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Abstract

This paper is motivated by the study of the sorption processes in the coal. They are modelled
by a nonlinear degenerate pseudo-parabolic equation for stress enhanced diffusion of carbon
dioxide in coal

∂tφ = ∂x

{
D (φ) ∂xφ +

D (φ) φ

B
∂x

(
e−mφ∂tφ

)}
,

where B, m are positive constants and the diffusion coefficient D (φ) has a small value when the
CO2 volume fraction φ is 0 ≤ φ < φc, representative of coal in the glass state and orders of
magnitude higher value for φ > φc, when coal is in the rubber like state. These type of equations
arise in a number of cases when non-equilibrium thermodynamics or extended non-equilibrium
thermodynamics is used to compute the flux.

For this equation existence of the travelling wave type solutions was extensively studied.
Nevertheless, the existence seems to be known only for sufficiently short time. We use the cor-
responding entropy functional in order to get existence, for any time interval, of an appropriate
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weak solution with square integrable first derivatives and satisfying uniform L∞-bounds. Due
to the degeneracy, we obtain square integrability of the mixed second order derivative only in
the region where the concentration φ is strictly positive. In obtaining the existence result it was
crucial to have the regularized entropy as unknown for the approximate problem and not the
original unknown (the concentration).

Key words: degenerate pseudoparabolic equation, entropy methods, stress enhanced diffusion

AMS subject classification: 35K70, 35K65, 76R50, 80A17

1 Introduction

One of the promising methods to reduce the discharge of the ”greenhouse gas” carbon dioxide
(CO2) into the atmosphere is its sequestration in unminable coal seams. A typical procedure is the
injection of carbon dioxide via deviated wells drilled inside the coal seams. Carbon dioxide displaces
the methane adsorbed on the internal surface of the coal. A production well gathers the methane
as free gas. This process, known as carbon dioxide-enhanced coal bed methane production (CO2-
ECBM), is a producer of energy and at the same time reduces greenhouse concentrations as about
two carbon dioxide molecules displace one molecule of methane. World-wide application of ECBM
can reduce greenhouse gas emissions by a few percent. Coal has an extensive fracturing system
called the cleat system. In actual fact it is possible to discern a number of cleat systems at different
scales. In the end the matrix blocks between the smallest cleat system have diameters typically of
a few tens of microns [13].

Matrix blocks consist of polymeric structure (dehydrated cellulose [21]), which provides the
adsorption sites for the gases. At low temperatures or low sorption concentration the coal structure
behaves like a rigid glassy polymer, in which movement is difficult. At high temperatures or high
sorption concentrations the glassy structure is converted to the less rigid and open rubber like
(swollen) structure [30], [31]. As coal is less dense in the rubber like state a conversion from the
glassy state to the rubber like state exhibits swelling. Therefore modelling of diffusion is not only
relevant for modelling transport into the matrix blocks, but also for the modelling of swelling, which
affects the permeability of the coal seam.

Ritger and Peppas [30], [31] distinguish between transport by Fickean diffusion and a process that
occurs on the interface between the glass state and the rubber like state. Ritger and Peppas state that
the conversion process from the glass to the rubber state is controlled by a rate limiting relaxation
phenomenon (see also [2]). Thomas and Windle [32] (see also [16], [17], [19]), however, suggested,
in their classical paper, that the diffusion transport was enhanced by stress gradients that resulted
from the accommodation of large molecules in the small cavities providing the adsorption sites. For
this Alfrey et al. [1] coined the term superdiffusion or case II diffusion. At a critical concentration
of the penetrants the glassy polymer transformed to a rubber state, where the diffusion coefficient
is of the order of a factor 1000 larger than in the glassy state.

This paper is the first of a series, where the model equations for case II diffusion [32], [16], [17],
[19] will be analyzed. Our long time interest is to investigate the 1-D sorption rate behavior, i.e.,
whether the equations indeed lead to a rate faster than the square root of time. In this paper we
establish existence of a weak solution for all times.

Nonlinear diffusion equations with a pseudoparabolic regularizing term being the Laplacean of
the time derivative are considered in [26] and in [27] . Global existence of a strong solution is
proved by writing the problem as a linear elliptic operator, acting on the time derivative, equal
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to the nonlinear diffusion term. Then the linear elliptic operator, acting on the time derivative,
was inverted and the standard geometric theory of nonlinear parabolic equations (see e.g. [15]) is
applicable.

In our situation the physical model impose us a degenerate non-linear second order elliptic
operator, acting on the time derivative, at the place of the Laplacean. The invertibility of this
nonlinear elliptic operator is not clear anymore and it depends on the solution itself. The same
type of equations can occur in models that use Classical Irreversible Thermodynamics or Extended
Irreversible Thermodynamics. An important example is the model of the two-phase flow through
porous media introduced in [14], where the capillary pressure relation is extended with a dynamic
term, which contains the time derivative of the saturation. We refer also to [5] for the modelling. This
application to multiphase and unsaturated flows through porous media motivated a number of recent
papers. In paper [18] one finds a detailed study of possible travelling wave solutions and in particular
of the behavior of such travelling waves near fronts where the concentration is zero. Further studies
of the travelling waves are in the papers [8] and [7]. The small- and waiting time behavior of the
equations was studied in [20]. Study of the viscosity limit for the linear relaxation model of the
dynamic term is in [10]. Nevertheless, the study of existence of a solution to the nonlinear model
from [14] was undertaken only in paper [4], where the non-degeneracy was supposed and existence
is local in time. Another existence result, also local in time, is in the paper [9] , where a related
pseudoparabolic equation modelling solvent uptake in polymeric solids was studied.

Our goal is to obtain a global existence of a weak solution, for any time interval, as it was
obtained in [3] for a degenerate pseudoparabolic regularization of a nonlinear forward-backward
heat equation. Our PDE allows a natural generalization of the classic Kullback entropy and its
integrand is given by

E(ϕ) =
∫ ϕ

0

ϕ− ξ

ξ

(
e−mξ 1

D(ξ)
− 1

D(0)
)

dξ +
1

D(0)
ϕ log ϕ. (1)

As in [25], we will use E ′(ϕ) as a test function, with the hope to obtain a convenient a priori estimate.
Presence of the initial and the boundary conditions lead to unbounded non-integrable E ′ and we
do not get the entropy estimates as in [12]. We had to obtain an additional estimate for the time
derivative and our calculations are more complicated than in the literature.

Our paper is organized as follows: Section 2 describes the physical model, first proposed in [32].
We repeat the derivations from [16], [17], [19] for reasons of easy reference and unified notations.

In section 3 we introduce the regularized problem and discretize it using the regularized E ′(ϕ)
as the unknown. Next the solvability of the discretized problem is proved and the uniform L2 - a
priori estimates for the first derivatives and the mixed second derivative are obtained for a small
time interval (0, T0). They imply the short time existence for the regularized problem.

We continue with section 4 where we use the entropy to establish that T = T0, i.e. existence of
a solution for the regularized problem for all times. Next we establish L∞ bounds independent on
the regularization parameter.

The last section 5 concerns the existence for the original problem. Using again the entropy,
the estimates for the time derivative and the L∞ bounds, we are able to pass to the limit when
the regularization parameter tends to zero and prove the existence of at least one solution for the
original problem.

2 Model equation for stress induced diffusion

2.1 Physical model
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Consider a coal particle between the fractured cleat system in coal. The matrix block can be
considered as a small (30 µm diameter) cubical particle consisting of glassy coal. The coal face
is exposed to the penetrant, in our case carbon dioxide. The coal face of the particle and the
mechanism of the sorption process is shown schematically in Fig. 1. The coal originates from a
cellulose like polymeric structure [21], with the chemical formula Cn (H2O)m , from which part of
the hydrogen and oxygen have disappeared during the coalification process, which took millions of
years. The remaining structure behaves like a glassy polymer, which contains holes (sites) that can
accommodate CO2, CH4 etc. In other words, sorption of gases by coal is more a dissolution process
than adsorption of gases at a coal surface. The holes receiving the CO2 are originally too small to
accommodate the molecule and need to expand. Consequently the expanded hole exerts a stress on
the neighboring molecules constituting the polymeric coal. Therefore the penetration of CO2 will
both lead to a stress gradient and a concentration gradient. The concentration will be expressed as
a volume fraction φ, i.e., φ = c/Ω, where c is the molecular concentration and Ω is the molecular
volume. As the CO2 likes to move towards a region of smaller stress, the transport of the molecule
will be both caused by a concentration gradient and a stress gradient. When the stresses become
too high, a deformation occurs in which the glassy polymeric structure is converted to a rubber
like (swollen) structure, which is much more open. Consequently the diffusion coefficient in the
rubber like structure is much higher (more than thousand times) than the diffusion coefficient in the
glassy structure. The stresses are considered to depend on the CO2 concentration in the coal and
conversion to the rubber like structure occurs instantaneously when a certain critical concentration
is exceeded.

These ideas were formulated for the first time by Thomas and Windle and the derivation of the
model equations will be explained below.

2.2 Derivation of model equations

The salient features of the Thomas and Windle (TW) model [32]are well summarized by Hui et al.
(1987) [16], [17]. We summarize the derivation here with the help of the article by Hui et al. (1987),
the book of Landau and Lifshitz, 1975, [22], i.e., the molar (diffusive) flux J is not only driven by
the volume fraction (φ) (concentration) gradient , but also by the stress (Pxx) gradient, i.e.

J = −D

(
∂φ

∂x
+

Ωφ

kT

∂Pxx

∂x

)
, (2)

where k is the Boltzmann constant. As opposed to the equation in [22], which contains a scalar
pressure gradient, the idea here is extended in [19] with the use of the stress gradient ∂xPxx. Note
that J is the flux of a volume fraction and behaves as a velocity. The diffusion coefficient depends on
the concentration. Below a critical volume fraction φc, a diffusion coefficient Dg > 0 characteristic
of a glassy state is used, and above φc the diffusion coefficient Dr > 0 characteristic of the rubber
(swollen) state is used. It can be expected that Dr/Dg >> 1. In the model an abrupt change of the
diffusion coefficients at φc is used, but Dr and Dg are considered constant for φ > φc and φ < φc

respectively:

D (ξ) =





Dg, 0 ≤ ξ < φc − κ
Dg + (Dr −Dg)(ξ − φc + κ)/(2κ), φc − κ ≤ ξ ≤ φc + κ

Dr φc + κ < ξ < +∞,
(3)
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Figure 1: A coal face exposed to a sorbent (CO2) . Far to the right the virgin coal, which behaves as a
glassy polymer. As the sorbent penetrates in the coal a reorientation of the polymeric coal structure
occurs and the coal becomes rubber like. The diffusion coefficient in the rubber like structure is
much higher (> 1000 ×) than in the glassy structure. The rubber like structure has also a lower
density leading to swelling.
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where κ > 0 is a small parameter. Extended non-equilibrium thermodynamics [19] suggests that
vice-versa also the stress (Pxx) is related to the volumetric flux gradient as

Pxx = −ηl
∂J

∂x
= ηl

∂φ

∂t
, (4)

where the second equality follows from a mass conservation law that assumes incompressible flow,

∂φ

∂t
+

∂J

∂x
= 0 . (5)

With ηl we denote the elongational velocity [6], i.e. the resistance of movement due to a velocity
gradient ∂J

∂x in the direction of flow. The elongational viscosity ηl is supposed to depend on the
volume fraction of the penetrant as

ηl = ηo exp (−mφ) , (6)

where m is a material constant and η0 is the volumetric viscosity of the unswollen coal sample.
Substitution of expression (2) for the flux into the mass balance equation (5), where we also use

Eq. (4) we obtain

∂tφ = ∂x

{
D (φ) ∂xφ +

D (φ)φ

B
∂x

(
e−mφ∂tφ

)}
, (7)

where the constant B = kBT/ (ηoΩ) . This equation is defined in QT = (0, L)× (0, T )
As initial condition we have that the concentration

φ (x, t = 0) = 0 on (0, T ) . (8)

The boundary condition at x = 0 must be derived from thermodynamic arguments. The final
equilibrium concentration is reached when the coal has swollen to make the stress Pxx = P 0

xx equal
to zero. In this case the volume fraction of CO2 in the coal is in equilibrium with the CO2 in the
fluid phase outside the coal. Also the CO2 in the stressed coal is in equilibrium with the CO2 in
the fluid phase. The change in chemical potential dµ = ΩdPxx + kBTd ln φ. Equating the chemical
potential in the unstressed and stressed state leads to:

ΩPxx + kBT ln φ = ΩP 0
xx + kBT ln φo , (9)

where φo is the volume fraction at the coal boundary that would be in equilibrium with the carbon
dioxide in the gas phase if the coal has relaxed to the rubber state with P 0

xx = 0.
Substitution of Eq. (4) and Eq.(6) into Eq. (9) leads to

t = −φo
η0Ω
kBT

φ/φo∫

0

exp(−mφoy)
ln y

dy , (10)

where we use the initial condition that φ = 0 at t = 0.
At x = L we have the boundary condition on (0, T )

D (φ)
(

∂xφ +
1
B

φ∂x (exp (−mφ) ∂tφ)
)

x=L

= 0. (11)

In summary we have one initial condition Eq. (8), one boundary condition at x = L, viz. Eq. (11)
and the implicit boundary condition Eq. (10), which both specifies φ (x = 0, t) and ∂φ/∂t (x = 0, t)
at x = L as

φ (0, t) = φg (t) , (12)
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which satisfies the conditions

0 ≤ φg ≤ φo, (13)
φg (0) = 0. (14)

Remark 1 Equations like Eq. (7) can occur in many transport problems in which the flux is cal-
culated using classical irreversible thermodynamics (CIT) or extended irreversible thermodynamics
(EIT). A well known example for CIT in porous media flow is that the deviation of the capillary
pressure Pc from its equilibrium value at a given oil saturation So, i.e., P o

c = P o
c (So) is a driving

force leading to a rate of change of the saturation (scalar flux). This leads [14], [28], [29], [23] to
∂tSo = L (Pc − P o

c ) , and to the transport equation for counter current imbibition

ϕ∂tSo = ∂x (Λ (So) ∂xPc) =

= ∂x (Λ (So) ∂xP o
c (So)) + ∂x

(
Λ (So) ∂x

1
L (So)

∂tSo

)
.

EIT [19] differs from CIT as it not only characterizes a system by its local thermodynamic variables
(pressure, temperature, concentration) but also by its gradients. The explanation in reference [19] is
difficult to follow by non-specialists as many thermodynamic relations are considered to be known by
the reader. In isothermal systems and in the absence of other applied fields, e.g. electric fields, the
volumetric flux J is, according to EIT, given by the following system of equations

τ1∂tJ + J = −D

(
∂φ

∂x
+

Ωφ

kT

∂Pxx

∂x

)
, (15)

τ2∂tPxx + Pxx = −ηl
∂J

∂x
. (16)

Reference [19] uses a mass flux instead of a volumetric flux and therefore uses a factor υ1, being the
partial volume per unit mass. Here τ1, τ2 are time constants, which are small with respect to L2/D.
The first term on the left of Eq. (15) and Eq. (16) only appear in EIT and not in CIT. The first
terms on the left are of interest for short time behavior and are omitted from the model discussed
here. Another example from EIT is the Taylor dispersion problem (see Eq. 10.34 in [19]) where
there is an ’xxt’ derivative in the concentration, apart from many other terms. Hence EIT or CIT
can lead to transport equations of the form of Eq. (7).

3 Short time existence for the regularized problem

Existence is proven by showing that the ’energy’ of the system remains bounded during the time evo-
lution of the system. The ’energy’ equation is derived from the differential equation by multiplying
with an appropriate test function and integrating over the domain. The choice of the test function
depends strongly on the choice of the coefficients. With an appropriate approximation this can also
be the basis of a numerical scheme which leads to a non-linear system of ODE’s, which is implicit
in derivatives. The fact that the ’energy’ is bounded means that the numerical scheme is stable. If
convergence can be proven it shows that at least one solution exists. Solvability of the system of
ODE’s depends strongly on the initial conditions. One of the main problems with existence proofs
is finding an appropriate test function.
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In this case an appropriate test function is Φ′ (φ) ∂tφ, where

Φ′ (ξ) =
e−mξ

ξD (ξ)
,

which is, however singular for ξ = 0. We start by extending the diffusion coefficient D (ξ) = D (−ξ)
for ξ < 0. Another problem of the test function is that for large values of ξ, Φ

′
is exponentially

small. In order to prove existence we need Φ that is bijective from R to R.
We introduce Φδ by

Φ′δ =
e−m min{|ξ|,1/δ}

(|ξ|+ δ)D (ξ)
, δ > 0, ξ ∈ R, (17)

and

Φδ (φ) =





φ∫

0

e−m min{ξ,1/δ}
(ξ+δ)D(ξ) dξ, φ > 0

−
0∫

φ

e−m min{−ξ,1/δ}
(−ξ+δ)D(−ξ) dξ, φ < 0.

(18)

In this section we study the following regularized problem in QT

∂tφ = ∂x

{
D (φ) ∂xφ +

D (φ) (|φ|+ δ)
B

∂x

(
e−m min{|φ|,1/δ}∂tφ

)}
(19)

with boundary condition at x = L

D (φ) ∂xφ +
D (φ) (|φ|+ δ)

B
∂x

(
e−m min{|φ|,1/δ}∂tφ

)∣∣∣∣
x=L

= 0 (20)

and boundary condition (12) at x = 0 and initial condition (8) at t = 0.
We start by introducing a variational solution for the problem (19), (20), (12) and (8).

Definition 2 Let

V = {z ∈ C∞ [0, L] , z|x=0 = 0} and H = {C∞ [0, T ] , h (T ) = 0} (21)

Then the variational formulation corresponding to the problem (12), (8), (19) and (20) is

−
T∫

0

L∫

0

φ (x, t) g (x) ∂th (t) dxdt +

T∫

0

L∫

0

D (φ) ∂xφ(x, t) ∂xg(x)h(t) dxdt+

T∫

0

L∫

0

D (φ) (|φ|+ δ)
B

∂xg(x) h(t) ∂x

(
e−m min{|φ|,1/δ}∂tφ

)
dxdt = 0, ∀g ∈ V and ∀h ∈ H (22)

and at the boundary x = 0, we have

φ− φg = 0 on {x = 0} (23)
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Our goal is to prove existence for (22)-(23).
In order to have the entropy estimate, we should formulate the approximate problem in terms

of it. Otherwise it would not be possible to use it as a test function for the approximate problem.
Getting a priori estimates without this approach is not clear.

Let z = Φδ (φ) , φ = Φ−1
δ (z) , z|x=0 = Φδ (φg (t)) . We reformulate the problem (12), (8), (19)

and (20) in terms of z:

1
Φ′δ

(
Φ−1

δ (z)
)∂tz = ∂x

{
D

(
Φ−1

δ (z)
)

Φ′δ
(
Φ−1

δ (z)
)∂xz

+
D

(
Φ−1

δ (z)
) (∣∣Φ−1

δ (z)
∣∣ + δ

)

B
∂x(D

(
Φ−1

δ (z)
) (∣∣Φ−1

δ (z)
∣∣ + δ

)
∂tz)

}
in QT (24)

Moreover we can express the boundary and initial conditions in z as

z (0, t) = Φδ (φg (t)) on (0, T ); z (x, t = 0) = Φδ (0) = 0 on (0, L), (25)

1
Φ′δ

(
Φ−1

δ (z)
)∂xz +

(∣∣Φ−1
δ (z)

∣∣ + δ
)

B
∂x

(
D

(
Φ−1

δ (z)
) (∣∣Φ−1

δ (z)
∣∣ + δ

)
∂tz

)
= 0 on x = L. (26)

Let V =
{
g ∈ H1 (0, L) |g (0) = 0

}
be the closure of V in H1(0, L) and let {αj}j∈N be a

C∞−basis for V. We set VN =span{α1, ...αN} and introduce the following coefficients

d1 (z) =
1(

Φ′δ
(
Φ−1

δ (z)
)) , d2 (z) =

D
(
Φ−1

δ (z)
)

(
Φ′δ

(
Φ−1

δ (z)
)) and d (z) = D

(
Φ−1

δ (z)
) (∣∣Φ−1

δ (z)
∣∣ + δ

)
. (27)

We start study of the initial-boundary problem (24), (25), (26) by constructing an approximate
solution for every N . It is defined as follows

Appoximate problem 3 Find zN =
N∑

j=1

cj (t)αj (x) + Φδ (φg (t)) ∈ W 1,q([0, T ]; VN ), q ∈ (2, +∞)

such that
L∫

0

∂tzNd1 (zN )αk dx +

L∫

0

d2 (zN ) ∂xzN∂xαk dx +

L∫

0

1
B

d (zN ) ∂x (d (zN ) ∂tzN ) ∂xαk dx = 0, (28)

for k = 1, ..., N and zN |t=0 = PN (z|t=0 − Φδ (φg (0))) = 0, (29)

where P : V → VN is the projector PN (f) (x) =
N∑

j=1

αj(x) (f, αj)V .

Let the vector valued function F be given by Fκ (t, c, ∂tc) = left part of Eq. (28) and c is the column
vector consisting of elements (c1 (t) ...cN (t)) , then Eqs. (28), (29) are equivalent to the following
Cauchy Problem in RN : {

F (t, c, ∂tc) = 0
c|t=0 = 0 (30)

The Cauchy problem (30) is difficult to solve, since the dependence of F on ∂tc is implicit. It is
crucial to reduce it to an ordinary Cauchy problem of the form ∂tc = % (t, c) .
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We note that

Fk =
N∑

j=1

{ L∫

0

d1 (zN ) αkαj dx +

L∫

0

1
B

d (zN ) ∂x (d (zN )αj) ∂xαk dx
}dcj

dt
+

N∑

j=1

{ L∫

0

d2 (zN ) ∂xαj∂xαk dx
}
cj +

L∫

0

d1 (zN )αk∂tΦδ (φg (t)) dx. (31)

Then, after introducing the matrices A(c) and B(c) and the vector f(c) by

Akj(c) =

L∫

0

d1 (zN ) αkαj dx +

L∫

0

1
B

d (zN ) ∂x (d (zN )αj) ∂xαk dx, (32)

Bkj(c) =

L∫

0

d2 (zN ) ∂xαj∂xαk dx and fk(c) =

L∫

0

d1 (zN )αk∂tΦδ (φg (t)) dx, (33)

1 ≤ k, j ≤ N , we see that the problem (28)–(29) is equivalent to the Cauchy problem

Find c ∈ W 1,q(0, T )N such that

A(c)
dc
dt

= −B(c)c− f(c) a.e. in (0, T ); c|t=0 = 0. (34)

Proposition 4 There is a TN > 0 such that the problem (28)–(29) has a unique solution zN ∈
W 1,q(0, TN ; VN ), for all q < +∞.

Proof. It is enough to prove that the Cauchy problem (34) has a solution.
Obviously, A, B and f are smooth functions of c. Because of the singularity of ∂tϕg at t = 0,

f(c) ∈ Lq(0, T ), ∀q < +∞, but it is not bounded. Hence, the only property to check is the
invertibility of the matrix A. Let b be an arbitrary vector from RN and let bα(x) = b · α(x) =∑N

j=1 bjαj(x). Then we have

(Ab) · b =
N∑

k,j=1

Ak,jbkbj =
∫ L

0

d1(zN )(bα)2 dx +
1
B

∫ L

0

d(zN )∂xbα∂x(d(zN )bα) dx =

=
∫ L

0

d1(zN )(bα)2 dx +
1
B

∫ L

0

(d(zN )∂xbα)2 dx +
1
B

∫ L

0

d(zN )∂xbαbαd′(zN )∂xzN dx ≥
∫ L

0

{
d1(zN )− 1

4B
(d′(zN ))2(∂xzN )2

}
(bα)2 dx. (35)

Since ∂xzN (x, 0) = 0 and functions {αj}j∈N are linearly independent, the matrix A is by (35)
invertible in a neighborhood of t = 0. Then by the classical theory, the problem (34) has a unique
solution on some interval (0, TN ).

Next we want to prove that the existence interval does not depend on N.

Proposition 5 We have
‖∂xzN‖L∞(0,T ;L2(0,L)) ≤ C. (36)

Consequently, the vector valued function c remains bounded at t = TN .
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Proof. In Eq. (28) we can replace αk by zN − Φδ (φg) . Then after using that ∂x (d (zN ) ∂tzN ) =
∂t (d (zN ) ∂xzN ) , we get

L∫

0

d1 (zN ) zN∂tzNdx +

L∫

0

d2 (zN ) (∂xzN )2 dx +

L∫

0

1
B

∂t (d (zN ) ∂xzN ) d (zN ) ∂xzNdx =

L∫

0

d1 (zN )Φδ (φg) ∂tzNdx = ∂t

L∫

0

Φδ (φg) (t)

zN∫

0

d1 (ξ) dξdx− ∂tΦδ (φg) (t)

L∫

0

zN∫

0

d1 (ξ) dξdx. (37)

Integrating over t leads to

L∫

0

(

zN (x,t)∫

0

d1 (ξ) ξ dξ) dx +

t∫

0

L∫

0

d2 (zN ) (∂xzN )2 dxdτ +
1

2B

L∫

0

d (zN )2 (∂xzN )2 dx =

L∫

0

(

zN (x,t)∫

0

d1 (ξ) dξ) dx Φδ (φg) (t)−
t∫

0

∂τΦδ (φg) (τ) (

L∫

0

zN∫

0

d1 (ξ) dξdx) dτ. (38)

We easily find out that
z∫

0

d1 (ξ) ξ dξ =
∫ Φ−1

δ (z)

0

Φδ(η) dη and

z∫

0

d1 (ξ) dξ = Φ−1
δ (z). (39)

The growth of the terms in (39) indicates that it will be possible to control the two terms at the
right hand side of (38) by the first term at the left hand side of (38).

Let Mφ = max0≤t≤T |Φδ (φg (t))| . By the definition of Φδ(ϕ), we have C0(δ) log
(
1 + ϕ/δ

) ≤
Φδ(ϕ), for all ϕ ≥ 0. Hence

z∫
0

d1 (ξ) ξ dξ ≥ C0(δ)
(
(|Φ−1

δ (z)|+ δ) log(1 + |Φ−1
δ (z)|/δ)− |Φ−1

δ (z)|) and

there is a constant Cϕ = Cϕ(Mφ, δ) such that g(z) = C0(δ)
(
(|Φ−1

δ (z)| + δ) log(1 + |Φ−1
δ (z)|/δ) −

|Φ−1
δ (z)|)−Mφ|Φ−1

δ (z)|+ Cϕ > |Φ−1
δ (z)|, for all z. The equality (38) now implies

L∫

0

g(zN (x, t)) dx +

t∫

0

L∫

0

d2 (zN ) (∂xzN )2 dxdτ +
1

2B

L∫

0

d (zN )2 (∂xzN (t))2 dx ≤

Cϕ (Mφ, δ) L +
∫ t

0

|∂τΦδ (φg) (τ) |(
L∫

0

g(zN (x, τ)) dx) dτ. (40)

Since ∂τΦδ (φg) ∈ L1(0, T ), we apply Gronwall’s inequality and estimate (36) follows. Hence c
remains bounded at t = TN .

Nevertheless, since the matrix A could degenerate, some components of
∂c
∂t

could blow up at

t = TN . In other to exclude this possibility and to prove that the maximal solution for (30) exists
on [0, T ], we need an estimate for the time derivatives. Furthermore, if we want to pass to the limit
N → +∞ in Eq. (28), estimate (36) is not sufficient. Our strategy is to obtain an estimate, uniform
with respect to N, for ∂xtzN in L2 (QT ) .
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Theorem 6 There exists T0 > 0, independent of N , such that

‖∂xzN‖L∞(0,T0;L2(0,L)) ≤ C (41)

‖∂tzN‖L2(0,T0;L2(0,L)) ≤ C (42)

‖∂xtzN‖L2(0,T0;L2(0,L)) ≤ C (43)
∥∥∥∥∥∥
∂xt

zN∫

0

d (ξ) dξ

∥∥∥∥∥∥
L2((0,T0)×(0,L))

≤ C, (44)

with constants independent of N . Consequently, the maximal solution for (30) exists on [0, T0].

Proof. We replace αk in Eq. (28) by ∂tzN − ∂tΦδ (φg) . This yields

L∫

0

d1 (zN ) (∂tzN )2 dx +

L∫

0

d2 (zN ) ∂xzN∂xtzNdx+

1
B

L∫

0

d (zN ) ∂t (d (zN ) ∂xzN ) ∂xtzNdx =

L∫

0

d1 (zN ) ∂tzN∂tΦδ (φg) dx. (45)

In the estimates which follow we will use the fact that integrability of higher order derivatives implies
continuity and boundedness in x or in t. We recall that for one dimensional Sobolev embeddings
Morrey’s theorem applies and H1(0, t) (respectively H1(0, L)) is continuously embedded into the
Hölder space C0,1/2 [0, t] (respectively into C0,1/2 [0, L]). See e.g. [11] for more details. In our
particular situation we use the explicit dependence of the embedding constant on the length of the
time interval and we prefer to derive the estimates directly.

First, as ∂xzN ∈ L2
(
0, L; H1 (0, t)

)
and ∂xzN |τ=0 = 0, we have for a.e. x ∈ (0, L) and for every

τ ∈ (0, t)

|∂xzN (x, τ)| = |
∫ τ

0

∂ξ∂xzN (x, ξ) dξ| ≤ √
τ

√∫ τ

0

|∂ξ∂xzN (x, ξ) |2 dξ. (46)

Next, as ∂τzN ∈ L2
(
0, t; H1 (0, L)

)
and ∂τzN |τ=0 = ∂τΦ(φg), we have for a.e. τ ∈ (0, t) and for

every x ∈ (0, L):

|∂τzN (x, τ)| ≤ |∂τΦ(φg(τ))|+ |
∫ x

0

∂ξ∂τzN (ξ, τ) dξ| ≤

|∂τΦ(φg(τ))|+
√

L

√∫ L

0

|∂ξ∂τzN (ξ, τ) |2 dξ. (47)

Estimates (46)-(47) imply
∫ L

0

∫ t

0

|∂τzN (x, τ)|2 |∂xzN (x, τ)|2 dxdτ ≤ 2
∫ L

0

∫ t

0

τ
( ∫ t

0

|∂ξ∂xzN (x, ξ) |2 dξ
)(|∂τΦ(φg(τ))|2+

L

∫ L

0

|∂ξ∂τzN (ξ, τ) |2 dξ
)

dτdx ≤ 2Lt ‖∂xτzN‖4L2((0,t)×(0,L)) +

2 ‖∂xτzN‖2L2((0,t)×(0,L))

∫ t

0

τ |Φ′δ(φg)|2|∂τφg|2 dτ. (48)
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Now we integrate Eq. (45) with respect to time, over (0, t), and estimate the obtained terms. The
second term is estimated as follows:

|
t∫

0

L∫

0

d2 (zN ) ∂xzN∂xτzN dxdτ | ≤ C

t∫

0

‖∂xτzN (τ)‖L2(0,L) ‖∂xzN (τ)‖L2(0,L) dτ

≤ C

√√√√√
t∫

0

‖∂xτzN (τ)‖2L2(0,L) dτ

√√√√√
t∫

0

L∫

0

(∂xzN )2 dxdτ ≤ C ‖∂xτzN‖L2((0,t)×(0,L)) , (49)

where we have used the estimate (36). We rewrite the third term of (45) omitting the 1/B factor as

t∫

0

L∫

0

d∂τ (d∂xzN ) ∂xτzNdxdτ =

t∫

0

L∫

0

d (∂xτzN )2 dxdτ +

t∫

0

L∫

0

dd′∂τzN∂xzN∂xτzN dxdτ. (50)

The last term in (50) is cubic in derivatives of zN . Our idea is to use the estimate (48), showing
that for small times it enters with small coefficient and then controlling it using other terms. Using
the estimate (48), we find out that it satisfies the following inequality:

∣∣∣∣∣∣

t∫

0

L∫

0

d∂xτzN d′∂τzN∂xzN dxdτ

∣∣∣∣∣∣
≤ C ‖∂xτzN‖L2((0,t)×(0,L)) ‖∂τzN∂xzN‖L2((0,t)×(0,L)) ≤

≤ C
√

t

(
‖∂xτzN‖3L2((0,t)×(0,L)) + ‖Φ′δ(φg)∂τφg‖3L2(0,t)

)
(51)

Let X2 (t) =

t∫

0

L∫

0

|∂xτzN |2 dxdτ. Since ∂τΦg (φg) ∈ L2 (0, t), then estimates (36), (49), (50) and

(51) imply ∥∥∥
√

d1∂τzN

∥∥∥
2

L2((0,t)×(0,L))
+ X2 (t)− C1

√
tX3 (t) ≤ Co, (52)

where Co depends on ‖∂τΦδ (φg)‖L2(0,t) and on the constant from estimate (36). We note that the
last term on the left hand side correspond to the lower bound for the cubic term, corresponding
to the stress gradient part of the diffusive flux. Inequality (52) is satisfied for t = 0. The function
% (X) = X2 −C1

√
tX3 has its maximum on (0, +∞) in the point Xo = 3/

(
2C1

√
t
)
. If Co < % (Xo)

then inequality (52) gives an estimate for X (t) . We note that Co < % (Xo) if t <
4

27C2
1Co

. Hence

for T ≤ 4
27C2

1Co
= T0 we have estimates (41)-(43).

From (41)-(43) it follows that ∂xzN∂tzN ∈ L2
(
0, T0; L2 (0, L)

) ≤ C and we have (44) as well.
The estimates (41)-(44) allow us to pass to the limit N → +∞. Using classical compactness and

weak compactness arguments and due to the a priori estimates (41)-(44) we can extract a subsequence
of zN , denoted by the same subscripts, which converges to an element z ∈ H1 ((0, T0)× (0, L)) ,
∂xtz ∈ L2 ((0, T0)× (0, L)) , in the following sense

zN → z strongly in L2 ((0, T0)× (0, L)) and a.e. on (0, T0)× (0, L) (53)
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∂xzN ⇀ ∂xz weakly in L2 ((0, T0)× (0, L)) (54)

∂tzN ⇀ ∂tz weakly in L2 ((0, T0)× (0, L)) (55)

∂xtzN ⇀ ∂xtz weakly in L2 ((0, T0)× (0, L)) (56)

∂xt

zN∫

0

d (ξ) dξ ⇀ ∂xt

z∫

0

d (ξ) dξ weakly in L2 ((0, T0)× (0, L)) (57)

Now passing to the limit N → ∞ in Eq. (28) does not pose problems and we conclude that z
satisfies (24)-(26).

We summarize the results in the following theorem

Theorem 7 Let φg ∈ H1 (0, T ) . Then there exists T0 > 0 such that problem (24)-(26) has at least
one variational solution z ∈ H1 ((0, T0)× (0, L)) , ∂xtz ∈ L2 ((0, T0)× (0, L)) .

Corollary 8 Let φg ∈ H1 (0, T ) . Then there exists T0 > 0 such that the variational formulation (22)
of the problem ((8), 12), (19) and (20) has at least one solution φ = Φ−1

δ (z) ∈ H1 ((0, T0)× (0, L)) ,
∂xtφ ∈ L2 ((0, T0)× (0, L)) .

4 Existence of a solution for the regularized problem (24)-
(26) for all times and uniform L∞ bounds

Let us prove that T0 = T. First we test (22) by Φδ (φ)− Φδ (φg (t)) . We have

t∫

0

L∫

0

∂τφΦδ (φ) dxdτ +

t∫

0

L∫

0

D (φ) ∂xφ∂xΦδ (φ) dxdτ+

t∫

0

L∫

0

D (φ) (|φ|+ δ)
B

∂x

(
e−m min{|φ|,1/δ}∂τφ

)
∂xΦδ (φ) dxdτ =

t∫

0

L∫

0

∂τφΦδ (φg) dxdτ

and it follows that

L∫

0




φ(t)∫

0

Φδ (ξ) dξ


 dx +

t∫

0

L∫

0

1
2B

∂τ

(
e−m min{|φ|,1/δ}∂xφ

)2

dxdτ+

t∫

0

L∫

0

D (φ)Φ′δ (φ) (∂xφ)2 dxdτ =

L∫

0

φ (t)Φδ (φg(t)) dx−
t∫

0

L∫

0

φ∂τΦδ (φg) dxdτ

and we get as before
‖∂xφ‖L∞(0,t;L2(0,L)) ≤ C (58)

This estimate implies the boundedness of φ. We note that C does not depend on the smoothing of
D at φ = φc.

Next we test (22) by
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e−m min{|φ|,1/δ}∂tφ− e−m min{|φg|,1/δ}∂tφg

and we get

t∫

0

L∫

0

(∂τφ)2 e−m min{|φ|,1/δ}dxdτ +

t∫

0

L∫

0

D (φ) ∂xφ∂x

(
e−m min{|φ|,1/δ}∂tφ

)
dxdτ+

t∫

0

L∫

0

D (φ) (|φ|+ δ)
2B


∂xτ

φ∫

0

e−m min{|ξ|,1/δ}dξ




2

dxdτ =

t∫

0

L∫

0

∂τφ e−m min{|φg|,1/δ}∂τφgdxdτ

and as before, by estimating the second and the fourth term and after using (58), we conclude that

‖∂τφ‖L2((0,t)×(0,L)) ≤ C (59)
∥∥∥∥∥∥
∂xτ

φ∫

0

e−m min{|ξ|,1/δ}dξ

∥∥∥∥∥∥
L2((0,t)×(0,L))

≤ C (60)

and from this it follows that
‖∂xτφ‖L2((0,t)×(0,L)) ≤ C (61)

Therefore we arrive at the following theorem

Theorem 9 Let φg ∈ H1 (0, T ).Then for all T > 0 there exists a weak solution φ ∈ H1 ((0, T )× (0, L)) ,
∂xtφ ∈ L2 ((0, T )× (0, L)) for the variational formulation (22) of the problem (8), (12), (19) and
(20).

We conclude this section by establishing uniform L∞-bounds for φ. we have

Proposition 10 Let φg ∈ H1(0, T ) and φg ≥ 0. Then any weak solution φ of the problem (12), (8),
(19) and (20), obtained in Theorem 9, satisfies φ(x, t) ≥ 0, a.e. on QT .

Proof. Let a− = − inf {a, 0} and a+ = sup {a, 0} . Then a = a+−a− and Φδ

(
(φg)−

)
= Φδ (0) = 0.

We test (22) by Φδ (φ−) . Note that Φδ (φ−)|x=0 = 0 and Φδ (φ−) ≥ 0. Then we have

t∫

0

L∫

0

(∂τφ)Φδ (φ−) dxdτ +

t∫

0

L∫

0

D (φ) ∂xφ∂xΦδ (φ−) dxdτ+

t∫

0

L∫

0

D (φ) (|φ|+ δ)
B

∂x

(
e−m min{|φ|,1/δ}∂tφ

)
Φ′δ (φ−) ∂xφ−dxdτ = 0.

Since φ−|t=0 = 0, φ+φ− = 0 and |φ|φ− = φ2
− we get
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L∫

0




φ−(x,t)∫

0

Φδ (ξ) dξ


 dx +

t∫

0

L∫

0

D (φ−)Φ′δ (φ−) (∂xφ−)2 dxdτ+

L∫

0

D (φ) (|φ|+ δ)
2B

(
e−m min{|φ|,1/δ}∂xφ−

)2

(t) dx = 0

It follows that ∂xφ− = 0 and φ−|x=0 = 0 and therefore φ− = 0 and consequently φ = φ+ ≥ 0.

Proposition 11 Let φg ∈ H1(0, T ), φg ≥ 0 and ∂tφg ≥ 0 a.e. on (0, T ). Then any weak solution
φ of the problem ((8), 12), (19) and (20), obtained in Theorem 9, satisfies φg(t) ≥ φ(x, t), a.e. on
QT .

Proof. Let G(z) =
∫ z

0

exp{−m min{ξ, 1/δ}} dξ , z ≥ 0. We test (22) by (G (φ)−G (φg))+ . Note

that (G (φ)−G (φg))+
∣∣∣
x=0

= 0. Then we have

t∫

0

L∫

0

∂τφ (G (φ)−G (φg))+ dxdτ +

t∫

0

L∫

0

D (φ) ∂xφ∂x (G (φ)−G (φg))+ dxdτ+

t∫

0

L∫

0

D (φ) (|φ|+ δ)
B

∂x

(
e−m min{|φ|,1/δ}∂tφ

)
∂x (G (φ)−G (φg))+ dxdτ = 0. (62)

Note that

∂τφ (G (φ)−G (φg))+ = ∂τ

( ∫ φ

0

(G (ξ)−G (φg))+ dξ
)

+ G′(φg)∂tφg (φ− φg)+ (63)

and
D (φ) (|φ|+ δ)

B
∂t∂xG(φ)∂x (G (φ)−G (φg))+ =

∂t

(D (φ) (|φ|+ δ)
2B

(∂x (G (φ)−G (φg))+)2
)− (∂x (G (φ)−G (φg))+)2∂t

(D (φ) (|φ|+ δ)
2B

)
(64)

Then using the monotonicity of φg and G we obtain from (62),(63) and (64), the following inequality
is found

L∫

0

( ∫ φ(x,t)

0

(G (ξ)−G (φg))+ dξ
)

dx +

t∫

0

L∫

0

D (φ)
G′ (φ)

(
∂x (G (φ)−G (φg))+

)2

dxdτ+

L∫

0

D (φ) (|φ|+ δ)
2B

(∂x (G (φ)−G (φg))+)2 dx ≤
t∫

0

L∫

0

(∂x (G (φ)−G (φg))+)2∂t

(D (φ) (|φ|+ δ)
2B

)
dxdτ.

Since ∂t

(D (φ) (|φ|+ δ)
2B

) ∈ L2(0, T ;L∞(0, L)), we apply Gronwall’s lemma and conclude that (G (φ)

−G(φg))+ = 0, from which it follows that G (φ) ≤ G(φg). Inversion of this equation leads to
φ(x, t) ≤ φg (t) a.e. on QT .
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Proposition 12 Let φg ∈ H1(0, T ) and let us suppose in addition that there are constants α > 0
and C0 > 0 such that

φg(t) ≥ C0t
α, ∀t ∈ [0, T ]. (65)

Then any weak solution φ of the problem (12), (8), (19) and (20), obtained in Theorem 9, satisfies
φ(x, t) ≥ C0t

α, a.e. on QT .

Proof. The proof follows the lines of Proposition 11. Here we test (22) by (G (C0t
α)−G (φ))− .

Note that (G (C0t
α)−G (φ))− |x=0 = 0. Then as in the proof of Proposition 11 we have

t∫

0

L∫

0

∂τφ (G (C0t
α)−G (φ))− dxdτ +

t∫

0

L∫

0

D (φ) ∂xφ∂x (G (C0t
α)−G (φ))− dxdτ+

t∫

0

L∫

0

D (φ) (|φ|+ δ)
B

∂x

(
e−m min{|φ|,1/δ}∂tφ

)
∂x (G (C0t

α)−G (φ))− dxdτ = 0. (66)

Note that

G(φ) = G(C0t
α)− (G (C0t

α)−G (φ))+ + (G (C0t
α)−G (φ))− ; (67)

∂τφ (G (C0τ
α)−G (φ))− =

∂τG(C0τ
α)

G′(φ)
(G (C0τ

α)−G (φ))−+

1
2G′(φ)

∂τ (G (C0τ
α)−G (φ))2− ≥

1
2

em min{φ,1/δ} ∂τ (G (C0τ
α)−G (φ))2− (68)

and
D (φ) (|φ|+ δ)

B
∂t∂xG(φ) ∂x (G (C0t

α)−G (φ))− =

∂t

(D (φ) (|φ|+ δ)
2B

(∂x (G (C0t
α)−G (φ))−)2

)− (∂x (G (C0t
α)−G (φ))−)2∂t

(D (φ) (|φ|+ δ)
2B

)
(69)

Then using the monotonicity of G we obtain from (66),(68) and (69), the following inequality

L∫

0

(G (C0t
α)−G (φ))2−
2G′(φ)

dx +

t∫

0

L∫

0

D (φ)
G′ (φ)

(
∂x (G (C0τ

α)−G (φ))−
)2

dxdτ+

L∫

0

D (φ) (|φ|+ δ)
2B

(∂x (G (C0t
α)−G (φ))−)2 dx ≤

t∫

0

L∫

0

(∂x (G (C0τ
α)−G (φ))−)2∂τ

1
2G′(φ)

dxdτ

+

t∫

0

L∫

0

(∂x (G (C0τ
α)−G (φ))−)2∂τ

(D (φ) (|φ|+ δ)
2B

)
dxdτ

Since ∂t

(D (φ) (|φ|+ δ)
2B

) ∈ L2(0, T ; L∞(0, L)), we apply Gronwall’s lemma and conclude that(
G (C0τ

α) −G (φ)
)
− = 0, from which it follows that G (φ) ≥ G(C0t

α). Inversion of G leads to
φ(x, t) ≥ C0t

α a.e. on QT .

Theorem 13 Let φg ∈ H1 (0, T ) , A0 = max
0≤t≤T

φg(t), A0 ≥ φg ≥ C0t
α, α > 1 and ∂tφg ≥ 0.

Then there exists a weak solution φ, C0t
α ≤ φ (x, t) ≤ φg(t), ∂xtφ ∈ L2 ((0, T )× (0, L)) , φ ∈
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H1 ((0, T )× (0, L)) , for problem (and (8, 19), (20) and (12) ).By choosing δ < 1/A0, we can replace
e−m min{|φ|,1/δ} by e−mφ and |φ|+ δ by φ + δ.

If we drop the monotonicity of φg, than we have a weaker result: there exists a weak solution φ,
C0t

α ≤ φ (x, t) ≤ A0, ∂xtφ ∈ L2 ((0, T )× (0, L)) , φ ∈ H1 ((0, T )× (0, L)) , for problem (19), (20),
(12) and (8).

5 Existence for the problem (7), (8), (11), and (12)

It remains to pass to the limit δ → 0. Let h (ξ) = e−m min{ξ,Ao} , ξ ≥ 0. We have existence for the
system (22)-(23), i.e. for every g ∈ L2(0, T ; V ), V =

{
g ∈ H1 (0, L) |g (0) = 0

}
, we have

T∫

0

L∫

0

∂tφδ gdxdt +

T∫

0

L∫

0

D (φδ)
{

∂xφδ +
1
B

(φ + δ) ∂x (h (φδ) ∂tφδ)
}

∂xgdxdt = 0 (70)

φδ|x=0 = φg (t) and φδ|t=0 = 0 (71)

and we want to pass to the limit δ → 0.
Let

Ψ′δ (ξ) =
h (ξ)

D (ξ) (ξ + δ)
, ξ ≥ 0 (72)

and

Ψδ (φ) =





φ∫

0

1
ξ + δ

(
h (ξ)
D (ξ)

− h (0)
D (0)

)
dξ +

h (0)
D (0)

log (φ + δ) for φ ≤ φc

Ψδ (φc) +

φ∫

φc

h (ξ)
D (ξ)

1
ξ + δ

dξ for φ > φc

(73)

It should be noted that Ψδ (0) = h(0)
D(0) log δ < 0 which would cause some complications.

Theorem 14 Let α > 1, C0, A0 positive constants and

φg ∈ H1 (0, T ) , C0t
α ≤ φg ≤ Ao and log φg ∈ L2 (0, T ) . (74)

Then problem (7), (8), (11) and (12) has at least one weak solution φ ∈ H1 ((0, T )× (0, L)) , such
that

√
φ ∂x

(
e−mφ∂tφ

) ∈ L2 ((0, T )× (0, L)) and C0t
α ≤ φ ≤ Ao.

Proof.
1. STEP. (A priori estimates uniform in δ.) We test (70) by Ψδ (φδ)−Ψδ (φg) and get

t∫

0

L∫

0

∂tφδ Ψδ (φδ) dxdτ +

t∫

0

L∫

0

h (φδ)
φδ + δ

(∂xφδ)
2
dxdτ+

+
1
B

t∫

0

L∫

0

D (φδ) (φδ + δ) ∂t (h (φδ) ∂xφδ)
h (φδ) ∂xφδ

D (φδ) (φδ + δ)
dxdτ =

t∫

0

L∫

0

∂tφδ Ψδ (φg) dxdτ
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and from this

L∫

0

( φδ(t)∫

0

Ψδ (ξ) dξ+
1

2B
(h (φδ) ∂xφδ)

2
)
dx+

t∫

0

L∫

0

h (φδ)
φδ + δ

(∂xφδ)
2
dxdτ =

t∫

0

L∫

0

∂tφδ Ψδ (φg) dxdτ. (75)

In order to get an useful estimate we should find a bound for the first term on the left hand side

of (75). First we note that

φδ∫

0

ξ∫

0

1
η + δ

(
h (η)
D (η)

− h (0)
D (0)

)
dηdξ defines a continuous function of φδ.

Since φδ takes values between 0 and Ao, it is bounded independently of δ. Hence

|
L∫

0

φδ(t)∫

0

Ψδ (ξ) dξdx| ≤
∫ L

0

h(0)
D(0)

|{φδ + δ} log{φδ + δ} − φδ − δ log δ| dx + C (76)

Next (φδ (t) + δ) log (φδ (t) + δ)−φ (t)−δ log δ takes value zero at t = 0. It is a continuous function of

φδ. Obviously |(φ (t) + δ) log (φ (t) + δ)− φ (t)− δ log δ| ≤ max
{

1− δ + δ log δ, (Ao + δ) log (Ao + δ)

−Ao − δ log δ

}
and it is uniformly bounded with respect to δ.

With (76), (75) leads to

t∫

0

L∫

0

h (φδ)
φδ + δ

(∂xφδ)
2
dxdτ ≤ C +

∣∣∣∣∣∣

t∫

0

L∫

0

∂tφδ Ψδ (φg) dxdτ

∣∣∣∣∣∣
, (77)

Next we test (70) by h (φδ) ∂tφδ − h (φg) ∂tφg and get

t∫

0

L∫

0

h (φδ) (∂tφδ)
2

dxdτ +

t∫

0

L∫

0

D (φδ) ∂xφδ∂x (h (φδ) ∂xφδ) dxdτ+

+
1
B

t∫

0

L∫

0

D (φδ) (φδ + δ) (∂x (h (φδ) ∂xφδ))
2
dxdτ =

t∫

0

L∫

0

∂tφδ h (φg) ∂tφgdxdτ

and from this

t∫

0

L∫

0

h (φδ) (∂tφδ)
2

dxdτ +
1
B

t∫

0

L∫

0

D (φδ) (φδ + δ) (∂x (h (φδ) ∂xφδ))
2
dxdτ ≤

B

t∫

0

L∫

0

D (φδ)
φδ + δ

(∂xφδ)
2
dxdτ +

t∫

0

L∫

0

h2 (φg)
h (φδ)

(∂tφg)
2
dxdτ. (78)
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Let hmin = e−mAo . Then inserting (77) into (78) yields

t∫

0

L∫

0

h (φδ) (∂tφδ)
2

dxdτ +
1
B

t∫

0

L∫

0

D (φδ) (φδ + δ) (∂x (h (φδ) ∂tφδ))
2
dxdτ ≤ C+

BDr

hmin

∣∣∣∣∣∣

t∫

0

L∫

0

∂tφδΨδ (φg) dxdτ

∣∣∣∣∣∣
+

t∫

0

L∫

0

h2 (φg)
h (φδ)

(∂tφg)
2
dxdτ ≤ C+

1
2

t∫

0

L∫

0

h (φδ) (∂tφδ)
2

dxdτ +
B2 (Dr)

2

2h3
min

‖Ψδ (φg)‖2
L2((0,t)×(0,L))

+
1

hmin

t∫

0

L∫

0

(∂tφg)
2

dxdτ.

2. STEP. (Weak and strong compactness) From the above a priori estimate and assumptions (74)
on φg, we conclude that

‖∂tφδ‖
L2((0,T )×(0,L))

+
∥∥∥∥

1√
φδ + δ

∂xφδ

∥∥∥∥
L2((0,T )×(0,L))

≤ C (79)

∥∥∥
√

φδ + δ∂x (h (φδ) ∂tφδ)
∥∥∥

L2((0,T )×(0,L))

≤ C (80)

Hence there is a φ ∈ H1 ((0, T )× (0, L)) and a subsequence {φδ} , denoted by the same subscripts,
such that

φδ → φ strongly in L2 ((0, T )× (0, L)) and a.e. on (0, T )× (0, L) (81)

∂tφδ ⇀ ∂tφ weakly in L2 ((0, T )× (0, L)) (82)

∂xφδ ⇀ ∂xφ weakly in L2 ((0, T )× (0, L)) (83)

With the part of the flux containing the second order operator situation is more complicated. Ob-
viously, there is F ∈ L2 ((0, T )× (0, L)) such that

√
φδ + δ ∂xt

φδ∫

0

h (ξ) dξ ⇀ F weakly in L2 ((0, T )× (0, L)) (84)

Using the lower bound φδ ≥ C0t
α, we get from the estimate (80) and convergence (81)

∂xt

φδ∫

0

h (ξ) dξ ⇀ ∂xt

φ∫

0

h (ξ) dξ, weakly in L2 ((0, T )× (0, L)) (85)

The convergences (81) and (85) imply that F in (84) is given by F =
√

φ ∂xt

φ∫

0

h (ξ) dξ.
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3. STEP. (passing to the limit) Consequently for every g ∈ L2(0, T ; V ) we have

T∫

0

L∫

0

∂tφδ g dxdt →
T∫

0

L∫

0

∂tφ g dxdt for δ → 0 (86)

T∫

0

L∫

0

D (φδ) ∂xφδ ∂xgdxdt →
T∫

0

L∫

0

D (φ) ∂xφ ∂xg dxdt for δ → 0 (87)

T∫

0

L∫

0

1
B

D (φδ) (φδ + δ) ∂x (h (φδ) ∂tφδ) ∂xg dxdt →
T∫

0

L∫

0

1
B

D (φ) φ ∂x (h (φ) ∂tφ) ∂xg dxdt. (88)

Hence we conclude that φ satisfies the system (7), (8), (11) and (12).
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