 to 60, with 1 being the highest priority), show a 3% shorter
response time under RELTEQ.

Regarding the memory requirements, RELTEQ requires two
additional pointers per event kind per task, and one additional
pointer for the head of each queue.

The RELTEQ implementation consists of around 300 lines of
code, for most part dealing with queue management and thus
is easily ported to other operating systems. µC/OS II specific
modifications included adapting the timer interrupt and the delay
functions.

Note that RELTEQ is targeted at embedded operating systems.
General purpose operating systems such as Linux, which use
large integers (64 bit) to represent event times (thus not suffering
from time overflows), and which need constant insertion and
deletion time of events (e.g. for timeouts for network packets),
will not benefit form the RELTEQ approach.

VII. CONCLUSION

RELTEQ is an elegant timed event management method based
on relative event times, supporting long event interarrival time,
long lifetime of the event queue, no drift and low overhead. It
was implemented in the µC/OS II real-time operating system to
replace and improve its current timed event management system.
Experimental results confirm a lower overhead of the proposed
method in terms of processor requirements at a small cost of
memory requirements, compared to the existing approach.

VIII. FUTURE WORK

Avoid drift without HPET support

The RELTEQ approach is not limited to the current µC/OS II
implementation. It is well suited for implementation on top of a
one-shot timer for exploiting its high resolution and low overhead
compared to a periodic timer with fine granularity. However, an
event queue driven by a one-shot timer may suffer from drift (as
discussed in Section III).

One solution is to use a High Precision Event Timer, as
discussed in Section III. It is to be investigated how to avoid
drift on platforms without HPET support.
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