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Simulation of coupled oscillators using
nonlinear phase macromodels and
model order reduction

Davit Harutyunyan and Joost Rommes

Abstract Oscillators are used in many integrated RF circuits. Since their
behavior is highly nonlinear, full system simulation can be expensive. Fur-
thermore, the behavior of an oscillator can be (un)intendedly perturbed by
that of other components and oscillators. We present a method to build non-
linear phase macromodels of voltage controlled oscillators and show how these
can be used to predict the behavior of oscillators under perturbation. Model
order reduction techniques are used to decrease simulation times. Numerical
results for realistic design illustrate the proposed approach.

1 Introduction

The request for more functionality on a smaller physical area makes the
design of modern RF (radio frequency) integrated circuits increasingly more
complicated. Modern RF chips for mobile devices, for instance, typically have
an FM radio, Blue- tooth, and GPS on one chip. Each of these functional-
ities are implemented with Voltage Controlled Oscillators (VCOs), that are
designed to oscillate at certain different frequencies. Such oscillators are in-
fluenced by unintended (parasitic) signals coming from other blocks (such
as Power Amplifiers) or from other oscillators, via for instance (unintended)
inductive coupling through the substrate. A possibly undesired consequence
of the perturbation is that the oscillators lock to a frequency different than
designed for, or show pulling, in which case the oscillators are perturbed from
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their free running orbit without locking. This makes floor planning, i.e., de-
termining the locations for the functional blocks, one of the most challenging
tasks in RF chip design.

Our motivation comes from the design of RF systems, where oscillators
play an important role [8, 21, 12, 4] in, for instance, high-frequency phase
locked loops (PLLs). The nonlinear dynamics of interest include changes in
the frequency spectrum of the oscillator due to small noise signals (an effect
known as jitter [8]), which may lead to pulling or locking of the oscillator to
a different frequency and may cause the oscillator to malfunction. Since both
phase and amplitude dynamics are strongly nonlinear and spread over sep-
arated time scales [17], simulation is difficult. Accurate simulation requires
very small time steps during time integration, resulting in unacceptable sim-
ulation times that block the design flow. Furthermore, transient simulation
only gives limited understanding of the causes and mechanisms of the pulling
and locking effects. Oscillators appear in many other physical systems and
applications, see e.g. [2, 18].

Here we use the nonlinear phase macromodel introduced and developed in
[8, 16, 17, 25, 10, 11]. Contrary to linear macromodels [1, 16, 21], the nonlin-
ear phase macromodel is able to capture nonlinear effects such as injection
locking. Because the macromodel replaces the original oscillator system by
a single scalar equation, simulation times are decreased while the nonlinear
oscillator effects can still be studied without loss of accuracy. We use the
macromodels to predict the behavior of inductively coupled oscillators.

In some applications one exploits the coupling of oscillators. To reduce
clockskew (clocksignals becoming out of phase), for instance, oscillators can
be coupled via transmission lines [9]. Since accurate models for transmission
lines can be large, this may lead to increased simulation times. We show how
model order reduction techniques [3, 5, 22] can be used to decrease simulation
times without unacceptable loss of accuracy.

The paper is organized as follows. Section 2 gives a summary of the phase
noise theory. In Section 3 we show how the phase noise theory can be used
to analyze oscillator-balun coupling. In Section 4, we explain the coupling of
oscillators via transmission lines. Application of model order reduction tech-
niques in simulation of coupled oscillators is described in Section 5. Numerical
results are presented in Section 6 and Section 7 concludes.

2 Phase noise analysis of oscillators

A general free-running oscillator is described as an autonomous system of
differential equations:
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dq(x)

dt
+ j(x) = 0, (1a)

x(0) = x(T ), (1b)

where x(t) ∈ R
n are the state variables, T is the period of the free running

oscillator, which is in general unknown, q, j : R
n → R

n are (nonlinear)
functions and n is the system size. The solution of (1) is called periodic
steady state (PSS) and is denoted by xpss. Although finding a PSS solution
can be a challenging task in itself, we will not discuss this in the present
paper and refer to, for example, [13, 6, 14, 15, 23, 10].

A general oscillator under perturbation can be expressed as a system of
differential equations

dq(x)

dt
+ j(x) = b(t), (2)

where b(t) ∈ R
n are perturbations to the free running oscillator. For small

perturbations b(t) it can be shown [8] that the solution of (2) can be approx-
imated by

xp(t) = xpss(t + α(t)), (3)

where α(t) ∈ R is called the phase shift, which satisfies the following scalar
nonlinear differential equation:

α̇(t) = V T (t + α(t)) · b(t), (4a)

α(0) = 0, (4b)

with V (t) ∈ R
n being the perturbation projection vector (PPV) [8] of (2).

The PPV is a periodic function with the same period as the oscillator and
can efficiently be computed directly from the PPS solution, see e.g. [7].

3 Oscillator coupled to a balun

In this section we consider mathematical model of an oscillator inductively
coupled to a balun. A balun is an electrical transformer that can transform
balanced signals to unbalanced signals and vice versa. A schematic view of an
LC oscillator coupled to a balun with mutual inductors is given in Fig. 1. The
corresponding mathematical model is given by the following set of equations:

C1
dv1(t)

dt
+

v1(t)

R1
+ i1(t) + S tanh(

Gn

S
v1(t)) = 0, (5a)

L1
di1(t)

dt
+ M12

di2(t)

dt
+ M13

di3(t)

dt
− v1(t) = 0, (5b)
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C2
dv2(t)

dt
+

v2(t)

R2
+ i2(t) + I(t) = 0, (5c)

L2
di2(t)

dt
+ M12

di1(t)

dt
+ M23

di3(t)

dt
− v2(t) = 0, (5d)

C3
dv3(t)

dt
+

v3(t)

R3
+ i3(t) = 0, (5e)

L3
di3(t)

dt
+ M13

di1(t)

dt
+ M23

di2(t)

dt
− v3(t) = 0, (5f)

where Mij = kij

√

LiLj, i, j = 1, 2, 3, i < j is the mutual inductance and kij

is the coupling factor. The parameters of the nonlinear resistor are S = 1/R1

and Gn = −1.1/R1 and the current injection in the primary balun is denoted
by I(t).
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Fig. 1 Oscillator coupled with a balun.

For small coupling factors we can consider M12
di2(t)

dt
+M13

di3(t)
dt

in (5b) as
a small perturbation to the oscillator and apply the phase shift macromodel
to (5a)–(5b). Then the reduced model corresponding to (5a)–(5b) is

dα(t)

dt
= V T (t + α(t)) ·

(

0

−M12
di2(t)

dt
− M13

di3(t)

dt

)

, (6)

where V is the PPV of the oscillator. The balun is described by a linear
circuit (5c)–(5f) which can be written in a more compact form:

E
dx(t)

dt
= Ax(t) + Bu(t), (7)

where
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E =









C2 0 0 0
0 L2 0 M23

0 0 C3 0
0 M23 0 L3









, A =









− 1
R2

−1 0 0

1 0 0 0
0 0 − 1

R3
0

0 0 1 0









, (8a)

B =









−1 0
0 −M12

0 0
0 −M13









, x =









v2(t)
i2(t)
v3(t)
i3(t)









, u(t) =

(

I(t)
di1(t)

dt

)

. (8b)

With these notations (6) and (7) can be written in the following form

dα(t)

dt
= V T (t + α(t)) ·

(

0
dy(t)

dt

)

(9a)

E
dx(t)

dt
= Ax(t) + Bu(t), (9b)

y(t) = C
T x, (9c)

where C
T = (0,−M12, 0,−M13) and i1(t) is computed by using (3).

4 Oscillator coupling to a transmission line

In some applications oscillators are coupled via transmission lines. By cou-
pling oscillators via transmission lines, for instance, one can reduce the
clockskew in clock distribution networks [9]. Accurate models for transmission
lines may contain up to thousands or millions of RLC components. Further-
more, the oscillators or the components that perturb (couple to) the oscil-
lators can consists of many RLC components, for instance when ones takes
into account parasitic effects. Since simulation times usually increase with
the number of elements, one would like to limit the number of (parasitic)
components as much as possible, without losing accuracy.

The schematic view of an oscillator coupled to a transmission line is given
in Fig. 2. Using phase macromodel for oscillator and by applying Kirchhoff’s
current law to the transmission line circuit, we obtain the following set of
differential equations:

dα(t)

dt
= V T (t + α(t)) ·





y(t) − v(t)

R1
0



 (10a)

E
dx(t)

dt
= Ax(t) + Bu(t), (10b)

y(t) = C
T x, (10c)
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where

E = diag(C1, C2, . . . , Cn), A = tridiag(
1

Ri

,−
1

Ri

−
1

Ri+1
,

1

Ri+1
), (11a)

B =











1
R1

0

0 0
...

...
0 1











, x =











v1(t)
v2(t)

...
vn(t)











, u(t) =

(

v(t)
I(t)

)

, C =











1
0
...
0











. (11b)

R L

v
i=

f(
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v

C
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Fig. 2 Oscillator coupled to a transmission line.

In a similar way the phase macromodel of two oscillators coupled via a
transmission line, see Fig. 3, is given by the following equations:

dα1(t)

dt
= V T

1 (t + α1(t)) ·





v1(t) − v(t)

R1
0



 (12a)

E
dx(t)

dt
= Ax(t) + Bu(t), (12b)

dα2(t)

dt
= V T

2 (t + α2(t)) ·





vn(t) − v0(t)

Rn+1

0



 , (12c)

where α1(t) and α2(t) (V 1 and V 2) are phase shifts (PPV’s) of the corre-
sponding oscillator. The matrices E, A and x are given by (11) and

B =











1
R1

0

0 0
...

...
0 1

Rn+1











, u(t) =

(

v(t)
v0(t)

)

. (13)
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Fig. 3 Two oscillators coupled via a transmission line.

5 Model order reduction

Model order reduction (MOR) techniques [3, 5, 22] can be used to reduce the
number of elements significantly. Here we show how model order reduction
can be used for the analysis of oscillator perturbation effects as well. Since
the main focus is to show how MOR techniques can be used (and not which
technique is the most suitable), we limit the discussion here to balanced
truncation [20]. For other methods, see, e.g., [3, 5, 22].

Given a dynamical system (A, B, C) (assume E = I), balanced truncation
[20] consists of first computing a balancing transformation V ∈ R

n×n. The
balanced system (V T AV, V T B, V T C) has the nice property that the Han-
kel singular values1 are easily available. A reduced order model can be con-
structed by selecting the columns of V that correspond to the k < n largest
Hankel singular values. With Vk ∈ R

n×k having as columns these k columns,
the reduced order model (of order k) becomes (V A

k Vk, V T
k B, V T

k C). If E 6= I
is nonsingular, balanced truncation can be applied to (E−1A, E−1B, C). For
more details on balanced truncation, see [5, 20, 22].

In this paper we apply model order reduction to linear circuits that are
coupled to oscillators, and the relevant equations for each problem describing
linear circuits have the form of (9b)–(9c). For each problem the corresponding
matrices A, E, B, and C can be identified readily, see (8), (11), (13) and note
C ≡ C. We use Matlab [19] implementation for balanced truncation to obtain
reduced order models:

sys = ss( -E\ A, -E\*B, C’, 0 ) ;

[hsv, baldata] = hsvd(sys) ; % Hankel singular values

mor_dim = nnz((hsv>1e-10)) ; % choose largest singular values

% where mor_dim is the dimension of the reduced system

rsys = balred(sys,mor_dim,’Elimination’, ’Truncate’,...

’Balancing’, baldata) ; %truncate

1 Similar to singular values of matrices, the Hankel singular values and corresponding
vectors can be used to identify the dominant subspaces of the system’s statespace: the
larger the Hankel singular value, the more dominant.
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Note that we can apply balanced truncation because E is nonsingular.
It is well known that in many cases in circuit simulation the system is a
descriptor system and hence E is singular. Although generalizations of bal-
anced truncation to descriptor systems exist [22, 24], other MOR techniques
such as Krylov subspace methods and modal approximation might be more
appropriate. We refer the reader to [3, 5, 22] for a good introduction to such
techniques and MOR in general.

6 Numerical experiments

In all the numerical experiments the simulations are run until Tfinal = 6·10−7 s
with fixed time step τ = 10−11. In this section all the numerical results
done with the phase macromodel combined with MOR technique are called
macromodel-MOR simulation.

We compare our results with simulation results of the full circuit (no
macromodeling, no model order reduction), hereafter full-simulation. Because
the full circuit represents a stiff ODE, we use the Matlab built-in ODE solver
ode15s with relative tolerance set to 10−7 to achieve a comparable accuracy
with the macromodel-MOR simulation results. In all experiments we observed
that the simulation time of the macromodel-MOR technique is typically five
times faster than full-simulation times.

6.1 Oscillator coupled to a balun

Consider an oscillator coupled to a balun as shown in Fig. 1 with the following
parameters values:

Oscillator Primary Balun Secondary Balun
L1 = 0.64 · 10−9 L2 = 1.10 · 10−9 L3 = 3.60 · 10−9

C1 = 1.71 · 10−12 C2 = 4.00 · 10−12 C3 = 1.22 · 10−12

R1 = 50 R2 = 40 R2 = 60

The coefficients of the mutual inductive couplings are k12 = 10−3, k13 =
5.96 ∗ 10−3, k23 = 9.33 ∗ 10−3. The injected current in the primary balun is
of the form

I(t) = Ainj sin(2π(f0 − foff)t), (14)

where f0 = 4.8 GHz is the oscillator’s free running frequency, foff is the offset
frequency and Ainj is the current amplitude.

Results of the numerical experiments are shown in Fig. 4, where the results
obtained by the macromodel-MOR technique with mor dim = 2 provide a
good approximation to the full-simulation results. We note that for the in-
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jected current with Ainj = 10−1 A the oscillator is locked to the injected
signal. Similar results are also obtained for the balun.

Ainj = 10−4 Ainj = 10−3
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Fig. 4 Comparison of the output spectrum of the oscillator coupled to a balun obtained
by the macromodel-full and the macromodel-MOR simulations for an increasing injected
current amplitude Ainj and an offset frequency foff = 20MHz.

6.2 Oscillators coupled with transmission lines

6.2.1 Single oscillator coupled to a transmission line

Let us consider the same oscillator as given in the previous section, now cou-
pled to a transmission line, see Fig. 2. The size of the transmission line is
n = 100 with the following parameters: C1 = . . . = Cn = 10−2 pF, R1 =
40 kΩ, R2 = . . . = Rn = 1 Ω. The injected current has the form (14)
with Ainj = 10−2 A and foff = 20 MHz. Dimension of the reduced system
is mor dim = 18. Simulation results around the first and third harmonics
(this oscillator does not have a second harmonic) are shown in Fig. 5. The
macromodel-MOR method, using techniques described in Section 5, gives a
good approximation to the full simulation results.
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Fig. 5 Comparison of the output spectrum around the first and third harmonics of the
oscillator coupled to a transmission line, cf. Fig. 2.

6.2.2 Two LC oscillators coupled via a transmission line

For this experiment we consider two LC oscillators coupled via a transmission
line with the mathematical model given by (12). The first oscillator has a free
running frequency f1 = 4.8 GHz and is described in Section 6.1. The second
LC oscillator has the following parameter values: R0 = 50 Ω, L0 = 0.64
nH, C0 = 1.87 pF and a free running frequency f2 = 4.6 GHz. The size of
the transmission line is n = 100 with the following parameters: C1 = . . . =
Cn = 10−2 pF, R1 = Rn+1 = 4 kΩ, R2 = . . . = Rn = 0.001 Ω. Dimension
of the reduced system is mor dim = 16. Numerical simulation results are
given in Fig. 6. We note that macromodel-MOR approach gives a very good
approximation to the full-simulation results.

7 Conclusion

In this paper we have used nonlinear phase macromodels to accurately predict
the behavior of individual and mutually coupled voltage controlled oscillators
under perturbation. Several types of coupling have been described, includ-
ing oscillator-balun coupling. For small perturbations, the nonlinear phase
macromodels produce results with accuracy comparable to full circuit sim-
ulations. In addition, model order reduction techniques have been applied
to transmission lines that couple oscillators. With these techniques, reduced-
order models could be obtained that decreased simulation times while pre-
serving the required accuracy.
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Fig. 6 Comparison of the output spectrum around the first and third harmonics of two
oscillators coupled via a transmission line.
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