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Abstract

In many thermal systems spontaneous mechanical oscillations are generated under the in�uence of
large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats
and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold
�nger are connected by a �exible tube. The displacer in the cold head is suspended by a spring.
Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this
paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility
of spontaneous mechanical oscillations if a large temperature gradient develops in the cold �nger, e.g.
during or after cool down. These oscillations would be superimposed on the pressure oscillations of
the compressor and could ruin the cooler performance.

1 Introduction

The basic dynamics of split Stirling refrigerators is described in [1]. It was shown that, under certain
conditions, the system can operate as an engine rather then as a cooler. This means that it is conceivable
that spontaneous oscillations can be present which are superposed on the forced motion due to the
external force. These "spontaneous" oscillations can a¤ect the overall performance of the system. In this
mathematical paper we derive relations which determine the stability of split Stirling refrigerators driven
by a linear compressor.

2 System description

2.1 Components

A split Stirling cryocooler consists of a compressor connected to a cold �nger via a pipe (Fig.1). In the
cold �nger the regenerator also acts as the displacer. The regenerator is �xed to a mechanical spring
and a guiding rod which sticks into a backing volume f. The motion of the regenerator is driven by the
pressure di¤erences between spaces d and e and the between spaces d and f respectively. The compressor
is represented as a mass-spring system driven by an external force F which puts a power P into the
system.
Many of the parameters describing the system are de�ned in Fig.1. The cold head absorbs heat at a

rate _QL at a temperature TL. Room temperature will be denoted by TH. The heat and power �ow in the
�gure apply to the situation of a refrigerator with TL below room temperature in mind. However, our
formalism is also valid if TL > TH and the system operates as a heat engine. The pressures in the system
all vary around an average value p0 = p according to p = p0+ �p:We assume that the pressure variations
are small compared to the average pressure j�pj � p0: We also assume that the variations of the various
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Figure 1: Schematic diagram of the split Stirling cryocooler indicating the sign convention and the labeling
of the various components and spaces.

volumes are small (the average values of the volumes get lower index 0). These two assumptions allow
linearization of the relations. We also assume zero �ow resistance in the split pipe so that pd = pc: If the

working �uid is an ideal gas which �ows into a certain control volume V with volume �ow
�
V 1 and �ows

out with volume �ow
�
V 2 while the pressure p inside the volume changes adiabatically with time t then

we have the powerful relation
�
V 1 =

V

p
_p+

�
V 2: (1)

In this relation  is the ratio of the heat capacities at constant pressure and constant volume of the
working �uid.

2.2 Dynamic equations

Equation (1), applied to space b, gives
_Vb = �

Vb0
p0

_pb (2)

and for c we have
Ac _xc =

Vc0
p0

_pc +
�
V c: (3)

For d with �ow conductance C of the regenerator which we assume to be temperature independent

_Vd =
�
V c �

Vd0
p0

_pd + Cpr (4)

with pr = pe � pd. For volume e, and assuming zero void volume in the regenerator,

_Ve = �
TL
TH
Cpr �

Ve0
p0

_pe: (5)

The equation of motion of the piston, with F the external force, which reads

mc�xc = F +Ac (�pb � �pc)� kcxc � fc _xc (6)
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with m the mass of the piston, k the spring constant, and f the friction factor. For the piston the lower
index c is used, for the regenerator we use r. Assuming a constant pressure p0 in f the acceleration of
the regenerator is given by

mr�xr = p0Af + pdAd � peAr � krxr � fr _xr: (7)

The dynamics of the system is determined by this set of equations and can be solved numerically for
any con�guration. Unfortunately the complete set contains a large number of parameters and leads to
a �fth-order di¤erential equation which cannot be solved analytically. Therefore we will make a number
of assumptions which simplify the system considerably, but still contains the basic features: we assume
that F = 0, kc = kr = 0, and fr = fc = 0. Eliminating all dynamic variables except xc and xr leads to
two di¤erential equations

mc

Ac

Vcd
p0

d3xc
dt3

+ C
Af
Ar

mc

Ac

d2xc
dt2

+Ac
dxc
dt

= C
mr

Ar

d2xr
dt2

+Ad
dxr
dt
; (8)

with Vc0 + Vd0 = Vcd; and

mc

Ac

Ve0
p0

�
Af
Ar
� 1
�
d3xc
dt3

+
TL
TH
C
Af
Ar

mc

Ac

d2xc
dt2

=
Ve0
p0

mr

Ar

d3xr
dt3

+
TL
TH
C
mr

Ar

d2xr
dt2

+Ar
dxr
dt
: (9)

Now we want to eliminate xr in order to obtain a single di¤erential equation in xc which determines the
whole behavior of the system. This can be done as follows: de�ne the operator

Oa =

NaX
i=0

ai
di

dti
: (10)

With this operator we can write relations (8) and (9) as O�xc = Oaxr and O�xc = Obxr. The solution is
OaO�xc = ObO�xc: In this way we get, after a rather long but straightforward calculation, a sixth-order
di¤erential equation, but the two lowest order terms are zero so the result can be written as a fourth-order
di¤erential equation for the piston acceleration ac = d2xc=dt2

0 =
d4ac
dt4

+ k5
d3ac
dt3

+ k4
d2ac
dt2

+ k3
dac
dt

+ k2ac: (11)

The coe¢ cients are given by

k5 = C

�
p0
Ve0

TL
TH

+
p0
Vcd

�
(12)

k4 =
p0A

2
r

Ve0mr
+
p0A

2
c

Vcdmc
+

�
1� Af

Ar

�2
p0A

2
r

Vcdmr
(13)

k3 =
p0
Ve0

C
p0
Vcd

�
AfAr
mr

�
1� TL

TH
+
TL
TH

Af
Ar

�
+
TL
TH

A2c
mc

�
(14)

k2 =
p0A

2
c

Vcdmc

p0A
2
r

Ve0mr
: (15)

The general solution of Eq.(11) is of the form

ac = C1exp (z1t) + C2exp (z2t) + C3exp (z3t) + C4exp (z4t) (16)

where zi are the roots of the characteristic equation

0 = z4 + k5z
3 + k4z

2 + k3z + k2 (17)

3

25th International Conference on Low Temperature Physics (LT25) IOP Publishing
Journal of Physics: Conference Series 150 (2009) 012010 doi:10.1088/1742-6596/150/1/012010

3



and the values of the constants Ci follow from the boundary conditions. The coe¢ cients ki are real, but,
in general, the roots zi are complex. The solutions have an oscillating component if the imaginary part
of one of the zi is nonzero. These oscillations grow in time if the real part is positive and die out if the
real part is negative. For stable oscillations the real part is zero and the roots are completely imaginary
so z = i! with ! the angular frequency of the oscillation. By substituting z = i! in Eq.(17) we get from
the real part

0 = !4 � k4!2 + k2 (18)

and from the imaginary part

!2 =
k3
k5
: (19)

We de�ne a function g = k23 � k3k4k5 + k2k25 which contains all system parameters and the temperature
TL. Substitution of Eq.(19) in (18) gives that the oscillation grow if g > 0 and die out if g < 0. The
oscillations are stable if g = 0. It turns out that the stability condition does not depend on the �ow
conductance C of the regenerator. The reason is that the conductance leads to dissipation, so to damping
of the oscillations, but, on the other hand, the pressure drop over the regenerator is needed to drive the
oscillations. The stability condition gives no information about the amplitude of the oscillations. This
has to be obtained from one of the energy �ows such as the heating power _QL.
The function g contains 11 system parameters and should be investigated in accordance with a par-

ticular geometry. In this paper we limit the discussion to some simple cases. In particular it can be
derived that no oscillations are possible in an isothermal system (g � 0 if TL = TH for all possible system
parameters) as it should. The equation g = 0 can be solved e.g. to calculate the temperature where the
oscillations start if the temperature is reduced. In the extreme case of TL = 0 the oscillations tend to
grow if

0 <
A2c
mc

mr

A2r

Ve0
Vcd

� Af
Ar

�
1 +

Ve0
Vcd

�
1� Af

Ar

��
(20)

and are stable if the right-hand side is zero. If there is no bouncing volume f at all (Af = 0) the system
is always unstable. The �rst term in Eq.(20) can also be written as

p0A
2
c

Vcdmc

Ve0mr

p0A2r
=
!2c
!2r

(21)

where !c = p0A
2
c=Vcdmc (!r = p0A

2
r=Ve0mr) is the resonance frequency of the mass-spring system

formed by the piston (regenerator) and the gas spring in the volume Vcd (Ve). The oscillation frequency
at TL = 0 is obtained with Eq.(19) and results in !2 = Af!2r=Ar:

3 Conclusion

We have derived a general relation which allows determination of the stability of split-Stiling refrigerators.
The relations are rather complex, but can be analyzed easily using analytical programs such as Maple
and the like. We have limited the derivation to the special case of zero friction and zero spring constants,
but the formalism is general and can be extended to include friction and nonzero spring constants.
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