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Numerical solution of singularly perturbed

convection-diffusion-reaction problems with two small

parameters

Pratibhamoy Das ∗ Volker Mehrmann ∗

January 6, 2016

Abstract

This paper discusses the numerical solution of 1-D convection-diffusion-reaction prob-
lems that are singularly perturbed with two small parameters using a new mesh-adaptive
upwind scheme that adapts to the boundary layers. The meshes are generated by the
equidistribution of a special positive monitor function. Uniform, parameter independent
convergence is shown and holds even in the limit that the small parameters are zero. Nu-
merical experiments are presented that illustrate the theoretical findings, and show that
the new approach has better accuracy compared with current methods.

Key words: Parabolic partial differential equation, convection-diffusion-reaction prob-
lem, upwind scheme, adaptive mesh, mesh equidistribution, two parameter singular pertur-
bation problem, uniform convergence.
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1 Introduction

The numerical solution of singularly perturbed perturbed convection-diffusion-reaction is an
important problem in many applications [20, 21]. The presence of small perturbation pa-
rameters makes the numerical analysis difficult for these problems, see e.g. [6, 22, 27, 28].
To obtain efficient methods, adaptive mesh generation in finite element or finite difference
methods is necessary, since for singularly perturbed problems boundary layers arise in the
solution that can only be resolved by very fine meshes in these layers. Singular perturbation
problems often have as limiting case differential-algebraic equations, which require consis-
tency of the boundary conditions to avoid jumps in the solution. For differential-algebraic
equations the theoretical and numerical analysis have been studied in detail in recent years,
see e.g. [3, 13, 19]. In order to adapt to the boundary layers, the number of mesh points has to
proportional to the inverse power of perturbation parameters. Hence, to avoid uniformly fine
meshes in many approaches, see e.g. [4, 16], the use of a priori refined meshes is suggested to
capture the solution behavior in the boundary layers numerically. For steady state problems,
see e.g. [16, 18, 24], the a priori defined meshes lead to a successful approach even for prob-
lems involving two singular perturbation parameters. However, if a priori information about
the solution is not available, then an automatically generated adaptive mesh is desirable.
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In this paper we propose an adaptive finite difference method for the numerical solution
of 1-D parabolic convection-diffusion-reaction initial-boundary value problems with two small
parameters, where a priori information about the solution is not needed. The space adaptive
mesh within the numerical integration of the dynamics is constructed by moving a fixed
number of mesh points in a way which can automatically detect the layers.

We consider as a model problem the following 1-D singularly perturbed initial-boundary-
value problem (IBVP) on a domain Ω = Ωx × (0, T ] with Ωx = (0, 1),

∂u

∂t
− ε

∂2u

∂x2
− µ b(x, t)

∂u

∂x
+ c(x, t)u = f(x, t), (x, t) ∈ Ω,

u(x, 0) = u0(x), x ∈ Ωx, u(0, t) = u(1, t) = 0, t ∈ [0, T ], (1.1)

and we use the abbreviation

Lu(x, t) := −ε uxx − µ b(x, t)ux + c(x, t)u, (1.2)

where uxx =
∂2u

∂x2
, ux =

∂u

∂x
, and ut =

∂u

∂t
.

Here 0 ≤ ε ≪ 1 and 0 ≤ µ ≪ 1 are two small parameters, and the coefficient functions
b(x, t), c(x, t) and f(x, t) are assumed to be sufficiently smooth and to satisfy constraints
β1 > b(x, t) > β2 > 0 and c(x, t) ≥ 1 on the closure Ωx = [0, 1]. To simplify our analysis,
we assume that the parameters ε and µ satisfy the relation µ2 ≤ ε, but similar results
can be obtained without this extra assumption. Under sufficient smoothness and suitable
compatibility conditions on the data, the IBVP (1.1) has a unique solution u(x, t), which
exhibits boundary layers in the neighborhood of both spacial boundaries x = 0 and x = 1,
see [16].

For the adaptive mesh generation we will employ the idea of equidistribution, see e.g. [15].
A space-mesh Ωn

x ≡ {0 = xn0 < xn1 < · · · < xnM = 1} in the n-th time-step of a space-time
finite-difference method is said to be equidistributed, if∫ xn

m

xn
m−1

Φ
(
s, u(s, tn)

)
ds =

1

M

∫ 1

0
Φ
(
s, u(s, tn)

)
ds, m = 1, . . . ,M, (1.3)

where Φ
(
s, u(s, t)

)
> 0 is a given monitor function. Mesh equidistribution can be viewed as

a mapping xn = xn(ξ) from a computational coordinate ξ ∈ [0, 1] to the physical coordinate
xn ∈ Ωx, defined by ∫ xn(ξ)

0
Φ
(
s, u(s, tn)

)
ds = ξ

∫ 1

0
Φ
(
s, u(s, tn)

)
ds. (1.4)

Adaptive moving mesh methods based on the idea of equidistribution were proposed in [2] for
steady state singularly perturbed convection-diffusion problems and [14] for non-stationary
partial differential equations. Parabolic singularly perturbed initial boundary problems which
only involve a diffusion parameter were considered in [11, 12, 22, 23], where several kind of
numerical techniques were developed for uniform convergence. In [11, 12] a curvature based
and in [25], an arc-length based monitor function is suggested to generate the boundary
layer-adapted meshes for parabolic problems. Numerical methods using two-step backward
difference time discretization can be found in [7, 8, 9], see also [30] for a detailed survey on
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time dependent singularly perturbed problems and appropriate efficient numerical methods.
In the present work, we consider a monitor function for a parabolic initial-boundary-value
problem with small convection as well as diffusion parameters that generalizes the work of
[11].

The outline of the paper is as follows. Section 2 introduces a decomposition of the analyt-
ical solution into its regular (interior) and singular (layer) components, and provides a priori
bounds for the solution and its derivatives. The fully discrete problem and the behavior of
the equidistributed meshes corresponding to (1.1) are also addressed. In Section 3 we show
the first-order, parameter uniform, space-time convergence and derive a stability estimate for
the discrete problem. Finally, in Section 4 we present several numerical experiments that
illustrate the theoretical results.

Throughout this paper C denotes a generic positive constant independent of ε, µ, N , and
M , which can take different values at different places. We use ||ϕ(x)||D = maxη∈D |ϕ(η)| to
define the infinity norm for a function ϕ defined on a domain D. When the domain is obvious,
or of no particular significance, we simply use || · || instead of || · ||D. For any domain Ω, we
denote Ω as the closure of Ω and by ∂Ω its boundary. For a function U that is defined on
a discrete mesh x0, . . . , xM in Ωn

x, we define U as the piecewise linear interpolant, i.e. U is
continuous on Ωn

x, and linear on each [xni−1, x
n
i ] and satisfies U(xi) = Ui for each i = 0, · · · ,M .

2 The space-time continuous problem

In this section, we recall some analytical properties of the solution u(x, t) of (1.1). For
this, we decompose the analytic solution u(x, t) into two components, a regular component
v(x, t) which characterizes the solution behavior outside the boundary layers, and a singular
component w(x, t) which characterizes the solution behavior inside the boundary layers such
that u(x, t) = v(x, t) + w(x, t) where the regular component v(x, t) satisfies

∂v

∂t
(x, t) + Lv = f, v(x, 0) = u(x, 0), for (x, t) ∈ Ωx × (0, T ], (2.1)

with the required boundary conditions at the end points. We further decompose the singular
component w into the sum of its left and right singular part w = wl + wr, associated with
left and right boundary layers, such that

∂wl

∂t
(x, t) + Lwl(x, t) = 0, (x, t) ∈ Ω,

wl(x, 0) = 0, wl(1, t) = 0, wl(0, t) = u(0, t)− v(0, t), (2.2)

and

∂wr

∂t
(x, t) + Lwr(x, t) = 0, (x, t) ∈ Ω,

wr(x, 0) = 0, wr(0, t) = 0, wr(1, t) = u(1, t)− v(1, t). (2.3)

For the analysis, we first perform a semi-discretization of the parabolic IBVP (1.1) in time
by using the implicit Euler method with uniform time-steps ∆t = T/N in the time-interval
[0, T ]. This gives a time-mesh ΩN

t ≡ {tn = n∆t, n = 0, · · · , N}. Note that the presented
results are easily extended to other one-step time discretization methods including those with
variable time-mesh.
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In the (n + 1)-st time step, the semi-discrete solution un+1(x) of the IBVP (1.1) will
satisfy

u0 = u(x, 0) = u0(x), x ∈ Ωx,

1

∆t
[un+1(x)− un(x)]− ε un+1

xx (x)− µ bn+1(x)un+1
x (x) + cn+1(x)un+1(x) = f(x, tn+1),

un+1(0) = un+1(1) = 0, (2.4)

where bn+1(x) := b(x, tn+1) and c
n+1(x) := c(x, tn+1). We can rewrite (2.4) as a differential

equation in the space variable x,

u0 = u(x, 0) = u0(x), x ∈ Ωx,

−ε un+1
xx (x)− µ bn+1(x)un+1

x (x) + an+1(x)un+1(x) = gn+1(x),

un+1(0) = un+1(1) = 0, (2.5)

where an+1(x) := cn+1(x) + 1/∆t and gn+1(x) := f(x, tn+1) + un(x)/∆t.
It is well-known [12] that the implicit Euler method ensures the stability of the solution

of (2.5) and if we denote the local truncation error in the (n + 1)-st time-step at a point
(x, tn+1) ∈ Ωx × (0, T ] by τn+1(x) := u(x, tn+1) − ũn+1(x), where ũn+1(x) is the numerical
solution of

−ε ũn+1
xx (x)− µ bn+1(x)ũn+1

x (x) + an+1(x)ũn+1(x) = gn+1(x), x ∈ Ωx,

ũn+1(0) = ũn+1(1) = 0, (2.6)

then we have the following consistency result.

Lemma 2.1 [16] The solution u(x, t) of (1.1) and its time derivative ut(x, t) are bounded in
Ω, independent of ϵ, µ, N , M . The local error τn+1(x) = u(x, tn+1)− ũn+1(x) satisfies

∥τn+1∥ ≤ C(∆t)2,

and the global error satisfies

max
n+1≤T/∆t

∥u(x, tn+1)− ũ(n+1)(x)∥ ≤ C∆t,

with a constant C that is independent of ε, µ, x, and t.

Lemma 2.1 implies that the semi-discretized scheme is first-order uniformly convergent in
time.

For the further analysis, we use the characteristic equation

−εψ2(x)− µ bn+1(x)ψ(x) + an+1(x) = 0

associated with (2.6), which has two real roots ψl(x) < 0 and ψr(x) > 0. The quantity ψl(x)
is associated with the boundary layer at x = 0 and ψr(x) with the boundary layer at x = 1.
Let us define the bounds

Ψl := −max
x∈Ωx

ψl(x) > 0 and Ψr := min
x∈Ωx

ψr(x) > 0.

The following lemma gives upper bounds for the regular and singular components of the
solution.

4



Lemma 2.2 [16] The numerical solution ũn+1(x) of (2.5) can be decomposed, as in (2.1)–
(2.2), into a component ṽ(x) associated with the regular part, as well as left and right com-
ponents w̃l(x) and w̃r(x), associated with the boundary layers, respectively, such that

|ṽk(x)| ≤ C, |w̃k
l (x)| ≤ CΨk

l exp(−pΨlx), and |w̃k
r (x)| ≤ CΨk

r exp(−pΨr(1− x)),

with 0 ≤ k ≤ q, for a prescribed q and a fixed number 0 < p < 1. In particular, one has the
following derivative bound⏐⏐⏐⏐∂kũ(x)∂xk

⏐⏐⏐⏐ ≤ C
(
1 + Ψk

l exp(−pΨlx) + Ψk
r exp(−pΨr(1− x))

)
, for 0 ≤ k ≤ q,

where the constant C is independent of ε, µ.

2.1 Finite difference discretization in space

In this subsection we consider the finite difference approximation of (1.1) on a nonuniform
space-mesh Ωn

x ≡ {0 = xn0 < xn1 < · · · < xnM = 1}, where n denotes the time level and the
step-sizes are defined by hnm+1 = xnm+1 − xnm, m = 0, · · · ,M − 1. For a discrete space-time
mesh function V n

m := v(xm, tn), we introduce the central difference operator

∆2
xV

n
m :=

(D+
x V

n
m −D−

x V
n
m)

(hnm + hnm+1)/2
, where D+

x V
n
m :=

V n
m+1 − V n

m

hnm+1

and D−
x V

n
m =

V n
m − V n

m−1

hnm
.

(2.7)
For problem (2.4) we use an upwind scheme of the form

(I +∆t LM )Un+1
m = Un

m +∆t f(xn+1
m , tn+1), m = 1, · · ·M − 1,

Un+1
0 = Un+1

M = 0, (2.8)

where LM is the discrete operator associated to the continuous operator L in (1.2), given by

LMUn+1
m ≡ −ε∆2

xU
n+1
m − µ bn+1

m D+
x U

n+1
m + cn+1

m Un+1
m , (2.9)

with
bn+1
m := b(xn+1

m , tn+1), c
n+1
m := c(xn+1

m , tn+1). (2.10)

We again rearrange (2.9) to the form

r−m,n+1U
n+1
m−1 + r∗m,n+1U

n+1
m + r+m,n+1U

n+1
m+1 = gnm, m = 1, · · ·M − 1,

Un+1
0 = Un+1

M = 0, (2.11)

where the coefficients are given by

r−m,n+1 :=
−2ε∆t

hn+1
m (hn+1

m + hn+1
m+1)

, r+m,n+1 :=
−2ε∆t

hn+1
m+1(h

n+1
m + hn+1

m+1)
− µ∆tbn+1

m

hn+1
m+1

,

r∗m,n+1 := 1 + ∆t cn+1
m − r−m,n+1 − r+m,n+1, g

n
m := U(xn+1

m , tn) + ∆t f(xn+1
m , tn+1).(2.12)

where U is the linear interpolant of U .
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Similarly, the discretized problem for the regular component will be constructed via

(1 + ∆t cn+1
m )V n+1

m = V (xn+1
m , tn) + ∆t f(xn+1

m , tn+1), m = 1, · · ·M − 1,

V
0
(x) = 0, (2.13)

where V is the linear interpolant of V.
From the a priori analysis [24] it can be observed that the boundary layers arise from the

left and right singular components of the solution. This motivates us to consider a particular
monitor function that involves derivatives of the layer parts, and is given by

Φ(x, u(x, tn+1)) = αn+1 + |wxx(x, tn+1)|1/2. (2.14)

Here, αn+1 is a positive constant that is introduced so that the mesh does not degenerate
inside the boundary layers. Similar monitor functions involving the derivatives of a singular
component of the solution have been introduced also in convection dominated problems, see
e.g. [2, 5].

To approximate the second derivative wxx, we use the leading terms in the Taylor expan-
sion of w (see Lemma 2.2) which implies that

|wxx(x, tn+1)| ≈

⎧⎨⎩ κlΨ
2
l exp(−pΨlx), x ∈ [0, 1/2],

κrΨ
2
r exp(−pΨr(1− x)), x ∈ (1/2, 1],

where κl and κr are constants that are independent of ε, µ and x. Hence, we obtain an
approximation of the monitor function given∫ 1

0
|wxx(x, tn+1)|1/2 dx ≡ K ≈ 2p−1

(
|κl|1/2(1− exp(−pΨl/4) + |κr|1/2(1− exp(−pΨr/4)

)
.

Substituting this approximation of wxx(x, tn+1) into the mapping (1.4) defining the equidis-
tribution principle, for the left side of the interval with xn+1(ξ) ≤ 1/2, we obtain

ξ

(
αn+1

K
+ 1

)
= αn+1x

n+1(ξ)

K
+

2|κl|1/2

pK

[
1− exp

(
−pΨlx

n+1(ξ)

2

)]
, (2.15)

and for the right side of the interval with xn+1(ξ) ≥ 1/2, the mapping (1.4) leads to

(1− ξ)

(
αn+1

K
+ 1

)
= αn+1 (1− xn+1(ξ))

K
+

2|κr|1/2

pK

[
1− exp

(
−(1− xn+1(ξ))

2
pΨr

)]
.

(2.16)
Considering (1.4) as a mapping from the physical non-uniform coordinates {xn+1

m }Mm=0 to
the computational coordinates of a uniform meshes {ξn+1

m = m/M}Mm=0, from (2.15) for
xn+1
m ≤ 1/2 we obtain

αn+1xn+1
m

K
+Kl

[
1− exp

(
−pΨlx

n+1
m

2

)]
=
m

M

(
αn+1

K
+ 1

)
, (2.17)

and from (2.16) for xn+1
m ≥ 1/2, we obtain

αn+1(1− xn+1
m )

K
+Kr

[
1− exp

(
−(1− xn+1

m )pΨr

2

)]
=
(
1− m

M

)(αn+1

K
+ 1

)
, (2.18)
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where Kl = 2|κl|1/2/pK and Kr = 2|κr|1/2/pK.
From this construction, it is clear that the adaptively equidistributed mesh that is gen-

erated in this way will satisfy both the nonlinear algebraic equations (2.17) and (2.18). The
following lemma provides the structure of the mesh distribution and also presents a choice
for αn+1.

Lemma 2.3 Suppose that a nonuniform mesh is generated with αn+1 = K in (2.17) and
(2.18). Then the mesh points are distributed as

xn+1
zl

<
2

pΨl
ln(M) < xn+1

zl+1, x
n+1
zr−1 < 1− 2

pΨr
ln(M) < xn+1

zr ,

where zl, zr denote the integer parts of

Kl

2
(M − 1) +

2M ln(M)

pΨl
, M − 1

2

(
Kr(M − 1) +

2M ln(M)

pΨr

)
+ 1,

respectively.

Proof. The assertions follow by setting αn+1 = K and xn+1
m =

2

pΨl
ln(M) in (2.17), and

evaluating for m, and analogous for xn+1
m =

2

pΨr
ln(M) in (2.18).

The next lemma provides insight in the resulting mesh spacing.

Lemma 2.4 Inside the boundary layers, the mesh satisfies the bounds

Ψlh
n+1
m < C, m = 1, · · · , zl,

Ψrh
n+1
m < C, m = zr + 1, · · · ,M.

Proof. The bounds for the mesh spacing can be obtained by using upper and lower bounds
on the location of xn+1

m . Consider two points xn+1
m > xn+1

m and xn+1
m < xn+1

m . Then, from
(2.17) we obtain that xn+1

m satisfies

exp

(
−pΨlx

n+1
m

2

)
= 1− 2m

MKl

which implies that xn+1
m = − 2

pΨl
log

(
1− 2m

MKl

)
. Again, from (2.17) we have that xn+1

m

satisfies

exp

(
−pΨlx

n+1
m

2

)
− xn+1

m

Kl
≤ 1− 2m

MKl

which implies that

−pΨlx
n+1
m

2
≤ log

(
1− 2m

MKl
+
xn+1
m

Kl

)
.

Therefore,

xn+1
m ≥ − 2

pΨl
log

(
1− 1

Kl

(
2m

M
+

2

pΨl
log

(
1− 2m

MKl

)))
,

7



and, hence

hn+1
m < xn+1

m − xn+1
m−1

≤ 2

pΨl

[
log

(
1 +

2

MKl − 2m
+

2MK2
l

pΨl(MKl − 2m)
log

(
MKl

MKl − 2m+ 2

))]
≤ C

Ψl
.

The other bound for hn+1
m follows analogously.

One also obtains the following upper bound for the mesh spacing in the whole domain.

Lemma 2.5 The equidistribution of monitor function (2.14) generates a mesh that satisfies

hn+1
m ≤ CM−1, m = 1, · · · ,M.

Proof. It is easy to see that the monitor function (2.14), satisfies Φ(x, u(x, tn+1)) ≥ αn+1 =
K. Again, the estimates for the derivative of the solution in Lemma 2.2, imply that∫ 1

0
Φ(x, u(x, tn+1)) dx ≤ C1

with a constant C1 that is independent of ε, µ and n. Hence, the equidistribution principle
(1.3) leads to

αn+1hn+1
m ≤

∫ xn+1
m

xn+1
m−1

Φ(x, u(x, tn+1)) dx =
1

M

∫ 1

0
Φ(x, u(x, tn+1)) dx ≤ C1M

−1,

which implies that hn+1
m ≤ CM−1, with a constant C that is independent of ε and µ.

3 Convergence Analysis

In this section we derive the convergence analysis for the presented fully discrete scheme
applied to the IBVP (1.1) by using the Lax Equivalence Theorem [10] and showing that the
scheme is consistent and stable.

To obtain the error estimate for (2.8), consider first the difference equation

(I +∆tLM )Ũn+1
m = r−m,n+1Ũ

n+1
m−1 + r∗m,n+1Ũ

n+1
m + r+m,n+1Ũ

n+1
m+1 = g̃nm, m = 1, · · ·M − 1,

Ũn+1
0 = Ũn+1

M = 0, (3.1)

with r−m,n+1, r
+
m,n+1, and r

∗
m,n+1 as in (2.12), and g̃nm := u(xn+1

m , tn) + ∆t f(xn+1
m , tn+1). We

have the following lemma.

Lemma 3.1 If the difference operator LM defined in (2.9) satisfies the inequality

(I +∆t LM )Y n+1
m ≤ (I +∆t LM )Zn+1

m , 1 ≤ m ≤M − 1,

with Y n+1
0 ≤ Zn+1

0 and Y n+1
M ≤ Zn+1

M , then Y n+1
m ≤ Zn+1

m for 0 ≤ m ≤M , 0 ≤ n ≤ N − 1.
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Proof. The stiffness matrix associated with the discrete operator (I+∆tLM ) at every time
level tn+1 is an irreducibly diagonally dominant M-Matrix [26] and thus it has a nonnegative
inverse. As a consequence, the assertion follows from the monotonicity of the inverse of
(I +∆tLM ).

Lemma 3.1 also shows that the difference equation (3.1) has a unique solution in every
step.

For the error analysis, we again decompose the discrete solution Ũn
m of (3.1) into its

regular component Ṽ n
m and singular component W̃n

m associated to the boundary layers, so
that Ũn

m = Ṽ n
m + W̃n

m, where

(I +∆t LM )Ṽ n+1
m = v(xn+1

m , tn) + ∆t f(xn+1
m , tn+1), 1 ≤ m ≤M − 1, 0 ≤ n ≤ N − 1,

Ṽ n+1
0 = v(xn+1

0 , tn+1), Ṽ
n+1
M = v(xn+1

M , tn+1), (3.2)

and

(I +∆t LM )W̃n+1
m = w(xn+1

m , tn), 1 ≤ m ≤M − 1, 0 ≤ n ≤ N − 1,

W̃n+1
0 = w(xn+1

0 , tn+1), W̃
n+1
M = w(xn+1

M , tn+1). (3.3)

Hence, the local error can be calculated by evaluating the error of the regular and singular
component separately, and using the triangle inequality we obtain

|Ũn+1
m − ũn+1(xn+1

m )| ≤ |Ṽ n+1
m − ṽn+1(xn+1

m )|+ |W̃n+1
m − w̃n+1(xn+1

m )|.

In the following we denote the approximation error of the function g at x = xnm and t = tn
by τnm(g).

3.1 The error of the regular component

In this subsection we estimate the error of the solution in the regular component, i.e. outside
the boundary layers. The following lemma gives an estimate for the local errors of Ṽ n+1

m .

Lemma 3.2 The local error of the regular component Ṽ n+1
m satisfies

|Ṽ n+1
m − ṽn+1(xn+1

m )| ≤ CM−1, m = 1, · · · ,M − 1, n = 0, · · · , N − 1.

Proof. By the Peano kernel theorem [1], the local error of Ṽ n+1
m at time t = tn+1 can be

determined from

τn+1
m (Ṽ ) = (I +∆t LM )(ṽn+1(xn+1

m )− Ṽ n+1
m )

= − ε∆t

hn+1
m + hn+1

m+1

{
1

hn+1
m+1

∫ xn+1
m+1

xn+1
m

(s− xn+1
m+1)

2(
∂3

∂x3
ṽn+1)(s) ds

− 1

hn+1
m

∫ xn+1
m

xn+1
m−1

(s− xn+1
m−1)

2(
∂3

∂x3
ṽn+1)(s) ds

}

−∆t µ b(xn+1
m )

hn+1
m

∫ xn+1
m+1

xn+1
m

(s− xn+1
m )(

∂2

∂x2
ṽn+1)(s) ds.

9



Hence

|τn+1
m (Ṽ )| ≤ ε∆t

∫ xn+1
m+1

xn+1
m−1

| ∂
3

∂x3
ṽn+1(s)| ds+ β1∆t µ

∫ xn+1
m+1

xn+1
m

| ∂
2

∂x2
ṽn+1(s)| ds ≤ CM−1,

where the derivative bounds from Lemma 2.2 and the step-size bounds from Lemma 2.5
are used. Now, since by Lemma 3.1 the discrete operator (I + ∆tLM ) is invertible with
nonnegative inverse, we have

|Ṽ n+1
m − ṽn+1(xn+1

m )| ≤ CM−1, m = 1, · · · ,M − 1,

at time t = tn+1, where n = 0, · · · , N − 1 and C is independent of ε, µ.

3.2 The error in the singular component

In the following two lemmas the local error in the singular component W̃n+1
m associated with

the two boundary layers is analyzed.

Lemma 3.3 The singular component W̃n+1
m satisfies the error bound

|W̃n+1
m − w̃n+1(xn+1

m )| ≤ CM−1, m = kl, · · · , kr, n = 0, · · · , N − 1.

Proof. The analysis of the truncation error for the singular component W̃n+1
m yields

|τn+1
m (W̃ )| = |(I +∆t LM )(w̃n+1(xn+1

m )− W̃n+1
m )|

= |r−m,n+1w̃
n+1(xn+1

m−1) + r∗m,n+1w̃
n+1(xn+1

m ) + r+m,n+1w̃
n+1(xn+1

m+1)− (I +∆t LM )w̃(xn+1
m )|

≤ C

(
ε|| ∂

2

∂x2
w̃(x)||[xn+1

m−1,x
n+1
m+1]

+ µ || ∂
∂x
w̃(x)||[xn+1

m−1,x
n+1
m+1]

)

≤ C

{
exp

(
−pΨlx

n+1
m−1

)
, xn+1

m ≤ 1/2,

exp
(
−pΨr(1− xn+1

m+1)
)
, xn+1

m > 1/2,

where we have used our assumption that µ2 ≤ ε. Again, from (2.17) we have that

αn+1xn+1
zl−1

K
+Kl

[
1− exp

(
−pΨl

xn+1
zl−1

2

)]
=

2(zl − 1)

M
,

which implies that

exp

(
−pΨl

xn+1
zl−1

2

)
≤ 1

Kl

[
2

pΨl
log(M) +Kl −

1

M
(Kl(M − 1) +

2M

pΨl
log(M)) +

2

M

]
≤ CM−1,

by using Lemma 2.3. Therefore, for zl ≤ m and xn+1
m ≤ 1/2, we have

|τn+1
m,W̃

| ≤ C exp(−pΨlx
n+1
zl−1) = C

(
exp

(
− pΨlx

n+1
zl−1/2

))2 ≤ CM−1.

Hence, Lemma 3.1 implies that |W̃n+1
m − w̃n+1(xn+1

m )| ≤ CM−1, where C is independent of
ε, µ, M , and the mesh points xn+1

M .
The error analysis for zr ≥ m, xn+1

m > 1/2 can be carried out analogously.
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Lemma 3.4 The singular component W̃n+1
m satisfies the following estimate.

|W̃n+1
m − w̃n+1(xn+1

m )| ≤ CM−1, m = 1, · · · , zl − 1, zr + 1, · · · ,M − 1.

Proof. We only consider the left boundary layer, the proof for the right boundary layer is
analogous. A direct calculation using the Taylor series expansion shows that

τn+1
m,W̃

=
ε(hn+1

m )2(
∂3

∂x3
w̃n+1)(ξ1m)

3(hn+1
m + hn+1

m+1)
−
ε(hn+1

m+1)
2(
∂3

∂x3
w̃n+1)(ξ2m)

3(hn+1
m + hn+1

m+1)

+
µ

hn+1
m+1

∫ xn+1
m+1

xn+1
m

(s− xn+1
m )(

∂2

∂x2
w̃n+1(s)) ds.

Hence

|τn+1
m,W̃

| ≤ CΨ2
l

∫ xn+1
m+1

xn+1
m

exp(−pΨlx) dx

+Cµ

∫ xn+1
m+1

xn+1
m

|( ∂
2

∂x2
w̃n+1)| ds

where ξ1m ∈ (xn+1
m−1, x

n+1
m ) and ξ2m ∈ (xn+1

m , xn+1
m+1). Setting ΛΦ =

∫ 1

0
Φ(x, u(x, tn+1)) dx, then

we obtain

I1 := CΨ2
l

∫ xn+1
m+1

xn+1
m−1

exp(−pΨlx)dx

≤ CΨ2
l

∫ ξn+1
m+1

ξn+1
m−1

exp(−pΨlx(ξ)) ΛΦ

Ψ(x(ξ))
dξ = CΨ2

l

∫ ξn+1
m+1

ξn+1
m−1

exp(−pΨlx(ξ)) ΛΦ

αn+1 + |w̃ξξ|1/2
dξ

≤ CΨl

∫ ξn+1
m+1

ξn+1
m−1

exp(−pΨlx(ξ)/2) dξ ≤ CM−1Ψl exp(−pΨlx
n+1
m−1/2)(ξ

n+1
m+1 − ξn+1

m−1)

≤ CM−1Ψl exp(−pΨlx
n+1
m−1/2)

= CM−1Ψl exp(−pΨlx
n+1
m /2) exp(pΨlh

n+1
m /2).

By Lemma 2.4 we have that Ψlh
n+1
m ≤ C for m = 1, · · · , zl−1, and hence, exp(pΨlh

n+1
m /2) <

C, which implies that I1 ≤ CΨlM
−1 exp(−pΨlx

n+1
m /2). An analogous calculation shows that

I2 :=
∫ xn+1

m+1

xn+1
m

(s− xn+1
m )(

∂2

∂x2
w̃n+1(s)) ds ≤ CΨlM

−1 exp(−pΨlx
n+1
m /2).

Again

exp(−pΨlx
n+1
m /2) = exp

( m∑
k=1

−pΨlh
n+1
k /2

)
=

m∏
k=1

exp(−pΨlh
n+1
k /2) <

m∏
k=1

(1+pΨlh
n+1
k /2)−1,

since exp(−γ) < 1/(1+γ) for any positive real number γ. Set Sn+1
m :=

∏m
k=1(1+pΨlh

n+1
k /2)−1

with Sn+1
0 = 1, so that Ij ≤ CΨlM

−1Sn+1
m for j = 1, 2.

11



A straight calculation shows that

(I +∆tLN )Sn+1
m = r−m,n+1S

n+1
m−1 + rcm,n+1S

n+1
m + r+m,n+1S

n+1
m+1

= Sn+1
m

Ψlp

2 + pΨlh
n+1
m+1

[
−

pεΨlh
n+1
m+1

hn+1
m + hn+1

m+1

+ µbn+1
m

]
+ (1 + cn+1

m )Sn+1
m

≥ Sn+1
m

Ψlp

2 + pΨlh
n+1
m+1

[
µ

(
bn+1
m −

pbn+1
m hn+1

m+1

hn+1
m + hn+1

m+1

)
−
phn+1

m+1

√
ε cn+1

m

hn+1
m + hn+1

m+1

+

+cn+1
m

2 + pΨlh
n+1
m+1

pΨl

]
+ Sn+1

m

= Sn+1
m

Ψlp

2 + pΨlh
n+1
m+1

[µA1 +A2] + Sn+1
m ,

where A1 > 0 and

A2 = cn+1
m

2 + pΨlh
n+1
m+1

pΨl
−
phn+1

m+1

√
εcn+1

m

hn+1
m + hn+1

m+1

> −pcn+1
m

√
ε+

phn+1
m

√
εcn+1

m

hn+1
m + hn+1

m+1

+ cn+1
m

[
2 + pΨlh

n+1
m+1

pΨl

]
> 0,

since c(t, x) > 1 and 2 ≥ p2Ψl
√
ε for sufficiently small ε and µ. Therefore, we have

(I +∆tLM )Sn+1
m ≥ C

Sn+1
m pΨl

2 + pΨlh
n+1
m+1

[A1 +A2] ≥
C

max(2/pΨl, h
n+1
m+1)

Sn+1
m .

With the function λn+1
m = CM−1(1 + Sn+1

m ), for m = 0, · · · , zl − 1, zr + 1, · · · ,M , we have

(I +∆t LM )(w̃n+1(xn+1
m )− W̃n+1

m ) ≤ CΨlM
−1Sn+1

m

≤ CM−1(I +∆t LM )Sn+1
m

≤ (I +∆t LM )λn+1
m ,

with |w̃n+1(xn+1
m )− W̃n+1

m | = 0 < λn+1
m for m = 0,M , and |w̃n+1(xn+1

m )− W̃n+1
m | < CM−1 <

λn+1
m for m = zl − 1, zr + 1. Therefore, Lemma 3.1 implies that

|W̃n+1
m − w̃n+1(xn+1

m )| ≤ CM−1, m = 1, · · · , zl − 1, zr + 1, · · · ,M − 1,

which completes the proof.

Theorem 3.5 Let ũn+1 and Ũn+1 be the solutions of (2.5) and (3.1), respectively. Then, at
each time step the following estimate holds

|Ũn+1
m − ũn+1(xn+1

m )| ≤ CM−1, m = 1, · · · ,M,

where C is independent of ε, µ, M and the mesh points xn+1
m .
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Proof. The assertion follows from Lemmas 3.2–3.4 and the inequality

|Ũn+1
m − ũn+1(xn+1

m )| ≤ |Ṽ n+1
m − ṽn+1(xn+1

m )|+ |W̃n+1
m − w̃n+1(xn+1

m )|.

As a corollary we have the following estimate.

Corollary 3.6 Let u(x, tn+1) and U
n+1 be the solution of (1.1) and its fully discretized prob-

lem (2.8), respectively, in Ωn+1
x and in the (n+1)st time step tn+1 = (n+1)∆t. If we assume

that M−q ≤ C∆t with 0 < q < 1, then

|Ũn+1
m − ũn+1(xn+1

m )| ≤ C∆tM−1+q, m = 1, · · · ,m− 1. (3.4)

With the help of Corollary 3.6, we can prove the main theorem of this paper, which shows
that the solution of the fully discrete scheme (2.8) converges to the solution u(x, t) on the
final layer adapted mesh obtained by the equidistribution via the monitor function (2.14).

Theorem 3.7 Let u(x, tn+1) and {Un+1} be the solution of the IBVP (1.1) and its fully
discretized problem (2.8), respectively, in Ωn+1

x at the (n + 1)st time step tn+1 = (n + 1)∆t.
If we assume that M−q ≤ C∆t with 0 < q < 1, then the error of the fully discrete scheme in
each time step tn+1 satisfies

||Un+1
m − u(xn+1

m , tn+1)||I ≤ C(M−1+q +∆t), xn+1
m ∈ Ωn+1

x ,

where I is the index set {0, 1, · · · ,M}, || ||I denotes the maximum norm over all the indices
from I and C is independent of ε, µ, M and the mesh points xn+1

m .

Proof. At time step tn, let us define the error of the fully discrete scheme as En
m =

Un
m − u(xnm, tn), where m = 1, · · · ,M . Then, using (3.4) and Lemma 2.1 we obtain

||En
m||I ≤ ||Un

m − Ũn
m||I + ||Ũn

m − ũnm||I + ||ũnm − u(xnm, tn)||I (3.5)

≤ ||Un
m − Ũn

m||I + C∆t (M−1+q +∆t), (3.6)

The solution of the fully discrete problem is stable. Therefore, ||Un
m−Ũn

m||I ≤ C||U(xnm, tn−1)−
u(xnm, tn−1)||I , and, by setting δk(x) = (x− xn−1

k−1)/(x
n−1
k − xn−1

k−1), δk−1(x) = 1− δk(x) where

xn−1
k−1 ≤ xnm ≤ xn−1

k for some k, we have

||(u− U)(xnm, tn−1)||I
= ||u(xnm, tn−1)− (U(xn−1

k−1 , tn−1)δk−1(x
n
m) + U(xn−1

k , tn−1)δk(x
n
m))||I

≤ ||u(xnm, tn−1)−
(
u(xn−1

k−1 , tn−1)δk−1(x
n
m) + u(xn−1

k , tn−1)δk(x
n
m)
)
||I

+||(u− U)(xn−1
k−1 , tn−1)δk−1(x

n
m) + (u− U)(xn−1

k , tn−1)δk(x
n
m)||I

≤ ||u(xnm, tn−1)−
(
u(xn−1

k−1 , tn−1)δk−1(x
n
m) + u(xn−1

k , tn−1)δk(x
n
m)
)
||I + ||En−1

m ||I ,

(3.7)

Now, it is shown in [2] that the interpolation error is bounded by M−1, which implies
||u(xnm, tn−1) −

(
u(xn−1

k−1 , tn−1)δk−1(x
n
m) + u(xn−1

k , tn−1)δk(x
n
m)
)
||I ≤ C∆tM−1+q. Therefore,

we have the following recurrence relation

||En
m||I ≤ ||En−1

m ||+ C∆t(M−1+q +∆t), for m ∈ I,

from which the required result follows.

Remark 3.8 The described adaptive method and also the error estimates can also be used
to solve (1.1) in the case that ε = 0.
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4 Numerical Experiments

In this section we present several numerical experiments to illustrate the theoretical results,
derived in the previous section. The generation of the adaptive finite difference solution
requires two steps. First the equidistributed mesh and the corresponding solution have to be
determined by a mesh generation algorithm at each time step, and then the final mesh and
the final solution will be calculated using the solution at previous time steps.

4.1 Adaptive mesh generation algorithm

We use the following iterative algorithm to generate the layer adapted mesh by the equidis-
tribution of the monitor function (2.14). A similar algorithm was suggested for steady state
convection-diffusion type problems in [5, 17]. The convergence of this algorithm is addressed
in [29]. Here, our aim is to construct a mesh that solves the following equidistribution problem

Φn
mh

n
m =

1

N

N∑
j=1

Φn
j h

n
j , m = 1, · · · ,M,

where Φn
m is the discrete approximation of the monitor function Φ(x, u(x, tn)) in the subin-

terval (xnm−1, x
n
m). Observe that instead of solving the discretized equidistribution problem

(1.3) exactly, it is enough to stop the algorithm when

Φn
mh

n
m ≤ C0

M

M∑
j=1

Φn
j h

n
j , m = 1, · · · ,M, (4.1)

where C0 > 1 is a user defined constant. Choosing C0 larger will lead to fewer iterations
for the algorithm. If, however, C0 is close to 1, then this leads to a more accurate solution
obtained with many iterations.
Algorithm 1

1. Start with n = 1.

2. Define the uniform mesh {xn,(0) : x
n,(0)
m = m/N, 0 ≤ m ≤ M} as initial mesh for

n = 1, otherwise define {xn−1} as the initial mesh at the nth time step and go to Step
3. assuming p = 0.

3. Solve the discrete problem (2.8) on the mesh {xn,(p)} for {Un,(p)} and (2.13) for {V n,(p)}.
Now define h

n,(p)
m = x

n,(p)
m − x

n,(p)
m−1 for m = 1, · · · ,M .

4. Denote the singular component of the discrete solution U
n,(p)
m asW

n,(p)
m = U

n,(p)
m −V n,(p)

m ,
for m = 1, · · · ,M . Determine the discretized monitor function

Φn,(p)
m = αn,(p) + |∆2

xW
n,(p)
m |1/2 m = 1, · · · ,M.

by defining ∆
2
xW

n,(p)
m = (∆2

xW
n,(p)
m + ∆2

xW
n,(p)
m−1 )/2 with ∆

2
xW

n,(p)
m = ∆2

xW
n,(p)
1 and

∆
2
xW

n,(p)
M = ∆2

xW
n,(p)
M−1, where α

n,(p) =
∑M

m=1 h
n,(p)
m |∆2

xW
n,(p)
m |1/2.

Compute

Γ
n,(p)
j =

j∑
m=1

hn,(p)m Φn,(p)
m .
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5. Choose a constant C0 > 1. If the stopping criteria for the iteration

max
m=1,...,M

hn,(p)m Φn,(p)
m

Γ
n,(p)
M

≤ C0

M
.

is satisfied, then go to Step 7., else continue with Step 6.

6. Generate a new mesh by equidistributing the proposed monitor function using the cur-

rent computed solution from Step 3. and Γ
n,(p)
m from Step 4. Set Y

n,(p)
m = mΓ

n,(p)
M /M

for m = 0, · · · ,M . Now interpolate (Y
n,(p)
m , x

n,(p+1)
m ) to (Γ

n,(p)
m , x

n,(p)
m ) using piecewise

linear interpolation. Generate a new mesh xn,(p+1) ≡ {0 = x
n,(p+1)
0 < x

n,(p+1)
1 < · · · <

x
n,(p+1)
M = 1} and return to Step 3.

7. Set xn,∗ = {0 = xn,∗0 < xn,∗1 < · · · < xn,∗M = 1} = xn,(p+1) and Un,∗ = Un,(p+1), where
Un,∗ is the layer adapted solution at nth time step.

8. If n = N , then Un,∗ is the solution on the adapted mesh xn,∗ at the final time. Otherwise,
set n = n + 1, go to Step 2., and repeat the process to find the required solution Un,∗

at xn,∗.

4.2 Numerical examples

To illustrate the accuracy of the method and the theoretical results of error analysis, we
present two numerical examples, where the meshes are equidistributed by the monitor function
(2.14). For these two test problems, the errors and the corresponding rates of convergence
are displayed in several tables.

Example 4.1 Our first example is the parabolic IBVP

ut − εuxx + µ(1 + exp(x))ux + (1 + x4|x|)u = 10 exp(t2)(x2 − x4), (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = x3(1− x)3, x ∈ (0, 1),

u(0, t) = u(1, t) = 0, t ∈ (0, 1].
(4.2)

Example 4.2 The second example is the IBVP for (x, t) ∈ (0, 1)× (0, 1] given by

ut − εuxx + µ(1 + x(1− x) + t2)ux + (1 + 5xt)u = x(x− 1)(exp(t)− 1),

u(x, 0) = 0, x ∈ (0, 1),

u(0, t) = u(1, t) = 0, t ∈ (0, 1].

(4.3)

Since the exact solution of Examples 4.1 and 4.2 are not known, the accuracy of the numerical
solutions will be determined by using a twice refined mesh, which for the computed mesh
ΩM
x × ΩN

t uses the mesh Ω2M
x × Ω2N

t with 2M spacial and 2N time intervals.
For any fixed value of M , the maximum error EM,∆t

ε,µ over all time steps will be calculated
by

EM,∆t
ε,µ = max

xn
m∈ΩM

x ,tn∈ΩN
t

|UM,∆t
ε,µ (xnm, tn)− U2M,∆t/2

ε,µ (xnm, tn)|,
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ε, µ Number of space intervals M/ time step size ∆t

64/
1

16
128/

1

32
256/

1

64
512/

1

128
1024/

1

256
EM,∆t

10−2,10−4 0.022542 0.011005 0.005392 0.002687 0.001337

rM,∆t
10−2,10−4 1.03446 1.029256 1.00484 1.00658 -

EM,∆t
10−3,10−4 0.024729 0.011976 0.005910 0.002947 0.001469

rM,∆t
10−3,10−4 1.04599 1.01877 1.00397 1.00358 -

EM,∆t
10−4,10−4 0.024125 0.011985 0.005916 0.002966 0.001478

rM,∆t
10−4,10−4 1.00925 1.01833 0.99607 1.00508 -

EM,∆t
10−5,10−4 0.024858 0.0120106 0.005923 0.002968 0.001485

rM,∆t
10−5,10−4 1.04940 1.01984 0.99673 0.99913 -

Max. No. Iter. 6 7 10 19 35

Table 1: Maximum errors and orders of convergence for Example 4.1 over all time levels.

where UM,∆t
ε,µ (xnm, tn) is the computed solution with M space and N time intervals and

U
2M,∆t/2
ε,µ (xnm, tn) is the numerical solution at (xnm, tn) with 2M space and 2N time inter-

vals.
The corresponding order of convergence is calculated by the formula

rM,∆t
ε,µ = log2

(
EM,∆t

ε,µ

E
2M,∆t/2
ε,µ

)
,

and the uniform error EM and corresponding order of convergence rM over a large set of
parameters P = {(ε, µ)| µ2 ≤ ε, ε = 1, 10−1, · · · , 10−10, µ = 1, 10−1, · · · , 10−10} and all time
steps as

EM = max
(ε,µ)∈P

EM,∆t
ε,µ , rM = log2

(
EM

E2M

)
,

respectively.
We also compare the uniform error (let us denote it by EM

Equi) obtained by the mesh

equidistribution technique with the error EM
Shish obtained on a Shishkin mesh (see [24]) over

all time steps. The Shishkin mesh is defined as a piecewise uniform mesh in the intervals
[0, τ ], [τ, 1 − τ ] and [1 − τ, 1], where τ = min(1/4, 2

√
(ε/σ) ln(M)). The σ is considered as

2/(1 + e) and 4/5 for Examples 4.1 and 4.2.

For Example 4.1, Tables 1 and 2 and for Example 4.2 Tables 4 and 5 display the maximum
ε-uniform errors and the corresponding orders of convergence for the numerical solution com-
puted with our proposed monitor function using C0 = 2 in the algorithm. The results show
that the numerical solution is first-order uniformly accurate. The monotonically decreasing
behavior of the errors can be observed from these tables as M increases. These tables also
show the maximum number of iterations for both examples over all time levels which in-
dicates the convergence of the algorithm. Tables 3 and 7 give a comparison of parameter
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ε, µ Number of space intervals M/ time step size ∆t

64/
1

16
128/

1

32
256/

1

64
512/

1

128
1024/

1

256
EM,∆t

10−5,10−6 0.024987 0.011856 0.005886 0.002974 0.001484

rM,∆t
10−5,10−6 1.07552 1.01013 0.98506 1.00238 -

EM,∆t
10−6,10−6 0.025226 0.011922 0.005909 0.002961 0.001479

rM,∆t
10−6,10−6 1.08133 1.01249 0.99672 1.00169 -

EM,∆t
10−7,10−6 0.024718 0.012279 0.005906 0.002961 0.001472

rM,∆t
10−7,10−6 1.00931 1.05596 0.99620 1.00783 -

EM,∆t
10−8,10−6 0.024596 0.012064 0.006008 0.002981 0.001496

rM,∆t
10−8,10−6 1.02765 1.00568 1.01104 0.99503 -

Max. No. Iter. 8 23 28 37 55

Table 2: Maximum errors and orders of convergence for Example 4.1 over all time levels.
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Figure 1: Log-log error plot at t = 1 with µ = 10−5 for Example 4.1.

(ε, µ) ∈ P Number of space intervals M/ time step size ∆t

64/
1

16
128/

1

32
256/

1

64
512/

1

128
1024/

1

256
EM

Equi 0.026044 0.013120 0.006214 0.003130 0.001555

rMEqui 0.98920 1.07808 0.98963 1.00889 -

EM
Shish 0.025664 0.012675 0.008537 0.005505 0.003377
rMShish 1.017749 0.57018 0.63305 0.70457 -

Table 3: Uniform errors and orders of convergence for Example 4.1 over all time steps.
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Figure 2: Mesh density towards boundary layers for M = 128 at t = 1 for Example 4.1.
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Figure 3: Log-log plot error at time t = 1 with µ = 10−5 for Example 4.2.
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Figure 4: Mesh trajectory at ε = 10−6, µ = 10−7 with M = 64 for Example 4.2 at t = 1.

ε, µ Number of space intervals M/ time step size ∆t

64/
1

16
128/

1

32
256/

1

64
512/

1

128
1024/

1

256
EM,∆t

1,10−4 0.010401e-2 0.005949e-2 0.003255e-2 0.001705e-2 0.000873e-2

rM,∆t
1,10−4 0.80603 0.87015 0.93236 0.96576 -

EM,∆t
10−1,10−4 0.062215e-2 0.032707-2 0.016778e-2 0.008504e-2 0.004274e-2

rM,∆t
10−1,10−4 0.92766 0.96307 0.98040 0.99245 -

EM,∆t
10−2,10−4 0.092026e-2 0.047554e-2 0.024197e-2 0.012218e-2 0.006141e-2

rM,∆t
10−2,10−4 0.95247 0.97475 0.98578 0.99238 -

EM,∆t
10−3,10−4 0.097148e-2 0.049478e-2 0.025256e-2 0.012766e-2 0.006411e-2

rM,∆t
10−3,10−4 0.97341 0.97014 0.98434 0.99355 -

Max. No. Iter. 3 5 11 16 26

Table 4: Maximum errors and orders of convergence for Example 4.2 over all time levels.

ε, µ Number of space intervals M/ time step size ∆t

64/
1

16
128/

1

32
256/

1

64
512/

1

128
1024/

1

256
EM,∆t

10−6,10−7 0.096949e-2 0.049906e-2 0.025231e-2 0.012824e-2 0.006446e-2

rM,∆t
10−6,10−7 0.95802 0.98400 0.97638 0.99233 -

EM,∆t
10−7,10−7 0.098712e-2 0.050049e-2 0.025485e-2 0.012853e-2 0.006449e-2

rM,∆t
10−7,10−7 0.97987 0.97368 0.98758 0.99493 -

EM,∆t
10−8,10−7 0.0951284e-2 0.050026e-2 0.025237e-2 0.012781e-2 0.006442e-2

rM,∆t
10−8,10−7 0.92720 0.98713 0.98156 0.98839 -

EM,∆t
10−9,10−7 0.096746e-2 0.050012e-2 0.025461e-2 0.0128036e-2 0.006437e-2

rM,∆t
10−9,10−7 0.95193 0.97394 0.99186 0.99188 -

Max. No. Iter. 21 37 51 73 88

Table 5: Maximum errors and orders of convergence for Example 4.2 over all time levels.
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Number of space intervals M/ time step size ∆t

64/
1

16
128/

1

32
256/

1

64
512/

1

128
1024/

1

256
EM

red 0.96427e-3 0.49949e-3 0.25427e-3 0.12830e-3 0.06444e-3
rMred 0.94898e-3 0.97404e-3 0.98687e-3 0.99336e-3 -

Table 6: Errors and orders of convergence for the reduced problem Example 4.2 over all time
steps.

(ε, µ) ∈ P Number of space intervals M/ time step size ∆t

64/
1

16
128/

1

32
256/

1

64
512/

1

128
1024/

1

256
EM

Equi 0.011318e-1 0.05603e-2 0.02634e-2 0.01290e-2 0.00648e-2

rMEqui 1.0144 1.089 1.0300 0.9935 -

EM
Shish 0.096427e-2 0.049949e-2 0.025427e-2 0.012830e-2 0.006446e-2
rMShish 0.94898 0.97406 0.98687 0.99337 -

Table 7: Uniform errors and orders of convergence for Example 4.2 over all time steps.

uniform errors between the Shishkin meshes and the proposed equidistributed meshes. These
tables show that the order of convergence for the equidistributed mesh is better than that for
Shishkin mesh. As a consequence, in general the uniform error obtained on the Shishkin mesh
is larger than that on the equidistributed mesh. One can also note that a priori information
of boundary layer location and its width is not required to generate the equidistributed mesh.
From Table 6, one can see that the error EM

red and the order of convergence rMred of the reduced
problem (by taking ε = 0) is also first-order accurate for the Example 4.2.

The loglog error plot in Figure 1 (error vs M plot) shows that the predicted order of
convergence holds. The same predicted convergence order is observed also for Example 4.2, see
Figure 3 (error vsM plot). For this example, Figure 4 (each iteration vs x plot) demonstrates
the mesh movement towards the boundary points in each iteration. Figure 2 (x vs position
of mesh points plot) for Example 4.1 shows that the layer adapted meshes are becoming
dense towards the boundary points as the perturbation parameters ε and µ are becoming
small. In particular, the numerical experiments show that the parameter uniform convergence
corresponding to both the parameters is ensured for the singularly perturbed parabolic IBVP
as M increases.

Remark 4.3 It should be noted, that the numerical experiments suggest that the condition
M−q ≤ C∆t with 0 < q < 1 does not play any role in getting parameter uniform first-order
accuracy of the proposed method.

5 Conclusions

In this paper, a computational method has been proposed for solving singularly perturbed
parabolic initial boundary value problems for singularly perturbed 1D convection-diffusion-
reaction equations containing two small parameters. The proposed method uses the moving
mesh technique by the equidistribution of a positive monitor function to generate the meshes.
This method leads to first-order accurate numerical solution. A theoretical analysis is pro-
vided which shows that the numerical approximation is insensitive to the magnitude of the
perturbation parameters. Numerical experiments illustrate the theoretical findings.
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