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ix 

Summary 

In the development of non-invasive detection methods of atherosclerotic lesions in 

the carotid artery bifurcation at an early stage of the disease, insight into the 

complicated flow field in this bifurcation is indispensable. Beside experimental 

research, also numerical simulations contribute to a better understanding of the flow 

phenomena occurring in the carotid artery bifurcation. 

For a description of the geometry of the carotid artery bifurcation, data 

available in literature is used. Besides, a cast study is performed using 7 

postmortem specimen. From this study it is concluded that large inter-individual 

variabilities occur in the geometry of the carotid artery bifurcation. Therefore, 

studies dealing with the influence of geometry variations on the total flow field are 

indispensable. For discretization of the governing fluid equations Galerkin's finite 

element method is used, in which blood is presumed to behave like an 

incompressible and Newtonian fluid and the vessel walls are supposed to be rigid. 

Because three--dimensional analysis results in large systems of equations, super and 

minisupercomputers are used, which can be 10 to 1000 times as fast as conventional 

systems. To decrease the computing times needed even more, a special purpose mesh 

generator is developed, enabling division of the carotid artery bifurcation into a 

relatively small number of elements, and a special renumbering procedure is 

employed. Non-contact laser Doppler velocity measurements are performed in 

rigid-walled three--dimensional models for experimental validation of the numerical 

results. 
Because curvature effects highly influence the flow phenomena occurring in 

symmetrical bifurcations and due to its rather simple geometry, steady and 

unsteady flow in a 90-degree curved tube are analyzed under physiological flow 

conditions. From this study it appears that axial flow is highly determined by 

secondary flow, which on its turn is induced by centrifugal forces. Besides, the 

influence of the frequency parameter, the flow wave form and the steady flow 
component on axial and secondary flow is investigated. 

From a detailed analysis of steady flow in the carotid artery bifurcation it is 

concluded that curvature effects indeed play an important role in the daughter 

branches of this bifurcation. However, also the proximal widening and distal 

tapering of the carotid sinus, highly affect axial and secondary flow. From a 

parameter study on the influence of the Reynolds number, the flow division ratio 

and the bifurcation angle, it is observed that this influence on the flow phenomena 



X 

occurring is relatively small. 

From the present study it is concluded that the finite element method in 

combination with supercomputers can be used for detailed analysis of fluid flow in 

complex three-dimensional geometries. Incorporation of non-Newtonian behavior of 

blood and flexibility of the arterial wall in the numerical model will complete such 

an analysis. 
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1.1 

1 Introduction 

1.1 Atherosclerotic disease of the carotid artery bifurcation 

Atherosclerosis is a complicated process associated with such processes as intimal 

thickening, accumulation of lipids and calcium in the extracellular matrix, and 

smooth muscle cell proliferation. These changes often lead to intraluminal processes 

narrowing the diseased artery and eventually leading to total occlusion of the vessel. 

At an early stage of the disease atherosclerotic plaque formation may induce 

thrombus formation, i.e. fragments of the thrombus break off and obstruct smaller 

arteries downstream. 

A variety of theories has been proposed regarding the cause of 

atherosclerosis. In some of these theories hemodynamic factors play an important 

role. A possible role of hemodynamics in the process of atherosclerosis is suggested 

by its predilection to bends and bifurcations, since flow phenomena exhibit unique 

characteristics in these areas. For many years it was thought that endothelial injury 

caused by high shear stresses was responsible for atherogenesis (Fry, 1969; Lutz et 

al., 1977). However, more recent studies confirm Caro's observations (Caro et al., 

1971) that atherosclerotic lesions develop more frequent in regions with low shear 

stresses and with recirculation than in regions with high shear stresses and 

unidirectional flow (Zarins et al., 1983; Ku et al., 1985). Therefore, detailed insight 

into the flow phenomena occurring in bends and bifurcations possibly contributes to 

a better understanding of the role of hemodynamics in the process of atherosclerosis. 

For years in the clinic atherosclerotic disease has been diagnosed with the use 

of contrast angiography, an invasive approach. Because this method has a low but 

definite risk, it cannot be used for screening of asymptomatic patients (Mani and 

Eisenberg, 1978; Spencer and Reid, 1979) or to follow-up patients, for example, 

during medical treatment or after surgery. Therefore, more recently non-invasive 

detection methods have been developed. Generally, these methods are based upon 

the detection of flow disturbances, as induced by these lesions, using continuous 

wave or pulsed Doppler (van Merode et al., 1988). However, due to the complicated 

flow fields in bends and bifurcations, the preferential sites of atherosclerosis, it is 

often difficult to distinguish these flow disturbances from the flow phenomena 

normally occurring at these sites (Reneman et al., 1985). More detailed insight into 

these complicated flow fields and the influence of geometrical variations and low 

grade lesions on the flow patterns, is important in the development of methods to 
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diagnose atherosclerotic lesions at an early stage of the disease. 

A bifurcation often affected by atherosclerotic plaque formation is the carotid 

artery bifurcation. Atherosclerosis in this region is the major cause of transient 

ischemic attacks. Such attacks may result from a reduction in the blood flow due to 

narrowing of the arterial lumen, but are generally caused by emboli originating from 

ulcerating or high grade lesions. Bharadvaj et al. (1982) performed an experimental 

study on steady flow in the carotid artery bifurcation and found complex axial and 

secondary flow patterns. Olson (1971) concluded that the flow phenomena occurring 

in the daughter branches of a symmetrical bifurcation mainly originate from 

curvature effects. Therefore, insight into the flow phenomena occurring in curved 

tubes may contribute to a better understanding of the complex flow field in the 

carotid artery bifurcation. In this study a detailed numerical analysis is performed 

of steady and unsteady flow in a 90--degree curved tube and of steady flow in a 

three-dimensional model of the carotid artery bifurcation. 

1.2 Model simplifications 

The geometry of the carotid artery bifurcation is very complicated. Besides, its 

geometry is hard to define due to its predilection for atherosclerotic lesions, 

resulting in filling in of certain segments of the bifurcation at older age. The 

geometry used in the present study is based upon data of Balasubramanian (1979), 

who determined a standard geometry from over 100 angiograms (Balasubramanian 

later changed his name into Bharadvaj). To reduce the complexity of the in vivo 

situation, he modeled the main branch and both daughter branches as straight tubes 

with circular cross-sections and all branches were supposed to lie in one plane. All 

diameter values were averaged in a straight forward manner, except the dimensions 

of the carotid sinus for which only selective data were used. To evaluate the 

relevance of the simplifications performed by Balasubramanian (1979) and to 

validate his results for the bifurcation angle, the diameter of the main branch and 

the geometry of the carotid sinus, a cast study was carried out on the geometry of 7 

postmortem specimen. 

In vivo flow rate measurements reveal that the Reynolds number and the 

flow division ratio over the daughter branches of the carotid artery bifurcation vary 

considerably during a flow cycle. The flow rate at peak systole can be 3 to 4 times 

larger than the flow rate in the diastolic phase. According to Ku et al. (1985) a 

Reynolds number of 800 at peak systole and a mean Reynolds number of 300 are 
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typical conditions for a normal adult human carotid. The flow division ratio can 

vary between 55/45 (55% through the internal carotid artery) at peak flow rate and 

75/25 at minimal flow rate. In the present study only steady flow is dealt with. 

However, to gain some insight into the influence of these varying conditions during 

a flow cycle on the flow phenomena occurring, velocity calculations are performed at 

various Reynolds numbers and flow division ratios. 

At high shear rates blood is assumed to behave like a homogeneous 

Newtonian fluid. However, blood consists of red blood cells, white blood cells, 

platelets, proteins and chylomicrons suspended in a fluid called plasma. As a 

consequence, non-Newtonian behavior may be expected due to aligning of the blood 

cells in the flow direction at high shear rates and rouleaux formation at low shear 

rates. Liepsch and Moravec (1984) studied the difference in flow behavior of 

Newtonian and non-Newtonian fluids and observed larger velocity gradients in case 

Newtonian fluids were used. In the present study only pure Newtonian fluids are 

considered which might be debatable, especially in flow regions with low shear rates. 

However, at this moment numerical modeling of unsteady non-Newtonian fluid flow 

is very difficult to achieve. 

Liepsch and Moravec (1984) also studied the influence of flexible walls on the 

flow phenomena occurring. At high wall flexibility no reversed axial flow was 

observed. In spite of the fact that the wall of the carotid artery bifurcation has to be 

regarded as ( visco-) elastic, this effect will be neglected in the present study 

because, due to the occurring wave phenomena, velocity measurements and velocity 

calculations in distensible models are still very difficult to perform. 

It is well understood that the above simplifications may lead to flow patterns 

differing from those in the in vivo situation. However, a study performed by Ku et 

al. (1985) revealed a good agreement betweP..ll in vivo and in vitro velocity data of 

blood flow in the normal human carotid bifurcation. Therefore, it is believed that 

the results from this study supply more insight into the complicated flow field 

occurring in the carotid artery bifurcation. Besides, incorporation of flexible walls 

and non-Newtonian behavior of blood flow in the numerical model is only 

meaningful if the numerical results from a simplificated analysis are validated with 

experimental results. 

1.3 Methods used 

In the Atherosclerosis-project at the Eindhoven University of Technology, flow 
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patterns occurring in 2D- and 3D-models are studied using finite element and laser 

Doppler techniques. In an experimental and numerical study by van de Vosse et al. 

(1985) steady and pulsating flow over a two-dimensional step was analyzed. Rindt 

et al. (1987) and van de Vosse (1987) performed steady and unsteady velocity 

measurements and calculations of flow in a two-dimensional model of the carotid 

artery bifurcation. Three-dimensional calculations were performed by van de Vosse 

et al. (1989), who studied steady entrance flow in a 90-degree curved tube. These 

results were also validated with experimental data. A study by van de Vosse et al. 

(1987) and Rindt et al. (1988) indicated that three-dirnensional analysis of the flow fteld 

in the carotid artery bifurcation is necessary to better understand the in vivo flow 

situation. Especially in the region with reversed axial flow, large differences were 

observed between the axial velocities in a 2D-model and those in the plane of symmetry 

of a 3D-model. These differences are mainly caused by secondary flow, which is absent 

in the two-dimensional situation. Also axial velocity plateaus downstream in the carotid 

sinus near the non-divider wall, as found in the experiments of Bharadvaj et al. (1982) 

and Rindt et al. (1988), are absent in a 2D-model. Therefore, in the present study a 

finite element approximation of steady flow in a rigid 3D-model of the carotid 

artery bifurcation is presented. The numerical results are compared with those 

obtained from laser Doppler velocity measurements. For better understanding of the 

secondary flow patterns and due to its geometrical simplicity, first fluid flow in a 

90-degree bend is studied. 

For the construction of an approximate solution several numerical methods 

are available, of which the finite difference method (Roache, 1972; Peyret and 

Taylor, 1982) and the finite element method (Girault and Raviart, 1979; Cuvelier et 

al., 1986; van de Vosse et al., 1986) are the most important ones. An advantage of 

the finite element method over the finite difference method is its flexibility with 

regard to mesh refinement and geometry description. Therefore, application of the 

finite element method to flow problems in complex 3D--geometries with high 

velocity gradients is assumed to be more appropriate for the space discretization 

than the finite difference method. Due to the large system of equations resulting 

from a three-dimensional analysis, special attention has to be paid to the problem 

of solving large systems of equations efficiently. 

To validate the numerical results accurate measurements of both axial and 

secondary flow are required. To achieve this goal, non-contact measuring 

techniques are preferred over contact measuring techniques, like hot-wire 

anemometry. For in vivo measurements of blood flow velocities multi-gate pulsed 
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Doppler systems can be used (Reneman et al., 1985 and 1986). In this method 

traversing of the measuring volume occurs electronically. A disadvantage of this 

method is its limited resolution because of the relatively large measuring volume. A 

measuring technique which does not have this disadvantage is laser Doppler 

anemometry (Drain, 1981 ). Detailed information of the flow field can be achieved 

due to the small measuring volume, which can be 1000 times smaller as for pulsed 

Doppler systems. In this method, however, accurate positioning techniques are 

required for traversing of the measuring volume (Corver et al., 1985; Bovendeerd et 

al., 1987). 

1.4 Outline of the study 

In chapter 2 a survey is given of the data reported in literature concerning the 

geometry of the carotid artery bifurcation. Also the results of a cast study 

performed on the geometry of 7 postmortem specimen are presented, and the results 

of this study are compared with the dimensions obtained by other investigators. 

In chapter 3 a short description is given of the numerical method employed 

for the analysis of the fluid flow problems presented in this study. Galerkin's finite 

element method is used for the spatial discretization of the momentum and 

continuity equations. After substitution of the constitutive relation for Newtonian 

fluids this results in a non-linear set of equations, which is linearized by a 
Newton-Raphson iteration scheme. Application of the penalty function approach 

results in a set of equations with only unknowns for the velocity. For the temporal 

discretization of the local time derivative in the momentum equation, a finite 

difference time integration scheme is used. For division of the carotid artery 

bifurcation into 3D-elements, a special purpose mesh generator was developed. Also 
a short description is given of the finite element package used. Finally, at the end of 

this chapter, some test calculations are presented. 

As mentioned before, Olson (1971) concluded that the flow phenomena 

occurring in the daughter branches of a symmetrical bifurcation mainly originate 

from curvature effects. In chapter 4 the experimental method, which was used for 

the steady and unsteady velocity measurements in a 9o-degree curved tube and for 
the steady flow experiments in a 3D-model of the carotid artery bifurcation, is 

described. The laser Doppler measuring technique, the experimental set-up and the 

measuring fluids used are briefly described. Also, the error sources are dealt with 

and error estimates are given for the axial and secondary velocity components. 
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Chapter 5 is dealing with the results of velocity measurements and 

calculations in the case of steady and unsteady flow through a 90-degree curved 

tube. First, the numerical results for steady flow at a physiological Reynolds 

number are shown and compared with the experimental results of Bovendeerd et al. 

(1987). Next, the same comparison between experimental and numerical results is 

made for a sinusoidally varying flow rate. Finally, the influences of the frequency 

parameter, the steady flow component and the wave form on the axial and 

secondary velocity fields are described. 

In chapter 6 steady flow in a 3D-model of the carotid artery bifurcation is 

discussed. The results of a finite element calculation are validated with data 

obtained from laser Doppler velocity measurements, carried out at a physiological 

Reynolds number and flow division ratio. Also the influences of a varying Reynolds 

number and flow division ratio and of a smaller bifurcation angle on the axial and 

secondary velocity fields are presented. 

Finally, in chapter 7 some conclusions are given and topics for later research 

are discussed. 



2.1 

2 Geometry of the carotid artery bifurcation 

2.1 Introduction 

Several investigators have studied the geometry of the carotid artery bifurcation, 

but normal data of healthy subjects are difficult to obtain because this bifurcation is 

the site of preference of atherosclerotic lesions. The most detailed study has been 

carried out by Balasubramanian (1979), who determined angiographically a mean 

geometry of the carotid artery bifurcation. Because of some disagreements between 

his data and those obtained by other investigators, using the same or different 

techniques, a cast study on the geometry of this bifurcation was performed. In 

section 2.2 a survey is given of the results reported in literature, and a comparison is 

made between the data obtained by Balasubramanian (1979) and other 

investigators. In section 2.3 the results of the cast study are presented and compared 
with the data available in literature. 

2.2 Survey of the literature 

The carotid artery bifurcation consists of a main branch, the common carotid 
artery, which asymmetrically divides into two daughter branches, the internal and 

external carotid artery. The internal carotid artery is characterized by a widening in 

its most proximal part, the carotid sinus or bulb. Normally, the common carotid 

artery is almost straight and has a constant diameter over its total length of about 

10 em. In most cases the common carotid artery has no bifurcating branches. The 

left common carotid artery branches off directly from the aortic arch, whereas the 

right one originates from the anonymous artery, also a side branch of the aortic 

arch. Most of the internal carotid arteries are almost straight, some of them are 

slightly curved and a few show highly curved segments 2-8 em after their origin. 

The external carotid artery has many bifurcating branches the first one of which, 
the superior thyroid artery, originates after 0.5-2 em. The internal carotid artery 

supplies the brains with blood and the external carotid artery the extracranial facial 

structures. 

In literature several techniques have been presented to measure characteristic 

dimensions of the carotid artery bifurcation. Arndt et al. (1968) and Olson (1974) 

used pulsed echo techniques to measure diastolic and systolic diameters of the 

common carotid artery. Keller et al. (1976) used a multi-gate pulsed Doppler 
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system to determine the diameter of the main branch, whereas Reneman et al. 
(1985) used this technique to measure the geometry of the bulb and the relative 

diameter changes of the arteries during the cardiac cycle in young and old presumed 

healthy subjects. In the latter study also the angle between the internal and 

common carotid artery was measured with the use of a B-mode imager. Zbornikova 

and Lassvik (1986) used an ultrasonic duplex scanning technique to measure the 

diameter of the common carotid artery, the internal carotid artery distal to the bulb 

and the external carotid artery as a function of age. A second commonly used 
method makes use of angiograms. Balasubramanian (1979) studied in this way 57 

angio's and his results will later be discussed in more detail. Brown and Johnston 

(1982) analyzed angiograms of 28 presumed healthy carotid artery bifurcations to 

determine the anteroposterior and lateral diameters of the common and the internal 
carotid artery. Harrison and Marshall (1983) used this technique to determine the 

bifurcation angle between the internal and common carotid artery and between the 

external and common carotid artery. Greenfield et al. (1964) measured diastolic and 

systolic diameters with a calibrated clamp during surgery. Of the 13 patients 11 

received general anesthesia whereas 2 patients were only locally anesthetized. 
In vitro techniques have also been used to determine the geometry of the 

carotid artery bifurcation. For example, Peterson et al. (1960) excised 123 

bifurcations and, before the tissues hardened, the lumen contours were assessed by 

filling the segment with warm paraffin. They measured the cross-sectional area of 

the lumen proximal in the internal and external carotid arteries and just before the 
bifurcation. The bifurcation angle was also determined. In a study by Zarins et al. 

(1983) and Motomiya and Karino {1984) the tissues were fixed soon after removal 

from the body. From these postmortem specimen the diameter and the bifurcation 

angle were detected. 

The above studies indicate that a variety of techniques has been used to 

study the geometry of the carotid artery bifurcation. However, the results of these 

studies must be interpreted with care. From the study of Arndt et al. (1968} it is 

not clear whether internal or external diameters were measured. Greenfield et al. 

(1964) measured external diameters. In other studies the measuring positions are 

not always exactly given and definitions of bifurcation angles are sometimes vague 

or totally missing. Besides, Altura and Altura (1975} showed that the properties of 

the tissue change under influence of anesthetics which might affect the geometry of 

the artery. Gow and Hadfield (1979} studied the elasticity of pre- and postmortem 

specimen and observed that the diameter of the femoral artery of dogs increased 
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with 10% after removal from the body. These findings indicate that one in principal 

has to rely on in vivo measurements. However, the information obtained under these 

circumstances is limited and more detailed information is required for adequate 

description of the geometry of the carotid artery bifurcation. Therefore, in vitro 

measurements cannot be avoided. 

In table 2.1 the results are summarized. If the dimensions reported in 
literature are given as a function of age, the results presented refer to subjects with 

an age of about 50 years because most of the data available in literature is derived 

from subjects in this age category. If diastolic and systolic diameters are given, the 

diastolic diameters are presented. The positions indicated in the table do not always 

coincide with the real measuring positions but the differences are presumed to be 

smalL The dimensions are relative to the diameter of the common carotid artery 

with the exception of this diameter itself which is given in mm. The symbols C, I 

and E refer to common, internal and external carotid artery, respectively. The 

figures refer to the distances of the levels to the flow divider and are given in 

diameters of the main branch. The bifurcation angle is presented by AlE and the 

angle between the common carotid artery and both daughter branches by AI and 

AE, respectively. Also the number of subjects Nand the mean age of the subjects, if 

reported, are presented. 

I c i IO IO, I2 I3 I4 EO 

l1ene!lm\ et al. 6.4 1.08 1.111 0.97 

Zbornikcva et al. 7.5 0.76 0.63 

lli:'CMl et al. 6. 7 1.07 0.64 28 

Harrison et al. 7.6 0.67 '23.0 36.4 102 

Peterson et al. 5.8 0.78 0.62 39.0 42 50 

zarins et al. 6.1 0.98 1.02 0.57 0.66 46.0 12 

M::Jtaldya et al. 5.9 0.88 0.64 30.0 1 

Azn:ltetal. 7.6 9 28 

Olson 7.6 2 

Keller et al. 5.9 1 

Greenfield et al. a.6 13 47 

I Balasubramanian ! ' a.o 11.04 
conf.int. :0.21 0.14 

Table 2.1: Dimensions of the carotid artery bifurcation. The dimensions are 
relative to the diameter of the common carotid artery with the exception of this 
diameter itself which is given in mm. 
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As mentioned before, the most detailed study of the geometry of the carotid 

artery bifurcation was carried out by Balasubramanian (1979). He determined 

angiographically a mean geometry of the carotid artery bifurcation. To reduce the 

complexity of the in vivo situation he modeled the main branch and both daughter 
branches as straight tubes with circular cross-sections which are all positioned in 
one plane. Balasubrarnanian studied 57 angio's of 22 adults between the age of 34 

and 77. Some of the carotid artery bifurcations were already affected by 

atherosclerotic lesions. The angio's were divided into one group with and one group 

without a clearly visible bulb, a definition of which is missing. Because 
Balasubrarnanian was interested in the geometry of the carotid artery bifurcation of 

young healthy adults and because it appeared from the same study that 92% of the 

children between the age of 11 and 18 years had a clearly visible bulb, for 
determination of the geometry of the carotid sinus only the angio's of the adults 
were used with such a clearly visible bulb. For all other dimensions the entire series 

of angiograms was used. According to Balasubramanian it was difficult to locate an 
exact centerline of each vessel because of curvatures of the arteries. These 

centerlines, however, are needed for the determination of the angles between the 

main branch and the daughter branches. Besides, for correct determination of these 
angles two angiograms are needed, of which the X-ray directions are perpendicular 

to each other. In practice this can be very difficult to achieve. Because of scaling 
problems all the dimensions are given relative to the diameter of the common 

carotid artery. This diameter was estimated on the basis of data derived from 
literature (Greenfield et al., 1964; Angell-James and Lumley, 1974; Arndt et al., 

1968; Olson, 1974). In table 2.1 his results are summarized at positions close to the 

real measuring positions. The number of samples varied between 11 and 53 and the 

age of the subjects between 34 and 77 years. Also the confidence intervals of the 

data obtained by Balasubramanian are given. 

The diameter of the common carotid artery was estimated to be 8 mm by 

Balasubrarnanian. From the other studies, however, it is concluded that this 

diameter is probably smaller. Only Greenfield et al. (1964) measured a diameter 

larger than 8 mm, but in their study external diameters were obtained, 

Balasubrarnanian's determination of the geometry of the carotid sinus is debatable 
because it excludes the possibility of an underdeveloped bulb for young adults. The 

geometry of the bulb found by Balasubrarnanian has a maximal diameter at about 

one diameter downstream of the flow divider, which is about 7% larger than the 
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diameter at the entrance of the bulb. Reneman et al. (1985) and Zarins et al. {1983) 

also found the largest diameter downstream in the internal carotid artery, but the 
differences with the entrance diameter were smaller in their studies on subjects over 

50 years of age. Similar results were obtained by Reneman et al. (1985) in 11 

subjects with an age between 20 and 30 years. A bifurcation angle of the daughter 

branches of 50°, as found by Balasubramanian, is somewhat large. Both Harrison 

and Marshall (1983) and Peterson et al. (1960) found a mean bifurcation angle 

which was smaller than 40°. Also the angle of the internal carotid artery with the 

common carotid artery, as found by Reneman et al. (1985), is smaller as the one 

found by Balasubramanian. From the confidence intervals mentioned in literature it 

appears that, especially for the angles and the dimensions of the carotid sinus, large 

inter-individual variabilities occur. In this light, it is debatable to present a mean 

geometry of the carotid artery bifurcation because then individual characteristics of 

this geometry are possibly averaged out. 

2.3 Cast studv 

To obtain insight into the inter-individual variabilities in the geometry of the 

carotid artery bifurcation and to evaluate the simplifications assumed by 

Balasubramanian, a cast study was performed. At the University of Limburg 

(Department of anatomy; Arno Lataster), 7 casts of the carotid artery bifurcation 

were prepared of subjects varying in age from 37 to 71 years. None of them died as a 

consequence of atherosclerotic disease of the carotid artery bifurcation. For 

preparation of the casts the cerebral vascular system was rinsed with a physiological 

salt solution and filled with Technovit. After termination of the hardening process 

both carotid artery bifurcations were removed from the body and the connective 

tissue was stripped off. In figure 2.2 two of these bifurcations are presented. For 

both bifurcations the internal carotid artery is presented by the upper daughter 

branch. Due to problems with the casting process the daughter branches of the left 

bifurcation are somewhat short. From the bifurcation at the right panel it is 

observed that the external carotid artery has many bifurcating branches soon after 

its origin, whereas the internal carotid artery shows no bifurcating branches and has 

a curved geometry. The bulb diameter relative to the diameter of the main branch 

and the bifurcation angle of the bifurcation shown left are much larger than those of 

the bifurcation shown right. In this particular case the internal carotid artery at the 

right panel has almost a constant diameter. 
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Figure 2.2: Two casts of the carotid artery bifurcation. 

The mean diameter of the main branch of all casts was determined by 
averaging its diameter at three positions in two perpendicular directions, the latter 

to exclude the influence of elliptical shaped cross-sections. This diameter was used 

as the dimension to which all distances and diameters are related. Then, the axis of 

each branch was determined as pointed out in figure 2.3. The entrances of both 
daughter branches were fixed by points 1 and 2, defined as the points at the apex 

Figure 2.3: Schematical presentation of a cast of the carotid artery bifurcation. 

where the divider wall is almost parallel to the axes of the side branches, and the 

cross-sections C3.5, C2.5, 10, 11, EO and El were determined. The axes of the 
arteries were defined as the lines through the midpoints of these cross-sections. The 

diameter of the internal carotid artery was measured at 7 positions (10, 10.5, Il, 

11.5, 12, 13, 14) and of the external carotid artery at 3 positions (EO, El, E2). Also 
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the angles of the daughter branches with the main branch were determined. Due to 

problems with the casting procedure or suspected deposition of atherosclerotic 

lesions, 1 internal carotid artery and 2 external carotid arteries could not be used for 

determination of their geometry. 
In table 2.4 the results as obtained by these measurements, together with the 

95%-confidence intervals for the mean dimensions based on a student-t 

distribution, are shown. The main differences between the data obtained by 

Balasubramanian (1979) and those from the casts are observed in the angles 

between the main branch and both daughter branches, which are essentially smaller 

for the casts. The angle between the internal and common carotid artery found in 

the present study is in good agreement with the angle obtained by Reneman et al. 

(1985). The large confidence intervals for the angles point to large inter-individual 

variabilities. A reason for the differences between the angles obtained by 

Balasubramanian and those from the casts is that Balasubramanian's definition of 

these angles possibly deviates from the definition used in the present study. Besides, 

localization of the axis of a vessel may be very difficult from a pair of angio's. Also 

the small population, changes in the geometry during the casting process and the 

large variation in age of the subjects used in the present study and the study of 

Balasubramanian, may contribute to these discrepancies. 

c IO i I0.5 Il Il.S !2 I3 I4 EOiEl E2 AI AE AIE 

cast l i 6.60j l.l2 1.osjo.a1lo.7o o. 75 0.67 0.66 
117 

I cast 2 6.10 

0.9210.92 0.94 cast 3 4.55 0.88 0.88 0.77 0. 77 0.73 0.73 o.n: o 16 16 
I 

cast 4 4.95 1.20 1.13 1.09 0.98 0.80:0.75 0.70 0.55 0.61 0.61 2 13 15 

cast 5 4.80 1.25 1.25 1.25 l.U 1.11 0. 74 0.57 0.66 
0.531 

17 7.5 24.5 

cast 6 5.85 1.48 1.28 1.00 ; 0.69 0.59' 20 25 45 

cast 7 14.95:0.84 0.92 0.94 o.ss/ o.so,o. 74 o. 74: o.ao o. 70! 0,66 7 12 l9 

I 
i 

mean .15.40 1.13 1.09 l.OO 0.94 0.87 o. 7310.69 •·+tM!"+·';n.o j 
conf.int. 0.62 ,0.21 0.13 0.13' 0.18 o.l4 ,o.04/o.os o.og:o.oa o.12l 7.4

1 
6.4

1

12.21 

Table 2.4: Dimensions of the carotid artery bifurcation obtained from the casts. 
The dimensions are relative to the diameter of the common carotid artery with 
the exception of this diameter itself which is given in mm. 

Another remarkable difference is the absence of a clearly visible bulb in the 

casts. For the casts the largest diameter is found at the entrance of the internal 
carotid artery, whereas in the study of Balasubramanian the largest diameter was 
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found at about one diameter from the entrance. As mentioned before, 

Balasubramanian only used angio's with a clearly visible bulb to determine the 

geometry of it and, therefore, excludes the possibility of the existence of an 

underdeveloped carotid sinus. Another possible reason for this difference is the age 

of some of the specimen used in the cast study. In the older ones intimal thickening 

may have been present. The large confidence intervals for the dimensions in the 

bulb region are possibly caused by this effect. 

A mean diameter of the common carotid artery of 5.4 mm, as found in the 

cast study, is smaller than the diameter obtained by Balasubramanian (1979), but 

in rather good agreement with the dimensions found by other investigators. 

Determination of this diameter in two perpendicular directions contributes to the 

rather small value because of the elliptical shaped cross-sections. The mean 

diameter of the common carotid artery in the bifurcation plane was found to be 5. 7 

mm, whereas this diameter in the other direction was found to be 5.1 mm. Shrinking 

of the specimen during casting is not likely, because casting either does not affect 

the diameter or slightly increases it. Therefore, it may be concluded that the 

diameter of the common carotid artery is probably smaller than presumed by 

Balasubramanian. 

Balasubramanian modeled the main branch and both daughter branches as 

straight tubes with circular cross-sections which are all positioned in one plane. 

From the casts it was observed that most of the arteries were more or less curved. 

In some cases modeling of the arteries as straight tubes may be debatable. For the 

small population used in the present study, it was indeed observed that both the 

daughter branches and the main branch were all more or less positioned in one 

plane. As mentioned before, in the common carotid artery the mean cross-sectional 

diameters in two perpendicular directions differed about 10%. The same value was 

found for the diameters in the internal carotid artery. 

It is concluded that the geometry as determined by Balasubramanian (1979) 

seems to be a reasonable description of the in vivo situation with the exception of 

the diameter of the common carotid artery and the angles between the daughter 

branches and the main branch. Besides, it is concluded that large inter-individual 

variabilities occur in the geometry of the carotid artery bifurcation and that, by 

presenting a mean geometry, individual characteristics of this geometry are possibly 

averaged out. Therefore, studies dealing with the influence of geometry variations, 

like a smaller bifurcation angle, a smaller diameter of the common carotid artery or 

a less developed bulb, on the total flow field are indispensable. 
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3 Numerical method for the solution of the unsteady 
N avier-Stokes equation 

3.1 Introduction 

In this chapter the methods, as used for discretization of the unsteady 

Navier-Stokes and continuity equations, are described. Also, the finite element 

package and the computers employed to solve the fhtid problems presented in this 

study are discussed. Finally, the results of some test calculations are shown. 
In section 3.2 the governing equations are presented as well as the boundary 

and initial conditions needed to solve the velocity and the pressure from the 

Navier-Stokes and continuity equations. In the next section the method of the 
weighted residuals is discussed in combination with Galerkin's finite element 

method, used for the spatial discretization of the governing equations (Cuvelier et 

al., 1986). This results in a set of ordinary differential equations with velocity and 

pressure unknowns. To eliminate the pressure unknowns from the discretized 

Navier-Stokes equation, a penalized formulation is employed for the continuity 

equation (Cuvelier et al., 1986), described in section 3.4. Next, the local time 

derivative in the Navier-Stokes equation is approximated by a finite difference 

method. In section 3.5 the stability regions of the 0-method (Cuvelier et al., 1986) 

and the explicit Adams-Bashforth time integration scheme (Canuto et al., 1988) 

and their implications for the discretized Navier-Stokes equation are discussed. For 

numerical simulation of fluid flow in three-dimensional geometries with the finite 

element method, these geometries have to be divided into elements. In section 3.6 

the 27-noded Crouzeix-Raviart element (Fortin, 1981 ), as used in the present 

study, is discussed. In section 3.7 a special purpose mesh generator employed for the 

division of the carotid artery bifurcation into 27-noded bricks is presented. For the 

construction of an approximate solution of the Navier-Stokes and continuity 

equations, the finite element package Sepran was used (Segal, 1984). In section 3.8 

some features of this package are presented which facilitate the use of 

supercomputers. Earlier performed calculations of steady flow in a 90-degree curved 

tube (van de Vosse, 1989) revealed that large computing times and input/output 

times were needed to solve the system of equations, resulting from a Galerkin finite 

element approach. Therefore, super and minisupercomputers are needed which are 

outlined in section 3.9. Finally, in section 3.10 some numerical test calculations are 

presented. 
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3.2 Governing eguations 

Flow of an incompressible and isothermal fluid is described by the momentum and 

continuity equations. In dimensionless form these equations read: 

.... ... ... ... .... 1 .. 
Sr u + u · V u - V • u- = 0 .. .. 
V·u = 0 

(3.1a) 

(3.lb) 

with ~ the velocity vector, u the Cauchy stress tensor, 1 the body force per unit 

mass, V the gradient vector operator and · the local time derivative. The tensor V ~ 
is the s~lled velocity gradient tensor. Sr denotes the Strouhal number defined as 

Sr wL/U with w a characteristic angular frequency, L a characteristic length and 

U a characteristic velocity. In this study only Newtonian fluids will be considered 

for which the Cauchy stress tensor is coupled at the velocity field as: 

1 .... c .... 
u =-pi +Re((V u) + (V u)) (3.lc) 

...... c ~ ... 
with p the pressure, I the unit tensor and (V u) the conjugate of tensor (v u). Re 

denotes the Reynolds number and is defined as Re = UL/v with 11 the kinematic 

viscosity. To solve the velocity and the pressure from the momentum and continuity 

equations for t>to in a domain n with boundary r, boundary and initial conditions 

are required. It can be shown that for the momentum and continuity equations in a 

D-dimensional space (D=2,3), D boundary conditions are needed for the velocity or 

stress in D independent directions (Cuvelier et al., 1986). In their general form these 

boundary conditions read: 

.... ... ... ... 
u·n or (u·n)·n=un prescribed l 

on r for t>t0 
prescribed 

(3.2a) 

.. .. 
with n the normal unit vector and td (d=l,D-1) the tangential unit vector on r. 
When for an incompressible fluid on part of the boundary the normal stress un is 

prescribed, no extra boundary conditions for the pressure are necessary 

(Ladyzhenskaya, 1969). In that case the pressure is fixed implicitly by the normal 

stress component. As initial condition it is sufficient to prescribe the velocity field 
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at t ==to: 

.. 
u prescribed on n for t ::::: to (3.2b) 

In many application fields the dimensionless momentum equation {eq. 3.1a) 

combined with the constitutive relation for Newtonian fluids (eq. 3.1c) is written in 

the form: 

.; .. ~.. 1 .. .. .. .. 
Sr u + u • v u - ReA u + V p - f == 0 (3.3) 

with A the Laplacian operator. In this equation, which is often referred to as the 

Navier-Stokes equation, some terms are dropped by using the incompressibility 

requirement (eq. 3.lb). If this equation is used in Galerkin's finite element method 

for the construction of an approximate solution, instead of the equations 3.1a and 

3.1c, differences occur in the resulting system of equations. As the former 

formulation is used in the finite element package Sepran (Segal, 1984), in the 

present study discretization of the momentum equation is preferred. In the sequel, 

the momentum equation will also be referred to as the Navier-Stokes equation. 

3.3 Spatial discretization 

To obtain an approximation of the velocity and the pressure field within a domain 

n, the method of the weighted residuals is used. Here a synopsis will be given 

without paying attention to the incorporation of the boundary conditions. For a 

more precise description the reader is referred to Cuvelier at al. (1986). In this 

method the residuals of the momentum and continuity equations are required to be .. 
orthogonal to all vector functions w and scalar functions v, respectively, lying in 

proper vector spaces W and V. Integration over the domain considered yields: 

A 

. ... .... .. ... ... ... ... 
w·[Sr u + u·V u- V·u- f]dO = 0 

.. 
VwEW (3.4a) 

r .... fi v[V ·u]dO = 0 Vv E V (3.4b) 
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.. 
All components of the vector function w and their partial derivatives in space as 

well as the scalar function v must be square integratable over the domain n. Using 

integration by parts and Gauss' theorem, the first equation is transformed to: 

~ ... ... ... 
with t the stress vector defined as t "" u·n, n being the outward normal unit vector 

on boundary r. Equations 3.5 and 3.4b are suitable for discretization with the finite 

element method. In this method the region n is divided into elements. Every 

element consists of a number of nodal points for the velocity and the pressure and 
... 

the unknowns u and p are supposed to be a linear combination of the values of these 

unknowns in the nodal points: 

... .. N ..... 
u(x,t) "".!: 9i(x) ui(t) 

I=l 
(3.6a) 

.. M .. 
p(x,t) =- E 1/J.(x) p.(t) 

i=l 1 I 
(3.6b) 

with N the total number of nodal points for the velocity and M the total number of 

nodal points for the pressure. The functions £Pi and 1/Ji are the so-called basis 

functions for the velocity and the pressure in nodal point i, respectively. These 

functions are fully determined by the position vector ~. The symbols ~i and Pi 

present the velocity vector and the pressure in nodal point i, respectively, and are 

only functions of time. The velocity and pressure fields in the domain under 

consideration are, therefore, completely determined by the basis functions and the 

nodal point values. To solve the system of equations also assumptions must be made .. 
for the weight functions w and v. To this end finite dimensional subspaces Wh c W .. 
and V h c V are constructed and the equations 3.4b and 3.5 should be true for Wb E 

wh and Vb E vh. Within the Galerkin method the basis functions for the velocity 

and the pressure are used to define these subspaces. In other words W h is spanned 

by the set {£Pi, i=l,N} and Vh is spanned by the set {¢h i=l,M}. Therefore, the .. 
arbitrary weight functions Wh and Vh can be written as: 
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(3.7a) 

(3.7b) 

Substitution of the equations 3.6 and 3. 7 into the equations 3.5 and 3.4b leads to: 

(3.8a) 

(3.8b) 

The requirement that these equations must hold for all admissable vector functions 
... 
Wh and scalar functions Vh, substitution of the constitutive relation for Newtonian 

fluids (eq. 3.1c) and presentation in a Cartesian coordinate system leads to a matrix 

equation. With a gradient operator, a velocity and a pressure column defined as: 

and I being aD-dimensional unit matrix and DN being DxN this matrix equation 

reads: 

M 0 + [§_ + _ti(~)J~ + ~_?~ F + B 

LU 0 

with M the mass matrix (DNxDN): 

Mij = srJ rp. 'P· I d!1 
- 1 J-

!1 

i=l,N;j=l,N 

(3.9a) 

(3.9b) 

(3.10a) 
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~the diffusion matrix (DNxDN): 

i=l,N;j==l,N {3.10b) 

~(l!) the convection matrix (DNxDN): 

i==l,N;j==l,N (3.10c) 

1. the divergence matrix (MxDN): 

i=l,N;j=l,M (3.10d) 

~the body force column (DNxl): 

i==l,N (3.10e) 

and~ the boundary stress column (DNxl): 

i=l,N (3.10f) 

In this presentation Mij, ~ij and N(lJ)ij are square matrices and (1. T)ij, ~j and ~j 

are column matrices with dimensions DxD and Dxl, respectively, representing a 

dimension expansion (D:;;:2,3). For example, Mkl corresponds to elements in the 

system matrix ranging from row (k-l)D+l to row (k-l)D+D and from column 

(1-l)D+l to (1-l)D+D. 
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3.4 Penalty function method 

The set of equations resulting from Galerkin's finite element method (eq. 3.9) has a 

special character due to the absence of the pressure unknowns in the discretized 

continuity equation. For the linear case this type of problem is a so-called 

saddle-point problem, for which iterative solution methods are hard to find. Most 

iterative algorithms in literature are based upon a variant of the Uzawa scheme 

(Fortin and Glowinski, 1983). A disadvantage of these algorithms is their slow 

convergence behavior. If a direct method is used, the absence of the pressure 

unknowns in the discretized continuity equation may cause zeros on the main 

diagonal, unless a suitable numbering is chosen. The search for such a suitable 

numbering is quite complicated and not easy to program. If zeros on the main 
diagonal are present and a direct solving technique is applied partial pivoting is 

necessary. Partial pivoting procedures, however, are very time and memory 

consuming and should be avoided if possible. Therefore, the penalty function 

method is applied which has been described in detail by Cuvelier et al. (1986). In 

short, in this method the continuity equation is replaced by: 

.. .. 
V·u = -~:p (3.11) 

with c a very small parameter. If the right hand side cp is small enough within the 
domain n then the incompressibility of the fluid will be sufficiently approximated. 

It can be shown that for both the Stokes and N a vier-Stokes equations, the solution 
of the penalty function approach converges to the solution of the unperturbed 

system for small values of the parameter c (Pelissier, 1975; Temam, 1977). In the 

same way as the unperturbed continuity equation, eq. 3.11 can be discretized by 
Galerkin's finite element method, which leads to: 

(3.12) 

with M_p the pressure matrix (MxM): 

i=l,M;j=l,M (3.13) 
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Because of the special structure of the basis functions for the pressure in the 

element used, the inverse of the pressure matrix is easily determined which leads to 

an explicit equation for the pressure unknowns. Substitution of this relation into the 

discretized Navier-Stokes equation (eq. 3.9a) leads to: 

(3.14) 

which contains only unknowns for the velocity. Beside that for this system of 

equations the number of unknowns is smaller than for the original system, for direct 

solving techniques no partial pivoting is needed to solve the velocity unknowns from 

eq. 3.14. A disadvantage of the penalty function approach is the choice of the value 

of the penalty parameter f. The matrix I7l\.t;1L. is singular due to the singularity of 

L_. Therefore, for too small values of e the total system matrix becomes singular, 

whereas too large values of this parameter lead to an inadmissable compressibility of 

the fluid. For the problems solved in this study the value of e was chosen to be 
e=l0-5, which leads to values of ep (eq. 3.11) of 0(10-5) in the dimensionless 

formulation. Due to the bad condition of the system matrix of eq. 3.14, iterative 

methods are not suitable for solving the velocity unknowns from the system of 

equations resulting from a penalty function approach. 

From the equations 3.10 and 3.13 it is easily verified that the matrices M, .S. 
and L.TM;1L. are symmetric. The convection matrix N, however, is asymmetric due 

to the discretized form of the velocity gradient tensor in eq 3.10c. Therefore, 

symmetric solvers like LDLT- and GOT-decomposition of the system matrix, are 

not suitable here, and one is forced to use an asymmetric LU-factorization 

technique (Cuvelier et al., 1986). 

3.5 Time integration 

3.5.1 Finite difference schemes 

To solve the velocity unknowns from eq. 3.14, the local time derivative is 

approximated by a finite difference method. Consider a set of ordinary differential 

equations resulting from the discretization of a parabolic differential equation: 

u Au+ f -- - (3.15) 
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A commonly used finite difference scheme is the 8--method (Cuvelier et al., 1986): 

n+1 un u -- -
LSt = (!!_~ + !)n+O 

= O(Aun+l + fn+1) + (1-0)(Aun + fn) -- ~ -- ""' 
(3.16) 

in which ~n is an abbreviation for ~(n~t) with ~t the time step. The parameter (} 

varies between 0~0~1. For 0=1 this scheme reduces to the Euler-implicit scheme 

and for 0=0 to the Euler-explicit scheme, both O(~t) accurate in time. For 0=0.5 

this scheme is known as the Crank-Nicolson scheme which is O(~t2) accurate in 

time. A great advantage of the Euler-explicit scheme over the other schemes is that 

no system of equations needs to be solved. Another explicit time integration scheme 

which is O(~t2) accurate in time is the so--ealled Adams-Bashforth scheme 

(Canuto et al., 1988): 

n+1 n u -u - -
LSt (3.17) 

This scheme is a two-step method because two solutions at previous time-steps are 

required, whereas the 8--method is a one-step method. Because a two-step method 

requires two initial solutions, in most cases the first time step a one-step method is 

applied. 

Beside the accuracy of a finite difference method, also the stability of the 

scheme has to be taken into ac~ount. If matrix A has only real coefficients 

independent of time, resulting from the discretization of a linear elliptic differential 

operator, and if A is not-defect, i.e. the number of independent eigenvectors of A is 
equal to the order of .A, then a numerical time integration scheme generally leads to 

a set of equations of the form (appendix A): 

(3.18) 

with G the amplification matrix and K some kind of error column. For stability of 

the time integration scheme according to the matrix method (Mitchell and Griffiths, 

1980), it is necessary that: 



3.10 

(3.19) 

with Po the spectral radius and 1-'olmax the modulus of the absolutely largest 
eigenvalue of the amplification matrix. From a stability analysis with the matrix 

method, it can be shown that for a set of equations as presented in eq. 3.15, the 

0-method is unconditionally stable for ~0.5, whereas for {k0.5 conditional stability 

occurs (Cuvelier et al., 1986}. The Adams-Bashforth method is only conditionally 

stable (Canuto et al., 1988). Figure 3.1a shows the stability regions for 0=0 and the 

Adams-Bashfortb method as function of ..\A At with ,\A the eigenvalues of matrix 

A. 
It is observed that the smallest stability region occurs for the explicit 

Adams-Bashforth method. If a conditionally stable method is used and the 
eigenvalues ,\A have a large negative real or large imaginary part, very small time 

steps have to be applied to ensure stability. Figure 3.lb gives a presentation of Po 
for real values of..\ A At for the 0-method ( 0=1,0.5,0) and for the Adams-Bashforth 
scheme. In spite of the fact that the Crank-Nicolson scheme is unconditionally 

stable, for large negative real values of ..\A At, Po tends to 1 which means that an 
undamped behavior of the error column may be expected. For the Euler-implicit 

time integration scheme, p0 tends to 0 for large negative real values of ..\A At. In 
many application fields a combination of these two methods is used. First, several 

Euler-implicit time steps are applied to damp numerical errors in the solution 
induced by the assumed initial condition. Second, the Crank-Nicolson scheme is 

applied to achieve a higher accuracy of the approximate solution. 

ImO,Alltl 

\e=o \ 

\ 
\AB 

\ 

Re(>..AMl 

-1 ReiXAL\tl -3 -2 -1 

(a) (b) 

Figure 3.1: Stability regions(///, a) and spectral radii (b) for the 0-method and 
the Adams--Bashforth integration scheme. 
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3.5.2 Application to the Navier-Stokes equation 

Using the 0--method to approximate the local time derivative in eq. 3.14 yields: 

(3.20) 

The non-linear convective term N(~n+O)~n+O is linearized by one step of a 

Newton-Raphson iteration scheme (Cuvelier et al., 1986): 

(3.21) 

with {(~) the Jacobian matrix of !f(~)~ (DNxDN) defined as: 

(3.22} 

Using this linearization technique and the equation: 

(3.23) 

leads to: 

[M}O~t + N(Un)]Un + -- -
~n+O + J!n+O (3.24) 

which is an Euler-implicit step from ~n to ~n+O. The solution ~n+l is calculated 

afterwards from extrapolation of ~n and ~n+O to ~n+l using eq. 3.23. Both 

schemes are in principal O(~t) accurate in time but a combination of these two 

methods, as described above, is similar to a Crank-Nicolson scheme which is 

O(~t2) accurate in time (van de Vosse, 1987). If a LU-decomposition is used to 

calculate ~n+ 0 from eq. 3.24, at every time-step a system of equations has to be 
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solved because the Jacobian matrix is a function of the solution itself. For 
three-dimensional flow problems LU-factorization of the system matrix can be very 

time consuming. When an explicit integration method is used for the convective 

term, the LU-factorization has to be carried out only once. Therefore, it may be 

useful to combine an explicit method for the convective term with an implicit 
method for the other terms. Applying the Adams-Bashforth method and the 

Crank-Nicolson scheme to eq. 3.14 leads to: 

[2Mf~t + ~ + ~.!?M~l!J"Yn+l/2 [2M/~t -~!i(l]n)]l}n + 

+!N(un-l)un-1 + Fn+l/2 + 8 n+l/2 
2- - - - -

(3.25) 

which is O(~t2) accurate in time. If an Euler-implicit scheme is used, it is 

sufficient to approximate the convective term with an Euler-explicit scheme 

because both methods are O(~t) accurate in time. In a previous section it was 

shown that for linear parabolic differential equations explicit methods are only 
conditionally stable. As for large Reynolds numbers the convective term becomes 

more important, it is reasonable to presume that the time step needed to solve eq. 

3.25 will be smaller than the time step needed to solve eq. 3.24. 

3.6 The element used 

To solve the Navier-Stokes equation within a domain n, the domain has to be 

divided into elements and assumptions have to be made about the basis functions 

for the velocity and the pressure. From the discretized Navier-Stokes and 

continuity equations it can easily be shown that the basis functions for the velocity 

must be piecewise continuously differentiable and continuous over the element 

boundaries. The basis functions for the pressure must be continuous in each 

element. A three-dimensional element satisfying these requirements is the 27-noded 
element presented in figure 3.2. 

Velocity unknowns are defined in all the nodal points of the element which 

means 81 velocity unknowns per element. In the reference element the basis 

functions related to each nodal point (eq. 3.6a) are triquadratic functions (Cuvelier 

et al., 1986). Pressure unknowns are only defined in the center of the element, which 

are the pressure itself and its three spatial derivatives. The basis functions in the 

reference element related to the pressure unknowns ( eq. 3.6b) are a constant and 
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three linear functions. Since these functions are zero outside the element under 

consideration, the pressure field varies discontinuously over the element boundaries. 

This type of element belongs to the group of the so--called Crouzeix-Raviart 

elements (Crouzeix and Raviart, 1973). An alternative group of elements consists of 

the Taylor-Hood elements (Taylor and Hood, 1973), which have a continuous 

pressure field over the clement boundaries. An advantage of the Crouzeix-Raviart 

elements over the Taylor-Hood elements in combination with a penalty function 

approach for the incompressibility requirement, is the property that the inverse of 

the pressure matrix (eq. 3.12) can be calculated elementwise (Cuvelier et .al., 1986). 

Besides, Crouzeix-Raviart elements satisfy the continuity equation elementwise, 

whereas Taylor-Hood elements satisfy this equation only on n. 

e,o: U 
2£.. X : p,-
ilx 

Figure 3.2: The 27-noded Crouzeix-Raviart element. 

For Crouzeix-Raviart elements it is possible to eliminate the velocity 

unknowns and the pressure derivatives within the centroid of the element by 

consideration of the Navier-Stokes and continuity equations elementwise (Cuvelier 

et al., 1986). For the triangular quadratic element in two dimensions this leads to a 

reduction for the velocity unknowns of about 15%. For the 27-noded 

Crouzeix-Raviart element it reduces the total number of velocity unknowns by 3 to 

78 ( 4% ). Because this reduction is relatively small and, for post-processing reasons, 

the eliminated unknowns have to be calculated afterwards, this reduction technique 

was not carried out for the 27-noded element. 

With regard to the incompressibility requirement Fortin and Fortin (1985) 

states that numerical experience indicates that the 27-noded element, as used in 

this study, is a too compressible, too soft element since the pressure imposes only 4 
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constraints on the 81 degrees of freedom for the velocity. However, because of the 

special structure of the basis functions for the pressure, it can be shown that the 

divergence freedom of the velocity field is satisfied elementwise, which seems to be 

contradictory with the observations of Fortin and Fortin (1985). 

In order to construct an appropriate approximation of the solution of the 

Navier-Stokes and continuity equations, the element has to satisfy the so-called 

Brezzi-Babuska condition (Brezzi, 1974), which is a rather abstract condition and 

difficult to verify. A rather simple method to check the Brezzi-Babuska condition is 

given by Fortin (1981 ), who also states that the 27-noded Crouzeix-Raviart 

element, as used in this study, satisfies this condition. In practice, it is mostly 

sufficient to require that the order of the basis functions for the pressure are at least 

one degree less than that of the basis functions for the velocity, and that the number 

of pressure unknowns is essentially smaller than the number of velocity unknowns. 

The latter implies that the velocity field is not fully determined by the continuity 

equation. These conditions hold for the 27-noded Crouzeix-Raviart element. Other 

important reasons for using this element are that it was found to be successful for 

the calculation of steady flow in a 90-degree curved tube (van de Vosse et al., 1989) 

and that the accuracy of the approximation was found to be O(h3) for a simple test 

example (Segal, 1986) with h a characteristic element size. 

3.7 Division of the carotid artery bifurcation into elements 

To approximate the solution of the Navier-Stokes and continuity equations with 

the finite element method, the domain under consideration has to be divided into 

elements. For two-dimensional problems many commercial software packages are 

developed, which are able to divide any two-dimensional domain into triangles or 

rectangles. For three-dimensional problems only a few of such so-called mesh 

generators are available. Usage of these mesh generators for the division of complex 

geometries into elements generally leads to a too large number of elements. This 

problem is even more important when for a three-dimensional geometry 

hexahedrons instead of tetrahedrons are used. The former elements have rather 

complex "connection-rules" which means that steep gradients of the element sizes 

in the element division in general implies a large number of elements. 

To divide the carotid artery bifurcation into a limited number of 

hexahedrons, it was decided to develop a special purpose mesh generator ourselves. 

Therefore, the plane of symmetry of the carotid artery bifurcation was divided into 
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rectangles with 4 nodal points as shown in figure 3.3a. The plane of symmetry was 

divided into three regions, indicated by A, B and C. Regions A and C have circular 

cross-sections, whereas in region B the main branch divides itself into two daughter 

branches. Divider line D is the projection on the plane of symmetry of the 
intersection curve of the two daughter branches. This line was not allowed to cross 

an element boundary. 

(a) (b) (c) 

Figure 3.3: Three stages of the mesh generator for the carotid artery bifurcation. 

The two-dimensional element division was expanded in the third direction 

by placing 8-noded hexahedrons on it as indicated in figure 3.3b. For the boundary 

region, indicated in figure 3.3a by ~·haded lines, the number of elements in the third 

direction was one less than for the inner region. The external nodal points (fig. 3.3b 

and 3.3c, open circles) were positioned at the outer surface of the carotid artery 

bifurcation, as best as possible. After repositioning of the internal nodal points (fig. 

3.3b and 3.3c, closed circles), so that the maximal angle between two element 

boundaries of an element was as small as possible, the 8-noded hexahedrons were 

transformed into 27-noded hexahedrons (fig. 3.3c). Finally, the midpoints of the 

external points (fig. 3.3c, asterisks) were positioned at the outer surface. To position 

the external points and the midpoints at the outer surface of the carotid artery 

bifurcation, in an upscaled model the geometry of region B was determined in about 

400 points. For the main and both daughter branches (regions A and C) rotational 
symmetry was assumed and only the diameters were measured. Due to the special 
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structure of the mesh generator, some ill-shaped elements occurred in the region 

near the flow divider, indicated in figure 3.3a by cross marks. The largest angles 

between two element boundaries were 143° and 162° for the internal and the 

external carotid artery, respectively, whereas an angle of 90° is supposed to be ideal. 

These large angles may cause errors in the calculated flow field near the flow 

divider. 

3.8 The finite element package Sevran 

For the construction of an approximate solution of the Navier-Stokes and 

continuity equations, the finite element package Sepran was used (Segal, 1984). 

Globally, the Sepran package can be divided into subroutines handling the mesh 

generation, a computational part consisting of a problem definition and a problem 

solution part, and subroutines for postprocessing purposes. The input and output 

possibilities of the computational part are arranged in such a way that one can use 

his own preprocessor and/or postprocessor. The package consists of a large number 

of subroutines, written in Standard Fortran, and contains as less as possible machine 

dependent subroutines. For most of its basic linear operations the package uses 

BLAS-routines (Lawson et al., 1979), which have optimal codes implemented on 

almost every computer, including super and minisupercomputers. Therefore, 

implementation of the package on the super and minisupercomputers, as used in this 

study, was relatively simple and optimization of the code for vectorization purposes 

was hardly necessary. The latter aspect highly depends on the kind of problems 

studied. For the problems solved in this study, however, most of the computing time 

was spended to LU-decomposition of the system matrix, which can be fully 

performed by BLA.S-routines. 

Discretization of the Navier-Stokes and continuity equations in combination 

with a penalty function approach leads to a system matrix with a symmetric profile 

structure. To economize the memory usage a profile storage technique was used. In 

the package, a one-dimensional array is employed for a row-columnwise storage of 

the system matrix and a row-columnwise LU-decomposition procedure is available 

for solving the system of equations by a direct method, resulting in optimal code for 

supercomputers. The system matrix can be stored on either disk or virtual memory. 

For most cases the latter one is the most suitable, because communication with 

virtual memory generally occurs by page faults handled by the operating system of 

the computer itself. This is much faster than communication with disk, which has to 
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be carried out by the user himself in the form of Fortran input/output statements. 

3.9 Supercomputers to solve large systems of equations 

Earlier performed calculations of steady entrance flow in a 90-degree curved tube 

(van de Vosse et al., 1989) revealed that large computing times (CPU-times) and 

input/output times (I/O-times) were needed to solve the system of equations 

resulting from a Galerkin finite element approach. For instance, for the 2205-noded 

element division, as used by van de Vosse et al. (1989), one iteration on a 

minicomputer (Apollo-dsp90) took about 24 hours CPU-time and 48 hours 

I/O-time. These numbers have to be interpreted with care because they are highly 

dependent on the configuration of the computer used. For example, for reasons 

pointed out in appendix C, the I/O-time needed for the calculations of van de 

Vosse et al. (1989) would be essentially smaller when the central memory of the 

Apollo-dsp90 used, was about twice as big. Nevertheless, it may be concluded that 

for calculations of fluid flow in 3D-models of the carotid artery bifurcation faster 

computers, like super and minisupercomputers, are needed. 

Super and minisupercomputers can be 10 to 1000 times as fast as 

conventional computers concerning their CPU-speed. In appendix B the peak 

performances of several systems are given and compared with their real speeds, as 

achieved for the problems solved in this study. Another important aspect is the 

I/O-time needed for a calculation. In appendix C it is pointed out that large 
I/O-times are needed if the capacity of the central memory is too small, as 

compared with the bandwidth of the system matrix. With Nc the capacity of the 

central memory and Nb=0.5b2, b being the bandwidth of the system matrix, 

enormous I/O-times will occur if Nc<Nb. 
In principal there are three ways to avoid this problem. The first and most 

straight forward method is to reduce the number of elements in such a way that the 

inequality Nb<Nc is satisfied. The limit of this reduction is dictated by the physics 

of the fluid flow under consideration. In practice, however, it was found that if the 

inequality Nb<Nc was not satisfied, beside large I/O-times also unacceptable large 

CPU-times were needed to solve the fluid problems with the computers used in the 

present study. A second method to achieve smaller I/O-times is to make use of 

special LU-factorization techniques which recognize the page faulting problem. 

Such techniques are successfully applied to full square matrices. A disadvantage of 

these techniques is that they make use of the backing storage device, which is 
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essentially slower than the use of the virtual memory system. Also, it is not known 

what the implications of such techniques are for band matrices. A third method to 

minimize the page faults needed is to renumber the unknowns in such a way that 

the bandwidth of the system matrix is as small as possible. In the finite element 

package used the Cuthill-McKee (Cuthill and McKee, 1969) and the Sloan (Sloan, 

1986) renumbering procedure are available, of which the Sloan renumbering is 

superior compared to the Cuthill-McKee renumbering when quadratic elements are 
used. An example of the effect of these renumbering procedures on the profile of the 

system matrix is given below. For the problems solved in the present study a 

combination of the first and the third method was used to minimize the CPU-times 

and I/O-times needed. 

3.10 Numerical test calculations 

3.10.1 Steady entrance flow in a 90-degree curved tube 

In a pilot-study on the Cyber-205 steady entrance flow in a 90-degree curved tube 

was investigated at a Reynolds number of 100. The problem definition was the same 

as described by van de Vosse et aL (1989), who used an element division consisting 
of 10 elements in axial direction and 22 elements per cross-section with a total of 

2205 nodal points. Because of symmetry only half of the curved tube was 

considered. If Cuthill-McKee renumbering was applied to the nodal points, the 

I/O-time needed was about 10 times larger then the CPU-time needed to solve the 

system of equations, due to the enormous amount of page faults occurring. Figure 

3.4a shows the profile of the system matrix after Cuthill-McKee renumbering. For 

this problem the maximal number of matrix elements needed in-core was 

Nb=788412, whereas the maximal number of elements, which could be stored in 

central memory, was Nc=786432. From these numbers it is concluded that, for at 

least part of the system matrix, Nc<Nb, resulting in large I/O-times. If Sloan 

renumbering was used, the profile of the matrix looked as presented in figure 3.4b. 

The local bandwidth of this matrix is changing rapidly, whereas, the maximal 

bandwidth is about the same as for Cuthill-McKee renumbering. The maximal 

number of elements needed in-core was reduced to Nb=408367. On the Cyber-205 

the I/O-time was about the same as the CPU-time needed for solving the system 

of equations. In case of Sloan renumbering the total CPU-time and the number of 
matrix elements were also reduced with a factor 2 compared to Cuthill-McKee 
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renumbering. 

(a) (b) 

Figure 3.4: Profile of the system matrix after Cuthill-Mckee renumbering (a) 
and Sloan renumbering (b). 

'3.10.2 Fully developed unsteady flow in a circular pipe 

At the start of this study, the finite element package Sepran was not able to deal 

with unsteady flow in three-dimensional geometries. To test the implementation of 

the mass matrix (eq. 3.10a) for three-dimensional problems, the simple problem of 
fully developed unsteady flow in a circular pipe was studied and compared with 

analytical solutions (Schlichting, 1979). For the dimensionless problem the 

length/diameter ratio of the tube was L/D=l. The Reynolds number varied 

sinusoidally between 0<Re<400 and the Womersley parameter, often used instead 

of the Strouhal number and defined as a=a(w/v)1/ 2 with a the radius of the tube, 

was equal to 10. At the inlet of the tube in axial direction a fully developed pipe 

flow was prescribed ( a=lO, -200<Re<200) superimposed on a parabolic velocity 

profile (Re=200), while both secondary velocity components were set equal to zero. 

The outlet was presumed to be stress free. The domain was divided into 2 elements 

in axial direction and 11 elements per cross-section. Due to symmetry, only a 

quarter of the tube was considered. Because flow at the inlet was fully developed, 
the axial velocity profile at the outlet had to be the same as the prescribed inlet 

profile. Figure 3.5 shows these profiles as function of time. The agreement is quite 
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satisfactory. Errors occurring were not larger than 2% of the time-averaged mean 

axial velocity. 

' 
4 : 
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FiJWre 3.5: Comparison between the prescribed inlet (solid lines) and the 
calcnlated outlet (triangles) axial velocity profiles as function or time. 

3.10.3 Unsteady entrance flow in a circular pipe 

For large systems of equations LU-factorization of the matrix takes about 75% of 
total CPU-time. Applying a fully explicit time integration scheme to the convective 

acceleration term in the momentum equation, results in a system matrix which is 
constant in time. Therefore, LU-factorization has to be carried out only once, 

which, at first sight, seems to be very attractive. However, smaller time steps are 

needed for convergence of the solution because explicit methods are only 

conditionally stable. 
To study the ratio of time steps needed for the unconditionally stable and 

the conditionally stable time integration schemes, unsteady entrance flow in a 

circular tube has been studied for the two-dimensional axisymmetrical case. The 

ratio of the length of the tube and the diameter was L/D = 1. The Womersley 

parameter was a= 10 and the minimal Reynolds number was Remin=O. At the inlet 
of the tube a parabolic axial velocity profile was prescribed which varied 

sinusoidally in time, while the radial velocity component was set equal to zero. At 

the outlet both normal and tangential stresses were presumed to be zero. For the 

conditionally stable time integration scheme the solution of the unconditionally 

stable time integration scheme was used as initial condition. 

First, the unconditionally stable Euler-implicit (EI) method and the 
conditionally stable Euler-explicit (EE) method for the convective term were 
combined with the Euler-implicit method for the other terms. Both schemes are 
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O(Ll.t) accurate in time. Next, the unconditionally stable Crank-Nicolson (CN) 

scheme and the conditionally stable Adams-Bashforth (AB) scheme were combined 
with a Crank-Nicolson scheme, resulting in a time integration scheme O(Ll.t2) 

accurate in time. Table 3.6 shows the time steps needed in one period as function of 

the maximal Reynolds number (Remax) for the conditionally stable time integration 

schemes. For the unconditionally stable schemes always 16 time steps per period 

were applied. A maximal difference between the solutions at the end of two 

successive periods smaller than 1% of the mean axial velocity was used as stability 

criterion. 

Re EI-EE CN-AB 
max --

100 16<N<24 24<N<32 

200 80<N<l00 80<N<100 

300 180<N<200 180<N<200 
--

Table 3.6: Number of time steps needed (N) for the conditionally stable time 
integration schemes. 

From table 3.6 it is concluded that for large Reynolds numbers many time 

steps are required for stability. The number of time steps needed is almost the same 

for both schemes. This seems to be contradictory to the findings in section 3.5, 

where it is stated that the stability region for the Adams-Bashforth scheme is 
smaller than the one for the Euler explicit scheme. However, it must be kept in 

mind that the theory presented i.'l section 3.5 is only valid for linear parabolic 

differential equations with coefficients constant in time. This is certainly not valid 

for the Navier-Stokes equation. Besides, for eigenvalues with large imaginary parts, 

as compared to the real parts, the stability regions of the Euler--explicit and 

Adams-Bashforth integration schemes are almost the same (fig. 3.1). 

Due to the large number of time steps needed, the benefit of a constant 

system matrix becomes less important because at every time step still the right 

hand side of the matrix equation has to be updated. For example, one time step for 

the Adams-Bashforth and the Crank-Nicolson scheme took about 6 sec, whereas 

one time step for the fully Crank-Nicolson scheme took about 17 sec. For larger 
problems this difference will increase rapidly, but due to the larger number of time 

steps needed for a conditionally stable time integration scheme and because the 
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algorithm for updating of the right hand side is hard to vectorize, in total at least 

comparable but likely larger computing times are needed for the conditionally stable 

time integration schemes. Therefore, in this study only unconditionally stable time 

integration schemes are employed. 
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4 Experimental method 

4.1 Introduction 

In this chapter a short description is given of the methods and materials used for the 

velocity measurements under steady and unsteady flow conditions in a 90-degree 

curved tube and the velocity measurements under steady flow conditions in a 

3D-model of the carotid artery bifurcation. A one-component forward-scattering 

reference-beam laser Doppler technique was used to measure both axial and 

secondary velocities (sect. 4.2). Because of its lower viscosity, in case of unsteady 

flow a solution of zinciodide was used as measuring fluid instead of a mixture of oil 

and kerosine, which was used in case of steady flow (sect. 4.3). In section 4.4 the 

fluid circuit is described. In section 4.5 the acquisition and processing of the velocity 

data is discussed. There are several sources which give rise to errors in the velocity 

measurements. These error sources together with estimates of the influence of these 
errors on the velocity measurements are presented in section 4.6 . 

. 4.2 Laser Doppler anemometry 

Laser Doppler anemometry is commonly used to measure fluid velocities. In contrast 

with other methods, like heat wire anemometry, with laser Doppler techniques fluid 

velocities are measured without disturbing the flow pattern itself. Drain (1981) gives 

an extensive description of the physical aspects of this method. In the experiments 

performed in this study a one-component forward-scattering reference-beam 

method was used (Drain, 1981). In short, one laser beam, generated by a 5mW 

Be-Ne-laser (Spectra Physics, 1208), is splitted into two laser beams. To detect 

negative velocities the reference beam is shifted in frequency with frequency fv, as 

compared to the frequency of the main beam, by using a Bragg cell unit (DISA, 

55X29). The two laser beams intersect in a measuring volume with dimensions 

400Jlm x 40Jlm x 40Jlm. Due to particles dissolved in the fluid (Lichrosorb, SilOO, 

mean particle diameter 5Jlm) the laser light is scattered in the direction of a 

photodetector (DISA, 55Lll) causing a Doppler shift fd in the frequency of the main 

beam. This Doppler shift is linearly related to the fluid velocity component in the 

measuring volume parallel to the plane spanned by the reference and the main beam 

and perpendicular to the optical axis of the He-Ne-laser. Interference of the la..<;er 

light of the reference beam and the main beam causes the intensity of the laser light 
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on the photodetector to vary with frequency (fv + fd)· The frequency signal of the 

photodetector is transferred into a voltage signal between 1 V and 10 V, by using a 

shifter (DISA, 55Nl2) and a tracker (DISA, 55N21). 

4.3 Zinciodide as measuring fluid 

Velocity measurements in 3D-models require exact matching of the refraction 

indices of the fluid and of the perspex models (refraction index perspex 1.493). In a 

study by Bovendeerd et al. (1987) a mixture of oil and kerosine was successfully 

employed for velocity measurements under steady flow conditions in a 90-degree 

curved tube. In this study the oil mixture was also used for the steady flow analysis 

in a 3D-model of the carotid artery bifurcation (chapter 6). A disadvantage of the 

oil mixture is its high kinematic viscosity. Therefore, for unsteady velocity 
measurements high pump frequencies are required for matching of the Womersley 

parameter to the one in vivo, which was not possible with the conventional pumps 

available. Beside the high kinerpatic viscosity, the dependence of the oil mixture on 

temperature caused problems. In figure 4.1a the dependence of the kinematic 

viscosity on temperature is shown. The steady flow experiments were performed at 

40 °C to lower the kinematic viscosity of the oil mixture and to eliminate the 

influence of ambient temperature variations. From figure 4.1a it is concluded that 

small variations in the temperature cause large variations in the kinematic viscosity, 

resulting in relative large changes in the Reynolds number. It should be kept in 

mind that electromagnetic flow rate measurements can not be used in combination 

with a mixture of oil and kerosine, because this mixture is a non-ionic fluid. For 

unsteady flow experiments, however, dynamic volume flow measurements are 

indispensable for correct adjustment of the cyclically varying Reynolds number. 

Another fluid with a high variable refraction index is a solution of zinciodide, 

as used by Hendriks and Aviram (1981). Beside its much lower kinematic viscosity 

at a temperature of 25 °C and a refraction index equal to perspex, its dependence on 

temperature is less dramatic as for the mixture of oil and kerosine (fig. 4.1b). With 

a solution of zinciodide it is also possible to use electromagnetic flow probes to 

measure flow rates. If a zinciodide solution is used as measuring fluid, contact with 

oxygen needs to be avoided because otherwise oxidation will occur. Therefore, 

nitrogen gas was injected into the zinciodide reservoir. To eliminate the influence of 

ambient temperature variations, the zinciodide reservoir was immersed in water, 

which was kept at a constant temperature of 25 °C using a thermostat (Julabo V). 
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Besides, usage of a zinciodide solution requires special materials. Due to the fact 

that small portions of zinciodide dissolve in perspex, this material weakens and, as a 

consequence, crack formation may occur at places where internal stresses are high 

(stress corrosion). Therefore, the two halves of perspex used must be as free as 

possible of internal stresses. This can be achieved by annealing these parts in an 

oven for a couple of hours. Nevertheless, problems may still arise at screwed or 

clamped connections. Stainless steel and synthetic materials, like teflon and nylon, 

seem to be spared. Finally, a zinciodide solution is somewhat poisonous and rather 

aggressive, and, therefore, must be treated with care. Due to its high costs it can 

only be used in small amounts. 
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Figure 4.1: Dependence on temperature of the kinematic viscosity of a mixture of 
oil and kerosine (a) and a solution of zinciodide (b). Note differences in scaling. 

4.4 Fluid circuit 

The fluid circuit used for steady flow analy~is in a 3D-model of a 90--degree bend 

and the carotid artery bifurcation has been described in detail before (Bovendeerd et 

al., 1987; Rindt et al., 1988). This fluid circuit was quite similar to the fluid circuit 

used for the unsteady velocity measurements in a 3D-model of a 90--degree curved 

tube. Figure 4.2 gives a schematic presentation of this fluid circuit. A gear pump 

was used for generation of the steady flow component {Verder, 114-l.ty-316). The 

unsteady flow component was generated by a special plunger pump (Vivitro 
Systems Incorporated). This pump is a piston-in~ylinder pump consisting of a low 

inertia electric motor (33VM82), a linear actuator (SP3891) and a standard pump 

head (SPH5891). The motor was driven by a servo power amplifier (SPA3891), 

which uses the piston position and the motor speed as feed back signals. A 
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programmable waveform generator was used (WG5891) for driving the pump. The 

frequency of the waveforms generated is selectable at 8 levels and ranges from 30 to 

200 cycles per minute with an accuracy of ::1:1%. The waveform generator also 

provides an output signal to facilitate synchronization to external instrumentation. 

~--- Nitrcgen t;as 

Photodetector 

Plunger pump 
'------' 

Entrance length 

~Amplifier 

Figure 4.2: Fluid circuit for the unsteady flow experiments. 

The standard pump head had a surface of 38.25 square centimeters. Using a 

zinciodide solution in combination with the 3D-model of the 90-degree curved tube 

described below, the piston displacement was about 0.75 mm for a Reynolds number 

varying between -425<Re<425 and a Womersley parameter of 5.5. This small 

piston displacement of about 2% of the maximal piston displacement resulted in 

unacceptable differences between the imposed and the measured waveforms of the 

flow rate. Therefore, a pump head was manufactured with a surface of 2.27 square 

centimeters, resulting in a piston displacement of about 30% of the maximal value. 

This value could even be increased by using a bypass in the fluid circuit. In figure 

4.3 the generator wave, the piston velocity and the flow rate are presented as 

function of time for a maximal Reynolds number of 425 and a frequency of 0.5 Hz, 

using the small pump head. Irregularities in the piston velocity occur during the 

zero crossings. Probably, these irregularities are caused by an inadequate control 

loop. They become smaller for higher frequencies. The rather rough appearance of 

the flow wave is caused by the unfiltered recording of the electromagnetic flow rate 
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signal and the finite accuracy of ±0.3 rnl/s of the flow probes used (Skalar, 

Transflow 601 ). 

j flow rate 

Figure 4.3: Generator wave, piston velocity and flow rate for the small pump 
head. 

As connecting tubes between the various systems, wired tubes were used to 

avoid wave propagation and reflection phenomena. An analytical study and the 

observed zero phase lag between the imposed and measured flow rate confirmed that 

these phenomena did not occur. An entrance length of 0.4 m (50 diameters) was 

used to ensure that fluid flow was fully developed before it reached the measuring 

section. 
The 3D-models consisted of two halves of perspex, split at the plane of 

symmetry, in which the 90-degree curved tube and the carotid artery bifurcation 

were machined out. In figure 4.4 these models are presented. The radius of the 

90-degree curved tube was a=4 mm and the curvature ratio was b=a/R=l/6. This 

curvature ratio was chosen because the entrance region of the internal carotid artery 
can be regarded as a curved tube with a curvature ratio of o=l/6. The geometry of 

the carotid artery bifurcation was almost similar to the one described by 

Balasubramanian (1979), with the exception of the angle between the external and 
common carotid artery which, for manufacturing reasons, was 30° instead of 25°. 

The radius of the common carotid artery was equal to a=4 mm. 

To adjust the correct Reynolds number for the unsteady flow measurements 

the electromagnetic flow rate signal of the flow probe was used. Adjustment of the 

correct Reynolds number for the steady flow measurements was performed by 

measurement of the maximal axial velocity in the main branch with the laser 

Doppler anemometer. To achieve a flow division ratio over the daughter branches of 
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50/50 in case of steady flow in the carotid artery bifurcation, long outstream tubes 

with the same diameter for both daughter branches were used. This flow division 

ratio was checked by numerical integration of the axial velocity field in the daughter 

branches. 

(a) (b) 

Figure 4.4: The perspex models of the 90-degree curved tube (a) and the carotid 
artery bifurcation (b). 

4.5 Data acguisition a.nd data processing 

Data intake was performed by a measuring system consisting of a personal 

computer, a 4-ehannel signal processing unit and an interface. The voltage signal of 

the tracker, which is related to one component of the fluid velocity in the measuring 

volume, was fed to the signal processing unit. There, with a gain and offset, the 

input signal was adjusted between -5V and 5V and it was filtered to avoid aliasing. 

Next, the signal was fed to an AD-converter and stored on disk of a personal 

computer. The sample frequency in the unsteady flow experiments was dependent 

on the frequency of the unsteady flow component. Per period 50 samples were taken. 

The start of data intake was controlled by the keyboard in the steady flow case and 

by a trigger pulse in the unsteady flow case. This trigger pulse was generated by the 

wave generator of the plunger pump. After calibration of the measuring unit and the 

laser Doppler equipment, the data obtained were converted to physical units. Beside 

the mean values, 95%-eonfidence intervals based on a student-t distribution were 

calculated. Therefore, 10 samples were taken in case of steady flow with a sample 

frequency of 2 Hz, and 10 periods were measured in case of unsteady flow. Plot 

facilities were used for inspection of the intermediate experimental results. 

For measurement of the axial velocity component and the secondary velocity 
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component parallel to the plane of symmetry, the optical axis of the He-Ne-laser 

was put perpendicular to the plane of symmetry of the 3D-models used. By rotation 
of the plane spanned by the laser beams both velocity components could be 

obtained. For measurement of the secondary velocity component perpendicular to 

the plane of symmetry the optical axis had to be parallel to the plane of symmetry 

and the plane spanned by the laser beams had to be perpendicular to the plane of 

symmetry. Problem with this kind of measurements is that total reflection at the 

plane of symmetry may occur of one of the laser beams due to an air film between 

the two halves of perspex. Therefore, in case of the steady and unsteady flow 

experiments in a 90-degree bend, a perspex model was used which was split along 

the axis of the tube and perpendicular to the plane of symmetry. In case of the 

steady velocity measurements in a 3D-model of the carotid artery bifurcation, 

reflection at the plane of symmetry was avoided by a film of oil and kerosine 

between the two halves of perspex. 
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(a) (b) 

Figure 4.5: Measuring grid (a) and finite element mesh (b). 

Three stepper motors were used to traverse the model in three independent 

directions, through which positioning of the measuring volume at various sites in the 
model was possible. Due to the step size, positioning of the measuring volume 

occurred with an accuracy of ±3J.tm, ±8J.tm and ±8J.tm in x-, y- and z-direction, 
respectively. Detailed analysis of the axial and secondary velocity distributions was 

performed at 5 levels in the 90-degree curved tube (chap. 5) and at 6 levels in the 

carotid artery bifurcation (chap. 6). At each level the measuring volume was 

traversed according to a rectangular grid (fig. 4.5a). Independently, the axial 

velocity component and both secondary velocity components were measured in each 

grid point. Afterwards, for presentation purposes, the rectangular measuring grid 

was transformed to a finite element mesh as depicted in figure 4.5b. The velocities 

at the wall were presumed to be zero according to the no-slip boundary condition. 
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Then, using post-processing software (SDRC, Sepran), axial and secondary flow 

were presented by axial isovelocity lines and secondary velocity vectors, 

respectively. Using linear interpolation also presentation of axial or secondary 

velocity profiles at arbitrary positions in the 3D-models was performed. 

4.6 Error estimates 

Several kind of error sources result in detection errors of the fluid velocities. First, 

errors result from small variations in the fluid velocit.y due to small variations in the 

imposed flow rate and the limited electronic detection accuracy of the frequency of 

the photodetector signal. For unsteady flow experiments also frequency instabilities 

of the plunger pump result in detection errors. All these errors can be estimated by 

calculation of the 95%-confidence intervals, which were found to be less than 0.5% 

of the maximal axial velocity for the steady flow case and less than 1% for the 

unsteady flow case. 

Errors also result from positioning failures of the measuring volume due to 

localization errors of a starting point and the finite accuracy of the traversing 

system. For measurements performed in a plane this may lead to measurements 

outside the plane originally defined. In straight tubes the velocity gradients in axial 

direction are likely to be small, and hence errors caused by the measurements 

outside the plane may be neglected. However, in curved tubes axial and radial 

directions continuously change and, therefore, positioning of the measuring volume 

outside the plane causes detection of the wrong velocity component. These errors 

can be observed as errors resulting from failures in the adjustment of the correct 

measuring angles of the optics, which will be discussed below. Positioning errors of 

the measuring volume in the plane are estimated to be ±0.1 mm due to localization 

errors of a starting point and ±0.1 mm due to the finite accuracy of the traversing 

system. Detection errors of the velocity caused by these positioning errors are 

estimated to be 5% of the local velocity. 

Besides, errors are caused by failures in the adjustment of the correct angles. 

The measuring direction of the laser Doppler anemometer used in this study is 

parallel to the plane spanned by the reference and the main beam and perpendicular 

to the optical axis. In figure 4.6 this direction is denoted by line m and deviates 

from the planned direction with the angles A<p and D.'f/J (D.<p, D.,P <<1). The 

measured velocity component Vm is a function of Vx,vy and Vz with Vx the velocity 

component which was planned to be measured and vy and Vz the velocity 



4.9 

components perpendicular to vx. Errors in the adjustment of the correct angles 

result from several sources, like errors in the localization of the measuring plane 

(±0.5° for the carotid artery bifurcation and ±1.0° for the 90--degree curved tube), 

errors in the positioning of the 3D-model with respect to the optics ( ±0.5°) and 

errors caused by traversing failures as described above ( ±0.5° for the 90--degree 

curved tube). Therefore, the total error in the adjustment of the correct angles is 

estimated to be ±1.25° for the 90--degree curved tube and :1:0.85° for the carotid 

artery bifurcation. For the configurations used in this study the maximal secondary 

velocities are about 25% of the maximal axial velocities. Therefore, it is reasonable 

to presume that the largest absolute errors occur in the detection of the secondary 

flow field. For the 90-degree curved tube these errors are estimated to be 2% of the 

local axial velocity, whereas for the carotid artery bifurcation these errors are 

estimated to be 1.25% of the local axial velocity. However, in regions with low axial 

velocities, errors in the detection of axial velocities due to the secondary velocity 

components can not be neglected. 

I 
I 
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Figure 4.6: Planned measuring direction (x-direction) and real measuring 
direction (m-direction). 

Next, errors in the determination of the angle between the reference and the 

main beam cause detection errors of the velocity, which are estimated to be :t:0.5%. 

The size of the measuring volume ( 400pm x 40pm x 40pm) with regard to the size of 

the 3D-models used (8 mm), also causes presumably small detection errors of the 

velocity, dependent on the velocity gradients. The highest influence of these errors is 

expected near the side walls of the models, where the velocity gradients are mostly 

large. 

Finally, errors result from adjustment failures of the correct Reynolds 

number and Womersley parameter. Errors in the Reynolds number are caused by 



4.10 

inaccuracies in the values of the flow rate and the kinematic viscosity and are 

estimated to be ±5% for the steady flow experiments and ±10% for the unsteady 

flow experiments. The large confidence interval for the steady flow case is almost 

completely determined by the high dependence of the kinematic viscosity of the oil 

mixture on temperature, as the temperature variations in the experiments are of the 

order of ±0.5 °C. The large confidence interval in case of unsteady flow is possibly 

caused by inadequate adjustment of the flow rate. Here the influence of the 

unsteady flow component on the 'steady' flow component was not taken into 

account.Finally, errors in the adjustment of the Womersley parameter are estimated 

tobe±l%. 

It may be concluded that the largest errors occur due to positioning failures 

of the measuring volume in the measuring plane. However, it should be kept in mind 

that these errors hardly influence the flow phenomena observed but only cause shifts 

in, for example, the a.xial velocity contours. On the other hand, the errors resulting 

from incorrect adjustment of the measuring angles do influence the flow phenomena 

observed, because also parts of other velocity components are measured. 
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5 Steady and unsteady entrance flow in a 90-degree curved tube 

5.1 Introduction 

In this chapter the results of steady and unsteady velocity calculations in a 

90-degree curved tube are presented. These velocity calculations are performed for 

various frequency parameters and flow wave forms. For one set of parameters a 

detailed comparison is made with the results obtained from laser Doppler velocity 

measurements. A comparison with data available in literature is difficult to perform 

because only a small range of parameters, describing unsteady entrance flow in 

curved tubes, is studied. Most investigators are dealing with fully developed flows or 

entrance flows under totally different flow conditions. 

Olson (1971) studied steady flow in a symmetrical three-dimensional 

bifurcation using hot wire anemometry, and compared the results with data 
obtained from velocity measurements performed in curved tubes. Olson concluded 

that the flow phenomena occurring in the daughter branches of such a symmetrical 

bifurcation are highly determined by curvature effects. In spite of the fact that the 

geometry of the carotid artery bifurcation is highly asymmetric, also here the 
influence of curvature effects on the flow phenomena occurring in the daughter 

branches of this bifurcation, are presumed to play an important role. Therefore, 

steady and unsteady entrance flow in a 90-degree curved tube was investigated to 

gain more insight into the complicated flow field in the carotid artery bifurcation. 

Besides, because of its rather simple geometry, numerical modeling of fluid flow in a 
curved tube is relatively simple, as compared to modeling of fluid flow in 

asymmetrical bifurcations. 

In analytical studies the Navier-Stokes and continuity equations are often 

presented in a toroidal coordinate system. It then appears that for loosely coiled 

pipes (low curvature ratios) the Dean number is more appropriate to characterize 

steady flow than the Reynolds number (Berger et al., 1983). This number, in 

combination with the curvature ratio or the Reynolds number, is also commonly 

used for characterization of the flow phenomena occurring in curved tubes with 

higher curvature ratios. The Dean number is defined as li.=t}f2Re with Re the 

Reynolds number and {j the curvature ratio. This latter number is defined as 8=a/R 

with a the radius and R the curvature radius of the axis of the tube. The Dean 

number can be interpreted as the ratio of the square root of the product of 

centrifugal and inertia forces to the viscous forces (Berger et al., 1983). Besides, in 
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analytical studies on fully developed unsteady flows in curved pipes with low 

curvature ratios the Womersley parameter and the secondary Reynolds number are 

often used to characterize the influence of the unsteady flow component on the flow 

phenomena occurring. The Womersley parameter is defined as (Fa(w/v)1/ 2 and can 

be interpreted as the ratio of the radius of the tube to the penetration depth of the 

viscous forces (Schlichting, 1979). In these analytical studies secondary flow is found 

to be governed by the secondary Reynolds number defined as R5=6U2 f(vw), with U 

the amplitude of the mean axial velocity variation. In the present study we will 

focus on the Reynolds number as function of time and the Womersley parameter in 

combination with the curvature ratio. In the definition of the Reynolds number the 

mean axial velocity is used as characteristic velocity. 

Analytical studies on fully developed oscillating flows in curved tubes reveal 

that for a<<l a Dean type secondary flow and for a>> 1 a Lyne type secondary 

flow occurs (Lyne, 1970; Lin and Tarbell, 1980), with secondary flow being defined 

as the flow field perpendicular to the axis of the curved tube. For a Dean type 

secondary flow, the secondary velocities near the plane of symmetry are directed 

from the inner wall towards the outer wall due to the dominating centrifugal forces 

in this region. These centrifugal forces induce a positive pressure gradient in that 

direction. Near the side wall, where due to viscosity the axial velocities and 

consequently the centrifugal forces are low, the pressure forces will dominate the 

centrifugal forces. Hence, near the side wall a circumferential inward motion of the 

fluid occurs. These secondary velocities cause a so--called Dean vortex at each side 

of the plane of symmetry (fig. 5.la). For high frequencies (a>>l) the viscous effects 

are restricted to a small layer near the side wall and at each side of the plane of 

symmetry, two vortices appear. The first one has the same circulation direction as 

the Dean vortex but is only present close to the side wall, while in the central region 

(a) (b) 

Figure 5.1: Schematical presentation of the Dean type (a) and Lyne type (b) 
secondary flow fields (I: inner wall, 0: outer wall). 
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a second vortex develops with an opposite circulation direction, resulting in a Lyne 

type secondary flow (fig. 5.1b). Munson (1975) visualized fully developed oscillating 

flow in a curved tube (h=l/14) for Womersley parameters ranging from 0 to 32. 

According to his observations a Lyne type secondary flow field occurs for a> 13. 

Fully developed flows in curved tubes have been studied theoretically and/or 

experimentally by many investigators (Lyne, 1970; Zalosh and Nelson, 1973; 

Bertelsen, 1975; Munson, 1975; Smith, 1975; Lin and Tarbell, 1980; Mullin and 

Greated, 1980; Berger et al., 1983). In recent studies on this subject (Chang and 

Tarbell, 1988; Hamakiotes and Berger, 1988) the system of equations was solved by 

some kind of finite difference method. Singh et al. (1978) performed an analytical 
study of unsteady entrance flow in a curved tube ( h=0(10-1)) using a uniform inlet 
profile. Mullin and Greated (1980) used laser Doppler anemometry for their velocity 

measurements in a curved tube with a curvature ratio of 1/7. As inlet condition an 

oscillating fully developed pipe flow was employed. The measurements were 
performed at a Womersley parameter of 0.99 and 4.36, while the peak Dean number 

ranged from 5.8 to 64.2. Chandran et al. (1979) performed laser Doppler velocity 

measurements for a sinusoidally varying flow rate in a curved tube with a curvature 

ratio of 1/10. The time-averaged Dean number was equal to 322 and the 
Womersley parameter wM equal to 21.9. Chandran and Yearwood (1981) performed 

the same sort of study for a physiologically varying flow rate at a time-averaged 

Dean number of 320 and a Womersley parameter of 20.7. Talbot and Gong (1983) 
performed lMer Doppler experiments in a curved tube with a curvature ratio of 1/20 

and 1/7. Two situations were investigated for which the characteristic flow 

parameters were 80<K<l60, a=8 and 0<K<744, a=12.5, respectively. Perktold et 

al. (1987) analyzed pulsatile blood flow in a carotid siphon model, composed of 

several curved segments. They used the finite element method to solve the time 

dependent, three-dimensional Navier-Stokes and continuity equations under 

physiological flow conditions. 

In this chapter unsteady entrance flow in a 90-degree curved tube with a 

curvature ratio of 1/6 is analyzed for oscillating, pulsating and physiological flow 
rates. As a preparatory study in section 5.2 steady flow at a Reynolds number of 700 

is investigated. A qualitative and quantitative comparison of the calculated velocity 

field is made with that obtained from laser Doppler velocity measurements of 

Bovendeerd et al. (1987). 

In section 5.3 the results of a velocity calculation are shown for a pulsating 

flow rate. The Reynolds number varied sinusoidally between 200 and 800, 
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corresponding to the diastolic and systolic Reynolds numbers in the carotid artery 

bifurcation, respectively. The Womersley parameter was equal to 7.8, about twice 

the in vivo value. This value was chosen to match the sinusoidal flow rate variation 

with the physiological flow rate variation in the systolic phase of the heart cycle. 

For this particular case a detailed description of the axial and secondary flow fields 

is given as function of time. Afterwards, a qualitative and quantitative comparison 

with laser Doppler velocity measurements is made. 

The influence of the frequency parameter on both axial and secondary flow is 

described in section 5.4, where the results are presented of velocity calculations 

under pulsatile flow conditions at various values of the Womersley parameter. 

Besides, in this section the results of a velocity calculation of fluid flow at a 

physiological flow rate are shown, elucidating the influence of the wave form on the 

flow phenomena occurring. Also in this section the influence of the steady flow 

component is studied. Finally, a qualitative and quantitative comparison between 

the various flow situations is performed and a comparison is made with laser 

Doppler velocity measurements. 

In section 5.5 the results are discussed and compared to data available in 

literature. 

5.2 Steady entrance flow 

5.2.1 Introduction 

In a study performed by van de Vosse et al. (1989) the results of finite element 

calculations of steady flow in a 90-degree curved tube with a curvature ratio of 1/6 

are presented for Reynolds numbers up to 500. Application of higher Reynolds 

numbers caused oscillations in the predicted velocity field, probably due to 

bifurcation of the solution in this range of Reynolds numbers or a too coarse element 

division. To avoid these problems, in this study a finer element division is employed 

and iteration towards higher Reynolds numbers was achieved by solving the 

unsteady Navier-Stokes problem. 

Figure 5.2 shows the element division used, consisting of 20 elements in axial 

direction and 30 elements per cross-section. The lengths of the inlet and outlet 

sections are both 6 times the radius of the curved tube. Flow at the inlet was 

supposed to be fully developed, which means a parabolic axial velocity profile and 
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zero secondary velocities. The velocities at the wall were presumed to be zero, 

according to the no-slip condition. At the outlet the normal and both tangential 

stresses were set to zero, whlle in the plane of symmetry both tangential stresses 

and the normal velocity component were put to zero. For the mesh as shown in 

figure 5.2, one iteration on an Alliant-fx/4 {2 processors) took about 30 minutes of 

computing time. 

outlet 
section 

Figure 5.2: The element division for the 90-degree curved tube. 

In figure 5.3 the Reynolds number is presented as function of the iteration 

number. For the iteration numbers 1 to 13 an unsteady velocity calculation was 

performed, using an Euler-implicit ( 0=1) time integration scheme. In the first 

iteration a zero velocity field was used as initial condition. The Reynolds number 

was varied by adjusting the maximal axial velocity at the inlet of the curved tube. 

Because of convergence problems, at the end of the calculation procedure the steady 

Navier-Stokes problem was solved. To reach convergence another 4 iterations were 

needed. The maximal difference between the velocity components of the final 2 

iterations was of 0(10-6). 
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5.2.2 Description of the flow field 

Figure 5.4 shows the development of axial and secondary flow by axial isovelocity 

lines, lines often denoted as axial velocity contours, and secondary velocity vectors. 

The presentation sites are 0=0°, 22.5°, 45°, 67.5° and 90° (fig. 5.2). Axial contour 

level 0 corresponds to zero axial velocity a..'ld level 10 to the maximal axial velocity 

(Umax) at the inlet of the curved tube. The secondary velocities at 0=0° are scaled 

up 3 times with respect to the secondary velocities at the other cross-sectional 

planes. 

At the entrance of the curved tube ( 0=0°) the axial velocity maximum is 

slightly shifted towards the inner wall. Secondary flow is completely directed from 

the outer bend towards the inner bend, pointing at upstream influences of the 

curved tube. 

At 0=22.5° the maximum of axial velocity is shifted towards the outer wall, 

due to centrifugal forces. Near the plane of symmetry the secondary velocities are 

directed towards the outer bend, whereas these velocities are directed towards the 

inner bend near the side wall of the curved tube. The secondary flow field resembles 

a Dean type vortex. The center of the vortex is positioned near the side wall at the 

center line of the cross-sectional plane. 
0 

Halfway the curved tube, at 0=45 , as a consequence of secondary flow the 

shift of the maximum of axial velocity towards the outer wall continues. Besides, 

some of the axial velocity contours become C-shaped because fluid particles with 

high axial velocities situated near the outer wall, are transported towards the inner 

wall by circumferential secondary flow. The center of the secondary vortex is shifted 

towards the inner bend and, at this position in the curved tube, the highest 

secondary velocities are observed near the side wall. 

At 0=67.5° the curvature of the axial isovelocity lines has intensified and the 

maximum of axial velocity has shifted further towards the outer bend. The 

secondary velocities at this position are much lower as compared with the secondary 

velocities halfway the curved tube, especially near the plane of symmetry. The 

secondary vortex at this level has developed a 1tail 1, through which fluid particles 

near the center of the tube are transported in the direction of the side wall. This 
1tail'-formation is possibly due to the fact that the fluid particles with relatively 

low axial and secondary velocities, situated near the center of the tube, are not able 

to penetrate into the region with high axial velocities near the outer wall. The 



5.7 

s 

8:22,5 

8:67,5. 

... 

Urn ax 

.,...-:=.::::..::: 
........... -::--," 

, II' "' " ~ ~ l \ ,, J'',' .... --.,-1\\ 
':~I .... ------- f ,\ ... - _____ .,.... __ / ,,, 

\ ' ..... -------- ,..,." .... ""-=----___...-:::.--""'' 

·, 

Urn ax 

-- ....... , ; ..... 

Figure 5.4: Axial and secondary flow for the steady flow case (I: inner wall, 0: 
outer wall, S: side wall). 
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center of the vortex has shifted somewhat towards the plane of symmetry. 

At 0=90° the same sort of phenomena occur as observed at 0=67.5°. At this 

position a further decrease of the secondary velocities is observed, possibly due to 

upstream influences of the straight outlet section. 

5.2.3 Qualitative comparison with experiments ------- _ .. _____ .,. ________________ .,.. ________ ---

Bovendeerd et al. (1987) performed an experimental study of steady entrance flow 

in a 90-degree curved tube, with a curvature ratio of 1/6, at a Reynolds number of 

700. They used a laser Doppler anemometer to measure axial and secondary 

velocities at 7 positions in the curved tube (0=0°, 4.6°, 11.7°, 23.4°, 39.8°, 58.8° 

and 81.9°). A qualitative comparison with their measurements is performed by 

comparing the axial velocity profiles in the plane of symmetry. In figure 5.5 these 

axial velocity profiles are presented for both the measurements and the calculations. 

There is an excellent agreement between the experimental and numerical data. In 

the numerical case the axial velocity plateau at 0=58.5° is somewhat less developed. 

0 

I 
0 4,6 11;7 '23,4 39,8 sa.s 81,9 

Umax 

Figure 5.5: Calculated (--) and measured (ooo) axial velocity profiles in the 
plane of symmetry (I: inner wall, 0: outer wall). 

For a qualitative comparison between the calculated and measured secondary 

flow field, in figure 5.6 secondary flow at 0=23.4° and 58.5° is presented by velocity 

profiles of the component parallel to the plane of symmetry (upper half) and the 

component perpendicular to the plane of symmetry (bottom half). Here again a 

relatively good agreement exists between the experimental and numerical results. 

The largest differences are found near the side wall at 0=23.4°, where the calculated 
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secondary velocities parallel to the plane of symmetry are higher than the measured 

ones. Possibly, measuring errors due to the dimensions of the measuring volume 

contribute to this discrepancy. 
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Figure 5.6: Calculated (--) and measured (ooo) secondary velocity profiles (I: 
inner wall, 0: outer wall, S: side wall). 

5.2.4 Quantitative comparison with experiments 
------------------------------ ---------------

A quantitative comparison of the numerical results of axial flow with those obtained 

by Bovendeerd et al. (1987) is performed by the dimensionless first moment of axial 

flow, defined as (Olson and Snyder, 1985}: 

<X/a> (5.1} 

with Uax the axial velocity component, A the surface of the cross-eectional plane, x 

the distance parallel to the plane of symmetry towards the center line of the 

cross-eectional plane and a the radius of the tube (fig. 5.7). A positive value of this 

quantity indicates a shift towards the outer bend. 
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center line 
I 

sidewall 

Figure 5.7: Definition of x-eoordinate and semicircle in a cross-sectional plane 
of the bend. 

In table 5.8 the first moment of axial flow for both the measurements and the 

calculations is presented as function of the axial position. The 95%-eonfidence 

intervals, based upon errors in the adjustment of the laser Doppler equipment, are 

estimated to be ±0.02. Errors in the adjustment of the correct Reynolds number are 

not taken into account. There is a rather good agreement between the experimental 

and numerical data. The largest difference occurs at 0=23.4°. At the first three 

positions the axial flow field is slightly shifted towards the inner bend as a 

consequence of upstream influences. The largest shift towards the outer bend occurs 

about halfway the curved tube. 

~. 
~m 

00 

-0.03 

-0.03 

4.6° 11. 7°J 23.4° 

-0.03 -o.o3i o.o4 

-0.04 -0.021 0.07 

39.8° 58.5° 81.9° 

0.16 0. 13 0.12 

0. 16 0.14 0.11 

Table 5.8: First moment of axial flow for the measurements (±0.02) and the 
calculations. 

The secondary flow field is quantified by its dimensionless axial vorticity e, 
defined as (Olson and Snyder, 1985): 

(5.2) 

with S the boundary of a region with surface A, Utg the tangential secondary 
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velocity at S, a the radius of the tube and Umn the mean axial velocity. A positive 

value of {indicates a counter clockwise vortex. When Sis chosen along the plane of 

symmetry and the side wall of the curved tube (fig. 5. 7), the vorticity {c of the 

central core is found. Because of the no-slip condition at the wall, in fact {c 

quantifies the secondary velocities in the plane of symmetry. In table 5.9 {c is 

presented as function of the position in the curved tube for both the calculations and 

the experiments. The 95o/rri:onfidence intervals are estimated to be ±0.02. The 

agreement between the numerical and experimental data is good. The highest 

secondary velocities in the plane of symmetry are found at 0=23.4°. At 9=0° a 

negative value is found due to upstream influences of the curved tube, causing 

secondary velocities in the plane of symmetry directed towards the inner bend. 

P. 
~m 

00 

-0.06 

-0.03 

4.6° 

0.04 

0.07 

11.7° 23.4° 

0. 18 0.32 

0.20 0.34 

39.8° 58.5° 81.9° 

0.24 0.09 0.05 

0.26 0.08 0.01 

Table 5.9: Axial vorticity of the central core for the measurements (::1:0.02) and 
the calculations. 

In table 5.10 the maximum of axial vorticity is presented. This quantity {m 

was calculated along a path S consisting of a semicircle in the cross-sectional plane, 

which was closed along the plane of symmetry (fig. 5.7). The 95o/rri:onfidence 

intervals for this quantity are estimated to be ±0.05. These relatively large intervals 

are due to positioning errors of the measuring volume near the side wall, where the 

secondary velocity gradients may be large. In spite of these large confidence 

intervals the agreement between the experimental and numerical data is bad. This 

discrepancy is caused by the lower tangential velocities near the side wall in the 

experimental case. In general, it is seen from figure 5.6 that close to the side wall 

the experimental values deviate from the numerical ones, while in the central region 

the agreement between both values is fair. Possibly, the finite dimensions of the 

measuring volume are more dominant than suggested in chapter 4, but an adequate 

reason for this discrepancy is not yet known. The maximal value of {m is found at 

0=39.8° for both the measurements and the calculations. Further downstream in the 

curved tube this value decreases rapidly. 



~p 
~m 

00 

-0.04 

-0.07 

4.6° 

0.11 

0.24 

5.12 

11.7° 23.4° 

0.31 0.57 

0.54 0.98 

39.8° 58.5° 81.9° 

0.64 0.26 0.13 

1.06 0.59 0.25 

Table 5.10: Maximal axial vorticity for the measurements (±0.05) and the 
calculations. 

5.3 Unsteady entrance flow 

5.3.1 Introduction 

In this section a detailed description of unsteady entrance flow in a 90-degree 

curved tube at a particular set of parameters is given. The flow rate consisted of a 

sinusoidally varying unsteady flow component (-300<Re<300) superimposed on a 

steady flow component (Re=500). With a curvature ratio of 1/6 this yields a Dean 

number varying between 82 and 327. The Womersley parameter was equal to 7.8. 

For the finite element calculation, the element division as depicted in figure 

5.2 was used. The boundary conditions were the same as used for the steady flow 

analysis, i.e. zero velocity components at the wall, zero normal and tangential 

stresses at the outlet of the tube and zero tangential stress components and a zero 

normal velocity component in the plane of symmetry. At the inlet of the tube both 

tangential velocity components were set equal to zero, whereas the normal velocity 

component described an unsteady fully developed axial flow field for which 

analytical solutions are available (Schlichting, 1979). From velocity calculations in a 

two-dimensional model of the carotid artery bifurcation (Rindt et al., 1987), it 

appeared that 20 time steps per period were sufficient to achieve an accurate 

solution. In this study one period consisted of 24 time steps. A zero velocity field 

was used as initial condition. To damp numerical errors induced by this initial 

condition, first an Euler-implicit time integration scheme was applied for 3/4 of a 

period. Hereafter, a Crank-Nicolson time integration scheme was employed until 

the maximal difference between the velocity components of the solution at the same 

time intervals of two successive periods was of 0(10-2). For the reference flow case 

treated here, 3 periods were needed to reach this goal. 

In figure 5.11 the Reynolds number is presented as function of time and the 
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time intervals are indicated at which the results are reported. Time interval t=O 

corresponds to mean flow rate in the acceleration phase, t=l/4T to maximal flow 

rate, t=l/2T to mean flow rate in the deceleration phase and t=3/4T to minimal 

flow rate. 

Re 

800 /1~ 

500 i i"- / 
200 I ~~~ 

I I I 

0 f T t T -f T time 

Figure 5.11: Reynolds number as function of time and the time intervals of 
presentation. 

5.3.2 Description of the flow field 

In figure 5.12 the results of axial and secondary flow at 5 axial positions in the 

curved tube (0=0°, 22.5°, 45°,67.5° and 90°) are shown. Axial flow is presented by 

axial isovelocity lines and secondary flow is visualized by means of velocity vectors. 

Contour level 0 corresponds to zero axial velocity and the difference in axial velocity 

between two successive levels is equal to 0.32 times the mean axial velocity at t=O 

(Umn)· The secondary velocities at 0=0° are scaled up three times, as compared to 

the secondary velocities at the other cross-sectional planes. 

At 0=0° (fig. 5.12a) the axial velocity contours at t=l/2T and 3/4T are 

almost concentrical circles. At t;;;O and l/4T the maximum of axial velocity is 

slightly shifted towards the inner bend of the curved tube, resulting in larger axial 

velocity gradients at the inner wall, as compared to those at the outer wall. The 

secondary velocities are completely directed from the outer wall towards the inner 

wall, pointing at upstream influences of the curved tube. These secondary velocities 

are about equal halfway the acceleration and deceleration phase. They are almost 

zero at minimal flow rate. At maximal flow rate oscillations are observed in the 

secondary flow field, possibly due to numerical failures as a consequence of a too 

coarse element division in the axial direction or a too short entrance length. 
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At 8=22.5° (fig. 5.12b) the secondary velocities near the plane of symmetry 
are directed towards the outer bend, as a consequence of centrifugal forces, whereas 

near the side wall of the curved tube these secondary velocities are directed towards 

the inner bend, resulting in a Dean type secondary flow field. For the total period of 

time the center of this secondary vortex is situated near the center line of the 

cross-sectional plane. The secondary velocities at t=l/4T and l/2T are about 
equal, as well as the secondary velocities at t=3/4T and t=O. At minimal flow rate 
a region with low secondary velocities is found near the inner bend. As a 

consequence of secondary flow a shift of the maximum of axial velocity towards the 

outer bend is observed for the whole period of time. This shift is maximal at 

minimal flow rate (t=3/4T). At this time interval a region with negative axial 

velocities is observed at the inner bend. The largest axial velocity gradients are 

found at the outer wall at maximal flow rate (t=l/4T) 
The highest secondary velocities throughout the curved tube occur at 0=45° 

(fig. 5.12c) at peak flow rate. Still, the secondary velocities are directed from the 
inner wall towards the outer wall near the plane of symmetry and circumferentially 
back near the side wall. The center of the vortex is situated near the center line of 

the cross-sectional plane for t=O and it is slightly shifted towards the inner wall for 

t=l/4T, 1/2T and 3/4T, describing some kind of circle. In the deceleration phase 
and at minimal flow rate a 'tail' in the secondary flow field dev(>Jops, through which 

the secondary velocities in the central region of the tube are no longer parallel to the 

plane of symmetry but slightly directed towards the side wall. Possibly, this 

'tail'-formation is due to the relatively large axial velocity gradients in the central 

region. The shift of the axial isovelocity lines towards the outer wall continues, as 

compared to the shift at 0=22.5°, resulting in large axial velocity gradients at the 
outer wall. The largest shift is found at t=3/4T but, due to the smallest flow rate at 
this time interval, the axial velocity gradients are relatively small. At all time 

intervals C-shaped axial velocity contours are observed, which develop in the 

deceleration phase and become less pronounced in the acceleration phase. These 

C-shaped axial velocity contours are caused by secondary flow, through which fluid 

particles with high axial velocities situated at the outer bend are injected at the 

inner bend. Halfway the deceleration phase, at t=l/2T, a region with negative axial 

velocities is observed near the inner wall. At minimal flow rate (t=3/4T) also a 

region with reversed axial flow is found in the central region of the tube. At t=O 

large regions occur with hardly varying axial velocities, pointing to the formation of 
axial velocity plateaus. 
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Figure 5.12a: Axial and secondary flow for the reference flow case at fJ=0° 
(1: inner waD, 0: outer wall, S: side wall, Umn: time-averaged mean axial 
velocity). 
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Figure 5.12b: Axial and secondary flow for the reference flow case at 0:22.5°. 
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Figure 5.12e: Axial and secondary flow for the reference flow case at 0=45°. 
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Figure 5.12d: Axial and secondary flow for the reference flow case at 0=67.5°. 
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Figure 5.12e: Axial and secondary flow for the reference flow case at 0=90°. 
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At 0=67.5° (fig. 5.12d) the secondary velocities are considerably lower, as 

compared to the secondary velocities halfway the cnrved tube, except at maximal 

flow rate (t=l/4T). At 0=67.5° the 'tail' in the secondary flow field is also observed 

at maximal flow rate and it intensifies in the deceleration phase. The position of the 

center of the secondary vortex at t=l/4T, l/2T and 3/4T is almost the same as 
compared to the position halfway the curved tube. Also in the deceleration phase, 

C-shaped axial velocity contours develop with highly curved segments at t=l/2T. 

Halfway the acceleration phase (t=O) a local minimum is observed at the center of 

the tube. Regions with almost constant axial velocities occur at minimal flow rate 

(t=3/4T) and halfway the acceleration phase (t=O). Reversed axial flow regions are 

found near the inner wall at t=l/2T and 3/4T. The region with negative a:dal 

velocities at the center of the tube has disappeared. 
Globally spoken, the axial and secondary flow fields at 0=90° (fig. 5.12e) 

0 have the same appearance as the flow fields at 0=67.5 .. However, the secondary 

velocities at maximal flow rate are lower, as compared with the secondary velocities 
at 0=67.5°. Also the C-shaped axial velocity contours are less pronounced at 

t=3/4T and the local axial velocity minimum at t=O has disappeared. 

5.3.3 Qualitative comparison with experiments ------- ______ ,.. ______ - -------- _____ ... _____ --

To validate the numerical results, laser Doppler experiments were performed in a 

90-degree curved tube. The experimental set-up is described earlier in chapter 4. 

Although the adjusted flow rate in the experiments consisted of a sinusoidally 

varying component (-300<Re<300) superimposed on a steady flow component 

(Re=500), some differences with the numerical situation were found to be present. 

It appeared that the minimal Reynolds number was larger than 200 and that the 

flow rates at t=O and 1/2T showed rather large differences. In table 5.13 the 

Reynolds number is presented as function of time, averaged over the positions at 

which laser Doppler velocity measurements were performed ( 8=0°, 22.5°, 45°, 67.5° 

and 90°). Errors in the Reynolds number resulting from numerical integration of the 

axial flow field are estimated to be ±10. The rather large differences between the 

experimental and numerical situation can possibly be explained by the strategy 

applied for the adjustment of the flow rate in the experiments. First, the steady flow 

component was adjusted at a Reynolds number of 500. Afterwards the unsteady flow 

component was imposed and a maximal Reynolds number of 800 was adjusted. In 
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this strategy, however, the influence of the unsteady flow component on the 'steady' 

flow component was not taken into account, which may result in the observed 
discrepancies. Besides, the sampling frequency of 50 samples per period contributes 

to these discrepancies. Due to this sampling frequency data presentation at exactly 

minimal, mean and maximal flow rate is impossible. This may result in errors in the 

Reynolds number of ±20 at mean flow rate. 

t 0 1/4T 1/2T 3/4T 

Re 565 800 460 250 
'-· 

Table 5.13: Reynolds number as function of time in the experiments. 

A qualitative comparison with the laser Doppler velocity measurements is 

achieved by presentation of the axial velocities in the plane of symmetry and the 
axial contour levels and secondary velocity profiles at 0=22.5° and 67.5°. In figure 

5.14a the axial velocity profiles in the plane of symmetry are presented as function 

of time for both the measurements and the calculations. A good agreement between 

the experimental and numerical data is observed. The largest differences occur 

t:O t:1/4 T 

0 ,.,; .::;;;---t-<::;:;;--t-=='!"~::-'!'--. 
! 

t=1/2 T t:3/4 T 

Figure 5.14a: Calculated (--) and measured (ooo) axial velocity profiles in the 
plane of symmetry. 

halfway the acceleration phase at t=O and at the end of the deceleration phase at 

t=3/4T. For both time intervals the velocities found in the experiments are 
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somewhat higher than the velocities calculated by the numerical model, probably 

caused by the larger Reynolds number in the experiments at these time intervals. 

For the experiments this discrepancy results in the absence of regions with reversed 

axial flow downstream in the curved tube at minimal flow rate (t=3/4T). The shift 

of the maximum of axial velocity towards the outer wall is clearly seen at all time 

intervals. Also the presence of a local minimum in the axial velocity field at 0=67.5° 

and t=O is observed for both the measurements and the calculations. Such minima 

also occur downstream in the curved tube at t=l/2T and 3/4T. 
In figure 5.14b the axial velocity contours at /)=22.5° and 67.5° are presented 

as function of time. Contour level 0 corresponds to zero axial velocity and the 

difference in axial velocity between two successive levels corresponds to 0.52 times 

the time-averaged mean axial velocity (Umn)· The agreement between the 
numerical and experimental data is satisfactory. The regions with reversed axial 

flow calculated by the numerical model at the end of the deceleration phase are 

absent in the experiments, probably due to the larger Reynolds number in the 

experiments at this time interval. The largest differences in the C-shaped 

appearance of the axial velocity contours occur at 0=67.5° and t=l/2T, where the 
curvature of the contour levels 2 and 3 is more pronounced, whereas the curvature 
of contour level 1 is less pronounced for the computations, possibly also as a 

consequence of the difference in the Reynolds number at this time interval. The 

position of the local axial velocity minimum at 0=67 .5° and t=O is closer to the 

inner bend for the experiments than for the calculations. 

A qualitative comparison of the secondary flow field is performed with the 

use of velocity profiles of secondary flow. In figure 5.14c the component of secondary 

flow parallel to the plane of symmetry is presented in the upper half and the 

component perpendicular to the plane of symmetry in the lower half of the 

cross-sectional area. The agreement between the experimental and numerical data 

is fair. The largest differences occur in the component parallel to the plane of 

symmetry near the side wall of the curved tube at both positions for t=l/4T and 
l/2T. Near the plane of symmetry the largest differences in this component occur at 

0=67.5° for t=l/4T and l/2T, but these differences are small compared to the 

differences near the side wall. Possibly, the rather large dimensions of the measuring 

volume contribute to these discrepancies. The main differences in the component 

perpendicular to the plane of symmetry occur at 0=67.5° for t=l/4T and 1/2T, 

where a shift in the profiles near the inner bend of the curved tube is observed, 

probably due to positioning errors of the measuring volume. 
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Figure 5.14b: Calculated (--) and measured (- -) axial flow field at 2 
positions in the curved tube. 
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Figure 5.14c: Calculated (-) and measured (ooo) secondary flow field at 2 
positions in the curved tube. 
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A quantitative comparison of the axial flow field calculated by the numerical model 

with the axial flow field found in the experiments, is carried out by its first moment 

<X/a>, the definition of which is given in section 5.2.4. (eq. 5.1). In table 5.15 the 

experimental and numerical values of this quantity are presented as function of time 

and position in the curved tube. Taking into account the 95%-confidence intervals, 

which are only based upon errors in the adjustment of the laser Doppler equipment, 

there is a rather good agreement between the experimental and numerical data. The 

largest differences occur at the end of the deceleration phase {t=3/4T). This is due 

to the absence of reversed axial flow in the experiments at this time interval, as a 

consequence of the larger Reynolds number. At 0=0° a small shift of the axial flow 

field towards the inner bend is found. The largest shifts towards the outer wall are 

observed at t=3/4T. At this time interval <X/a> is almost constant throughout 

the curved tube. A quarter of a period later, halfway the acceleration phase, the 

smallest values of <X/ a> are found. 

8=0° 0=22.5° 0=45° 0=67 .5° 0=90° 

t=O -0.02/-0.03 0.03/0.01 0.09/0.11 0.05/0.06 0.08/0.07 
1-·---· 
t=1/4T -0.02/-0.03 0.05/0.03 0.08/0.11 0.08/0.10 0.13/0.10 

1-• 
t=l/2T -0.01/-0.03 0.13/0.12 0. 1 7/0.22 0.14/0.16 0.21/0.18 

t=3/4T 0.00/-0.01 0.20/0.29 0.21/0.30 0.16/0.26 0.23/0.30 

Table 5.15: First moment of axial flow as function of time and position 
(experiments ( ±0. 02) /calculations) . 

Quantification of the secondary velocities in the plane of symmetry is 

performed by the axial vorticity of the central core ec (sect. 5.2.4, eq. 5.2). In table 

5.16 the values of this quantity are presented for both the calculations and the 

experiments. The agreement between the numerical and experimental values is 

satisfactory. The largest differences occur at the onset and halfway the acceleration 

phase at 0=45°. At 0=0° the secondary velocities in the plane of symmetry are 

directed towards the inner bend causing negative values of ec, whereas at all other 

cross-sections these velocities are directed towards the outer wall. Halfway the 
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acceleration phase at 0=67.5°, however, ec is equal to zero for the experimental case 

and small for the numerical one. The largest values of ec are found at 0=22.5° at all 

time intervals and at 0=45° at peak flow rate. During the deceleration phase the 

values of ec at 0=67.5° and 90° are almost the same. 

O:oo 0=22 .5° 8=45° 8=67.5° 8=90° 

t=O -0.06/-0.05 0.26/0.24 0.21/0.12 0.00/0.02 0.10/0.06 

t=l/4T -0.08/-0.07 0.39/0.37 0.35/0.38 0.18/0.19 0.16/0.17 

t=l/2T -0.03/-0.03 0.36/0.38 0.17/0.20 0.10/0.07 0.12/0.07 
I-· 

t=3/4T -0.02/ 0.00 0.21/0.21 0.06/0.13 0.07/0.08 0.07/0.06 

Table 5.16: Axial vorticity of the central core as function of time and position 
(experiments ( ±0.02)/ calculations). 

I 

For quantification of the secondary velocities near the side wall, the axial 

vorticity was calculated along a path consisting of a semicircle in the cross-sectional 

plane, with a radius equal to 4/5 times the radius of the tube, which was closed 

along the plane of symmetry ( es). In this study quantification is performed by es 
rather than by em, the maximum of axial vorticity, as in this way a better 

comparison can be achieved between the various flow problems to be dealt with in 

the next section. In table 5.17 es is presented as function of time and position for 
both the experiments and the calculations. The agreement between the experimental 

and numerical results is satisfactory at 0=0°, 22.5° and 67.5°. At 0=45°, however, 

throughout the deceleration phase the value of this quantity is much larger for the 

calculations than for the experiments. This also holds at 0=90° at peak flow rate. 

These differences are possibly caused by measuring inaccuracies near the side wall of 

the curved tnbe and positioning errors of the measuring volume. Also for the steady 

flow case large differences between the experimental and numerical values of the 
maximum of axial vorticity are found. In spite of these differences it can be 

concluded that the maximal values of this quantity occur at 0=22.5° and 45° at 

peak flow rate. Small values of es are found at 0=90° and 67.5° at the time intervals 

t=O and 3/4T. The positive values at 0=0° over the full period of time, point to the 

fact that the secondary velocities, which are directed towards the inner bend, are 

higher near the side wall than in the plane of symmetry. 
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0=0° 0=22.5° 0=45° 0=67.5° 0=90° 
---- r---· 
t=O 0.04/0.05 0.69/0.65 0.57/0.56 0.14/0.19 0.11/0.12 
-· 
t=l/4T 0.08/0.09 1.12/1.11 1.14/1.44 0.83/0.94 0.26/0.47 

t=l/2T 0.07/0.07 0.99/1.10 0.68/0.98 0.38/0.44 0.15/0.14 
~-

t=3/4T 0.02/0.01 0.54/0.58 0.28/0.51 0.15/0.21 0.08/0.13 
'-· 

Table 5.17: Axial vorticity at r=4/5a as function of time and position 
(experiments (±0.05)/calculations). 

5.4 Influence of various parameters on axial and secondary flow 

5.4.1 Introduction 

To gain more insight into the influence of the frequency parameter and the steady 

flow component on axial and secondary flow, calculations were performed at a 

Womersley parameter of 15 and 24.7, for a Reynolds number varying between 200 

and 800, and at a Womersley parameter of 7.8 and 24.7, for a Reynolds number 

varying between -300 and 300. For the latter two flow cases the Reynolds number 

was adjusted by lowering the axial velocity values. Also axial and secondary flow 

were investigated for a physiologically varying flow rate, as presented in figure 5.20. 

The Reynolds number varied between 200 and 800, with a time-averaged mean 

Reynolds number of about 300. The Womersley parameter for this flow case was 

equal to 4. All flow cases are summarized in table 5.18. Flow case 1 is the situation 

described in detail before. This case will be denoted as the reference flow case. 

Reynolds Womersley Flow~ 
number parameter wave 

case 1 200:800 82:327 7.8 pulsating 

case 2 200:800 8 2 :327 15 . 0 pulsating 

case 3 200:800 82:327 24.7 !Pulsating 

case 4 200:800 8 2:327 4.0 physiological 

case 5 -300:300 -122:122 7.8 .oscillating 

case 6 -300:300 -122:122 24.7 loscillatin 

Table 5.18: Summary of the parameters for the unsteady flow cases. 
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For the flow cases 2 and 3 the finite element division consisted of 15 elements 

in axial direction and 30 elements per cross-section. The lengths of the inlet and 

outlet sections were equal to 2 times the radius of the tube and consisted of 1 and 2 

elements in the axial direction, respectively. Using this element division for the 

calculation of axial and secondary flow for flow case 1, no remarkable differences 

with the results presented earlier were found. For flow case 4 the same element 

division was used as for flow case 1. The boundary conditions for the flow cases 2,3 
and 4 were the same as employed for flow case 1, i.e. at the inlet fully developed 

unsteady pipe flow was assumed. To that end for the physiological flow wave 15 

harmonics were used to correctly prescribe the axial flow field at the inlet. From a 

velocity calculation of fully developed oscillating flow in a straight tube, it appeared 

that the stress-free boundary condition at the outlet gave rise to large oscillations 

in the velocities in the outstream region. Therefore, essential boundary conditions, 

describing fully developed oscillating flow in straight tubes, were applied to both 

ends of the curved tube for the flow cases 5 and 6. To ensure that fluid flow was 
fully developed, the lengths of the instream and outstream sections for flow case 5 

were chosen to be 20 times the radius of the tube. For flow case 6 the same element 

division was used as for flow case 1. Two dimensional test calculations in straight 

tubes revealed that these lengths were reasonable estimates. Because of the long 

instream and outstream pipes for flow case 5 and due to the limited capacity of the 

computer used for this calculation, the number of elements per cross-section had to 
be reduced to 20. The total number of elements in the axial direction was equal to 

28. 

In table 5.19 the number of periods needed to reach convergence are 

presented. For the flow cases 1,2 and 3 the number of periods seems to be linearly 

dependent on the Womersley parameter. For these flow cases it was typical to see 

that the curvature of the axial isovelocity lines intensified with increasing period 

number. This phenomenon probably indicates that the number of periods needed to 

reach convergence is dominated by the development of the flow field induced by the 

steady flow component. For the physiological flow case one and a half period was 

sufficient to reach convergence because flow at the end of the diastolic phase was 

found to be quasi-steady. For oscillating flow rates the number of periods appears 

to be smaller for higher Womersley parameters, which is different from the pulsatile 

flow cases. This is plausible due to the absence of a steady flow component and the 

resulting lower secondary velocities at higher frequencies. 



5.29 

3 4 5 6 

9 1.5 6 3 

Table 5.19: Number of periods needed to reach convergence (N) for the various 
flow cases. 

As for the reference case, the number of time steps per period for the flow 

cases 2,3,5 and 6 was equal to 24. For the physiological flow case variable time steps 

were applied, as pointed out in figure 5.20. The time steps in the systolic phase were 

taken equal to 1/128T, whereas the time steps at the end of the diastolic phase were 

set equal to 3/64T. 

Re 
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Figure 5.20: Time steps and presentation levels for the physiological flow case. 

For the flow cases 2,3,5 and 6 first an Euler-implicit time integration scheme 

was applied during 3/4T, succeeded by a Crank-Nicolson scheme. For the flow cases 

2,3 and 5, after 3 periods again an Euler-implicit time integration scheme was 

applied during 3/4T because of the bad convergence of the solution. All velocity 

calculations were started at minimal flow rate and used a zero velocity field as 

initial condition. In case of the physiological flow wave the calculation was started 

near the onset of the diastolic phase (fig. 5.20). For this flow case during 11 time 

steps an Euler-implicit time integration scheme was applied. 
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For all flow cases except 4, the results are presented at the same time levels 

as for the reference flow case, i.e. at mean flow rate in the acceleration phase, at 

peak flow rate, at mean flow rate in the deceleration phase and at minimal flow 

rate. For the physiological flow wave the results are presented at the time intervals 
indicated in figure 5.20. At these time intervals the Reynolds numbers were equal 

to 500, 800, 540 and 265, respectively. 

5.4.2 Qualitative co~nparison between the various flow cases 
------- -------------- --------------------------------------

- The influence of the frequency parameter 

In figure 5.21 the results of axial flow in the plane of symmetry and axial and 

secondary flow at 0=22.5° and 67.5° as function of time are shown for the flow cases 
1 and 2 (flow case 2: 200<Re<800, o=15, pulsating). From the axial velocity 
profiles (fig. 5.21a) it is observed that at minimal flow rate and halfway the 

acceleration phase the axial velocities near the inner bend are consequently lower for 
flow case 2, as compared to those for the reference flow case, whereas these 

velocities are consequently higher at the other time intervals. This results in larger 

regions with reversed axial flow at t=3/4T and more pronounced axial velocity 

plateaus at t=l/4T. The shift of the axial velocity maximum towards the outer 

bend is about the same for both flow cases. At peak flow rate relatively high axial 

t= 0 t =1/4 T 

t=112T t=3/4 T 

Figure &.2la: Axial flow in the plane of symmetry for flow case 1 (--) and 
flow case 2 (-). 
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Figure 5.2lb: Axial flow at 0=22.5° and 67.5° for flow case 1 
case 2 (- -). 
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figure 5.2lc: Secondary flow at 8=22.5° and 67.5° for flow case 1 (-) and 
:flow case 2 (-). 



5.33 

velocity minima occur downstream in the curved tube for flow cage 2. On the 

contrary to the velocity gradients at the outer wall, for flow cage 2 the velocity 

gradients at the inner wall are much larger at peak flow rate and much smaller at 

minimal flow rate, ag compared to the velocity gradients for the reference flow cage. 

In figure 5.21b the axial velocity contours at 0=22.5° and 67.5° are presented 

as function of time. At 0=22.5° the largest differences in the axial velocities occur 

halfway the acceleration phase (t=O), where the contours have a much more 

agymmetric appearance for flow cage 2 than for the reference flow cage, and at the 

end of the deceleration phage (t=3/4T). At the latter time interval, for flow CMe 2 a 

larger region with reversed axial flow is found with negative axial velocities of about 

50% of the mean axial velocity at t=O. This region has extended towards the upper 

side wall of the curved tube. At 0=67.5°, the differences between the two flow CMes 

are expressed by the more or less pronounced C-shaped axial velocity contours and 

the larger region with negative axial velocities at minimal flow rate for flow cage 2, 

which extends towards the center of the tube in the plane of symmetry. 

Secondary flow for the flow cases 1 and 2 is presented in figure 5.21c by 

secondary velocity profiles. At 0=22.5° these secondary velocity profiles look quite 

the same for both flow cages. At minimal flow rate and halfway the acceleration 

phage the secondary velocities are somewhat higher for flow cage 2, whereag, at peak 

flow rate these velocities are somewhat lower. At 0=67.5°, however, secondary flow 

for flow case 2 shows complicated structures, especially at t=l/4T and 1/2T. At 

peak flow rate on each line both components of secondary flow are changing two or 

three times of direction. Near the side wall all secondary velocities are directed from 

the outer bend towards the inner bend. Near the plane of symmetry, however, 

secondary velocities are found directed from the inner bend towards the outer bend, 

as well as secondary velocities directed from the outer bend towards the inner bend, 

pointing to the development of Lyne type structures. At all time intervals, except 

t=l/4T, the secondary velocities for flow case 2 are higher than the secondary 

velocities for the reference flow case. 

In figure 5.22 the results are shown for the flow CMes 1 and 3 (flow case 3: 

200<Re<800, a==24.7, pulsating). From the axial velocity profiles in the plane of 

symmetry (fig. 5.22a} it is observed that the shift of the axial velocity maximum 

towards the outer bend develops in the same way for both flow CMes. Also the 

velocity gradients at the outer wall are about the same, except a.t minimal flow rate 

at the positions 0=0° and 22.5° due to the difference in the inlet profiles. On the 

contrary, large differences are found between the velocity gradients a.t the inner 
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wall. As for flow case 2, for flow case 3 these velocity gradients are much larger at 

peak flow rate and much smaller at minimal flow rate, as compared to the velocity 
gradients for the reference flow case. At t=l/4T and 1/2T, the axial velocities near 

the inner bend are consequently higher for flow case 3. The region with reversed 

axial flow contains higher negative velocities for flow case 3. For 9=22.5° and 90° 

these regions are somewhat smaller in the plane of symmetry, whereas larger regions 

with reversed axial flow are found at 9=45° and 67.5°. Local minima in the axial 

velocity profiles are not observed for flow case 3. 

t=O t=1/4 T 

2Umn ,_____. 

t=112T t=3/4 T 

Figure 5.22a: Axial flow in the plane of symmetry for flow case 1 (--) and 
flow ease 3 (-). 

The axial velocity contours at 0=22.5°, presented in figure 5.22b, are quite 

the same at all time intervals, except at minimal flow rate. At this time interval a 

region with negative axial velocities along the total side wall is observed, whereas 

for the reference flow case this region is situated near the inner bend. This difference 

is mainly caused by the differences in the velocity profiles prescribed at the inlet for 

both flow cases. The axial velocity contours at 9=67.5° show more or less 

pronounced C-shaped isovelocity lines for flow case 3 and a larger region with 

reversed axial flow near the inner bend at t=3/4T. This region has extended 

towards the upper side wall. 
The secondary velocity profiles for this flow case are presented in figure 

5.22c. At 0=22.5° these profiles have the same appearance as the profiles for the 

reference flow case. The secondary velocities are somewhat higher for the time levels 

t=O and 3/4T and somewhat lower for t=l/4T and l/2T. At 9=67.5° larger 
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Figure 5.22b: Axial flow at 9=22.5° and 67.5° for flow ease 1 (--) and flow 
case 3 (- -). 
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Figure 5.22e: Secondary flow at fJ=22.5° and 67.5° for flow case 1 (-) and 
flow case 3 (-). 
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differences are found in the secondary flow field. The irregular structures as found 

for flow case 2, however, are not present here. Throughout the flow cycle, the 

secondary velocities parallel to the plane of symmetry, are directed from the inner 

bend towards the outer bend near the plane of symmetry and circumferentially back 

near the side wall. For flow case 3 at peak flow rate both secondary velocity 

components near the side wall are lower, whereas these components are higher at 

minimal flow rate, as compared to the secondary velocities for the reference flow 

case. It is remarkable that the secondary velocity profiles at both positions for flow 

case 3 are almost constant in time. Apparently the unsteadiness of the flow rate at 

this high value of the Womersley parameter, hardly affects the secondary flow field. 

-Influence of the flow wave form 

In figure 5.23 the results are shown for flow case 1 and flow case 4, the physiological· 

flow wave (flow case 4: 200<Re<800, a=4, physiological). From the axial velocity 

profiles in the plane of symmetry, presented in figure 5.23a, it may be concluded 

that there is a good agreement between both flow cases. The largest differences 

occur at minimal flow rate and halfway the acceleration phase. At t=3/4T these 

differences are mainly observed in the higher axial velocities near the inner bend for 

flow case 4 and the absence of a region with reversed axiaJ flow, probably due to the 

larger Reynolds number at this time interval. At t=O the development of an axial 

velocity plateau near the inner bend is less pronounced for flow case 4 than for the 

t=1/4T 
0 

v· 

I 

t=1/2 T t =3/4 T 

Figure 5.23a: Axial flow in the plane of symmetry for flow case 1 and 
flow case 4 (-). 
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Figure 5.23b: Axial flow at 8=22.5° and 67.5° for flow case 1 (--) and flow 
case 4 (--). 
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Figure 5.23c: Secondary flow at 0=22.5° and 67.5° for flow case 1 (-) and 
flow case 4 (•-). 
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reference flow case. The shift of the axial velocity maximum towards the outer bend 

and the axial velocity gradients at the outer wall are about the same for both flow 

cases. 

In figure 5.23b the axial velocity contours are presented for flow case 1 and 4. 

It is observed that there is a rather fair agreement between the axial velocity data 

at both cross-sectional planes. The main differences are characterized by the 

absence of regions with reversed axial flow due to the larger Reynolds number, and 

the absence of a local minimum in the axial flow field at 0=67.5° and t=O. 

Also the secondary velocity profiles, presented in figure 5.23c, are in good 

agreement. The largest differences occur at t=O and 0=67.5° for the secondary 

velocities near the plane of symmetry and near the side wall. From this comparison 

between axial and secondary flow it can be concluded that the influence of the 

diastolic phase on the flow phenomena occurring in the systolic phase is of minor 

importance. 

-Influence of the steady flow component 

To study the influence of the steady flow component on the secondary flow field, the 

secondary velocities parallel to the plane of symmetry are presented along the lines 

as depicted in figure 5.24. These secondary velocities are presented along the line IO 

in the plane of symmetry and the line CS, perpendicular to this plane. A positive 

value points at a secondary velocity directed towards the outer bend. Both the 

results of the pulsating and oscillating flow cases are presented. Besides, the 

numerical results are compared with experimental data. 

I 

s 
I 
I 
I 
I 
I 
I 
I Q -----r------

Figure 5.24: Presentation lines of the secondary velO<:ity component directed 
parallel to the plane of symmetry (I: inner, O:outer, C:center, S: side). 

In figure 5.25 the results for the flow cases 1 and 5 (flow case 5: 

-300<Re<300, a=7.8, oscillating) are presented. For flow case 1 all secondary 
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velocities at IJ=0° are directed towards the inner wall, caused by upstream 

influences of the curved tube. For all time intervals downstream in the curved tube 

the secondary velocities in the plane of symmetry are directed towards the outer 

bend, except for a small region at t=O and IJ=67 .5°. For most time intervals the 

secondary velocities in the plane of symmetry at 9=67.5° and 90° are higher at the 

inner bend than at the outer bend. The secondary velocities along the line CS are 

directed from the inner bend towards the outer bend near the plane of symmetry 
and circumferentially back near the side wall at 9=22.5°, 45°, 67.5° and 90°, except 

for a small region at 0=67.5° at t=O and 1/2T. 

For flow case 5 the secondary velocities in the plane of symmetry at 9=22.5°, 

45° and 67.5° are always directed towards the outer bend. At IJ=0° these velocities 

are directed towards the outer wall at t=O, 1/2T and 3/4T and directed towards the 

inner wall at t=l/4T. At this time intervaliJ=0° can be regarded as the inlet of the 

curved tube which, therefore, experiences upstream influences. At t=3/4T, however, 
IJ=0° can be regarded as the outlet of the curved tube due to the negative flow rate. 

Therefore, at this time interval the secondary velocities in the plane of symmetry 

are directed towards the outer wall due to centrifugal forces. At IJ=90° the opposite 
is happening. At 0=22.5°, 45° and 67.5° the secondary velocities along the line CS 

are directed towards the outer bend near the plane of symmetry and 

circumferentially back near the side wall. At these positions the secondary velocities 

are relatively constant in time. At minimal flow rate and halfway the acceleration 

phase, the same happens at IJ=0°, whereas, at t=l/4T these velocities are directed 

towards the inner wall. At t=l/2T these velocities are almost zero. 

A comparison between the pulsating and oscillating flow cases reveals that 

the secondary velocities for the pulsating flow case are higher than those for the 

oscillating flow case, especially at peak flow rate and halfway the deceleration phase. 
This is caused by the presence of a steady flow component. The velocity profiles for 

the oscillating flow case are much smoother than the velocity profiles for the 

pulsating flow case. The secondary velocity profiles point at the occurrence of a pure 

Dean type vortex for the oscillating flow case, whereas for the pulsating flow case 

'tail'-formation occurs in the secondary flow field, resulting in the non-smooth 

secondary velocity profiles downstream in the curved tube. A comparison with the 

experiments reveals a relatively good agreement between the numerical and 

experimental data. For the oscillating flow case the velocities in the plane of 

symmetry are consequently lower for the experiments than for the calculations. It is 

likely that inaccuracies in the measurements are the major cause for this. 
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Figure 5.25: Secondary velocities parallel to the plane of symmetry for the 
pulsating (a) and the oscillating (b) flow ease at 11'=7.8. Experimental data. are 
indicated by dots. Umn stands for the time-averaged mean axial velocity for the 
pulsating flow case. 
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In figure 5.26 the results for the flow cases 3 and 6 (flow case 3:200<Re<800, 
a=24. 7, pulsating; flow case 6: -300<Re<300, a=24. 7, oscillating) are presented. 
For the pulsating flow case it is observed that the secondary velocities are directed 

towards the outer wall near the plane of symmetry and towards the inner wall near 
the side wall of the curved tube at 8=22.5°, 45°, 67.5° and 90°. The secondary 
velocities in the plane of symmetry are much lower at 8=67.5° and 90°, as 
compared to the secondary velocities at 8=22.5° and 45°. The secondary velocities 
at the entrance of the tube ( 0=0°) are always directed towards the inner bend. 

Compared to the pulsating flow case at a=7 .8, the secondary velocities are 
relatively constant at all time intervals, indicating that at higher frequencies 

secondary flow is highly determined by the steady flow component. 
The secondary velocities for the oscillating flow case are presented in figure 

5.26b. These velocities are scaled up 5 times, as compared to the secondary 
velocities for the pulsating flow case. At 0=22.5°, 45° and 67.5° the secondary 
velocities predicted by the numerical model are low, as compared to the secondary 
velocities at 8=0° and 90°. At 0=0° the secondary velocities are directed towards 

the inner bend at t=l/4T and l/2T (for the numerical case) and towards the outer 
wall at t=O and 3/4T. At 8=90° the opposite is happening. 

A comparison between the experimental and numerical data reveals 
relatively large differences in case of oscillating flow. At most time intervals and 

positions in the tube, the measured velocities are higher than the calculated ones. It 
must be kept in mind, however, that the secondary velocities for the oscillating flow 

case are very low, as compared to the axial velocities. Therefore, small errors in the 
adjustment of the laser Doppler equipment may result in rather large errors in the 
determination of the secondary velocities. The oscillations in the numerical profiles 
for the secondary velocity component in the plane of symmetry at 8=0° and 90° are 

probably caused by a too coarse element division in the axial direction. The axial 
velocity profiles at 0=22.5°, 45° and 67.5°, presented in figure 5·.27, reveal that the 
entrance angle to reach full development is smaller than 22.5°. Therefore, the 

applied number of 3 elements in the axial direction between 8=0° and 22.5° was 
probably to small to adequately predict this rapid development. 

In figure 5.27 the axial velocity profiles in the plane of symmetry and the 

secondary velocity profiles at 0=45° and t=l/4T, are presented for the oscillating 
flow cases. It is observed that for both flow cases the axial velocity maximum is 
shifted towards the inner wall except in the downstream region of the curved tube 
for a=7.8 at t=3/8T. For both Womersley parameters large upstream influences are 
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Figure 5.26: Secondary velocities parallel to the plane of symmetry for the 
pulsating (a) and the oscillating (b) flow case at ct=24.7. Experimental data are 
indicated by dots. Umn stands for the time-averaged mean axial velocity for the 
pulsating flow case. 
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observed at t=l/8T and 1/4T. The secondary flow field at 0:=45° resembles a pure 

Dean type vortex for a=7.8, whereas the secondary flow field for a=24.7 shows a 

central core in which the velocities are directed towards the inner wall pointing at a 

Lyne type secondary flow field. The secondary velocities for a=24.7, however, are 

about 50 times lower than the secondary velocities for a=7.8. 
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Figure 5.27: Axial velocities in the plane of symmetry and secondary velocities 
halfway the curved tube at peak flow rate for the oscillating flow cases 5 (a) and 
6 (b). Umn stands for the time-averaged mean axial velocity for the pulsating 
flow cases. 
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5.4.3 Quantitative comparison between the various flow cases ----------------------------------------------- ------------

A quantitative comparison of axial and secondary flow for the flow cases studied is 

performed by its first moment of axial flow, the axial vorticity of the central core 

and the axial vorticity at a radius of 4/5 times the radius of the tube. In the 

definition of the axial vorticity (eq. 5.2) for all flow cases the time-averaged mean 

axial velocity for the reference flow case was substituted for Umn· In figure 5.28 the 

first moment of axial flow is presented at 9=22.5° and 67.5° as function of time for 

the flow cases 1 to 3 and for the flow cases 1 and 4 compared with the steady flow 

case, as presented in section 5.2. 

(a) 

(b) 

0.5 

0.5 

case 1 
~ 
case 2 

"l···"'-~-9 
case 3 
0····-e-~--e 

8=22.5° 
0.5 

3!4T 

0.5 

Figure 5.28: First moment of axial flow at two positions in the curved tube as 
function of time for the flow cases 1 to 3 (a) and the flow cases 1, 4 and the 
steady flow case (b). 

From this figure it can be concluded that for all flow cases the highest value 

of <X/a> is found at minimal flow rate for both positions 0=22.5° and 67.5°. The 

values of <X/a> for the flow cases 1 to 3 are relatively close at all time intervals. 

Also the values of <X/a> at 9=22.5° and 67.5° are quite the same. Apparently the 
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frequency parameter hardly affects the shift of axial flow towards the outer wall in 

case a steady flow component is present. It must be kept in mind, however, that the 

first moment of axial flow is rather insensitive to differences in, for example, the 

G-shaped curvatures of the axial isovelocity lines. The first moment of axial flow 

for the physiological wave form is in rather good agreement with the value for the 

reference flow case at t=O, 1/4T and 1/2T at both positions 0=22.5° and 67.5° and 

shows a relatively large difference at t=3/4T. Probably, this is due to the difference 

in the Reynolds number at this time interval for both flow cases. The value of 

<X/a> for the reference flow case is in rather good agreement with the value for 

steady flow at t=O, 1/4T and 1/2T. 

The axial vorticity of the central core as function of time is presented in 

figure 5.29. For the axial vorticities also a comparison is made between the 

oscillating and pulsating flow cases at a=7.8 and 24.7. For all pulsating flow rates 

the axial vorticity at 8=22.5° is maximal halfway the deceleration phase at t=l/2T. 

The values at peak flow rate, however, are about the same. For flow case 3 the axial 

vorticity is about constant for the whole period of time. At 0=67.5° the values of 

the axial vorticities are smaller than the values at 8=22.5°. At peak flow rate for 

flow case 1 a maximum is observed, whereas for flow case 2 a minimum is found at 
this time interval. The minimum for the latter flow case is caused by the Lyne type 

structures in the secondary flow field at t=l/4T. Again, the axial vorticity for flow 

case 3 is about constant for the whole period of time. This suggests that the 

secondary flow field for higher frequencies is dominated by the steady flow 

component. This supposition is supported by the fact that the values of ec for flow 

case 3 are in good agreement with the values of this quantity for steady flow. 

A comparison between the reference flow case and the physiological flow 

wave reveals a good agreement at all time intervals, suggesting that the influence of 

the diastolic phase is of minor importance for the secondary flow field in the systolic 

phase. The values of ec for the steady flow case at 8=22.5° are in rather good 

agreement with the values for the reference flow case at t=l/4T and 1/2T. At 
8=67.5° this is only valid halfway the deceleration phase at t=l/2T. 

The axial vorticity of the central core for an oscillating flow rate at a=7.8 

shows a large minimum for t=l/2T at 0=22.5°. The reason for this phenomenon is 

not yet understood. The values of ec are smaller than the values of this quantity for 

the reference flow case for the whole period of time due to the smaller Reynolds 

number. This is not valid, however, at 0=67.5° due to the 'tail'-formation in the 

secondary flow field for the pulsating flow case. The axial vorticity of the central 
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Figure 5.29: Axial vorticity of the central core at two positions in the curved 
tube as function of time for the flow cases 1 to 3 (a), for the flow cases 1,4 and 
the steady flow case (b) and for the oscillating and pulsating flow cases at 0:'=7.8 
and 24.7 (c). 

core for an oscillating flow rate at o=24. 7 is almost zero and slightly negative at all 

time intervals, due to the Lyne type secondary flow field occurring. The velocities in 

the central core for such kind of secondary flow fields are low, as compared to the 

secondary velocities for Dean type vortices. 

At last it should be mentioned that a comparison of the first moment of axial 

flow and the axial vorticity of the central core between the reference flow case and 

the steady flow case, reveals a good agreement at peak flow rate and halfway the 

deceleration phase. Except at 0=67.5° relatively large differences occur in {cat peak 
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flow rate. These features were also observed from a qualitative comparison between 

the two flow cases. A presentation of es will not be given in the present study 

because these diagrams are quite similar to the diagrams presented in figure 5.29, 

except that the values of es are two to three times larger than the values of ec. 

Concluding discussion 

- General description of the flow field 

For steady entrance flow in a 9o-degree curved tube (Re=700, ~=1/6) a shift of the 
maximum of axial velocity towards the outer wall occurs due to centrifugal forces. 

The observed C-shaped axial isovelocity lines and the axial velocity plateaus near 

the inner bend, downstream in the curved tube, are caused by a Dean ty;Pe 

secondary flow, directed outward near the plane of symmetry and directed inward 

near the side wall. Downstream in the curved tube 'tail'-formation occurs in the 

secondary flow field, possibly caused by the fact that fluid particles with relative 

low axial and secondary velocities near the center of the tube are not able to 
penetrate into the region with high axial velocities near the outer wall. 

For a fluid flow with a sinusoidally varying Reynolds number between 200 

and 800 and a Womersley parameter of 7.8, the maximum of axial velocity shifts 

towards the outer wall at all time intervals. Near the inner wall regions with 
reversed axial flow are found halfway the deceleration phase (t=l/2T) and at 

minimal flow rate (t=3/4T). Halfway the curved tube, at 0=45°, also a reversed 

axial flow region is situated at the center of the tube at minimal flow rate (t=3/4T). 

From 0=45° towards 0=90° the axial isovelocity lines show C-shaped contours at 

maximal flow rate (t=l/4T), which intensify in the deceleration phase. These 

C-shaped contours are caused by secondary flow, which on its turn is induced by 

centrifugal effects. The secondary flow field is directed from the inner wall towards 

the outer wall near the plane of symmetry and circumferentially back near the side 

wall of the curved tube, transporting fluid particles with high axial velocities from 

the outer bend towards the inner bend. Due to viscous forces the velocity of these 
particles is lowered. Near the plane of symmetry secondary flow transports particles 

with relatively low axial velocities from the inner bend towards the center of the 

tube, resulting in axial velocity plateaus at the inner half of the cross-sectional 

plane. At all positions the highest secondary velocities occur at peak flow rate, but 
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also halfway the deceleration phase these velocities are high. As for steady flow, in 

the downstream end of the curved tube the secondary flow field shows 

'tail'-formation in the deceleration phase, which is best visible at t=l/2T. At the 

entrance of the curved tube the secondary velocities are directed from the outer wall 

towards the inner wall, pointing at upstream influences of the tube. A qualitative 

and quantitative comparison with the results of steady flow, shows a surprising 

resemblance between the axial and secondary flow fields halfway the deceleration 

phase (t=l/2T). 

-Influence of parameters 

An increase of the Womersley parameter appears to have almost no effect on the 

shift of the maximum of axial velocity towards the outer wall as well as on the axial 

velocity gradients at this wall. The axial velocity gradients at the inner wall, 

however, increase considerably with increasing Womersley parameter. Also large 

differences are observed in the regions with reversed axial flow which have extended 

towards the upper side wall at higher frequencies. It is likely that these differences 

in the upstream region of the curved tube are a consequence of the difference in the 

prescribed axial flow field at the inlet. There, a fully developed unsteady pipe flow is 

assumed, consisting of a Womersley profile for the axial component, being strongly 

dependent on the Womersley number, superimposed on a Poiseuille profile. 

Generally spoken, the secondary flow field under pulsatile flow conditions resembles 

a Dean type vortex. Only for a=15, at 11=67.5° and at peak flow rate, small regions 

near the plane of symmetry are found with secondary velocities directed towards the 

inner bend, pointing to the formation of a Lyne type secondary flow field. Probably, 

full development of this Lyne type secondary flow field is prohibited by the much 

higher secondary velocities resulting from the steady flow component. For a=24. 7 

the secondary flow field is almost constant in time at both positions 0=22.5° and 

67.5°. A qualitative and quantitative comparison of the secondary flow field with 

that found for the steady flow case, reveals a good agreement. Therefore, it is 

presumed that secondary flow at higher frequencies is highly determined by the 

steady flow component. 
A comparison of the axial flow field for the physiological flow pulse with the 

axial flow field for the sinusoidally varying flow rate with a Womersley parameter of 

7.8 reveals a good resemblance between the two flow cases. The main differences are 

found in the absence of axial flow reversal for the physiological flow pulse. This is 
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probably caused by the fact that the Reynolds number at minimal flow rate for this 

case is equal to 265 instead of 200 for the sinusoidally varying flow pulse. The 

secondary flow fields, however, show a great resemblance. Only halfway the 

acceleration phase small differences are found. This supports the idea that the 

diastolic phase is only of minor importance for the systolic phase. 

To study the influence of the steady flow component on axial and secondary 

flow, oscillating flow was studied at Womersley parameters of 7.8 and 24.7 and 

compared to pulsating flow. This comparison reveals that for oscillating flow at 
0 0 0 a=7.8 the secondary flow fields at 8=22.5 , 45 and 67.5 are pure Dean type 

vortices with a slightly varying vortex strength. The irregularities in the profiles of 

the secondary velocities in the plane of symmetry, as observed for the pulsating flow 

case due to 'taiJI-formation in the secondary flow field, are not present in the 

oscillating flow case, for which these profiles are about symmetric around the center 

of the tube and have a much smoother appearance. For oscillating flow at a 

Womersley parameter of 24.7 the secondary velocities are about 50 times lower as 

those for the pulsating flow case. Near the plane of symmetry and in a small layer 

near the side wall the secondary velocities are directed towards the inner bend, 
whereas in a small layer within these two regions, secondary flow is directed towards 

the outer wall. This confirms the analytically predicted change in the secondary flow 

field, due to the restricted influence of viscous effects, which for a> 13 results in a 

Lyne type secondary flow. However, the element division in the axial direction near 

the entrance of the curved tube is probably too coarse to predict adequately the 

rapid development of this secondary flow, which may cause the oscillations 

observed. Axial flow in the plane of symmetry shows for both oscillating flow cases a 

shift of the maximum of axial velocity towards the inner wall, in contrast with a 

shift towards the outer wall as found for both pulsating flow cases. It is likely that 
this is due to the differences in the axial velocity profiles prescribed at the inlet, 

which are more uniform for the oscillating flow cases than for the pulsating flow 

cases. 

Comparison with experiments 

For the steady flow case comparison of the axial and secondary velocities 

determined by the numerical model with those obtained from laser Doppler velocity 

measurements reveals a good agreement. The largest differences are found in the 

secondary velocities near the side wall, which are lower in the experiments. This 
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discrepancy is also found in the smaller values of the maximal axial vorticity for the 

measurements. Probably, these differences are caused by measuring problems near 

the side wall of the curved tube. 

Also for the reference flow case (a=7.8, 200<Re<800, sinusoidally varying 

flow rate), the numerical and experimental data show a good agreement. The largest 

differences in the axial flow field occur near the inner bend of the tube, where no 

reversed axial flow is found in the experimental case, whereas regions with axial 

flow reversal are predicted by the numerical model halfway the deceleration phase 

and at minimal flow rate. These regions with reversed axial flow cause larger values 

of <X/a> for the calculations at the end of the deceleration phase. It is likely that 

the absence of axial flow reversal in the experiments is caused by the larger 

Reynolds number at minimal flow rate, as compared to the one used for the 

calculations. The largest differences in the secondary flow field are found in the 

secondary velocities near the side wall, whereas the secondary velocities in the plane 

of symmetry are in good agreement with each other. This is also expressed by the 

values of ec, which are in relative good agreement, and the values of {s, which show 

large differences in the deceleration phase halfway the curved tube. The reason for 

this discrepancy has to be sought in the finite dimensions of the measuring volume, 

the steep velocity gradients at the wall, the differences in the Reynolds numbers at 

the time intervals presented and positioning errors of the measuring volume. 

Besides, numerical oscillations occur in the secondary flow field at the entrance of 

the curved tube. These oscillations are possibly caused by a too short inlet section or 

a too coarse element division in the axial direction. A calculation of the velocity 

field in a curved tube with a smaller entrance length showed larger oscillations in 

the secondary flow field. The solution more downstream in the curved tube, however 

was not affected. 

Finally, the numerical results for the cases of oscillating and pulsating flow 

rates were confronted to experiments. The experimentally measured and 

numerically determined secondary velocities in the plane of symmetry and along a 

line perpendicular to this plane, show a good qualitative agreement. The relatively 

large differences between the experimental and numerical data are mainly induced 

by the fact that the secondary velocities, especially for the oscillating flow cases, are 

small, as compared to the axial velocities, through which small errors in the 

adjustment of the laser Doppler equipment result in relatively large detection errors 

of these velocities. The observed oscillations in the numerical solution for the 

oscillating flow case at a=24. 7 are probably caused by a too coarse element division 
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in this region. 

- Comparison to literature 

A comparison of the results obtained in the present study with those reported in 

literature is difficult to perform, because most studies are dealing with fully 

developed flows, which is probably only valid for the oscillating flow case at a 

Womersley parameter of 24.7. Studies dealing with unsteady entrance flow in 

curved tubes are mostly performed under totally different flow conditions. 

Nevertheless, a comparison is being made with the results of laser Doppler velocity 
measurements performed by Talbot and Gong (1983). In their first experiment axial 

and secondary flow were measured in a 180-degree curved tube with a curvature 

ratio of 1/20. The Dean number varied sinusoidally between 80 and 160 

(360<Re<720) at a Womersley parameter of 8.0. At all positions and time interv.a:ls 

they observed a Dean type secondary flow field. The plots of the profiles of the 

secondary velocity component parallel to the plane of symmetry do not suggest that 

'tail'-formation occurred in the secondary flow field, as observed in the present 

study for the reference flow case. For all time intervals the maximum of axial 

velocity shifted towards the outer wall. The C-shaped curvatures in the axial 

velocity contours, however, were not or slightly present. In their second experiment 

fluid flow was investigated in a curved tube with a curvature ratio of 1/7 for a 

sinusoidally varying flow rate at a=12.5 (0<K<744; 0<Re<1970). Especially at 

peak volume flow and halfway the deceleration phase, complicated secondary flow 

fields were observed at 8=60° and 110° with two regions where secondary flow was 

directed towards the outer wall and two regions where secondary flow was directed 

towards the inner wall. These secondary flow fields are quite similar to the 

secondary flow field which occurs in the present study for the pulsating flow case at 

a=l5, 0=67.5° and t=l/4T. In the second experiment of Talbot and Gong (1983) 
C-shaped axial velocity contours were observed downstream in the curved tube for 

all time intervals, except just before peak flow rate. The curvature of these 

C-shaped contours, however, was less pronounced as found in the present study. 
Finally, they observed large regions with reversed axial flow near the inner bend. 

These regions are clearly due to the zero minimal flow rate. 

Munson (1975) visualized for a range of Womersley parameters (0.7<a:<32) 

fully developed unsteady flow in a 360-degree curved tube with a curvature ratio 

equal to 0.072. In these experiments the secondary velocity component parallel to 
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the plane of symmetry in the center of the tube was measured as function of a. It 
was found that for values of a larger than 13 this secondary velocity component was 

directed towards the inner wall (Lyne type secondary flow field), whereas for values 

of a smaller than 13 this secondary velocity component was directed towards the 

outer wall (Dean type secondary flow field). The value of the outward directed 

component was large, as compared to the value of the inward directed component. 

Munson (1975) defined a time-averaged dimensionless quantity of this secondary 
velocity component, which was found to be 0.35x10-2 for a=7.8 and -Q.15xlo-3 for 

a=24.7. These values are 1.40xl0-2 and -o.05xl0-3, respectively, at 0=45° for the 

oscillating flow cases, as investigated in the present study. It is observed that the 

value of this quantity is indeed much smaller for a=24.7 than for a=7.8 and that 

opposite velocity directions are found. The relatively large difference with the value 

found by Munson (1975) for a=7.8 is probably caused by the fact that fluid flow at 
0=45° was not yet fully developed in our experiment. 

A shift of the maximum of axial velocity towards the inner wall is many 

times reported in literature for steady entrance flow in a curved tube with a uniform 
inlet profile. Olson (1971) studied steady entrance flow in tubes with curvature 

ratios of 1/4.66 and 1/16. The Dean number varied between 45 and 800 and 
parabolic and uniform inlet profiles were employed. For the parabolic inlet profiles 

the maximum of axial velocity immediately shifted towards the outer wall, whereas 

for the uniform inlet profiles this maximum was situated near the inner wall in a 
region close to the inlet and shifted towards the outer wall downstream in the 

curved tube. Also Agrawal et al. (1978) observed an initial shift of the axial velocity 

maximum towards the inner wall when a uniform inlet profile was applied. In their 

laser Doppler experiments fluid flow in a curved tube ( fr-= 1 /7) was analyzed at a 

Dean number of 183. Singh et al. (1978) performed an analytical study on pulsatile 

entrance flow in a curved tube using uniform inlet profiles. The pulsatile wave form 

consisted of a sinusoidally varying unsteady flow component superimposed on a 
steady flow component. Higher axial velocities near the inner bend were observed, 

as compared to the axial velocities near the outer bend, for axial distances to the 

entrance of the tube smaller than two times the radius. This all supports our 

findings in the oscillating flow cases, where an axial velocity profile at the inlet is 

prescribed which is rather uniform. 

Mullin and Greated (1980) used laser Doppler anemometry for their axial 

velocity measurements in the plane of symmetry of a 18o-degree curved tube with a 

curvature ratio of 1/7. The Dean number varied sinusoidally between -<i5 and 65 
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(-172<Re<l72) at a Womersley parameter of 4.36. Halfway the acceleration phase 

they measured a strong upstream influence of the curved tube at the entrance of the 

bend, resulting in a shift of the maximum of axial velocity towards the inner wall. 

According to Mullin and Greated (1980), secondary flow did not play an important 

role at this stage and, therefore, the maximum of axial velocity remained at the 

inside of the bend at all axial positions in the curved tube. At the onset of the 

deceleration phase, however, the maximum of axial velocity shifted towards the 

outer wall at all axial positions. This differs from the findings observed in the 

present study at a higher Reynolds and Womersley number, where the maximum of 

axial velocity is situated near the inner bend at all axial positions at peak flow rate 

for both oscillating flow cases. However, for a=7.8 just after the onset of the 

deceleration phase also a shift of the maximum of axial velocity is found towards the 

outer wall downstream in the curved tube. 
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6 Steady flow in a 3D-model of the carotid artery bifurcation 

6.1 Introduction 

From the results of steady and unsteady entrance flow in a 90-degree curved tube, 

presented in the previous chapter, it ca.n be concluded that steady flow calculations 

may supply important information of the flow phenomena occurring in the 

deceleration phase of systole. Besides, it appeared that fluid flow in a 90-degree 

curved tube is almost steady at the end of diastole. In this chapter a finite element 

approximation of steady flow in a rigid three-dimensional model of the carotid 

artery bifurcation is presented at a Reynolds number of 640 and a flow division ratio 

of about 50/50, simulating peak systolic blood flow. The numerical results of axial 

and secondary flow are compared with those obtained from laser Doppler velocity 

measurements. Also the influence of the Reynolds number, the flow division ratio 

and the bifurcation angle on axial and secondary flow in the carotid sinus is studied. 

Up to now only calculations of fluid flow in two-dimensional models of a 

bifurcation (Fernandez et al.; 1976, Rindt et al., 1987) or in a simplified 

three-dimensional model (Wille, 1984) have been presented, the latter dealing with 

an unphysiologically low Reynolds number of 10. The use of two-dimensional or 

simplified three-dimensional models of the more complicated in vivo situation can 

be explained by the rather complex geometry of a bifurcation, which is hard to 

divide into elements for the three-dimensional situation, and the relatively large 

computing times needed to solve the system of equations resulting from a 

three-dimensional analysis. Rindt et al. (1987) performed an experimental study on 

steady and unsteady flow in a two-dimensional model of the carotid artery 

bifurcation. A laser Doppler technique was used to investigate axial flow at various 

sites in the main branch and both daughter branches. Bharadvaj et al. (1982) 

employed laser Doppler anemometry to study steady flow in a three-dimensional 

model of the carotid artery bifurcation. For various Reynolds numbers and flow 

division ratios axial velocity measurements in the plane of symmetry were 

performed. To gain more insight into the total flow field occurring, also limited 

axial and secondary velocity measurements were performed out of the plane of 

symmetry. Finally, Ku and Giddens (1983) studied unsteady flow in a 

three-dimensional model of the carotid artery bifurcation under physiological flow 

conditions using laser Doppler anemometry. 

In section 6.2 the numerical results are presented of a steady velocity 



6.2 

calculation at a Reynolds number of 640 and a flow division ratio of about 50/50, 

simulating peak systolic blood flow. To validate the numerical model a qualitative 

and quantitative comparison is made between the numerically predicted velocities 

and those obtained from laser Doppler velocity measurements (Rindt et al., 1988). 

In vivo flow rate measurements reveal that the Reynolds number and the 

flow division ratio over the daughter branches vary considerably during a flow cycle. 

Therefore, the influence of the Reynolds number and the flow division ratio on both 

axial and secondary flow in the carotid sinus is studied. The present study deals 

with steady flow and only one parameter will be varied at the same time. 

Nevertheless, it is believed that such a parameter study supplies important 

information how axial and secondary flow depend on the Reynolds number and the 

flow division ratio. Besides, the influence of a smaller bifurcation angle is 

investigated. The results of this parameter study are presented in section 6.3, where 

a qualitative and quantitative comparison is made with axial and secondary flow in 

the carotid sinus under systolic flow conditions, as shown in section 6.2. 

Finally, in section 6.4 the results are discussed and compared with data 

available in literature. 

6.2 Steady flow under systolic flow conditions 

6.2.1 Introduction 

In this section the results of a finite element calculation of steady flow at a Reynolds 

number of 640 and a flow division ratio of about 50/50 are discussed. The definition 

of the Reynolds number is based upon the diameter of and the mean axial velocity 

in the main branch of the carotid artery bifurcation. To equalize the flow division 

ratio for the numerical case to that for the experimental case (52% through the 

internal carotid artery), the length of the internal carotid artery was chosen to be 10 

times the diameter of the main branch. 

For division of the carotid artery bifurcation into elements, the mesh 

generator was used, as described in section 3.7. Figure 6.1 shows a hidden line plot 

of this element division, which consists of 1474 elements and 14019 nodes. Further 

refinement of this element division was not possible due to the limited capacity of 

the computer used. From a comparison of the numerical results with experimental 

data, however, it can be concluded that the element division as presented in figure 
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6.1, is suitable to accurately describe axial and secondary flow. The boundary 

conditions were the same as applied to the steady flow problem in a 9o-degree 

curved tube, i.e. a parabolic axial flow field and :rero tangential velocities at the 

entrance of the common carotid artery, zero velocity components at the side wall of 

the bifurcation, zero normal and tangential stresses at the end of both daughter 

branches and zero tangential stress components and a zero velocity component in 

the plane of symmetry. 

carotid 
sinus 

common 
carotid 

Figure 6.1: Element division for the carotid artery bifurcation. 

In the first iteration the Stokes-solution was used as initial guess for the 

Navier-Stokes problem at a Reynolds number of 150. After convergence the 

Reynolds number was enlarged to 300, to 470 and, finally, to 640. For convergence 

at the latter Reynolds number the maximal difference between the velocity 

components of two successive iterations had to be of 0(10-4). To that end in total 

18 iterations were needed. 

For the mesh as shown in figure 6.1, one iteration on a Convex-clxp took 

about one hour of computing time. The total computing time could be reduced by 

using interpolation of the solution from a coarse to a fine mesh. First, the problem 
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was solved using a coarse element division for which one iteration took about one 

quarter of an hour computing time. At the Reynolds number of interest the solution 

was interpolated to the fine element division, and several more iterations were 

performed until convergence was reached. This method reduced the total computing 

time with a factor 2 to about 10 hours. 

6.2.2 Description of the flow field 

For presentation of the flow field the cross-sections are considered as given in figure 

6.2. One cross-section is positioned in the main branch just before the bifurcation 

region, 2 cross-sections are located in the external carotid artery and 3 

cross-sections in the carotid sinus. 

Figure 6.2: Cross-sections at which results a.re presented. The characters C, I 
and E refer to common, internal and external carotid artery and the numbers to 
axial distances to the flow divider, expressed in diameters of the main branch. 

In the figures 6.3a and 6.3b axial flow is presented by means of axial 

isovelocity lines and secondary flow is visualized by means of velocity vectors. 

Contour level 0 corresponds with zero axial velocity and levellO with maximal axial 

velocity at the entrance of the common carotid artery. The secondary velocities in 

the main branch are scaled up 10 times with respect to the other levels. 

At the entrance of the common carotid artery (01.5) the axial flow field 

hardly differs from a parabolic flow field. Secondary flow at this site is completely 

directed from the internal side, the side of the internal carotid artery, towards the 

external side, pointing at upstream influences due to flow branching. These 
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Figure 6.3a: Axial flow and secondary flow in the main branch and the external 
carotid artery (1: internal carotid artery side, D: divider wall, S: side wall). 

secondary velocities result in a larger flow rate through the external carotid artery 

than expected on the basis of the geometry alone. The secondary velocities at the 

external side are somewhat higher than the secondary velocities at the internal side. 

At the entrance of the internal carotid artery (IO) high axial velocities are 

found near the divider wall, which is primarily caused by flow branching. A region 

with negative axial velocities with a diameter of about 30% of the local diameter of 

the bulb is seen opposite to the flow divider. Secondary flow at this site is almost 

entirely directed towards the divider wall except in a small region near the side 

wall, where secondary flow is directed towards the non-divider wall. The highest 

secondary velocities are found near the flow divider. When axial flow is defined as 
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Figure 6.3b: Axial flow and secondary flow in the carotid sinus (D: divider wall, 
S: side wall). 

the velocity component parallel to the axis of the common carotid artery and 

secondary flow as the velocities perpendicular to this axis, it is found that secondary 

flow at the entrance of the bulb is almost zero over the whole cross-sectional plane 

except for a small region along the side wall. In this region secondary flow is 

directed towards the non-divider wall. These findings indicate that the main flow 

direction at the entrance of the internal carotid artery is still parallel to the axis of 

the main branch. 

Halfway the bulb (11) the geometry of the region with negative axial 

velocities has enlarged to a diameter of about 60% of the local bulb diameter in the 

plane of symmetry. In the direction perpendicular to the plane of symmetry, 
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however, this region has become smaller. The maximum of axial velocity is shifted 

towards the divider wall, as compared to the maximum of axial velocity at the 

entrance of the carotid sinus, and the low-numbered axial velocity contours show 

C-shaped curvatures. All these effects are strongly related to secondary flow at this 

site, which shows high resemblance with a Dean type vortex. Near the plane of 

symmetry the secondary velocities are directed towards the divider wall and near 

the side wall they point circumferentially back towards the non-divider wall. The 

highest secondary velocities are observed near the side wall of the branch, but they 

are considerably lower than the secondary velocities near the flow divider. 

At the end of the bulb (I2) no reversed axial flow region is found. High axial 

velocities are observed near the divider wall and a region with almost equal axial 

velocities is found near the non-divider wall. The curvature of the axial velocity 

contours has shifted to the more high-numbered ones. Secondary flow at this site 

has grown in strength with regard to secondary flow halfway the bulb. Near ·t'he 

non-divider wall secondary flow still shows great resemblance with a Dean type 

vortex, but near the divider wall all secondary velocities are directed towards the 

opposite wall. The latter effect originates from the tapering of the bulb near its end, 

which causes high secondary velocities directed towards the center of the branch in 

regions with high axial velocities. 

In the external carotid artery (fig. 6.3a) no reversed axial flow is found. The 

highest axial velocities are observed near the divider wall. Downstream in the 

branch the high-numbered axial isovelocity lines show C-shaped curvatures. At 

both positions in the external carotid artery the secondary velocities are directed 

towards the divider wall near the plane of symmetry and circumferentially back 

near the side wall. Near the flow divider the secondary velocities are directed 

towards the opposite wall probably due to boundary layer development. 

In figure 6.4a the axial velocity profiles in the plane of symmetry are presented for 

both the measurements and the calculations. The agreement between the 

experimental and numerical data is good. The shape of the region with reversed 

axial flow in the plane of symmetry as well as the axial velocity plateau is estimated 

well by the numerical model. Downstream in the external carotid artery the 

numerical velocities are consequently somewhat higher than the experimental ones. 
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These differences are probably caused by small errors in the adjustment of the flow 

rate in the experiments. 

In the figures 6.4b and 6.4c for both the measurements and the calculations 

axial velocity contours are shown together with profiles of the secondary velocity 

components. Again, contour level 0 corresponds to zero axial velocity and levellO to 

the maximal axial velocity at the entrance of the main branch. The secondary 

velocities in the main branch are scaled up 10 times with respect to the other levels. 

There is a good agreement between the numerically predicted and experimentally 

measured axial velocities. The largest differences occur at the entrance of the 

Figure 6.4a; Calculated (--) and measured (ooo) axial velocity profiles in the 
plane of symmetry. 

internal carotid artery with regard to the region with reversed axial flow. Within 

this region the axial velocities are of the order of 0.05 times Umax near the plane of 

symmetry and 0.001 times Umax near the side wall, Umax being the maximal axial 
velocity in the main branch. Therefore, small errors in the axial velocity 

measurements may cause relatively large differences in the determination of the 

region with reversed axial flow, while the absolute values of the experimental and 
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Figure 6.4b: Calculated (--) and measured (- -, ooo) results of axial and 
secondary flow in the main branch and the external carotid artery. 

the numerical velocities are quite the same. Downstream in the external carotid 

artery the experimental values of axial flow are consequently somewhat lower than 
the numerical ones. This points at a smaller flow rate at this site for the 
experiments than for the computations. In table 6.5 the relative flow rates at all the 
cross-sectional planes are presented. The 95%--confidence intervals for the 

experiments are estimated to be ±2%. It may be concluded that a correct 
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adjustment of the flow rates is achieved at all positions except downstream in the 

external carotid artery. Here, the experimental flow rate is essentially smaller than 

the numerical one. This may be caused by an error in the adjustment of the flow 
rate through the main branch or by an alteration of the flow division ratio during 

the experiments. 
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Table 6.5: Relative flow rates for the experiments (:1::2%) and the calculations. 

Regarding secondary flow, there is a fair agreement between the numerical 

and experimental data. The largest differences are found near the flow divider in 

both daughter branches. This may he caused by numerical errors due to the 

ill-shaped elements near the flow divider, while also measuring errors due to the 

presence of the flow divider contribute to this discrepancy. 

6.2.4 Quantitative comparison with experiments ---------------------------- -------------

A quantitative comparison of the numerical and experimental results of axial flow is 

performed by its first moment <X/a>, as defined in equation 5.1, with a the local 
radius of the cross-sectional plane. A positive value in the daughter branches means 

a shift of axial flow towards the divider wall and in the main branch towards the 

side of the external carotid artery. Table 6.6 gives the experimental and numerical 

values of <X/ a> for the 6 positions analyzed. The 95%-eonfidence intervals for the 

experiments are estimated to be ±0.02. The agreement between the experimental 

and numerical values is satisfactory. At all positions in the daughter branches the 
axial velocity profile is shifted towards the divider wall. At the entrance of the 

internal carotid artery and halfway the bulb the first moment of axial flow is large, 
as compared with its value at the end of the bulb and in the external carotid artery. 

This is due to the presence of a region with reversed axial flow opposite to the flow 

divider. In spite of the secondary velocities at Cl.5, axial flow at this site seems to 

he unaffected. 

C1.5 10 11 12 EO El 

0.01 0.44 0.50 0.15 0. 18 0.14 

0.00 0.42 0.48 0.17 0. 18 0.13 

Table 6.6: First moment of axial flow for measurements (:1::0.02) and calculations. 
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Secondary flow is quantified by the mean axial vorticities {c and {s, as 
defined by equation 5.2 with a the radius of and Umn the mean axial velocity in the 

common carotid artery. A negative value of these vorticities means that the vortex 
is directed clockwise. In table 6. 7 the values of {c are presented for both the 

measurements and the calculations. The 95o/o-eonfidence intervals for the 
experiments are estimated to be :1::0.02. The values of {c are in relatively good 

agreement, except at the entrance of both daughter branches. Probably, these 

differences are caused by measuring problems due to the presence of the flow 

divider. The highest value of {c is found at the entrance of the carotid sinus, 

whereas the lowest value of this quantity in the daughter branches is observed 
halfway the bulb. 

Gp 
~m 

C1.5 

0.02 

0.02 

10 11 

0.38 0.08 

0.42 0.07 

12 EO E1 
! 

I 

0.10 -0.22 -0.13 i 

0.13 -0.30 -0.121 

Table 6.7: Axial vorticity of the central core for the experiments ( :!::0.02) and the 
computations. 

Gp 
~m 

C1.5 

-0.03 

-0.03 

10 I1 

0.56 0.53 

0.50 0.50 

12 EO El 

1.17 -1.02 -0.66 

1.13 -1.05 -0.68 

Table 6.8: Axial vorticity at r=4/5a for the measurements (±0.05) and the 
calculations. 

In table 6.8 the values of {s are shown. The 95%-confidence intervals for this 

quantity are estimated to be ±0.05. These relatively large confidence intervals are 

due to positioning errors of the measuring volume near the side wall, where the 

velocity gradients are often high. From the data presented it can be concluded that 
the resemblance between the experimental and numerical results is quite 

satisfactory, in contrast with the findings for steady and unsteady flow in a 

9o--degree curved tube where the numerical and experimental values of this quantity 

show relatively large differences {sect. 5.2.4 and 5.3.4). The reason for this is yet 
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unknown. The value of es at the end of the bulb is large as compared to the other 

values, especially at the entrance of and halfway the bulb. The relatively high values 

in the external carotid artery are probably caused by its smaller diameter and the 

same flow rate, as compared to those in the internal carotid artery. 

6.3 Influence of various parameters on axial and secondary flow 

Because the Reynolds number and flow division ratio vary essentially during a heart 

cycle (Ku et al. 1985}, one computation was performed at a Reynolds number of 300 

and one at a flow division ratio of 63/37, keeping the other flow parameters constant 

as best as possible. From the data presented in chapter 2 it was concluded that the 

mean angle between the internal and common carotid artery is probably smaller 

than the angle proposed by Bharadvaj et al. (1982). Therefore, also a computation 

was carried out in a model of the bifurcation with an angle of 10° instead of 25°. 

Table 6.9 gives an overview of the calculations performed. The flow division ratio of 

the Reynolds flow case differs somewhat from that of the reference flow case due to 

the influence of the Reynolds number on the flow division ratio. The smaller · 

Reynolds number was achieved by increasing the kinematic viscosity. The flow 

division ratio of 63/37 was achieved by a smaller length of the internal carotid 

artery {3 diameters), as compared to the length of this branch in the other flow 

cases {10 diameters). Due to the smaller bifurcation angle for the angle flow case, 

the geometry of the carotid sinus near its origin is slightly different. 

------ flow 
flow Reynolds 

division angle 
case number 

ratio 

reference 640 52/48 25° 

Reynolds 300 48/52 25° 

f I ow ratio 640 63/37 25° 

angle 640 52/48 10° 
-· 

Table 6.9: Summary of the parameters for the steady flow cases. 

In figure 6.10 the influence of the Reynolds number on the velocity profiles in 

the plane of symmetry and on axial and secondary flow in the carotid sinus is 

shown. In the plane of symmetry the region with reversed axial flow is somewhat 

smaller in axial and radial extent for a Reynolds number of 300 than for a Reynolds 
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Figure 6.10: Influence of the Reynolds number on axial and secondary flow in 
the carotid sinus(--: reference case,--,-: Reynolds case). 
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number of 640. For the Reynolds flow case it has a maximal diameter of about 50% 

of the local bulb diameter. The shift of the maximum of axial velocity towards the 

divider wall and the occurrence of an axial velocity plateau is less pronounced than 

for the reference flow case. The influence of the Reynolds number on total axial flow 

is small at the entrance of the bulb and restricted to a smaller zone with reversed 

axial flow. Halfway and at the end of the carotid sinus the axial velocities are 

somewhat smaller for the Reynolds flow case than for the reference flow case, also 

due to the larger flow rate for the latter flow case. The region with reversed axial 

flow halfway the bulb is essentially smaller in the plane of symmetry and larger in 

the direction perpendicular to this plane. The C-shaped curvatures of the 

low-numbered axial velocity contours halfway and at the end of the bulb are less 

pronounced than for the reference flow case. The influence of the Reynolds number 

on secondary flow in the carotid sinus is mainly restricted to the end of the bulb, 

where the secondary velocities are lower for a Reynolds number of 300 than for a 

Reynolds number of 640, although also halfway the carotid sinus these secondary 

velocities are somewhat lower. It is likely that these lower secondary velocities 

result in the less pronounced C-shaped curvatures of the axial velocity contours 

downstream in the carotid sinus and the different shape of the region with reversed 

axial flow halfway the bulb. 

The influence of the flow division ratio is pointed out in figure 6.11. 

Surprisingly, the effect of an increasing flow division ratio on the region with 

reversed axial flow in the plane of symmetry is almost the same as the influence of a 

decreasing Reynolds number: smaller in axial and radial extent. The shift of the 

maximal axial velocity towards the divider wall is about the same as for the 

reference flow case. As visible in the axial isovelocity lines, an increase of the flow 

division ratio results in higher axial velocities in the internal carotid artery, but the 

shape of the contours is hardly affected. This is primarily explained by the finding 

that an increase of the flow rate through the internal carotid artery with about 20% 

has only little effect on secondary flow in this branch. 

A smaller bifurcation angle causes the region with reversed axial flow to grow 

at the entrance of the bulb (fig. 6.12). This, however, is probably mainly due to the 

difference in the geometry of the carotid sinus at this site, particularly the increased 

value of the inlet area. Halfway the bulb this region is somewhat smaller in the 

plane of symmetry but larger in the direction perpendicular to this plane. For the 

angle flow case, the C-shaped curvatures of the axial velocity contours are less 

pronounced than for the reference flow case. The secondary velocities at the 
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Figure 6.11: Influence of the flow division ratio on axial and secondary flow in 
the carotid sinus (--: reference case,--~ -: flow ratio case). 
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Figure 6.12: Influence of the bifurcation angle on axial and secondary flow in the 
carotid sinus reference case,--,-: angle case). 
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entrance of the bulb decrease with decreasing bifurcation angle, mainly because the 

main stream velocities at this site are still directed parallel to the axis of the main 

branch. Halfway and at the end of the bulb the influence on secondary flow is small. 

A quantitative comparison between the various flow cases is performed by 

the first moment of axial flow <X/a> and the axial vorticities ~c and {8 • These 

quantities are presented in the figures 6.13a, 6.13b and 6.13c, respectively, as 

function of the position in the carotid sinus. The values of {c and {s for the 

Reynolds flow case show differences with the values for the reference flow case at 

the end of the carotid sinus. These differences are probably due to the fact that the 

secondary flow field as induced by the centrifugal forces is less developed for lower 

Reynolds numbers, whereas the secondary flow field resulting from the taper of the 

carotid sinus, is quite the same. The influence of the flow division ratio on the 

quantities <X/ a>, {c and {sis small, as compared to the values of these quantities 
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Figure 6.13: First moment of axial flow (a), the axial vorticity of the central core 
(b) and the axial vorticity at r=4/5a (c) as function of the position in the 
carotid sinus for the various flow cases. 

for the reference flow case. Finally, the values of <X/a>, {c and {s for the angle 

flow case are quite similar to the values of these quantities for the reference flow 

case, except at the entrance of the carotid sinus. The larger value of <X/ a> at this 

position for the angle flow case is due to the larger region with reversed axial flow, 

probably caused by the difference in geometry of the carotid sinus at this site, and 

the higher axial velocities near the flow divider. The smaller values of {c and {s are 

a consequence of the fact that at this site the main stream velocities are still 
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directed parallel to the axis of the common carotid artery, resulting in lower 

secondary velocities, but higher axial velocities, for smaller bifurcation angles. 

6.4 Discussion 

In this chapter the results of a numerical study on steady flow in rigid 3D-models of 

the carotid artery bifurcation are presented and compared to laser Doppler velocity 

measurements performed under the same flow conditions. For a Reynolds number of 

640 and a flow division ratio of about 50/50 the axial velocity profiles in both 

daughter branches of the common carotid artery are skewed towards the divider 

wall, whereas a region with reversed axial flow is observed in the carotid sinus 

opposite to the flow divider. The shape of this region in axial and radial direction is 

largely determined by secondary flow, which on its turn is induced by centrifugal 

forces. For example, due to secondary flow halfway the carotid sinus the region with 

negative axial velocities enlarges near the plane of symmetry, whereas this region 

becomes smaller in the direction perpendicular to the plane of symmetry. The 

C-shaped axial velocity contours and the axial velocity plateaus downstream in the 

daughter branches are also caused by secondary flow, which transports fluid 

particles with high axial velocities situated near the divider wall, towards the 

non-divider wall. At the entrance of the bulb opposite to the flow divider both axial 

and secondary velocities are low, whereas at the end of the bulb secondary flow is 

highly influenced by the tapering of the branch at this site. The influence of the 

Reynolds number, the flow division ratio and the bifurcation angle are restricted to 

a relatively small variation in the region with reversed axial flow, more or less 

pronounced C-shaped curvatures of the axial velocity contours and increasing or 

decreasing maximal values of axial velocity. The influence of these variations on 

secondary flow is mainly restricted to the end of the bulb in case of a smaller 

Reynolds number and to the entrance of the bulb in case of a smaller bifurcation 

angle. 

A qualitative comparison of axial and secondary flow with the laser Doppler 

velocity measurements reveals that the flow phenomena occurring in the carotid 

artery bifurcation, are well predicted by the numerical model. Small discrepancies 

between the axial and secondary flow fields are observed near the flow divider, 

possibly because of the ill-shaped elements in this region, but also as a consequence 

of the measuring problems near the flow divider. The discrepancy found regarding 

the region with reversed axial flow is mainly caused by the relatively large 
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measuring errors due to the low axial velocities in this region. A quantitative 

comparison between the numerical data and those obtained with the laser Doppler 

measuring technique is performed regarding the first moment of axial flow and the 

axial vorticities of secondary flow. Taking into account the 95%-confidence 

intervals for the experiments, a good agreement is observed between the numerical 

and experimental values of these quantities. 

The flow patterns as observed are in good agreement with those observed by 

Bharadvaj et al. (1982). They performed laser Doppler measurements of axial and 

secondary flow at several sites in the bifurcation for various Reynolds numbers and 

flow division ratios. In the carotid sinus they found a region with reversed axial flow 

opposite to the flow divider. For a Reynolds number of 800 and a flow division ratio 

of 70/30 (70% through the carotid sinus) the maximal diameter of this region was 

about 45% of the local bulb diameter. In the present study the maximal diameter at 

a Reynolds number of 640 was about 50% of the local bulb diameter at a flow 

division ratio of 63/37 and about 60% at a flow division ratio of 52/48. They also 

observed high axial velocities near the divider wall of the carotid sinus and an axial 

velocity plateau opposite to this wall at the end of the bulb. At the entrance of the 

bulb they found that secondary flow was almost completely directed towards the 

flow divider. Halfway the bulb they observed high secondary velocities directed 

towards the non-divider wall near the side wall and low secondary velocities 

directed towards the divider wall near the plane of symmetry, resulting in helical 

patterns of the fluid flow. At the end of the bulb high secondary velocities were 

found directed towards the non-divider wall near the side wall and directed towards 

the divider wall near the plane of symmetry. These features are also observed in the 

present study. 

The study of Bharadvaj et al. (1982) also revealed that at a flow division 

ratio of 70/30 a decrease of the Reynolds number resulted in a reduction of the 

radial as well as the axial extent of the region with reversed axial flow in the plane 

of symmetry. The present study reveals that this is also valid for a flow division 

ratio of about 50/50. One should bear in mind, however, that this does not 

necessarily hold for the direction perpendicular to the plane of symmetry. At a 

Reynolds number of 400 they found that in the carotid sinus the region with 

reversed axial flow became smaller as the flow rate through the internal carotid 

artery increased. In the present study the same phenomena are observed at a 

Reynolds number of 640. 
Wille (1984) performed a finite element calculation of steady flow in a 
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symmetrical bifurcation at a Reynolds number of 10. Instead of a direct solver, he 

used a conjugate gradient iteration method. A division of one quadrant of the 

symmetrical bifurcation into 300 brick elements was performed, which resulted in 

5508 unknowns. Computation of the flow field at a Reynolds number of 10 took 

about two months CPU-time on an unknown computer system. In spite of the low 

Reynolds number, the results were believed to be representative of the overall flow 

patterns in human branching systems. He found skewed velocity profiles in the 

daughter branches. The shear forces were high near the flow divider and relatively 

low just upstream of the bifurcation. This qualitative finding is in agreement with 

our results. More important is the achieved speed-up in computing time needed to 

solve the system of equations. 

A quantitative comparison of axial and secondary flow in the carotid sinus 

with steady flow in a 90-degree curved tube (Re=700, 6=1/6) is difficult to achieve. 
A qualitative comparison, however, reveals remarkable similarities. Halfway the 

carotid sinus a Dean type vortex has developed, supporting the statement of Olson 

(1971) that the flow phenomena in a bifurcation mainly originate from curvature 

effects. This vortex is still present at the end of the bulb but, due to the tapering 

geometry of the carotid sinus at this site, secondary velocities directed towards the 

center of the branch are added. The upstream influence of the carotid artery 

bifurcation for the reference flow case results in lower secondary velocities in the 

main branch, as compared to the secondary velocities at the entrance of a 90-degree 

curved tube. These secondary velocities, however, are highly dependent on the flow 

division ratio. Secondary flow in the carotid sinus causes, similar to secondary flow 

in a 90-degree curved tube, C-shaped curvatures of the axial velocity contours 

halfway and at the end of the carotid sinus. Also, as a consequence of centrifugal 

forces, a shift of the maximum of axial velocity is observed towards the divider wall. 

Finally, due to secondary flow axial velocity plateaus near the non-divider wall at 

the end of the bulb develop. On the contrary to steady flow in a 90-degree curved 
tube, large regions with reversed axial flow are observed opposite to the flow 

divider. These negative axial velocities are mainly due to the geometry of the 

carotid sinus, especially its divergence at the inlet side, and the larger 

cross-sectional areas of the daughter branches, as compared to the cross-sectional 

area of the main branch, which both cause a positive pressure gradient in 

downstream direction. 
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7 Conclusions 

In the present study the finite element method was used to study blood flow in the 
carotid artery bifurcation. The results were validated with laser Doppler velocity 
measurements, performed in a transparent rigid-walled model of this bifurcation. 
Because it is assumed that curvature effects highly influence the flow phenomena 
occurring in the carotid artery bifurcation, first steady and unsteady entrance flow 

in a 90--degree curved tube with a curvature ratio of 1/6 was investigated. 

The geometry of the bifurcation models used in the present study are based 
upon data of Balasubramanian (1979), who angiographically determined a mean 

geometry of the carotid artery bifurcation. From data available in literature and 

from the results of a cast study, as performed by us, however, it may be concluded 
that the use of a mean geometry is debatable because of the large interindividual 
variations. Besides, it appeared that the mean diameter of the main branch and the 

mean angle between the internal carotid artery, one of the daughter branches, and 
the main branch are probably smaller as those proposed by Balasubramanian 
(1979). Therefore, for a complete description of blood flow in the carotid artery 

bifurcation, the influence of geometry variations on the flow phenomena occurring, 

have to be taken into account. These influences were partly investigated in the 
present study. 

For spatial discretization of the Navier-8tokes and continuity equations, a 

standard Galerkin finite element method was employed. The penalty function 
method was used for elimination of the pressure unknowns from the discretized 
Navier-Stokes equation and a Newton-Raphson iteration technique for linearization 

of the discretized convective term. Temporal discretization was achieved by 

applying the 0-method to the time derivative in the Navier-Stokes equation. It is 
concluded that the finite element method, as presented, can be used for detailed 

analysis of incompressible and Newtonian fluid flow in rigid-walled 

three-dimensional geometries. It was found that with the use of supercomputers and 
minisupercomputers and a suitable element division and renumbering procedure of 
the nodal points, the computing times needed can be restricted to reasonable values. 

For validation of the numerical results, laser Doppler velocity measurements 

were performed in perspex models of a 90--degree curved tube and of the carotid 
artery bifurcation. This non-contact measuring technique has been successfully 
applied to velocity measurements in up-scaled 2D-models of human arteries 

(v.d.Vosse et al., 1985; llindt et al., 1987). In the one-to-one models used in the 
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present study, however, the dimension of the measuring volume is relative large, as 

compared to the dimensions of the models, introducing errors, especially in regions 

with high velocity gradients. Besides, due to the finite accuracy of the traversing 

system, positioning errors of the measuring volume contribute to errors in the 

measured velocities. Nevertheless, it is believed that the velocity data, as obtained 

with this measuring technique, can be used for validation of the numerical results. 

For steady entrance flow in a 90-degree curved tube (Re=700, 6=1/6) a shift 

of the maximum of axial velocity towards the outer wall occurs due to centrifugal 

forces. The observed C-shaped axial isovelocity lines and the axial velocity plateaus 

near the inner bend, downstream in the curved tube, are caused by a Dean type 
secondary flow, directed outward near the plane of symmetry and directed inward 

near the side wall. Downstream in the curved tube 'tail'-formation occurs in the 

secondary flow field, possibly caused by the fact that fluid particles with relative 

low axial and secondary velocities near the center of the tube are not able to 

penetrate into the region with high axial velocities near the outer wall. 

For a sinusoidally varying flow rate (200<Re<800, o=7.8) throughout the 

curved tube a shift of the maximum of axial velocity towards the outer wall was 

found. In the deceleration phase highly curved axial velocity contours and axial 

velocity plateaus were observed downstream in the bend. Regions with reversed 

axial flow were found halfway and at the end of the deceleration phase. The shift of 

the maximum of axial velocity and the formation of C-shaped axial isovelocity lines 

and of axial velocity plateaus were highly determined by the secondary flow field. 

At maximal flow rate this secondary flow field showed great resemblance with a 

Dean vortex but, especially halfway and at the end of the deceleration phase, a more 

complicated secondary flow field developed. The flow phenomena occurring halfway 

the deceleration phase are quite similar to those occurring for steady entrance flow. 

Qualitative and quantitative comparison of axial and secondary flow with laser 
Doppler velocity measurements shows a favorable agreement between the numerical 

and experimental data. The occurring differences can easily be explained by the 

larger minimal Reynolds number for the experiments and by the measuring errors 

near the side wall of the curved tube. 
To investigate the influence of the Womersley parameter on unsteady flow in 

a bend, calculations were performed at o=l5.0 and 24.7. For both flow cases a 

similar shift of the maximum of axial velocity towards the outer bend was found. 

Regarding the regions with axial flow reversal the largest differences occurred near 

the inner bend. The secondary flow field for o=l5.0 showed Lyne type structures at 
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peak flow rate downstream in the curved tube. Secondary flow at a=24. 7 was 

almost constant in time and quite similar to secondary flow, as observed for the 

steady flow case. Apparently, at hlgher Womersley parameters the steady flow 

component is the dominant factor for the secondary flow field. Calculation of fluid 

flow for a physiologically varying flow rate revealed a good agreement between the 

flow phenomena occurring in the systolic phase and those for a sinusoidally varying 

flow rate at a=7.8. This suggests that the influence of the diastolic phase on the 

flow phenomena occurring in the systolic phase is small. To study the influence of 

the steady flow component on both axial and secondary flow, calculations were 

performed with purely oscillating flow rates at a=7.8 and 24.7 (-300<Re<300}. In 

contrast with the findings for flow with a steady flow component, for both 

oscillating flow situations the maximum of axial velocity shifted towards the inner 

bend, presumably due to the more uniform axial entrance profiles. In accordance 

with literature, at all time levels secondary flow showed a Dean type vortex for 

a=7.8 and a Lyne type secondary flow field for a=24.7. For the latter case the 

secondary velocity values are a factor 50 smaller than for the former one. 

The finite element calculations in a 3D-model of the carotid artery 

bifurcation were performed at a Reynolds number of 640 and a flow division ratio of 

about 50/50, simulating systolic fluid flow. High axial velocities were found near the 

divider wall of the carotid sinus, primarily due to flow branching but halfway the 

bulb also as a consequence of curvature effects. Due to the widening of the internal 

carotid artery and its large cross-sectional area, as compared to the main branch, a 

large region with negative axial velocities was found at the entrance of and halfway 

the carotid sinus. The shape of this region, the formation of an axial velocity 

plateau at the end of the bulb and the appearance of C-shaped curvatures of the 

axial isovelocity lines, are highly determined by secondary flow. At the entrance the 

secondary velocities were directed towards the flow divider, whereas halfway the 

carotid sinus a Dean type vortex was observed, as a consequence of curvature 

effects. At the end of the bulb inward directed secondary velocities occurred due to 

the tapering geometry. Qualitative and quantitative comparison of the velocity 

calculations with laser Doppler velocity measurements revealed good agreement. 

The minor differences are primarily due to measuring problems near the flow divider 
and the finite accuracy of the laser Doppler equipment. 

From a parameter study it can be concluded that changes in the flow rate 

through the internal carotid artery by 20% hardly influence axial and secondary 

flow. The observed shifts of the axial isovelocity lines are caused by the larger flow 
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rate through the internal carotid artery. A smaller bifurcation angle seems to affect 

only axial and secondary flow in the upstream region of the carotid sinus because 

the main stream velocities at the entrance of the bulb are still directed parallel to 

the axis of the main branch. For a smaller Reynolds number the largest differences 

occurred in the downstream region of the carotid sinus, where the secondary flow 

field, resulting from centrifugal forces, is probably less developed. 

Qualitative comparison of the flow phenomena occurring in a 90-degree 

curved tube under steady flow conditions with those occurring in the carotid sinus 

revealed remarkable similarities. For both geometries a shift of the maximum of 

axial velocity towards the outer wall (divider wall), and the formation of C-shaped 

axial velocity contours and axial velocity plateaus in the downstream regions near 

the inner wall (non-divider wall) were observed. Secondary flow halfway the carotid 

sinus showed a Dean type vortex due to curvature effects. Secondary flow at the 

entrance of the carotid sinus, however, was mainly directed towards the flow 

divider, whereas secondary flow at the end of the bulb was highly influenced by the 

local geometry. The 'tail'-formation in the secondary flow field, as observed in the 

downstream regions of the curved tube, was absent in the carotid sinus, probably 

because the length over which curvature effects are important is small. Besides, 

large regions with axial flow reversal were observed opposite to the flow divider, as 

a consequence of the divergence of the carotid sinus at its inlet side and the larger 

cross-sectional area of both daughter branches, as compared to the cross-sectional 

area of the main branch. In the steady flow case regions with negative axial 

velocities were absent in the 90-degree curved tube. 

With the axial and secondary flow fields, presented by axial isovelocity lines 

and secondary velocity vectors, a good impression can be obtained about the total 

flow field occurring in both geometries. Detailed analysis, however, may be difficult 

due to the large amount of data. Besides, in this way detailed comparison of axial 

and secondary flow for the various flow situations is hard to perform. Quantities, 

like the first moment of axial flow and the axial vorticities of secondary flow, seem 

to be more appropriate for this purpose. With these quantities, however, detailed 

information about axial and secondary flow, like the C-shaped curvatures of the 

axial velocity contours or the 'tail'-formation in the secondary flow field, is lost. 

Therefore, quantities are needed which are more appropriate to describe such 

features. 
From the present study it is concluded that the finite element method can be 

used for detailed analysis of fluid flow in complex three-dimensional geometries. 
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With regard to blood flow in the carotid artery bifurcation, in the near future 

velocity calculations will be performed of unsteady flow in this bifurcation. A study 

of the influence of physiological and geometrical parameters on both axial and 

secondary flow in the carotid sinus, may then supply important information about 
methods used to diagnose atherosclerotic lesions at an early stage of the disease. 

Especially, when a detailed analysis of the flow field around small atherosclerotic 

lesions is performed. Incorporation of non-Newtonian behavior of blood and 
flexibility of the arterial wall in the numerical model will complete such an analysis. 

Besides, calculation of the shear stress as function of time and position in the 

carotid sinus, may supply valuable information with regard to the process of 
atherogenesis. 



A.l 

Appendices 

Appendix A: Stability of the Adams-Bashforth integration scheme 

Consider a linear set of ordinary differential equations resulting from the 

discretization of a parabolic differential equation, together with initial conditions: 

(A.l) 

If A has only real coefficients independent of time, resulting from a linear elliptic 

differential operator, and if A is non~efect, i.e. the number of independent 

eigenvectors is equal to the order of A., then: 

AB=BA (A.2) 

with .ft containing the eigenvectors of A and 11 a diagonal matrix containing the 

eigenvalues of A.. If~ is a solution of eq. A.1 with ~(t0)=~0 , if sis also a solution of 

eq. A.l with ~(t0)=~o+~o· ~O being a small perturbation of ~O, and if ~ is defined 

as ~=~-~· then it is easily verified that ~=A~ with ~(t0)=~o· Defining r-!!-1 ~ 
leads to: 

~=~~ 

!!(to) = !!-1 ~o= !!o 
(A.3) 

This is an uncoupled set of differential equations for !!• which is directly related to 

the error column ~- For a numerical stability analysis, error propagation defined by 

this equation and the numerical time integration scheme is considered. For the 

0-method this leads to: 
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:,p+l = >.. 11r:+I 
I 1 1 

(17r:+
1- 11r:)/6.t = o:,p+I + (I-o)il! 

1 1 1 1 

(A.4) 

which can be presented in short form as: 

(A.5) 

with: 

.{!is the so-called amplification matrix which is suitable for a stability analysis as 

pointed out in the main text (sect. 3.5). The same analysis can be carried out for the 

Adams-Bashforth integration scheme. For this scheme ~n' .Q and ll can be defined 

as: 
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Appendix B: Asymptotic and real speeds of supercomputers 

The speed of super and minisupercomputers is achieved among others by parallel 

and vector processing techniques. With the parallel processing technique the 

maximum speed-up with regard to conventional computers is equal to the number 

of processors acting in parallel. The speed-up of a vector computer is achieved by 

segmentation of its functional units. In a functional unit one type of floating point 

operation (add, subtract, multiply, divide) is carried out, which can be divided into 

several basic operations. In figure B.l a time diagram is presented of the processing 

of two vectors in the addition functional unit. 
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Figure B.l: Time diagram of vector processing on supercomputers in an addition 
functional unit consisting of 4 segments. 

Every clock cycle a pair of operands is processed in each segment and 

pipelined to the next one. This results in one floating point operation per clock 

cycle. In scalar computers the processing of a pair of operands of two vectors is 

started if the processing of the previous pair is completely finished. The speed-up 

achieved with the vector processing technique ranges from 5 to 50 compared with 

scalar computers, depending on the number of basic operations of which a floating 

point operation consists. In many super and minisupercomputers high speeds are 

achieved by a combination of the above mentioned techniques and a smaller 

clocktime of the central processor. Table B.2 shows the asymptotic speeds of several 

computer systems used in this study. The minisupercomputer Alliant-fx/4 (TUE, 2 

processors) and the supercomputer Cyber-205 (SARA, 2 vectorpipes) are used for 

the calculation of steady and unsteady entrance flow in a 9o-degree curved tube, as 
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described in chapter 5. For the calculation of steady flow in a 3D-model of the 

carotid artery bifurcation (chap. 6), the minisupercomputer Convex-clxp (TUD) 
and the supercomputer Nec-sx2 (NLR) are used. Due to communication problems 

between the central memory and the disks, the results of the Nec-sx2 were not 

suitable for presentation. The Appolo-dsp90 (TUE) is a conventional minicomputer 
used in the study of v.d.Vosse et al. (1989), dealing with steady entrance flow in a 

9o-degree curved tube. Because the maximal number of floating point operations 
per second (Mxflops) is an asymptotic value, also the real number of floating point 

operations per second (Rlflops), as achieved for one of the problems solved in this 
study, is presented. The latter number is based on the LU-factorization of the 

matrix. If also the building of the system of equations is taken into account, this 
number must be multiplied by about 3/4 as for large problems the time needed to 

build the system of equations was about 1/3 of the time needed to solve the system 
of equations. The differences between the asymptotic and real number of floating 

point operations per second are caused by the start-up times of vector operations 

and because not all program statements can be vectorized. From Table 3C.2 it can 
be concluded that with regard to an Apollo-dsp90 the speed-up for 

(mini)supercomputers ranges from 100 to 1000. 

Apollo Convex All ian t Cyber Nee 

t: xflops 20 23.5 200 1300 

!flops 0.08 9 4.5 40 200 

Table B.2: Maximal number (Mxflops) and real number (Rlflops) of floating 
point operations in millions per second, based on double precision floating point 
operations, for the systems used in the present study. 
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Appendix C: I/O-problems in combination with LU-factorization 

Beside the CPU-time needed for a calculation, also the I/O-time needed can be an 

important aspect in the choice of a computer system. I/O-time is needed when not 

all data can be kept in the central memory and the virtual or backing storage 

devices are used. For virtual memory systems, which many systems are, the 

communication between the central memory and the virtual memory takes place by 

page faults. A page fault occurs when data, which are not present in the central 

memory, are needed for a calculation. Then, in general, a page, which is not used for 

the longest time, is stored on virtual memory and the page containing the data 

needed is stored in the central memory. Many page faults occur if the central 

memory is too small in relation to the system of equations to be solved, resulting in 

large I/O-times. 

Within the package used to build and solve the system of equations, both the 

storage of the matrix elements and the LU-factorization are carried out 

row-column wise. In figure C.l a square matrix A with bandwidth b is presented. 

The LU-factorization of the matrix is advanced up to row and column j. For 

1-factorization of row j, the elements of row j itself are needed as well as the 

elements indicated by the vertical solid lines. For U-factorization of column j, the 

elements indicated by the horizontal solid lines are needed as well as the elements of 

column j itself. Therefore, for LU-factorization of row and column j the elements 

indicated by the vertical and horizontal solid lines are strictly needed but, due to 

the way the matrix is stored, N b=0.5b2 elements will be stored in the central 

memory. The extra elements are indicated in figure C.l by broken lines. If the total 

capacity of the central memory is equal to Nc, many page faults will occur if 

Nc<Nb. Then, for LU-factorization of each row and column at least (Nb-Nc) 

elements but in general Nb elements will be page faulted. For the system of 

equations solved in this study Nb is of 0(106) and the number of rows of 0(104). If 

for such a system of equations the inequality Nc<Nb holds, enormous I/O-times 

will occur. 
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Figure C.l: LU-factorization of matrix A· 
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Samenvatting 

Voor vroegtijdige detectie van atherosclerose in de halsslagadervertakking aan de 

hand van stromingsverstoringen rondom kleine vernauwingen, is inzicht in het totale 

stromingsveld onontbeerlijk. Naast experimenteel onderzoek, kunnen numerieke 

simulaties van de stroming een belangrijke bijdrage leveren aan dit inzicht. 

In deze studie wordt gebruik gemaakt van geometriegegevens over de 

halsslagadervertakking zoals beschreven in de literatuur. Daarnaast heeft ook een 

beknopt onderzoek plaatsgevonden naar de geometrie van deze vertakking aan de 

hand van 7 opgespoten modellen. Hieruit blijkt dat grote interindividuele verschillen 

in deze geometrie optreden, die onderzoek naar de invloed van deze 

geometrievariaties op de optredende stromingsfenomenen noodzakelijk maken. Voor 

een numerieke simulatie van de bloedstroming in de halsslagadervertakking is 

gebruik gemaakt van Galerkin's eindige elementen methode formulering, waarbij 

bloed als Newtons en incompressibel en de vaatwand als star wordt verondersteld. 

Vanwege het grote aantal vergelijkingen dat behoort bij een drie-dimensionale 

analyse, is gebruik gemaakt van super- en minisupercomputers, die een factor 10 tot 

1000 sneller kunnen zijn als de conventionele systemen. Om de benodigde 

rekentijden nog verder te reduceren is een meshgenerator ontwikkeld, waarmee 

verdeling van de halsslagadervertakking in een relatief klein aantal elementen 

mogelijk is, en is gebruik gemaakt van speciale hernummeringsprocedures. Voor 

experimentele validatie van de numerieke resultaten zijn laser-Doppler metingen 

uitgevoerd waarmee contactloos vloeistofsnelheden gemeten kunnen worden. 

Vanwege zijn relatief eenvoudige geometrie en omdat gebleken is dat 

krommingseffecten een grote invloed hebben op de stromingsfenomenen in de 

halsslagadervertakking, is eerst de stationaire en instationaire stroming in een 

9Q-graden bocht geanalyseerd. Hieruit blijkt dat het axiale snelheidsveld zeer sterk 

wordt bepaald door bet secundaire snelheidsveld, dat op zijn beurt weer wordt 

geinduceerd door centrifugaal krachten werkend op de vloeistof deeltjes. Naast deze 

gedetailleerde analyse is ook de invloed bestudeerd van de frequentie parameter, de 

golf vorm en de stationaire component op het axiale en secundaire snelheidsveld. 

Uit een gedetailleerde analyse van de stationaire stroming in de 

halsslagadervertakking volgt dat krommingseffecten inderdaad van groot belang 

zijn. Daarnaast is echter ook de specifieke geometrie van de bulbus, met name de 

proximale verwijding en de distale vernauwing, van grote invloed op het totale 

stromingsveld. Een parameter studie naar de invloed van het Reynolds getal, de 



flow verhouding en de bifurcatie hoek op de stroming, laat zien dat voor een 

stationaire stroming deze invloed relatief klein is. 

Uit deze studie volgt dat de eindige elementen methode in combinatie met 

supercomputers gebruikt kan worden om analyses te verrichten van de stroming in 

complexe drie-dimensionale configuraties. Voor een completere modelvorming van 

de bloedstroming in de halsslagadervertakking zal het in rekening brengen van 

flexibele wanden en niet-Newtonse vloeistoffen in het numerieke model noodzakelijk 

zijn. 
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Stellingen 

behorende bij het proefschrift 

Analysis 

of the three-dimensional flow field 
in the carotid artery bifurcation 

1. Bij de ontwikkeling van non-invasieve detectiemethoden van 
aderverkalking in de menselijke halsslagadervertakking, moet terdege 
rekening worden gehouden met de grote interindividuele variabiliteit in de 

geometrie van deze vertakking. 
- Dit proefschrift, hoofdstuk 2. 

2. De eindige-elementenmethode is zeer goed bruikbaar voor het simuleren 
van bloedstromingen in complexe drie-dimensionale geometrieen onder 
fysiologische stromingscondities, mits gebruik wordt gemaakt van efficiente 
oplosstrategieen of (mini )supercomputers. 
- Perktold et al. (1987) Analysis of pulsatile blood flow: a carotid siphon 

model, J. Biomed. Eng. 9, 46-53. 
- Dit proefschrift. 

3. De huidige commerciele meshgeneratoren zijn niet geschikt een complexe 
geometrie, zoals de halsslagadervertakking, in een relatief klein aantal 

kubische elementen op te delen. 

4. Beter een minisupercomputer in de hand dan tien supercomputers in de 
Iucht. 

5. Het secundaire snelheidsveld in een 90° -bocht wordt, voor stromingen 
met een stationaire component van dezelfde orde van grootte als de 
instationaire component en voor hoge waarden van de Womersley 
parameter, in hoge mate bepaald door de stationaire component. 

Smith (1975) Pulsatile flow in curved pipes, J. Fluid Mech. 71, 15-42. 
- Dit proefschrift, hoofdstuk 5. 



6. Voor vloeistofstromingen in een 90°-bocht onder fy1liologische 

stromingscondities is de invloed van de diastolische fase op de 

stromingsfenomenen in de systolische fase gering. 

-Dit proefschrift, boofdstuk 5. 

7. Het definieren van geschikte parameters, die op een adequate wijze het 
a.xia.le en secundaire snelheidsveld in de ba.lsslagadervertakking kunnen 
bescbrijven, is noodzakelijk bij verder onderzoek naar de invloed van 

vaatvernauwingen op het tota.le stromingsveld. 

8. Naast bet bocbteffect heeft ook de specifieke vorm van de bulbus een 

grote invloed op het axiale en secundaire snelheidsveld in de 

halsslagadervertakking. 
Olson ( 1971) Fluid mechanics relevant to respiration: flow within curved 
or elliptical tubes and bifurcating systems, PhD-thesis, University of 

London. 
- Dit proefschrift, boofdstuk 6. 

9. De vloeistof-structuur interactiemodellen zoals die ontwikkeld zijn door 
ondermeer Belytschko, zijn niet geschikt voor bet beschrijven van 

interactieproblemen waarin de structuur een verwaarloosbare massa beeft 

ten opzichte van de vloeistof. 

- Belytschko (1980) Fluid-structure interaction, Comput. & Struct. 12, 
459-469. 

10. De mogelijkheid om (top )atleten ook tijdens trainingen te kunnen 

onderwerpen aan een controle op bet gebruik van stimulerende middelen, 
zal de geloofwaardigbeid in (top )prestaties ten goede komen. 

11. Gebonden hulp aan de derde wereld Ianden is strijdig met de gedachte 
deze Ianden onafhankelijker te maken van de eerste wereld. 

12. Zeehondcn, maar ook walvissen, leiden een hondeleven. 

Eindhoven, april 1989 Camilo Rindt 


