EINDHOVEN

I U/e UNIVERSITY OF
TECHNOLOGY

Test and debug features of the RTO7 chip

Citation for published version (APA):

Kaam, van, K. M. M., Vermeulen, H. G. H., & Bergveld, H. J. (2005). Test and debug features of the RTO7 chip.
In Proceedings of the IEEE International Test Conference, ITC 2005, 8 November 2005, Austin, Texas (pp. 12.1-
1/10). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/TEST.2005.1583985

DOI:
10.1109/TEST.2005.1583985

Document status and date:
Published: 01/01/2005

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/TEST.2005.1583985
https://doi.org/10.1109/TEST.2005.1583985
https://research.tue.nl/en/publications/86885dc0-d097-4e56-bfdd-9599a5fdb3b9

Test and Debug Features of the RTO7 Chip

Kees van Kaam

Bart Vermeulen

Henk Jan Bergveld

Philips Research Laboratories
High Tech Campus 5, 5656 AE Eindhoven
The Netherlands

{Kees.van.Kaam, Bart.Vermeulen, HenkJan.Bergveld} @philips.com

Abstract

The Philips RTO7 chip consists of a complete receive chain
from RF up to and including digital demodulation for
Bluetooth-like radio communication. This paper describes
both the implementation and verification of the test and de-
bug hardware for the digital core of the RTO7. The core-
based DfT and DfD flow of the RTO7 is presented. The
experimental results show that the RTO7 is both a fully
testable and debuggable chip. State dump analysis results
are also presented, showing that the state dumps obtained in
the application are 100% stable, and match the state dumps
made in simulation, and on the digital test system.

1 Introduction

In recent years, several standards for low-cost short-distance
wireless communication, such as Bluetooth, IEEE802.11x
and Zigbee have emerged. Systems that implement these
standards typically contain a transceiver component to en-
able wireless communication. The cost of these systems can
be reduced by either reducing the number of external com-
ponents and/or using a standard baseline IC process tech-
nology. The latter option takes advantage of the decreasing
feature sizes available in each successive CMOS generation.

The main goal of the RTO7 design team is to integrate
a Bluetooth-like receiver in a baseline CMOS process,
thereby integrating analog, Radio Frequency (RF), and dig-
ital modules on a single die. The chosen architecture for
the RTO7 chip is highly digitized, offering flexibility at low
power and low cost. The transceiver is designed for 2.4
GHz-band, Gaussian Frequency-Shift Keying (GFSK) ap-
plications. The specifications are derived from the Blue-
tooth standard. The digital block in the design performs fil-
tering and demodulation. To allow manufacturing test and
prototype silicon debug, this block had to be made fully
testable and debuggable. Testing the mixed-signal and RF
parts of the design is not covered in this paper.

This paper is organized as follows. The architecture of the
RTO7 chip, and particularly the digital filtering and demod-
ulation, is described in Section 2. In addition, this section

Paper 12.1

describes the test and debug requirements for the RTO7
chip. Section 3 gives an overview of prior work in the
field of Design-for-Testability (DfT) and Design-for-Debug
(DfD). The test and debug architecture used for the RTO7
chip is described in detail in Section 4. The DfT and DfD
insertion flow is the topic of Section 5. Our experimental
results and conclusions are presented in Sections 6 and 7
respectively.

2 The RTO7 chip architecture

A simplified block diagram of the RTO7 design is shown in
Figure 1.

Ia Id
e e
BPF RF Digital filtering Bits
+Impedance [— amplifiers ADC and t
matching & mixers demodulation ou
| e
Qa Od

Figure 1: Simplified diagram of the RTO7 design.

The RTO7 design contains three main modules: the RF
front-end, a high-resolution complex YA ADC and a dig-
ital module performing filtering and demodulation.

An external Band-Pass Filter (BPF) selects the 2.4 GHz-
band and performs impedance matching. The main compo-
nents in the RF front-end are two matched low noise ampli-
fiers and mixers. The signal received from the RF front-end
contains a complex data stream. The amplifiers and mixers
split this signal into two separate channels: Ia, and Qy. The
Ia channel contains the real part of the complex data stream
and the Qg channel the imaginary part. Furthermore the
front-end converts the RF input signal to a lower frequency
of 500 kHz. The high-resolution, complex XA ADC con-
verts the quadrature low frequency signals from the front-
end into noise-shaped bit streams, called Iy and Qq- The
digital module performs channel filtering, decimation (to re-
duce the sample rate), and demodulation. A complete and
detailed description of the receiver can be found in [1].

INTERNATIONAL TEST CONFERENCE 1

0-7803-9039-3/$20.00 © 2005 IEEE

Figure 2 shows a block diagram of the digital filter and de-
modulator.

8Mhz 056

NCO == Error | Offset freq.
signal | compensation

64Mhz

I [cic N L, | Col)
apc LfMer 1" Rotating | " | | vectoring | | Differen
“«alcc >comnc [Col0 CORDIC tiator
filter filter

Figure 2: Diagram of the digital filter and demodulator.

The I3 and Q bit streams from the ¥A ADC are sampled
at a clock frequency of 64 MHz. After filtering and deci-
mation in the Cascaded Integrator-Comb (CIC) filters, the
clock frequency in the remainder of the digital module is 8
Mhz. Both down-sampled signals are received by the ro-
tating COordinate Rotation DIgital Computing (CORDIC)
block. This block shifts the frequency of its input signals
from 500 kHz to 0 Hz. Furthermore, the rotating CORDIC
compensates for phase shifts in the input signal. The com-
pensation angle ¢ is provided by the Numeric Controlled
Oscillator (NCO). The output of the rotating CORDIC can
be approximated with good accuracy using only the main
impulse response Cy(t). Therefore the output signal of the
rotating CORDIC is filtered with filters matched to Cy (t) to
suppress white noise. The vectoring CORDIC calculates the
phase ¢ of the complex signal. This phase signal is differ-
entiated (d¢/dt) at the output of the vectoring CORDIC to
obtain the instantaneous frequency. The combination of the
vectoring CORDIC and phase differentiation forms a Fre-
quency Modulation (FM) demodulator. The last block is a
linear Decision-Feedback Equalizer (DFE). This yields a fi-
nal output bit stream that is 8 times over-sampled compared
to a 1 Mb/s symbol rate.

Due to differences in crystal frequencies of transmitters and
receivers in for example Bluetooth systems, a frequency off-
set typically will be present in the signal that needs to be
demodulated. This offset leads to a DC shift in the differen-
tiator’s output. Therefore, a frequency-compensation loop
including first-order filtering is used. The loop error signal
is added to a default frequency shift of -256, which is the
digital representation of the low frequency of 500 kHz, and
subsequently input to the NCO. This leads to a frequency
shift of the incoming signal to 0 Hz by the rotating CORDIC
as described above.

The RTO7 design has been realized in a 6-metal-layer 0.18-
pm standard CMOS process on a 10-{2cm substrate. The
core area of the chip is 3.5 mm?. The digital filter and de-
modulator covers 1.25 mm? of the total area. The digital
core consists of approximately 32k standard library cells of
which 9% is used for test and debug purposes. Due to the
decimation step, the digital core has two different clock do-

Paper 12.1

mains: 64 Mhz, and 8 Mhz. The die has been packaged in
a 48-pin LQFP plastic package. Apart from supply decou-
pling capacitances the only external components needed are
an antenna filter and impedance matching network, and a 64
MHz crystal.

To enable structural test for manufacturing defects, and to be
able to debug prototype silicon on the application board, the
design team decided to implement both Design-for-Test and
Design-for-Debug. In addition, to allow easy reuse of the
design, steps were taken to conform to existing core-based
design, test, and debug rules and guidelines.

3 Prior Work

The core-based test architecture used for the RTO7 chip fol-
lows company-internal guidelines, which have previously
been described in [2], [3], and [4]. This architecture closely
resembles the architecture currently under standardization
as IEEE 1500 [5]. The architecture combines the advan-
tages of isolating a core from its environment during test,
allowing high-coverage test, with the ease of integrating the
testable core in a larger SoC design. This approach requires
that the individual cores are wrapped for structural test, and
a test access mechanism is used to transport the test data to
and from the wrapped cores. To further enable easy re-use
of the RTO7 cores, we also followed (internal) design stan-
dards on IP reuse.

The core-based debug architecture used for the RTO7 chip
also follows company-internal guidelines that have previ-
ously been presented in [6]. This architecture allows creat-
ing state dumps via the IEEE 1149.1 Standard Test Access
Port (TAP) [7], while the chip is located on the application
board. The DfD hardware required to enable this usage con-
sists of three on-chip components; (1) for access to the inter-
nal scan chains, (2) for breakpoint control to freeze the state
of the chip at important points in time, and (3) for clock and
reset control to functionally reset the chip, stop the clocks,
and single-step individual clock domains. All three compo-
nents are controlled from the IEEE1149.1 TAP by adding
private instructions. Although already implemented on sev-
eral SoCs, we wanted to further develop and verify the full
automation of the DfD insertion using the RTO7 design.

To validate the chip design in silicon, we use the well-known
state dumping technique [6, 8, 9]. Several issues however
were anticipated with respect to the usage of state dumping
on chips with multiple clocks. In contrast to most published
chip designs that use state dumping techniques, the RTO7
chip uses multiple clock domains, and also features ana-
log components. Both have previously been shown to cause
non-deterministic state dumps [10, 11]. For the proper vali-
dation of the RTO7 silicon on its application board, we have

INTERNATIONAL TEST CONFERENCE 2

to eliminate all sources of state dump noise. In [10] the re-
moval of this ‘latch divergence’ as it was called, is done by
placing the microprocessor in a deterministic environment,
i.e. a digital tester. Statistical techniques are subsequently
used to filter out the state noise. We take a novel and com-
plementary approach, based on the work described in [11].
Our approach involves analyzing the design and its intended
environment at design time, eliminate as much state noise as
possible by design, and at run time utilize statistical meth-
ods.

4 DIT and DfD Hardware

4.1 Architecture Overview

The different RTO7 components for test and debug and their
hierarchy in the top-level are shown in Figure 3.

TAP Controller

Global TCB
Local TCB Local TCB
% Wrapper Chain Wrapper Chain %
o o
c [=
g CC-TPR]
:
° 2
c
@ o
Demodulator 1 Scan Chain
Debug shell Digital Controller
Test shell Test shell

Figure 3: Top-level DfT and DfD hierarchy and compo-
nents.

The top-level of the chip contains the boundary scan cells, a
TAP with controller, and two separate cores; the clock and
reset control core and the demodulator core. A global Test
Control Block (TCB) is used to provide the global test con-
trol, and each core contains a local TCB to provide dedi-
cated, local test control. Each TCB consists of a shift reg-
ister and an update register, which allows new control val-
ues to first be shifted in without changing the test control
outputs, and subsequently applied. The shift register is a
TAP data register, and is accessible from the TAP controller
through the PROGRAM_TCB instruction. This enables full
test control via the TAP.

The digital controller is wrapped with a test shell, contain-
ing a local TCB and a wrapper scan chain to isolate all core
inputs and outputs. This test shell is used for testing the in-
terconnections of the controller with the rest of the chip. The
controller itself contains a Clock Control Test Point Register

Paper 12.1

(CC-TPR), a scan chain, a functional clock and reset con-
trol module and a serial application settings register. The
CC-TPR [6] is used for debug clock control. It has a similar
design as a TCB and can be accessed via the TAP by using
the PROGRAM_DBG_CC instruction. The application set-
tings register is used to program the digital, analog and RF
parts of the RTO7 chip, and is accessible, both directly from
chip pins, or via the TAP using the PROGRAM_STATUS
instruction.

The demodulator is wrapped with test and debug shells. The
test shell contains a local TCB, and a wrapper scan chain.
This TCB and the wrapper scan chain have the same purpose
as for the controller. The debug shell for the demodulator al-
lows the concatenation of the different scan chains into one
single debug scan chain per clock domain. It contains two
TPRs; an Access Control TPR (AC-TPR) for controlling
the debug chain selection, and an Breakpoint Control TPR
(BC-TPR) to program and monitor the breakpoint modules.
These two TPRs can be accessed from the TAP using the
PROGRAM_DBG_AC, and PROGRAM_DBG_BC instruc-
tion respectively. There are five debug breakpoint modules
and three scan chains inside the demodulator core.

Due to the limited number of digital pins on the RTO7 chip,
we can only have four scan chains at the top-level. Two of
the scan chains in the demodulator core are directly con-
nected to the chip pins. The two remaining scan chains are
concatenated with the two scan chains in the digital con-
troller.

4.2 The Digital Controller Core

The digital controller core contains the blocks required for
on-chip clock and reset generation, including the DfT and
DfD for clock and reset control. An special application reg-
ister has been added to control the settings of the receiver.
A block diagram of this digital controller core is shown in
Figure 4.

The digital controller core receives a functional, 64 MHz
input clock from the analog front-end and a test clock from
the TAP. The clock generator and divider generate a § Mhz
clock signal, which is derived from the 64 Mhz clock, and
which are both synchronized to the rising edge of the active
low, functional reset signal. The functional 64 and 8 Mhz
output clock signals start with their rising edge when the
functional reset signal rises. A functional reset can be is-
sued from a chip pin, or from the TAP controller. The latter
is achieved through the DBG_RESET TAP instruction, and
is very useful during debugging. Both clock signals can be
gated by either setting the functional power down bit in the
application control register or by asserting the debug stop
clocks signal. The debug stop clocks signal is received from

INTERNATIONAL TEST CONFERENCE 3

the breakpoint modules in the demodulator core, and dis-
cussed in Section 4.3.1.

4.2.1 Clock control

The clock controller uses a CC-TPR, which was previously
described in [6]. This TPR is a fully testable and TAP-
programmable control and observe register. The CC-TPR
allows a user to program which of the two on-chip clock
domains is stopped on an internal breakpoints, and which
clock is activated on a subsequent debug scan. Clock con-
trol slices perform the actual gating, and allow switching
between the functional clock, the test clock, and the debug
clock. These slices are controlled from the CC-TPR and the
TCB. The test clock can also be gated, which provides the
option to suppress clock pulses in normal mode during test.
A possible use for this is to ensure proper data communica-
tion between multiple clock domains during test. For this
RTO7 design, this is however not strictly required, as all
transitions between the two on-chip clock domains in the de-
modulator have been made clock skew tolerant by inserting
anti-skew flipflops, also often referred to as lock-up latches,
on the clock domain crossings. .

Test and Debug Control

Internal
functional

Test mode —

reset

Input clock —} L 64 MHz
[functional
Clock r_. Clock clock
Test Generator ® Divider
s 8 MHz
Clock 1 [T functional
clock
Debug reset J clocks request
Digital & Analog Control
control bits
'I' Digital Controller
TCB TAP Chip Test Clock

Pins select

Figure 4: Digital controller block.

4.2.2 Reset control

The chip can be reset either by pulling the reset pin of the
chip low, or via the TAP. This latter option makes it much
easier to control the execution of the chip from the debug-
ger software, especially on an application board. We will
come back to this functionality in Section 6. Next to the two
clock signals, the clock generator also generates a new inter-
nal reset signal that is synchronized to the rising edge of the
8 MHz clock signal. This internal reset signal is routed to
the demodulator core, where it causes a synchronous reset.
Both the 8 MHz clock signal and the internal reset signal are
output on dedicated chip pins. These two outputs help deter-
mine whether the clock and reset generation is correct. The

Paper 12.1

flip-flops in the clock and reset controller core reset asyn-
chronously. A diagram of the clock and reset controller core
is shown in Figure 5.

TAP

Pas

Local TCB

TestRail bypass

From TAP

To TAP
Controller Geina l " Controller

TestRail | —————
In si 64 MHz Scan Chain 7SSO | TestRail
Out
Digital Controller e

Test Shell

Figure 5: Digital controller core with test shell.

The core has one scan chain and the CC-TPR. In test mode,
the CC-TPR is connected in series with the wrapper scan
chain. Several trade-off were made between the testabil-
ity of this core and the required number of wrapper cells.
First, the control signals for the application setting regis-
ter, which are connected to the TAP controller, are not iso-
lated. Although this will result in some coverage loss for the
structural test of this interface, this can be easily regained
through the use of a dedicated test. Control over the appli-
cation settings register remains available directly from the
chip pins. Second, the outputs of the application settings
register that are connected to the analog core are also not
isolated. The analog core does not have a test shell. There-
fore wrapping the signals used to configure the analog core
is of little use, as the analog core, and therefore the inter-
connections between the analog core and the digital core are
checked through a dedicated, functional test any way.

4.3 The Digital Demodulator Core

The digital demodulator has been extended for debug with
five breakpoint modules, to detect internal events that mark
important stages in the data processing of the core (see
points A,B,C,D, and E in Figure 6).

8Mhz 256

NCO é Error §| Offset freq.

signal | compensation
64Mhz

| [cic L [14
ADC filter Rotatin filter vV ; i
lo] ectoring Differen
“— Qrlcic CORDIC Col) CORDIC |¢ tiator
filter filter |5

L 2

Figure 6: Observation points for the breakpoint modules.

INTERNATIONAL TEST CONFERENCE 4

The breakpoint flags from these five modules are connected
to a single OR gate, the output of which is directly connected
to the debug stop clocks input of the digital controller. This
causes a request from any of the breakpoint modules to im-
mediately stop both on-chip clocks.

4.3.1 Breakpoint modules

Together with the designers of the RTO7, a set of breakpoint
modules were defined. The block diagram of the demodu-
lator in Figure 6 shows the observation points for the break-
point modules in the demodulator. For every observation
point a separate breakpoint module is used. Figure 7 shows
the implementation for the breakpoint modules for points A
and B.

LowerRef. Upper Ref.
Breakpoint
enable
A[19:0] or
B[19:0] T

Comparator

D Q Equal flag
AorB
clock
ﬂE>i4, Debug stop
Enable 9-bits counter request A or B
counter

Counter value (captured by TPR)

Functional reset

Figure 7: Breakpoint modules for points A and B.

This breakpoint module has two modes of operation: (1) to
trigger on an out of range value on the input, or (2) count the
number of clock cycles in which the input value is out-of-
range. The mode of operation is determined by the enable
counter signal.

The comparator checks if the input signal from the demod-
ulator lies between the lower reference and upper refer-
ence values provided by the BC-TPR. All signals use two-
complement notation. If the input signal is out of range,
the output of the comparator will be asserted, resulting in
an asserted output flag of the breakpoint module. This flag
can be captured by the BC-TPR and observed by debug-
ger software connected to the TAP. Together with the enable
counter signal, these two signals enable the 9-bits counter.
The counter will increment when the counter is enabled and
the value on the input (A[19:0] or B[19:0]) is out of range.
In this mode, no debug clock stop request can be issued, and
therefore the functional clock cannot be stopped. The com-
plete module is synchronously reset using the functional re-
set signal and is clocked by the 8 Mhz clock signal in the
demodulator. The reference values are controlled, and the
output flag captured using the BC-TPR in the demodulator
core.

The breakpoint modules for points C, D, and E had similar

Paper 12.1

requirements and hence a similar implementation, see Fig-
ure 8.

Reference

M
Breakpoint |
e T3 17

Counter enable

Equal Flag
D Q C,D,orE

|, Stop Request
- ol Equal C,DD, or E
D 4 GreaterThan Flag
Functional reset ‘ ¢ Drork
L
Stop Request
Functional clock 4@ Ur:;ter?l'han
CD,orE
| 9-bits counter
e
Counter Values
(captured by TPR)

Figure 8: Breakpoint modules for points C, D, and E.

C[19:0],
D[19:0], or [
E[19:0]

Comparator

The main difference is the comparator, which has ‘greater
than’ and ‘equal’ output flags. Both signals can be used to
generate a debug stop clock signal when the counters are
disabled. Two counters are used to separately count the
number of clock cycles the input value is larger, respectively
equal to the reference value. The counter values and the
output flags can be observed by external debugger software
connected to the TAP using the BC-TPR.

The demodulator core is instantiated in a so-called debug
shell. This debug shell contains the structures needed to
perform scan based debug on the demodulator core and is
shown in Figure 9.

Debug Concat (from Test Control)

:
Ceom [

From TAP To TAP
Controller Controller

Debug Bypass

Debug In » J
+—» Debug Out
s0[0]
si[0] »| 8 Mhz Scan Chain ‘ >
|
TestRail

so[1]
s0[2]
si[2] | 64 Mhz Scan Chain >

Demodulator

TestRail
In) i

Debug Shell

Figure 9: Implementation of the debug shell.

This debug shell contains the following five elements; (1)
an AC-TPR, (2) a BC-TPR, (3) a debug bypass, (4) several
multiplexers, and (5) several anti-skew elements. There are
three different debug chains; the concatenated chain for the
8 Mhz clock domain, the chain for the 64 Mhz domain, and
the bypass register. The AC-TPR is a 2-bit register and se-
lects one of the three debug scan chains. The BC-TPR is
used to provide all breakpoint reference values, and capture

INTERNATIONAL TEST CONFERENCE 5

all breakpoint flags and counter values. In total the complete
BC-TPR uses 204 bits.

The test shell, TCB and bypass for the demodulator are im-
plemented in the same way as for the digital controller. The
control signals for debug, which are connected to the TAP
controller, do not have a wrapper cell. Also for the Debug
In and Debug Out no wrapper cells are inserted. Figure 10
gives the schematic overview of the test shell of the demod-
ulator core, which contains the debug shell module and sur-
rounding test shell, the local TCB and the bypass.

From and To TAP Controller

Local TCB

l TestRail bypass

%—D—D—D—D—D—D—%

Debug Shell

K| Breakpoint Ctel ;
From TAP To TAP
controller { controller
" Access Ctrl ¢
ssi N

. 5
si[0] 8 Mhz Scan Chain

TestRail e s TestRail
In) sif1] 8 Mhz Scan Chain Oi; a

1 > 50[2:0]

” 64 Mhz Scan Chain »|

Figure 10: Demodulator test shell.

The local TCB for the demodulator has standard test control
signals, but also includes the control signals for the TPRs
in the debug shell. There is a special scan enable signal for
debug. This signal is necessary, because the default scan
enable signal reuses the TDI pin of the TAP interface to in-
dicate the normal cycles during a scan test. This is certainly
not allowed while the chip is debugged in the application.
The scan enable of the scan chains in the demodulator must
then be controllable without the influence of the pins of the
TAP, because these pins are then allocated for debug.

5 DT and DfD Insertion Flow

This section covers the complete DfT- and DfD-insertion
flow. Due to the core-based approach used, the flow is split
into a core-level part and a top-level part. The steps we took
were the following:

e DfT and DfD component generation

Synthesis

Test and debug data collection

Scannable flip-flop insertion

Layout-optimized flip-flop reordering

Automated test pattern generation

Paper 12.1

e Protocol expansion
o Test program assembly

Each of these steps is discussed in more detail below.

5.1 DIT and DfD Component Generation

Several RTL components were generated using internal
tools to implement the required DfT and DfD. These com-
ponents include the debug and test shells, the Test Control
Blocks, and the Test Point Registers.

The RTL descriptions of the cores were extended to include
all test and debug control and data signals. The advantage
of including all these signals already at the RTL is that it
allows us to develop test benches at RTL to verify the im-
plementation of the DfT and DfD components, and to re-use
these exact same test benches without modification at gate-
level. This is possible as the interface of our cores will have
stayed the same through synthesis and scan chain insertion.
The drawback of this approach is that at the RTL design
stage, decisions have to be made regarding the number of
scan chains that will be inserted in the final, synthesized de-
sign. We considered this a small price to pay for the ease of
re-use of functional test benches.

5.2 Synthesis

All RTL descriptions of the RTO7 design are synthesized
using a commercial synthesis tool. For test and debug there
are several synthesis constraints.

e Clock constraints are put on the functional clocks and
the test clock;

e No buffers are allowed in the scan enable net;
o Constants and assigns are not allowed;

e No scannable flip-flops or latches are allowed during
the logic mapping.

We do not allow latches during synthesis, because we want a
synchronous test with well-defined logic paths between reg-
ister stages. Scannable flipflops are not allowed, because the
test and debug structures that we have implemented at RTL
themselves are already testable. We only want scannable
flipflops to appear in the functional part of the chip, which
is what we take care of in the scannable flip-flop insertion
step, described in Subsection 5.4.

The scan chain input and output ports of each core receive
specific synthesis constraints to leave them dangling in the
resulting netlist. An in-house tool takes care of connecting
them to scan chains in a later step. The demodulator is flat-
tened to make optimization during synthesis easier and to
enable the use of layout-optimized scan chain routing later
in the flow.

INTERNATIONAL TEST CONFERENCE 6

5.3 Test and Debug Data Collection

A test and debug data collection phase is used before the
scan insertion step. First, the inter-clock domain data trans-
fers are analyzed. Because the demodulator has two differ-
ent functional clock domains, unsafe data transfers between
these clock domains can exist in test mode. This is checked
and subsequently corrected by inserting anti-skew elements
in the paths between clock domains. In our case, negative-
edge triggered flip-flops are used. In total, 79 anti-skew el-
ements have been inserted to make the design clock skew
safe in test mode. Timing verification was subsequently per-
formed to verify that the timing constraints on the affected
paths are still met. Then the flip-flop names that need to be-
come part of the wrapper scan chains of the two cores were
extracted. Finally information on existing TPR scan chains
is extracted to allow merging of these scan chains with the
wrapper scan chains.

At this stage we examined the inter-clock domain commu-
nication and determined that for debug, we would not suffer
from the data invalidation problem we previously described
in detail in [11]. In the RTO7 design we only have data com-
munication from the 64 MHz clock domain to the 8 MHz
clock domain (refer to Figure 2. As was proven in [11], data
invalidation does not occur under these conditions.

5.4 Scannable Flip-flop Insertion

As the specification of the number of scan chains for both
cores was already done at RTL, this now becomes a con-
straint for the scan insertion tool. This means that the scan
insertion tool no longer has the freedom to select the optimal
number of scan chains, and number of flipflops per chain.
This is the consequence and a disadvantage of introducing
as much as possible test and debug hardware in the RTL de-
scription. To insert for example the debug multiplexers and
bypass at RTL, the number of scan chains of the cores has
to be known. The only alternative for a better automation
is by introducing the test and debug hardware automatically
during synthesis in the Verilog netlist. Unfortunately this is
not supported (yet) by any of the available synthesis and/or
DAT tools. The scannable flip-flop insertion before place-
ment does not route the scan chains, because we want to
take the layout into account when we route the scan chains.

5.5 Layout-optimized Flip-flop Reordering

After the scannable flipflop insertion step, re-synthesis and
timing driven placement is performed. The new positions of
the scannable flip-flops are used to generate a new ordering
of the scannable flip-flops in the scan chains to minimize
the total scan chain wire length. The results before and after

Paper 12.1

layout-optimized ordering are shown in Figure 11 and Fig-
ure 12 respectively. There is a total reduction in a total scan
chain wire length of 64.85%, from 222 mm to 78 mm.

3\ I
gt (K]
LS B
Tl <[
L) €%
é () 5\
% |

Figure 12: Chain routing after layout-based reordering.

5.6 Automated Test Pattern Generation

Our own state-of-the-art and proprietary ATPG tool was
used for the generation of the test patterns. First stuck-at
patterns were generated for the two cores, secondly patterns
were generated to test the top-level interconnect. As the
RTO7 is a test chip, designed to evaluate the options for in-
tegrating digital, analog, and RF circuitry on a single die, it
was decided to initially only generate stuck-at patterns, and
not a extensive, production-worthy set which would also re-
quire Iddq and delay fault patterns. Given the flexibility in
the clock controller we do not expect any problems with the
generation and application of either Iddq or delay fault pat-
terns should they become required in the future. The total

INTERNATIONAL TEST CONFERENCE 7

stuck-at fault coverage reported for the wrapped demodu-
lator is 98.75% with 286,457 faults and a total of 215 pat-
terns. The same approach was used to generate the stuck-at
patterns for the wrapped digital controller. In the ATPG con-
trol file additional control signals had to be set for this core
during shift and normal mode. The ATPG tool also used ad-
ditional constraints to allow the testing of the asynchronous
reset signals in the digital controller. The total fault cover-
age report for the digital controller is almost 70% with 3,325
faults and a total of 6 patterns. The combined stuck-at fault
coverage for the two cores is 98.42%. The missing coverage
is caused by stuck-at faults that are implicitly tested for, for
example in the clock control logic. If there is no clock dur-
ing test due to a defect in the clock control logic, this is also
detected. In total 11 additional test patterns were needed to
test the chip-level interconnect.

Our internal tool that generates the boundary scan and TAP
hardware also generates the test patterns to test this hard-
ware. The initial file that is needed to generate these patterns
is the BSDL description. With the BSDL, the tool generates
a control file for the test program assembler with an accom-
panying test protocol and pattern file. These files can then
be used during the final step of test assembly.

5.7 Protocol expansion

We subsequently expanded the core-level test patterns to
top-level through a procedure called test protocol expansion,
which has been described in detail in [12]. This procedure
basically involves translating the method of apply test pat-
terns from the core-level to the top-level. Subsequently fill-
ing in the specific bits results in the test patterns that need to
be applied to the chip pins. The test patterns of the two cores
are expanded separately to the top-level, so the cores are not
tested in parallel. Of course parallel testing is possible, but
the gain in test time is so small that it was not done.

5.8 Test program assembly

We generated test patterns for our automated test equipment.
The complete test program for the RTO7 chip contains the
following tests (in order of execution):

e Boundary scan and TAP structural test;

e Scan chain continuity for the demodulator;

e Stuck-at test for the demodulator;

e Scan chain continuity for digital controller;

o stuck-at test for for the digital controller;

e Interconnect test;

e Functional test for the demodulator.

Paper 12.1

6 Experimental Results

We conducted various experiments on the RTO7 design in
three different environments: (1) in simulation, (2) on the
digital tester, and (3) on an application board. In this sec-
tion we report on our findings in each of these three envi-
ronments.

6.1 RTO7 in Simulation

Our test assembly program can generate the necessary files
to simulate and verify the generated structural test patterns
using the final netlist. For the demodulator core the first 25
patterns were chosen and successfully simulated. Simulat-
ing the first 25 patterns verifies all essential test control hard-
ware, from scan chain (access), to clock and reset control.
Next to these simulations, additional timing verification was
done for the design in test mode to ensure no timing viola-
tions were present.

6.2 RTO7 on the Digital Tester

We ran the generated test patterns on an initial batch of 51
samples on our automated test equipment. Two out of these
51 samples did not pass this structural test, all others ran
without problems using the test patterns out-of-the-box. We
did not do a yield estimation based on these numbers, but
given the amount of logic and the maturity of the process
technology used, this result is as expected.

To verify the functional design on our automated test equip-
ment, the functional test-bench of the design was also con-
verted to test system input files. This functional test is very
helpful, because it can demonstrate the functional correct-
ness of the design. For example if there are timing violations
in the real silicon that were missed during timing analysis
then the functional test would fail. The simulator was used
to write out a VCD file containing the functional input stim-
uli and design responses. This VCD file was subsequently
converted to the tester and applied to the chip. On our ATE,
the converted functional test patterns ran without problem.

We also verified the state dumping functionality on our test
system. A breakpoint was programmed via the TAP con-
troller, and the functional test stimuli applied. After all func-
tional stimuli were applied, the TAP controller was used to
scan out the complete state of the chip, at the moment of
the breakpoint, via the TDO pin. We used a simulation to
capture all input and output data from the chip during the
execution of this debug scenario. This data was converted
in the same way to our test system as the conversion of the
functional test bench. As the output data of the chip in sim-
ulation is used as the reference value for the chip on the

INTERNATIONAL TEST CONFERENCE 8

tester, we could repeatedly and automatically verify that the
state dump obtained from the chip on the digital test system
was correct. Repeating this check 10,000 times resulted in
identical state dumps each run. This was an important result
before we moved to the application board.

6.3 RTO?7 in its Application Board

We verified the debug hardware on the application board
by connecting our in-house silicon debugger software to the
TAP of the RTO7 chip.

We verified a typical debug scenario, which starts off with
programming an internal breakpoint. In our case, this was a
breakpoint on node A (refer to Figure 6). The chip was sub-
sequently reset using the TAP controller DBG_RESET in-
struction. The application then starts and the internal clocks
are gated when the breakpoint is hit. We had intended to
use the debugger software to poll the state of the break-
point module to know when the internal breakpoint was
hit. Unfortunately we discovered that an error had been
made matching the implementation of the Breakpoint Con-
trol TPR and the TAP instruction to query the state of the
breakpoint module. In Figure 13 the implementation of the
capture and shift functionality inside the Breakpoint Control
TPR is shown.

capture hold tck

circuit
status.

signal
previous

TPR bit next

TPR
bit

Figure 13: Multiplexer order in breakpoint TPR.

In order to capture the status of the breakpoint module, one
can see that both the ‘hold’ as well as the ‘capture’ signal
need to be activated at the same time. We should have de-
signed the TAP controller to do this in the Capture Data Reg-
ister state. However in the implementation of our TAP in-
struction, this was not the case. Identical to how the instruc-
tion was implemented for the Access Control TPR (which
doesn’t have a capture or update function), the ‘hold’ sig-
nal is only deactivated in the Shift Data Register stage. This
encoding prevents the breakpoint TPR to correctly capture
the breakpoint module’s state, and hence prevents the de-
bugger software from precisely detecting when a breakpoint
was hit. However, given that the test bench for the applica-
tion board has a fixed length, we programmed the debugger
software to wait until the entire test bench was finished to
work around this problem.

Once we resolved our breakpoint problem, we were able to

Paper 12.1

capture state dumps from the chip on the application board.
However when we examined these state dumps we discov-
ered that, out of a total set of 10,000 state dumps, these state
dumps were not all identical. A substantial part was stable
(approximately 75-80%), but the remaining 20-25% varied
in content. Given that the state dumps on the digital tester
were completely deterministic, we conjectured that the vari-
ability in the state dumps was caused by the application en-
vironment not being completely in sync with the chip and
hence causing different results over multiple debug runs.

On the application board, we issue a functional reset via the
TAP to start each debug run. This functional reset is also
output on a chip pin, and we could connect this signal to
the input of the arbitrary waveform generator (AWG) con-
nected to the digital inputs of the chip. We initially thought
that some non-deterministic delay was introduced at the be-
ginning of each run by the AWG, causing it to apply the
input data slightly out of sync with the chip, causing the
state dumps to vary. When we checked the inputs, we dis-
covered that, at the beginning of each run, the AWG in fact
was sending 5 samples with an analog value of %VDD to the
chip inputs. This gets interpreted by the digital circuit as ei-
ther binary-0 or binary-1, but we cannot guarantee that every
run the same interpretation is made. When we replaced the
%VDD samples with samples identical to the binary stimuli
also used in simulation, we saw a significant improvement
in state dump stability. Now 98% of all state dumps (again
out of a total set of 10,000 state dumps) were identical to
the state dumps obtained both in simulation and on the dig-
ital tester. However, 2% of all state dumps were not, but
were among themselves identical. Another reason had to be
found why this was the case.

Using the debugger software and a logical analyzer we ob-
served the reset behavior of the chip over multiple debug
runs, each time checking the state dump to see if it matched
the 2% class. If so, we would store the logical analyzer re-
sults for closer examination. In doing so, we saw the (unex-
pected) difference that was causing these two distinct state
dump class (see Figure 14 and 15).

These two figures show that after a chip reset and one initial
clock pulse, either a gated or a non-gated clock pulse occurs.
The gated clock pulse causes the class in which 98% of all
state dumps are located, the non-gated clock pulse caused
the other class. The reason why this pulse either gets gated
or not, lies in the reset implementation of both the digital
core, the breakpoint module, and the clock control TPR.

A closer examination revealed that the time between pro-
gramming a breakpoint via the TAP and issuing a reset via
the TAP determined whether the breakpoint was hit before
the reset. If the breakpoint was hit, the result of Figure 15
would be produced, otherwise the result of Figure 14. As
the amount of time between programming the breakpoint

INTERNATIONAL TEST CONFERENCE 9

and resetting the chip is dependent on the TAP hardware,
the software driver, and the PC, we had to change to TCK
frequency to solve this problem. By changing the frequency,
we changed the time between programming the breakpoint
and issuing the reset. For 10,000 runs, we verified that at low
TCK frequencies (< 2 MHz) state dumps corresponding to
Figure 15 were consistently produced, indicating that each
time a functional breakpoint was hit before the chip was re-
set. For high TCK frequencies (> 10 MHz) state dumps
corresponding to Figure 14 were observed, indicating that
each time the chip was reset before a functional breakpoint
was hit.

|1 o0 |2 |1 00 /i ﬁ |1uuwaw 2) oo 2
1
RESET
CLOCK
Q
1
ol [&e= | [1oansraie | || B [e2 735 e i Erams

Figure 14: Non-gated 8 MHz clock pulse after reset.

|1 vy 2 |1 o0vidn |22 |1 00V /div 9) |
9
RESET
CLOCK
Q
l
i oled) [[100ms/die | o] o] W fz1735 s [T][rz1v Elr

Figure 15: Gated 8 Mhz clock pulse after reset.

7 Conclusion

In this paper we presented the DfT and DfD implementa-
tion for the digital filter and demodulator of the RTO7 chip.
Both a core-based test and debug approach have been imple-
mented and verified. The chip design was verified in simu-
lation, on a digital tester, and in an application board. We
have been able to obtain matching and reproducible results
between all three environments, despite initial problems.

Our work has resulted in three new recommendations for the
core-based DfD implementation published in [6]. These are
holdable debug bypass registers, an updated capture bit im-
plementation, and proper synchronous deassertion of asyn-

Paper 12.1

chronous reset signals inside the cores, breakpoint modules,
and clock control modules.

Acknowledgments

The authors thank the RTO7 design team for their help in
making the RTO7 chip testable and debuggable, especially
Ad Vaassen, and Gunner Wetzker. The authors also thank
Harald Vranken and Tom Waayers for their valuable feed-
back on the draft version of this paper.

References

[1] H.J. Bergveld, K.M.M. van Kaam, D.M.W. Leenaerts, K.J.P. Philips,
A.W.P. Vaassen, and G. Wetzker. A Low-Power Highly Digitized Re-
ceiver for 2.4-GHz-Band GFSK Applications. IEEE Transactions on
Microwave Theory and Techniques, 53(2):453-461, February 2005.

[2] Erik Jan Marinissen, Robert G.J. Arendsen, Gerard Bos, Hans Dinge-
manse, Maurice Lousberg, and Clemens Wouters. A structured and
scalable mechanism for test access to embedded reusable cores. In
Proceedings IEEE International Test Conference (ITC), pages 284—
293, 1998.

[3] B. Vermeulen, S. Oostdijk, and F. Bouwman. Test Infrastructure
Design for the PNX8525 Nexperial M Digital Video Platform Sys-
tem Chip. In Proceedings IEEE International Test Conference (ITC),
pages 121-130, 2001.

[4] S.K. Goel, K. Chiu, E.J. Marinissen, T. Nguyen, and S. Oostdijk. Test
Infrastructure Design for the NexperiaT ™ Home Platform PNX8550
System Chip. In Proceedings Design, Automation, and Test in Europe
(DATE) Designers Forum, pages 108—113, Paris, France, February
2004.

[5] F.DaSilva, Y. Zorian, L. Whetsel, K. Arabi, and R. Kapur. Overview
of the IEEE P1500 Standard. In Proceedings IEEE International Test
Conference (ITC), pages 988-997, Charlotte, NC, September 2003.

[6] B. Vermeulen, T. Waayers, and S.K. Goel. Core-based Scan Archi-
tecture for Silicon Debug. In Proceedings IEEE International Test
Conference (ITC), pages 638647, Baltimore, MD, USA, October
2002.

[7]1 IEEE Computer Society. IEEE Standard Test Access Port and
Boundary-Scan Architecture - IEEE Std. 1149.1-2001. IEEE, New
York, July 2001.

[8] K. Holdbrook, S. Joshi, S. Mitra, J. Petolino, R. Raman, and
M. Wong. microSPARC: A Case-Study of Scan Based Debug. In
Proceedings IEEE International Test Conference (ITC), pages 347—
350, 1995.

[9] D. Josephson, S. Poehhnan, and V. Govan. Debug methodology for
the McKinley processor. In Proceedings IEEE International Test
Conference (ITC), pages 451-460, 2001.

[10] P. Dahlgren, P. Dickinson, and I. Parulkar. Latch divergency in mi-
croprocessor failure analysis. In Proceedings IEEE International Test
Conference (ITC), pages 755-763, 2003.

[11] S.K. Goel and B. Vermeulen. Hierarchical Data Invalidation Analysis
for Scan-based Debug on Multiple-Clock System Chips. In Proceed-
ings IEEE International Test Conference (ITC), pages 1103-1110,
Baltimore, MD, USA, October 2002.

[12] Erik Jan Marinissen. The Role of Test Protocols in Automated Test
Generation for Embedded-Core-Based System ICs. Journal of Elec-
tronic Testing: Theory and Applications, 18(4/5):435-454, August
2002.

INTERNATIONAL TEST CONFERENCE 10

