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NONUNIFORM SMALL-GAIN THEOREMS FOR SYSTEMS WITH
UNSTABLE INVARIANT SETS∗

IVAN TYUKIN† , ERIK STEUR‡ , HENK NIJMEIJER‡ , AND CEES VAN LEEUWEN§

Abstract. We consider the problem of asymptotic convergence to invariant sets in intercon-
nected nonlinear dynamical systems. Standard approaches often require that the invariant sets be
uniformly attracting, e.g., stable in the Lyapunov sense. This, however, is neither a necessary re-
quirement nor is always useful. Systems may, for instance, be inherently unstable (e.g., intermittent,
itinerant, meta-stable) or the problem statement may include requirements that cannot be satis-
fied with stable solutions. This is often the case in general optimization problems and in nonlinear
parameter identification or adaptation. Conventional techniques for these cases either rely on de-
tailed knowledge of the system’s vector-fields or require boundedness of its states. The presently
proposed method relies only on estimates of the input-output maps and steady-state characteristics.
The method requires the possibility of representing the system as an interconnection of a stable
and contracting part with an unstable and exploratory part. We illustrate with examples how the
method can be applied to problems of analyzing the asymptotic behavior of locally unstable sys-
tems as well as to problems of parameter identification and adaptation in the presence of nonlinear
parametrizations. The relation of our results to conventional small-gain theorems is discussed.
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stability
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1. Notation. Throughout the paper we use the following notational conventions.
The symbol R denotes the field of real numbers; symbol R+ stands for the following
subset of R: R+ = {x ∈ R| x ≥ 0}; and N and Z denote the set of natural numbers
and its extension to the negative domain, respectively.

Let Ω be a set; by the symbol S{Ω} we denote the set of all subsets of Ω. The
symbol Ck denotes the space of functions that are at least k times differentiable; K
denotes the class of all strictly increasing functions κ : R+ → R+ such that κ(0) = 0.
If, in addition, lims→∞ κ(s) = ∞, we say that κ ∈ K∞. Further, Ke (or Ke,∞) denotes
the class of functions of which the restriction to the interval [0,∞) belongs to K (or
K∞). The symbol KL denotes the class of functions β : R+ × R+ → R+ such that
β(·, s) ∈ K and β(r, ·) is monotonically decreasing for each s, r ∈ R+.

Let x ∈ R
n, and x can be partitioned into two vectors x1 ∈ R

q, x1 = (x11, . . . ,
x1q)

T , x2 ∈ R
p, x2 = (x21, . . . , x2p)

T with q + p = n; then ⊕ denotes their concate-
nation: x = x1 ⊕ x2.
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The symbol ‖x‖ denotes the Euclidian norm in x ∈ R
n. By Ln

∞[t0, T ] we
denote the space of all functions f : R+ → R

n such that ‖f‖∞,[t0,T ] = sup{‖f(t)‖,
t ∈ [t0, T ]} < ∞, and ‖f‖∞,[t0,T ] stands for the Ln

∞[t0, T ] norm of f(t). Let A be a
set in R

n and ‖ · ‖ be the usual Euclidian norm in R
n. By the symbol ‖·‖A we denote

the following induced norm:

‖x‖A = inf
q∈A

{‖x − q‖}.

Let Δ ∈ R+; then the notation ‖x‖AΔ
stands for the following equality:

‖x‖AΔ
=

{
‖x‖A − Δ, ‖x‖A > Δ,
0, ‖x‖A ≤ Δ.

The symbol ‖·‖A∞,[t0,t]
is defined as follows:

‖x(τ)‖A∞,[t0,t]
= sup

τ∈[t0,t]

‖x(τ)‖A .

2. Introduction. In many fields of science, such as systems and control the-
ory, physics, chemistry, and biology, it is of fundamental importance to analyze
the asymptotic behavior of dynamical systems. Most of these analyses are based
around the concept of Lyapunov stability [15], [33], [32], i.e., continuity of the flow
x(t,x0) : R+ × R

n → Ln
∞[t0,∞] with respect to x0 [18], in combination with the

standard notion of an attracting set [9], defined as follows.
Definition 1. A set A is an attracting set iff it is
(i) closed, invariant, and
(ii) for some neighborhood V of A and for all x0 ∈ V the following conditions

hold:

x(t,x0) ∈ V ∀ t ≥ 0;(1)

lim
t→∞

‖x(t,x0)‖A = 0.(2)

Condition (1) in Definition 1 stipulates the existence of a trapping region V which
is a neighborhood of A. Condition (2) assures convergence to A. Due to condition (1),
convergence to A is uniform with respect to x0 in the neighborhood of A; i.e., every
trajectory which starts in V remains in V for t ≥ 0 and converges to A at t → ∞.

Although the conventional concepts of attracting set and Lyapunov stability are
powerful in tandem in various applications, some problems cannot be solved within
this framework. Condition (1), for example, could be violated in systems with inter-
mittent, itinerant, or meta-stable dynamics. In general the condition does not hold
when the system dynamics, loosely speaking, is exploring rather than contracting.
Such systems appear naturally in the context of global optimization. For instance, in
[22] finding the global minimum of a differentiable cost function Q : R

n → R+ in a
bounded subset Ωx ⊂ R

n is achieved by splitting the search procedure into a locally
attracting gradient Sa and a wandering part Sw:

Sa : ẋ = −μx
∂Q(x)

∂x
+ μtT (t), μx, μt ∈ R+,

Sw : T (t) = h{t,x(t)}, h : R+ × Ln
∞[t0, t] → Ln

∞[t0, t].
(3)

The trace function, T (t), in (3) is supposed to cover (i.e., be dense in) the whole
searching domain Ωx. Even though the results in [22] are purely simulation studies,
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they illustrate the superior performance of algorithms (3) in a variety of benchmark
problems compared to standard local minimizers and classical methods of global op-
timization. Abandoning Lyapunov stability is likewise advantageous in problems of
identification and adaptation in the presence of general nonlinear parametrization
[28], in maneuvering and path searching [26], and in decision making in intelligent
systems [30], [31]. Systems with attracting, yet unstable, invariant sets are relevant
for modeling complex behavior in biological and physical systems [2]. Last but not
least, Lyapunov-unstable attracting sets are relevant in problems of synchronization
[5], [19], [27].1

Even when it is appropriate to consider a system as stable, we may be limited in
our success in meeting the requirement to identify a proper Lyapunov function. This
is the case, for instance, when the system’s dynamics is only partially known. Trading
stability requirements for the sake of convergence might be a possible remedy. Known
results in this direction can be found in [11], [21].2

In all the cases that are problematic under condition (1) of Definition 1, condition
(2)—convergence of x(t,x0) to an invariant set A—is still a requirement that has to
be met. In order to treat these cases analytically we shall, first of all, move from the
standard concept of attracting sets in Definition 1 to one that does not assume that
the basin of attraction is necessarily a neighborhood of the invariant set A. In other
words we shall allow convergence which is not uniform in initial conditions. This
requirement is captured by the concept of weak, or Milnor, attraction [17], defined as
follows.

Definition 2. A set A is weakly attracting, or Milnor attracting, iff
(i) it is closed, invariant, and
(ii) for some set V (not necessarily a neighborhood of A) with strictly positive

measure and for all x0 ∈ V limiting relation (2) holds.
Conventional methods such as La Salle’s invariance principle [14] or center man-

ifold theory [7] can, in principle, address the issue of convergence to weak equilibria.
They do so, however, at the expense of requiring detailed knowledge of the vector-
fields of the ordinary differential equations of the model. When such information
is not available the system can be thought of as a mere interconnection of input-
output maps. Small-gain theorems [34], [12] are usually efficient in this case. These
results, however, apply only under the assumption of stability of each component in
the interconnection.

In the present study we aim to find a proper balance between the generality of
input-output approaches [34], [12] in the analysis of convergence and the specificity of
the fundamental notions of limit sets and invariance that play a central role in [14],
[7]. The object of our study is a class of systems that can be decomposed into an
attracting, or stable, component Sa and an exploratory, generally unstable, part Sw.
Typical systems of this class are nonlinear systems in cascaded form

Sa : ẋ = f(x, z),

Sw : ż = q(z,x),
(4)

where the zero solution of the x-subsystem is asymptotically stable in the absence of

1See also [20], where the striking difference between stable and “almost stable” synchronization
in terms of the coupling strengths for a pair of the Lorenz oscillators is demonstrated analytically.

2In Examples 1 and 2 in section 6, we demonstrate how explorative dynamics can solve the
problem of simultaneous state and parameter observation for a system which cannot be transformed
into a canonical adaptive observer form [3].
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input z, and the state of the z-subsystem consists of functions of the type
∫ t

t0
‖x(τ)‖dτ .

Even when both subsystems in (4) are stable and the x-subsystem does not depend
on state z, the cascade can still be unstable [1]. We show, however, that for unstable
interconnections (4), under certain conditions that involve only input-to-state prop-
erties of Sa and Sw, there is a set V in the system state space such that trajectories
starting in V remain bounded. The result is formally stated in Theorem 3. In the
case when an additional measure of invariance is defined for Sa (in our case a steady-
state characteristic), a weak, Milnor attracting set emerges. Its location is completely
determined by the zeros of the steady-state response of system Sa.

We demonstrate how this basic result can be used in problems of design and
analysis of control systems and identification/adaptation algorithms. In particular,
we present an adaptive observer of state and parameter values for uncertain systems
which cannot be transformed into a canonic adaptive observer form [3]. In Exam-
ples 1 and 2 in section 6 we present an application of this result to the problem of
reconstructing a dynamic model of neuronal cell activity.

The paper is organized as follows. In section 3 we formally state the problem and
provide specific assumptions for the class of systems under consideration. Section
4 contains the main results of our present study. In section 5 we provide several
corollaries of the main result that apply to specific problems. Section 6 contains
examples, and section 7 concludes the paper. Proofs of all lemmas, theorems, and
corollaries are provided in the appendix.

3. Problem formulation. Consider a system that can be decomposed into two
interconnected subsystems, Sa and Sw:

Sa : (ua,x0) �→ x(t),

Sw : (uw, z0) �→ z(t),
(5)

where ua ∈ Ua ⊆ L∞[t0,∞], uw ∈ Uw ⊆ L∞[t0,∞] are the spaces of inputs to Sa

and Sw, respectively, x0 ∈ R
n, z0 ∈ R

m represent initial conditions, and x(t) ∈ X ⊆
Ln
∞[t0,∞], z(t) ∈ Z ⊆ Lm

∞[t0,∞] are the system states.
System Sa represents the contracting dynamics. More precisely, we require that

Sa is input-to-state stable3 [23] with respect to a compact set A.
Assumption 1 (contracting dynamics).

(6) Sa : ‖x(t)‖A ≤ β(‖x(t0)‖A , t− t0) + c‖ua(t)‖∞,[t0,t] ∀ t0 ∈ R+, t ≥ t0,

where the function β(·, ·) ∈ KL, and c > 0 is some positive constant.
The function β(·, ·) in (6) specifies the contraction property of the unperturbed

dynamics of Sa. In other words it models the rate with which the system forgets
its initial conditions x0, if left unperturbed. Propagation of the input to output is
estimated in terms of a continuous mapping, c‖ua(t)‖∞,[t0,t], which, in our case, is
chosen for simplicity to be linear. Notice that this mapping should not necessarily be
contracting. In what follows we will assume that the function β(·, ·) and constant c
are known or can be estimated a priori.

For systems Sa, of which a model is given by a system of ordinary differential
equations

(7) ẋ = fx(x, ua), fx(·, ·) ∈ C1,

3In general, as will be demonstrated with examples, our analysis can be carried out for (integral)
input-to-output/input-to-state stable systems as well.
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Assumption 1 is equivalent, for instance, to the combination of the following proper-
ties:4

1. Let ua(t) ≡ 0 for all t; then the set A is Lyapunov stable and globally
attracting for (7).

2. For all ua ∈ Ua and x0 ∈ R
n there exists a nondecreasing function κ : R+ →

R+ : κ(0) = 0 such that

inf
t∈[0,∞)

‖x(t)‖A ≤ κ(‖ua(t)‖∞,[t0,∞)).

The system Sw stands for the searching or wandering dynamics. We will consider
Sw subject to the following conditions.

Assumption 2 (wandering dynamics). The system Sw is forward-complete:

uw(t) ∈ Uw ⇒ z(t) ∈ Z ∀ t ≥ t0, t0 ∈ R+,

and there exists an “output” function h : R
m → R, and two “bounding” functions

γ0 ∈ K∞,e, γ ∈ K∞,e such that the following integral inequality holds:

Sw :

∫ t

t0

γ1(uw(τ))dτ ≤h(z(t0)) − h(z(t)) ≤
∫ t

t0

γ0(uw(τ))dτ

∀ t ≥ t0, t0 ∈ R+.

(8)

In the case when system Sw is specified in terms of vector-fields

(9) ż = fz(z, uw), fz(·, ·) ∈ C1,

Assumption 2 can be viewed, for example, as postulating the existence of a function
h : R

m → R+ of which the evolution in time is a mere integration of the input uw(t).
In general, for uw : uw(t) ≥ 0 for all t ∈ R+, inequality (8) implies monotonicity
of function h(z(t)) in t. Regarding the function γ0(·) in (8), we assume that for
any M ∈ R+ there exists a function γ0,1 : R+ → R+ and a nondecreasing function
γ0,2 : R+ → R+ such that

(10) γ0(a · b) ≤ γ0,1(a) · γ0,2(b) ∀ a, b ∈ [0,M ].

Requirement (10) is a technical assumption which will be used in the formulation
and proof of the main results of the paper. Yet, it is not too restrictive; it holds, for
instance, for a wide class of locally Lipschitz functions γ0(·) : γ0(a · b) ≤ L0(M) ·
(a · b), L0(M) ∈ R+. Another example for which the assumption holds is the class of
polynomial functions γ0(·) : γ0(a · b) = (a · b)p = ap · bp, p > 0. No further restrictions
will be imposed a priori on Sa, Sw.

Now consider the interconnection of (6), (8) with coupling ua(t) = h(z(t)) and
us(t) = ‖x(t)‖A. Equations for the combined system can be written as

‖x(t)‖A ≤β(‖x(t0)‖A , t− t0) + c‖h(z(t))‖∞,[t0,t],

∫ t

t0

γ1(‖x(τ)‖A)dτ ≤h(z(t0)) − h(z(t)) ≤
∫ t

t0

γ0(‖x(τ)‖A)dτ.

(11)

4For a comprehensive characterization of the input-to-state stability and detailed mathematical
arguments we refer to the paper by Sontag and Wang [24].
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(a)

Sa

Sw

h t( ( ))z x( )t

x( )tu t( )a

(b)

h( )z

x

x

t1 t2

x

h(
)

z

Fig. 1. The class of interconnected systems Sa and Sw (diagram (a)). System Sa, the “con-
tracting system,” has an attracting invariant set A in its state space. System Sw does not necessarily
have an attracting set. This system represents the “wandering” dynamics. A typical example of such
behavior is the dynamics of the flow in a neighborhood of a saddle point in three-dimensional space
(diagram (b)).

A diagram illustrating the general structure of the entire system (11) is given in
Figure 1.

Equations (11) capture the relevant interplay between contracting, Sa, and wan-
dering, Sw, dynamics inherent in a variety of searching strategies in the realm of
optimization, (3), and interconnections, (4), in general systems theory. In addition,
this kind of interconnection describes the behavior of systems which undergo trans-
critical or saddle-node bifurcations. Consider, for instance, the following system:

ẋ1 = −x1 + x2,

ẋ2 = ε + γx2
1, γ > 0,

(12)

where the parameter ε varies from negative to positive values. At ε = 0 stable and
unstable equilibria collide, leading to the cascade satisfying (11). An alternative
bifurcation scenario could be represented by the system

ẋ1 = −x1 + x2,

ẋ2 = ε + γx2
2, γ > 0.

(13)

In this case, however, the dynamics of the variable x2 is independent of x1, and analysis
of the asymptotic behavior of (13) reduces to the analysis of each equation separately.
Thus systems such as (13) are easier to deal with than (12). This constitutes an
additional motivation for the present approach.

When analyzing the asymptotic behavior of interconnection (11) we will address
the following question: Is there a set (a weak trapping set in the system state space)
such that the trajectories which start in this set are bounded? It is natural to expect
that the existence of such a set depends on the specific functions γ0(·), γ1(·) in (11),
on properties of β(·, ·), and on values of c. In the case when such a set exists and could
be defined, the next questions are, therefore, where will the trajectories converge and
how can these domains be characterized?

4. Main results. In this section we provide a formal statement of the main
results of our present study. In section 4.1, we formulate conditions ensuring that
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Fig. 2. Emergence of a weak (Milnor) attracting set Ω∞. Panel (a) depicts the target invariant
set Ω∞ as a filled circle. First (see Theorem 3), we investigate whether a domain Ωγ ⊂ R

n × R
m

exists such that ‖x(t)‖A, h(z(t)) are bounded for all x0 ⊕ z0 ∈ Ωγ . In the text we refer to this
set as a weak trapping region or simply a trapping region. The trapping region is shown as a grey
domain in panel (b). In principle, the system’s states can eventually leave the domain Ωγ . They
must, however, satisfy (14), ensuring boundedness of ‖x(t)‖A, h(z(t)). As a result they will dwell
within the region shown as a circle in panel (b). Notice that neither this domain nor the previous
need be neighborhoods of Ω∞. Second (see Lemmas 6 and 7 and Corollary 8), we provide conditions
which lead to the emergence of a weak attracting set in the trapping region Ωγ . This is illustrated
in panel (c).

there exists a point x0 ⊕ z0 such that the ω-limit set of x0 ⊕ z0
5 is bounded in the

following sense:

(14) ‖ωx(x0 ⊕ z0)‖A < ∞, |h(ωz(x0 ⊕ z0))| < ∞.

These conditions and a specification of the set Ωγ of points x′ ⊕ z′ for which the
ω-limit set satisfies property (14) are provided in Theorem 3.

In order to verify whether an attracting set exists in ω(Ωγ) that is a subset
of ω(Ωγ) we use an additional characterization of the contracting system Sa. In
particular, we introduce the intuitively clear notion of the input-to-state steady-state
characteristics 6 of a system. It is possible to show that in the case when system Sa

has a steady-state characteristic, there exists an attracting set in ω(Ωγ), and this set
is uniquely defined by the zeros of the steady-state characteristics of Sa. A diagram
illustrating the steps of our analysis is provided in Figure 2, along with the sequence
of conditions leading to the emergence of the attracting set in (11).

4.1. Emergence of the trapping region. Small-gain conditions. Before
we formulate the main results of this section let us first comment briefly on the
machinery of our analysis. First, we introduce three sequences

S = {σi}∞i=0, σi ∈ R+,

Ξ = {ξi}∞i=0, ξi ∈ R+,

T = {τi}∞i=0, τi ∈ R+.

The first sequence, S, partitions the interval [0, h(z0)], h(z0) > 0, into the union of
shrinking subintervals Hi:

(15) [0, h(z0)] = ∪∞
i=0Hi, Hi = [σi+1h(z0), σih(z0)].

5Recall that in our current notation a point p ∈ R
m+n is an ω-limit point of x′⊕z′ if there exists

a sequence {ti}, i = 1, 2, . . . , such that limi→∞ ti = ∞ and limti→∞ x(ti,x
′⊕z′)⊕z(ti,x

′⊕z′) = p,
where x(t,x′ ⊕ z′)⊕ z(t,x′ ⊕ z′) denotes the flow of interconnection (11). A set of all ω-limit points
of x′ ⊕ z′ is an ω-limit set of x′ ⊕ z′.

6A more precise definition of the steady-state characteristics is given in section 4.2.
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For the sake of clarity, let us define this property formally in the form of Property 1
as follows.

Property 1 (partition of z0). The sequence S is strictly monotone and con-
verging:

(16) {σn}∞n=0 : lim
n→∞

σn = 0, σ0 = 1.

Sequences Ξ and T will specify the desired rates ξi ∈ Ξ of the contracting dynamics
(6) in terms of function β(·, ·) and τi ∈ T . Let us, therefore, impose the following
constraint on the choice of Ξ, T .

Property 2 (rate of contraction, part 1). Sequences Ξ and T are such that for
the given function β(·, ·) ∈ KL in (6) the following inequality holds:

(17) β(·, T ) ≤ ξiβ(·, 0) ∀ T ≥ τi.

Property 2 states that for the given, yet arbitrary, factor ξi and time instant t0,
time τi is needed for the state x in order to reach the domain:

‖x‖A ≤ ξiβ(‖x(t0)‖A , 0).

In order to specify the desired convergence rates ξi, it will be necessary to define
another measure in addition to (17). This is a measure of the propagation of initial
conditions x0 and input h(z0) to the state x(t) of the contracting dynamics (6) when
the system travels in h(z(t)) ∈ [0, h(z0)]. For this reason we introduce two systems of
functions, Φ and Υ:

(18) Φ :
φj(s) = φj−1 ◦ ρφ,j(ξi−j · β(s, 0)), j = 1, . . . , i,
φ0(s) = β(s, 0),

(19) Υ :
υj(s) = φj−1 ◦ ρυ,j(s), j = 1, . . . , i,
υ0(s) = β(s, 0),

where the functions ρφ,j , ρυ,j ∈ K satisfy the following inequality:

(20) φj−1(a + b) ≤ φj−1 ◦ ρφ,j(a) + φj−1 ◦ ρυ,j(b).

Notice that in the case when β(·, 0) ∈ K∞, the functions ρφ,j(·), ρυ,j(·) will always
exist [12]. The properties of sequence Ξ which ensure the desired propagation rate of
the influence of initial condition x0 and input h(z0) to the state x(t) are specified in
Property 3.

Property 3 (rate of contraction, part 2). The sequences

σ−1
n · φn(‖x0‖A), σ−1

n ·
(

n∑
i=0

υi(c|h(z0)|σn−i)

)
, n = 0, . . . ,∞,

are bounded from above; e.g., there exist functions B1(‖x0‖), B2(|h(z0)|, c) such that

σ−1
n · φn(‖x0‖A) ≤ B1(‖x0‖A),(21)

σ−1
n ·

(
n∑

i=0

υi(c|h(z0)|σn−i)

)
≤ B2(|h(z0)|, c)(22)

for all n = 0, 1, . . . ,∞.
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Standard Proposed

1) Domain of attraction is a neighborhood
1) Domain of attraction is a set of positive
measure (not necessarily a neighborhood)

2) Implies Lyapunov stability
2) Allows us to analyze convergence in
Lyapunov-unstable systems

Given: a sequence of diverging time instances
ti

Given: a sequence of sets Ωi whose distance
Δi to A is converging to zero

Prove: convergence of norms ‖x(ti)⊕z(ti)‖ =
Δi to zero

Prove: divergence of {ti}, where ti : x(ti) ⊕
z(ti) ∈ Ωi

Fig. 3. Key differences between the conventional concept of convergence (left panel) and the
concept of weak, nonuniform convergence (right panel). In the uniform case, trajectories which start
in a neighborhood of A remain in a neighborhood of A (solid and dashed lines). In the nonuniform
case, only a fraction of the initial conditions in a neighborhood of A will produce trajectories which
remain in a neighborhood of A (solid black line). In the most general case a necessary condition
for this to happen is that the sequence {ti} diverges. In our current problem statement divergence
of {ti} implies boundedness of ‖x(t)‖A. To show state boundedness and convergence of x(t) to A,
additional information on the system dynamics will be required.

For a large class of functions β(s, 0), for instance those that are Lipschitz in s,
these conditions reduce to more transparent ones which can always be satisfied by
an appropriate choice of sequences Ξ and S. This case is considered in detail as a
corollary of our main results in section 4.3.

The main differences between the standard and the presently proposed approaches
for the analysis of asymptotic behavior of dynamical systems are illustrated in Fig-
ure 3. In order to prove the emergence of the trapping region we consider the following
collection of volumes induced by the sequence Si and the corresponding partition (15)
of the interval [0, h(z0)]:

(23) Ωi = {x ∈ X , z ∈ Z| h(z(t)) ∈ Hi}.

For the given initial conditions x0 ∈ X , z0 ∈ Z two alternative possibilities exist.
First, there exists an i such that the trajectory x(t,x0)⊕ z(t, z0) enters Ωi and stays
there forever. Hence for t → ∞ the state will converge into

(24) Ωa = {x ∈ X , z ∈ Z| ‖x‖A ≤ c · h(z0), z : h(z) ∈ [0, h(z0)]}.

The second alternative is that for each i = 0, 1, . . . the trajectory x(t,x0) ⊕ z(t, z0)
enters Ωi and leaves some time later. Let ti be the time instances when it hits
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the hypersurfaces h(z(t)) = h(z0)σi. Then the state of the coupled system stays in
∪∞
i=0 Ωi only if the sequence {ti}∞i=0 diverges. Theorem 3 provides sufficient conditions

specifying the latter case in terms of the properties of sequences S, Ξ, T and function
γ0(·) in (11). For a large class of interconnections (11) it is possible to formulate these
conditions in terms of the input-output properties of systems Sa and Sw explicitly,
i.e., in terms of functions β(·, ·) and γ0(·) and the values of c. The results are presented
as immediate corollaries of Theorem 3 in sections 4.3 and 5.1.

Theorem 3 (nonuniform small-gain theorem). Let systems Sa, Sw be given
and satisfy Assumptions 1, 2. Consider their interconnection (11) and suppose there
exist sequences S, Ξ, and T satisfying Properties 1–3. In addition, suppose that the
following conditions hold:

1. There exists a positive number Δ0 > 0 such that

(25)
1

τi

(σi − σi+1)

γ0,1(σi)
≥ Δ0 ∀ i = 0, 1, . . . ,∞.

2. The set Ωγ of all points x0, z0 satisfying the inequality

(26) γ0,2(B1(‖x0‖A) + B2(|h(z0)|, c) + c|h(z0)|) ≤ h(z0)Δ0

is not empty.

3. Partial sums of elements from T diverge:

(27)
∞∑
i=0

τi = ∞.

Then for all x0, z0 ∈ Ωγ the state x(t, z0)⊕ z(t, z0) of system (11) converges into the
set specified by (24):

Ωa = {x ∈ X , z ∈ Z| ‖x‖A ≤ c · h(z0), z : h(z) ∈ [0, h(z0)]}.

The proofs of Theorem 3 and subsequent results are provided in the appendix.

The major difference between the conditions of Theorem 3 and those of con-
ventional small-gain theorems [34], [12] is that the latter involve only input-output
or input-state mappings. Formulating conditions for state boundedness of the in-
terconnection in terms of input-output or input-state mappings is possible in the
traditional case because the interconnected systems are assumed to be input-to-state
stable. Hence their internal dynamics can be neglected. In our case, however, the
dynamics of Sw is generally unstable in the Lyapunov sense. Hence, in order to ensure
boundedness of x(t,x0) and h(z(t, z0)), the rate/degree of stability of Sa should be
taken into account. Roughly speaking, system Sa should ensure a sufficiently high de-
gree of contraction in x0 while the input-output response of Sw should be sufficiently
small. The rate of contraction in x0 of Sa, according to (6), is specified in terms
of the function β(·, ·). Properties of this function that are relevant for convergence
are explicitly accounted for in Property 3 and (27). The domain of admissible initial
conditions, and actually the small-gain condition (input-state-output properties of Sw

and Sa), are defined by (25), (26), respectively. Notice also that Ωγ is not necessarily
a neighborhood of Ωa; thus the convergence ensured by Theorem 3 is allowed to be
nonuniform in x0, z0.
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4.2. Characterization of the attracting set. Even for interconnections of
Lyapunov-stable systems, small-gain conditions usually are effective merely for estab-
lishing boundedness of states or outputs. Yet, even in the setting of Theorem 3 it is
still possible to derive estimates (such as, for instance, (24)) of the domains to which
the state will converge. These estimates, however, are often too conservative. If a
more precise characterization of these domains is required, additional information on
the dynamics of systems Sa and Sw will be needed. The question, therefore, is how
detailed this information should be. It appears that some additional knowledge of the
steady-state characteristics of system Sa is sufficient to improve the estimates (24)
substantially.

Let us formally introduce the notion of steady-state characteristic as follows.
Definition 4. We say that system (6) has steady-state characteristic χ : R →

S{R+} with respect to the norm ‖x‖A iff for each constant ūa the following holds:

(28) ∀ ua(t) ∈ Ua : lim
t→∞

ua(t) = ūa ⇒ lim
t→∞

‖x(t)‖A ∈ χ(ūa).

The key property captured by Definition 4 is that there exists a limit of ‖x(t)‖A
as t → ∞, provided that the limit for ua(t), t → ∞, is defined and constant. Notice
that the mapping χ is set-valued. This means that for each ūa there is a set χ(ūa) ⊂
R+ such that ‖x(t)‖A converges to an element of χ(ūa) as t → ∞. Therefore, our
definition allows a fairly large amount of uncertainty for Sa. It will be of essential
importance, however, that such a characterization exists for the system Sa.

Clearly, not every system obeys a steady-state characteristic χ(·) of Definition 4.
There are relatively simple systems of which the state does not converge even in the
“norm” sense for constant converging inputs (condition (28)). In mechanics, physics,
and biology such systems encompass the large class of nonlinear oscillators which can
be excited by constant inputs. In order to take such systems into consideration, we
introduce a weaker notion, that of a steady-state characteristic on average, defined as
follows.

Definition 5. We say that system (6) has steady-state characteristic on average
χT : R → S{R+} with respect to the norm ‖x‖A iff for each constant ūa and some
T > 0 the following holds:

(29) ∀ ua(t) ∈ Ua : lim
t→∞

ua(t) = ūa ⇒ lim
t→∞

∫ t+T

t

‖x(τ)‖A dτ ∈ χT (ūa).

Steady-state characterizations of system Sa allow us to further specify the asymp-
totic behavior of interconnection (11). These results are summarized in Lemmas 6
and 7 below.

Lemma 6. Let system (11) be given and h(z(t, z0)) be bounded for some x0, z0.
Let, furthermore, system (6) have steady-state characteristic χ(·) : R → S{R+}. Then
the following limiting relations hold: 7

(30) lim
t→∞

‖x(t,x0)‖A = 0, lim
t→∞

h(z(t, z0)) ∈ χ−1(0).

As follows from Lemma 6, in the case when the steady-state characteristic of Sa is
defined, the asymptotic behavior of interconnection (11) is characterized by the zeros

7The symbol χ−1(0) in (30) denotes the set χ−1(0) =
⋃

ūa∈R+
ūa : χ(ūa) � 0.
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of the steady-state mapping χ(·). For the steady-state characteristics on average a
slightly modified conclusion can be derived.

Lemma 7. Let system (11) be given, h(z(t, z0)) be bounded for some x0, z0,
h(z(t, z0)) ∈ [0, h(z0)], and system (6) have steady-state characteristic χT (·) : R →
S{R+} on average. Furthermore, let there exist a positive constant γ̄ such that the
function γ1(·) in (8) satisfies the following constraint:

(31) γ1(s) ≥ γ̄ · s ∀s ∈ [0, s̄], s̄ ∈ R+ : s̄ > c · h(z0).

In addition, suppose that χT (·) has no zeros in the positive domain, i.e., 0 /∈ χT (ūa)
for all ūa > 0. Then

(32) lim
t→∞

‖x(t,x0)‖A = 0, lim
t→∞

h(z(t, z0)) = 0.

An immediate outcome of Lemmas 6 and 7 is that in the case when the conditions
of Theorem 3 are satisfied and system (6) has steady-state characteristic χ(·) or χT (·),
the domain of convergence Ωa becomes

(33) Ωa = {x ∈ X , z ∈ Z| ‖x‖A = 0, z : h(z) ∈ [0, h(z0)]}.

It is possible, however, to improve estimate (33) further under additional hypotheses
on system Sa and Sw dynamics. This result is formulated in the corollary below.

Corollary 8. Let system (11) be given and satisfy the assumptions of Theorem
3. Let, in addition,

(C1) the flow x(t,x0)⊕z(t, z0) be generated by a system of autonomous differential
equations with a locally Lipschitz right-hand side;

(C2) subsystem Sw be practically integral-input-to-state stable:

(34) ‖z(τ)‖∞,[t0,t] ≤ Cz +

∫ t

0

γ1(uw(τ))dτ,

and let function h(·) ∈ C0 in (8);

(C3) system Sa have steady-state characteristic χ(·).
Then for all x0, z0 ∈ Ωγ the state of the interconnection converges to the set

(35) Ωa = {x ∈ X , z ∈ Z| ‖x‖A = 0, h(z) ∈ χ−1(0)}.

As follows from Corollary 8, zeros of the steady-state characteristic of system
Sa actually “control” the domains to which the state of interconnection (11) might
potentially converge. This is illustrated in Figure 4. Notice also that in the case when
condition C3 in Corollary 8 is replaced with the alternative,

(C3)′ system Sa has a steady-state characteristic on average χT (·),
and then it is possible to show that the state converges to

(36) Ωa = {x ∈ X , z ∈ Z| ‖x‖A = 0, h(z) = 0}.

The proof follows straightforwardly from the proof of Corollary 8 and is therefore
omitted.
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Fig. 4. Control of the attracting set by means of the system’s steady-state characteristics.

4.3. Systems with contracting dynamics separable in space-time. In the
previous sections we have presented convergence tests and estimates of the trapping
region, and also characterized the attracting sets of interconnection (11) under as-
sumptions of uniform asymptotic stability of Sa and input-output properties (8), (34)
of system Sw. The conditions are given for rather general functions β(·, ·) ∈ KL in (6)
and γ0(·), γ1(·) in (8). It appears, however, that these conditions can be substantially
simplified if additional properties of β(·, ·) and γ0(·) are available. This information
is, in particular, the separability of function β(·, ·) or, equivalently, the possibility of
factorization:

(37) β(‖x‖A , t) ≤ βx(‖x‖A) · βt(t),

where βx(·) ∈ K and βt(·) ∈ C0 is strictly decreasing 8 with

(38) lim
t→∞

βt(t) = 0.

In principle, as shown in [8], factorization (37) is achievable for a large class of uni-
formly asymptotically stable systems under an appropriate coordinate transformation.
An immediate consequence of factorization (37) is that the elements of sequence Ξ in
Property 2 are independent of ‖x(ti)‖A. As a result, verification of Properties 2, 3
becomes easier. The most interesting case, however, occurs when the function βx(·)
in the factorization (37) is Lipschitz. For this class of functions the conditions of
Theorem 3 reduce to a single and easily verifiable inequality. Let us consider this case
in detail.

Without loss of generality, we assume that the state x(t) of system Sa satisfies
the equation

(39) ‖x(t)‖A ≤ ‖x(t0)‖A · βt(t− t0) + c · ‖h(z(τ, z0))‖∞,[t0,t],

where βt(0) is greater than or equal to one. Given that βt(t) is strictly decreasing,
the mapping βt : [0,∞] �→ [0, βt(0)] is injective. Moreover βt(t) is continuous, and
then it is surjective and, therefore, bijective. In other words there is a (continuous)
mapping β−1

t : [0, βt(0)] �→ R+:

(40) β−1
t ◦ βt(t) = t ∀ t > 0.

Conditions for emergence of the trapping region for interconnection (11) with dynam-
ics of system Sa governed by (39) are summarized below:

8If βt(·) is not strictly monotone, it can always be majorized by a strictly decreasing function.
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Corollary 9. Let the interconnection (11) be given, system Sa satisfy (39), and
function γ0(·) in (8) be Lipschitz:

(41) |γ0(s)| ≤ Dγ,0 · |s|.

Domain

Ωγ : Dγ,0 ≤
(
β−1
t

(
d

κ

))−1
κ− 1

κ

× h(z0)

βt(0) ‖x0‖A + βt(0) · c · |h(z0)|
(
1 + κ

1−d

)
+ c|h(z0)|

(42)

is not empty for some d < 1, κ > 1. Then for all initial conditions x0 z0 ∈ Ωγ the
state x(t,x0) ⊕ z(t, z0) of interconnection (11) converges into the set Ωa specified by
(24). If, in addition, conditions (C1)–(C3) of Corollary 8 hold, then the domain of
convergence is given by (33).

A practically important consequence of this corollary concerns systems Sa which
are exponentially stable:

(43) ‖x(t)‖A ≤ ‖x(t0)‖A Dβ exp(−λt) + c · ‖h(z(t, z0))‖∞,[t0,t], λ > 0, Dβ ≥ 1.

In this case the domain (42) of initial conditions ensuring convergence into Ωa is
defined as

Dγ,0 ≤ max
κ>1, d∈(0,1)

−λ

(
ln

d

κ

)−1
κ− 1

κ

× h(z0)

Dβ ‖x0‖A + Dβ · c · |h(z0)|
(
1 + κ

1−d

)
+ c|h(z0)|

.

5. Discussion. In this section we discuss some practically relevant outcomes
of the results of Theorem 3 and Corollaries 8, 9 and their potential applications to
problems of analysis of asymptotic behavior in nonlinear dynamic systems.

First, in section 5.1 we specify conditions for existence of a trapping region of
nonzero volume in R

n ⊕ R
m in terms of the parameters of system (11) without in-

voking dependence on x(t0), z(t0), as was done in Theorem 3. The resulting criterion
has a form similar to the standard small-gain conditions [34]. The differences and
similarities between this new result and standard small-gain theorems are illustrated
with an example.

Second, in section 5.2 we demonstrate how the results of our present contribution
can be applied to address the problem of output nonlinear identification for systems
which cannot be transformed into a canonic observer form and/or with nonlinear
parametrization.

5.1. Relation to conventional small-gain theorems. Conditions specifying
state boundedness formulated in Theorem 3 and Corollaries 8, 9 depend explicitly on
initial conditions x(t0), z(t0). Such dependence is inevitable when the convergence is
allowed to be nonuniform. But if the mere existence of a trapping region is asked for,
dependence on initial conditions may be removed from the statements of the results.
The next corollary presents such modified conditions.

Corollary 10. Consider interconnection (11), where the system Sa satisfies
inequality (39) and the function γ0(·) obeys (41). Then there exists a set Ωγ of initial
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conditions corresponding to the trajectories converging to Ωa if the following condition
is satisfied:

(44) Dγ,0 · c · G < 1,

where

G = β−1
t

(
d

κ

)
k

k − 1

(
βt(0)

(
1 +

κ

1 − d

)
+ 1

)

for some d ∈ (0, 1), κ ∈ (1,∞). In particular, Ωγ contains the following domain:

‖x(t0)‖A ≤ h(z(t0))

βt(0)

[
1

Dγ,0

(
β−1
t

(
d

κ

))−1
k − 1

k
− c

(
βt(0)

(
1 +

κ

1 − d

)
+ 1

)]
.

In the case when the function h(z) in (11) is continuous, the volume of the set Ωγ is
nonzero in R

n ⊕ R
m.

Notice that in the case when the dynamics of the contracting subsystem Sa is
exponentially stable, i.e., it satisfies inequality (43), the term G in condition (44)
reduces to

(45) G =
1

λ
· ln

(κ
d

) k

k − 1

(
Dβ

(
1 +

κ

1 − d

)
+ 1

)
.

For Dβ = 1 the minimal value of G in (45) can be estimated as

(46) G∗ =
1

λ
· min
d∈(0,1), κ∈(1,∞)

ln
(κ
d

) k

k − 1

(
2 +

κ

1 − d

)
≈ 15.6886

λ
<

16

λ
,

which leads to an even more simple formulation of (45):

Dγ,0 ·
c

λ
≤ 1

16
.

Corollary 10 provides an explicit and easy-to-check condition for existence of
a trapping region in the state space of a class of Lyapunov unstable systems. In
addition, it allows us to specify explicitly points x(t0), z(t0) which belong to the
emergent trapping region. Notice also that the existence condition, inequality (44),
has the flavor of conventional small-gain constraints. Yet, it is substantially different
from these classical results. This is because the input-output gain for the wandering
subsystem, Sw, may not be finite or need not even be defined.

To elucidate these differences as well as the similarities between conditions of
conventional small-gain theorems and those formulated in Corollary 10 we provide an
example. Consider the following systems:{

ẋ1 = −λ1x1 + c1x2,

ẋ2 = −λ2x2 − c2|x1|,
(47a)

{
ẋ1 = −λ1x1 + c1x2,

ẋ2 = −c2|x1|.
(47b)
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System (47a) can be viewed as an interconnection of two input-to-state stable systems,
x1 and x2, with input-output L∞-gains c1/λ1 and c2/λ2, respectively. Therefore, in
order to prove state boundedness of (47a) we can, in principle, invoke the conventional
small-gain theorem. The small-gain condition in this case is as follows:

(48a)
c1
λ1

· c2
λ2

< 1.

The theorem, however, does not apply to system (47b) because the input-output
gain of its second subsystem, x2, is infinite. Yet, by invoking Corollary 10 it is still
possible to show existence of a weak attracting set in the state space of system (47b)
and specify its basin of attraction. As follows from Corollary 10, condition

(48b)
c1
λ1

· c2
λ1

<
1

16

ensures existence of the trapping region, and the trapping region itself is given by

|x1(t0)| ≤
[

1

c2
λ1

(
ln

κ

d

)−1 k − 1

k
− c1

λ1

(
2 +

κ

1 − d

)]
x2(t0).

5.2. Output nonlinear identification problem. In the literature on adaptive
control, observation, and identification a few classes of systems are referred to as
canonic forms because they guarantee existence of a solution to the problem and
because a large variety of physical models can be transformed into this class. Among
these, perhaps the most widely known is the adaptive observer canonical form [3].
Necessary and sufficient conditions for transformation of the original system into
this canonical form can be found, for example, in [16]. These conditions, however,
include restrictive requirements of linearization of uncertainty-independent dynamics
by output injection, and they also require linear parametrization of the uncertainty.
Alternative approaches [4] heavily rely on knowledge of the proper Lyapunov function
for the uncertainty-independent part and still assume linear parametrization.

We now demonstrate how these restrictions can be lifted by application of our
result to the problem of state and parameter observation. Let us consider systems
which can be transformed by means of static or dynamic feedback9 into the following
form:

(49) ẋ = f0(x, t) + f(ξ(t),θ) − f(ξ(t), θ̂) + ε(t),

where

ε(t) ∈ Lm
∞[t0,∞], ‖ε(τ)‖∞,[t0,t] ≤ Δε

is an external perturbation with known Δε, and x ∈ R
n. The function ξ : R+ → R

ξ

is a function of time, which possibly includes available measurements of the state,
and θ, θ̂ ∈ Ωθ ⊂ R

d are the unknown and estimated parameters of the function f(·),
respectively, and the set Ωθ is bounded. We assume that uniformly in ξ, the function
f(ξ(t),θ) is locally bounded in θ:

‖f(ξ(t),θ) − f(ξ(t), θ̂)‖ ≤ Df‖θ − θ̂‖ + Δf

9Notice that conventional observers in control theory could be viewed as dynamic feedbacks.
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and the values of Df ∈ R+, Δf are available. The function f0(·) in (49) is assumed
to satisfy the following condition.

Assumption 3. The system

(50) ẋ = f0(x, t) + u(t)

is forward-complete. Furthermore, for all u(t) such that

‖u(t)‖∞,[t0,t] ≤ Δu + ‖u0(τ)‖∞,[t0,t], Δu ∈ R+,

there exists a bounded set A, c > 0 and a function Δ : R+ → R+ satisfying the
following inequality:

‖x(t)‖AΔ(Δu)
≤ β(t− t0) ‖x(t0)‖AΔ(Δu)

+ c‖u0(τ)‖∞,[t0,t],

where β(·) : R+ → R+, limt→∞ β(t) = 0 is a strictly decreasing function.
Consider the following auxiliary system:

(51) λ̇ = S(λ), λ(t0) = λ0 ∈ Ωλ ⊂ R
λ,

where Ωλ ⊂ R
λ is a compact set, λ(t,λ0) ∈ Ωλ for all t ≥ t0, and S(λ) is locally

Lipschitz. Furthermore, suppose that the following assumption holds for system (51).
Assumption 4. System (51) is Poisson stable in Ωλ, that is,

∀ λ′ ∈ Ωλ, t′ ∈ R+ ⇒ ∃t′′ > t : ‖λ(t′′,λ′) − λ′‖ ≤ ε,

where ε is an arbitrary small positive constant. Moreover, the trajectory λ(t,λ0) is
dense in Ωλ:

∀λ′ ∈ Ωλ, ε ∈ R>0 ⇒ ∃ t ∈ R+ : ‖λ′ − λ(t,λ0)‖ < ε.

Now we are ready to formulate the following statement.
Corollary 11. Consider system (49) and suppose that the following conditions

hold:
(C4) the vector-field f0(x, t) in (49) satisfies Assumption 3;
(C5) there exists a (known) system (51) satisfying Assumption 4;
(C6) there exists a locally Lipschitz η : R

λ → R
d:

‖η(λ′) − η(λ′′)‖ ≤ Dη‖λ′ − λ′′‖

such that the set η(Ωλ) is dense in Ωθ;
(C7) system (49) has a steady-state characteristic with respect to the norm

‖·‖AΔ(M)
, M = 2Δf + Δε + δ,

and input θ̂, where δ is some positive (arbitrarily small) constant.
Consider the following interconnection of (49), (51):

ẋ = f0(x, t) + f(ξ(t),θ) − f(ξ(t), θ̂) + ε(t),

θ̂ = η(λ),

λ̇ = γ ‖x(t)‖AΔ(M)
S(λ),

(52)
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where γ > 0 satisfies the following inequality:

γ ≤
(
β−1
t

(
d

κ

))−1
κ− 1

κ

1

Dλ

(
βt(0)

(
1 + κ

1−d

)
+ 1

) ,
Dλ = c ·Df ·Dη · max

λ∈Ωλ
‖S(λ)‖

(53)

for some d ∈ (0, 1), κ ∈ (1,∞). Then, for λ(t0) = λ0, some θ′ ∈ Ωθ, and all
x(t0) = x0 ∈ R

n, the following holds:

lim
t→∞

‖x(t)‖AΔ(M)
= 0, lim

t→∞
θ̂(t) = θ′ ∈ Ωθ.(54)

Notice that, as has been pointed out in the previous section, in the case when
the dynamics of (50) is exponentially stable with a rate of convergence equal to ρ and
β(0) = Dβ , condition (53) will have the following form:

γ ≤ −ρ

(
ln

d

κ

)−1
κ− 1

κ

1

Dλ

(
Dβ

(
1 + κ

1−d

)
+ 1

) .
According to Corollary 11, for the rather general class of systems (49) it is possible

to design an estimator θ̂(t) which guarantees not only that the “error” vector x(t)

reaches a neighborhood of the origin, but also that the estimates θ̂(t) converge to some
θ′ in Ωθ. Both these facts, together with additional nonlinear persistent excitation
conditions [6], [29]

∃ T > 0, ρ ∈ K : ∀ T = [t, t + T ], t ∈ R+

⇒ ∃ τ ∈ T : |f(ξ(τ),θ) − f(ξ(τ),θ′)| ≥ ρ(‖θ − θ′‖),

in principle allow us to estimate the domain of convergence for θ̂(t).
Concluding this section we mention that statements of Theorem 3 and Corollaries

8–11 constitute additional theoretical tools for the analysis of asymptotic behavior of
systems in cascaded form. In particular they are complementary to the results of [1],
where asymptotic stability of systems of the following type:

ẋ = f(x),

ż = q(x, z), f : R
n → R

n, q : R
n × R

m → R
m

was considered under the assumption that the x-subsystem is globally asymptotically
stable and the z-subsystem is integral input-to-state stable. In contrast to this, our
results apply to establishing asymptotic convergence for systems with the following
structure:

ẋ = f(x, z),

ż = q(x, z), f : R
n × R

m → R
n,

where the x-subsystem is input-to-state stable, and the z-subsystem could be practi-
cally integral input-to-state stable (see Corollary 8), although in general no stability
assumptions are imposed on it.
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6. Examples. In this section we provide two examples of parameter identifica-
tion in nonlinearly parametrized systems that cannot be transformed into the canon-
ical adaptive observer form.

The first example is merely an academical illustration of Corollary 11, where only
one parameter is unknown and the system itself is a first-order differential equation.
The second example illustrates a possible application of our results to the problem of
identifying the dynamics in living cells.

Example 1. Consider the following system:

(55) ẋ = −kx + sin(xθ + θ) + u, k > 0, θ ∈ [−a, a],

where θ is an unknown parameter and u is the control input. Without loss of generality
we let a = 1, k = 1. The problem is to estimate the parameter θ from measurements of
x and steer the system to the origin. Clearly, the choice u = − sin(xθ̂+ θ̂) transforms
(55) into

(56) ẋ = −kx + sin(xθ + θ) − sin(xθ̂ + θ̂),

which satisfies Assumption 3. Moreover, the system

λ̇1 = λ1,

λ̇2 = −λ2, λ2
1(t0) + λ2

2(t0) = 1

with mapping η = (1, 0)Tλ satisfies Assumption 4 and therefore

λ̇1 = γ|x|λ1,

λ̇2 = −γ|x|λ2, λ2
1(t0) + λ2

2(t0) = 1
(57)

would be a candidate for the control and parameter estimation algorithm. According
to Corollary 11, the goal will be reached if the parameter γ in (57) obeys the following
constraint:

γ ≤ −ρ

(
ln

d

κ

)−1
κ− 1

κ

1

Dλ

(
Dβ

(
1 + κ

1−d

)
+ 1

) , ρ = k = 1, Dβ = 1, Dλ = 1

for some d ∈ (0, 1), κ ∈ (1,∞). Hence, choosing, for example, d = 0.5, κ = 2 we
obtain that choice

0 < γ < − ln

(
0.5

2

)−1
1

2
· 1

6
= 0.0601

suffices to ensure that

lim
t→∞

x(t) = 0, lim
t→∞

θ̂(t) = θ.

We simulated system (56), (57) with θ = 0.3, γ = 0.05 and initial conditions x(t0)
randomly distributed in the interval [−1, 1]. Results of the simulation are illustrated
in Figure 5, where the phase plots of system (56), (57) as well as the trajectories of

θ̂(t) are given.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

868 I. TYUKIN, E. STEUR, H. NIJMEIJER, AND C. VAN LEEUWEN

x

-1

-0.5

0

0.5

1.5

1

� -0.61 -0.2 0.2 0.6 1
-1

-0.5

0

0.5

�2

x( , )=0�1 �2

0 10 20 30 40 50 60 70 80 90

-0.9

-0.6

-0.3

0

0.3

0.6

t

�^

Fig. 5. Trajectories of system (56), (57) (left panel) and the family of estimates θ̂(t) of param-
eter θ as functions of time t (right panel).

Example 2. Consider the problem of modeling electrical activity in biological cells
from the input-output data in current clamp experiments. The simplest mathematical
model, which captures a fairly large variety of phenomena such as periodic bursting in
response to constant stimulation, is the classical Hindmarsh and Rose model neuron
without adaptation currents [10]:

ẋ1 = −ax3
1 + bx2

1 + x2 + αu,

ẋ2 = c− βx2 − dx2
1,

(58)

where variable x1 is the membrane potential, x2 stands for the ionic currents in the
cell, u is the input current, and a, b, c, d, α, β ∈ R are parameters. While the
parameters of the first equation can, in principle, be identified experimentally by
blocking the ionic channels in the cells and measuring the membrane conductance,
identification of parameters β, d is a difficult problem, as information about ionic
currents x2 is rarely available.

Conventional techniques [3] cannot be applied directly to this problem as the
model (58) is not in canonical adaptive observer form. Let us illustrate how our results
can be used to derive the unknown parameters of (58) such that the reconstructed
model fits the observed data. Assume, first, that parameters a, b, c, α in the first
equation of (58) are known, whereas parameters β, d in the second equation are
unknown. This corresponds to the realistic case, where the time constant of current
x2 and coupling between x1 and x2 are uncertain. In our example we assumed that

β ∈ Ωβ = [0.3, 0.7], d ∈ Ωd = [2, 3], a = 1, b = 3, α = 0.7, c = 0.5.

As a candidate for the observer we select the following system:

˙̂x = ρ(x1 − x̂) − ax3
1 + bx2

1 + αu + f(β̂, d̂, t), ρ ∈ R>0,(59)

where β̂, d̂ are parameters to be adjusted and the function f(β̂, d̂, t) is specified as

f(β̂, d̂, t) =

∫ t

t0

e−β̂(t−τ)(d̂x2
1(τ) + c)dτ.

Then the dynamics of x̃(t) = x(t) − x̂(t) satisfies the following differential equation:

˙̃x = −ρx̃ + f(β, d, t) − f(β̂, d̂, t).
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The function f(β, d, t) satisfies the following inequality:

|f(β, d, t) − f(β̂, d̂, t)| ≤ |f(β, d, t) − f(β̂, d, t)| + |f(β̂, d, t) − f(β̂, d̂, t)|
≤ Df,β |β − β̂| + Df,d|d− d̂| + ε(t),

where ε(t) is an exponentially decaying term, and

(60)

Df,β = max
β̂,β∈Ωβ , d∈Ωd

{
1

ββ̂
(d‖x1(τ)‖∞,[t0,∞] + c)

}
, Df,d = max

β̂∈Ωβ

{
1

β̂
‖x1(τ)‖∞,[t0,∞]

}
.

Furthermore, Assumption 3 is satisfied for system

(61) ˙̃x = −ρx̃ + υ(t),

with

Δ(Δu) =
Δu

ρ
.

In particular, for all υ(t) : ‖υ(τ)‖∞,[t0,t] ≤ Δu+‖υ0(τ)‖∞,[t0,t] the following inequality
holds:

(62) ‖x̃(t)‖Δ(Δu) ≤ e−ρ(t−t0)‖x̃(t0)‖Δ(Δu) +
1

ρ
‖υ0(τ)‖∞,[t0,t].

To see this consider the general solution of (61):

x̃(t) = e−ρ(t−t0)x̃(t0) + e−ρt

∫ t

t0

eρτυ(τ)dτ

and derive an estimate of |x̃(t)|. This estimate has the following form:

|x̃(t)| ≤ e−ρ(t−t0)|x̃(t0)| +
1

ρ

(
1 − e−ρ(t−t0)

)
‖υ(τ)‖∞,[t0,t]

≤ e−ρ(t−t0)

(
|x̃(t0)| −

1

ρ
Δu

)
+

1

ρ

(
‖υ0(τ)‖∞,[t0,t] + Δu

)
≤ e−ρ(t−t0)‖x̃(t0)‖Δ(Δu) +

1

ρ

(
‖υ0(τ)‖∞,[t0,t] + Δu

)
.

Hence

|x̃(t)| − 1

ρ
Δu ≤ e−ρ(t−t0)‖x̃(t0)‖Δ(Δu) +

1

ρ
‖υ0(τ)‖∞,[t0,t],

which automatically implies (62).
Let us define subsystem (51). Consider the following system of differential equa-

tions:

λ̇1 = λ2,

λ̇2 = −ω2
1λ1,

λ̇3 = λ4,

λ̇4 = −ω2
2λ3, λ0 = (1, 0, 1, 0)T ,

(63)
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where Ωλ is the ω-limit set of the point λ0, and ω1, ω2 ∈ R. System (63), therefore,
satisfies Assumption 4. Given that domains Ωβ , Ωd are known, select

η : R
n → R

2, η = (η1(λ), η2(λ)),

β̂ = η1(λ) =
1

2

(
2 arcsin(λ1)

π
+ 1

)
· 0.4 + 0.3, d̂ = η2(λ) =

1

2

(
2 arcsin(λ3)

π
+ 1

)
+ 2.

(64)

Choosing

ω1

ω2
= π

we ensure that η(Ωλ) is dense in Ωβ ×Ωd. Given that β̂, d̂ are bounded and β̂ ≥ 0.3,
the values of Df,β , Df,d are bounded since the signal x1(t) is always bounded for
any t ≥ t0 for the given range of parameters. Hence, according to Corollary 11,
interconnection of (59), (64), and

λ̇1 = γ‖x̃(t)‖Δ(δ) · λ2,

λ̇2 = −γ‖x̃(t)‖Δ(δ) · ω2
1λ1,

λ̇3 = γ‖x̃(t)‖Δ(δ) · λ4,

λ̇4 = −γ‖x̃(t)‖Δ(δ) · ω2
2λ3, λ0 = (1, 0, 1, 0)T ,

with arbitrary small δ > 0 and properly chosen γ > 0, ensures that

lim
t→∞

‖x̃(t)‖Δ(δ) = 0, lim
t→∞

β̂(t) = β′ ∈ Ωβ , lim
t→∞

d̂(t) = d′ ∈ Ωd.

This in turn implies a successful fit of the model to the observations.

We simulated the system with ρ = 10 and γ = 3 · 10−4 for β = 0.5, d = 2.5. The
results of the simulations are provided in Figure 6. It can be seen from this figure
that the reconstruction is successful and that the parameters converge into a small
neighborhood of the actual values. Further details explaining how this technique can
be applied to model the dynamics of the evoked membrane potentials in real neural
cells from input-output measurements in vitro are discussed in [25].

7. Conclusion. We proposed tools for the analysis of asymptotic behavior of a
class of dynamical systems. In particular, we consider an interconnection of an input-
to-state stable system with an unstable or integral input-to-state dynamics. Our
results allow us to address a variety of problems in which convergence may not be
uniform with respect to initial conditions. It is necessary to notice that the proposed
method does not require complete knowledge of the dynamical systems in question.
Only qualitative information such as, for instance, characterization of input-to-state
stability is necessary for application of our results. We demonstrated how our analysis
can be used in the problems of synthesis and design—in particular for problems of
nonlinear regulation and parameter identification of nonlinear parametrized systems.
The examples show the relevance of our approach in those domains where application
of the standard techniques is either not possible or too complicated.
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Fig. 6. Left panel: trajectories x1(t), x2(t) of system (58) plotted for the nominal values of

parameters β = 0.5, d = 2.5 (model), and for the values β = β̂(t0 + T ), d = d̂(t0 + T ), where T
is the total simulation time (reconstruction). Input u(t) is a rectangular impulse with amplitude
0.7 starting at t = 100 and ending at t = 300. Right panel: searching dynamics in the bounded
parameter space (a segment of the trajectory β̂(t), d̂(t) towards the end of the simulation).

Appendix. Proofs of Theorem 3, lemmas, and corollaries.

A.1. Proof of Theorem 3. Let the conditions of the theorem be satisfied for
given t0 ∈ R+: x(t0) = x0, z(t0) = z0. Notice that in this case h(z0) ≥ 0; otherwise
requirement (26) will be violated. Consider the sequence (23) of volumes Ωi induced
by S:

Ωi = {x ∈ X , z ∈ Z| h(z(t)) ∈ Hi}.

To prove the theorem we show that 0 ≤ h(z(t)) ≤ h(z0) for all t ≥ t0. For the given
partition (23) we consider two alternatives.

First, in the degenerative case, the state x(t) ⊕ z(t) enters some Ωj , j ≥ 0, and
stays there afterward, which automatically guarantees that 0 ≤ |h(z)| ≤ h(z0). Then,
according to (6) the trajectory x(t) satisfies the following inequality:

(65) ‖x(t)‖A ≤ β(‖x0‖A , t− t0) + c‖h(z(t))‖∞,[t0,t] ≤ β(‖x0‖A , t− t0) + c|h(z0)|.

Taking into account that β(·, ·) ∈ KL we can conclude that (65) implies that

lim sup
t→∞

‖x(t)‖A ≤ c|h(z0)|.(66)

Therefore the statements of the theorem hold.
Let us consider the second alternative, where the state x(t)⊕ z(t) enters each Ωj

and leaves later. Given that h(z(t)) is monotone and nonincreasing in t, this implies
that there exists an ordered sequence of time instants tj :

(67) t0 < t1 < t2 · · · tj < tj+1 · · ·

such that

(68) h(z(ti)) = σih(z0).

Hence in order to prove the theorem we must show that the sequence {ti}∞i=0 does
not converge. In other words, the boundary σ∞h(z0) = 0 will not be reached in finite
time.
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In order to do this let us estimate the upper bounds for the following differences:

Ti = ti+1 − ti.

Taking into account inequality (8) and the fact that γ0(·) ∈ Ke, we can derive that

(69) h(z(ti)) − h(z(ti+1)) ≤ Ti max
τ∈[ti,ti+1]

γ0(‖x(τ)‖A) ≤ Tiγ0(‖x(τ)‖A∞,[ti,ti+1]
).

According to the definition of ti in (68) and noticing that the sequence S is strictly
decreasing, we have

h(z(ti)) − h(z(ti+1)) = (σi − σi+1)h(z0) > 0.

Hence h(z0) > 0 implies that γ0(‖x(τ)‖A∞,[ti,ti+1]
) > 0 and, therefore, (69) results in

the following estimate of Ti:

(70) Ti ≥
h(z(ti)) − h(z(ti+1))

γ0(‖x(τ)‖A∞,[ti,ti+1]
)

=
h(z0)(σi − σi+1)

γ0(‖x(τ)‖A∞,[ti,ti+1]
)
.

Taking into account that h(z(t)) is nonincreasing over [ti, ti+1] and using (6) we can
bound the norm ‖x(τ)‖A∞,[ti,ti+1]

as follows:

‖x(τ)‖A∞,[ti,ti+1]
≤ β(‖x(ti)‖A , 0) + c‖h(z(τ))‖∞,[ti,ti+1](71)

≤ β(‖x(ti)‖A , 0) + c · σih(z0).

Hence, combining (70) and (71), we obtain that

Ti ≥
h(z0)(σi − σi+1)

γ0(σi(σ
−1
i β(‖x(ti)‖A , 0) + c · h(z0)))

.

Then, using property (10) of function γ0 we can derive that

(72) Ti ≥
h(z0)(σi − σi+1)

γ0,1(σi)

1

γ0,2(σ
−1
i β(‖x(ti)‖A , 0) + c · h(z0)))

.

Taking into account condition (27) of the theorem, the theorem will be proved if we
ensure that

(73) Ti ≥ τi

for all i = 0, 1, 2, . . . ,∞. We prove this claim by induction with respect to the index
i = 0, 1, . . . ,∞. We start with i = 0, and then show that for all i > 0 the following
implication holds:

(74) Ti ≥ τi ⇒ Ti+1 ≥ τi+1.

Let us prove that (73) holds for i = 0. For this purpose consider the term
(σi − σi+1)/γ0,1(σi). As follows immediately from condition (25) of the theorem, we
have that

(75)
σi − σi+1

γ0,1(σi)
≥ τiΔ0 ∀ i ≥ 0.
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In particular

σ0 − σ1

γ0,1(σ0)
≥ τ0Δ0.

Therefore, inequality (72) reduces to

(76) T0 ≥ τ0Δ0
h(z0)

γ0,2(σ
−1
0 β(‖x(t0)‖A , 0) + c · h(z0))

.

Moreover, taking into account Property 3 and (18), (19), we can derive the following
estimate:

σ−1
0 β(‖x(t0)‖A , 0) ≤ σ−1

0 φ0(‖x(t0)‖A) + σ−1
0 υ0(c · |h(z0)|σ0)

≤ B1(‖x0‖A) + B2(|h(z0)|, c).

According to the theorem conditions, x0 and z0 satisfy inequality (26). This in turn
implies that

γ0,2(σ
−1
0 β(‖x(t0)‖A , 0) + c · h(z0))

≤ γ0,2(B1(‖x0‖A) + B2(|h(z0)|, c) + c · h(z0)) ≤ Δ0 · h(z0).
(77)

Combining (76) and (77), we obtain the desired inequality

T0 ≥ τ0Δ0
h(z0)

γ0,2(σ
−1
0 β(‖x(t0)‖A , 0) + c · h(z0))

≥ τ0
Δ0h(z0)

Δ0h(z0)
= τ0.

Thus the basis of induction is proved.
Let us assume that (73) holds for all i = 0, . . . , n, n ≥ 0. We shall prove now that

implication (74) holds for i = n + 1. Consider the term β(‖x(tn+1)‖A , 0):

β(‖x(tn+1)‖A , 0) ≤ β(β(‖x(tn)‖A , Tn) + c‖h(z(τ))‖∞,[tn,tn+1], 0)

≤ β(β(‖x(tn)‖A , Tn) + c · σn · h(z0), 0).

Taking into account Property 2 (specifically, inequality (17)) and (18)–(20) we can
derive that

β(‖x(tn+1)‖A , 0) ≤ β(ξn · β(‖x(tn)‖A), 0) + c · σn · h(z0), 0)

≤ φ1(‖x(tn)‖A) + υ1(c · |h(z)0| · σn).
(78)

Notice that, according to the inductive hypothesis (Ti ≥ τi), the following holds:

(79) ‖x(ti+1)‖A ≤ β(‖x(ti)‖A , Ti) + c · σi · h(z0) ≤ ξiβ(‖x(ti)‖A , 0) + c · σi · h(z0)

for all i = 0, . . . , n. Then (78), (79), and (18)–(20) imply that

β(‖x(tn+1)‖A , 0) ≤ φ1(ξiβ(‖x(tn−1)‖A , 0) + c · σn−1 · h(z0))

+ υ1(c · |h(z)0| · σn) ≤ φ2(‖x(tn−1)‖A) + υ2(c · |h(z0)| · σn−1)

+ υ1(c · |h(z0)| · σn) ≤ φn+1(‖x0‖A) +

n+1∑
i=1

υi(c · |h(z0)|σn+1−i)

≤ φn+1(‖x0‖A) +

n+1∑
i=0

υi(c · |h(z0)|σn+1−i).

(80)
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According to Property 3, the term

σ−1
n+1

(
φn+1(‖x0‖A) +

n+1∑
i=0

υi(c · |h(z0)|σn+1−i)

)

is bounded from above by the sum

B1(‖x0‖A) + B2(|h(z0)|, c).

Therefore, monotonicity of γ0,2, estimate (80), and inequality (26) lead to the following
inequality:

γ0,2(σ
−1
n+1β(‖x(tn+1‖A), 0) + c · h(z0)) ≤ γ0,2(B1(‖x0‖A) + B2(|h(z0)|, c) + c · h(z0))

≤ h(z0)Δ0.

Hence, according to (72) and (75) we have

Tn+1 ≥ (σn+1 − σn+2)

γ0,1(σn+1)

h(z0)

γ0,2(σ
−1
n+1β(‖x(tn+1)‖A , 0) + c · h(z0))

≥ τn+1
Δ0h(z0)

Δ0h(z0)
= τn+1.

Thus implication (74) is proved. This implies that h(z(t)) ∈ [0, h(z0)] for all t ≥ t0
and, consequently, that (66) holds.

A.2. Proof of Lemma 6. As follows from the assumptions, h(z(t, z0)) is
bounded. Assume it belongs to the interval [a, h(z0)], a ≤ h(z0). Taking into ac-
count that h(z(t, z0)) is bounded and monotone in t (every subsequence of which is
again monotone) and applying the Bolzano–Weierstrass theorem we can conclude that
h(z(t, z0)) converges in [a, h(z0)]. In particular, there exists h̄ ∈ [a, h(z0)] such that

(81) lim
t→∞

h(z(t, z0)) = h̄.

Therefore, as follows from (8) we can conclude that

0 ≤ lim
t→∞

∫ t

t0

γ1(‖x(τ,x0)‖A)dτ ≤ lim
t→∞

(h(z0) − h(z(t, z0)))

= h(z0) − h̄ ≤ h(z0) − a < ∞.

(82)

According to the lemma assumptions, system Sa has steady-state characteristics. This
means that there exists a constant x̄ ∈ R+ such that

(83) lim
t→∞

‖x(t,x0)‖A = x̄.

Suppose that x̄ > 0. Then it follows from (83) that there exists time instant t1,
t0 ≤ t1 < ∞ and some constant 0 < δ < x̄ such that

‖x(t)‖A ≥ δ ∀ t ≥ t1.

Hence using (82) and noticing that γ1 ∈ Ke we obtain

∞ > h(z0) − h̄ ≥ lim
t→∞

∫ t

t0

γ1(‖x(τ,x0)‖A)dτ ≥ lim
t→∞

∫ t

t1

γ1(δ)dτ = ∞.
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Thus we obtained a contradiction. Hence x̄ = 0 and, consequently,

lim
t→∞

‖x(t)‖A = 0.

Then, according to the notion of steady-state characteristic in Definition 4, this is
possible only if h̄ ∈ χ−1(0).

A.3. Proof of Lemma 7. Analogously to the proof of Lemma 6 we notice that
(82) holds. This, however, implies that for any constant and positive T , the limit

lim
t→∞

∫ t+T

t

γ1(‖x(τ)‖A)dτ

exists and equals zero. Furthermore, h(z(t, z0)) ∈ [0, h(z0)] for all t ≥ t0. Hence there
exists a time instant t′ such that

‖x(t)‖A ≤ c · h(z0) + ε ∀ t ≥ t′,

where ε > 0 is arbitrarily small. Then taking into account (31) we can conclude that

(84) lim
t→∞

∫ t+T

t

γ1(‖x(τ)‖A)dτ ≥ γ̄

∫ t+T

t

‖x(τ)‖A dτ = 0.

Given that (81) holds, system (6) has the steady-state characteristic on average, and
given that χT (·) has no zeros in the positive domain, limiting relation (84) is possible
only if h̄ = 0. Then, according to (6), limt→∞ ‖x(t)‖A = 0.

A.4. Proof of Corollary 8. As follows from Theorem 3, state x(t,x0)⊕z(t, z0)
converges to the set Ωa specified by (24). Hence h(z(t, z0)) is bounded. Then, ac-
cording to (8), estimate (82) holds. This, in combination with condition (34), implies
that z(t, z0) is bounded. In other words,

x(t,x0) ⊕ z(t, z0) ∈ Ω′ ∀ t ≥ t0,

where Ω′ is a bounded subset in R
n×R

m. Applying the Bolzano–Weierstrass theorem
we can conclude that for every point x0⊕z0 ∈ Ωγ there is an ω-limit set ω(x0⊕z0) ⊆ Ω′

(nonempty).
As follows from (C3) and Lemma 6, the following holds:

lim
t→∞

h(z(t, z0)) ∈ χ−1(0).

Therefore, given that h(·) ∈ C0, we can obtain that

lim
ti→∞

(z(ti, z0)) = h

(
lim

ti→∞
z(ti, z0)

)
= h(ωz(x0 ⊕ z0)) ∈ χ−1(0).

In other words,

ωz(x0 ⊕ z0) ⊆ Ωh = {x ∈ R
n, z ∈ R

m| h(z) ∈ χ−1(0)}.

Moreover,

ωx(x0 ⊕ z0) ⊆ Ωa = {x ∈ R
n, z ∈ R

m| ‖x‖A = 0}.
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According to assumption (C1), the flow x(t,x0)⊕ z(t, z0) is generated by a system of
autonomous differential equations with a locally Lipschitz right-hand side. Then, as
follows from [13, Lemma 4.1, page 127],

lim
t→∞

dist(x(t,x0) ⊕ z(t, z0), ω(x0 ⊕ z0)) = 0.

Noticing that

dist(x(t,x0) ⊕ z(t, z0), ω(x0 ⊕ z0)) ≥ dist(x(t,x0),Ωa) + dist(z(t, z0),Ωh),

we can finally obtain that

lim
t→∞

dist(x(t,x0),Ωa) = 0, lim
t→∞

dist(z(t, z0),Ωh) = 0.

A.5. Proof of Corollary 9. As follows from Theorem 3, the corollary will be
proved if Properties 1–3 are satisfied and also if (25), (26), and (27) hold. In order to
satisfy Property 1 we select the following sequence S:

(85) S = {σi}∞i=0, σi =
1

κi
, κ ∈ R+, κ > 1.

Let us chose sequences T and Ξ as follows:

(86) T = {τi}∞i=0, τi = τ∗,

(87) Ξ = {ξi}∞i=0, ξi = ξ∗,

where τ∗, ξ∗ are positive constants yet to be defined. Notice that choosing T as in
(86) automatically fulfills condition (27) of Theorem 3. On the other hand, taking
into account (17), (39), and that βt(t) is monotonically decreasing in t, this choice
defines a constant ξ∗ as follows:

(88) βt(τ
∗) ≤ ξ∗βt(0) < βt(0), 0 ≤ ξ∗ < 1.

Given that the inverse β−1
t exists, (40), this choice is always possible. In particular,

(88) will be satisfied for the following values of τ∗:

(89) τ∗ ≥ β−1
t (ξ∗βt(0)) .

Let us now find the values for τ∗ and ξ∗ such that Property 3 is also satisfied. For
this purpose consider systems of functions Φ, Υ specified by (18), (19). Notice that
function β(s, 0) in (18), (19) is linear for system (39),

β(s, 0) = s · βt(0),

and therefore the functions ρφ,j(·), ρυ,j are identity maps. Hence Φ, Υ reduce to the
following:

(90) Φ :
φj(s) = φj−1 · ξ∗ · β(s, 0) = ξ∗ · βt(0) · φj−1(s), j = 1, . . . , i,
φ0(s) = βt(0) · s,

(91) Υ :
υj(s) = φj−1(s), j = 1, . . . , i,
υ0(s) = βt(0) · s.
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Taking into account (85), (90), and (91), let us explicitly formulate requirements
(21), (22) in Property 3. These conditions are equivalent to the boundedness of the
following functions:

(92) ‖x(t0)‖A · βt(0) · κn(ξ∗ · βt(0))n;

κn

(
βt(0)

c|h(z0)|
κn

+
βt(0)c|h(z0)|

κn−1
+ βt(0)

n∑
i=2

c|h(z0)|
1

kn−i
(ξ∗ · βt(0))i−1

)

= βt(0)c|h(z0)| + βt(0)c|h(z0)|κ
(

1 +

n∑
i=2

κi−1(ξ∗ · βt(0))i−1

)
.

(93)

Boundedness of the functions B1(‖x0‖A) and B2(|h(z0)|, c) is ensured if ξ∗ satisfies
the inequality

(94) ξ∗ ≤ d

κ · βt(0)

for some 0 ≤ d < 1. Notice that κ > 1, βt(0) ≥ 1 imply that ξ∗ ≤ 1, and therefore
constant τ∗ satisfying (89) will always be defined. Hence according to (92) and (93),
the functions B1(‖x0‖A) and B2(|h(z0)|, c) satisfying Property 3 can be chosen as

(95) B1(‖x0‖A) = βt(0) ‖x0‖A ; B2(|h(z0)|, c) = βt(0) · c · |h(z0)|
(

1 +
κ

1 − d

)
.

In order to apply Theorem 3 we have to check the remaining conditions (25)
and (26). This requires the possibility of factorization (10) for the function γ0(·).
According to assumption (41) of the corollary the function γ0(·) is Lipschitz:

|γ0(s)| ≤ Dγ,0 · |s|.

This allows us to choose functions γ0,1(·) and γ0,2(·) as follows:

(96) γ0,1(s) = s, γ0,2(s) = Dγ,0 · s.

Condition (25), therefore, is equivalent to solvability of the following inequality:

(97)

(
1

κi
− 1

κi+1

)
κi

τ∗
≥ Δ0.

Taking into account inequalities (89) and (94), we can derive that solvability of

(98) Δ0 =

(
β−1
t

(
d

κ

))−1
κ− 1

κ

implies existence of Δ0 > 0 satisfying (97) and, consequently, condition (25) of The-
orem 3. Given that d < 1, κ > 1, and βt(0) ≥ 1, a positive solution to (98) is always
defined. Hence the proof will be complete and the claim is nonvacuous if the domain

Dγ,0 ≤
(
β−1
t

(
d

κ

))−1
κ− 1

κ

× h(z0)

βt(0) ‖x0‖A + βt(0) · c · |h(z0)|
(
1 + κ

1−d

)
+ c|h(z0)|

(99)

is not empty.
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A.6. Proof of Corollary 10. It follows from Corollary 9 that the state of the
interconnection converges into Ωa for all initial conditions x0, z0 satisfying (99). In
other words, the following inequality should hold:

Dγ,0

(
βt(0) ‖x0‖A + βt(0) · c · |h(z0)|

(
1 +

κ

1 − d

)
+ c|h(z0)|

)

≤
(
β−1
t

(
d

κ

))−1
κ− 1

κ
· h(z0).

(100)

Hence assuming that h(z0) > 0, we can rewrite (100) in the following way:

Dγ,0 · βt(0) ‖x0‖A

≤
((

β−1
t

(
d

κ

))−1
κ− 1

κ
−Dγ,0 · c

(
βt(0) ·

(
1 +

κ

1 − d

)
+ 1

))
h(z0).

(101)

Solutions to (101) exist, however, if the inequality(
β−1
t

(
d

κ

))−1
κ− 1

κ
≥ Dγ,0 · c

(
βt(0) ·

(
1 +

κ

1 − d

)
+ 1

)

or, equivalently,

(102) Dγ,0 · c ·
(
βt(0) ·

(
1 +

κ

1 − d

)
+ 1

)
· β−1

t

(
d

κ

)
κ

κ− 1
< 1

is satisfied. The estimate of the trapping region follows from (101).
Let us finally show that continuity of h(z) implies that the volume of Ωγ is nonzero

in R
n ⊕R

m. For the sake of compactness we rewrite inequality (101) in the following
form:

(103) ‖x0‖A ≤ Cγh(z0),

where Cγ is a constant depending on d, κ, βt(0), and Dγ,0. Given that (102) holds
we can conclude that Cγ > 0. According to (103), domain Ωγ contains the following
set:

{x0 ∈ R
n, z0 ∈ R

m| h(z0) > Dz ∈ R+, ‖x0‖A ≤ CγDz}.

Consider the following domain: Ωx,γ = {x0 ∈ R
n| ‖x0‖A ≤ CγDz}. Clearly,

it contains a point x0,1 ∈ R
n : ‖x0,1‖A =

CγDz

2 . For the point x0,1 and for all

ε1 ∈ R
n : ‖ε1‖ ≤ CγDz

4 we have that ‖x0,1 + ε1‖A = infq∈A ‖x0,1 + ε1 − q‖ ≤
infq∈A{‖x0,1−q‖+‖ε1‖} ≤ 3CγDz

4 . On the other hand, ‖x0,1 + ε1‖A = infq∈A ‖x0,1+

ε1 − q‖ ≥ infq∈A{‖x0,1 − q‖ − ‖ε1‖} ≥ CγDz

4 . This implies that there exists a set of

points x0,2 = x0,1 + ε1 ∈ R
n: ‖x0,1 − x0,2‖ ≤ CγDz

4 , x0,2 /∈ A, ‖x0,2‖A ≤ CγDz.
Consider now the following domain: Ωz,γ = {z0 ∈ R

m| h(z0) > Dz}. Let us pick
z0,1 ∈ Ωz,γ : h(z0,1) = 2Dz. Because h(·) is continuous we have that

∀ ε > 0, ∃ δ > 0 : ‖z0,1 − z0,2‖ < δ ⇒ |h(z0,1) − h(z0,2)| < ε.

Let ε = Dz; then −Dz < h(z0,1) − h(z0,2) < Dz and therefore h(z0,2) > Dz. Hence
there exists a set of points z0,2 ∈ R

m: ‖z0,1 − z0,2‖ < δ, z0,2 ∈ Ωz,γ .
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Consider the following set:

Ωxz,γ =

{
x′ ∈ R

n, z′ ∈ R
m| ‖x0,1 − x′‖2 + ‖z0,1 − z′‖2 ≤ r2, r = min

{
δ,
CγDz

4

}}
.

For all x0, z0 ∈ Ωxz,γ we have that x0 ∈ Ωx,γ , z0 ∈ Ωz,γ . Hence inequality (103)
holds, and x0 ⊕ z0 ∈ Ωγ . The volume of the set Ωxz,γ is defined by the volume of the
interior of a sphere in R

n+m with nonzero radius. Thus the volume of Ωγ ⊃ Ωxz,γ is
also nonzero.

A.7. Proof of Corollary 11. Let λ(τ, λ0) be a solution of system (51). Con-
sider it as a function of variable τ . Let us pick some monotone, strictly increasing
function σ such that the following holds:

τ = σ(t), σ : R+ → R+.

Given that η(Ωλ) is dense in Ωθ, for any θ ∈ Ωθ there always exists a vector λθ ∈ Ωλ

such that η(λθ) = θ + εθ, where ‖εθ‖ is arbitrarily small. Furthermore, λ(τ) is dense
in Ωλ, and hence there is a point λ∗ = λ(τ∗,λ0) which is arbitrarily close to λθ.
Consider the following difference:

f(ξ(t),θ) − f(ξ(t), θ̂) = f(ξ(t),θ) − f(ξ(t),η(λ∗)) + f(ξ,η(λ∗)) − f(ξ,η(λ(σ(t)))).

The function f(·) is locally bounded and η(·) is Lipschitz, and then

‖f(ξ,θ) − f(ξ,η(λ∗))‖ ≤ Df‖εθ‖ + Δf = Δθ + Δf ,

where Δθ is arbitrarily small. Hence

‖f(ξ,η(λ∗)) − f(ξ,η(λ(σ(t))))‖ ≤ Df‖η(λ∗) − η(λ(σ(t)))‖ + Δf + Δθ

≤ Df ·Dη‖λ∗ − λ(σ(t))‖ + Δf + Δθ.
(104)

Noticing that λ∗ = λ(τ∗,λ0) = λ(σ(t∗),λ0) and taking into account the Poisson
stability of (51), we can always choose λ∗(σ∗,λ0) such that σ∗ > σ(t0) = τ0 for any
τ0 ∈ R+. Hence, according to (104) the following estimate holds:

‖f(ξ,η(λ∗)) − f(ξ,η(λ(σ(t))))‖ ≤ Df ·Dη‖
∫ σ∗

σ(t)

S(λ(σ(τ)))dτ‖ + Δf + Δθ

≤ Df ·Dη · max
λ∈Ωλ

‖S(λ)‖|σ∗ − σ(t)| = D · |σ∗ − σ(t)| + Δf + Δθ,

D = Df ·Dη · max
λ∈Ωλ

‖S(λ)‖.

(105)

Denoting u(t) = f(ξ(t),θ) − f(ξ(t), θ̂) + ε(t) we can now conclude that

‖u(t)‖ ≤ Δε + Δf + ‖f(ξ(t),θ) − f(ξ(t),η(λ∗))‖ + D · |σ∗ − σ(t)|
≤ Δε + 2Δf + Δθ + Df‖θ − η(λ∗)‖ + D · |σ∗ − σ(t)|.

(106)

Notice that due to the denseness of λ(t,λ0) in Ωλ it is always possible to choose λ∗

such that

Df‖θ − η(λ∗)‖ = Df‖η(λθ) − η(λ∗)‖ ≤ DfDη‖λθ − η(λ∗)‖ ≤ Δλ.
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Hence, according to (106), we have

‖u(t)‖∞,[t0,t] ≤ 2Δf + Δε + δ + D · ‖σ∗ − σ(t)‖∞,[t0,t],

where the term δ > Δθ + Δλ can be made arbitrarily small.
Therefore Assumption 3 implies that the following inequality holds:

(107) ‖x(t)‖AΔ(M)
≤ β(t− t0) ‖x(t0)‖AΔ(M)

+ c · D · ‖σ∗ − σ(t)‖∞,[t0,t].

Let us now define σ(t) as follows:

(108) σ(t) =

∫ t

t0

γ ‖ψ(x(τ))‖AΔ(M)
dτ.

Moreover, let us introduce the following notation:

h(t) = σ∗ − σ(t) = σ∗ −
∫ t

t0

γ ‖ψ(x(τ))‖AΔ(M)
dτ ;

then for all t′, t ≥ t0, t ≥ t′ we have that

h(t′) − h(t) =

∫ t

t′
γ ‖ψ(x(τ))‖AΔ(M)

dτ.

Taking into account (104), (105), equality

∂λ(σ(t),λ0)

dt
=

∂σ(t)

dt
S(λ(σ(t),λ0)) = γ ‖ψ(x(τ))‖AΔ(M)

S(λ(σ(t),λ0)),

and (107), and denoting Dλ = cD, we can conclude that the following holds along the
trajectories of (52):

‖x(t)‖AΔ(M)
≤ β(t− t0) ‖x(t0)‖AΔ(M)

+ Dλ‖h(τ)‖∞,[t0,t],

h(t0) − h(t) =

∫ t

t0

γ ‖ψ(x(τ))‖AΔ(M)
dτ.

(109)

Hence, according to Corollary 8, the limit relation (54) holds for all |h(t0)|, ‖x(t0)‖AΔ(M)

which belong to the domain

Ωγ : γ ≤
(
β−1
t

(
d

κ

))−1
κ− 1

κ

× h(t0)

βt(0) ‖x(t0)‖AΔ+δ
+ βt(0) ·Dλ · |h(t0)|

(
1 + κ

1−d

)
+ Dλ|h(t0)|

for some d < 1, κ > 1. Notice, however, that ‖x(t)‖AΔ+δ
is always bounded, as f(·)

is Lipschitz in θ and both θ and θ̂ are bounded (η(·) is Lipschitz and λ(t,λ0) is
bounded according to assumptions of the corollary). Moreover, due to the Poisson
stability of (51) it is always possible to choose a point λ∗ such that h(t0) = σ∗ is
arbitrarily large. Hence the choice of γ in (109), as (53) suffices to ensure that h(t) is
bounded. Moreover, it follows that h(t) converges to a limit as t → ∞. This implies
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that γ
∫ t

t0
‖x(τ)‖AΔ(M)

also converges as t → ∞ and, consequently, λ(t,λ0) converges

to some λ′ ∈ Ωλ. Hence the following holds:

lim
t→∞

ˆθ(t) = θ′

for some θ′ ∈ Ωθ. According to the corollary conditions, system (50) has steady-state

characteristics with respect to θ̂. Then, in the same way as in the proof of Lemma 6,
we can show that (54) holds.
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