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Abstract

We introduce entropy coherent and entropy convex measures of risk and prove a collec-
tion of axiomatic characterization and duality results. We show in particular that entropy
coherent and entropy convex measures of risk emerge as negative certainty equivalents in
(the regular and a generalized version, respectively, of) the popular maxmin expected utility
theory of Gilboa and Schmeidler [12] whenever the negative certainty equivalents are trans-
lation invariant. In addition, we derive the dual conjugate function for entropy coherent
and entropy convex measures of risk, and prove their distribution invariant representation.

Keywords: Robust preferences; Convex risk measures; Exponential utility; Relative en-
tropy; Translation invariance; Convexity.
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1 Introduction

Among the most popular theories for decision-making under uncertainty is the robust Savage
representation, postulating that an economic agent evaluates the payoff of a choice alternative
(financial position) X, defined on a measurable space (Ω,F), according to

U(X) = inf
Q∈Q

EQ [u(X)] , (1.1)

where u : R → R is an increasing function, and Q is a set of probability measures on (Ω,F).
The function u, referred to as a utility function, represents the agent’s attitude towards wealth,

∗We are very grateful to Patrick Cheridito and Alexander Schied for comments. This research was funded
in part by the Netherlands Organization for Scientific Research (Laeven) under grants NWO VENI 2006 and
NWO VIDI 2009.
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and the set Q represents the agent’s uncertainty about the correct probabilistic model. Gilboa
and Schmeidler [12] established a preference axiomatization of the robust Savage representation
in an ‘enlarged setting’, generalizing Savage [21] in the framework of Anscombe and Aumann
[1]: They assumed that the payoff in each scenario ω itself can be a lottery, i.e., every payoff
corresponds to a stochastic kernel X̃(ω, dx). One-stage payoffs X can then be embedded into
the space of stochastic kernels by setting X̃(ω, dx) = δX(ω), with δX(ω) a Dirac point mass in
X(ω). Now for a given preference order on the space of stochastic kernels satisfying certain
axioms, Gilboa and Schmeidler [12] obtained a numerical representation which on the space of
one-stage payoffs corresponds to (1.1). The representation of Gilboa and Schmeidler [12], also
referred to as maxmin expected utility or multiple priors, was a decision-theoretic foundation of
the classical decision rule of Wald [25] –see also Huber [19]– that had long seen little popularity
outside (robust) statistics.

To measure the ‘risk’ related to a financial position X the theory sketched above would
lead to the definition of a loss functional L(X) = −U(X), satisfying

L(X) = sup
Q∈Q

EQ [l(−X)] ,

where l(x) := −u(−x). The disutility (or loss) function l should be interpreted as describing
how much a loss hurts. One could, then, look at the capital amount m̄X that is ‘equivalent’
to the potential loss of X, solving for m̄X in L(m̄X) = L(X). However, because we want to
interpret m̄X as a certain amount of capital one needs to hold in response to the position X,
we will rather look at the negative certainty equivalent of X, mX , given by −m̄X , satisfying
L(−mX) = l(mX) = L(X), or equivalently,

mX = l−1
(

sup
Q∈Q

EQ [l(−X)]
)
. (1.2)

In a separate strand of the literature, in financial mathematics, convex risk measures have
played an increasingly important role since their introduction by Föllmer and Schied [8], Fritelli
and Rosazza Gianin [10] and Heath and Ku [18], generalizing the seminal Artzner et al. [2]; see
also the early Deprez and Gerber [6]. For a given financial position X that an economic agent
holds, a convex risk measure ρ returns the minimal amount of capital the agent is required to
commit and add to the financial position in order to make it ‘safe’: The theory of convex risk
measures postulates that from the viewpoint of the supervisory authority, the financial position
X+ρ(X) is acceptably insured against adverse shocks. Convex risk measures are characterized
by the axioms of monotonicity, translation invariance and convexity. They can be represented
in the form

ρ(X) = sup
Q∈Q

{EQ [−X]− α(Q)}, (1.3)

where α is a penalty function defined on probability measures on (Ω,F). With

α(Q) =
{

0, if Q ∈ Q;
∞, otherwise;

we obtain the particular subclass of coherent measures of risk, represented in the form

ρ(X) = sup
Q∈Q

EQ [−X] .

2



One of the main goals of this paper is to find precise connections between risk measurement à
la Gilboa-Schmeidler in the microeconomic theory of decision under uncertainty –(1.2)– and the
notion of convex risk measurement in financial mathematics –(1.3). We will identify a subclass
of convex risk measures that we call entropy coherent measures of risk and that includes all
coherent risk measures. We then show that entropy coherent measures of risk constitute exactly
those risk measures that satisfy (1.2) and (1.3). To study entropy coherent measures of risk we
first study the more general class of entropy convex measures of risk, introduced in this paper.
We show that these risk measures satisfy similar appealing properties as convex risk measures,
the difference being that the expectation operator with respect to a probability measure Q
is everywhere replaced by the entropic risk measure with respect to Q, see the definitions
below. We axiomatize entropy convex measures of risk: We prove that negative certainty
equivalents in the generalized Gilboa-Schmeidler setting, where every probability measure Q is
discounted by an additional factor β(Q), are translation invariant if and only if they are entropy
convex measures of risk. The discount factor β(Q) represents the esteemed plausibility of the
probabilistic model under Q. Entropy coherent measures of risk occur whenever β(Q) ≡ 1,
which is the case for the regular robust Savage representation. The mathematical details in
the proofs of these representation results are delicate.

In the traditional setting of Von Neumann-Morgenstern, where the probability measure
is known and given so that simply U(X) = E [u(X)], analogs of these representation results
are relatively easy to obtain; see Hardy, Littlewood and Pólya [17] (p. 88, Theorem 106),
Gerber [11] (Chapter 5) and Goovaerts, De Vylder and Haezendonck [14] (Chapter 3). It is
intriguingly more complicated for the (regular and generalized) robust Savage representation
considered here, and we will show that without richness assumptions on the probability space
and subdifferentiability conditions on ρ, our representation theorems in fact break down, with
interesting counterexamples. In recent work, Cheridito and Kupper [3] suggest without proof a
connection between (1.2) and (1.3). They restrict, however, to a specific and simple probabilis-
tic setting which, as we will see below, can be viewed as supplementary (and non-overlapping)
to a special case of the general setting considered here. While there is a rich literature on
both theories (1.2) and (1.3), to the best of our knowledge, we are not aware of other work
establishing precise connections between these two dominant theories.

In addition, we prove various results on the dual conjugate function for entropy coherent
and entropy convex measures of risk. We show in particular that, quite exceptionally, the dual
conjugate function can explicitly be identified under some technical conditions. We also study
entropy coherent and entropy convex measures of risk under the assumption of distribution
invariance. Due to their convex nature, a feature that singles out entropy coherent risk mea-
sures in the class of negative Gilboa-Schmeidler certainty equivalents, we can obtain explicit
representation results in this setting. As a bridge towards the distribution invariant represen-
tation, we axiomatize entropy coherent measures of risk within Schmeidler’s [23] framework of
Choquet expected utility.

The rest of this paper is organized as follows: In Section 2, we review some preliminaries for
coherent and convex measures of risk. In Section 3, we introduce entropy coherent and entropy
convex measures of risk and discuss some of their properties. In Section 4, we prove axiomatic
characterization results for entropy coherent and entropy convex measures of risk. Section 5
studies the dual conjugate function for entropy coherent and entropy convex measures, and
Section 6 proves their distribution invariant representation. Conclusions are in Section 7.
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2 Preliminaries

We fix a probability space (Ω,F , P ). Throughout this paper, equalities and inequalities between
random variables are understood in the P -almost sure sense. We let L∞(Ω,F , P ) ≡ L∞ denote
the space of all real-valued random variables X on (Ω,F , P ) for which ||X||∞ := inf{c >
0|P [|X| ≤ c] = 1} <∞, where two random variables are identified if they are P -almost surely
equal. We denote ]0,∞[ by R+ and ]−∞, 0] by R−0 .

Definition 2.1 We call a mapping ρ : L∞ → R a convex risk measure if it has the following
properties:

• Normalization: ρ(0) = 0

• Translation Invariance: ρ(X +m) = ρ(X)−m for all m ∈ R

• Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y )

• Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for λ ∈ [0, 1]

• Continuity from above: If Xn ∈ L∞ is a decreasing sequence converging to X ∈ L∞, then

ρ(Xn) ↑ ρ(X).

Furthermore, ρ is called a coherent risk measure if additionally it is positively homogeneous,
i.e.,

• Positive Homogeneity: For λ > 0 : ρ(λX) = λρ(X).

We denote by Q(P ) ≡ Q all probability measures that are absolutely continuous with respect
to P. If Q ∈ Q, we also write Q� P . It is well-known that if ρ is a convex risk measure then
there exists a unique lower-semicontinuous and convex function α : Q → R ∪ {∞}, referred to
as the dual conjugate of ρ, such that the following dual representation holds:

ρ(X) = sup
Q∈Q

{
EQ [−X]− α(Q)

}
. (2.1)

Furthermore,

α(Q) = sup
X∈L∞

{
EQ [−X]− ρ(X)

}
; (2.2)

α is minimal in the sense that for every other (possibly non-convex or non-lower-semicontinuous)
function α′ satisfying (2.1), α ≤ α′; see, for instance, Föllmer and Schied [9]. We define the
subdifferential of ρ by

∂ρ(X) = {Q ∈ Q|ρ(X) = EQ [−X]− α(Q)}. (2.3)

We say that ρ is subdifferentiable if for every X ∈ L∞ we have ∂ρ(X) 6= ∅. In this paper,
we furthermore denote by Cn(E) the space of all functions from R to R for which the first
n-derivatives exist and which are continuous in an open set E. Finally, for a set M ⊂ Q, we
denote by ĪM the penalty function that is zero if Q ∈M and ∞ otherwise.
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3 Entropy Coherence and Entropy Convexity

Throughout this section we suppose that γ ∈ [0,∞] is fixed. A risk measure that is particu-
larly popular in insurance and financial mathematics (Gerber [11], Föllmer and Schied [9] and
Mania and Schweizer [20]), macroeconomics (Hansen and Sargent [15, 16]), and decision theory
(Gollier [13] and Strzalecki [24]), is the (standard) entropic risk measure defined by

eγ(X) = γ log
(

E
[
exp

{
−X
γ

}])
.

In a setting with distribution invariance, it is commonly referred to as the exponential premium;
see Gerber [11]. As is well-known (Csiszár [4]),

eγ(X) = sup
P̄�P

{
EP̄ [−X]− γH(P̄ |P )

}
,

where H(P̄ |P ) is the relative entropy, i.e.,

H(P̄ |P ) =

 EP̄

[
log
(dP̄
dP

)]
, if P̄ � P ;

∞, otherwise.

The relative entropy is also known as the Kullback-Leibler divergence; it measures the distance
between the distributions P̄ and P.

Risk measurement with the relative entropy is natural in the following setting: The eco-
nomic agent has a reference measure P ; the measure P is, however, an approximation to the
probabilistic model of the payoff X rather than the true model. The agent therefore does
not fully trust the measure P and considers many measures P̄ , with esteemed plausibility de-
creasing proportionally to their distance from the approximation P. Note that for every given
X, the mapping γ → eγ(X) is increasing. Consequently, the parameter γ may be viewed
as measuring the degree of trust the agent puts in the reference measure P . If γ = 0, then
e0(X) = − ess infX, which corresponds to a maximal level of distrust; in this case only the
zero sets of the measure P are considered reliable. If, on the other hand, γ = ∞, then
e∞(X) = −E [X], which corresponds to a maximal level of trust in the measure P. In the case
that γ ∈ R+, it is well-known that ∂eγ(X) is given by the Esscher density with respect to P :

exp
{
−X
γ

}
/E
[
exp

{
−X
γ

}]
.

In certain situations the agent could possibly consider other reference measures Q � P.
Then we define the entropy eγ,Q with respect to Q as

eγ,Q(X) = γ log
(

EQ

[
exp

{
−X
γ

}])
.

Consider the following example:

Example 3.1 Suppose that the agent is only interested in downside tail risk. The standard risk
measure focusing on tail risk is the Tail-Value-at-Risk (TV@R), also referred to as Conditional-
Value-at-Risk or Average-Value-at-Risk. TV@R is defined by

TV@Rα(X) =
1
α

∫ α

0
V@Rλ(X)dλ, α ∈]0, 1],
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with V@Rλ(X) = −q+X(λ), where q+X is the upper quantile function ofX: q+X(λ) = inf{x|P [X ≤
x] > λ}. If the distribution of X is continuous, TV@Rα(X) = E

[
−X|X ≤ q+X(α)

]
, so that

TV@R computes the average over the left tail of the distribution of X up to q+X(α). It is
well-known that

TV@Rα(X) = sup
Q∈Mα

EQ [−X] ,

where Mα is the set of all probability measures Q � P such that dQ
dP ≤ 1

α . Let dQ
dP =

1
αI{X<q+X(α)} + cI{X=q+X(α)}, where c should be chosen such that E

[
dQ
dP

]
= 1. Then one can

show that
Q ∈ arg max{EP̄

[
−X|P̄ ∈Mα

]
},

i.e., TV@Rα(X) = EQ [−X] , and, for continuous distributions, Q = P [.|X ≤ q+X(α)]. Thus,
the measure Q coincides with the original reference measure P , but concentrated on the left
tail of X. The economic agent may, however, not fully trust the probabilistic model of X under
P , hence under Q. Therefore, for every fixed Q, the agent considers the supremum over all
measures absolutely continuous with respect to Q, where measures that are ‘close’ to Q are
esteemed more plausible than measures that are ‘distant’ from Q. This leads to a risk measure
ρ given by

ρ(X) = sup
P̄�Q

sup
Q∈Mα

{EP̄ [−X]− γH(P̄ |Q)} = sup
P̄�P

sup
Q∈Mα

{EP̄ [−X]− γH(P̄ |Q)}

= sup
Q∈Mα

sup
P̄�P

{EP̄ [−X]− γH(P̄ |Q)} = sup
Q∈Mα

eγ,Q(X),

where we have used in the second and last equalities that H(P̄ |Q) = ∞ if P̄ is not absolutely
continuous with respect to Q.

This example motivates the following definition:

Definition 3.2 We call a mapping ρ : L∞ → R γ-entropy coherent, γ ∈ [0,∞], if there exists
a set M ⊂ Q such that

ρ(X) = sup
Q∈M

eγ,Q(X).

It will be interesting to consider as well a more general class of risk measures:

Definition 3.3 The mapping ρ : L∞ → R is γ-entropy convex, γ ∈ [0,∞], if there exists a
penalty function c : Q → [0,∞] with infQ∈Q c(Q) = 0, such that

ρ(X) = sup
Q∈Q

{eγ,Q(X)− c(Q)}. (3.1)

Henceforth, we call a mapping entropy coherent (convex) if there exists a γ ∈ [0,∞] such that
ρ is γ-entropy coherent (convex).

Considering

−ρ(X) = inf
Q∈Q

{
−γ log

(
EQ

[
exp

{
−X
γ

}])
+ c(Q)

}
,

the definition of entropy convexity (whence the special case of entropy coherence as well)
can also be motivated using microeconomic theory, as follows: An economic agent with a
CARA (exponential) utility function u(x) = 1− e−

x
γ computes the certainty equivalent to the
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payoff X with respect to the reference measure P. The agent is, however, uncertain about
the probabilistic model under the reference measure, and therefore takes the infimum over all
probability measures Q absolutely continuous with respect to P , where the penalty function
c(Q) represents the esteemed plausibility of the probabilistic model under Q. The certainty
equivalent thus computed is precisely −ρ(X).

Proposition 3.4 Every γ-entropy convex functional is a convex risk measure.

Proof. For every fixed Q with Q � P we have that if X = Y P -a.s. then also X = Y Q-a.s.,
hence, eγ,Q(X) = eγ,Q(Y ) and therefore

sup
Q∈Q

{eγ,Q(X)− c(Q)} = sup
Q∈Q

{eγ,Q(Y )− c(Q)},

as well. Furthermore, eγ,Q(X) − c(Q) is translation invariant, monotone, convex and lower-
semicontinuous (hence, continuous from above). Thus, also supQ∈Q{eγ,Q(X)− c(Q)} is trans-
lation invariant, monotone, convex and continuous from above. Normalization follows because
infQ∈Q c(Q) = 0 by assumption. 2

As e∞,Q(X) = EQ [−X] , (2.1) implies that ρ is a convex risk measure if and only if it is ∞-
entropy convex. As we will see later (for example, Theorem 5.2 below), however, with γ <∞,
not every convex risk measure is γ-entropy convex. This is important: In Theorem 4.1 below we
will see that, under some technical conditions, negative certainty equivalents in a generalized
Gilboa-Schmeidler setting are translation invariant if and only if they are γ-entropy convex
with γ ∈ R+ or ∞-entropy coherent, ruling out the general ∞-entropy convex case. But the
following result is available:

Proposition 3.5 Let ρ be a convex risk measure. Then for every γ ∈ [0,∞] there exists a
γ-entropy convex risk measure ργ,dom dominating ρ.

Proof. We have
eγ,Q(X) = sup

P̄�Q

{EP̄ [−X]− γH(P̄ |Q)} ≥ EQ [−X] .

Thus, setting α = c,

ρ(X) = sup
Q�P

{EQ [−X]− α(Q)} ≤ sup
Q�P

{eγ,Q(X)− c(Q)} = ργ,dom(X).

2

For a risk measure ρ we define

ρ∗(Q) = sup
X∈L∞

{eγ,Q(X)− ρ(X)}

and
ρ∗∗(X) = sup

Q�P
{eγ,Q(X)− ρ∗(Q)}.

Lemma 3.6 If ρ is γ-entropy convex, then for every X ∈ L∞,

ρ∗∗(X) ≤ ρ(X). (3.2)
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Proof. As ρ∗(Q) = supX∈L∞{eγ,Q(X) − ρ(X)} it follows that eγ,Q(X) − ρ∗(Q) ≤ ρ(X) for all
X ∈ L∞. Taking the supremum over all measures Q which are absolutely continuous with
respect to P yields (3.2). 2

The next theorem establishes a duality result for γ-entropy convex risk measures:

Theorem 3.7 A normalized mapping ρ is γ-entropy convex if and only if ρ∗∗ = ρ. Further-
more, ρ∗ is the minimal penalty function.

Proof. The ‘if’ part holds because if ρ(X) = ρ∗∗(X) = supQ�P {eγ,Q(X) − ρ∗(Q)} then by
virtue of the equalities

0 = −ρ(0) = − sup
Q∈Q

−ρ∗(Q) = inf
Q∈Q

ρ∗(Q),

ρ is γ-entropy convex. Let us prove the ‘only if’ direction. We already know from Lemma
3.6 that ρ∗∗ ≤ ρ. We will prove that ρ∗∗ ≥ ρ. If ρ is γ-entropy convex there exists a penalty
function c such that

ρ(X) = sup
Q∈Q

{eγ,Q(X)− c(Q)}.

Thus, for every Q � P we have c(Q) ≥ eγ,Q(X) − ρ(X). By the definition of ρ∗ this yields
c(Q) ≥ ρ∗(Q). This proves that every penalty function ρ is dominating ρ∗. Moreover,

ρ∗∗(X) = sup
Q�P

{eγ,Q(X)− ρ∗(Q)} ≥ sup
Q�P

{eγ,Q(X)− c(Q)} = ρ(X).

2

Theorem 3.7 suggests a way to find out whether a risk measure ρ is γ-entropy convex: compute
ρ∗ and ρ∗∗, and verify whether ρ∗∗ = ρ.

Remark 3.8 ρ∗ measures how much ρ deviates from below from the Q-entropy. If there exists
a Q� P such that ρ(X) ≤ eγ,Q(X) then ρ∗(Q) ≥ eγ,Q(X)−ρ(X) ≥ 0. This and the convexity
of ρ∗ jointly imply that ρ is entropy coherent if and only if ρ∗ = ĪM for a set M ⊂ Q.

Remark 3.9 Let A be the acceptance set of ρ, i.e., A = {X ∈ L∞|ρ(X) ≤ 0} . ρ∗ can be
represented as

ρ∗(Q) = sup
X∈A

eγ,Q(X).

To see this, note that clearly,

ρ∗(Q) = sup
X∈L∞

{
eγ,Q(X)− ρ(X)

}
≥ sup

X∈A

{
eγ,Q(X)− ρ(X)

}
≥ sup

X∈A
eγ,Q(X).

On the other hand, if X ∈ A then X + ρ(X) ∈ A, which implies that

ρ∗(Q) = sup
X∈L∞

{
eγ,Q(X)− ρ(X)

}
= sup

X∈L∞

{
eγ,Q(X + ρ(X))

}
= sup

X+ρ(X)=Y ∈L∞
eγ,Q(Y ) ≤ sup

Y ∈A
eγ,Q(Y ).
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Definition 3.10 For a γ-entropy convex function ρ we denote by

∂entropyρ(X) = {Q∗ ∈ Q|ρ(X) = eγ,Q∗(X)− c(Q∗)}

the entropy subdifferential. Furthermore, if for every X ∈ L∞, ∂entropyρ(X) 6= ∅, then we say
that ρ is entropy subdifferentiable.

Remark 3.11 If γ ∈ R+ and Q∗ ∈ ∂entropyρ(X), then
exp

n
−X
γ

o

EQ∗
h
exp

n
−X
γ

oi ∈ ∂ρ(X), where ∂ρ(X) is

the usual subdifferential defined by (2.3). In the case that there exists a c such that (3.1) holds
and such that the domain of c is a separated compact space it follows directly from Theorem
2.4.18, Zalinscu [26] that every P̄ in ∂ρ(X) can be written as the L1 limit of convex combinations

of measures P̄n given by dP̄n

dP =
exp

n
−X
γ

o

EQ∗n

h
exp

n
−X
γ

oi with Q∗n ∈ ∂entropyρ(X). In particular, in this

case ∂entropyρ(X) 6= ∅ if and only if ∂ρ(X) 6= ∅.

Proposition 3.12 Suppose that ρ is a γ-entropy coherent risk measure with γ ∈]0,∞]. Then
the following statements are equivalent:

(a) For every X ∈ L∞,
ρ(X) = max

Q∈M
eγ,Q(X).

(b) M is weakly compact.

(c) ρ is continuous from below, i.e., Xn ↑ X ⇒ ρ(Xn) ↓ ρ(X).

Proof. Let
ρ̄(X) = sup

Q∈M
EQ [−X] . (3.3)

First of all, notice that by Corollary 4.35 in Föllmer and Schied [9] and the translation invariance
of ρ̄, M being weakly compact is equivalent to the maximum in (3.3) being attained for every
X < 0.
(a)⇒(b): Suppose that X < 0. Then

ρ̄(X) = exp
{

1
γ
ρ(−γ log(−X))

}
= exp

{
1
γ

max
Q∈M

γ log(EQ [−X])
}

= max
Q∈M

EQ [−X] .

(b)⇒(a): We write

ρ(X) = γ log

(
sup
Q∈M

EQ

[
exp

{
−X
γ

}])
= γ log

(
max
Q∈M

EQ

[
exp

{
−X
γ

}])
= max

Q∈M
eγ,Q(X).

(b)⇔(c): Corollary 4.35 in Föllmer and Schied [9] implies also that M being weakly compact
is equivalent to ρ̄ being continuous from below. Now clearly ρ̄ being continuous from below
implies that ρ is continuous from below. On the other hand, suppose that Xn ↑ X. Since
ρ̄ is translation invariant we may assume without loss of generality that Xn < 0. Define
Yn := −γ log(−Xn) ↑ Y =: −γ log(−X). Then the continuity from below of ρ implies that

ρ̄(Xn) = exp
{
ρ(Yn)
γ

}
↓ exp

{
ρ(Y )
γ

}
= ρ̄(X).

2
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4 Axiomatic Characterizations

In this section, we axiomatize entropy convex and entropy coherent measures of risk. A key
role in this section is played by the axiom of translation invariance.

4.1 Entropy Convexity

We state the following theorem:

Theorem 4.1 Suppose that the probability space is sufficiently rich to support a random vari-
able with a uniform distribution, and that ρ̄ : L∞ → R is monotone, convex, positively
homogeneous and continuous from above and for all m ∈ R−0 , ρ̄(m) = −m. Let φ be a
strictly increasing and continuous function satisfying 0 ∈ closure(Image(φ)), φ(∞) = ∞ and
φ ∈ C3(]φ−1(0),∞[). Then the following statements are equivalent:

(i) ρ(X) = φ−1(ρ̄(−φ(−X))) is translation invariant and the subdifferential of ρ̄ is always
nonempty.

(ii) ρ is γ-entropy convex with γ ∈ R+ or ρ is ∞-entropy coherent, and the entropy subdif-
ferential is always nonempty.

Remark 4.2 The direction (i)⇒(ii) in Theorem 4.1 does not hold (even not in the case that we
additionally assume that ρ̄ is translation invariant as in Corollary 4.10 below) if the probability
space is not rich, or if the assumption on the subdifferential of ρ̄ is omitted.

Suppose, for instance, that Ω = {ω1, ω2, . . . , ωn} and that, without loss of generality,
P [{ωi}] = pi > 0, i = 1, . . . , n. Then for a payoff X we can define ρ̄(X) = maxQ�P EQ [−X] =
maxi=1,...,n−X(ωi), where the maximum is attained in the measure Q that sets Q[{ωi0}] = 1,
where ωi0 = arg maxω −X(ω). Let φ be a strictly increasing and continuous function. Then it
always holds that

φ−1(ρ̄(−φ(−X))) = φ−1(max
i
φ(−X(ωi)))

= φ−1(φ(−X(ωi0))) = −X(ωi0) = ρ̄(X).

In particular, ρ(X) = φ−1(ρ̄(−φ(−X))) = ρ̄(X) is translation invariant for every function φ
that is strictly increasing and continuous. This shows that (i)⇒(ii) in Theorem 4.1 does not
hold if the probability space is finite.

If, on the other hand, the probability space is rich but we omit the assumption that ρ̄ is
subdifferentiable, then the coherent risk measure ρ̄(X) = ess sup−X satisfies for every strictly
increasing and continuous function φ that ρ(X) = φ−1(ρ̄(−φ(−X))) = ρ̄(X) is a convex risk
measure. The equality may be seen to hold as

φ−1(ρ̄(−φ(−X))) = ess supφ−1(φ(−X)) = ess sup−X = ρ̄(X).

Remark 4.3 In the proof of Theorem 4.1 we will see that ρ is entropy coherent if and only if
ρ̄ is a coherent risk measure. In this case, ρ̄(X) = supQ∈M EQ [−X] for a set M ⊂ Q, and ρ is
a negative certainty equivalent in the Gilboa-Schmeidler framework.

Furthermore, the case that ρ is entropy convex corresponds to ρ being the negative certainty
equivalent of ρ̄(X) = supQ∈M β(Q)EQ [−X], where β : M → [0, 1] can be viewed as a discount

10



factor. In this case, every model Q is discounted by a factor β(Q) corresponding to its esteemed
plausibility. If β(Q) = 1 for all Q ∈ M , we are back in the framework of Gilboa-Schmeidler.
However, if there exists a Q ∈M such that β(Q) < 1, we will see that ρ is entropy convex with
γ ∈ R+ but not entropy coherent.

Remark 4.4 In financial mathematics, translation invariance is typically motivated by the
interpretation of a risk measure on L∞ as a minimal amount of risk capital. It ensures that
ρ(X + ρ(X)) = 0.

Remark 4.5 Notice that since φ is positive somewhere and 0 ∈ closure(Image(φ)) we have
that φ−1(δ) is well-defined for all δ > 0 small enough and we can define φ−1(0) = limδ↓0 φ

−1(δ).
The common condition that φ(∞) = ∞ implies that ρ remains loss sensitive.

Before proving Theorem 4.1, we first present the following two lemmas:

Lemma 4.6 Suppose that ρ̄ : L∞ → R is monotone, convex, positively homogeneous and
continuous from above and for all m ∈ R−0 , ρ̄(m) = −m. Then there exists a function β : Q ⊃
M → [0, 1] with supQ∈M β(Q) = 1, such that for all X ∈ L∞ with X ≤ 0,

ρ̄(X) = sup
Q∈M

β(Q)EQ [−X] . (4.1)

Furthermore, if additionally we have ρ̄(1) = −1 then M can be chosen such that β(Q) = 1 for
all Q ∈M.

Proof. By standard arguments (see, for example, Lemma A64 in the appendix of Föllmer and
Schied [9]), we may conclude that ρ̄ is weak∗ lower-semicontinuous. Proposition 3.1.2 in Dana
[5] implies that

ρ̄(X) = sup
X′∈L1

+

{E
[
−X ′X

]
− ˆ̄ρ(X ′)},

and it follows from standard results in convex analysis that the positive homogeneity of ρ̄
entails that ˆ̄ρ is an indicator function of a convex nonempty set, say H ⊂ L1

+. Hence,

ρ̄(X) = sup
X′∈H

E
[
−X ′X

]
= sup

X′∈H
E
[
X ′]E [− X ′

E [X ′]
X

]
= sup

X′∈H
E
[
X ′]EQX′ [−X] , (4.2)

where in the case that X ′ ≡ 0, we set 0/0 = 1 and QX
′

= P . Now set M =
{
Q ∈

Q| there exists a λ ≥ 0 such that λdQdP ∈ H
}

. Then (4.2) entails that for all X ∈ L∞ with
X ≤ 0,

ρ̄(X) = sup
Q∈M

β(Q)EQ [−X] ,

where for Q ∈M, β(Q) = sup{λ ≥ 0|λdQdP ∈ H}. This shows (4.1). Furthermore,

sup
Q∈M

β(Q) = ρ̄(−1) = 1.
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To see the last part of the lemma note that if ρ̄(1) = −1 then we must have −1 = ρ̄(1) =
supX′∈H E [−X ′] . This implies that

inf
X′∈H

E
[
X ′] = 1.

On the other hand, since ρ̄(−1) = 1, we also have that supX′∈H E [X ′] = 1. Hence, for every
X ′ ∈ H we get that E [X ′] = 1 and by the definition of β we obtain that β(Q) = 1 for every
Q ∈M . 2

Subsequently, we will identify the measure β(Q)Q (given by (β(Q)Q)(A) = β(Q)Q(A) for every
A ∈ F) with its density β(Q)dQdP . We recall that an element X ′ ∈ H ⊂ L1

+ is in ∂ρ̄(X) if it
attains the supremum in (4.2), i.e., ρ̄(X) = E [−X ′X] .

Lemma 4.7 Suppose that ρ̄ : L∞ → R is monotone, convex, positively homogeneous and
continuous from above and for all m ∈ R−0 , ρ̄(m) = −m. Let X ∈ L∞ with X > 0. Then for
every Q with β(Q)Q ∈ ∂ρ̄(−X) we have that

β(Q) ≥ ess infX
ess supX

.

Proof. Choose Q ∈M such that β(Q)Q ∈ ∂ρ̄(−X). Then by (4.1) and the monotonicity of ρ̄

ess infX = ρ̄(− ess infX) ≤ ρ̄(−X) = β(Q)EQ [X] ≤ β(Q) ess supX,

where the last inequality holds as β(Q) ≥ 0. Dividing both sides by ess supX completes the
proof. 2

Proof of Theorem 4.1. (i)⇒(ii):
Since φ is positive somewhere and 0 ∈ closure(Image(φ)), there are two cases:

(H1) There exists an x0 such that φ(x0) = 0.

(H2) limx→−∞ φ(x) = 0 and for every x ∈ R we have φ(x) > 0.

Let φz(·) := φ(·+ z) for z ∈ R. By translation invariance,

φ−1
z (ρ̄(−φz(−X))) = φ−1(ρ̄(−φz(−X)))− z = φ−1(ρ̄(−φ(−X))).

Thus, by considering φz instead of φ, we may assume without loss of generality that:

• If (H1) holds then φ(0) = 0 and φ ∈ C3(]φ−1(0),∞[) = C3(R+).

• If (H2) holds then φ(0) > 0 and φ ∈ C3(]φ−1(0),∞[) = C3(]−∞,∞[).

In particular, we may always assume that φ−1(0) ∈ {−∞, 0} and

φ(0) ≥ 0. (4.3)

Next, let us look at X ∈ L∞ such that X < 0. By assumption, ∂ρ̄(−φ(−X)) 6= ∅. As
−φ(−X) < 0 (since φ(0) ≥ 0 and φ is strictly increasing), by (4.1) and the assumption that
the subdifferential of ρ̄ is always nonempty we have that

ρ̄(−φ(−X)) = max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ [φ(−X)] . (4.4)

Now we need the following proposition:
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Proposition 4.8 Let X ∈ L∞ with X < 0. Under the assumptions of Theorem 4.1 (i) we
have that

φ′ ◦ φ−1
(

max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ [φ(−X)]
)

= max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
. (4.5)

Proof. Note that as φ is in C3(]φ−1(0),∞[) we have for |m| < ess inf −X,

ρ̄(−φ(−X +m)) = ρ̄(−φ(−X)− φ′(−X)m+O(m2)).

As a result, we will find that

lim
m→0

ρ̄(−φ(−X +m))− ρ̄(−φ(−X))
m

= lim
m→0

ρ̄(−φ(−X)− φ′(−X)m+O(m2))− ρ̄(−φ(−X))
m

= max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
. (4.6)

That the last equality holds is seen as follows: For arbitrary ε > 0 we have for small m that
|O(m2)

m | ≤ ε. Therefore,

lim sup
m↓0

ρ̄(−φ(−X)− φ′(−X)m+O(m2))− ρ̄(−φ(−X))
m

≤ lim sup
m↓0

ρ̄(−φ(−X)− (φ′(−X) + ε)m)− ρ̄(−φ(−X))
m

= max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X) + ε

]
,

where the inequality holds by the monotonicity of ρ̄ while the equality holds by Theorem 2.4.9
Zalinescu [26]. As ε can be chosen to be arbitrary small we find that

lim sup
m↓0

ρ̄(−φ(−X)− φ′(−X)m+O(m2))− ρ̄(−φ(−X))
m

≤ max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
.

Similarly, one can prove (with ε replaced by −ε) that the same inequality holds when lim supm↓0
on the left-hand side is replaced by lim supm↑0. It means that

lim sup
m→0

ρ̄(−φ(−X)− φ′(−X)m+O(m2))− ρ̄(−φ(−X))
m

≤ max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
.

The reverse inequality

lim inf
m→0

ρ̄(−φ(−X)− φ′(−X)m+O(m2))− ρ̄(−φ(−X))
m

≥ max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
is proven analogously. Hence, indeed (4.6) holds. In particular, the mapping g(m) = ρ̄(−φ(−X+
m)) is differentiable in m = 0 and

g′(0) = max
β(Q)Q∈∂ρ̄(−φ(−X))

β(Q)EQ
[
φ′(−X)

]
. (4.7)

Now by assumption, φ−1(ρ̄(−φ(−X))) is translation invariant and for all m ∈ R,

φ−1(ρ̄(−φ(−X +m)))− φ−1(ρ̄(−φ(−X)))
m

= 1. (4.8)
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Letting m converge to zero in (4.8) we get that

(φ−1 ◦ g)′(0) = 1. (4.9)

On the other hand, applying the chain rule to φ−1 ◦ g, we obtain

(φ−1 ◦ g)′(0) =
∂
[
φ−1(ρ̄(−φ(−X +m)))

]
∂m

∣∣∣
m=0

=
g′(m)

φ′ ◦ φ−1
(
ρ̄(−φ(−X +m))

)∣∣∣
m=0

=
maxβ(Q)Q∈∂ρ̄(−φ(−X)) β(Q)EQ [φ′(−X)]

φ′ ◦ φ−1
(
ρ̄(−φ(−X))

)
=

maxβ(Q)Q∈∂ρ̄(−φ(−X)) β(Q)EQ [φ′(−X)]

φ′ ◦ φ−1
(

maxβ(Q)Q∈∂ρ̄(−φ(−X)) β(Q)EQ [φ(−X)]
) , (4.10)

where we applied (4.7) in the third and (4.4) in the last equality. Finally, (4.9) together with
(4.10) entail that (4.5) holds true. 2

Continuation of the Proof of Theorem 4.1. (i)⇒(ii):
Next, we will show that Proposition 4.8 implies that there exists p, γ, q such that, for all
x ∈]φ−1(0),∞[, φ(x) = p exp{xγ }+ q or φ(x) = px+ q. We state the following lemma:

Lemma 4.9 In the setting of Theorem 4.1, suppose that there does not exist p, γ, q such that,
for all x ∈]φ−1(0),∞[, φ(x) = p exp{xγ } + q or φ(x) = px + q. Then the function φ′ ◦ φ−1 is
not linear on φ(]φ−1(0),∞[) = R+.

Proof. Suppose that there exists c, d such that φ′ ◦ φ−1(x) = cx + d for all x ∈ R+. As

φ′ ◦ φ−1 =
1

(φ−1)′
we get that

(φ−1)′(x) =
1

cx+ d
.

If c = 0 then φ is linear on ]φ−1(0),∞[ contrary to our assumptions. As φ−1 is strictly

increasing on R+, we must have that c > 0. This entails φ−1(x) =
1
c

log(cx+ d), which yields

that φ(x) = 1
c exp{cx} − d

c on ]φ−1(0),∞[. This contradicts again our assumptions. Hence,
under the stated assumptions, φ′ ◦ φ−1 is not linear on R+. 2

Continuation of the Proof of Theorem 4.1. (i)⇒(ii):
We will now assume that there does not exist p, γ, q such that, for all x ∈]φ−1(0),∞[, φ(x) =
p exp{xγ } + q or φ(x) = px + q, and prove that we obtain a contradiction to Proposition 4.8.
By Lemma 4.9, this assumption implies that φ′ ◦ φ−1 is not linear on φ(]φ−1(0),∞[) = R+. As
φ is in C3(]φ−1(0),∞[), φ′ ◦φ−1 is in C2(R+). Now the second derivative of φ′ ◦φ−1 cannot be

constantly zero on R+ as φ′ ◦ φ−1 is not linear. Let u = inf
{
t > 0

∣∣∣(φ′ ◦ φ−1
)′′

(t) 6= 0
}
≥ 0.

Now, there are two cases:

(i) There exists a nonempty interval J = (u, t) ⊂ R+ such that
(
φ′ ◦φ−1

)′′
< 0, i.e., φ′ ◦φ−1

is strictly concave on J.
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(ii) There exists a nonempty interval J = (u, t) ⊂ R+ such that
(
φ′ ◦φ−1

)′′
> 0, i.e., φ′ ◦φ−1

is strictly convex on J .

As φ′ ◦ φ−1 is continuously differentiable on ]0, t[ and linear on ]0, u] (by the definition of u),
φ′ ◦ φ−1 in case (i) is concave on ]0, t[ and in case (ii) is convex on ]0, t[. Let ε > 0 such that
(1− ε)2t > u. Since the probability space is rich we may choose X ∈ L∞ satisfying both of the
following two properties:

(a) −X ∈ φ−1(](1− ε)t, t[) ⊂ φ−1(J).

(b) −X is diffuse.

From (a) it follows in particular that φ(−X) ∈](1− ε)t, t[⊂ J. Denote

Q1 = arg maxβ(Q)Q∈∂ρ̄(−φ(−X)) β(Q)EQ [φ(−X)] .

Q2 = arg maxβ(Q)Q∈∂ρ̄(−φ(−X)) β(Q)EQ
[
φ′(−X)

]
.

Since Qi � P and −X is diffuse under P we have that Qi[−X = x] = 0 for i = 1, 2 and every
x ∈ φ−1(J). Thus, −X is also diffuse under Qi. As by (a) and (4.3) φ(−X) ∈ J ⊂ R+ and
φ(0) ≥ 0, we have that φ(−X) > 0. Since β(Qi)Qi ∈ ∂ρ(−(φ(−X)), Lemma 4.7 gives

β(Qi) ≥
ess inf φ(−X)
ess supφ(−X)

≥ (1− ε)t
t

= 1− ε > 0.

Therefore, β(Qi)φ(−X) is a diffuse random variable under Qi and

t > φ(−X) ≥ β(Qi)φ(−X) ≥ (1− ε)φ(−X) ≥ (1− ε)2t > u,

where the second inequality holds as β(Qi) ∈]0, 1]. In particular, β(Qi)φ(−X) ∈ J. Finally let
us derive the contradiction. Assume case (i) above: Then

φ′ ◦ φ−1
(

max
i=1,2

β(Qi)EQi [φ(−X)]
)

= max
i=1,2

φ′ ◦ φ−1
(
EQi [β(Qi)φ(−X)]

)
> max

i=1,2
EQi

[
φ′ ◦ φ−1

(
β(Qi)φ(−X)

)]
= max

i=1,2
lim
δ↓0

EQi
[
φ′ ◦ φ−1

(
β(Qi)φ(−X) + (1− β(Qi))δ

)]
≥ max

i=1,2
lim inf
δ↓0

{
EQi

[
β(Qi)φ′ ◦ φ−1

(
φ(−X)

)]
+ (1− β(Qi))φ′ ◦ φ−1(δ)

}
= max

i=1,2

{
β(Qi)EQi

[
φ′(−X)

]
+ (1− β(Qi)) lim inf

δ↓0
φ′ ◦ φ−1(δ)

}
≥ max

i=1,2
β(Qi)EQi

[
φ′(−X)

]
,

where the first inequality holds because of Jensen’s inequality for strictly concave functions for
the diffuse random variable β(Qi)φ(−X) ∈ J , with i = 1, 2, respectively (where we used that
β(Qi)φ(−X) ∈ J and the strict concavity of φ′ ◦φ−1 on J). The second inequality holds by the
concavity of the function φ′ ◦ φ−1 on ]0, t]. The third inequality holds because φ′ ◦ φ−1(δ) > 0
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for every δ > 0 such that φ−1(δ) is well-defined, as φ′ is positive. The (strict) inequality above
is a contradiction to Proposition 4.8, applying to case (i).

Now consider the more challenging case (ii): Then the function φ′ ◦ φ−1 is convex on ]0, t]
and strictly convex on J . Choosing a sequence δn ↓ 0 such that

lim inf
δ↓0

φ′ ◦ φ−1(δ) = lim
n
φ′ ◦ φ−1(δn),

the same argumentation as before yields

φ′ ◦ φ−1
(

max
i=1,2

β(Qi)EQi [φ(−X)]
)

< max
i=1,2

EQi
[
φ′ ◦ φ−1

(
β(Qi)φ(−X)

)]
≤ max

i=1,2
lim
n

{
EQi

[
β(Qi)φ′ ◦ φ−1

(
φ(−X)

)]
+ (1− β(Qi))φ′ ◦ φ−1(δn)

}
= max

i=1,2

{
β(Qi)EQi

[
φ′(−X)

]
+ (1− β(Qi)) lim inf

δ↓0
φ′ ◦ φ−1(δ)

}
. (4.11)

Notice that if
(1− β(Qi)) lim inf

δ↓0
φ′ ◦ φ−1(δ) = 0, (4.12)

then (4.11) would imply that

φ′ ◦ φ−1
(

max
i=1,2

β(Qi)EQi [φ(−X)]
)
< max

i=1,2
β(Qi)EQi

[
φ′(−X)

]
,

which is a contradiction to Proposition 4.8. To see that (1 − β(Qi)) lim infδ↓0 φ′ ◦ φ−1(δ) = 0
note that there are two cases:

(1.) ρ̄(1) = −1,

(2.) ρ̄(1) 6= −1.

In the first case the second part of Lemma 4.6 implies that β(Qi) = 1 for i = 1, 2 and in
particular, (4.12) is satisfied. Let us look at the second case: By positive homogeneity (2.)
entails that ρ̄(m) 6= −m for all m > 0. Now suppose that there exists x0 ∈ R such that
φ(−x0) < 0. Since by assumption there also exists x1 such that φ(−x1) > 0 the continuity of φ
yields that the assumption (H1) above holds. In particular, φ(0) = 0. By (2.) and the positive
homogeneity of ρ̄, ρ̄(−φ(−x0)) 6= φ(−x0). This gives

φ−1(ρ̄(−φ(−x0))) 6= −x0. (4.13)

However, by translation invariance and since ρ̄(0) = 0,

φ−1(ρ̄(−φ(−x0)) = −x0 + φ−1(ρ̄(−φ(0)) = −x0 + φ−1(ρ̄(0)) = −x0 + φ−1(0) = −x0,

which is a contradiction to (4.13). Hence, φ(x) ≥ 0 for all x ∈ R and the assumption (H2)
holds, i.e.,

lim
x→−∞

φ(x) = 0. (4.14)
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By construction in H2 we have φ ∈ C3(]−∞,∞[). Now (4.14) implies that the positive function
φ′(x) cannot be bounded constantly away from zero on (−∞, z) for any z ∈ R. This means
that there is a sequence xn converging to −∞ such that

lim inf
n

φ′(xn) = 0.

Choose δ̄n = φ(xn). By (4.14) we have that limn δ̄n = 0 and

0 ≤ lim inf
δ↓0

φ′ ◦ φ−1(δ) ≤ lim
n
φ′(φ−1(δ̄n)) = lim

n
φ′(xn) = 0.

Consequently,
lim inf
δ↓0

φ′ ◦ φ−1(δ) = 0.

This proves (4.12). Hence, we have derived a contradiction to Proposition 4.8, applying to
case (ii). Furthermore, we have seen that the cases (H1) and (1.), and (H2) and (2.) coincide,
respectively.

Hence, (4.5) of Proposition 4.8 implies that the function φ′ ◦ φ−1 has to be linear, and by
Lemma 4.9 this implies that there exist constants p, γ, q ∈ R such that φ(x) = pex/γ + q or
φ(x) = px+q for all x ∈]φ−1(0),∞[ (where in case H1 φ−1(0) = 0 and in case H2 φ−1(0) = −∞).

As φ is strictly increasing we have p > 0. Now in the case (H2) we must have that
φ(x) = exp{x/γ} (with q = 0) as only then limx→−∞ φ(x) = 0. On the other hand, in the
case (H1), condition (1.) holds and the second part of Lemma 4.6 implies that β(Q) = 1 for
all Q ∈M. Therefore, φ−1(ρ̄(−φ(−X))) is invariant under positive affine transformations of φ.
Thus, we may always assume that q = 0. Let us first consider the case that φ is not linear,
i.e., φ(x) = ex/γ . Then

φ−1(ρ̄(−φ(−X))) = φ−1

(
sup
Q∈M

β(Q)EQ [φ(−X)]

)

= γ log

(
sup
Q∈M

β(Q)EQ

[
exp

{
−X
γ

}])

= sup
Q∈M

{
γ log

(
EQ

[
exp

{
−X
γ

}])
+ γ log(β(Q))

}
= sup

Q∈M
{eγ,Q(X)− c(Q)},

with c(Q) = −γ log(β(Q)) ≥ 0 if Q ∈ M and c(Q) = ∞ else. Thus, indeed φ−1(ρ̄(−φ(−X)))
is γ-entropy convex. As the supremum on the right-hand side of the first equality is always
attained because ∂ρ̄(−φ(−X)) 6= ∅, (ii) follows.

Now in the case that φ is linear, we may assume that φ(x) = px. But then by our assump-
tions, ρ(X) = φ−1(ρ̄(−φ(−X))) = ρ̄(X) is translation invariant. In particular, ρ is a coherent
risk measure attaining its maximum. Thus, ρ is γ-entropy convex (even γ-entropy coherent)
with γ = ∞ and its entropy subdifferential is always nonempty. This completes the proof of
the implication (i)⇒(ii) of Theorem 4.1.

Proof of Theorem 4.1. (ii)⇒(i):
To see the direction (ii)⇒(i), we distinguish between two cases: In the case that γ < ∞,
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we let φ(x) = ex/γ , and ρ̄(X) = supQ∈Q β(Q)EQ [−X], with β(Q) = e−ρ
∗(Q)/γ ≥ 0. Then

ρ(X) = γ log
(
ρ̄
(
−e−X/γ

))
= φ−1(ρ̄(−φ(−X))). Clearly, ρ̄ is monotone, convex, positively

homogeneous and continuous from above. As infQ∈Q ρ∗(Q) = 0, we get that supQ∈Q β(Q) = 1.
This implies that for m ∈ R−0 , ρ̄(m) = −m. Furthermore, because ρ is entropy convex it is
translation invariant.

In the case that γ = ∞, we let φ(x) = x and ρ̄(X) = ρ(X). Notice that in both cases we
have ∂ρ(X) 6= ∅ and hence ∂ρ̄(X) 6= ∅. 2

Corollary 4.10 In the setting of Theorem 4.1, if ρ̄ is additionally assumed to be translation
invariant, then statement (i) implies that ρ is γ-entropy coherent with γ ∈]0,∞].

Proof. As ρ̄ is assumed to be translation invariant, we have that ρ̄(m) = −m for all m ∈ R.
By Lemma 4.6 this implies that in the proof of Theorem 4.1 we can choose M ⊂ Q such that
β(Q) = 1 for all Q ∈M. Hence, we get c(Q) = γ log(β(Q)) = 0 if β(Q) = 1 and ∞ else. Thus,
indeed φ−1(ρ̄(−φ(−X))) is entropy coherent. 2

Remark 4.11 In recent work, Cheridito and Kupper [3] (Example 3.6.3) suggest without proof
a result quite similar to, but essentially different from, Corollary 4.10. Their suggested result
can in a way be viewed as supplementary to the statement in Corollary 4.10: They restrict
attention to a specific and simple probabilistic setting with a finite outcome space Ω and consider
only strictly positive probability measures on Ω. By contrast, in Corollary 4.10, we consider a
rich outcome space and allow for weakly positive probability measures.

4.2 Entropy Coherence

While Corollary 4.10 in fact already presents an axiomatic characterization of entropy coherent
measures of risk, this section axiomatizes entropy coherent measures of risk completely in terms
of axioms with respect to a preference order. Just as for the robust Savage representation, it
will be convenient to work in the framework of Anscombe and Aumann [1] where payoffs can
be lotteries; see also Gilboa and Schmeidler [12].

We will therefore embed the space L∞(Ω,F , P ) into a space X̃ of functions X̃ on (Ω,F)
taking values in the convex set of probability measures Mb(R) defined by

Mb(R) =
{
µ ∈M1(R)|µ([−u, u]) = 1 for some u ≥ 0

}
,

where M1(R) is the set of all σ-additive measures on R with mass one. Recall that a stochastic
kernel is a mapping K : Ω →M1(R) such that ω 7→ K(ω,A) is measurable for each Borel set
A ⊂ R. Formally, then, X̃ is defined as the convex set of all stochastic kernels X̃ on (Ω,F) for
which there exists a constant u ≥ 0 such that

X̃(ω, [−u, u]) = 1 for P -a.s. all ω ∈ Ω.

As mentioned already in the Introduction, L∞(Ω,F , P ) can then be embedded into X̃ by the
mapping

L∞(Ω,F , P ) 3 X → δX ∈ X̃ .

We assume that a ‘preference’ (or rather: dispreference) order � is defined on X̃, where,
loosely speaking, X̃ � Ỹ means that X̃ is at least as risky as Ỹ . As usual, � stands for strict
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‘preference’ (or rather: dispreference) and ∼ for indifference. We suppose that � satisfies the
following properties:

AXIOM A1–Non-degenerate Weak Order: � is complete, transitive and non-degenerate.

AXIOM A2–Continuity I: If X̃, Ỹ , Z̃ ∈ X̃ are such that Z̃ � Ỹ � X̃, then there are
λ, β ∈]0, 1[ with

λZ̃ + (1− λ)X̃ � Ỹ � βZ̃ + (1− β)X̃.

Moreover, for all u > 0 the restriction of � to M1([−u, u]) is continuous with respect to the
weak topology.

AXIOM A3–Monotonicity: For all X̃, Ỹ ∈ X̃: If X̃(ω) � Ỹ (ω) for P -a.s. all ω ∈ Ω, then
X̃ � Ỹ . Moreover, � is compatible with the usual risk order on R, i.e., δx � δy if an only if
y > x.

AXIOM A4–Uncertainty Aversion: If X̃, Ỹ ∈ X̃ and λ ∈ [0, 1], then X̃ ∼ Ỹ implies
Ỹ � λX̃ + (1− λ)Ỹ .

AXIOM A5–Certainty Independence: If X̃, Ỹ ∈ X̃ and Z ≡ µ ∈Mb(R), then

X̃ � Ỹ ⇔ λX̃ + (1− λ)Z � λỸ + (1− λ)Z for all λ ∈]0, 1[.

AXIOM A6–Continuity II: The induced preference order � on L∞ satisfies the following
continuity properties:

(i) Y � X and Xn ↓ X a.s. ⇒ Y � Xn for all large n.

(ii) X � Y and Xn ↑ X a.s. ⇒ Xn � Y for all large n.

Axioms A1-A6 are standard and similar to the ones imposed by Gilboa and Schmeidler
[12]. We add the following two axioms to obtain entropy convex functionals on L∞:

AXIOM A7–Translation Invariance: The induced preference order � on L∞ satisfies for
all m ∈ R:

X � Y ⇒ X +m � Y +m.

AXIOM A8–Smoothness and Sensitivity: Let x ∈ R and p ∈]0, 1[. Denote by cp,x the cer-
tainty equivalent of the lottery µ = pδx that pays out x with probability p. Then, for all x ∈ R,
the function p→ cx,p is in C3(]0, 1[). Furthermore, for all x ∈ R and all p, q ∈]0, 1[, there exists
m ∈ R such that cm,p ≤ cx,q.

With Axioms A1-A8 at hand, we state the following theorem:

Theorem 4.12 Suppose that (Ω,F , P ) is rich. Then a preference order satisfies A1-A8 if and
only if there exists a convex set M ⊂ Q and γ ∈]0,∞] such that

X̃ � Ỹ ⇔ max
Q∈M

γ log
(

EQ

[∫
exp

{
−x
γ

}
X̃(., dx)

])
≥ max

Q∈M
γ log

(
EQ

[∫
exp

{
−x
γ

}
Ỹ (., dx)

])
,
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where the case that γ = ∞ is identified with γ log(x) = x = ex/γ . In particular, for X,Y ∈ L∞
we have that

X � Y ⇔ ρ(X) ≥ ρ(Y )

for a γ-entropy coherent risk measure ρ, γ ∈]0,∞], with a nonempty subdifferential.

Proof. The ‘if’ direction is straightforward (for Axiom A6, see Proposition 3.12). Let us prove
the ‘only if’ direction. Define �∗ by saying that Ỹ �∗ X̃ if and only if X̃ � Ỹ . Then our
assumptions A1-A6 imply that the assumptions of Theorem 2.80, Föllmer and Schied [9], are
satisfied by �∗. Hence, there exists a convex set M of probability measures on (Ω,F) and a
strictly increasing and continuous function u such that the preference order �∗ has a numerical
representation

Ũ(X̃) = min
Q∈M

EQ

[∫
u(x)X̃(·, dx)

]
,

where u is unique up to positive affine transformations. This implies that one numerical
representation L of � is given by

L(X̃) := −Ũ(X̃) = max
Q∈M

EQ

[∫
−u(x)X̃(·, dx)

]
= max

Q∈M
EQ

[∫
l(−x)X̃(·, dx)

]
,

where l(x) = −u(−x). Because any positive affine transformation of l generates the same
preferences, we may assume that l(0) = 0 and l(1) = 1. Suppose that the maximum is attained
in a Q̄ /∈ Q. Then there exists A ∈ F such that P [A] = 0 and Q̄[A] > 0. But then for X ∈ L∞
we get

L(X − IA) = max
Q∈Mv

EQ [l(−(X − IA))] ≥ EQ̄ [l(−(X − IA))] > EQ̄ [l(−X)] = L(X).

This is a contradiction to the fact that by A3 we must have X ∼ X− IA. Hence, we can choose
M as a convex subset of Q.

Next, notice that any strictly monotone transformation of L is also a numerical represen-
tation of � . In particular, the functional

ρ(X) := l−1
(

max
Q∈M

EQ

[∫
l(−x)X̃(·, dx)

])
is a numerical representation of � . Note that −ρ is the certainty equivalent of � . Hence, by
A8 for all x ∈ R the function f(p) := −ρ(pδx) = −l−1(l(−x)p) is in C3(]0, 1[) for p ∈]0, 1[.
As l(0) = 0 this implies that l−1 is in C3(]0, l(∞)[) and consequently, the function l is in
C3(]l−1(0),∞[) = C3(R+) as well. Now as X ∼ −ρ(X) by A7 we have X +m ∼ −ρ(X) +m.
This yields

X +m ∼ −ρ(X) +m.

As ρ(m) = −m for all m ∈ R we obtain

ρ(X +m) = ρ(−ρ(X) +m) = ρ(X)−m.

Hence, ρ is translation invariant on L∞. Set φ := l and ρ̄(X) := supQ∈M EQ [−X] . Since ρ̄ is
a coherent risk measure which always attains its supremum, the subdifferential of ρ̄ is always
nonempty. As we have seen that

ρ(X) = l−1
(

max
Q∈M

EQ

[∫
l(−x)X̃(·, dx)

])
= φ−1

(
ρ̄(−φ(−X))

)
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is translation invariant, Corollary 4.10, jointly with the sensitivity condition in A8 ensuring
l(∞) = ∞, implies that ρ is γ-entropy coherent with γ ∈]0,∞]. 2

4.3 Convexity Without the Translation Invariance Axiom

In the previous subsections the axiom of translation invariance played a key role. As is well-
documented (see, for example, Cheridito and Kupper [3]), the axiom of translation invariance
is equivalent to the axiom of convexity for general certainty equivalents under fairly weak con-
ditions (e.g., continuity with respect to the L∞-norm). In this subsection we adapt and apply
this equivalence relation to the present setting, to replace the axiom of translation invariance
by the axiom of convexity, which will now play the key role.

Throughout this subsection, we let the probability space (Ω,F , P ) be sufficiently rich to
support a random variable with a uniform distribution. We state the following theorem:

Theorem 4.13 Let ρ̄ : L∞ → R be monotone, convex, positively homogeneous and continuous
from above, and let for all m ∈ R−0 , ρ̄(m) = −m. Suppose that the subdifferential of ρ̄ is always
nonempty. Furthermore, suppose that r : L∞ → R is defined by r(X) = l−1 (ρ̄(−l(−X))) ,
for a strictly increasing and continuous function l ∈ C3(]l−1(0),∞[). Finally, suppose that
0 ∈ closure(Image(l)) and that l(∞) = ∞. Then the following statements are equivalent:

(i) r is convex and r(m) = −m for all m ∈ R.

(ii) r is γ-entropy convex with γ ∈ R+ or r is ∞-entropy coherent.

Proof. The direction from (ii) to (i) holds by virtue of Proposition 3.4. Let us show the reverse
direction. First, notice that r is continuous with respect to the L∞-norm. This can be seen as
follows: From the proof of Lemma 4.6, we have that ρ̄(X) = supX′∈H{E [−X ′X]} with H ⊂ L1

+

and supX′∈H{E [|X ′|]} = supX′∈H{E [X ′]} = 1. Hence, for X,Y ∈ L∞,

ρ̄(Y )− ρ̄(X) = sup
X′∈H

{E
[
−X ′Y

]
} − sup

X′∈H
{E
[
−X ′X

]
}

≤ sup
X′∈H

{E
[
−X ′Y

]
− E

[
−X ′X

]
}

≤ ||Y −X||∞ sup
X′∈H

E
[
|X ′|

]
= ||Y −X||∞.

Switching the roles of X and Y it follows that ρ̄ is indeed continuous with respect to the
L∞-norm. Now as l is continuous we can conclude that r is continuous with respect to the
L∞-norm as well. But then it follows from Proposition 2.5-(8) in Cheridito and Kupper [3]
that r is translation invariant. The argument is simple, namely, for λ ∈ (0, 1) we have

r(X +m) ≤ λr

(
X

λ

)
+ (1− λ)r

(
m

1− λ

)
= λr

(
X

λ

)
−m.

Letting λ converge to one and using the continuity of r with respect to the L∞-norm we
find that r(X + m) ≤ r(X) − m. Replacing X by X + m and m by −m yields the stated
result. Therefore, r is indeed translation invariant. Now upon application of Theorem 4.1, the
direction from (i) to (ii) follows. 2

Using Corollary 4.10, we now obtain directly the following corollary:
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Corollary 4.14 In the setting of Theorem 4.13, suppose that ρ̄ is additionally assumed to be
translation invariant. Then the following statements are equivalent:

(i) r is convex.

(ii) r is γ-entropy coherent with γ ∈]0,∞].

5 The Dual Conjugate

In this section we study the dual conjugate function, defined in (2.2), for entropy coherent and
entropy convex measures of risk. Quite unusually, some explicit results on the dual conjugate
function can be obtained. Let γ ∈ [0,∞]. We state the following proposition:

Proposition 5.1 Suppose that ρ is γ-entropy convex. Then

ρ∗(Q) = sup
P̄�P

{α(P̄ )− γH(P̄ |Q)}. (5.1)

Proof. We write

ρ∗(Q) = sup
X∈L∞

{eγ,Q(X)− ρ(X)} = sup
X∈L∞

sup
P̄�P

{EP̄ [−X]− γH(P̄ |Q)− ρ(X)}

= sup
P̄�P

sup
X∈L∞

{EP̄ [−X]− ρ(X)− γH(P̄ |Q)} = sup
P̄�P

{α(P̄ )− γH(P̄ |Q)}.

2

Notice that (5.1) yields that α(P̄ ) ≤ ρ∗(Q) + γH(P̄ |Q). Hence,

α(P̄ ) ≤ inf
Q∈Q

{ρ∗(Q) + γH(P̄ |Q)}.

The next penalty function duality theorem will show that this inequality is sharp. It also
establishes the explicit (!) relationship between the dual conjugate α and the penalty function
c for γ-entropy convex measures of risk.

Theorem 5.2 Suppose that ρ is γ-entropy convex with penalty function c. Then:

(i) The dual conjugate of ρ, defined in (2.2), is given by the largest convex and lower-
semicontinuous function α being dominated by infQ∈Q{γH(P̄ |Q) + c(Q)}.

(ii) If c is convex and lower-semicontinuous, then α is the largest lower-semicontinuous func-
tion being dominated by infQ∈Q{γH(P̄ |Q) + c(Q)}.

(iii) If c is convex and lower-semicontinuous and for every r ∈ R+ the set Br = {Q ∈
Q|c(Q) ≤ r} is uniformly integrable, then

α(P̄ ) = min
Q∈Q

{γH(P̄ |Q) + c(Q)}. (5.2)
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Proof. If γ = 0 or γ = ∞ the theorem follows by standard arguments. Let us therefore assume
that γ ∈ R+.

(i): We write

ρ(X) = sup
Q∈Q

{
γ log

(
EQ

[
exp

{
−X
γ

}])
− c(Q)

}
= sup

Q∈Q
sup
P̄�P

{
EP̄ [−X]− γH(P̄ |Q)− c(Q)

}
= sup

P̄�P

sup
Q∈Q

{
EP̄ [−X]− γH(P̄ |Q)− c(Q)

}
= sup

P̄�P

{
EP̄ [−X]− inf

Q∈Q
{γH(P̄ |Q) + c(Q)}

}
,

(5.3)

where we have used in the second equality that H(P̄ |Q) = ∞ if P̄ is not absolutely continuous
with respect to Q. Since α is the minimal lower-semicontinuous and convex function satisfying
(2.1), statement (i) follows.

(ii): Now assume that c is convex and lower-semicontinuous. We will first show that:

(a) γH(P̄ |Q) is jointly convex in (P̄ , Q).

(b) If P̄n andQn converge weakly to P̄ and Q̄, respectively, then γH(P̄ |Q) ≤ lim infn γH(P̄n|Qn).

To see (a), note that for every X ∈ L∞, −γ log
(
EQ
[
exp

{
−X
γ

}])
is convex in Q, and EP̄ [−X]

is convex in P̄ . Hence, EP̄ [−X] − γ log
(
EQ
[
exp

{
−X
γ

}])
is jointly convex in (P̄ , Q) and

therefore

γH(P̄ |Q) = sup
X∈L∞

{
EP̄ [−X]− γ log

(
EQ

[
exp

{
−X
γ

}])}
is jointly convex in (P̄ , Q) as well.

(b) If Qn ∈ Q converges weakly to Q, and P̄n ∈ Q converges weakly to P̄ , then for every
X ∈ L∞ we have EQn [−X] n→∞→ EQ [−X] and EP̄n [−X] n→∞→ EP̄ [−X] . Since

EP̄ [−X]− γ log
(

EQ

[
exp

{
−X
γ

}])
= lim

n

{
EP̄n [−X]− γ log

(
EQn

[
exp

{
−X
γ

}])}
≤ lim inf

n
sup
X∈L∞

{
EP̄n [−X]− γ log

(
EQn

[
exp

{
−X
γ

}])}
,

it follows that

γH(P̄ |Q) = sup
X∈L∞

{
EP̄ [−X]− γ log

(
EQ

[
exp

{
−X
γ

}])}
≤ lim inf

n
sup
X∈L∞

{
EP̄n [−X]− γ log

(
EQn

[
exp

{
−X
γ

}])}
= lim inf

n
γH(P̄n|Qn).

This proves (b).
(a) and (b) imply that γH(P̄ |Q) is jointly convex and lower-semicontinuous in (P̄ , Q).

Furthermore, c(Q) is convex and lower-semicontinuous. Therefore γH(P̄ |Q) + c(Q) is jointly
convex and lower-semicontinuous as well. By Theorem 2.1.3 (v) of Zalinescu [26] it follows
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that infQ∈Q{γH(P̄ |Q) + c(Q)} is convex in P̄ . Now (ii) follows since α is the minimal lower-
semicontinuous and convex function satisfying (2.1).

(iii): If we could show that

β(P̄ ) = inf
Q∈Q

{γH(P̄ |Q) + c(Q)} (5.4)

is also lower-semicontinuous and that the infimum is attained, then (5.2) would follow from
the uniqueness of α. First of all let us show that the infimum in (5.4) is attained. Let Qk � P
be the minimizing sequence. Since c 6= ∞ we have for all P̄ that β(P̄ ) <∞. Thus,

lim sup
k

c(Qk) ≤ lim sup
k

γH(P̄ |Qk) + c(Qk) = β(P̄ ) <∞.

In particular, (c(Qk))k is a bounded sequence. By our assumptions, Qk must be a uniformly
integrable sequence and by the Theorem of Dunford-Pettis, see for instance Theorem IV.8.9 in
Dunford and Schwartz [7], the sequence Qk is weakly relatively compact. Hence, for fixed P̄
we may take the infimum in (5.4) over the weakly compact set {Q1, Q2, . . .}. As by (b) above
Q→ γH(P̄ |Q) + c(Q) is lower-semicontinuous we may infer that the infimum is attained.

So suppose that P̄n converges weakly to P̄ . For the lower-semicontinuity we have to show
that

β(P̄ ) ≤ lim inf
n

β(P̄n). (5.5)

If lim infn β(P̄n) = ∞ then clearly (5.5) holds. So assume that r := lim infn β(P̄n) <∞. Denote
by (nj)j the subsequence such that lim infn β(P̄n) = limj β(P̄nj ). Let

Q̄nj ∈ arg minQ∈Q{γH(P̄nj |Q) + c(Q)}.

As lim supj c(Qnj ) ≤ limj γH(P̄nj |Qnj )+ c(Qnj ) = r, the sequence Qnj is uniformly integrable.
Again by the Theorem of Dunford-Pettis, Qnj has a subsequence, denoted by njk , converging
weakly to a measure Q̄ ∈ Q. Hence, by the lower-semicontinuity of the mapping (P̄ , Q) →
H(P̄ |Q) proved in (b),

β(P̄ ) = min
Q∈Q

{γH(P̄ |Q) + c(Q)} ≤ γH(P̄ |Q̄) + c(Q̄)

≤ lim inf
k

γH(P̄nk |Q̄njk ) + c(Qnjk ) = lim inf
n

β(P̄n),

where the second equality holds because njk was a subsequence of the sequence nj . Hence,
indeed β is lower-semicontinuous and we can conclude that β = α. 2

Corollary 5.3 Suppose that
ρ(X) = sup

Q∈M
eγ,Q(X)

for a convex set M ⊂ Q. Then the dual conjugate of ρ is given by the largest lower-semicontinuous
function α being dominated by infQ∈M γH(P̄ |Q). Furthermore, if M is weakly relatively com-
pact, then

α(P̄ ) = min
Q∈M

γH(P̄ |Q). (5.6)
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Proof. The first part of the corollary is precisely (ii) of Theorem 5.2 with c = ĪM . The second
part follows as for all r ∈ R+ we have {Q ∈ Q|c(Q) ≤ r} = M. (5.6) now follows as by
the Theorem of Dunford-Pettis, M is weakly relatively compact if and only if M is uniformly
integrable. 2

Corollary 5.4 Suppose that ρ is a convex risk measure with dual conjugate α for which

α(P ) = 0 and α(Q) > 0 if Q 6= P.

Then ρ is γ-entropy coherent if and only if ρ(X) = eγ(X) for γ ∈]0,∞].

Proof. The ‘if’ direction is trivial. Let us prove the ‘only if’ direction. If ρ is γ-entropy coherent,
then by Corollary 5.3 we must have α(P̄ ) ≤ infQ∈M γH(P̄ |Q) for a convex set M . Note that if
P̄ ∈M then 0 ≤ α(P̄ ) ≤ infQ∈M γH(P̄ |Q) = 0. By the assumptions on α this implies that M
can at most contain P. Hence, either α(P̄ ) = γH(P̄ |P ) for all P̄ � P, or M = ∅ and α = ∞.
However, as infQ α(Q) = ρ(0) = 0 we must have that α(P̄ ) = γH(P̄ |P ). Therefore, by (2.1)
indeed

ρ(X) = sup
P̄∈Q

{EP̄ [−X]− γH(P̄ |P )} = eγ(X).

2

Corollary 5.5 Let ρ be a γ-entropy convex risk measure with penalty function c. Let p ∈
(1,∞]. Suppose that there exists a function f : R+ → R+, with f(x) →∞ as x→∞, such that

for all Q ∈ Q we have c(Q) ≥ f

(
E
[∣∣∣dQdP ∣∣∣p]). Then

α(P̄ ) = min
Q∈Q

{γH(P̄ |Q) + c(Q)}.

Proof. Let r ∈ R+. By assumption, there exists r̄ ≥ 0 such that f(x) > r for all x > r̄. This
entails that

{Q� P |c(Q) ≤ r} ⊂
{
Q� P |f

(
E
[∣∣∣dQ
dP

∣∣∣p]) ≤ r
}
⊂
{
Q� P |

∣∣∣dQ
dP

∣∣∣p ≤ r̄
}
.

By the Lemma of de la Vallée-Poussin, the last set is uniformly integrable. Hence, {Q �
P |c(Q) ≤ r} is uniformly integrable as well. The corollary now follows from Theorem 5.2,
(iii). 2

Corollary 5.6 Let ρ be a convex risk measure. Then the following statements are equivalent:

(i) For a convex and lower-semicontinuous function c from Q to [0,∞] with infQ∈Q c(Q) = 0
and uniformly integrable sublevel sets we have

α(P̄ ) = min
Q∈Q

{γH(P̄ |Q) + c(Q)}. (5.7)

(ii) ρ is γ-entropy convex with a convex and lower-semicontinuous penalty function c which
has uniformly integrable sublevel sets.
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Proof. The direction from (ii) to (i) is precisely part (iii) of Theorem 5.2. The reverse direction
holds since

ρ(X) = sup
P̄∈Q

{EP̄ [−X]− α(P̄ )} = sup
P̄∈Q

{EP̄ [−X]− min
Q∈Q

[γH(P̄ |Q) + c(Q)]}

= sup
Q∈Q

sup
P̄∈Q

{EP̄ [−X]− γH(P̄ |Q) + c(Q)} = sup
Q∈Q

{eγ,Q(X)− c(Q)}.

2

In the case that the penalty functions admit uniformly integrable sublevel sets, the next theorem
establishes a complete characterization of entropy convexity involving only the dual conjugate
α. It shows that entropy convexity is equivalent to a min-max being a max-min.

Theorem 5.7 Suppose that ρ is a convex risk measure. Furthermore, let c be defined by
c(Q) := supP̂�P {α(P̂ )− γH(P̂ |Q)}. Then the following statements are equivalent:

(i) ρ is γ-entropy convex with ρ∗ having uniformly integrable sublevel sets.

(ii) c is convex and lower-semicontinuous with infQ∈Q c(Q) = 0 and uniformly integrable
sublevel sets, and for every P̄ ∈ Q,

inf
Q∈Q

sup
P̂∈Q

{
γH(P̄ |Q) + α(P̂ )− γH(P̂ |Q)

}
(5.8)

= sup
P̂∈Q

inf
Q∈Q

{
γH(P̄ |Q) + α(P̂ )− γH(P̂ |Q)

}
.

Proof. If γ = 0, both (i) and (ii) cannot hold, so that the theorem holds trivially. Suppose,
therefore, that γ ∈]0,∞]. We can write the right-hand side of (5.8) as

sup
P̂∈Q

inf
Q∈Q

{
γEQ

[
log
(dP̄
dQ

)
− log

(dP̂
dQ

)]
+ α(P̂ )

}
= sup

P̂∈Q
inf
Q∈Q

{
γEQ

[
log
(dP̄
dP̂

)]
+ α(P̂ )

}
.

If dP̄
dP̂
6= 1 on a non-zero set we have that log

(
dP̄
dP̂

)
< 0 on a non-zero set. But then

inf
Q∈Q

γEQ

[
log
(dP̄
dP̂

)]
= −∞.

Consequently, we have to choose P̂ = P̄ in the supremum above, which implies that the right-
hand side in (5.8) is equal to α(P̄ ). Moreover, clearly for the left-hand side we have that

inf
Q∈Q

sup
P̂∈Q

{
γH(P̄ |Q) + α(P̂ )− γH(P̂ |Q)

}
= inf

Q∈Q

{
γH(P̄ |Q) + sup

P̂∈Q
{α(P̂ )− γH(P̂ |Q)}

}
= inf

Q∈Q

{
γH(P̄ |Q) + c(Q)

}
.

Now the theorem follows from Proposition 5.1 and Corollary 5.6. 2
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6 Distribution Invariant Entropy Convex Measures of Risk

In this section, we derive the distribution invariant representation for entropy coherent and
entropy convex measures of risk. As a bridge towards the distribution invariant representa-
tion, we first present a preference axiomatization of entropy coherent measures of risk, taking
Schmeidler’s [23] preference axioms rather than the preference axioms of Gilboa and Schmeidler
[12] (see Section 4.2) as a starting point.

Let γ ∈ [0,∞]. For a normalized, monotone and possibly non-additive measure (or, set
function) v : F → [0, 1] and a (truly) bounded random variable X we define

Ev [X] :=
∫
Xdv :=

∫ ∞

0
v[X > t]dt+

∫ 0

−∞
(v[X > t]− 1)dt.

We say that v is submodular if

v(A ∩B) + v(A ∪B) ≤ v(A) + v(B) for A,B ∈ F .

By Schmeidler [22, 23], v is submodular if and only if for every bounded X,

Ev [X] = max
Q∈Mv

EQ [X] , (6.1)

with Mv = {Q is additive on F|Q(A) ≤ v(A) for all A ∈ F}. Mv is also called the core of v.
We note that every bounded random variable is an element in L∞, and that every P -almost

surely bounded random variable can be identified with a (truly) bounded random variable (by
(re)defining X ∈ L∞ to be equal to its original value for those ω ∈ Ω for which |X(ω)| ≤ ||X||∞
and by setting X(ω) = 0 otherwise). Then, for X ∈ L∞, we define

eγ,v(X) := γ log
(∫

exp
{
−X
γ

}
dv

)
.

In the case that v is continuous from above, that is, if v(An) ↓ 0 for any decreasing sequence
of events (An) such that

⋂
nAn = ∅, we have that (6.1) holds with Mv = {Q ∈ Q|Q(A) ≤

v(A) for all A ∈ F}. We state the following proposition:

Proposition 6.1 The following statements are equivalent:

(i) ρ(X) = eγ,v(X) is γ-entropy coherent and continuous from below.

(ii) v is submodular and continuous from above, and ρ(X) = maxQ∈Mv eγ,Q(X) with Mv =
{Q ∈ Q|Q(A) ≤ v(A) for all A ∈ F}.

Proof. The direction (ii)⇒(i) follows from (6.1) and the fact that v being continuous from
above implies that Mv ⊂ Q. Furthermore, ρ is continuous from below by virtue of Proposition
3.12.

To see the reverse direction, let M ⊂ Q with ĪM = ρ∗. Since γ log
(∫

exp
{
−X
γ

}
dv
)

=
ρ(X) = supQ∈M eγ,Q(X), we have that∫

exp
{
−X
γ

}
dv = sup

Q∈M
EQ

[
exp

{
−X
γ

}]
.
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Now on the one hand, for A ∈ F , setting X = −γ log(e
−1
γ + 1) < 1 on A and 1 else, we get for

Q ∈M

(e−1/γ + 1− e−1/γ)v(A) + e−1/γ =
∫

exp
{
−X
γ

}
dv

≥ EQ

[
exp

{
−X
γ

}]
= (e−1/γ + 1− e−1/γ)Q(A) + e−1/γ .

Thus, Q(A) ≤ v(A) and we may infer that supQ∈M Q(A) ≤ v(A), which implies M ⊂Mv ⊂ Q.
On the other hand, if Q ∈Mv, then

ρ(X) =
∫

exp
{
−X
γ

}
dv ≥

∫
exp

{
−X
γ

}
dQ = eγ,Q(X).

Since Q ∈ Q, this entails that ρ∗(Q) = 0. In particular, Q ∈M. 2

Next, we present an axiomatic characterization of eγ,v. We need the following definition:

Definition 6.2 X̃ and Ỹ in X̃ are said to be comonotone if for no ω, ω′ ∈ Ω we have X̃(ω) �
X̃(ω′) and Ỹ (ω′) � Ỹ (ω).

Consider the following axiom of Schmeidler [23]:

AXIOM A5’–Comonotone Independence: For all pairwise comonotone X̃, Ỹ , Z̃ ∈ X̃ ,

X̃ � Ỹ ⇔ λX̃ + (1− λ)Z̃ � λỸ + (1− λ)Z̃ for all λ ∈]0, 1[.

Axiom A5’ is a stronger version of Axiom A5, that is, Axiom A5’ implies Axiom A5. Then we
state the following theorem:

Theorem 6.3 Suppose the probability space (Ω,F , P ) is rich. A preference order satisfies A1-
A4, A5’ and A6-A8 if and only if there exists a normalized, monotone and submodular set
function v : F → [0, 1] that is continuous from above with a core in Q and γ ∈]0,∞] such that

X̃ � Ỹ ⇔ γ log
(∫ ∫

exp
{
−x
γ

}
X̃(., dx)dv

)
≥ γ log

(∫ ∫
exp

{
−x
γ

}
Ỹ (., dx)dv

)
,

where as usual the case that γ = ∞ is identified with γ log(x) = x = ex/γ . In particular, for
X,Y ∈ L∞ and γ ∈]0,∞] we have

X � Y ⇔ eγ,v(X) ≥ eγ,v(Y ).

Proof. The ‘if’ direction is straightforward using (6.1) and Proposition 3.12. Let us prove the
‘only if’ direction. Define X̃ �∗ Ỹ if and only if Ỹ � X̃. Note that A1-A3 and A5’-A6 jointly
imply that the Axioms (i)-(vii) of Schmeidler [23] are satisfied. Thus, there exists a real-valued
function u and a normalized and monotone set function v : F → [0, 1] such that

X̃ �∗ Ỹ ⇔
∫ ∫

u(x)X̃(ω, dx)v(dω) ≥
∫ ∫

u(x)Ỹ (ω, dx)v(dω).

Hence,

X̃ � Ỹ ⇔ −
∫ ∫

u(x)X̃(ω, dx)v(dω) ≥ −
∫ ∫

u(x)Ỹ (ω, dx)v(dω) (6.2)
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and

X̃ � Ỹ ⇔ −u−1
(∫ ∫

u(x)X̃(ω, dx)v(dω)
)
≥ −u−1

(∫ ∫
u(x)Ỹ (ω, dx)v(dω)

)
.

By standard arguments, the monotonicity and continuity axioms entail that u is strictly in-
creasing and continuous. Furthermore, by Schmeidler [23], A4 implies that v is submodular
which is equivalent to that for all X ∈ L∞,∫

Xdv = min
Q∈Mv

EQ [X] for Mv = {Q is additive on F|Q(A) ≤ v(A)}.

Suppose without loss of generality that u(1) = 1 and u(0) = 0. Then, Axiom A6 and (6.2)
imply that for every decreasing sequence (An) of events such that

⋂
nAn = ∅ we have

v(An) =
∫ ∫

u(x)X̃n(ω, dx)v(dω) ↓ u(0) = 0, (6.3)

with X̃n = δIAn ↓ δ0. Clearly (6.3) implies that all Q ∈Mv are σ-additive. For X ∈ L∞ define

ρ(X) := −u−1
(∫

u(X(ω))v(dω)
)

= φ−1
(

max
Q∈Mv

EQ [φ(−X)]
)
,

with φ(x) = −u(−x). We have for X,Y ∈ L∞ that X � Y if and only if ρ(X) ≥ ρ(Y ). Now
suppose that the maximum is attained in a Q̄ /∈ Q. Then there exists A ∈ F such that P [A] = 0
and Q̄[A] > 0. But then

ρ(X − IA) = φ−1
(

max
Q∈Mv

EQ [φ(−(X − IA))]
)

≥ φ−1
(
EQ̄ [φ(−(X − IA))]

)
> φ−1

(
EQ̄ [φ(−X)]

)
= ρ(X).

This is a contradiction to the fact that by A3 we have X ∼ X − IA. Hence, Mv ⊂ Q.
Next, notice that ρ(m) = −m for all m ∈ R. Hence, X ∼ −ρ(X) and it follows by A7 that

X +m ∼ −ρ(X) +m. As ρ(m) = −m for all m ∈ R we obtain

ρ(X +m) = ρ(−ρ(X) +m) = ρ(X)−m.

The result now follows upon applying Theorem 4.1, since by A8 φ ∈ C3(]φ−1(0),∞[) = C3(R+)
and φ(∞) = ∞. 2

Subsequently, let

Ψ = {ψ : [0, 1] → [0, 1]|ψ is concave, right-continuous at zero with ψ(0+) = 0 and ψ(1) = 1}.

For ψ ∈ Ψ and X ∈ L∞ we define Eψ [X] :=
∫
Xdψ(P ). Furthermore, we define

eγ,ψ(X) := γ log
(

Eψ

[
exp

{
−X
γ

}])
=: eγ,ψ(P )(X).

We state the following proposition:
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Proposition 6.4 For a given ψ ∈ Ψ, eγ,ψ is γ-entropy coherent and its entropy dual e∗γ,ψ is
given by

e∗γ,ψ(Q) = ĪM (Q),

where M = {Q ∈ Q|Q ≤ ψ(P )}. Furthermore, the dual conjugate of eγ,ψ, defined by (2.2), is
given by

α(P̄ ) = min
Q∈M

γH(P̄ |Q).

Proof. As ψ is concave and right-continuous in zero, the corresponding v, defined by setting
v(A) = ψ(P [A]) for all A ∈ F , is submodular and continuous from above. Hence, by (6.1),

eγ,ψ(X) = max
Q∈M

γ log
(

EQ

[
exp

{
−X
γ

}])
,

where M = {Q ∈ Q|Q ≤ ψ(P )} and the first part of the proposition follows. To see that the
second part holds observe that, as ψ is right-continuous in zero, the set M is weakly compact,
see Corollary 4.74, Lemma 4.63, and Corollary 4.35 in Föllmer and Schied [9]. Now Corollary
5.3 yields the proof of the second statement. 2

In the remainder of this section, we assume that the probability space is sufficiently rich to
support a random variable with a uniform distribution. If ρ is distribution invariant we can
identify ρ with a functional ρ′ on the space of distributions with bounded support by setting
ρ′(q+X) = ρ(X), with q+X the upper (right-continuous) quantile function of X. Furthermore, we
will identify a function ψQ ∈ Ψ with dQ/dP by setting ψQ(t) =

∫ t
0 q

+
dQ
dP

(1− s)ds. For X ∈ L∞

with X ≥ 0, we have, using Fubini’s theorem,

EψQ [X] =
∫ ∞

0
ψQ(P [X > t])dt

=
∫ ∞

0

∫ 1

0
I{FX(t)≤1−s}ψ

′+
Q (s)dsdt =

∫ 1

0
q+X(1− s)ψ′+Q (s)ds (6.4)

=
∫ 1

0
q+X(1− s)q+dQ

dP

(1− s)ds =
∫ 1

0
q+X(s)q+dQ

dP

(s)ds. (6.5)

For a general X ∈ L∞, (6.4)-(6.5) hold by translation invariance of EψQ [·] . On the other hand,

given a function ψ ∈ Ψ, we can define a measure Qψ ∈ Q by setting dQψ

dP = ψ′+(1 − U). Note
that

{Q� P} =
{
Q� P |dQ

dP

D= ψ′+(1− U) for ψ ∈ Ψ
}
, (6.6)

where dQ
dP

D= ψ′+Q (1 − U) indicates that dQ
dP and ψ′+Q (1 − U) have the same distribution under

P. To see (6.6), note first that for every ψ ∈ Ψ, ψ′+(1 − U) defines a density and thus a
measure Q ∈ Q. On the other hand, for every measure Q ∈ Q, we have dQ

dP
D= ψ′+Q (1 − U),

with ψQ(t) =
∫ t
0 q

+
dQ
dP

(1 − s)ds. Therefore (6.6) holds. Now we can identify ρ∗ with a function

(ρ∗)′ : Ψ → R by setting
(ρ∗)′(ψ) = ρ∗(Qψ).

Next, we need Lemma 4.55 of Föllmer and Schied [9]:
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Lemma 6.5 For X ∈ L∞ and Y ∈ L1,∫ 1

0
q+X(t)q+Y (t)dt = sup

X̄
D
=X

E
[
X̄Y

]
.

Then we state the final theorem, presenting the distribution invariant representation for entropy
convex measures of risk (including the special case of entropy coherent measures of risk). It
extends the well-known distribution invariant representation results for coherent and convex
measures of risk (see, for instance, Dana [5]), which arise whenever γ = ∞.

Theorem 6.6 Suppose that ρ is γ-entropy convex. Then the following statements are equiva-
lent:

(i) ρ is distribution invariant.

(ii) ρ∗ is distribution invariant and (ρ∗)′(ψ) = supX∈L∞ {eγ,ψ(X)− ρ(X)} .

(iii) ρ(X) = supψ∈Ψ {eγ,ψ(X)− (ρ∗)′(ψ)} .

Proof. (i)⇒(ii): We write

ρ∗(Q) = sup
X∈L∞

{
γ log

(
E
[
dQ

dP
exp {−X/γ}

])
− ρ(X)

}
= sup

X∈L∞
sup
X̄
D
=X

{
γ log

(
E
[
dQ

dP
exp

{
−X̄/γ

}])
− ρ(X̄)

}
= sup

X∈L∞
sup
X̄
D
=X

{
γ log

(
E
[
dQ

dP
exp

{
−X̄/γ

}])
− ρ(X)

}

= sup
X∈L∞

{
γ log

(
sup
X̄
D
=X

E
[
dQ

dP
exp

{
−X̄/γ

}])
− ρ(X)

}

= sup
X∈L∞

{
γ log

(∫ 1

0
q+dQ
dP

(s)q+exp{−X/γ}(s)ds
)
− ρ(X)

}
= sup

X∈L∞

{
γ log

(
EψQ [exp{−X/γ}] ds

)
− ρ(X)

}
= sup

X∈L∞

{
eγ,ψQ(X)− ρ(X)

}
,

where we have used the distribution invariance of ρ in the third, Lemma 6.5 in the fifth, and
(6.5) in the sixth equality. In particular, ρ∗ is distribution invariant. It follows that

(ρ∗)′(ψ) = ρ∗(Qψ) = sup
X∈L∞

{eγ,ψ(X)− ρ(X)} .

(ii)⇒(iii): Similar as (i)⇒(ii).

(iii)⇒(i): Clearly, ρ is distribution invariant. Set c(Q) = (ρ∗)′(ψQ). Notice that if dQ
dP

D=
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ψ′+(1− U) then by the definition of (ρ∗)′ we have that c(Q) = (ρ∗)′(ψ). We write

ρ(X) = sup
ψ∈Ψ

{
eγ,ψ(X)− (ρ∗)′(ψ)

}
= sup

ψ∈Ψ

{
γ log

(
Eψ

[
exp

{
−X
γ

}])
− (ρ∗)′(ψ)

}
= sup

ψ∈Ψ

{
γ log

(
E

[
ψ′+(1− U)q+

exp
n
−X
γ

o(U)

])
− (ρ∗)′(ψ)

}

= sup
ψ∈Ψ

sup
Q, dQ

dP

D
=ψ′+(1−U)

{
γ log

(
E
[
dQ

dP
exp

{
−X
γ

}])
− (ρ∗)′(ψ)

}

= sup
ψ∈Ψ

sup
Q, dQ

dP

D
=ψ′+(1−U)

{
γ log

(
E
[
dQ

dP
exp

{
−X
γ

}])
− c(Q)

}

= sup
Q∈Q

{
γ log

(
E
[
dQ

dP
exp

{
−X
γ

}])
− c(Q)

}
= sup

Q∈Q
{eγ,Q(X)− c(Q)} ,

where we applied (6.4) in the third equality. In the fourth equality we used Lemma 6.5. The
fifth equality holds by the definition of c and (ρ∗)′, and in the sixth equality we applied (6.6).
This proves (ii)⇒(i). 2

7 Conclusions

In this paper, we have introduced two new classes of risk measures: entropy coherent and
entropy convex measures of risk. The latter class is a natural generalization of the former.
We have proved that entropy coherent and entropy convex measures of risk constitute the
connection between two dominant theories: (regular and generalized) robust preferences à la
Gilboa and Schmeidler [12] in the microeconomic theory of decision under uncertainty, and
the theory of convex risk measures in financial mathematics. A variety of representation and
duality results has made explicit that entropy coherent and entropy convex measures of risk
satisfy many appealing properties. The theory developed in this paper is of a static nature. In
future research we intend to develop its dynamic counterpart.
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