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Abstract

We propose a new geodesic based algorithm for fiber tracking in diffusion tensor imaging data. Our al-

gorithm computes the multi-valued solutions from the Euler-Lagrange form of the geodesic equations.

Compared to other geodesic based approaches, multi-valued solutions at each grid point are computed

rather than just computing the viscosity solution. This allows us to compute fibers in a region with sharp

orientation, or when the correct physical solution is not the fiber computed from the first arrival time. Com-

pared to the classical stream-line approach, our method is less sensitive to noise, since the complete tensor

is used. We also compare our algorithm with the Hamilton-Jacobi equation (HJ) based approach. We show

that in the cases where U-shaped bundles appear, our algorithm can capture the underlying fiber structure

while other approaches may fail. The results for synthetic and real data are shown for both methods.

Keywords: Geodesic, Diffusion tensor images, Fiber tracking, Hamilton-Jacobi equation, Euler-Lagrange

equations.

1. Introduction

Diffusion tensor imaging (DTI) is the only non-invasive technique that allows the reconstruction of brain

white matter bundles [1, 2]. Due to the fibrous structure of white matter, diffusion of water molecules is

dominant in the direction of the fibers. Diffusion and its directional variation can be measured by diffu-

sion weighed magnetic resonance imaging(DW-MRI). By acquiring DW images in at least six gradient

directions, it is possible to estimate a 3 × 3 symmetric matrix, the so-called diffusion tensor [1, 3]. The

eigenvector corresponding to the largest eigenvalue of these tensors is considered to point in the direction

of fiber tracts. Numerous algorithms have been introduced for reconstructing the fibrous structure from

DTI. In the classic fiber tracking algorithm, the fibers are estimated by using the principal direction of the

diffusion tensor. Here, fiber tracking stops if there is a sharp turn in the trajectory or when the fiber enters a

region of low anisotropy, where the main eigenvector cannot be clearly identified. This can either be due to

noise, or to the presence of crossing fibers. Furthermore, these methods are based on local characteristics

and therefore sensitive to noise.

A possible solution to resolve these limitations of classic fiber tracking, is to apply more global ap-

proaches such as geodesic based algorithms [4, 5, 6, 7]. These techniques are based on the assumption

that fibers follow the most efficient diffusion propagation paths. A Riemannian manifold is defined using

as metric the inverse of the diffusion tensor. Paths in this manifold are shorter if the diffusion is larger

along that path. Therefore geodesics (i.e., shorter paths) in this manifold follow the most efficient diffusion

paths. The geodesics are often solved by using the stationary Hamilton-Jacobi equation (HJ). Equidistant

fronts are described from a certain initial point. The propagation speed of the fronts at each point of the

space is defined as a function of the local speed. Parker et al. [4] presented similar approaches where the
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local speed was based on the combination of the normal vector and the tensor dominant eigenvector which

defined the front propagation. This approach is prone to incorrect propagation in anisotropic domains. In

recent publications [5, 6, 8], front propagation inside anisotropic domains has been considered, which is

suitable for oriented domains . The propagation speed of the front is given by the diffusivity rate in the

normal direction of the front; the fibers are extracted by back tracing the characteristics of the front.

One characteristic of solving the HJ-equation is that it gives only a single-valued viscosity solution

corresponding to the minimizer of the length functional. It is also well known that the solution of the HJ-

equation can develop discontinuities in the gradient space. These discontinuities occur when the correct

solution becomes multi-valued. Therefore, developing an algorithm that can tackle these short comings

becomes relevant. Parker et al. [9] show that some structures (e.g., Broca and Wernicke) have multiple path

connections. Moreover, Jbabdi et al. [8] show that U-shaped fibers corresponding to the short association

tracts cannot be captured by HJ-based algorithms.

In order to understand better the problem occur in HJ approach we illustrate a simple sketch that greatly

can describe the shortcuts; figure 1. Generally, in geodesic approaches the Riemannian length is minimized.

Using the inverse of the diffusion tensor leads the front propagate along the direction where the diffusion

is higher. This can give the correct fiber if the anisotropic profile is nicely defined from the rest of the

background; e.g. figure 1a. But in realistic examples usually this will not happen and in this case the two

given points a and b can connect with the shortcut rather than the true fiber tracts. It is because considering

the geodesic connecting to given points only as the function of space, then the geodesic will be a unique

path that connecting the two given points. However, in the case when we have the directional domain; e.g.

DTI space, geodesics also can be considered as a unique pathways connecting two given point with the

given direction.

a b

Figure 1: Comparison between geodesics in Riemannian and Euclidean space connecting a and b.

Recently, Sepasian et al. [10, 11] presented a ray-tracing based algorithm for computing geodesics in

an anisotropic domain. This approach can capture multi-valued geodesics connecting two given points by

considering the geodesics as the function of position and direction. Moreover, it is based on the Euler-

Lagrange (EL) equations, and therefore local changes in the geodesic can be accounted for. However,

in both papers, only synthetic data has been considered. We extend this method to 3D and compare our

results with compatible numerical solution of HJ-equation. We make an initial evaluation of the methods on

synthetic tensor fields and human diffusion tensor data. For the HJ approach, we use directly the stationary

HJ-equation corresponding to the length functional minimizing the diffusivity rate along the geodesic. To

solve this PDE we propose to apply iterative fast sweeping which is faster than other proposed algorithms

such as fast marching. Fast sweeping is also more suitable for oriented domains [6, 12]. Once all geodesics

are computed, one can filter out weak connections, using existing connectivity measures [10, 13].

In the following we first describe different mathematical models for computing geodesics and their con-

nections to diffusion tensor images. Later, we propose the numerical methods for solving the respective

equations. At last we present results for realistic synthetic data and human brain DTI.

2. Mathematical Models

As mentioned in Section 1, we assume that fiber tracts coincide with geodesics in the Riemannian man-

ifold defined using the inverse of the diffusion tensor as metric. The intuition behind this assumption is

that water molecules move freely along fiber tracts, and their movement is restricted in the perpendicular

direction. Therefore, it is assumed that the fiber connecting two points follows the most efficient diffusion

path for water molecules. We are searching for a path that maximizes diffusion. This can be achieved by

inverting the metric that makes the largest eigenvalue become the smallest one. Consequently, the geodesic
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as a function of this metric represents the fibers [14]. In order to construct the geodesics, two different

classes of governing equations can be derived. In this section, first we present the Euler-Lagrange(EL)

equation for a specific metric. Next, we formulate the corresponding Hamilton-Jacobi(HJ) equation and its

relation to EL equation.

Consider a bounded curve C, with parametrization x = χ(τ), a 6 τ 6 b. A geodesic between two points

χ(a) and χ(b) is the smooth curve whose length is the minimum of all possible lengths. In the presentation

that follows we use the Einstein notation, i.e., we sum over repeated indices, in the upper (superscript) and

in the lower (subscript) position. Introducing the metric ds2
= gαβdxαdxβ, the length of C is given by

J[χ] =

∫

C

ds =

∫ b

a

(

gαβ(χ(τ)) χ̇α(τ)χ̇β(τ)
)1/2

dτ, (1)

where G = (gαβ) is the inverse of the diffusion tensor D, i.e., G = D−1. Therefore, (gαβ) only depends on x,

and is symmetric positive definite. In the following we use the short hand notation ẋα = χ̇α(τ).

From calculus of variations, we know that the necessary condition for χ(τ) to minimize J[χ] is the set

of Euler-Lagrange equation which lead [15]

∂L

∂xα
−

d

dτ

(

∂L

∂ẋα

)

= 0, (2)

where L = L(x, ẋ) is the Lagrangian corresponding to (1) and is given by

L(x, ẋ) =
(

gαβ(x)ẋα ẋβ
)1/2
. (3)

The required derivatives of L are given by

∂L

∂xα
=

1

2L

∂gβγ

∂xα
ẋβ ẋγ,

∂L

∂ẋα
=

1

L
gβα ẋβ.

Next we take for τ the arc length, i.e., if L = 1 then dL
dτ
= 0 [16]. Substituting the derivatives above in

(2), we obtain,

gαβ ẍ
β
+ [βγ, α]ẋβ ẋγ = 0, (4)

where [βγ, α] is the Christoffel symbol of the first kind, given by,

[βγ, α] =
1

2

(

∂gαβ

∂xγ
+
∂gαγ

∂xβ
−
∂gβγ

∂xα

)

; (5)

see [17, 15]. Multiplying (4) with the inverse of the metric G−1
= (gαβ), we find

ẍα + Γαβγ ẋ
β ẋγ = 0, (6)

where Γα
βγ

is the Christoffel symbol of the second kind, defined by

Γ
α
βγ = gαδ[βγ, δ]. (7)

Consider the functional that minimizes the length of all curves joining χ(a) and χ(t)

T (x, t) = min

∫ t

a

L(χ(τ), χ̇(τ))dτ, (8)

with x = χ(t) and L given in (3), i.e., the upper bound is variable.

The geodesic connecting χ(a) with χ(t) can be determined from the Hamilton-Jacobi equation, given by

[18]

H

(

x,
∂T

∂x

)

= 1, (9)

where [18, 19]

H2(x, p) = gαβ(x)pαpβ pα := gαβ(x)ẋβ, (10)
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With this choice for the Hamitonian we obtain the anisotropic eikonal equation

F(xα, qα) = gαβ
∂T

∂xα
∂T

∂xβ
− 1 = 0 q =

∂T

∂xα
. (11)

We can show that the first order PDE (11) is equivalent to the Charpit’s system of equations [20], i.e.,

ẋα =
∂F

∂qα
= gαβqβ, (12a)

q̇α = −
∂F

∂xα
= −

1

2

∂gβγ

∂xα
qβqγ, (12b)

Ṫ = qα
∂F

∂qα
= gαβqαqβ. (12c)

This 7-dimensional system of ODEs describes the solution of (11). Here (12a) and (12b) are the canonical

form for EL equations.

The solution of the HJ equation may develop multi-valued solutions when two fronts collide, i.e., such as

focus points, caustics and discontinuities in the gradient field. Those regions are called shocks. Therefore,

the viscosity solution is needed to ensure the existence and uniqueness of the solution to equation (11);

see e.g., Mantegazza and Mennucci [21]. However, using the viscosity solution will not ensure that the

solution we obtain is the real physically meaningful solution [22]. In fact, we will see in Section 5 that the

solutions we obtain are not always the desired ones.

In DTI fiber tracking, different methods have been derived based on front propagation in the anisotropic

fields using the HJ-equation. Jackowski et al. [6] introduced the Hamiltonian that minimizes conformal

energy rather than computing the geodesics [16]. The reason is basically because the Hamiltonian depends

on the diffusion tensor rather than its inverse. Since our main focus is on geodesic based minimization

approach we turn our focus to this class of methods. Another well-known approach is presented by Parker

et al. [4] and Lenglet et al. [23]. In these publications they derived the time dependent form of HJ equation

by minimizing the energy functional. It is more convenient and less computationally expensive to model

our problem with the steady HJ-equation.

Note that equation (11) is obtained by means of a variational formulation that considers the entire domain

and complete data to calculate the optimal curves. The resulting optimal paths will be those that globally

minimize the cost, thus obtaining those minimizing the diffusion along the trajectory. This method is a

global minimization approach and thereby more robust to noise than more local based methods and can

connect the initial point to any point inside the domain. However, Jbabdi et al. [8] showed that the choice

of metric and the numerical method can result in shortcuts if tensors are not sharp enough.

Sepasian et al. [10, 11] introduced a new algorithm based on the ray-tracing method for geodesic fiber

tracking. In this approach all arrival times of the fronts are considered rather than only fixing the first

arrival time at each grid points. The major advantage of this approach is the capability of capturing possible

multi-path connections between two given points. However, these papers by Sepasian et al. were presented

only for unrealistic synthetic data fields. The motivation of this paper is to extend and evaluate a similar

algorithm for capturing the multi-valued geodesic for 3D synthetic data and human brain DTI.

3. Numerical Methods

In this section we focus on constructing numerical schemes for computing numerically the geodesics

using geodesic equations (6) and HJ-equation (11). First, we present the so-called ray-tracing method for

reconstructing fiber tracts in a 3D Riemannian space. Subsequently, we explain the numerical discritization

and algorithm for computing the solution of the HJ equation.

3.1. Ray Tracing

A geodesic connecting a pair of points on a Riemannian manifold is minimizing the length functional

(1). Let x = (x1, x2, x3)⊤ be a point on a geodesic. As we showed in Section 2, the minimizer of (1) satisfies
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the system of three second order ODEs (6) with so-called Christoffel symbols defined in (5) and (7). Let

us introduce uγ(τ) := ẋγ(τ) for γ = 1, 2, 3, then we can rewrite system (6) as follows

ẋα = uα,

u̇α = −Γαβγu
βuγ. (13)

Consider a point (x1(0), x2(0), x3(0)) as the given initial point in the domain and (u1(0), u2(0), u3(0)) as

initial direction. We compute the solution to (13) for the given initial position and multiple initial directions

using sophisticated ODE solvers, such as the fourth order explicit Runge-Kutta method. This gives us a set

of geodesics connecting the given initial point to some points on the boundary.

The computational domain is discretized uniformly with grid size h and grid points xi jk = (x1
i
, x2

j
, x3

k
) =

h(i, j, k) for i = 0, 2, 3, . . . ,N − 1, where N is number of grid points in each spatial direction. For simplicity

we take the number of grid points equal in all directions. We assign to each grid point with a 3 × 3 tensor

Gi jk = D−1
i jk

.

We approximate the derivatives of gαβ at each grid point by the standard second order central difference

scheme, i.e.,
∂gαβ

∂x1
(x1

i , x
2
j , x

3
k) ≈

1

2h

(

gαβ(x1
i+1, x

2
j , x

3
k) − gαβ(x1

i−1, x
2
j , x

3
k)
)

. (14)

Second order one-sided differences are applied when the grid points are situated on the boundary, i.e,

∂gαβ

∂x1
(x1

0, x
2
j , x

3
k) ≈ (15)

1

2h

(

−3gαβ(x1
0, x

2
j , x

3
k) + 4gαβ(x1

1, x
2
j , x

3
k) − gαβ(x1

2, x
2
j , x

3
k)
)

,

∂gαβ

∂x1
(x1

N−1, x
2
j , x

3
k) ≈ (16)

1

2h

(

3gαβ(x1
N−1, x

2
j , x

3
k) − 4gαβ(x1

N−2, x
2
j , x

3
k) + gαβ(x1

N−3, x
2
j , x

3
k)
)

.

Note that similar expressions hold for derivatives with respect to x2 and x3. Solving the ODE system gives

the solution at points that are not necessarily located in the grid points. Therefore, the value of the metric

and its derivatives are obtained by applying trilinear interpolation at any grid point at the domain where

the value of metric is not available. Initial vectors are uniformly distributed using the vertices of regular

symmetrical polyhedra [24]. The integration of geodesics continues until the geodesic hits the boundary of

the computational domain.

3.2. Fast Sweeping

To discretize a general Hamiltonian H(x, p) several techniques have been developed for both structured

and unstructured meshes. In this paper we use the Lax-Friedrichs (LF) numerical discretization, proposed

by Kao et al. in [25], which satisfies the required monotonicity and consistency conditions. The major

motivation to apply the LF scheme is that an explicit solution formula will always be possible to derive

without any assumption on the Hamiltonian.

In order to compute the solution of the descretized eikonal equation, a suitable numerical method needs

to be applied. Lenglet et al. [23] and Jbabdi et al. [8] apply fast marching schemes used to estimate

geodesics and the viscosity solution of the time-dependent HJ equation. Jackowski et al. [6] apply the fast

sweeping scheme to estimate the viscosity solution of the stationary HJ-equation. In this approach short tra-

jectories that minimize some conformal energy, corresponding to the largest diffusion along the trajectories,

is estimated rather than the geodesics. Kao et al. [12] show that for computing the optimized trajectories

using the fast sweeping scheme, regardless of discritization, gives the cheapest computational complexity.

Therefore, in this paper we also focus on the fast sweeping scheme for computing the geodesics.

We start with the derivation of an explicit formula for the 3-dimensional eikonal equation (11). First we

introduce the difference approximations

δx1 Ti jk :=
1

2h

(

Ti+1, j,k − Ti−1, j,k

)

, (17)

δx1 x1 Ti jk :=
1

h2

(

Ti+1, j,k − 2Ti, j,k + Ti−1, j,k

)

,
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and the averaging operator

µx1 Ti jk =
1

2

(

Ti+1, j,k + Ti−1, j,k

)

, (18)

and likewise for operators in x2 and x3. At each mesh point xi jk we have the following numerical approxi-

mation

H
(

xi jk, δx1 Ti jk, δx2 Ti jk, δx3 Ti jk

)

− (19)

1

2
h
(

σ1δx1 x1 Ti jk + σ2δx2 x2 Ti jk + σ3δx3 x3 Ti jk

)

= 1.

Notice that the only unknown in the equation above is Ti jk, which can be isolated to obtain the iterative

solver

T n+1
i jk = c

(

1 − H(xi jk, δx1 Ti jk, δx2 Ti jk, δx3 Ti jk)
)

(20)

+
1

2h
cTi jk (σ1µx1 + σ2µx2 + σ3µx3 ) ,

where,

c =
h

σ1 + σ2 + σ3

.

Here σ1, σ2 and σ3 are the artificial viscosities satisfying,

σ1 ≥ max

∣

∣

∣

∣

∣

∂H

∂pα

∣

∣

∣

∣

∣

= max
∣

∣

∣gαβpβ
∣

∣

∣ .

The iteration indices on Ti jk in the right hand side of formula (20) are omitted on purpose, since depending

on the direction of the sweeping, the value will correspond to the previous calculation, or the current

one. We can show that the monotonicity and convergence of the method is dependent on the appropriate

choice of the viscosity terms σ and the grid size of the computational domain. To ensure monotonicity

of the scheme, we want to keep the viscosity term as small as possible. There are different studies on

the appropriate choice of value for viscosity terms and they show that there is a direct relation between

convergence rate of the solution and viscosity term. In this paper we choose these values to be 1. More

details about the convergence and accuracy of LF scheme is studied by authors [12, 26].

We solve the discretized system (20) using the discretized fast sweeping method. Fast sweeping relies on

the idea of using central finite differences and Gauss-Seidel iteration with alternating sweeping directions.

Dividing the characteristics into a finite number of groups according to their direction, the fast sweeping

method follows the causality along characteristics. This means that the newly computed value, Ti jk only

depends on the past values in grid points located in the direction of the characteristics of (11) through xi jk.

As the method relies on the fact that by sweeping in different directions, the direction of the characteristic

will be eventually followed, there is no need for sorting, in contrast to the fast marching method. The

computational complexity of the algorithm is O(N3) for a total of N grid points in each direction and the

number of iterations is independent of the grid size [27, 28, 29].

The fast sweeping algorithm consists of the following steps: initialization, alternating sweepings and

enforcing boundary conditions.

Initialization. We assign the exact boundary condition to T 0
i jk

at the boundary and keep these values fixed

during the iterations. At the interior points we set T 0
i jk
= M with M larger than the maximum of the true

solutions. These values will be updated in the process of iterations.

Gauss-Seidel Alternating Sweepings. At iteration n + 1, calculate T n+1
i jk

that solves equation (20). At all

grid points xi jk in the internal domain we carry out the Gauss-Seidel iteration except in those that have a

local converged solution value. Recall that this process has to be done in alternating sweeping directions,

i.e., opposite diagonal directions.

6



Enforcing Boundary Conditions. After each sweep, we enforce boundary conditions to ensure that char-

acteristics flow outside the domain and error cannot propagate into the domain.

Convergence Test. After all the sweepings are performed, check whether:

‖ T n+1 − T n ‖L1
≤ ǫ. (21)

where ǫ > 0 is the convergence tolerance.

The computational domain of the method is bounded. Therefore, in order to avoid propagation of errors

from the boundary to the interior domain, we have to impose special boundary condition. Therefore, we

have to specify carefully the values of points outside the computational domain, otherwise huge errors

may be introduced and propagate into the computational domain. To tackle this problem, Kao et al. [25]

propose the following condition in a two dimensional case easily extendable to the higher dimension

{

unew
0, j,k
= min (max( 2u1, j,k − u2, j,k, u2, j,k), uold

0, j,k
),

unew
N−1, j,k

= min (max( 2uN−2, j,k − uN−3, j,k, uN−3, j,k), uold
N−1, j,k

).

Note that the same condition can simply be written for other boundaries.

The optimal paths for the system described by the Hamiltonian, can be obtained by solving the Charpit’s

equations (12). Notice, that the momenta can be computed from the viscosity solution. For this we use the

central difference scheme. one can construct the solution for the PDE (11), by integrating each one of these

equations along t.

4. Pre and Post Processing

In the previous sections we described how to compute the geodesics in general. In the following we

focus on pre and post processing suitable for our specific algorithms.

Pre-processing. All geodesic based methods allow the geodesics to deviate from the direction of diffusion.

This is an advantage because they become less sensitive to noise, but at the same time the geodesics can

deviate too much if diffusion profiles are not sharp. In order to deal with this problem, Descoteaux et al.

[30] propose tensor sharpening by raising tensors to a certain power, i.e. where

Dsharp = Dn.

Where D and Dsharp are the diffusion tensor and sharpened tensor, respectively. This results diminishing

the isotropic part and enhancing the dominant eigenvectors. However, powering the tensor can introduce

other issues such as enhancing noise. The proper choice of the exponent n is highly depend on the data and

its orientation and different values are proposed [30, 31].

Since the assessment of the anatomical correctness of the fiber tracts using sharpening in out of the

scope of this paper, we leave real data tensors unchanged. Note that to be fair for evaluating all methods

we present in this paper, we apply the tensor sharpening to all tensors inside the domain and no masking is

applied.

Post-processing. Once all geodesics are computed, depending on the application and algorithm, two dif-

ferent post-processing approaches can be desirable.

• The first post-processing approach is applicable for the ray-tracing algorithm. It refers to applying the

two-point ray tracing algorithm proposed in [32] and extended to 3D Riemannian space by Sepasian

et al. [10] for computing the multi-valued geodesics between two given points inside the domain.

First the geodesic equation are solved for these two given points as initial locations and discrete set

of initial directions. This gives two sets of geodesics starting at these two points and ending at the

boundary. The post-process of these solutions gives the geodesics between the two points [10, 33].

Note that finding the exact pathway connecting two given point is not valuable and realistic for DTI

fiber-tracking. Therefore, in this paper we will not focus on this postprocessing.
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• The second post-processing approach for ray-tracing algorithm is to apply region-region fiber-

tracking. This can be done by selecting the regions of interests and filter all geodesics that pass

through both selected regions. Note that geodesics are computed until they meet one of the bound-

aries. In order to only show the fiber connecting two given region we apply the line-plane intersection.

This allows to stop the geodesics once they meet one of the selected regions.

• The last post-processing method is to measure the strength of geodesics connecting two points and

can be applied for both algorithms. The connectivity measure is used for finding a suitable trajectory

corresponding best to real fiber bundles. We apply these measures in order to discard the geodesics,

which are not holding strong connections between points in the domain. Since the fibers correspond

to the geodesics connecting a pair of points in the Riemannian manifold, the most reasonable connec-

tivity measure is the one that minimizes trajectories in a Riemannian manifold.

In recent papers, Astola et al. [13] and Parker et al. [7] represent the connectivity measure as ratio

of lengths given by the Euclidean and Riemannian metric tensors, respectively. This measure can be

considered as a measure for the connectivity strength of a geodesic. The proposed measure reads

m[χ] =

∫ b

a
|χ̇(τ)|dτ

J[χ]
. (22)

Note that locally, in anisotropic voxels, this measure obtains its maximum in the direction of the

eigenvector corresponding to the largest eigenvalue; see Astola et al. [13].

5. Results

In this section we compute geodesics for a discrete three-dimensional synthetic tensor field and real

human brain DTI. We present the result of the ray-tracing algorithm and our implementation of the fast-

sweeping method.

5.1. Synthetic Data

We evaluate both geodesic methods using simulated tensor data. We want to demonstrate that our pro-

posed ray-tracing method is superior to the fast sweeping method for fiber bundles with high curvature,

like U-shaped fiber bundles.

Isotropic tensors are imposed as background, excluding the influence of noise. In order to mimic real DTI

acquisition, Rician noise is added to a 20×20×6 synthetic image containing 1×1×1 mm voxels. To compute

Rician noise, the signal attenuation is obtained using the inverse of the Stejskal-Tanner relation, see [34].

The noise is added to the noiseless diffusion tensors in each direction with signal to noise ratio(SNR) 15.3

Let us define the curved region as R1 and the background as R2, then tensors belonging to each region

are computed with eigenvalues, λR1 ∼ [3, 17, 17] × 10−4 mm2/s, and λR2 ∼ [7, 7, 7] × 10−4 mm2/s. For

pre-processing of the synthetic data experiments we choose the tensor sharpening factor n = 2.

Figure 2 shows the results for the U-shaped fiber obtained from the HJ-equation with different choices of

end points in 2a and 2b, and from the ray-tracing algorithm 2c. The background is color coded based on the

fractional anisotropy (FA) and fiber tracts are color coded using the dominant direction of the tensors. The

initial points and seed points are visualized by black circles. The arrows in all images show the direction of

fiber reconstruction. We see in ray tracing figure the two possible geodesics starting from the given initial

point and meet at the same point at the other side of the U-fiber. Note that applying the connectivity measure

(22) gives the higher value for the fiber following the U-fiber. Figures 2a and 2b display the problem of

shortcuts that can occur in the HJ approach. Lenglet et al. [23] relate this error to the choice of metric as

the inverse of the diffusion tensor. We show in figure 2c, with the same choice of metric and minimizing the

same functional, that capturing the correct geodesic corresponding to the desired fiber bundle is feasible.

A heuristic explanation is that the viscosity solution obtained via fast sweeping only gives the solution

corresponding to the first arrival time. Since we apply no masking for defining the anisotropic region from

an isotopic background, in the cases with more complex structure like U fibers, the Riemannian length of

the wrong trajectory will win the cost of the front evolution resulting in the shortcut connecting the two
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Initial point
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(a)

Initial pointEnd points

(b)

Initial point

(c)

Figure 2: Geodesics computed by using the HJ-equation with different choices of end points (a,b) and the ray tracing algorithm (c). In

all cases the initial value is situated in the same point.

head of the U. The mathematical model for providing the geodesic equation, considers the local changes

inside the domain in ray racing better in comparison with HJ approach. This property has advantages and

disadvantages: at one hand, it makes EL approach still local compare to HJ approach and more prone to

noise sensitivities. On the other hand, thank to the same property, it gives us the possibility to capture

the correct trajectory, to use the whole tensor information and to not be restricted to the main diffusion

direction. However, as we mention and show in our results, here we only consider the classic ray-tracing

method. The problem of local minimization is tackled once the model changes to two-point ray tracing

introduced in [10, 22, 33].

In order to find the best corresponding fibreous structure, the geodesic is computed by shooting rays

from an initial point to all possible directions. Using the connectivity measure (22) we select the strongest

connection with the largest connectivity value. In figure (2)c, the largest connectivity measure belongs to

the fiber following the U-fiber. Note that in figure 2c the small distortions from the optimal shooting vector

still results in good approximations of the underlying fiber structure.

5.2. Real Data

We present a qualitative evaluation of the algorithms based on real data. The data set is acquired from a

healthy subject using a Philips scanner, with 128 × 128 × 66 voxels, with resolution 2 × 2 × 2mm, b-factor

of 1000s�mm−2 and 16 gradient directions.

To show the potential of the ray-tracing method for real data, we evaluate it for various well-known fiber

bundles including Corpus Callosum (CC) and Superior Longitudinal Fasciculus (SLF); see figure 3. In

these example the seed points are selected manually in the DTI space. Here we only trace the geodesics

in the direction of the main eigenvalue and small perturbation around the main eigenvector direction of

the seed point. The tracing is stopped after a limited time and fiber are selected using the connectivity

measurement (22). We see that fiber tracts constructed with our method in both region comply with the

known anatomy of the white matter [3].

One of the interesting regions with more complex shaped fibers is the area around the Thalamic Radiation

[35]. Figure 4 shows the result of the selected region obtained from stream-line method, fast sweeping and

ray tracing, respectively. The rational behind selecting the Thalamic Radiation is the less defined diffusion

directions in this region. Therefore, usually the tracts of interest are smaller or probably more entangled

than major bundles like CC. In figure 4 the seed points are selected manually. For all algorithms the seed

points are the same. Since the diffusivity is not well-defined in this region using stream-line method result

in cutted fiber tracts, see figure 4a. The threshold used as stopping criteria in streamline method is the FA

smaller than 0.3. We also apply the HJ approach and as we expect this method gives shortcuts as result

compare to ray tracing approach, see figure 4b. In figure 4c we present the ray-tracing result where the

shape is nicely followed. For 4b we perform the fast sweeping algorithm from the selected initial point. In

9



(a) (b)

Figure 3: Ray tracing fiber-tracking for Corpus Callosum (a) and Superior Longitudinal Fasciculus (b).

order to construct the fibers we backtrack the characteristics from the selected endpoints. Since there is no

ground truth in real data we present our results to the neuroanatomist to validate our findings. According to

her observation the result in figure 4c agrees well to what is expected and the region selected corresponds

with Thalamic Radiation.

(a) (b) (c)

Figure 4: Fiber-tracking for short connection fibers in Thalamic Radiation using Stream-line(a), Geodesic using HJ equation (b) and

Geodesic using ray-tracing method (c).

6. Conclusions and Future Work

In this paper, we have presented geodesic based methods for fiber tracking in diffusion tensor imaging.

We presented the Euler-Lagrange geodesic equations for three-dimensional Riemannian space and applied

the ray tracing method to compute the solution. This new algorithm allows us to have more control over

local orientation inside the domain and gives multi-valued solution. Alternatively, We also discussed a fast

sweeping algorithm as an example of the first arrival solvers to solve the the stationary form of HJ equation.

Compare to the fast marching method proposed in other publications for solving HJ equation, fast sweeping

has less computational costs and it is more suitable for oriented domains. However, the viscosity solution

to this equation is not always the correct physical solution because it corresponds to the first arrival time

only. This method and similar approaches are very robust to noise. However, they can produce nonphysical

solutions,e.g. shortcut. It can be either due to the computation of the only first arrival time or the choice

of the functional to be minimized. It is worthwhile to investigate the behavior of these class of methods
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using different functionals. Assume the cost for going through the correct fiber tract is the ratio between the

Riemannian and the Euclidean length of the trajectory, we show that in the HJ approach the fiber tracking

will collapse when the Euclidean and Riemannian lengths are proportional. Therefore, it is very interesting

to think about the functional that minimizes trajectories as not only the Riemannian length but also the

ratio between Riemannian and Euclidean lengths. However, in general, HJ based methods are suitable for

dealing with major fiber tracts and long associated fiber bundles.

Results for realistic synthetic data have been shown for both HJ based fiber tracking and our proposed

ray tracing algorithm. We show the potential of our method for capturing the correct tract, especially the

short associated fibers, i.e., U-shaped fibers.

The ray-tracing approach suffers from some drawbacks. This numerical scheme computes a finite num-

ber of rays; when these rays diverge, some regions will be visited by many rays and some by none. Con-

trolling the ray density to achieve roughly uniform sampling of the travel-time is feasible by using some

expensive interpolation, but is computationally expensive. The challenge is to devise an algorithm which

retains the efficiency of modern first arrival time solvers and at the same time capture all arrival times. As

an extension of this research, we are currently investigating the generalization of the ray-tracing algorithm

for fiber tacking to higher resolution DTI, such as high angular resolution diffusion imaging. Furthermore,

since fibers can be computed independently, the algorithm is highly suitable for parallel computations.
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