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Large-time behaviour of Hele-Shaw flow with

injection or suction for perturbed balls in RN

E. Vondenhoff

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Large-time behaviour of Hele-Shaw flow with surface tension and with injection or
suction in one point is discussed. We consider domains which are initially small
perturbations of balls. Radially symmetric solutions are stationary after a suitable
time-dependent rescaling. The evolution of perturbations can be described by a
non-local nonlinear parabolic evolution equation. Global existence results and de-
cay properties are derived using energy estimates in Sobolev spaces.

AMS subject classifications: 35R35, 35K55, 76D27
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1 Introduction

Hele-Shaw flow with surface tension and with injection or suction at a single point is
described by a family of domains t 7→ Ω(t) in RN , parameterised by time t, and two
functions v(·, t) : Ω(t) → RN and p(·, t) : Ω(t) → R that satisfy the following moving-
boundary problem:

div v = µδ in Ω(t), (1)
v = −∇p in Ω(t), (2)
p = −γκ on Γ(t) := ∂Ω(t). (3)

Here, κ(·, t) : Γ(t) → R is the mean curvature of the moving boundary t 7→ Γ(t) of the
domain (taken negative if Ω(t) is convex), µ is the injection rate if µ > 0 or the suction
rate if µ < 0, γ is a positive constant, and δ is the Dirac delta distribution. The evolution
of the boundary Γ(t) is specified by the requirement that its normal velocity vn is given
by

vn = v · n. (4)
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The equations (1), (2), and (3) can be combined to give

∆p = −µδ in Ω(t), (5)
p = −γκ on Γ(t) = ∂Ω(t). (6)

Hence, p solves a Dirichlet problem for any time t and on Γ(t) we get from (4)

vn = − ∂p
∂n

.

Besides liquid flow in a Hele-Shaw cell [2], the model and variations of it describe the
growth of tumours [1] and porous media flow [3, 4]. Short-time existence of solutions
for a closely related problem has been proved by Escher and Simonett [5]. For the
three-dimensional injection problem, global existence of classical solutions and large-
time behaviour have been found in [10] for domains that are initially small perturbations
of balls. The three-dimensional suction case requires some extra conditions in order to
get global existence results (see [10] as well). The ratio of suction rate to γ needs to
be small and the position of the geometric centre of the initial domain has to be at the
origin, where the suction point is located. In this paper we prove global existence results
of classical solutions for N = 2 and N ≥ 4.

Let σN be the area of the unit sphere SN−1. It is easy to check that if the initial
domain has the same volume as the unit ball σN

N , then the volume V of the domain as a
function of time is given by

V (t) =
σN

N
+ µt. (7)

The suction problem only makes sense for t ≤ T := − σN

µN .
If Ω(0) = BN := {x ∈ RN : |x| < 1}, then the moving domain will be a ball around

the origin with radius α(t) given by

α(t) = N

√
µNt

σN
+ 1.

In order to prove stability of this solution we rescale the domain by a factor α(t) such
that BN becomes a stationary solution. We introduce a function r(·, t) : SN−1 → R
that describes a small star-shaped perturbation of this stationary solution. In [10] an
evolution equation for r in Hölder spaces is derived and linearised. This equation is
autonomous only for N = 3. Therefore we cannot use the techniques that are used in
[10] in other dimensions. Instead, we consider the problem in Sobolev spaces and work
with energy estimates.

In Section 2 we introduce the same evolution equation on Sobolev spaces. In Section
3 we use the linearisation of the evolution operator to prove global existence and decay
properties for perturbations. For the injection problems, we find existence for all t > 0.
In the two-dimensional suction problem, we need the extra condition that the geometric
centre of the initial domain and the suction point coincide, in order to prove that all
liquid can be removed. The domain vanishes ”as a round point”. In contrast to the
three-dimensional case, there is no restriction on the suction rate in the two-dimensional
case. For N ≥ 4, we do not know whether or not a global existence result for the suction
problem can be found.
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dimension µ > 0 µ < 0
2 • global existence and decay

global existence for correct geometric centre
and decay (see Theorem 3.5)
(see Theorem 3.3) • almost global existence

(see Theorem 4.1)
3 • global existence and decay

global existence for correct geometric centre when
and decay |µ|

γ < 32π
5

(see [10]) (see [10])
• almost global existence

(see [10])
≥ 4 global existence almost global existence

and decay (see Theorem 4.1)
(see Theorem 3.6)

Table 1: Large-time behaviour of Hele-Shaw flow with surface tension and injection or
suction in one point

Both for N = 2 and for N ≥ 4, µ < 0, any portion of liquid, smaller than the entire
domain, can be removed if the initial domain is close enough to a ball. We shall call this
result almost global existence. It will be proved in Section 4.

2 The evolution equation and its linearisation

In [10], an evolution equation for the motion of the domain Ω(t) in Hölder spaces is
derived and linearised. In this section we introduce the same equation in a Sobolev space
setting.

Let HN
k be the vector space of harmonic homogeneous polynomials of degree k in N

variables. Define the spherical harmonics as restrictions of these polynomials to the unit
sphere SN−1:

SN
k =

{
q |SN−1 : q ∈ HN

k

}
.

For each k ∈ N0, choose a basis (sk,j)
ν(N,k)
j=1 of SN

k that is orthonormal in L2(SN−1):

SN
k =

〈
sk,1, sk,2, . . . , sk,ν(N,k)

〉
,

where ν(N, k) is the dimension of SN
k . From [7] Lemma 2, we know that the spherical

harmonics
∞⋃

k=0

{
sk,1, sk,2, . . . , sk,ν(N,k)

}
,

form an orthonormal basis for L2(SN−1). Let (·, ·)0 be the usual inner product on
L2(SN−1). For each r ∈ L2(SN−1) define rk,j by

rk,j := (r, sk,j)0.
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For all s > 0, equip the Sobolev space Hs(SN−1) with the inner product

(r, r̃)s =
∑
k,j

(k2 + 1)srk,j r̃k,j .

In the sequel we will use the Sobolev embedding theorem: If k ∈ N0, β ∈ (0, 1), and
s > N−1

2 + k + β, then
Hs(SN−1) ↪→ Ck,β(SN−1)

and
Hs+ 1

2 (BN ) ↪→ Ck,β(BN ).

We will also use the fact that for s > N−1
2 , Hs+ 1

2 (BN ) and Hs(SN−1) are Banach algebras.
We restrict ourselves to domain evolutions t 7→ Ω(t) that can be described by a

continuous function R(·, t) : SN−1 → (−1,∞) satisfying

Ω(t) = ΩR(·,t) =
{
x ∈ RN \ {0} : |x| < 1 +R

(
x

|x|

)}
∪ {0}.

Besides R(·, t) we introduce r(·, t) such that

Ωr(·,t) = α(t)−1ΩR(·,t),

which is equivalent to

1 + r(t) =
1 +R(t)
α(t)

. (8)

We will often write r(t) instead of r(·, t) and if we consider a fixed domain, then the
argument t will be suppressed. From now on we assume that r ∈ Hs(SN−1) where

s >
N + 7

2
. (9)

Define Γr := ∂Ωr. Introduce

• z̃(r, ·) : SN−1 → Γr by
z̃(r, ξ) = (1 + r(ξ)) ξ,

• n(r, ·) as the function that maps an element ξ ∈ SN−1 to the exterior unit normal
vector on Γr at the point z̃(r, ξ),

• κ(r, ·) as the function that maps an element ξ ∈ SN−1 to the mean curvature of Γr

at z̃(r, ξ).

We will often use the notations z̃(r), n(r), and κ(r) instead of z̃(r, ·), n(r, ·), and κ(r, ·).
In [8] Chapter 3 Lemma 16, it is proved that on a neighbourhood U of zero in Hs(SN−1)
the operators n : U →

(
Hs−1(SN−1)

)N and κ : U → Hs−2(SN−1) are analytic. By [9]
Theorem 6.108, there exists an extension operator E ∈ L(Hs(SN−1),Hs+ 1

2 (BN )), such
that

Er|SN−1 = r. (10)
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Define z : Hs(SN−1) →
(
Hs+ 1

2 (BN )
)N

by

z(r, x) := (1 + (Er)(x))x,

where z(r, ·) = z(r).

Lemma 2.1. There exists a δ > 0 such that if ‖r‖s < δ then z(r) : BN → Ωr is bijective
and z(r)−1 ∈

(
C2(Ωr)

)N
.

Proof. From the Sobolev embedding theorem we get Hs(SN−1) ↪→ C4(SN−1). The bi-
jectivity follows from [11] Lemma 2.2. Using [11] Lemma 2.3, we can prove the other
statement as well.

On a neighbourhood U of zero in Hs(SN−1) we define the following operators:

• A : U → L(Hs− 3
2 (BN ),Hs− 7

2 (BN )) and Q : U → L
(

Hs− 3
2 (BN ),

(
Hs− 5

2 (BN )
)N
)

by

A(r)u :=
(
∆
(
u ◦ z(r)−1

))
◦ z(r) =

∑
i,k,l

ji,l(r)
∂

∂xi

(
jk,l(r)

∂u

∂xk

)
and

Q(r)u :=
(
∇
(
u ◦ z(r)−1

))
◦ z(r) =

∑
i,k

jk,i(r)
∂u

∂xk
ei,

where ei is the i-th unit vector in RN and jk,i(r) are the coefficients of the inverse
of the matrix

J (r) =
∂z(r)
∂x

∈
(
Hs− 1

2 (BN )
)N×N

.

The elements jk,i(r) are in Hs− 1
2 (BN ) for ‖r‖s small because of continuity of inver-

sion near the identity J (0) in Banach algebras. Because of (9) the space Hs− 7
2 (BN )

is a Banach algebra. Therefore the operators A and Q are well-defined.

• S : U → L(Hs− 3
2 (BN ),Hs− 7

2 (BN )×Hs−2(SN−1)) by

S(r)u :=
(
A(r)u
Tru

)
. (11)

• ϕ : U → Hs(SN−1) by
ϕ(r, x) := Φ((1 + r(x))x), (12)

where Φ : RN → R is the fundamental solution of the Laplacian:

Φ(x) :=


− 1

2π
ln |x| N = 2,

1
(N − 2)σN |x|N−2

− 1
(N − 2)σN

N ≥ 3.
(13)

We often write φ(r) instead of φ(r, ·).
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Lemma 2.2. For ‖r‖s small, S(r) is an isomorphism between Hs− 3
2 (BN ) and Hs− 7

2 (BN )×
Hs−2(SN−1).

Proof. S(0) is an isomorphism between Hs− 3
2 (BN ) and Hs− 7

2 (BN ) × Hs−2(SN−1). Be-
cause S is smooth ([11] Lemma 2.6), S(r) is an isomorphism for small r.

Suppose that (9) holds. By [10] we have for r in a suitable neighbourhood U of zero in
Hs(SN−1)

∂r

∂t
=

1
α(t)3

F(r, t), (14)

where
F(r, t) = γF1(r) + µα(t)3−NF2(r), (15)

for a third order operator F1 : U → Hs−3(SN−1) and a first order operator F2 : U →
Hs−1(SN−1) given by

F1(r) = E(r)κ(r),

F2(r) = E(r)ϕ(r) + l(r),

where E : U → L(Hs−2(SN−1),Hs−3(SN−1)) and l : U → Hs(SN−1) are defined by

E(r)ψ := ξ 7→
Tr
(
Q(r)

[
S(r)−1

[
0
ψ

]])
(ξ) · n(r, ξ)

n(r, ξ) · ξ
and

l(r) :=
1

σN (1 + r)N−1
− 1 + r

σN
.

In fact, F2 also maps a neighbourhood of zero in Hs−2(SN−1) to Hs−3(SN−1).
Introduce a new time variable τ = τ(t) such that τ(0) = 0 and

dτ

dt
=

1
α(t)3

. (16)

For N 6= 3 this implies

τ(t) =
σN

µ (N − 3)

((
µNt

σN
+ 1
)1− 3

N

− 1

)
. (17)

The original time interval was infinite for the injection problems and finite for the suction
problems. Via (17), this does not change for the new time variable τ in the case N ≥ 4.
For N = 2 however, the new injection problem is defined on a finite time interval (0, τmax)
while the suction problem is defined on (0,∞). We have

lim
t→∞

τ(t) =
2π
µ
, for N = 2, µ > 0,

lim
t→T

τ(t) = ∞, for N = 2, µ < 0,

lim
t→∞

τ(t) = ∞, for N ≥ 4, µ > 0,

lim
t→T

τ(t) =
σN

|µ|(N − 3)
, for N ≥ 4, µ < 0.
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We shall denote these limit values for τ by τmax. We get

∂r

∂τ
= F(r, t(τ)) = γF1(r) + µα(t(τ))3−NF2(r).

Here t(τ) is the value of t that corresponds to τ . To simplify notation, we will write from
now on α(τ) instead of α(t(τ)) and F(r, τ) instead of F(r, t(τ)), so

∂r

∂τ
= F(r, τ) = γF1(r) + µα(τ)3−NF2(r). (18)

Note that the evolution operator F is independent of τ in the three dimensional case. In
all other dimensions, time dependence only occurs in front of F2.

Lemma 2.3. (Analyticity of the evolution operator)
Suppose that s > N+7

2 .

• The mapping F1 is analytic from a neighbourhood U of zero in Hs(SN−1) to
Hs−3(SN−1).

• The mapping F2 is analytic from a neighbourhood U of zero in Hs−2(SN−1) to
Hs−3(SN−1).

Proof. These statements can be proved in a similar way as was done in [8] Chapter 3 for
Hele-Shaw flow without injection or suction and in [11] and [10] for F1 and F2 in Hölder
spaces.

The linearisations of F1 and F2 around zero are polynomials of the Dirichlet-to-

Neumann mapping φ 7→ Nφ :=
(

Tr∇S(0)−1

(
0
φ

))
· n(0). This is a mapping of order

1 that satisfies
N s = ks,

for all s ∈ SN
k . From [10] we get

F ′1(0)r = −p1(N )r (19)

and
F ′2(0)r = −p2(N )r (20)

where p1 and p2 are the polynomials

p1(k) = k3 + (N − 2)k2 − (N − 1)k

and
p2(k) =

1
σN

k +
N

σN
.
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3 Energy estimates and existence results

In this section we find estimates for (r,F(r, τ))s, in order to prove stability of the sta-
tionary solution r ≡ 0. We use estimates for (r,F ′1(0)r)s and (r,F ′2(0)r)s that are easily
obtained from (19) and (20). For the injection problems we prove that for small r(0) there
exists a global solution r(t) of (14) that converges to zero if t goes to infinity. For the
two dimensional suction problem we need to restrict ourselves to domains with certain
geometric properties, in order to get an existence result on the time interval [0, T ].

Let ω be a bijection between {(l,m) ∈ N2 : 1 ≤ l < m ≤ N} and
{
1, 2, . . . ,

(
N
2

)}
. We

define the following differential operators on functions on SN−1:

Dω(l,m) := xl
∂

∂xm
− xm

∂

∂xl
.

For each i ∈ {1, 2, . . . ,
(

N
2

)
}, Di is the infinitesimal generator of a semigroup of operators

h 7→ Rh:
Rhf = ehDif = f ◦ gh, f ∈ L2(SN−1),

where gh : SN−1 → SN−1 are rotations of the unit sphere.

Lemma 3.1. Let s > N+7
2 . For r ∈ Hs+1(SN−1) with ‖r‖s small, we have the generalised

chain rule of differentiation:

DiFk(r) = F ′k(r)[Dir], k = 1, 2.

If in addition r ∈ Hs+2(SN−1), then we have the second order generalised chain rule of
differentiation:

DiDjFk(r) = F ′k(r)[DiDjr] + F ′′k (r)[Dir,Djr], k = 1, 2. (21)

Proof. Because Fk (k = 1, 2) commutes with rotations, i.e.

Fk(r) ◦ gh = Fk(r ◦ gh),

we get

DiFk(r) = lim
h→0

1
h

(Rh − I)Fk(r) = lim
h→0

1
h

(Fk(r) ◦ gh −Fk(r))

= lim
h→0

1
h

(Fk(r ◦ gh)−Fk(r)) = lim
h→0

1
h
F ′k(r)[r ◦ gh − r]

= F ′k(r)
[
lim
h→0

r ◦ gh − r

h

]
= F ′k(r)[Dir],

where I is the identity. From this we can derive the second order generalised chain rule
as well (see also [6] Section 4 and [8] Chapter 5).

Let for σ > 0, ‖ · ‖σ−2,2 be the norm on Hσ(SN−1) induced by the inner product

(r, r̃)σ−2,2 := (r, r̃)σ−2 +
∑
i,j

(DiDjr,DiDj r̃)σ−2.

This norm is equivalent to the norm ‖ · ‖σ that we introduced earlier.
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Lemma 3.2. If r ∈ SN
k then Dir ∈ SN

k .

Proof. The spaces SN
k are invariant under rotations. The lemma follows from this and

the fact that Di generates a semigroup of rotations.

Theorem 3.3. Let N = 2, µ > 0, and λ0 ∈
(
0, µ

2π

)
. Suppose that s > 5. There exists a

δ > 0 such that if r0 ∈ Hs(S1) with ‖r0‖s < δ then the problem

∂r

∂τ
= F(r, τ), (22)

with r(0) = r0, has a solution r ∈ C([0, τmax),Hs(S1))∩C1([0, τmax),Hs−3(S1)). Further-
more, ((ξ, τ) 7→ r(τ)(ξ)) ∈ C∞(S1×(0, τmax)). If we regard r as a function of the original
time variable t, then

‖r(t)‖s−2,2 ≤
(
µt

π
+ 1
)−πλ0

µ

‖r0‖s−2,2, t ∈ [0,∞). (23)

Proof. The theorem follows from the inequality

(r,F(r, τ))s−2,2 ≤ −λ0α(τ)‖r‖2s−2,2, (24)

for all r ∈ Hs+3(S1) with ‖r‖s small. First we find a similar estimate for the Fréchet
derivatives F ′1(0) and F ′2(0). Perturbation arguments and the chain rule (21) lead to
(24). Combining (16) and (24) we get algebraic decay of r as a function of t, given by
(23).

Throughout the proof we will assume that r ∈ Hs+3(S1) with ‖r‖s < δ, where δ is
sufficiently small. The symbol C always denotes a sufficiently large constant, which is
independent of r.

1. Take η > 0 such that λ0 <
(1−η)µ

2π . Define

c1 := inf
k∈N0,τ≥0

γp1(k) + ηµα(τ)p2(k)
(k2 + 1)

3
2

= inf
k∈N0

γp1(k) + ηµp2(k)
(k2 + 1)

3
2

> 0,

and define ε := min{c1, (1−η)µ
2π − λ0}.

2. Let F ′ be the Frechet derivative of F with respect to the first argument. From (19)
and (20) we have the following estimate for the linear part of F(r, τ):

(r,F ′(0, τ)r)s−2

= γ(r,F ′1(0)r)s−2 + µα(τ)(r,F ′2(0)r)s−2

= γ(r,F ′1(0)r)s−2 + ηµα(τ)(r,F ′2(0)r)s−2 + (1− η)µα(τ)(r,F ′2(0)r)s−2

=
∑
k,j

(k2 + 1)s−2+ 3
2
−γp1(k)− ηµα(τ)p2(k)

(k2 + 1)
3
2

r2k,j

+(1− η)α(τ)
∑
k,j

(k2 + 1)s−2+ 1
2
−µp2(k)
(k2 + 1)

1
2
r2k,j

≤ −c1‖r‖2s− 1
2
− (1− η)µ

2π
α(τ)‖r‖2s− 3

2
. (25)
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In the last step we used − p2(k)√
k2+1

≤ − 1
2π .

3. Now we find an estimate for the remaining nonlinear part. From the analyticity
of F1 and F2 near zero and the fact that F1(0) = F2(0) = 0, we have for r in a
neighbourhood of zero in Hs− 1

2 (S1)

‖F1(r)−F ′1(0)r‖s− 7
2
≤ C‖r‖2s− 1

2
,

‖F2(r)−F ′2(0)r‖s− 5
2
≤ C‖r‖2s− 3

2
.

Here the demand s > 5 is crucial. Now we get

γ(r,F1(r)−F ′1(0)r)s−2 + µα(τ)(r,F2(r)−F ′2(0)r)s−2

≤ C
(
‖r‖3s− 1

2
+ α(τ)‖r‖3s− 3

2

)
. (26)

4. From the chain rule (21) we get

(r,F(r, τ))s−2,2

= γ(r,F1(r))s−2 + µα(τ)(r,F2(r))s−2

+γ
∑
i,j

(DiDjr,F ′1(r)[DiDjr])s−2 + µα(τ)
∑
i,j

(DiDjr,F ′2(r)[DiDjr])s−2

+γ
∑
i,j

(DiDjr,F ′′1 (r)[Dir,Djr])s−2 + µα(τ)
∑
i,j

(DiDjr,F ′′2 (r)[Dir,Djr])s−2.

(27)

We divide the right-hand side into three parts and we estimate these parts sepa-
rately.

5. Adding (25) and (26) we get for the first part of (27)

γ(r,F1(r))s−2 + µα(τ)(r,F2(r))s−2

≤ −c1‖r‖2s− 1
2
− (1− η)µ

2π
α(τ)‖r‖2s− 3

2
+ C

(
‖r‖3s− 1

2
+ α(τ)‖r‖3s− 3

2

)
≤ −c1‖r‖2s− 1

2
− (1− η)µ

2π
α(τ)‖r‖2s− 3

2
+ Cδ

(
‖r‖2s− 1

2
+ α(τ)‖r‖2s− 3

2

)
. (28)
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6. For the second part of (27) we get from similar arguments

γ(DiDjr,F ′1(r)[DiDjr])s−2 + µα(τ)(DiDjr,F ′2(r)[DiDjr])s−2

= γ(DiDjr,F ′1(0)[DiDjr])s−2 + µα(τ)(DiDjr,F ′2(0)[DiDjr])s−2

+γ(DiDjr, {F ′1(r)−F ′1(0)} [DiDjr])s−2

+µα(τ)(DiDjr, {F ′2(r)−F ′2(0)} [DiDjr])s−2

≤ −c1‖DiDjr‖2s− 1
2
− (1− η)µ

2π
α(τ)‖DiDjr‖2s− 3

2

+Cδ
(
‖DiDjr‖2s− 1

2
+ α(τ)‖DiDjr‖2s− 3

2

)
. (29)

In the last step we used analyticity of F1 near zero in Hs− 1
2 (SN−1) and analyticity

of F2 near zero in Hs− 3
2 (SN−1).

7. Because of Lemma 2.3, there exists a C > 0 such that for r near the origin in
Hs− 1

2 (S1) we have ‖F ′′1 (r)‖X1 ≤ C, for X1 = L2(Hs− 1
2 (S1)×Hs− 1

2 (S1),Hs− 7
2 (S1))

and ‖F ′′2 (r)‖X2 ≤ C, for X2 = L2(Hs− 3
2 (S1)×Hs− 3

2 (S1),Hs− 5
2 (S1)). Therefore,

the third part of (27) can be estimated as follows:

γ(DiDjr,F ′′1 (r)[Dir,Djr])s−2 + µα(τ)(DiDjr,F ′′2 (r)[Dir,Djr])s−2

≤ C
(
‖r‖s+ 3

2
‖r‖2s+ 1

2
+ α(τ)‖r‖s+ 1

2
‖r‖2s− 1

2

)
≤ C

(
‖r‖s− 1

2
‖r‖2s+ 3

2
+ α(τ)‖r‖s− 3

2
‖r‖2s+ 1

2

)
≤ Cδ

(
‖r‖2s+ 3

2
+ α(τ)‖r‖2s+ 1

2

)
. (30)

Here we used the following interpolation inequalities:

‖r‖2s+ 1
2
≤ C‖r‖s− 1

2
‖r‖s+ 3

2
,

‖r‖2s− 1
2
≤ C‖r‖s− 3

2
‖r‖s+ 1

2
.

8. Adding the results of (28), (29), and (30) and using equivalence of the norms ‖ · ‖σ

and ‖ · ‖σ−2,2 we get

(r,F(r, τ))s−2,2 ≤ −c1‖r‖2s− 1
2 ,2 −

(1− η)µ
2π

α(τ)‖r‖2s− 3
2 ,2

+Cδ
(
‖r‖2s− 1

2 ,2 + α(τ)‖r‖2s− 3
2 ,2

)
.

If we choose δ < ε
C , then we get

(r,F(r, τ))s−2,2 ≤ −(c1 − ε)‖r‖2s− 1
2 ,2 −

(
(1− η)µ

2π
− ε

)
α(τ)‖r‖2s− 3

2 ,2

≤ −λ0α(τ)‖r‖2s− 3
2 ,2 ≤ −λ0α(τ)‖r‖2s−2,2. (31)

11



9. In [8] Chapter 6 Proposition 9 and 10, local existence results for Stokes flow with in-
jection or suction are proved. Hele-Shaw flow can be treated in a similar way. Com-
bining this local existence result and (31) we get global existence of a solution r ∈
C([0, τmax),Hs(S1)) ∩ C1([0, τmax),Hs−3(S1)) such that r ∈ C1((0, τmax), C∞(S1)).
From this it follows that ((ξ, τ) 7→ r(τ)(ξ)) ∈ C∞(S1 × (0, τmax)). Furthermore, for
small ϑ > 0 and τ > ϑ, we have ‖r(τ)‖2s−2,2 ≤ y(τ) where y : [ϑ, τmax) → R satisfies

dy

dτ
= −2λ0α(τ)y,

with y(ϑ) = ‖r(ϑ)‖2s−2,2. Solving this ODE we get for τ > ϑ

y(τ) = e−2λ0
R τ

ϑ
α(τ̃)dτ̃‖r(ϑ)‖2s−2,2.

After reintroducing the original time variable by (16) we get

y = e
−2λ0

R t
t(ϑ)

1
(α(t̃))2

dt̃‖r(ϑ)‖2s−2,2

=
(
µ(t− t(ϑ))

π
+ 1
)− 2πλ0

µ

‖r(ϑ)‖2s−2,2.

Here, t(ϑ) denotes the value of the original time variable t for τ equal to ϑ. Letting
ϑ go to zero we find (23).

Define

MN
1 =

{
r ∈ C0(SN−1) :

∫
Ωr

dx =
σN

N
,

∫
Ωr

xdx = 0
}
.

Note that MN
1 is the set of continuous functions on SN−1 for which the corresponding

domains Ωr have the volume of the unit ball and a geometric centre that coincides with
the origin. It is proved in [10] Lemma 3.7, that if r is a solution of (18) with r(0) ∈ MN

1 ,
then r(t) ∈ MN

1 for all t. Introduce the Hilbert spaces Hσ
1 (SN−1) as

Hσ
1 (SN−1) = {r ∈ Hσ(SN−1) : (r, s)0 = 0, ∀s ∈ SN

0 ⊕SN
1 }.

Define f1 : Hs(SN−1) → R× RN by

f1(r) :=
( ∫

Ωr
dx− σN

N∫
Ωr
xdx

)
.

Let P1 : Hs(SN−1) → Hs
1(SN−1) be the orthogonal projection onto Hs

1(SN−1) with
respect to the L2(SN−1)-inner product and let φ : Hs(SN−1) → R× RN ×Hs

1(SN−1) be
defined by

φ(r) :=
(
f1(r)
P1r

)
.

By the Implicit Function Theorem φ is an analytic bijection between a neighbourhood
of zero in Hs(SN−1) and a neighbourhood of zero in R×RN ×Hs

1(SN−1). This is proved
for different function spaces in [11]. On a suitable neighbourhood U of zero in Hs

1(SN−1)
we define ψ : U → MN

1 by
ψ(r̃) := φ−1(0, r̃).

12



Lemma 3.4. Let s > N+7
2 . For r̃ ∈ Hs+2

1 (SN−1) with ‖r̃‖s small, we have

DiDjψ(r̃) = ψ′(r̃)[DiDj r̃] + ψ′′(r̃)[Dir̃, Dj r̃]. (32)

Proof. It is sufficient to show that ψ commutes with rotations. If r̃ ∈ Hs+2
1 (SN−1), then

ψ(r̃) ∈ MN
1 and for a rotation g : RN → RN we have r̃ ◦ g ∈ Hs+2

1 (SN−1) and ψ(r̃) ◦ g ∈
MN

1 . Because rotations and P1 commute we have P1(ψ(r̃) ◦ g) = (P1ψ(r̃)) ◦ g = r̃ ◦ g.
Therefore

ψ(r̃) ◦ g = φ−1 (0,P1(ψ(r̃) ◦ g)) = φ−1 (0, r̃ ◦ g) = ψ(r̃ ◦ g).
This proves the lemma.

Now we derive a global existence result for the suction case for N = 2. Like in the
proof of Theorem 3.3, we get this result from energy estimates. The suction case is more
complicated then the injection case, first of all because we need to restrict ourselves to
the subset M2

1, which is not a vector space. This problem is solved by considering an
equivalent problem on Hs

1(S1) given by equation (35) and using the bijection ψ between
Hs

1(S1) and M2
1. Once we have found existence of solutions r̃ of this equation, we have

existence of corresponding solutions r = ψ(r̃) of equation (33). The second complication
here is that we need to split up the time interval [0,∞) in two parts, [0, T̂ ] and [T̂ ,∞).
On the first interval, the norm of solutions r̃ that we find might grow up to a value
δ′. On the second interval we need an energy estimate, that is sharper than the one
that we found on the first interval, in order to obtain exponential decay for solutions
of (35). For any ratio of |µ| to γ, a suitable T̂ exists, because for large time surface
tension dominates suction. For the three dimensional problem (see [10]) this is not the
case, because eigenvalues of the linearisations of the evolution operators do not change
in time.

Theorem 3.5. Let N = 2, µ < 0, and take λ0 ∈
(

0,
6γ

5
√

5

)
. Suppose that s > 5. There

exists a δ > 0 and a M > 0 such that if r0 ∈ Hs(S1) ∩ M2
1 with ‖r0‖s < δ then the

problem
∂r

∂τ
= F(r, τ), (33)

with r(0) = r0, has a solution r ∈ C([0,∞),Hs(S1)) ∩ C1([0,∞),Hs−3(S1)) with
((ξ, τ) 7→ r(τ)(ξ)) ∈ C∞(S1 × (0,∞)). We have

‖r(τ)‖s−2,2 ≤Me−λ0τ‖r0‖s−2,2. (34)

Proof. Again, the symbol C is used for a constant that may vary throughout the proof.

1. Note that − p1(k)

(k2+1)
3
2

decreases in k. Therefore we have for k ≥ 2

− γp1(k)
(k2 + 1)

3
2
≤ − 6γ

5
√

5
< −λ0.

Furthermore p2(k)

(k2+1)
3
2

is bounded and limτ→∞ α(τ) = 0. Therefore there exists a T̂

such that for τ ≥ T̂ and k ≥ 2

−γp1(k) + |µ|α(τ)p2(k)
(k2 + 1)

3
2

< −λ0.

13



Choose K ∈ N such that for k > K we have −γp1(k) + |µ|p2(k) < 0 and let
PK : L2(S1) → L2(S1) be the orthogonal projection with respect to the L2(S1)-
inner product onto the orthoplement of

⊕K
k=0 S2

k. Define c1 > 0 and c2 > 0 by

c1 := inf
k≥2,τ≥T̂

γp1(k)− |µ|α(τ)p2(k)

(k2 + 1)
3
2

= inf
k≥2

γp1(k)− |µ|α(T̂ )p2(k)

(k2 + 1)
3
2

> λ0

and

c2 := inf
k>K,τ≥0

γp1(k)− |µ|α(τ)p2(k)

(k2 + 1)
3
2

= inf
k>K

γp1(k)− |µ|p2(k)

(k2 + 1)
3
2

.

The positivity of c2 follows from the fact that γp1(k)−|µ|p2(k)

(k2+1)
3
2

converges to γ if k

goes to infinity. Define ε := min{c1 − λ0, c2}.

2. Assume for the moment that r satisfies (33). Then r̃ := P1r satisfies

∂r̃

∂τ
= P1F(ψ(r̃), τ). (35)

First we will prove solvability of this equation, finding estimates for
(r̃,P1F(ψ(r̃), τ))s−2,2 for r̃ ∈ Hs+3

1 (S1) and ‖r̃‖s < δ′ with δ′ small enough.

3. Introduce on a suitable neighbourhood U of zero in Hs
1(S1) the operators F̃1 : U →

Hs−3
1 (S1) and F̃2 : U → Hs−1

1 (S1) as F̃1 = P1 ◦F1 ◦ψ and F̃2 = P1 ◦F2 ◦ψ. These
operators are compositions of analytic operators, so they are analytic themselves.
From a simple calculation we see that ψ′(0) is the identity on Hs

1(S1). Therefore,

F̃ ′k(0)r̃ = F ′k(0)r̃,

for k = 1, 2 and we have the following estimate for the linear part of γF̃1+µα(τ)F̃2:

γ(r̃, F̃ ′1(0)r̃)s−2 + µα(τ)(r̃, F̃ ′2(0)r̃)s−2

=
∑
k≤K

(k2 + 1)s−2+ 3
2
−γp1(k) + |µ|α(τ)p2(k)

(k2 + 1)
3
2

r̃2k,j

+
∑
k>K

(k2 + 1)s−2+ 3
2
−γp1(k) + |µ|α(τ)p2(k)

(k2 + 1)
3
2

r̃2k,j

≤ C‖r̃‖20 − c2‖PK r̃‖2s− 1
2

= C‖r̃‖20 + c2‖(I − PK)r̃‖2s− 1
2
− c2‖r̃‖2s− 1

2

≤ C‖r̃‖20 − c2‖r̃‖2s− 1
2
. (36)

Here we used the fact that I − PK : L2(S1) → Hs− 1
2 (S1) is bounded.
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4. For the suction problem we have α(τ) ≤ 1. Therefore, the nonlinear parts can be
estimated in the following way:

γ(r̃, F̃1(r̃)− F̃ ′1(0)r̃)s−2 + µα(τ)(r̃, F̃2(r̃)− F̃ ′2(0)r̃)s−2 ≤ C‖r̃‖3s− 1
2
. (37)

Here we used the analyticity of F̃1 and F̃2, as we did for F1 and F2 in the proof of
Theorem 3.3.

5. From the chain rule (21) we get

γ(r̃, F̃1(r̃))s−2,2 + µα(τ)(r̃, F̃2(r̃))s−2,2

= γ(r̃, F̃1(r̃))s−2 + µα(τ)(r̃, F̃2(r̃))s−2

+γ
∑
i,j

(DiDj r̃, F̃ ′1(r̃)[DiDj r̃])s−2 + µα(τ)
∑
i,j

(DiDj r̃, F̃ ′2(r̃)[DiDj r̃])s−2

+γ
∑
i,j

(DiDj r̃, F̃ ′′1 (r̃)[Dir̃, Dj r̃])s−2 + µα(τ)
∑
i,j

(DiDj r̃, F̃ ′′2 (r̃)[Dir̃, Dj r̃])s−2.

The right-hand side consists of three parts that will be estimated separately on
both intervals [0, T̂ ] and [T̂ ,∞). We start with [0, T̂ ].

6. From (36) and (37), we have for the first part

γ(r̃, F̃1(r̃))s−2 + µα(τ)(r̃, F̃2(r̃))s−2

≤ C‖r̃‖20 − c2‖r̃‖2s− 1
2

+ Cδ′‖r̃‖2s− 1
2
. (38)

7. The second part can be treated in a way similar to the proof of Theorem 3.3. We
use (36), the boundedness of α(τ), and the analyticity of F̃1 and F̃2 to get

γ(DiDj r̃, F̃ ′1(r̃)[DiDj r̃])s−2 + µα(τ)(DiDj r̃, F̃ ′2(r̃)[DiDj r̃])s−2

= γ(DiDj r̃, F̃ ′1(0)[DiDj r̃])s−2 + µα(τ)(DiDj r̃, F̃ ′2(0)[DiDj r̃])s−2

+γ(DiDj r̃,
{
F̃ ′1(r̃)− F̃ ′1(0)

}
[DiDj r̃])s−2

+µα(τ)(DiDj r̃,
{
F̃ ′2(r̃)− F̃ ′2(0)

}
[DiDj r̃])s−2

≤ C‖DiDj r̃‖20 − c2‖DiDj r̃‖2s− 1
2

+ Cδ′‖DiDj r̃‖2s− 1
2
. (39)

Here, we also used the fact that DiDj r̃ ∈ Hs
1(S1) if r̃ ∈ Hs+3

1 (S1). This follows
from Lemma 3.2.

8. For the third part, we refer to the proof of Theorem 3.3 as well and we use the
boundedness of α(τ) and the analyticity of F̃1 and F̃2. In this way we find

γ(DiDj r̃, F̃ ′′1 (r̃)[Dir̃, Dj r̃])s−2 + µα(τ)(DiDj r̃, F̃ ′′2 (r̃)[Dir̃, Dj r̃])s−2 ≤ Cδ′‖r̃‖2s+ 3
2
.

(40)
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9. Combining (38), (39), and (40) and using equivalence of the norms ‖ · ‖s+ 3
2

and

‖ · ‖s− 1
2 ,2 we get on the interval [0, T̂ ]

γ(r̃, F̃1(r̃))s−2,2 + µα(τ)(r̃, F̃2(r̃))s−2,2

≤ C‖r̃‖20,2 − c2‖r̃‖2s− 1
2 ,2 + Cδ′‖r̃‖2s− 1

2 ,2.

If we take δ′ < ε
C , then we get

γ(r̃, F̃1(r̃))s−2,2 + µα(τ)(r̃, F̃2(r̃))s−2,2

≤ C‖r̃‖20,2 ≤ C‖r̃‖2s−2,2. (41)

Define r̃0 := P1r0. Using local existence results as in Theorem 3.3 and diminishing
δ′ if necessary we find an S > 0 such that if ‖r̃0‖s−2,2 ≤ δ′ then (35) has a solution r̃
on [0, S], with r̃(0) = r̃0. Take δ < e−CT̂ δ′ and assume ‖r̃0‖s−2,2 ≤ δ. Then one can
show by induction over K ∈ N0 that (35) has a solution on [KS, (K + 1)S]∩ [0, T̂ ]
that satisfies

‖r̃(τ)‖s−2,2 ≤ eCτ‖r̃0‖s−2,2

there. Therefore
‖r̃(T̂ )‖s−2,2 ≤ eCT̂ δ < δ′.

10. Now we treat the interval [T̂ ,∞). Again we consider the chain rule and distinguish
between three parts. Because of the boundedness of α we have for the first part

γ(r̃, F̃1(r̃))s−2 + µα(τ)(r̃, F̃2(r̃))s−2

≤ γ(r̃, F̃ ′1(0)r̃)s−2 + µα(τ)(r̃, F̃ ′2(0)r̃)s−2 + C‖r̃‖3s− 1
2

=
∑
k≥2

(k2 + 1)s−2+ 3
2
−γp1(k) + |µ|α(τ)p2(k)

(k2 + 1)
3
2

r̃2k,j + C‖r̃‖3s− 1
2

≤ −c1‖r̃‖2s− 1
2

+ Cδ′‖r̃‖2s− 1
2
. (42)

Note that in the summation we start counting from k = 2, because r̃ ∈ Hs
1(S1).

11. For the second part we use the same strategy as for the first time interval, to obtain

γ(DiDj r̃, F̃ ′1(r̃)[DiDj r̃])s−2 + µα(τ)(DiDj r̃, F̃ ′2(r̃)[DiDj r̃])s−2

≤ −c1‖DiDj r̃‖2s− 1
2

+ Cδ′‖DiDj r̃‖2s− 1
2
. (43)

12. For the third part, we get exactly the same result as for the first time interval, cf.
(40).

13. Adding (42), (43), and (40) and using equivalence of the norms ‖·‖s+ 3
2

and ‖·‖s− 1
2 ,2

we get

γ(r̃, F̃1(r̃))s−2,2 + µα(τ)(r̃, F̃2(r̃))s−2,2

≤ −c1‖r̃‖2s− 1
2 ,2 + Cδ′‖r̃‖2s− 1

2 ,2.
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Taking δ′ < ε
C we find

γ(r̃, F̃1(r̃))s−2,2 + µα(τ)(r̃, F̃2(r̃))s−2,2 ≤ −λ0‖r̃‖2s− 1
2 ,2 ≤ −λ0‖r̃‖2s−2,2.

Using [8] Chapter 6 Proposition 9 and 10 again, we can extend the solution r̃ that
we found on [0, T̂ ] to [T̂ ,∞), such that for τ ∈ [T̂ ,∞)

‖r̃(τ)‖s−2,2 ≤ e−λ0(τ−T̂ )‖r̃(T̂ )‖s−2,2.

Combining the results on both intervals, we get existence of a M ′ > 0 independent
of r̃(0), such that for any τ ∈ [0,∞)

‖r̃(τ)‖s−2,2 ≤M ′e−λ0τ‖r̃(0)‖s−2,2.

Define
r = ψ(r̃).

From the smoothness of ψ and the fact that ψ(0) = 0 we see that there exists a
M > 0 such that if r0 is small enough, then r is a solution to (33) that satisfies
(34).

In contrast to the three-dimensional suction problem that is discussed in [10], we do
not need any restriction on the ratio of suction rate to γ.

Now we derive a theorem for global existence for the higher dimensional case. For
injection, we have to deal with the problem that eigenvalues of the linearisation corre-
sponding to spherical harmonics of order zero and one go to zero for large time. The
nonlinear part cannot be controlled anymore. In order to deal with this, we use the
bijection φ near the origin between Hs(SN−1) and R×RN ×Hs

1(SN−1) and consider the
evolution of P1r on Hs

1(SN−1) and the evolution of f1(r), the zeroth and first Richardson
moments, separately. We write down an equation for P1r and find an energy estimate for
its evolution operator. This equation differs from the one that we found in the proof of
Theorem 3.5 because the evolution may not be in MN

1 . We use the fact that the zeroth
and first Richardson moments as function of time are known beforehand.

For the suction problem for N ≥ 4 we do not get any global existence result because if
t approaches T , more and more eigenvalues of the linearised evolution equation become
positive. In other words: For large t, F2 dominates F1. Suction can no longer be
controlled by surface tension.

Theorem 3.6. Let N ≥ 4 and µ > 0. Suppose that s > N+8
2 . There exists a δ > 0 and

a M > 0 such that if r0 ∈ Hs(SN−1) with ‖r0‖s < δ then the problem

∂r

∂τ
= F(r, τ), (44)

with r(0) = r0, has a solution r ∈ C([0,∞),Hs(SN−1)) ∩ C1([0,∞),Hs−3(SN−1)). Fur-
thermore, ((ξ, τ) 7→ r(τ)(ξ)) ∈ C∞(SN−1 × (0,∞)). If we regard r as a function of t
conform (17), then

‖r(t)‖s ≤
M

µNt
σN

+ 1
‖r0‖s.
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Proof. 1. Introduce the number c1 > 0 as

c1 := inf
k≥2

γp1(k)
(k2 + 1)

3
2
.

Choose λ0 ∈ (0, c1
3 ) and define ε := c1

3 − λ0.

2. It is easily checked that the geometric centre of a moving domain ΩR(t) satisfying
(1)-(4) does not change in time. From this and (7) it follows that solutions r of
(44) satisfy

f1(r(τ)) =

(
V0

α(τ)N

1
α(τ)N+1m0

)
=:
(

Vτ

mτ

)
,

where (
V0

m0

)
:= f1(r0).

For notational convenience we introduce qτ := (Vτ ,mτ )T . Assume for the moment
that r satisfies (44). Then r̃ := P1r satisfies

∂r̃

∂τ
= P1F

(
φ−1 (qτ , r̃) , τ

)
. (45)

First we prove solvability of this equation, finding estimates for(
r̃,P1F

(
φ−1 (qτ , r̃) , τ

))
s−2,2

, for |q0| small, r̃ ∈ Hs+3
1 (SN−1) and ‖r̃‖s < δ, with δ

small enough.

3. Because r̃ ∈ Hs
1(SN−1) we have

γ(r̃,F ′1(0)r̃)s−2 + µα(τ)3−N (r̃,F ′2(0)r̃)s−2 ≤ γ(r̃,F ′1(0)r̃)s−2

≤ −c1‖r̃‖2s− 1
2
. (46)

4. Because of Lipschitz continuity of Fk ◦φ−1, for k = 1, 2, and because ψ = φ−1(0, ·)
we have

‖P1Fk

(
φ−1 (qτ , r̃)

)
− P1Fk(ψ(r̃))‖s−2

= ‖P1Fk

(
φ−1 (qτ , r̃)

)
− P1Fk(φ−1 (0, r̃))‖s−2

≤ C|qτ |. (47)

From a simple calculation it follows that ψ′(0) is the identity on Hs− 1
2

1 (SN−1).

Therefore the restriction of F ′k(0) to Hs− 1
2

1 (SN−1) is the Fréchet derivative around

zero of the analytic mapping P1 ◦ Fk ◦ ψ on Hs− 1
2

1 (SN−1) and we have

‖P1Fk(ψ(r̃))−F ′k(0)r̃‖s− 7
2
≤ C‖r̃‖2s− 1

2
. (48)
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Combining (47) and (48) we get the following estimate:

γ
{(
r̃,P1F1

(
φ−1 (qτ , r̃)

))
s−2

− (r̃,F ′1(0)r̃)s−2

}
+µα(τ)3−N

{(
r̃,P1F2

(
φ−1 (qτ , r̃)

))
s−2

− (r̃,F ′2(0)r̃)s−2

}
≤ C

(
|qτ |‖r̃‖s−2 + α(τ)3−N |qτ |‖r̃‖s−2 + ‖r̃‖3s− 1

2
+ α(τ)3−N‖r̃‖3s− 1

2

)
≤ C

(
|qτ |‖r̃‖s−2 + ‖r̃‖3s− 1

2

)
. (49)

Here we used the fact that α(τ)3−N ≤ 1.

5. From the chain rule (21) we get(
r̃,P1F

(
φ−1 (qτ , r̃) , τ

))
s−2,2

= γ (F1 +G1 +H1) + µα(τ)3−N (F2 +G2 +H2) , (50)

where for k = 1, 2

Fk = (r̃,P1Fk

(
φ−1 (qτ , r̃)

)
)s−2,

Gk =
∑
i,j

(DiDj r̃,P1F ′k
(
φ−1 (qτ , r̃)

) [
DiDjφ

−1(qτ , r̃)
]
)s−2,

Hk =
∑
i,j

(DiDj r̃,P1F ′′k
(
φ−1 (qτ , r̃)

) [
Diφ

−1(qτ , r̃), Djφ
−1(qτ , r̃)

]
)s−2.

We will estimate the terms containing Fk, Gk, and Hk separately.

6. Using (46) and (49), we have

γF1 + µα(τ)3−NF2 ≤ −c1‖r̃‖2s− 1
2

+ C|qτ |‖r̃‖s−2 + C‖r̃‖3s− 1
2
. (51)

7. Now we find an estimate for the terms of G1. Because by definition ψ(r̃) =
φ−1(0, r̃), we have

G1 =
∑
i,j

(DiDj r̃, Iij + Jij +Kij)s−2, (52)

where

Iij = P1F ′1
(
φ−1 (qτ , r̃)

) [
DiDjφ

−1(qτ , r̃)
]
− P1F ′1

(
φ−1 (0, r̃)

) [
DiDjφ

−1(0, r̃)
]
,

Jij = P1F ′1 (ψ(r̃)) [ψ′(r̃)[DiDj r̃]] ,

Kij = P1F ′1 (ψ(r̃)) [ψ′′(r̃)[Dir̃, Dj r̃]] .
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Here we used Lemma 3.4. Because P1F ′1(φ−1(·))[DiDjφ
−1(·)] is Lipschitz contin-

uous from R× RN ×Hs+3
1 (SN−1) to Hs−2

1 (SN−1), we get

‖Iij‖s−2 ≤ C|qτ |.

By the Cauchy-Schwarz inequality we have

(DiDj r̃, Iij)s−2 ≤ C|qτ |‖DiDj r̃‖s−2. (53)

Using (46), the analyticity of F1◦ψ, the fact that ψ′(0) is the identity and ψ(0) = 0,
we get

(DiDj r̃, Jij)s−2

≤ (DiDj r̃,P1F ′1(0) [DiDj r̃])s−2 + C‖r̃‖s− 1
2
‖DiDj r̃‖2s− 1

2

≤ −c1‖DiDj r̃‖2s− 1
2

+ C‖r̃‖s− 1
2
‖r̃‖2s+ 3

2
. (54)

There exists a C > 0, such that for r̃ near the origin in Hs− 1
2

1 (SN−1) we have ‖P1 ◦
F ′1 (ψ(r̃)) ◦ ψ′′(r̃)‖X ≤ C for X = L2(Hs− 1

2
1 (SN−1) × Hs− 1

2
1 (SN−1),Hs− 7

2
1 (SN−1)).

Therefore we have
‖Kij‖s− 7

2
≤ C‖r̃‖2s+ 1

2
.

By an interpolation inequality we have

(DiDj r̃, Kij)s−2 ≤ C‖r̃‖s+ 3
2
‖r̃‖2s+ 1

2
≤ C‖r̃‖2s+ 3

2
‖r̃‖s− 1

2
. (55)

Adding (53), (54), and (55) we get for (52)

(DiDj r̃, Iij + Jij +Kij)s−2

≤ −c1‖DiDj r̃‖2s− 1
2

+ C
(
‖r̃‖2s+ 3

2
‖r̃‖s− 1

2
+ |qτ |‖DiDj r̃‖s−2

)
.

For the terms of G2 we get from similar arguments

(DiDj r̃,P1F ′2
(
φ−1 (qτ , r̃)

) [
DiDjφ

−1(qτ , r̃)
]
)s−2

≤ C
(
‖r̃‖2s+ 1

2
‖r̃‖s− 3

2
+ |qτ |‖DiDj r̃‖s−2

)
.

Here, we used the estimate (DiDj r̃,P1F ′2(0)DiDj r̃)s−2 ≤ 0. This is a consequence
of (20). Because α(τ)3−N ≤ 1, we have

γG1 + µα(τ)3−NG2

≤ −c1‖DiDj r̃‖2s− 1
2

+ C
(
‖r̃‖2s+ 3

2
‖r̃‖s− 1

2
+ |qτ |‖DiDj r̃‖s−2

)
. (56)
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8. From arguments that we used in Theorem 3.3 step 7 we obtain

γH1 + µα(τ)3−NH2 ≤ C‖r̃‖s+ 3
2
‖φ−1(qτ , r̃)‖2s+ 1

2

≤ C
(
|qτ |2‖r̃‖s+ 3

2
+ ‖r̃‖2s+ 1

2
‖r̃‖s+ 3

2

)
≤ C

(
|qτ |2‖r̃‖s+ 3

2
+ ‖r̃‖s− 1

2
‖r̃‖2s+ 3

2

)
. (57)

Again we used an interpolation inequality.

9. Adding (51), (56), and (57) we get for (50)

(r̃,P1F
(
φ−1 (qτ , r̃) , τ

)
)s−2,2

≤ −c1‖r̃‖2s− 1
2 ,2 + C

(
|qτ |‖r̃‖s−2,2 + δ‖r̃‖2s− 1

2 ,2 + |qτ |2‖r̃‖s− 1
2 ,2

)
≤ (−c1 + Cδ)‖r̃‖2s− 1

2 ,2 + C|qτ |2 +
c1
3
‖r̃‖2s−2,2 + C|qτ |4 +

c1
3
‖r̃‖2s− 1

2 ,2

≤ (−c1
3

+ Cδ)‖r̃‖2s− 1
2 ,2 + C|qτ |2.

Here we used Cauchy’s inequality and the fact that |qτ |4 ≤ |qτ |2 for small |q0|. If
we choose δ < ε

C , then

(r̃,P1F
(
φ−1 (qτ , r̃) , τ

)
)s−2,2 ≤ −λ0‖r̃‖2s− 1

2 ,2 + C|qτ |2

≤ −λ0‖r̃‖2s− 1
2 ,2 + C

|q0|2

α(τ)2N
.

10. Arguing as in the proof of Theorem 3.5 we get global existence of a solution r̃
of (45) for fixed q0 and for r̃(0) = P1r0 small enough. Furthermore, we have
‖r̃(τ)‖2s ≤ y(τ) where y : [0,∞) → R satisfies

dy

dτ
= −2λ0y + C

|q0|2

α(τ)2N
,

with y(0) = ‖P1r0‖2s. This ODE can be solved using the variation of constants
formula:

y(τ) = e−2λ0τy(0) + C|q0|2
∫ τ

0

e2λ0(τ̃−τ)

α(τ̃)2N
dτ̃ .

We have ∫ τ

0

e2λ0(τ̃−τ)

α(τ̃)2N
dτ̃ ≤

∫ τ
2

0

e2λ0(τ̃−τ)dτ̃ +
1

α( τ
2 )2N

∫ τ

τ
2

e2λ0(τ̃−τ)dτ̃

≤ 1
2λ0

(
e−λ0τ − e−2λ0τ +

1
α( τ

2 )2N

)

≤ C

α( τ
2 )2N

≤ C

α(τ)2N
.
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We omitted the exponential terms because they are dominated by the algebraic
terms. The result is

‖r̃(τ)‖s ≤ Ce−λ0τ‖P1r0‖s +
C

α(τ)N
|q0|.

11. Now we construct a solution r of the original problem by setting

r(τ) := φ−1(qτ , r̃(τ)).

From the boundedness of φ−1 near the origin we get

‖r(τ)‖s ≤ Ce−λ0τ‖P1r0‖s +
C

α(τ)N
|q0| (58)

or

‖r(t)‖s ≤ Ce−λ0τ(t)‖P1r0‖s +
C

α(t)N
|q0|

≤ C

α(t)N

(
|q0|+ ‖P1r0‖s

)
≤ C

α(t)N
‖r0‖s.

Note that because of (58), if we restrict ourselves to the case r0 ∈ MN−1
1 , which

means q0 = 0, then we have faster convergence.
We do not treat the three dimensional problems here. Finding energy estimates for

N = 3 is easier because the evolution operator does not depend on time. The results are
similar to those that are found in [10] in a Hölder space setting.

4 Almost global existence results for the suction prob-
lems

In this section we find almost global existence results for the suction problems. Both the
cases N = 2 and N ≥ 4 will be treated. For almost global existence we do not need to
restrict ourselves to the case r(0) ∈ MN

1 . Remember that

τmax :=
{
∞ for N = 2,

σN

|µ|(N−3) for N ≥ 4.

Theorem 4.1. Let N = 2 or N ≥ 4 and µ < 0. Let T+ ∈ (0, τmax) and s > N+8
2 . There

exists a δ > 0 such that if r0 ∈ Hs(SN−1) with ‖r0‖s < δ, then there exists a solution
r ∈ C([0, T+),Hs(SN−1)) ∩ C1([0, T+),Hs−3(SN−1)) of

∂r

∂τ
= F(r, τ), (59)

with r(0) = r0. Furthermore, ((ξ, τ) 7→ r(τ)(ξ)) ∈ C∞(SN−1 × (0, T+)).
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Proof. For the case N = 2, we argue as in the proof of Theorem 3.5. There, we split
up the time interval in two parts. A different approach for the second time interval was
necessary there, because we wanted to show global existence and exponential decay in τ
assuming that r ∈ M2

1. Here we only consider the first time interval, choosing T̂ ≥ T+.
In the estimates in steps 3-8 of the proof of Theorem 3.5 we replace r̃ by r and F̃k by
Fk. All estimates that are found for the evolution operators F̃k (k = 1, 2) on the first
interval hold for the operators Fk as well, because up to equation (41) we did not use
the fact that r ∈ M2

1. In this way we derive that if ‖r‖s < δ′, for δ′ small, then we have

(r,F(r, τ))s−2,2 ≤ C‖r‖2s−2,2.

We choose δ < δ′e−CT+ and use local existence results as before to prove the theorem
for N = 2.

For N ≥ 4, α(τ)3−N goes to infinity if τ approaches τmax. However, on the time
interval [0, T+), α(τ)3−N is bounded. Therefore we can use the same strategy as in the
proof of Theorem 3.5 on the first of the two intervals to prove the theorem.
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