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ABSTRACT

The obiect of this study is to develop tools for the analysis of the
kinematic and dynamic behaviour of multibody systems with arbitrary
connections. The behaviour of such systems is described by sets of
nonlinear algebraic and/or differential equations. Tools are availa-
ble for the construction as well as for the solution of these equa-
tions. A severe limitation of the existing tools is that only simple
connections are allowed. In this study a theory is described foxr sy~
stematically setting up the equations for multibody systems with ar-
bitrary connections.

The first chapter is meant as an introduction to multibody theory in
general. Chapter 2, on the kinematics and dynamics of a rigid body,
is also intended as an introduction of the notation in the subseguent
chapters. Chapter 3 brings in several important concepts concerning
elements of connections, while the concept of the tree structure of
bodies and hinges is discussed in chapter 4. This tree structure is
used to describe the topology of a multibody system.

The tree-structure concept allows us to set up the relevant equations
systematically. In chapter 5 the constraint equations describe the
kinematics, and in chapter 6 the equations of motion are derived.
These two chapters and chapter 7, which describes the assembly of
simple connections to form complex ones, are the central chapters in
this study.

The theory is used in chapter 8 to formulate the kinematic and dyna-
mic simulation problem for multibody systems. In the next chapter an
example of a multibody system is studied. This system, a fuel injec-
tion pump, contains three nonstandard connections, namely an elasto-~

hydrodynamic traction, "a hydrodynamic bearing and a cam.

The last chapter contains the conclusions and a discussion on possi-
ble further research. In the appendix the mathematical notation used
in the present study is discussed.



CHAPTER 1
INTRODUCTION

1.1 Scope of the study
1.2 Literature survey
1.3 Themes dealt with

This chapter is an introduction to the multibody theory as presented
in the following chapters. It starts with a discussion on the scope
of the present study. A literature survey is discussed next. This
survey has been included for the benefit of the réader. Finally the
main items of this study are mentioned as introduction to the follow-
ing chapters.

1.1 Scope of the study

Multibody systems are considered as interconnected systems of rigid
bodies. In the present instance a theory is presented for the analy-
sis of multibody systems having arbitrary connections.

[7 2

4-bar mechanisnm swing phase of leg
figure 1.1 Two simple multibody systems

This theory allows us to simulate the kinematic and dynamic behavi-
our of multibody systems like the simple planar 4-bar mechanism (see



figure 1.1) as well as complex, three-dimensional machines like in-
dustrial robots (see figure 1.2). In particular, the theory is déve»
loped for the analysis of multibody systems which have complicated
connections. Such connections are to be found, for example in cam-

mechanisms and in the human musculo-skeletal system.

ASEA robot 3R robot
figure 1.2 Two complicated multibody systems

The kinematic and dynamic behavioux of multibody systems can be des-
cribed by means of mathematical equations. Multibody theories are
therefore defined as theories or methods for the construction of
these algebraic or differential equations. With the algebraic equa-
tions we analyse kinematic behaviour, with second order differential
equations dynamic behaviour is analyzed. For very simple systems it
is sometimes possible to solve the equations analytically. This is
extremely difficult in the case of systems with several bodies. The
equations become too complex and because they are highly nonlinear
they have to be solved numerically.

Fischer [1906], for instance formulated the equations for the dynamic
behaviour of a three body system representing a human limb. However,
this was not very useful since he could not solve his equations at
that time. At present powerful computers and well developed software
solve these equations automatically. Working out the required eqﬁa~
tions for multibody systems by hand is a very difficult and exror-
prone job. When numerical methods for the solution of these equations
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became available, research was initiated to enabel this to be done by
computer. The results of this research were So~ca11ed multibody pro-
grams which automatically set up and solve the equations. Clearly
this is a valuable development since it significantly simplifies the
analysis of multibody systems.

The first multibody programs were written for systems with a fixed
number of bodies. Only the lengths, body masses, stiffness of springs
and similar parameters could be changed. Besides their value as a ba-
sis for further developments, these programs can be used for the de-
sign of a particular system. The second generation of programs was
more useful since they allowed the behaviour of systems with an arbi-
trary number of bodies to be simulated in 2-dimensional {planar) and
3-dimensional spaces. In most programs prismatic, pin and/or ball-
and-socket joints, as well as linear springs and dampers can be used
to model the system.
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figure 1.3 Results for 3R robot of figure 1.2b

Commercially available programs can be used for the analysis of me-
chanisms in particular. These programs (IMP, ADAMS, DRAM, etc.) allow
the use of several technically important connections, have extended
graphic facilities and use improved numerical solvers [SDRC-~IMP 1979]
(the results in figure 1.3 are obtained with IMP from SDRC Ohio).

Limitations are encountered when using the presently available multi-
body programs for biomechanical research. The most serious limitation
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is the small set of simple connections that can be used. It is of
course possible to model the knee-joint as a pin-joint, but more re-
alistic models of the knee are the 4-bar mechanism model or the 3-
dimensional knee model of Wismans [et al. 1980}, In the last-named
model the knee is represented as a 3-dimensional cam-mechanism whose
surfaces are described by sets of polynomials. Anothei example of the
limitation of presently available programs is the modelling of liga-
ments and muscles by connections having a straight line geometry and
a linear constitutive behaviour. More realistic models should have an
arbitrary geowetry and a description of the behaviour by more appro-

priate constitutive and eventually state equations.

During the last decade, nultibody~programs were only used in biome-
chanical research for the simulation of human/vehicle interactiom in
injury prevention research. In sport biomechanics, but particularly
in gait analyses the equations were still set up by hand. When we‘re—
alize how complexkthe human musculo-skeletal system is, one may well
quesEion whether this approach results in useful and realistic models
[Hatze 1980].

A remarkable example of an over-simplificétion is the modelling of
the human leg during the swing phase of a stride. It is logical to
model the leg as a double pendulum, but it is unrealistic to assume
that only slight rotational changes take place., If we nevertheless
assume that only slight changes take place, we can linearize the
equations and determine eigenvalues and eigenvectors [Maillardet
1977]. But with changes of 50 degrees [Murray et al. 1964] the sine
and cosine terms may not be linearized.

The purpose of the present study is to develop a t601 for the analy-
sis of the kinematic and dynamic behaviour of the musculo-skeletal
system. In contrast to the femur project [Huiskes 1979] and the knee
project [Wismans et al. 1980, Hamer 1982] it was decided not to start
modelling another item of the musculo-skeletal system in more deﬁail.
but to develop a more adequate multibody theory for modelling the
musculo-skeletal system or parts of it. When this study was started
[501 1980] not much was known about realistic models for parts of the



musculo-skeletal system. It was therefore decided to develop a multi-
body theory for arbitrary connections.

1.2 Literature survev

Kinematics

Dynamics

Recent developments
Applications

The survey begins with a short discussion of the literature which
deals with purely kinematic aspects. Then, based on different forma-
lisms used to set up the equations for dynamic behaviour, several im-
portant multibody theories are mentioned. Some attention is also
given to references on recent developments. Finally, application-
orientated references are discussed. In particular, references in the
fields of robotics and biomechanics are discussed. This survey makes
no claim to completeness, its purpose is only to supply some back-
ground information on multibody theories in general. (See also figure
1.4) '

kinematics

open) tree structures f

kinematic singularitiesl

{multibody systenm |

Newton-Euler laws |
d‘Alembert principle I

Lagrange equations |

figure 1.4 Scheme with main items of multibody theories
Ki .
Two approaches are important in describing the kinematic behavicur of

multibody systems. The first is the closed-kinematic-chain approach.

Closed kinematic chains are well known in the theory of mechanisms.



These chains can be modelled with the aid of loop-equations [Suh%and
Radcliffe 1978, Paul B 1979, Angeles 1982]. In American literatuie
the Denavit-Hartenberg notation with the 4x4 transformation matrix is
often used [Uicker, Denavit and Hartenberg 1964, Paul R 1981]. In the
context of multibody theories Sheth's dissertation [Sheth 1972] gives
a comprehensive treatment on the way this 4x4 notation is implemented
in the IMP program.

The second approach to the description of the kinematic behaviour of
nultibody systems is that of the tree structure. It has been used to
analyse spacecraft [Wittenburg 1977], industrial robots [Hollerbach
1980, Vukobratovic and Potkonjak 1982] and the human musculo-skeletal
system [Hatze 1977]. These systems have a tree structure, while me-
chanisms generally have a closed chain., The theory which we develop
in this study is based on the tree-structure approach. Nevertheless
this theory is not restricted to systems with a tree structure. An

) . \ . \ . . .
extension to include closed kinematic chains is described too.

A very important, but often neglected problem is the occurence of
kinematic singularities. What kind of checks are possible for detec-
ting such singularities and how can the inherent problems be solved?
Only Sheth [1972], in the context of closed kinematic chains, gives
an exhaustive discussion on this subject. He also put forward a stra-
tegy to solve the inherent problems. For tree structures Whitney
{1969, 1972] stated the problem in a completely different context and
suggested some solutions., Based on the ideas of Sheth, a strategy for
the detection and solution of kinematic singularities for multibody
systems having an arbitrary topology is developed in the present stu-
dy.

Dynamics

The literature on dynamic aspects is divided in three parts, that is
the Newton-Euler laws, the virtual work principle of d'Alembert and
the equations of lLagrange. Before discussing this literature some re-
view articles will be mentioned.



There is an interesting article by Paul B [1975] on the use of thé
Newton-Euler laws and the Lagrange equations. He also dealt with nu-
merical aspects as well as methods for the calculation of reaction
forces. In his book 'Kinematics and dynamics of planar machinery’
{1979] a large part is devoted to the description of the simulation
of the kinematic and dynamic behaviour of multibody systems. Another
survey can be found in the dissertation of Renaud [1975]. In this
work all methods known at that time are discussed.

There are situations, to be discussed later on, where multibody pro-
grams with a minimum number of numerical operations are of prime im-
portance. Hollerbach [1980] reviewed several multibody theories with
regard to the number of required additions and multiplications. We

also mention the survey by Kaufman [1978] on commercially available

multibody programs for mechanisms and machine design and that by King
and Chou [1976] on multibody programs for injury prevention research.

The Newton-Euler laws

The Newton-Euler laws are a combination of the second law of Newton
{sum of forces equals change of momentum)} and Euler’s law for the
change of angular momentum. Both laws lead for an n-body system to a
‘set of 6n second-order differential equations describing the dynamic

behaviour of the system.

The first publications on the computerized handling of the equations
describing the dynamic behaviour of multibody systems are based on
the Newton-Euler laws. These publications originate from spacecraft
research [Fletcher et al. 1963, Hooker and Margulies 1965]. Particu-
lar progress was made by Roberson and Wittenburg [1966) for the des-
cription of the topology of systems with an arbitrary number of rigid
bodies. In 1970 Wittenburg published results obtained with a program
based on this approach.

Andrews and Kesavan [1975] also developed a Newton-Euler method for
the analysis of multibody systems in a 3~dimensional space. Their

prograﬁ, called VECNET, is based on the combination of & formalism
with vectors with ideas from network theories. Other programs based



on the Newton-Euler laws were developed during that time too. Here we
mention MEDUSA [Dix and Lehman 1972] and the work of Gupta (1974] and
Stepanenko and Vukobratovic [1976],

Some new publications have recently appeared in the field of robo-
tics. In their paper, Luh, Walker and Paul R [1980a] develop a re-
markably fast program based on the Rewton-Euler laws. Hollerbach
[1980] and Lee [1982] describe the same approach. The comparison by
Luh et al. with regard to the computation time required by different
programs is misleading: comparing a generally applicable program, ba-
sed on the Lagrange equations‘and written in Fortran, with an opéi-
mized assembly program, based on the'Newton—Euler laws and special
written for a particular system, results in some exaggerated diffe-
‘rences in computation time. The comparison by Hollerbach is more sen-
sible.

The virtual work principle of d'Alembert

The principle of d'Alembert used in this study is based on the prin-
ciple of virtual work. We will therefore call it the virtual work
principle of d‘'Alembert [Renaud 1975]. Some authors, including Paul B
[1979, p568] call this method the Lagrange-d‘Alembert principle as
Lagrange was the first to combine d'Alembert's inertial loads with
Bernoulli's principle of virtual work [Rosenberg 1977, p125]. In this
principle, generalized coordinates play a central role. The position
and orientation of all bodies are described as function of such coor-
dinates. As a result, a set of nq differential equations is found
where ng, the number of generalized coordinates or Lagrange coordina~
tes {see section 5.1), satisfies 0 ¢ ng < 6n.

There are several references in which the principle of d*Alembert is
used differently. On the basis of relations between generalized coor-
dinates and variables used to describe the position and orientation
of all bodies, the Newton-Euler equations can be transformed into a
smaller set of equations [Kane 1961, Hooker 1970, Langrana and Bartel
1975, Huston and Passerello 1979]. This approach finally results in
exactly the same equations as the method mentioned earlier.



One of the first multibody programs based on the virtual work princi-
ple of d'Alembert was DYMAC, written by Paul and Krajcinovic [1870].
These authors only considered planar motions while large parts of the
required equations had to be set up by hand. Mention should alsc be
made to Williams and Seireg's work [1979] in which a generally appli-
cable method is described. Lilov and Wittenburg [1977] also developed
a general method. For a system with an arbitrary topology of bodies
and connections they presented a theory especially suited for imple-
mentation in a multibody program. It is this theory and the improve-
ments described in Wittenburg's book 'Dynamics of systems of rigid

bodies' [1977] that we will use as a basis for our theory.
The Lagrange equations

To set up the equations of motion, the Lagrange method does not use
the principle of virtual work but the Lagrange equations. These egqua-
tions can be derived with the aid of the kinetic and potential (con-
servative) energy formulated as a function of some generalized coor-
dinates (for example see Goldstein [1980, p20]. In the context of
multibody systems, Brdt (1973] describes and illustrates this forma-

lism for a simple example.

The Lagrange equations have been widely used in multibody theories.
The first application of the Lagrange method in a multibody program
was made by Wittenburg [1968, extracted from his disseration]. Proba-
bly because this work is written in German, hardly any references are
ever made to it. A more cited work is that of Uicker [1967, 1969]. In
1972 he and Sheth developed the IMP program.

During the same time another well-known program was developed by
Chance and Smith [Chance and Bayazitoglu 1971, Smith 1973]. Their
program was first called DAMN, later DRAM. The program ADAMS, deve-
loped by Orlandea [Orlandea et al. 1977], makes extensive use of La-
grange multipliers, sparse matrix techniques and a special solver for
stiff differential equations. IMP, DRAM and ADAMS are commercially
available [Kaufman 1978]. They can be used for example to calculate
the loads on wheel suspensions, while critical parts can be further
analysed with finite element techniques.



It must be said, in fact, that the virtual work principle of d'Alem-
bert and the Lagrange equations both result in exactly the same dif-
ferential equations. It is probably just a matter of taste whether
the Lagrange equations or the virtual work principle of d'Alembert is
used. For example, for programs based on the Lagrange method theéad-
dition of Coulomb friction and intermittent motion have been describ-
ed in literature [Threlfall 1978, Wehage and Haug 1982b]. To include
these features in programs based on the virtual work principle of
d'Alembert no significant different problems will be involved (for
example see Wittenburg [1977 ch 6] on impact problems). The Lagrange
equations have also been used to develop multibody proqramé for spe-
cial systems. There are several examples in robotics and biomechanics
especially.

Recent developments

Some new developments in multibody theories.and programs must be men-
tioned. In this subsection we will first discuss some softwgre-orien-
tated developments and then discuss a number of theoretical develop-
ments.

Sometimes the differential eguations describing the dynamic behaviourx
of multibody systems result in a problem with stiff differential equ-
ations. In these equations both very high, as well as very low eigen-
frequencies occur. Such equations can only be solved with special im-
plicit solvers [Gear 1971]. Orlandea et al. [1977] give much atten-
tion to this problem, while Cipra and Uicker [1981] discuss it too.
Although most older multibody programs use the fourth order Runge-
Kutta solver for the differential equations, recent articles [Hatze
and Venter 1981, Allen 1981, Wehage and Haug 1982a] mention the use
of the DE/STEP solver of Shampine and Gordon [1975]. This solver can
be classified as a linear multistep solver with a variable order and
variable step length. Such solvers are specially suited for use in
problems in which the evaluation of the differential egquations requi-
res much computational effort.

The symbolic manipulation programs are another software development
{Levinson 1977, Schiehlen and Rreuzer 1977]. These programs set up

10



the equations automatically in the form of analytical relations.
Their drawback is probably the specialist knowledge required in their
use. The recent hardware and software improvements for computer gra-
phics are another noteworthy development. It should be realised that
it is useless to analyse the behaviour of 3-dimensional multibody sy-
stems without adequate graphical facilities. Developments in this
field seem very promising [Orlandea and Berenyi 1981].

The theoretical developments of importance for the analysis of multi-
body systems can be subdivided into two categories. The first catego-
ry is the improvement of the present second-generation multibody pro-
grams for simulation studies. The second category concerns the deve-
lopment of a new generation of multibody programs for optimization
studies. Improvements in the simulation programs are the addition of
Coulomb friction, intermittent motion and impacts, nonrigid bodies
and arbitrary connections. The first two features have already been
mentioned. Nonrigid bodies are analysed by superposition of small de-
formations on the motion of rigid bodies [v.d. Werff 1977]. This ap-
proach is important for the analysis of spacecraft [Roberson 1972,
Boland et al. 1977] and high-speed mechanisms and machines [Imam and
Sandor 1973]. Improvements in multibody programs for the performance
of very fast calculations have already been mentioned in the subsec-
tion on the Newton-Euler laws.

After the development of computer programs that automatically set up
and solve the equations describing’the behaviour of multibody sy~
stems, we may expect programs for automatically optimization of that
behaviour. Two kinds of optimization can be considered, namely opti-
mization of kinematic behaviour and optimization of dynamic behavi-
our.

Much work has already been done in the field of mechanism synthesis
to optimize the kinematic behaviour of multibody systems [Freuden-
stein 1959, Kaufman 1973, Root and Ragsdell 1976]. It is characteris-
tic for many developments in this field that the equations are still
set up by hand [Suh and Radcliffe 1978, Haug and Arora 1979, Angeles
1982]. At present only Schoni and Haug [1982a,b] and Langrana and Lee
[1980] describe methods which are suitable for use as a basis for
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multibody programs with optimization facilities. This last work uses
a gradient solver which is more reliable and faster than the penﬁlty
solver used by Suh and Radcliffe. Based on this study the use of the
more reliable and faster converging augmented Lagrange solver has
been proposed [Sol et al. 1983].

If the aim is to optimize dynamic behaviour, two different kinds of
problems are encountered. Examples of the simpler kind of problem
are: optimum balancing of machines [Berkhof 1973, Sohoni and Haug
1982b], the (minimum) weight optimization [Thornton et al. 1979, Imam
and Sandor 1973] and the design-sensitivity studies [Haug et al.
1981, Haug and Ehle 1982]. The second kind of problem is that of op-
timal control. In this case the purpose is to determine the optimal
input or control variables as well as the optimal trajectories of the
kinematic and force variables. Examples of performance criteria to be
minimized are minimum time, minimum energy consumption etc. Optimal
control problems result in nonlinear boundary-value problems which
are very difficult to solve [Bryson and Ho 1975, Sage and White
1977]1. In the next subsection on robotics and biomechanics some
references will be made on optimal control.

Applications

An interesting apblication of multibody theories is robotics. Robots
perform large movements in 3-dimensional space. Hence, the equations
describing their kinematic and dynamic behaviour are highly nonlinear
and coupled [Duffy 1980]. For example, if a position servo controls
the rotation of a certain joint, the rotations of other joints can be
influenced too. To solve this problem control engineers make use of
multibody theories [Whitney 1972, Renaud 1975, Vukobratovic 1975 and
Paul R 1981].

Control devices in industrial robots sample data at frequencies be-
tween 10-100 Hz. Based on the measured and the prescribed motion, the
control device should be able to calculate and adjust a control sig-
" nal within tenths of a second. Only recently, special multibody pro-
grams with which the required calculations can be performed in real-
time have been developed [Luh et al. 1980b, Hollerbach 1980]. Until

12



that time it was necessary to calculate all necessary data in advance
and to feed this data into the local memory of the control device
[Albus 1975, Raibert and Horn 1978, Popov et al. 1981]. Another ap-
proach is to neglect several terms that are difficult to evaluate.
However, for high speed motion, these terms cease to be negligible.

In this context it should be mentioned that instead of using the ex-

act equations describing a multibody system, approximated or simpli-

fied equations can also be used. By means of an adaptive control the-
se approximated equations should be updated each time [Liégeois 1977,
Dubowsky and DesForges 1979, Hewit and Burdess 1981]. But if adaptive
control is used, one should verify the stability. Multibody programs

{with the exact equations) can be used for off-line simulation of the
stability of such control devices.

Another case where off-line use of multibody programs is encountered
is the elaborating of optimal control strategies. As we have said
earlier, this problem results in a nonlinear two-point boundary-value
problem which is difficult to solve. Kahn and Roth [1971] constructed
the equations for a three-body system by hand and described a method
to solve the minimum-time problem. This approach has also been dealt
with by Vukobratovic and his co-workers [Cvetkovic and Vukobratovic
1981, Vukobratovic and Kircanski 1982, Vukobratovic and Stokic 1982
p69-95]. '

Biomechanical research is now using multibody programs more and more
as a tool. For the "mathematical® simulation experiments in injury
prevention reéearch especially, much use is made of multibody pro-
grams because, compared with dummy experiments, parameters can be
changed much more easily [Roberts and Thompson 1974, King and Chou
1976, Bacchetti and Maltha 1978, Reber and Goldsmith 1979, Schmid
1979, Huston and Kamman 1981]. For gait analysis, too, multibody
programs are finding more and more application [Aleshinsky and Zat-
siorsky 1978, Winter 1979 and Ramey and Yang 1981]. Most of these
programs are used in simulation studies. As we will discuss below the
application of multibody programs in biomechanical research, on the
other hand, requires these programs to have optimization facilities
incorporated.

13



An important biomechanical question is the magnitude of muscle and
joint forces. To find an answer to this question several research-
workers developed multibody programs in which the muscles are model-
led as straight line connections with an unknown tensile force. The
equations were mostly set up by hand, and to simplify this proceés,
only static situations were considered [Paul J 1967, Barbenel 1972,
Seireg and Arvikar 1975, Crowninshield 1978]. The number of unknown
tensile forces and reaction loads in the joints exceeds the number of
equations. As a result, there is an infinitely large number of possi-
ble solutions. '

Several hypotheses have been formulated to approximate the real solu-
tion. With the aid of linear programming techniques one solution can
been selected as the optimal solution as regards the hypothesis. Ac-
cording to the above-mentioned publications several hypotheses, such
as minimum total tensile force, minimum average muscle tension, mini~
mum total energy, etc., could be verified indirectly by EMG measure-
ments [Hatze 1980]. Since it is not possible to measure the muscle
force in the human body directly, the value of these verifications is
doubtful, and more and more critism has been expressed in literature
[Yeo 1976, Hardt 1978, Hatze 1980].

Similar to the work of Chow and Jacobson [1971] and Ghosh and Boykin
{19761 some research workers [Hatze 1977 1981b, Hubbard 1981] started
to use muscle-behaviour models in which (measurable) signals are in-
cluded for motor-unit stimulation. Such models can be inserted into
multibody systems of the musculo-skeletal system, resulting in rea-
listic models in which dynamic aspects are also included. The number
of unknown variables again exceeds the number of equations. But this
time the stimulation signals are the unknown variables and not the
forces. If the positions and velocities of the attachment points as
well as the stimulation signals are known, it is possible to calcu-
late the state of tﬁe muscles as well as the muscle forces. Based on
minimum time [Hatze 1976], maximum jump height [Hubbard 1981] or ma-
ximum jump distance [Hatze 1981a)] it is possible to find the optimal
trajectories for the unknown stimulation (input) signals as well as
the optimal initial conditions. Since stimulation signals are easier
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to measure than muscle forces, it is possible to verify this ap-
proach.

1.3 Themes dealt with

We develop a multibody theory based on the work of Wittenburg [1977]
which allows us to model arbitrary connections. An important feature
is the assembly of arbitraxy connections out of simpler, standard
and/or user-defined elements. Since multibody theories have to be im-
plemented in a computer program, much attention is given to the auto-
matic detection and solution of problems caused by singularities.
Furthermore, methods for and consequences of prescribing several ki~
nematic variables are considered. Software questions as to the kinds
of data and algorithm structure are not discussed. Only solvers for
some crucial numerical aspects will be treated.

First we shall discuss three basic themes: the kinematics and dyna-
mics of a rigid body {ch 2), the elements of connections (ch 3), and
the topology (ch 4). Then the three main themes follow: the kinema-
tics of a multibody system {ch 5), the dynamics of a multibody systenm
(ch 6), and the arbitrary connections (ch 7). Finally we will concen-
trate in chapters 8 and 9 on a number of applications, namely: the
simulation of the behaviour of a multibody system in general and the
simulation of a fuel injection pump as an example of a multibody sy~

stem.

Throughout this study a coordinate~free vector/tensor notation will
be used. In appendix A a comprehensive presentation is given with re-
gard to the notation. Those unacquainted with this notation are advi-
sed to read appendix A before proceeding to the next chapters. Rea-
ders who are not specialists in the field of multibody theories
should be warned that the study is theoretical and its discussion
here rather formal.
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CHAPTER 2
KINEMATICS AND DYNAMICS OF A RIGID BODY

2.1 Definition
2.2 Kinematics

2.3 Dynamics

This chapter deals with the properties of one rigid body. After a de-
finition of a rigid body, formulas for the kinematic and dynamic be-

haviour of a rigid body are presented. These formulas are used in the
following chapters to develop the equations for the kinematic and dy-
namic behaviour for a multibody system. Another purpose of this chap-

ter is to illustrate the abstract notation used in this study.
2.1 pefipition
A body B, having the property that the distance between each set of

two points remains constant, is called a rigid body. Rigid bodies
cannot deform, e.g. cannot absorb deformation energy.

RIGID BODY B!
=

O‘J E’
GLOBAL BASE

figure 2.1 A rigid body
Rigidly fixed to p' we attach a vector base él with origin Oi, the

local body-fixed base. The position and orientation of Bi in the Eu-
clidian space s3 is determined by the position ofvo1 with respect to
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0° and the orientation of §l with respect to §° (see figure 2.1). The
base §° is the global or inertial base.

The Euclidian space s is a vector space in which distances and an-

gles are defined. To describe the position and orientation of Bi in

s? we introduce attitude coordinates. Since the definition of these

coordinates is complicated, we shall deal with this subject later on
in this chapter. Since only one body is considered in this chapter,

the superscript i will be dropped.

2.2 Kinematics

Orientation and derivatives
Position and derivatives
Formulas for an arbitrary point
Attitude coordinates

The discussion on the kinematics of B is divided into four subsec-
tions. First we describe the orientation of‘é with respect to §°, and
then the position of O with respect to 0%, Formulas for the position,
velocity, etc. of an arbitrary point N on B are derived in the third
subsection. Finally a definition of attitude coordinates is given.

COrientation and derivatives.

The orientation of § with respect to §O is described by an orthonor-

g = re (&' | (2.2.1)

where

ReR' = [ and  det(R) = +1

If B is free to move in 83, we can write R’aS'function of n variables
LIRS which have to fulfil n - 3 conditions while n » 3. For exam-

ple, if we use all components of the matrix representation of R in é?

18



the variables ®; {i=1..9) have to satisfy n - 3 = 6 conditions. These
conditions follow from the fact that R = R{g) is orthonormal, so that

R(g)om(g) | =1 (2.2.2)

where g is a matrix with components L YRRy At the end of this sub-
section an example is given of a choice with n = 3. Although not
strictly necessary, we assume in the rest of this study that R is ex-
pressed as a function of three variables ®y 9, and ®,-

Differentiation of (2.2.1) with respect to time yields
:T s 0. T o T »7
e = Re(2)) = Remr'es (2.2.3)

Since R is orthonormal for each time t, after differentiation we find
that

for’ + Rott = 0 (2.2.4)
from which it is easily seen that Rer' is a skew-symmetric tensor.
For each skew-symmetric tensor B = —9T there exists an unambiguous
vector w so that

Bell = ot , viesl (2.2.5)

According to Chadwick [1976, p29], we will call o the axial vector of
B. Instead of (2.2.3) we write

= ﬁ!R e = a*é V : - (2.2.6)

where o, the axial vector of ﬁomr, is also called the angular velo-

city vector.

Since R = R{g) and g = ¢(t) we can express w as a function of é. With
the definition of the axial vectors 3; (i= 1..3) by

19



B pTen = aied, vies® o q2.2.1)

it is seen that

3 .
ReRTea! = (L §.w)*a’ (2.2.8)
w - bR ‘p w
i=1

Comparison of (2.2.8) and (2.2.6) results in

+  2Te ; .

v=gP ( A . (2.2.9)
where §¢ is a column with components §;, §: and ﬁi.vThis column is a

function of 9 but not of é.

From (2.2.9) follows that the angular acceleration vector is given by

: +Toe -.QTO
w

F g@g + y‘pg (2.2.10)

Since §w depends only on g, it can be shown that

SE e

o= U8 224

where the components of the square 3x3 matrix §¢(g) are given by

awd
[ ]
@) B, @.2.12)

rThe‘natrix ﬁw is not symmetric, although we can write

S - g

Y, = ¥, - 0 (2.2.13)

Finally, from (2.2.11) it follows that the angular acceleration vec-
tor becomes

. .
=gt g (2.2.14)
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In the further discussions, variations Bé of § caused by variations
bp of ¢ play an important role. With

3
5§T= ap.a?.§7= I 6¢ (QB_.R oe ) (2.2.15)

i=1

it follows that the variation Gé caused by a variation 6p of ¢ is
given by

(2.2.16)

oF = W b9 (2.2.17)

:. 0
begin €

dan angles [Wittenburg 1977, p21-23] will be discussed in more de-

tail. These angles form a sequence of three rotations in order to
transform e° 1nto e {see figure 2.2). Flrst we rotate e by an angle
of ®, around e1 The result is named e . TEen we rotate e* by an 2n—
gle of 9, around e and name the result e . Fxnally we rotate e by

an angle ¢, around e3 to obtain the desired e Since n = 3 there are

21



. : : .0 :
no constraints. The matrix representation of R in e as function of ¢
is given by

0 0. T

°r = ¢%Re (%) (2.2.18)

R

C,Cq €484 +~s152°3 5,85 ~ €;5,C4
“CyS3  C4Cy " 5,8,8,  8,C, + 45,5,
2 512 €4%
- . - 2
where c; and si (i=1..3) represent cos(@i} and 51n(¢i}. For gw and g@

we can write:

1 ) 2 [ 3 i ] . ‘
oﬁw =111, °§¢ =|o |, °g@ =| s, (2.2.19)
0 c ~-5,C
1
_0 -51 .cc—
ow21 0 , ow31 0 , °W32 c
wp wip g 2
s, | €46, 5.8,
i c, -—s1c2; _-c152‘

(=1

while the other components of §¢ are equal to
Position and derivatives

The position of origin 0 of vector base § of a rigid body B is deter-

83, we can write I as a function of 3 independent variables U,

and ua, so that
Peta o, o= luuy, ) (2.2.20)

These variables, for example can be the Cartesian coordinates of b
in the global base éo. the spherical coordinates of 0, etc.

= V4 (2.2.21)
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the column §u following from

T3t 32 i dx. -
A SAVER VIR A PR A (i=1..3) (2.2.22)

2

Sometimes this velocity vector is called the linear velocity in order
to distinguish it from the angular velocity. Throughout this study
the names velocity and angular velocity are used.

For the acceleration vector we find

g (2.2.23)

Wl L e
._sa.._.ir_ s s
(‘}u)1J bu, ou, (1,3 = 1...3) (2.2.24)

5% = {15y (2.2.25)
Formul for arbitrary point

The position vector ;n of an arbitrary point N in the body B is de-
termined by the position vector T of the origin 0 of B and a vector b
from O to N (see figure 2.3). Since B is a rigid body, the matrix re-
presentation b of b in § will be constant. In other words

oD = constant (2.2.26)

s
24

the orientation of a vector base En at N with the local body«flxed

vector base § at 0, we also introduce a body-fixed rotation tensor B
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AR NN (2.2.27)

. :
Since § =0, it follows that b = w*b. Using this result and the rela-
-
r

tion for the position vector from 0° to N, i.e.

n
?n =T+b (2.2.28)
I »
we find that the velocity vector ;n‘ the acceleration vector En and
the variation vector 5?n are given by:
3 S e
= *
rn r + w*b
3 bed -‘o—¢ Pt . 4 .
r, =t + w*b + w*(w*bh) (2.2.29)
= *
5rn &r + &%*b
while the orientation of the vector base §n is éiven by
e = BoRea® (2.2.30)
wn w

figure 2.3 A rigid body with an arbitrary point N

Attitude coordinates

To describe the position and orientation of B we sometimes prefer to
use scalar variables instead of the position vector T and rotation
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tensor R. The matrix representations 05 and 03 of T and R in §° con-
tain in total 3 + 9 scalar quantities. These quantities can be stored

As mentioned before, the nine gquantities of ¢ have to satisfy six or-
thonormality conditions. Instead of using nine quantities we can, for
example also use the three Bryant angles which do not have to satisfy
any conditidn. Although several choices are possible, we select Euler
or Bryant angles since this results in as few conditions as possible

and a matrix z with six components, so that

z =[u gl (2.2.31)

s

2.3 Dynamics

Mass, inertia and momentum
Loads, forces and moments
The equations of motion

The discussion on the dynamics of a rigid body is divided into three
subsections, First we discus the mass, the inertia tensor and the mo-
mentum and angular momentum vectors. Then follows a description of
the load, force and moment vectors on a body and finally the equa-
tions of motion, based on the Newton-Euler laws, are given.

Mass, inertia and momentum

The total mass m of B is given by

m= [ pdVv ‘ (2.3.1)
v

where o and V are resp. the mass density and the volume of B. The
vector from 0° to M, the centre of mass of B, is denoted by ;m' With

respect to O the position of M is determined by a vector 3m, defined
by
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g}
B e

§ ebav - (2.3.2)
v

where b is the vector from O to an arbitrary point N of B and ¢ the
mass density in that point.

1977, p34]

3, = ol (B.Byr - BBlav (2.3.3)
v

: : : 1ot Fos : -« , ‘ :
This tensor is symmetric and positive-definite if r is not equal to
zero everywhere in B. V

+ 0*B)av = m(T + w*b ) ' (2.3.4)

Differentiation with respect to time of these relations yields:

L ] *» * ) .

I =mt+ ;asm + G*t&tﬁm>] {(2.3.5)
3 > : > S - > -+ :

io = m(B*T) + m(@B) T 4+ W (T ew) + T 00

where the last two terms were obtained using

d—(l )

.
I Jcom a d—(e 3 3)ed + 3 o (2.3.6)

.
+*+T - *»T . -+ -+
[(w*e")J € - e J (e*w)]ow + JF su

.
- - -
w (Joom) + Joom
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Loads. forces and moments

We will divide the loads on B into internal and external loads. In-
ternal loads are loads on B caused by the connections with other bo-
dies of the multibody system. External loads are loads on B caused by
the surroundings of the multibody system.

External loads

We assume that nf (nf » 0) external forces f;x,...fgi as well as nm
(nm » 0) external moments M .ﬁn! are exerted on B. Furthermore,

ex
we consider the situation in whlch the attachment point of fl

{i=1..nf) is always the same point of B. In other words, the vector
5ix from 0 to the point of attachment of ﬁix is a body-fixed vector.
In addition to these forces and moments, surface loads B and volume
loads 3 are also possible. An example of such a volume load is the
gravity load.

For the total external force ﬁex and total external moment ﬁex o on B
¥
with respect to O we find:
nf 1 -» -+
B =1 ¥ +7paa+fqav (2.3.7)
ex . ex
i=1 A v
B - L+ DB . Bpans B av
ex,0 R ex . ex "ex [ b*p I b*q
=1 i=1 A v

where A and V are the surface area and the volume of B, respectively.

The virtual work AW of the external loads for a variation 8T of the

position of 0 and a variation 87 of the orientation of é is given by
-» -
M, = aroiex + 6"ﬁex,e (2.3.8)

With the aid of (2.2.7, 22 & 31) we can also write

=528 | 3 ’
MW, = bz gu-fex (2.3.9)
W s
wp  eX,0
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Instead of awex we have deliberately written‘AWex bhecause the nota-
tion 6wex suggests that there is a function wex of u and g with the
property that the virtual work of the external force is obtained by
variation of u and . This is the case ohly for conservative loads,
while in our system the loads may be nonconservative too.

Internal loads

The internal loads on B are forces and moments arising out of the
connections of B with other bodies of the system. These forces and
moments will be discussed in the following chapters. Here we only
mention that the resultant internal force and resultant internal mo-
ment on B with respect to 0 will be denoted by f and H n,o° For the
virtual work AW of the internal loads for varlatlons 5? and ar we
find

> - >
W, = a:.i?in + omel, (2.3.10)

f

and, like (2.3.9) we can rewrite this result in the form

= 5z | 3
W, = bz §u°§in (2.3.11)
g@' in,o

The equations of motion

The equations of motion are those equations which relate kinematic
variables of a body to the resulting loads on that body. As stated in
chapter 1 we can use the Newton-Euler laws, the virtual work princi-
ple of d'Alembert or the'Lagrange equations. Here we will illustrgte
xelatlon between the resultant force on a body and the time deriva-
tive of the momentum of that body. Euler's law gives a relation be-
tween the resultant moment on B with respect to M and the time deri-
vative of the angular momentum with respect to M, so that;

e

P+ B =

ex in

*
. ] +8,_ =1 (2.3.12)
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The subscript m indicates that the corresponding quantity is referred

& g s

Eo M. Between ﬁex,m’ Hin,m and im and the quantities ﬁex,o' ﬁin,o and
Lo considered earlier with respect to 0, the following relations ob-
tain:

M =M -, A =8 - b (2.3.13)

ex,m ex,o moex in,m in,o m o in
= _ R4 *-Q
im. io , mbm rm

[ ]
§ +#%_ =1 +n I *@b) (2.3.14)

Summary

In this chapter we considered several aspects of a rigid body. In the
section on kinematics attention was given to the representation of
position, orientation, velocities, etc. We also introduced the atti-
tude coordinates and discussed how these coordinates are related to
the position, orientation, velocities, etc. In the section on dyna-
mics we introduced the notions mass, inertia, momentum and external
and internal loads. Internal loads are internal with regard to the
complete multibody system, while external loads were defined as loads
on the bodies exerted from the surroundings of the multibody system.
These notions are important in order to be able to set up the equa-
tions of motion. In chapters five and six we will discuss the kinema-
tics and dynamics of systems of rigid bodies. In those chapters many
aspects are considered which'were introduced for one rigid body in
the present chapter.
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CHAPTER 3
ELEMENTS OF CONNECTIONS

3.1 Introduction

3.2 General aspects of elements
3.§ Kinematic elements

3.4 Energetic elements

3.5 Active elements

A multibody system consists of several rigid bodies and connections
between them. These connections are studied in more detail in this
chapter. In particular we discuss elements of connections. In chapter
7 a method will be developed for the description of connections as
assemblies of elements.

3.1 Introduction

stem. It constitutes a relationship between kinematic variables of
these bodies only, or between kinematic variables, force variables
and eventually some other known external input variables. We restrict
ourselves to massless connections, in other words, connections that
make no contribution to the total kinetic energy of the system. It is
also assumed that the mechanical behaviour of a connection can be
described by kinematic and/or force variables in a finite number of

points of the connection.

behaviour mathematically. An element includes all the arrangements as
to the number of connection points, vector bases at these points, ki-
nematic and force variables and eventually some other known input va-
riables as well as an (explicitly given) relation between these vari-

element.
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When studying an isolated element the connection points of the ele-

N3

element E

N1
N2

figure 3.1 Element with three endpoints Nl, N2 and N°.

It is assumed that the endpoints are rigidly attached to the sur-
roundings of an element. Rigidly attached means that the kinematic
variables of the points are coupled, while no work may be added or
dissipated. The next section deals with some general aspects of ele-
ments. In the subsequent sections kinematic, energetic and active
elements are discussed.

3.2 General aspects of elements

The kinematic variables
The force variables

The constitutive equation

Let E be an element with ne {ne » 2) endpoints which are uniguely
numbered from 1 to ne, The endpoint with number i (i=1..ne) is in&i-
cated as N'. In the following three subsections the kinematic varia-
bles, the forces variables and the constitutive equations of E will
be discussed in genéral.

The kinematic variables

The position vector of Nt with respect to the fixed origin o° is cal-

led 2!, In W' an orthonormal, right-handed local base &'

is defined.
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Its orientation with respect to the fixed global base §° is determin-
ed by the rotation tensor R, so that

+i

(' = vt @™, i=1..ne (3.2.1)
It is often advantageous not to work with the absolute position vec-
tor §i and rotation tensor mi, but with relative, element-bounded va-
riables. We will therefore introduce at E a reference point N and a
reference base §. The position and orientation of N and § with re-
spect to 0% are described by a position vector T and a rotation ten-

sor R in which
gl = Re (T (3.2.2)
For endpoim:'Ni (see figure 3.2) we can write

=7+, Ri=cR, i=1.me (3.2.3)

the vector from N to N') and €' is the relative rotation or comnec-

tion tensor (i.e. the rotation tensor of §1 with respect to 3).

s ; ]

Mm
NN

element E

§
figure 3.2 Variables of an element

Unlike rigid bodies, an element can deform. As a result the matrix
representation ¢' and C' of ¢" and €" in & are not constant. From
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@H7T=c'ed=28"ct ana & =re@N (3.2.4)

i

it follows that the time derivative of é is given by

LI N :
@7 = deDegh "+ 378 C o (3.2.5)

The first term of the right hand side can be rewritten because ﬁomT
is skew~symmetric. The corresponding axial vector, the angular velo-

city vector w of the element, satisfies
RorT el = w*q, vies (3.2.6)

For the second term on the right hand side of (3.2.5) it is noted

of §l with respect to §, that is

ST (Tl = 8345, vies® (3.2.7)

Using (3.2.6) and (3.2.7), we finally obtain

-'o' T -+ »3 3. T
. €H' = @+ dHrEh (3.2.8)

If this relation is differentiated with respect to time we find the

following expression

" s e . i : : {(3.2.9)
@H7 = @+ 3H@hHTe @+ e + 3@ N

1

* X i .
The term 3' needs some further investigation. From gt = §T31 it is

seen that

R L o - (3.2.10)

1

1

* +*Tei . . . -
where o™ = e é is the relative angular acceleration vector of ¢

o s o o e e e B oo o = e

with respect to é. Substituting this result in (3.2.9) after some

manipulations yields

34



», * . . : )
@hT =@ e atrr@h v arEeEh T (3.2.11)

+ (2 + dhadh@hT

L .
The absolute velocity vector £t of N* follows from {3.2.3), hence

-.»' -.o -.ti -.9 ;T-o' +‘]’$i
=T+t =7+ e ct o4 ec (3.2.12)
:T - T
and with ¢ = w*e we can write
;i -‘o < i >3
r =Y 4+ e + v ) {3.2.13)

Tél is the relative velocity vector of N* with respect to

+3i -+
where v = e

N. The acceleration of N' is obtained by differentiating {3.2.13):

. - . A . . s
-+ » »_ + ., kb -+ + .
It =T 4 wret + er(ure + vl} + v {3.2714)
3w i Twi '
. bt x
and using V' = w*v" + e ¢’ it follows that
i 3 -.o »j > 4] +j -+3
1
It o= T+ wrct + wt{wrc + 2v) + at (3.2.15)

+3 »
where a~ = ET

spect to N.

1 and gi

can be determined in the same way as the time derivatives of ;i and
él. With the angular variation vector 87 of element E, defined by

s s +i +3i . . -+ 4
The variation of r” and e caused by variations of r, g ¢

SRR sl = 570 vies?, (3.2.16)

with respect to é, defined by
Sloct(ch) el = sit™sd  vies (3.2.17)
it follows immediately that
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T +T

o8 = oireT, (68h)7 = (o7 + sithyr @Y7

(3.2.18)
Let & be the variation of the position vector T of the reference
point N. Then 5Tt is seen to be equal to

+i

set = 5% 4 surrt 4 8y (3.2.19)

The force variables

Wé assume that the interaction between the element and its surroun-
~dings takes place only at the endpoints. No external loadsvexert on
the element elsewhere. The loads on endpoint Ni (i=1..ne), owing to
the surroundings of‘the element, consist of the force vector finragd
the moment vector i;n' As the element is assumed to be massless, ?;n

and ﬁ;n (i=1..ne) have to satisfy the equilibrium equations

n ne . < :
- a (i +ii 4 :
[#,=0 e i£1(ﬁin + &) =3 (3.2.20)

If the position vector T of N' and the orientation of the local base
él in N* are subjected to variationms, ?;n and ﬁ;n perform the virtual

work AW, then .

e
AW =
i

Mg

[F1 eof® + B o(o7 + 8] (3.2.21)
1 ,

and, using (3.2.19) and (3.2.20), it is seen that
M=t eseh 4 B s 3.2.22
- i=1 in* in’ (3.2.22)

In this relation the variation 5% of the pbsition vector of the refe-~
rence point and the angular variation vector 57 of the reference base
do not occur any longer.
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The behaviour of an element is mathematically characterized by the
constitutive equation. We assume that this equation constitutes a
relationship between the kinematic and force variables at the end-
points, the history of these variables and a set of external input

variables which are prescribed as a function of time.

It is assumed that the constitutive equation is invariant for rota-
tion and translation of the element as a rigid body. Such transla-
tions and rotations can be described with the translation of the re-
ference point N and the rotation of the reference base é, that is
with the position vector T and the rotation tensor R. This assumption
implies that ¥ and R play no role in the constitutive eguation and
also that the constitutive equation is invariant for the choice of
the reference base. Therefore it is possible to formulate the consti-
tutive equation in terms of the matrix representation of Ei and ci as

£(FL (0. M) (1,6 (0),€ (1), 1) t] Q=1 ne;re(-m,t]) = o (3.2.23)

where te(-»,t] represents the history and the column j contains the
external input variables prescribed as a function of time,

A constitutive equation that contains only kinematic variables is
called a kinematic constraint, hence

(et (), ¢ x), t) i=1..ne;jve(-w,t]) = g (3.2.24)

Elements with this constitutive egquation are called kinematic ele-

ments. They are considered in more detail in the next section.

If the constitutive equation (3.2.23) contains both kinematic and
force variables, it is called an energetic relation, thus

(0 M (1, (1,1 )t istnesre(mit]) =g (3.2.25)
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ments. We assume that, for an element of this type, the force varia-
bles at time t can be determined if the history of these force varia-
bles as well as of all other variables of (3.2.25) is known.

In the constitutive equation of these elements external input varia-
bles i also appear. We restrict ourselves to active elements whose
behaviour is described only by the current values of the variables.
If the history is important it is assumed that, by introduqinq a fi~
niteinunber of state variables stored in a column X, it is still pos-
sible to describe the behaviour of an active element'by current val-
ues alone. To determine the state variables x at time t we have to

solve a state equation of the kind
k(1) = slx(0),i(0), 1) X, = X(t) (3.2.26)

where to is a point of time between -» and t at which a value for the

state variables is known.

3.3 Kinematic elements

Constraint elements

Holonomic and nonholonomic constraint elements
Hinge elements

How to describe a (new) kinematic element
Examples

A kinematic connection between bodies is a connection which restricts
the relative motions of these bodies. In the previous section it was
stated that in the constitutive equation of a kinematic element E on-
ly the time and kinematic variables occur, that is

£(c* (1), (1), t] i=1..ne, Te(-=,]) = g (3.3.1)

The number of components of the column g, i.e. the number of equa-
tions in (3.3.1), will be denoted by np. We assume that the constitu-

38



equal to or lower than 6(ne - 1) where ne is the number of endpoints
of E. If in the constraint equation the time t is explicit the ele-

ment is called rheonomic, otherwise it is scleronomic.

Although it is possible to consider kinematic elements having three
or more endpoints, most kinematic elements can be described as having
two. We shall therefore restrict ourselves to kinematic elements with
two endpoints N1 and N2 only. Furthermore, we choose the reference
point N in endpoint N1 and let the reference base coincide with the

2

vector base at this endpoint. In that case only c and gz appear in

and g' = I. In the rest of this section we write
2

(3.3.1) since S‘ =

¢ and C instead of

According to (3.3.1) the complete history of the kinematic variables
may be important but in practice this is not the case. Without any
essential restriction it may be assumed that the constitutive behavi-
our of a kinematic element depends only on the current values of the
kinematic variables and their first partial derivatives [Rosenberg,
1977, p43]. Instead of (3.3.1) we can write

fic,c,&dt) = 9 (3.3.2)

£(Slcix:gvt) =0 (3.3.3)

In the last-named formulas the dependence of the kinematic variables

on time is not mentioned explicitly.

In the next two subsections we will describe two different types of
kinematic elements: constraint elements and hinge elements.

Constraint elements

According to Rosenberg the relation (3.3.3) is still too general. He
states that practically all relevant kinematic constraint equations
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Byt 992 tp, =2 4 (3.3.4)

where p and p, are matrices of order npx3 and Bo is a celumn with np
components. These matrices do not depend on y and/or 2 but in general
are functions of t, c and C.

In section 2.2 the position vector of an arbitrary point of a rigid
body was expressed as function of three scalar variables, stored in
column u. Here ¢ can be expressed as a function of a similarly defin-
ed column u, i.e. c= g(g}. For v = é it then immediately follows
that

v =Y, Y= ¥ (3.3.5)
where ¥ is a square matrix of order 3x3 whose components depend only

on u.
w

Similarly C can be expressed as a function of the three components of
a column g, so that C = C(g). For Q expressed as function of g and §
we find

2 = ¢p, b = ¢g) {3.3.6)
with a square matrix ¢ of order 3x3, depending on 9 only.
To rewrite (3.3.4) more compact we introduce coordinates ¥ so that

y =y, ¢ (3.3.7)

where it is assumed that ¥ describes the relative position and orien-

2

tation, the connection vector ¢ and tensor €, of endpoint N with re-

spect to N = Nl. Note that these coordinates are similar to the atti-
tude coordinates 1 which describe the absolute position and orienta-
tion (see section 2.2). With this column y the Pfaff constraints

(3.3.4) are written as
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B * Boy = & By = [By¥r Botls Boy =Ry  (3:.3.8)

where goy = goy

is a matrix of order npx6. We will often refer to this equation as
the Pfaff equation of a constraint element. The assumption that the

(g,t) is a column with np components and gy = Qy(x,t)

constraint equations are independent implies that the rank of py. de~
noted as r(gy), must be equal to np. Note that, since gy is a func-
tion of Y and t, this rank can decrease if Y and/or t change. In
chapters 7 and 8 this phenomemon will be given more attention.

Besides the Pfaff equation, its derivative with respect to time is
required too. By differentiating (3.3.8) it is found that

Byd + Booy = 2 , (3.3.9)

Here gooy is a column with np components, given by

(g, = ? g 3(p,); 4, ;. 6 alp );s . a(goyli]§‘ +‘3(g0 );
00yl oy =g O¥ K 5 7 Bt O 3 ¥ ot
(3.3.10)

This column depends in general on y and t and is a quadratic function
of é.

The variations Gs and 60 caused by variations of u and g are given by
8¢ = Y5y, 89 = 45y (3.3.11)
The variation 5y defined by
sy’ = [su’, 591 (3.3.12)

py&x =g (3.3.13)

is satisfied.
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In the constitutive equation of a kinematic element no force varia-
bles appear by definition. Nevertheless, at the endpoints the sur-
roundings of the element will exert forces on the element. The virtu-
al work done by these forces, due to variations g and 59, is given
by ) '

AW = F| Bc + M) 50 - | (3.3.14)

win v = win w cee

where F and H are the matrix representation in the reference base
e of the force and moment vector on the endpoint N Since the ele-

ment is massless the corresponding force and moment vector on the
element at N = N1 can be determined easily.

Based on (3.3.11) we may rewrite (3.3.14) as

oW o= sy'yTE o+ ogTeTM, : (3.3.15)

or. by using the more compact notation with y to give

av = oy, = [E] ¥, M ¢] (3.3.16)

where A is a column with 6 components.

According to the fundamental principle of Lagrange mechanics AW is
“equal to zerc for all kinematically admissible variations 5y. Because
p is a matrix of order npx6é with rank x(gy) equal to np, it follows
fron (3.3.12, 13 & 16) that A has to be a linear combination of the
rous of py so that [Rosenberg 1977, p131]

A= R (3.3.17)

The components of the column A are a priori unknown, but they can be
interpreted as Lagrange multipliers of the kinematic constraints.

onomi onomi straint elements

tegrated, i.e. if they satisfy the Frobenius conditions [Rosenberg
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1977, p47]. Instead of (3.3.3) the constraint equations for holonénic
constraints are written as

fle,C,t) = ¢ (3.3.18)
or, using the coordinates Y. as
g(x,t) =9 (3.3.19)

Every kinematic constraint not of the form (3.3.18/19), or not redu-
cible to this form, is called nonholonomic. A well known example of a

nonholonomic Pfaff constraint is given by
& . * - .
yisln(ya) - yzcos(ya) =0 (3.3.20)

where Y, and Y, represent the position of a skate and vy the direc~
tion as sketched in figure 3.3. In this case p = [tan(yal, ~1] while
all components of the other Pfaff matrices are equal to zero. Other
examples of nonholonomic constraints are inequality constraints of
the form ;(x,t) ? 9.

N

figure 3.3 The skate

Hinge elements

We consider independent holonomic constraint equations and assume
that it is possible to write yasa function of ng independent gene-
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T .
q =[q, .. qnq]’ ng = 6 - np, ‘ (3.3.21)

so that for all t and all g the constraint equations are satisfied.
Mathematically

¥ =3lg.t), fly(q.t),t) = 0 (3.3.22)
for all q and all t.
Instead of characterizing a holonomic kinematic element by the con-
straint equation (3.3.22), it is alsoc possible to characterize it by
the functions

¢ = clg.t), ¢ = Clg.t) (3.3.23)

Holonomic kinematic elements for which these functions instead of

the constraint equations are supplied will be called hinge elements.

To describe a hinge element we have to supply ¢ and C as a function
of q and t, as well as the derivatives g, % v and a as functions of

g §, g and t.

From the definition (3.2.7) of the relative angular velocity 2 it
follows that '

g*u = &'y (3.3.24)

for all colummns u with three components. Because of (3.3.23) the ma-

trix on the right hand side is equal to

nq oC 3C
T _ =T =1
&' = j§1[395" &j] + 3¢S (3.3.25)

where each of the terms on the right hand side is a skew-symmetric
matrix because ggT = I for all ¢ and t. Hence, there are columns LA
(i=1..nq) and ¥ of such a nature that
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5o Cu = w.ty, 3tC U = ¥ *u (3.3.26)

ng
9= I (Ww.§.) +Ww (3.3.27)
w .=1 m]j w(}
J
or, in a compact notatién with the 3xng matrix gT = [§1“3nq]’ by
0=w'é+ ’ (3.3.28)
m_‘jg ‘V“‘O e

Both w and go depend in general on g and £, but not on é.

Differentiating (3.3.28) results in a relation for q = é. s0 that

g=w gt . {3.3.29)

The column Yoo with three components (ﬁoo) is defined by

i

oW .. w.., 2 : ) .
W), = I f g g4 o[y -igﬁli]a. i
w00’ 1 =1 k=1 aqk k*3 3=1 ot aq 3 ot

{3.3.30)

Besides ¢ and g we also require relations for the relative velocity M
and the relative acceleration aasa function of G é and t. For v we
find

. Te ac
y=c=vg+y, v, = = {3.3.31)
- LR ° Bt
where v is a matrix of order 3Ixng, defined by
T _ oc .
v = [v1 ¥ 1, v.=3% 3=1..ng (3.3.32)
w w q v\] aq‘
J
For 2 we get
T
a=vgtv, (3.3.33)
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with a column y with three components defined by

ng nq 82 . s ngq 62 . azc.
Z1 1 8qk8 kq) + JI 2 aq at“ + atat {3.3.34)

v ). =
w00 1 ]

Note that both ¥ and Yoo 3F€ quadratic functions of §.

Finally, the variations 5c and &2 caused by infinitesimal, but arbit-
rary variations &g are given by

5¢

Lad

v'sg, 59 = w'og (3.3.35)
where v and w have been defined in (3.3.32) and (3.3.28)

We have to check whether the generalizéd coordinates are independent
and whether all generalized coordinates are necessary. Before inves-
tigatihg this question we ought to realize that, accoxrding to
(3.3.35) B¢ and 52 should be equal to ] if 69 = 9. We say that the
generalized coordinates are necessary and independent if the opposite
holds too. In other words, if for all q and t 8¢ = ¢ and 82 = g, it
follows that &g = 9. This statement is equivalent to the statement

T
g =

30

==} 63 2_8 X {3.3.36)

with y = [v, w]. This implies that the matrix y has maximum rank
equal to ng. Because y is a function of g and t, its rank can change
if q and t change. This problem is discussed in more detail in chap-
ter 7.

To describe a kinematic element we must first choose the two end-
points with their bases and select one of the endpoints as the refe-
rence point. In the case of a constraint element, the Pfaff matrices
Byt Boy' Booy and in that of a holonomic constraint also the equation
f should be specified as a function of ¥ x and t. In the case of a

hinge element we wust choose generalized coordinates and specify the
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matrix representation with respect to the reference base of ¢ and ¢
1 W, w v and v__ and the matrices w and v
as well as the columns ¥ %ot Yo Yoo W v

as a function of 9 é and t. The matrices bod .,V are called the par-

o'’
tial derivatives of a hinge element.

Examples

To illustrate the preceding theory two examples of kinematic elements
are discussed, namely a rigid, massless bar and a ball-and-socket
joint. These elements will be described as a constraint element and
as a hinge element respectively. The rigid, massless bar from figure
3.4 can be modelled as a holonomic constraint element. Since this
element is scleronomic the time t and the partial derivatives with
respect to t do not occur. With XT = [gT, gT], where u contains the
relative Cartesian coordinates of N2 with respect to N and where )
contains the three Euler or Bryant angles for the rotation from § to
§2, we find

T
fly.t) =y - 0100000} =90, By = I (3.3.37)
where I has an order of 6x6é and the components of all other Pfaff ma-

trices are equal to zero. Note that np = € and that By has a full
rank.

figure 3.4 A rigid, massless bar
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If the bar is modelled as a hinge element the number of generalized
- coordinates becomes ng = 6 - np = 0 and (3.3.23) reduces to

i
-4

¢'=101,0 0], ¢ (3.3.38)
The components of all partial derivatives of this hinge element are

all equal to zero.

The ball-and~socket joint, see figure 3.5, is also a scleronomic, ho-
lonomic kinematic element. The endpoints and the reference point are
placed in the rotation centre of the joint, in other words their po-
sition coincides. Modelled as a constraint element the holonomic con-

straint equation becomes
Cflgt)=u=g9g (3.3.39)

where u = [ is the column with the relative Cartesian coordinates of

the position of N2 with respect to N. For the Pfaff matrix we find
B, = [t 0] {3.3.40)
while the components of the columns Boy and gooy are zero. Note that

this constraint element is scleronomic and that gy has a full rank
r{P ) =np = 3.
(_Y) p

figure 3.5 A ball-and-socket joint
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The thoice of the endpoints implies that, if the ball-and-socket
joint is modelled as a hinge element, c=09 and all components of v,

M and Yoo AL€ zero. If Bryant angles are chosen as generalized coor-

o 0
dinates, we find for C that

C = C,Cq .8, + 5,8,C, sls3 - ciszc3 (3.3.41)
“C,854 €,€3 ~ 8,5,5, 5.C, + 5,8,
s, ~5,C, €,c,

4

where <, cos(qi), s, = sin(qi). The corresponding partial deriva-

tives are found to be

wo=[w, o, Wl
with:
W, = 11, w, = 0 P W= sz (3.3.42)
1 75,
0 s, c1c2

W, = c,d, (3.3.43)
-5 & g c.c.& & + 8.8 &
1349y 7 C46%19; T 548,759,
88 -scld, -csda
19192 7 51999 7 %% %%

3.4 Energetic elements

The constitutive equation

Endpoint variables and relevant variables
Examples

The behaviour of kinematic elements is only completely described by
relations between kinematic variables. These elements do not perform
any virtual work when the kinematic variables undergo a kinematically
admissible variation. Therefore force variables play a role of minor

importance. On the other hand, energetic elements can perform virtual
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work if the kinematic variables are varied. As a result force varia-

bles play an important role.

We will not formulate the constitutive equation of an energetic ele-
ment in terms of all kinematic and force variables of the endpoints

but in terms of a smaller set of relevant variables. The relevant ki-

nv ¢ 6xne where ne is the number of endpoints. The“components of £
must be independent and neces%ary. Generally they are interpreted as

strains or displacements.

by a variation be of ¢ is given by

aW = Foe (3.4.1)

Note that column F has as many components as E. The interpretation of
F follows from (3.4.1) and the choice of €. For example, if component
e, of € represents the elongation of a spring, the corresponding com-

ponent I-‘i of ¥ is the tensile force in that spring.
In the following subsections we first discuss the constitutive equa-
tion of an energetic element as a function of appropriately chosen

relevant variables. Then the relationship between the relevant varia-
bles and the variables of the endpoints is dicussed.

11 . . .
The constitutive equation of an energetic element E with ne endpoints
has already been mentioned earlier in section 3.2. We assume that
this equation can be rewritten with ¢ and F as

£=f£(Fe 1] re(-=,t]) =g ‘ (3.4.2)

and that, if the trajectories of glr) for -w{t<t and of E(T) for
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-»{1(t are known, F(t) can be calculated from (3.4.2). In other words
we consider energetic elements where the force variables depend not
only on current values of ¢ but on the history of ¢ and F as well.

An example of a constitutive equation of this kind is given by the

‘inteqgral equation

t 3E 3¢
E(t) = ] Gle-v) 37 37

ol e Bt dr (3.4.3)

where G is a matrix with relaxation functions and E{e(t)) represents
the elastic response. This constitutive equation has been introduced
by Fung [1972] and is often used to describe the behaviour of biolo-
gical tissue. For a 'special group of linear visco-elastic elements
this integral equation may be replaced by a differential equation
[for example see Findley et al. 1976] to give

&*i'l_(.

: (3.4.4}

Sme

Fo) = K F() + R,
Constitutive equations where only current values of the relevant va-

riables are found, take the form

£=£Ezt) =g, £=EESE) =9 (3.4.5)

L ad

and a special case is given by the explicit equations

w

F = F(g,t), F = E(,t) (3.4.6)

Elements with such comstitutive equations are called elastic elements
or viscous elements. If their constitutive equations are linear we

can write

F = K(t)e, F=B(t)¢ (3.4.7)
where K and B are called the stiffness and damping matrices respec-
tively.

It may be clear that equations of the type (3.4.2}) are more difficult
to evaluate than those of type (3.4.5), For example, to represent the
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integral of (3.4.3) numerically, a summation over the time interval
(-~,t] has to be used, the relevant variables having to be stored for
each point of time. Implicit equations are generally more difficult
to solve than explicit ones as they require an iterative solver.

Endpoint variables and relevant variables

To describe the constitutive equation we used relevant variables in
stead of the variables of the endpoints. We still have to relate the-
se variables to each other. For this purpose a relationship between
the relevant kinematic variables ¢ and the kinematic variables gl, gl
{i=1..ne) of the endpoints has to be given. We restrict ourselves to
relations like

e = elch,c'l i=1..ne) (3.4.8)
If this equation is differentiated, a relation for é is found, so
that ‘

ST chvt 4 gigl) (3.4.9)
Beoreyt e o 4.

sct + gisgh) (3.4.10)

i
v
To check whether the components of g are independent we follow the

same strategy as in section 3.3 between (3.3.4) and (3.3.8).

The virtual work done by the forces g;n and moments gin {i=1..ne) in

the endpeints is given by

ne

- T i iTeoid
AW = i;[(gm) 5g” + (M) 897] (3.4.11).

Since no other loads are exerted on the element and because the ele-
ment is massless, this virtual work should be equal to the virtual
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work arising out of variations of g. From (3.4.1) and (3.4.10) it
follows that

g;n = (gi]Tg, Ein = (Q;)T§ {3.4.12)

If the reference point N coincides with endpoint Ni, the correspon-
ding gi gnd gé are not defined. In that case it is not possible to
obtain E;n and g;n from (4.3.12). However, as the element is massless
these forces and moments can be obtained from the equilibrium equa-

tions (3.2.20).

Examples

ment with two endpoints.

figure 3.6 The bar element

The element and the vector bases at the endpoints are shown in figure
3.6. During deformation the axis of the bar, defined as the line be-
tween N‘ and Nz, remains straight. Furthermore, there is no torsion
and planes perpendicular to the axis of the bar remain perpendicular.
The only relevant kinematic variable necessary for describing the me-
chanical behaviour of the bar is its elongation ¢, this being the
difference between the present length 1(t) and the unloaded length

10, so that

g=lel,  e=lw) -1, Ley=ng®-¢v  (3.4.13)
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For the relationship between ¢ and é . é we find
. T*1 Te2 cz - ct
e=-nc +nc¢ ' n= v b (3.4.14)
° 1

Therefore the matrices §i (i=1,2) are row matrices, given by
G = -n, G = n (3.4.15)

while G {i=1,2) are zero row matrices. The relevant force variable
is the tensxle force F along the axis of the bar. If F is known, the
internal forces vectors are given by
Fl = -Fn F2 = Fn (3.4.16)
win wt T
while the moments H;n {i=1,2) are zeroc. In the case of linear elastic
behaviour the constutitive equation becomes

F = ke : {(3.4.17)

where k is the stiffness of the bar.

Assuue that N1 N. In this case c1= 9, §'= o and the components of G

and G are not defined, Know1ng that the sum of all forces on the

element should be equal to zero, it is found that F = -Eln and
? = Mz = 0.
win  win @ w»

figure 3.7 The beam element
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two endpoints. Planes perpendicular to the beam axis remain perpen-
dicular and torsion is left out of consideration. For simplicity it
is assumed that the deformations remain small and that the beam axis
deforms in one plane only. We will choose the reference base so that
e. is normal to this plane of deformation. The vector bases at the

3

. . 1 2, . \
endpoints are chosen with 33 and 33 in the same direction as ea,

while e: and e are, at each moment, the tangents to the beam axis at

the endpoints (see figure 3.7).

For the relevant kinematic variables we take the elongation € in the
e direction, the dlsplacement €, of Nz in the 32 direction and the

rotatxon €, of e around e (see figure 3.8).

%

figure 3.8 The relevant kinematic variables of a beam element

The corresponding relevant force variables are the tensile force F
in the same direction as €y the shear force F in the same dlrectlon

as ¢, and the bending moment F at endpoint N in the same direction

as e,. In the case of linear elastlc behaviour the constitutive equa-

tions between the relevant kinematic and force variables become the
elementary beam formulas.

IfN = N' the relation between the relevant variables ¢ and the vari-

ables 32 and 92 becomes

_ 2 Z W2 _ il

e, = ¢} 10, £, = Cyy €, = arc51n(c12)‘ (3.4.18)
where cf, cg and C are components of the matrix representation of
c2 and m with respect to the reference base. The matrlces G and GQ

do not exist in this case since N = N while G and G are glven by
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(3.4.19)

(= o I «
[ = I o ]
-~ O O

When FT [Ft' Fz’ F ] is known we can easily deteraxne F in and §§n by
using G and G in (3 4.12). As already mentioned ? and gin are ob-

tained by using the known F and H and the equzl;brxum equations.

points. It is assumed that only small deformations due to plane
strain/stress occur. The reference base is chosen so that 33 is nor-

mal to the plane spanned by the three endpoints and that 31 lies on

the line from N1 = N to Nz. The relevant kinematic variables are
shown in figure 3.9.

figure 3.9 Element with 3 endpoints

The relation ¢ = g(c”,C

= c? - " - = - '
e, = ¢ 11, €, = Cy 12, €y = €] 13 (3.4.20)
while gé = o0 for i=1..3 and gi are defined by
2 3 :
6, =10/, G, =00 (3.4.21)
00 01
00 10
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Hote that g; is not defined because N' = N. In the case of linearly

elastic behaviour the constitutive equation becomes
£ = Ke (3.4.22)
where K is called the stiffness matrix,

In the literature on finite element methods one can f£ind such stiff-
ness matrices for this 3-~point element as well as many other elements
[Zienkiewicz 1977].

3.5 Active elements

The constitutive equation
Examples
Concluding remarks

We have up to now considered kinematic and energetic elements where
only kinematic and force variables played a role. In active elements
other variables also occur. These will be called external input vari-
ables since active elements generally supply energy from external
sources to a multibody system. Active elements are very similar to
energetic elements and therefore only the new aspects will be discus-
sed in this section.

The constitutive equation

Again we introduce relevant kinematic variables e and their corre-
sponding forces variables F. In the case of active elements we also
stored in column é{t). Examples of these variables are prescribed
pressure differences for hydraulic acfuators, voltage differences for
electric motors, set-point values for position servos and recruitment
and firing rate of the motor units in muscles.

For the constitutive equation of an active element we can write
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£(E(1),glx), i(0)] vel-=,t]} = g (3.5.1)

Ifi= &(t) and ¢ = g(1) are known for v < t and E = E(r) is known
for x < t, it should be possible to calculate the current value F(t).
In practice this constitutive equation is difficult to apply. There-
fore we restrict ourselves to active elements where the influence of
the history on the current value of g is a function of the current
value of the relevant kinematic variables, their first derivatives to
time and a finite number of state variables. With the state variables

stored in a column x, the constitutive equation becomes
E(E(E) g(£), 8(£), %(1), i(£),8) = g , (3.5.2)

To obtain the value of the state variable at time t, a state equation

must be solved. We restrict ourselves to state equations in the form
of a differential equation with initial conditions. Mathematically

L] L 4 N

X(t) = s(x(t),g(t), 8(8), i), 0), X = x(t)) (3.5.3)
where to is a point of time and where a value for the state variables
is known. If the element is linear, the constitutive equation and the

state equations become

E=cxvpfil k=aemlil me =y 35
£ &
w W
. »
£ €
w w

where A, B, C and D are called the system, the input, the output and
the driving matrix respectively.

Sometimes only current values of the variables determine the behavi-
our of an active element. For the constitutive equations of such ele-

ments we write

L(E(E), g(t), £(8),i(),8) = g - (3.5.5)
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Note that no state variables are necessary to describe the behaviour
of these elements. To distinguish these elements from the active ele-
ments where state variables are used, we speak of active elements

without or with memory.

Examples

an active element without memory we consider the prescribed pressure
as the external input variable i(t). The reference and endpoints are

chosen as shown in figure 3.10.

figure 1.10 An actuator as an active element

As relevant kinematic variable ¢ we choose the displacement of Nz a-
long the axis of the element. In this case gv = [1,0,0] and gQ = 0.
The corresponding relevant force variable is the axial force on the

actuator and is given by
F(t) = ai(t) (3.5.6)

where a is the effective pressure area.

voltage V(t). This is an element with memory since the produced tor-
que depends on the history of the voltage. The endpoints are shown in
figure 3.11 with N = N‘. We consider the rotation of the base at Nz
with respect to the reference base as a relevant kinematic variable,
while the corresponding relevant force variable is the torgue about
the rotation axis. In this case G, = 0 and G, = [1,0,0}. We assume

that the produced torque depends linearly on the electric current
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through the motor. With the parameter ¢ for the 'e.m.f.' constant of
the motor this results in the constitutive equation

F(t) = cx(t) (3.5.7)

where the state variable x represents the electric current.

EXTERN VOLT
SYSTEM

figure 3.11 An electric motor

For the state equation of a simple motor we use

L4

() = Ax(t) + Bli,e, 81, x, = x(t) (3.5.8)

where A = -r/l and B = [1, O, c}/1 with r and 1 representing the re-

sistance and inductance of the electronic circuit.

For a position servo whose voltage V(t) depends on the difference be-
tween a set-point value i(t) = io and the actual rotation of the
shaft e¢(t} some changes should be made (see figure 3.12}.

figure 3.12 The position servo
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With b the amplification factor of the difference or error signal the
state equation can be written, with A = -r/]l and B = [b,~b,cl/1l, as

k=ax +Blie 8], x(t) =x (3.5.9)
Concluding remarks

Active elements transport energy from an external source to a multi-
body system. All active elements described so far are elements simi-
lar to energetic elements. Active elements similar to kinematic ele-
ments have not been discussed, although it is possible to supply
energy from an external source by prescribing the motion of a body.
In this case we do not introduce a new active element where only ki-
nematic variables occur, but we shall use a constraint element as
discussed in 3.3.

In realistic systems more complex elements will be encountered, such
as the electro-hydraulic actuator as described by Vukobratovic and
Potkonjak [1982, p156]. Another example is the model of the human
muscle of Hatze [1981] while containing two external input variables
and five state variables. Bach muscle or part of a muscle, represent-
ed by such an active element, involves 5 complicated nonlinear state

equations with roughly 30 parameters.

Muscles are also a good example of connections which have more than
two attachment points to their surroundings. There are several mus-
cles in the human body that split into two or more parts, while there
are also muscles which span two joints. These muscles can only be mo-
delled by assemblies of elements. Assembling a connection out of se-
veral elements will be discussed in chapter 7. For the time being it

is assumed that a connection consists of one element only.
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CHAPTER 4
TOPOLOGY

4.1 Introduction
4.2 The tree structure
4.3 The grgph matrices

A multibody system comprises a number of bodies and connections. In
the previous chapters bodies and connections were discussed in de-
tail. In this chapter consideration is given to a method for descri-
bing the topology of the bodies and connections in an arbitrary mul-
tibody system. In particular, the construction of a tree structure of
bodies and hinges will be discussed. This tree structure plays an im-
portant role in chapter 5 where the kinematics of a multibody system
are described.

4.1 Introduction

A graph is an abstract representation of a discrete system where cer-
tain parts of the system are represented by vertices while others are
represented by edges between the vertices. The purpose of a graph is
to determine a topology, an order, in the system without referring to
physical properties of the parts of that system. In our multibody sy-
stems we will construct a graph in which the bodies are represented
by vertices and the connections by edges.

a). The edges can be considered as relationships between

as {A1..An

several vertices. In a formal notation:
A% = a¥ovt, v, x=1..ma (4.1.1)

This type of relations will be used in chapter 7 to describe the to-
pology of energetic and active connections in a multibody system as
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well as the topology of the elements in an connection. In.the remain-
ing part of this chapter energetic and active connections &re‘noﬁrta-
ken into account. This implies that we represent the kinematic con-
nections of a system by edges in the graph of that system while ener-
getic and active connections are not represented in that graph at
all.

figure 4.1 An example of a multibody system

For example, the springs E' and Ez of the multibody system of figure
4.1 do not accur in the graph (figure 4.2) of this system. The ‘ball-

and-socket joint H’, the two pin-joints ﬁz and Ha, as well as the two

prismatic joints H4 and H5 are represented in this graph by the edges
1 5

A',.., A" respectively.

B = body
® ==y V = vertex
v5
H = hinge
==) A = edge

figure 4.2 The graph of the system of figure 4.1

4.2 The tree structure

To describe the kinematics of an arbitrary multibody system it is
useful to introduce the notion of a graph with a tree structure. How-
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ever, before a definition of a tree structure is given, it is neces-
sary first to introduce the notions arc, branch, chord, path, degree

of a vertex and isolated and closed subgraphs.

A kinematic connection is attached to the bodies at two attachment
points only. As a result, each edge in the graph of a system of bo-
dies and kinematic connections can be represented by a line between
two vertices. Moreffermally, edge A¥ constitutes a relationship be-

tween two different vertices V' and V°, hence
Ak = Akt v (4.2.1)

It is possible to assign a direction to such an edge. For the edge in
(4.2.1) the positive direction is defined from Vi towards Vj. 1f vi
and vi in (4.2.1) are interchanged, the positive direction is from vI
towards V'. Directed edges will be called arcs. A graph which con-
sists of vertices and arcs can be represented by a figure in which
each vertex is denoted by a dot and each arc by a line between two
dots with an arrow to indicate the chosen direction.

figure 4.3 A graph of vertices (@) and arcs (wjp=)

It is advantageous to distinguish between arcs which represent hinges

and arcs vhich represent kinematic constraints. An arc which repre-

system of figure 4.1 all arcs are branches (see figure 4.3}.

The path from v to v is defined as the ordered set of branches (a¥,
. Al} so that it is possible to start in v and end in V° while
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each branch of this set is passed only once and no jumps are made in
the figure. In figure 4.3 both {A', Az) and {AS, Aa} are paths from
or ending in that vertex. In figure 4.2 deqree(V5)=0, degree(v‘)é1
and degree{V°)=2, The vertex with number o, V°. will be called the
reference vertex.

If there is no path between the reference vertex and a subset of

other>vertices, the vertices and the branches between them form an

an isolated subgraph, while the vertices and arcs V°, A’, V‘, Az, Vz,

2%, v*, a° form a closed subgraph. A graph has a tree structure
there is an unambiguous path between the reference vertex and.each of
the other vertices. If degree(vo) = nt with nt > 1 we will speak of a
tree structure with nt trees.

The graph of an arbitrary multibody system will generally not have a
tree structure. In that case we have to define a modified graph with
a tree structure for this system. To obtain such a graph we first in-
troduce a branch between one vertex of each isolated subgraph and one
vertex of the rest of the graph and, second, open each closed sub-
graph by replacing one 6f the branches of that subgraph by a chord.
For the system this means that, for each additional branch between an
isolated subgraph and the rest of the graph, a hinge with six genera-
lized coordinates is introduced, while one of the hinges in a closed
kinematic chain have to be replaced by a kinematic constraint. In ge-
neral it will be advisable to replace the hinge with the’highest num-
ber (nq) of generalized coordinates as the hinge will be replaced by
a kinematic constraint with np = 6 - ng constraint equations.

Finally the number of branches, nb, in the modified graph with tree
structure is equal to the total number of vertices nv (excluding Vo).
Note that the number of arcs in the original graph, na, is in general
not equal‘to the sum of all branches and chords, nb + nc. This is due
to the fact that additional branches must be introduced between
isolated subgraphs and the rest of the graph.
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As an example we define a tree structure for the multibody system in
figure 4.1. The graph in figure 4.3 of this system contains one clos-
ed and one isolated subgraph. To connect the isclated subgraph we in-

5 and v°. This branch is the representation

troduce a branch between V
of a hinge with six generalized coordinates between body B5 and the

ground.

figure 4.4 A tree structure of figure 4.3

The closed subgraph represents the set of three bodies, a ball-and-~
socket joint (A1}, two pin-ioints {Az and A3) and a prismatic joint
(As}. To obtain a graph with tree structure we replace branch A1 by a
chord Ac'. This means that this ball-and-socket joint is modelled as
a kinematic constraint with three constraint equations.

In the final graph with tree structure, all branches (solid lines)
represent hinges and all chords (dotted lines) represent kinematic
constraints. One of the consequences is that, if the generalized
coordinates of all hinges are known, the kinematic quantities of the
multibody system can be determined.

figure 4.5 A system of bodies and hinges in a tree structure
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For example, knowing the generalized coordinates, it is possible to
calculate for each hinge Hk the matrix representation of its connec-
tion vector Ek and tensor ¢k (k = 1..nh). Together with the known,
constant matrix representations of the body-fixed vectors and tensors
(BiK, BX¥) of each body Bl (i = 0..nb), all position vectors * and

rotation tensors R® can be calculated (see figure 4.5).

To store the topological data of a tree structure in graph matrices
(see next section), we will always number (or renumber) the vertices
and branches of a tree structure and direct the branches as follows:

- for Vi on the path from v° to Vj (VJ # Vo)
the number i must be lower then j (i ¢ j)
- 2% is the last branch on the path from v® to v¥

and is directed towards V¥

I1f the graph contains nt trees then the vertices of the first tree
are numbered from 1 to nvi, the vertices of the second tree from nv1t
+ 1 to nvl + nv2, etc. Here nvi is the number of vertices in ith tree
(i=1..nt). The nc chords will be numbered from 1 to nc. A tree struc-
ture that is numbered according to these rules will be called a regu-

tree structures are always regular numbered. In figure 4.6 a regular
numbering for the graph of figure 4.4 is shown. )

figure 4.6 A regular numbered tree structure
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4.3 The graph matrices

Graph matrices are introduced in this section for graphs of vertices
and arcs and in particular for graphs with tree structures. The pur-
pose of these matrices is to store the topological data systematical-

ly.

and gc. These matrices are defined for a graph with vertices, bran-

ches and chords such as:

Lik = +1 if branch A% ends in Vi A
= -1 if branch ¥ starts at v*
= 0 if branch A¥ does not start or end in V%
or {4.3.1)
L= #1 if chord A* ends in V¢ ‘
-1 if chord A starts at v'

0 if chord A* does not start or end in Vi

H

In these location matrices we distinguish four submatrices 5, S §§
c
and §7:

L=15% ”1_, L = _gg _f- (4.3.2)
S nv §c nv
| nb | | ne |

Note that § is square since nv = nb. If degreé(vo) = nt » 1, then §°
and § are subdivided into rows §; and matrices §1 with i = 1..nt,
given by

1 nt

So = 18, S0 1 s=|s o (4.3.3)

nt

1o
1
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The location matrices of the graph with two trees from figure 4.6 be-
come

, L& =T-1] (4.3.4)

< g
Wb W N e O

1j = i if Lij = -1 (i=0..nv, 3 =1..nv) (4.3.5)

so that the jth component of ; is equal to the number of the last but
one vertex on the path from VO to Vj. In the case of our example (see
figure 4.6) the values of the components of this column become O, 1,
2, 1, O respectively.

It is also possible to store the topological data of a tree in a tree

{(4.3.6)
Tki = +1 if 3% is a branch on the path f;om v to vi
and is directed towards v'
= -1 if A¥ is a branch on the path from V° to v

and is directed back to v°
0 if A¥ is not a branch on the path from v o v

For the two tree matrices T and 32 of the trees in the graph of fi-
gure 4.6 we find

vl v 3t v (4.3.7)
Al R A S TR R
0+t +1 0| a°
0o o+ o] ad
0 0 0+ |at
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The matrices S ' s and T of a regular numbered tree structure have
a regular structure The S matrlces, except for the flrst component,
contain zero components only The S and T matrices have a main dia-
7gonal with components +1 and lower triangular matrices with zero com-
ponents only. The upper triangular matrices only contain components
equal to -1, 0 and +1, 0. These properties are lost if the numbering

is not regular.

An important relationship exists between the submatrices S and S of
the location matrix and the tree matrix T {5ee U;ttenhurg [1971,
p88]1):

bplapistor 0 is=tit (4.3.8)

o= V’l}?l - - - ~nvi

where -ln is a column with n components equal to -1 and ;n is the

identity matrix of order nxn.

To illustrate the importance of the location matrix L we consider two
columns ¥ and X where component y of ¥ is a variable defined at ver—
tex V' and component xk of X is a correspondlng variable of branch A

The relation
y = Lx (4.3.9)

then expresses that ' is the sum over k= .nb of the variables X,
of those branches that end at v minus the variables X, of those
branches that start from V {see figure 4.7a). For example if x con-
tains internal forces in the attachment points of the connections
then y is the column with the resulting internal forces exerted on

the bodies. The opposite relation
=1L ¢ (4.3.10)

expresses that the variable x , defined for branch Ak, is determined

k'
by the variables Y, and y defined in the vertices V' and V3 of A

An example of xk is the connectxon vector ck of two points while the
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. ak
— Y A
N~
A v
a b
figure 4.7 Vertex with arcs Arc between two vertices

corresponding variables Y yj represent the absolute position of
these points (see figure 4.7b}.

Summary

Graphs are used to represent the topology of multibody systems as

well as assemblies of elements. In this chapter attention is given
only to graphs of systems of bodies and kinematic connections. For
such graphs it is possible to define a tree structure in which

branches represent hinges and chords represent kinematic constraints.
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CHAPTER 5
KINEMATICS OF A MULTIBODY SYSTEM

‘5.1 The Lagrange coordinates

5.2 The kinematic formulas for a tree structure

%.3 The kinematic constraints

5.4 Prescribed Lagrange and/or attitude coordinates

This chapter deals with the formulas describing the Xkinematic behavi-
our of multibody systems. In order to study this behaviour in a sy-
stem with an arbitrary topology we first define a tree structure of
bodies and hinges and then add the kinematic constraints (sections
5.2 & 5.3). In the first section Lagrange coordinates will be intro-
duced as coordinates to describe the kinematic behaviour of a multi-
body system. Section 5.4 deals with prescribed Lagrange and/or atti-

tude coordinates.

Up to now we have not discussed the assembly of elements into one
complex connection. It is therefore assumed that each connection con-
tains one element only. Since this chapter deals with kinematic beha-
viour, energetic and active connections are not considered. These
connections only become relevant when we study the dynamic behaviour
of a multibody system.

5.1 The Lagrande coordinates

Consider a multibody system of nb + 1 bodies in which body B® is the
reference body with the global vector base éo. This system of bodies,
hinges and kinematic constraints may have a giaph with an arbitrary
topology. Nevertheless a tree structure of vertices (bodies) and
branches (hinges) can be defined in the graph. As discussed in the
previcus chapter, first of all the kinematic constraints are repre-
sented in the graph by chords. In the graph so obtained there may be
closed and isolated subgraphs. In the case of an isolated part an ad-

ditional hinge with six generalized coordinates is introduced between
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a body of the isolated part and the rest of the system. In the case
of a closed kinematic chain of bodies and hinges the chain is opened
by removing one hinge. Instead of that hinge a kinematic constraint
is introduced.

Lx

figure 5.1 A four-bar mechanism

To illustrate this process a four-bar mechanism with four pin-joint:
{hinges) is considered (see figure 5.1). There is a closed kinematic
chain in this system. The chain is opened at hinge H‘ and the pin-
joint replaced by a kinematic constraint c'. The graph of the four-
bar mechanism then has a tree structure with three bodies, three pin-
joints and one kinematic constraint (see figure 5.2).

A
.Ai oy -Vb'As
[ET
vO

figure 5.2 Graph with tree structure of figure 5.1

Each of the pin-joints H' (i = 1..3) is described as a function of
one generalized coordinate 9 while the kinematic constraint is re-
presented by the two following constraint equations:

¥
<

f1: 11sin(q1) + lzsin(qz) + 13sin(q3) - 1x =
f2: 11cos(q1) + 12cos(q2) + 13cos(q3) - ly =

(5.1.1)

f
(=4
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To describe the kinematics of this system we can use the generalized
coordinates 9 9, and 9 which have to satisfy the two constraint
equations. ‘

Usually the kinematics of a multibody system with a tree structure
are described by means of the generalized coordinates of the hinges
in the tree structure. We use these coordinates as the primary un-
knowns. Position vectors, rotation tensors, attitude coordinates etc.
can be determined as a function of these coordinates. On the other
hand we could use the attitude coordinates z; {i = 1..nb) of all bo-

. i .
dies B~ as primary unknowns.

One important reason for choosing the generalized coordinates of the
hinges in the tree structure as primary unknowns is because the use
of attitude coordinates generally results in a larger number of un-
knowns and a larger set of constraint equations. If we define a co-
lumn q with the generalized coordinates of all hinges in the tree

structure we obtain

gT = [(31)T . (gnh}T], ng= [ ng“ (5.1.2)

and for a column with all attitude coordinates we have

T

2 = 1zhT . @™

1 (6.1.3)

then the number ng of the components of q is generally much smaller
than the number nz = 6nb of components of z.

As the coordinates g have to satisfy constraint equations arising out
of kinematic constraints (the chords in the tree), they are in gene-
ral dependent. In accordance with the literature we want to reserve
the name generalized coordinates for sets of coordinates which are
independent. Therefore the ng coordinates of all hinges in the tree
p267}). In the next section kinematic formulas will be constructed as
a function of the Lagrange coordinates and time.
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5.2 The kinematic formulas for a itree structure

Orientation and derivatives

Position and derivatives

Attitude coordinates and derivatives
Combining the formulas for several trees

Example

The position vectors and the rotation tensors of all bodies, their
first and second order derivatives and their variation will be ex-
pressed as functions of q: §, §, 5q and t. First of all the formulas
for one tree arée constructed. Then we briefly discuss the modifica-
tions of the formulas for a structure with several trees. Last of all

an example is given.

: . 1 derivati

The rotation tensor mj of body B is determined by using the recur-
sive relation (see figure 5.3):

&I =1 (5.2.1)
1..nb Ry = 83%) oMot er?

]
[

for j

]

for j

where i and k are the numbers of the last body and hinge on the path
frowm the ground B® to BY. The numbers i and k depend on j. Since the
numbering of the bodies and hinges is regular, k = j while 1 is
obtained from the location column 1 as i= 13.
As can be seen from figure 5.3, the relationship between the relative
angular velocity of the two connected bodies 8" and B? can be expres-
sed as
K - -+ _ i = *7j o »i
3 w w Sjkw Sikm (5.2.2}

where Sik and Sjk are components of the submatrices §o and S, intro-
duced in the previous chapter.
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This relationship holds true for all bodies Ba, 3% 1, in the tree
structure. We can therefore write (Wittenburg [1977, chS])

§=5s" (5.2.3)

Here the angular velocities w) of all bodies Bj, j=1..nb, are stored

in a column é, given by gT = [51..§nb], while the relative angular
L + . .
velocities Qk of all hinges Hk, k=1..nh, are stored in a column §,

given by §T = [31..5nh]

»

— — _HINGE H¥
S

o
*v‘

figure 5.3 Two bodies connected by a hinge
In chapter 3 we derived relation (3.3.28) for ﬁk, k=1..nk,
kK _ 2k, Tek , =K Sk T _ o4k -k
g = (W) g +w, {w) = [w1..wnq] (5.2.4)

If we introduce a diagonal matrix § and a column go' defined by

. +1 _ +1
Vel = (5.2.5)
; o
v [}

then we can combine it with relation (5.2.4) for k=1..nh in one ma-
trix equation for § into

. 2Te
§=9§+19, (5.2.6)
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If (5.2.3) and (5.2.6) are combined and the relation ST = T8 = [ is
used, the final relation for the angular velocities of the bodies be-

comes
g=@n7g+ T (5.2.7)

The angular accelerations of the bodies can be determined by diffe-
rentiation of (5.2.3), yielding

. . * .
Wl - ot = g% = ghsdk 4 X (5.2.8)

where 3“ is the relative angular acceleration in hinge Hk for which,
we found in (3.3.29)

= @9'g (5.2.9)

1f a column iookis defined by

LIRS CAUOR e P AR AR (5.2.10)

where i is the value of the kth component of 1, we can, for the angu-
lar accelerations write

= @D'g T (5.2.11)

SEse

where §(is a function of g and t, while ioo is a function of 9 §, t

variations of the Lagrange coordinates g, can be determined in a man-
ner similar to é. This yields

+T

E = (ﬁT) 89+ 6% Jub

= {6 &% (5.2.12)
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Position and derivati

The position of body B? with respect to the global base is determined
by using the recursive relation:

3

i

0

1..nb 3 -

for j {5.2.13)

e
[}§
e Q4

for j

where i and k, with 1 = l(j) and k = 3, are the numbers of the last
body and hinge on the path from the ground B° to B (see figure §.3).

The body-fixed vectors Bik and Bjk as well as the connection vector
2¥ Wwill be stored in matrices with the same structure as the sub-
matrices § and § of the location matrix L. These matrices, denoted
by go' § and §°, é, contain the body-fixed vectors and connection
vectors and are given by:

Bg.o= B, 2 =3 if L. = 1 (5.2.14)
ik ik ik ak ik

ﬁ'k = -hb . " = -C if = -1
* -+ - .

8. =3 = 0 it , =0

ik o
where 1 = 0..nb and k = 1..nh (nb=nh). Using these matrices we can’

rewrite (5.2.13) as

-)j__ »iz_ _ - -
W S ﬁik éik éjk, k=1..nh  (5.2.15)

s
and, in a more compact matrix notation, also as

T 2.7 ¥
st=-@F +2) -d+07)

Inb (5.2.16)

Here the position vectors zj of all bodies excluding the ground are
stored in the column g? = [f1..;nb]. Multiplication of (5.2.16) by T
and substitution of 8T = I finally yields

L > T_ T
t=-(B +Em - @B+bnTy, (5.2.17)

If we differentiate (5.2.13) we find
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23 - 3o glapik g Jhegk o 3K - Sap3K (5.2.18)
In chapter 3 we derived relation (3.3.31) for the relative yelocity
vector 3k of hinge Hk (k = 1..nh), so that

3k 2k Tek 2k *k T _ 2k 2k

= (x ) g+ Vo (v ) = [v1..vnq

w

] (5.2.19)

Let ? and io be a diagonal matrix and a column, defined by:

- +1 - _ +1
? =y 9 . go = I vy l (5.2.20)
. ;nh
v
o

+nh
v

w

SO¢

then instead of (5.2.19) we can write

T8+ 1 U c L (5.2.21)

wo'!

s<d

Using the matrices ﬁ and ¢ and the relation ST = I it is easily shown

Srtye

=B+ HnTg+ AN+ 1Y (5.2.22)

If (5.2.7) is substituted for é we finally arrive at

*

t=@n'g ey, (5.2.23)
with

§ =¥-drd+ 0, g =3 + B+ Oy

Although the formulas become very abstract, it is possible to give a
global interpretation of ﬁ and éo' This matrix and column determine
the absolute velocity as the sum of the relative velocities ? of the
hinges and the (out-)product of angular velocities ﬁ of the bodies
and their absolute positions I(§+§).

The acceleration of the bodies will be determined in a way similar to

the velocities. If we differentiate (5.2.18) we again find
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: . °. L. . C i s. . -
?j _ ?1 - $1*g1k + ;1*(;1*512) " ;3,33k - *3*($j*gjk)
.. . :
+ata e Ghe@had 4 2P 4 3 (5.2.24)

where Ek is the relative acceleration of hinge Hk, k=17.nh. We have
found in (3.3.33) that

hig Taek +k

= @9Tg+ T k = 1..nh (5.2.25)

Now ¥ = [31 ..§nh} is defined with components
Voo 00"’ o0

(5.2.286)
P = SaabaptRy - Sh@TaRIK) 4 SRe@ladk 4 20K 4 3K
00 00
With this definition the relation for the accelerations is given in
matrix notation as
-» L4 B
t=(B+OHD™+ An'g 1"

Vo (5.2.27)

L3
After substitution of (5.2.11) for é we can, for the accelerations

finally write

I=(n'g+ grﬁoo (5.2.28)

where § is defined in (5.2.23) and §__ by:

= TaqT
oo zoo + B+ Dl goo

the Lagrange coordinates, can be derived in a way similar to the ve-
locities (5.2.23), yvielding

+1 *nb3

67 = (I Tsg, 81" = [82'. .57 (5.2.29)

Attitude coordinates and derivatives

As soon as R and g are chtained as functions of the Lagrange coordi-

nates g and time, we can determine the attitude coordinates z{g.t).
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For the first and second order derivatives with respect to time and
the variation of the attitude coordinates we find:

_ T
Loo! bz = 2 89 (5‘2.39)
where the matrix Z and the columns 2, and Zyo 2T combinations of ﬁ,
@. etc. For example % is defined by
‘ {5.2.31)

T,@edn 7

_ Kk
[ 25 aey- Ziqaegyd = [ (g eUD 0
for i = 1..nq, k= 1..nband 1 = 6(k - 1).

I1f we study a tree structure of bodies and hinges and disregard even-
tual kinematic constraints, we assume that the Lagrange coordinates
are independent, i.e. that Z has a full rank. Then there is no bgq ¢ 9
for which bz = 9, i.e. 6§ = é and 63 = §. Without proof we state that
%2 will have a deficient rank if the Lagrange coordinates g are depen-
dent. Therefore we have to make sure that the Lagrange coordinates,
i.e. the generalized coordinates of the hinges, never become depen-
dent (sections 3.3 and 7.2).

- he formulas £ ]

The preceding kinematic analysis for one tree is applicahle to every
tree in a structure with nt {nt>1) trees. The matrices S of S and T
can be used for each tree T (i=1..nt). To analyse the klnematzcs of
the structure as a whole these graph matrices can be combined as in
{4.3.3), while the Lagrange and attitude coordinates of the nt trees
can be combined as:

¢ =rght. @HT 2 =rehtl @™ 202

From now on it is assumed that all columns of the different trees are
combined as in (5.2.32). For all matrices it is assumed that the cor-
responding matrices are placed on the diagonal of the combined ma-
trix. For example:
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t=|3 | 5= 3 (5.2.33)
gnt § ﬁnt

With these modifications we have completed the description of the ki-

nematics of a multibody system having a tree structure.

Example

Consider the multibody system used in chapter 4 (figure 4.1). The
numbering of the bodies and hinges is reqular as shown in figure 5.4.

s /7 /7 s 7 s S L LT

figure 5.4 A nultibody system

The S, § and T matrices are given in chapter 4. The matrices with
the body-fixed vectors and connection vectors become:

4 e d [
B = B2 8 B3 |, ¢ =] 3 -2 5 -2 3
o + -+
Bz 32 3 3 o & 3 3
33 - -+ -+ -+ -+
b o o o o ¢
&
B 3 53
5% ;
_ ROt 2 - + _pob - R - -+ 45,
§0 [ B ) 0 o [ i go =[-~-c" o © o -c7]

The hinges B' and B* are prismatic joints while H® and 2 are pin-~
joints. In that case 3‘ = 31 = 3, 6‘ = 0 and 32 = 33 = 3, while % and

4 3
V can be written as
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a » 4 9 v 1 + % 2 <
* = ¢ 0 0 o ¢ : v = v O 0 0o o
+2 2 + Y

w 0 0 O o 0O 0 o

“3 + - > e -

w 0o O o 0 O

- > >k -

¢ O v o
+5 +5

w v

- k. - o

Since the hinges are all scleronomic, the columns §° and yo only con-
- tain components equal to zero.

The motion of Bz will be described as an example. For the orientation

of éz with respect to e° we find

w

l!2 - (BZZ)T.¢2'812.R1' R‘ - (B")T0¢1 , C‘ =0

For the angular velocity and angular acceleration we find from
(5.2.7) and (5.2.11) that

e ;2&2’ 32 ;zaz
<+ L4 -+ Tax
as 31*02 = 0*32 = 0 and “;o = §§° = 0. The position vector 32 of body
z
B~ becomes
22 301 + oY o i’)” + 312 N 322

with

V;O and §§° do not occur in the relation for the acceleration of 2.
This is due to the fact that the hinges ' and Hz are scleronormic,
the derivatives of 3’ and ?2 with respect to q are zero and because

- -+
w‘=e.

84



5.3 The kinematic comstraints

Holonomic constraints

Relationship between coordinates Y and g
Implicit and explicit constraints

The final constraint equations

The kinematic behaviour of a multibody system is not completely de-
termined by the tree structure of bodies and hinges. In chapter 4 it
was shown that, if no energetic and active connections are consi-
dered, the graph of a multibody system will, in general, contain
branches as well as chords. These chords represent the kinematic con-
straints which also determine the kinematic behaviour. In this sec-
tion the constraints will be studied in detail. In particular we will
combine all constraint equations in one matrix equation for the La-

grange coordinates q.

Holonomic constraints

The chords in the graph of a multibody system are used to represent
Pfaff constraints as well as hinges replaced by a holonomic con-
straint in oxder to open closed kinematic chains. Pfaff constraints
are generally described by their Pfaff equations (3.3.8). Some Pfaff
constraints can be integrated, and can be described by a holonomic
constraint equation (3.3.19). The kinematic constraints arising from
the replaced hinges always result in holonomic constraint egquations.
For the moment we assume that all nc chords represent kinematic con-
straints described by holonomic constraint equations. In the last
subsection we mention the modifications required to include the non-

holonomic Pfaff constraints.
To combine all constraint equations into one matrix equation we in-
troduce a column b4 with the columns Xk, k=1..nc, as components, so

that

W' = rgh’t ™ (5.3.1)
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Note that this y differs from z, but that both columns contain the
same kind of coordinates. Since each component g has six components,
the order of b4 is éncx1. Using this column, the constraint equation
§k{gk,t) =09 for the holonomic constraints Ck, k=1..nc, can be wrikt-

ten in one equation as

gy(x,t} =9 (5.3.2)
where £y is a column with £k, k=1..nc, as components

£,= LT L™

If we differentiate (5.3.2) with respect to time, the obtained set of
equations becomes a set of Pfaff equations, so that

[ ]
gy(x:t}x + BOY(XIt) = 0 i (5.3.3)

R K k - -
where gy and goy with c§mponents Ey and goy {3.3.8), k=1..nc, are de
fined by

Byl Ey | foy 7 | Boy
nc nc
By Boy

Let np be the total number of Pfaff equatlons, then the order of P
and gcy%becomes npxénc resp. npx1. For g and 5y similar eqnatlons
hold, hence

PYBIY + B (i) = o, B (¥,£)8Y = 0 {(5.3.4)

where gooy is defined in a way similar to Eoy'
As mentioned in section 5.1, we use the Lagrange coordinates q as the
primary unknowns., This means that the equations (5.3.2-4) have to be
rewritten as a function of ¢, §, §, 3q and t. The relationship be-
tween the coordinates b4 and the Lagrange coordinates q and their de-
rivatives as well, will be discussed in the next subsection, while
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the transformation of the constraints for y to constraints for q is
the main subject of the subsection after.

Relationship between coordinates y and ¢
We consider a connection Ck as shown in figure 5.5, in which cK is a

kinematic constraint and not a hinge. In a regular numbered tree, Ck

is

CONSTRAINT C*

figure 5.5 A kinematic constraint

represented by a chord with a number 1 < kX € nc. If the chord Ck is
directed from body B* to BY, the vector 2¥ and rotation tenmsor ¢* are

given by:

PL RS s L L (5.3.5)

= el ) Te @™’

(& ]
1

All terms onm the right-hand side of these relations are functions of
q and t. This implies that Ek and ﬁk, and thus the column Xk, are
functions of q and t. By using (5.3.5) we can easily determine yasa
function of g and £, hence

¥ =gt , (5.3.6)

To express i as a function of 4 é and t we differentiate (5.3.6).
This yields
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=Yg g+ Y (gt | (5.3.7)

In order to construct Y and ¥  the relation (5.3.5) will be differen-
tiated with respect to time and rewritten in matrix notation. After
differentiation of (5.3.5), we find

* . . ., . N <
VK = 73 4 ghapIk L gl L QRapik | 032K (5.3.8)

gx - 30 - gt
The body-fixed vectors ﬁik and ﬁjk and the connection vectors Ek are
stored in the matrices §g, §c, gg and §c. These matrices are defined
in a way similar to those defined in (5.2.14) and have the same

structure as §§ and §C. For (5.3.8), expressed in matrix notation, it
follows that

*
= B+ §C)T*§ + (gc)Tg‘ 3¢ = (gC)Té (5.3.9)
where §C and §c are defined by:

{ic)T = ;1” 311(:3, ' {§C)T =1 b’?“ aQC]

*
After substitution of the formulas for § and g (5.2.7/23) we find:

3c C,Te c, T _ ,RC Cy TomT,
VO = @973 ¢ s©'T - B+ TR

g = s 'g + (s, (5.3.10)
with ‘
3¢ = Brs® + Fr @ + T

If the coordinates ik for all constraints are related to 3“ and 35 in
accordance with

g = ek v |, e = B *wmteg® (5.3.11)
*k 3‘(
[
w
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then Y and ¥ become
- wO

[ Y,

N 4k 3C T ok c T
tieny - Yiaeed = 0 G (@, 07 (¢ o (¥TS 1)l

= | gXeuams®TH - (3% TR ) (5.3.12)

Eo) 141 K

iy K ¢, T2
s | | EemsD ),
for i = 1..nq, k= 1..ncand 1 = 6(k - 1).

Besides the relation for i we alsc need the one for g. To obtain this

relation we diffentiate (5.3.7) again, yielding

y=Yg+ goo (5.3.13)

To determine Xoo we must differentiate (5.3.10) to time. As a result,
in matrix notation we find:

2C _ 2C Te C c, Ty _ gC C TymT
& - @ ¥ goo + I8 o (B + €9 e Eoo
L3
c _ C, T c, T2
8° = @rs® g + (1) W (5.3.14)

where éc is defined in a way similar to gc and the component k (k =

1..n¢) of the column ggo is given by

(@), = 8@ - Tha@he@* + B 4 27

From this result we can easily obtain the column xoo' yielding

(¥ )

_F wx ac e, T LoRC, A
Soo’141 | T | & "ﬁoo +(157) ﬁoo (B4 C

¢ +k c, T2
(Xoo)l+6 § I8y yoo}

k

where i = 1..nq, k= 1..ncand 1 = 6(k - 1).

Finally we mention the relationship between the variations of y and
these of gq. With Y as in (5.3.12) we find
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5y = Y 89 (5.3.16)

Implicit and explicit constraints

Constraints which are specified as functions of the Lagrange coordi-

[ ! e
flg.t) =2, Plg,t)g + B o (g,t) =0 (5.3.17)
while its variation and its derivative with respect to time become
Ll .
By (git)og = o Ppl@ g + Bogp (@it = @

The constraints for i as given in {5.3.2/3), are implicit con~
straints. The names explicit and implicit constraints indicate that
constraint equétions for q can be used directly while constraints for
¥ have to be transformed before they can be used.

In the previous subsection the following transformation formulas were
derived:

i =¥g+ 3, g =Yqg+¥, B8y= grﬁg (5.3.18)

Substitution of these formulas in the implicit constraints (5.3.2/3)
yields explicit constraints of the form (5.3.17) in which:

p

Pn = Byf oy Bon T Boy * Pn¥or Zoon T Booy * Bydoo (5.3.19)

The terms on the right-hand side can be calculated when 9 § and t

are known.

he final . .

In the previous subsections we have studied kinematic constraints de-
scribed exclusively by holonomic equations. In general the kinematic
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constraints can be divided into constraints with holonomic constraint
equations and constraints with nonholonomic constraint equations. Let
nhc be the number of kinematic constraints described by holonomic
constraint equations. The number of kinematic constraints described
by nonholonomic constraint equations is then equal to nnc = nc-nphe.
We assume that the constraints described by holonomic constraint
equations are numbered from 1 to nhc inclusive, while the other con-

strainte are numbered from nhc + 1 to nc inclusive,

The holonomic constraints result in a set of constraint equations for
yorg of the form (5.3.2/17). Nonholonomic constraints do not result
in restrictions for y or g. As discussed in section 3.3, these con-
straints result in a set of Pfaff equations for i or é. After trans-
formation of all implicit Pfaff equations into explicit Pfaff equa-
tions we can write for the set of equations for é, obtained from

these nonholonomic constraints
*
P.gt Eon =0q (5.3.20)
while the time derivative § and the variation &g have to satisfy:
Pg+p = P 8q =
nd * Soon T 2 a%3 7 2

Finally, all constraint equations can be combined. Let the nhc holo-
nomic constraints result in a set of nhp explicit constraint equa-
tions for g. For these equations we write

£(g.t) = g (5.3.21)

Let the nnc nonholonomic constraints result in a set of nnp explicit
Pfaff equations for é. Differentiation with respect to time of the
holonomic constraint equations (5.3.21) results in a set of nhp Pfaff
equations for é as well. Combining these equations yields the final
set of np = nhp + nnp Pfaff equations for § as well as a set for §
and 8g so that

* i 6
ga + §O =0, 23 + goo = g, gﬁg =g {5.3.22)

v
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in which P, P and P~ are defined as:

(5.3.23)

R gh ! go = th ' goo = Booh
P P P :
-n »on »oon

The matr;x P is of the order npxnq and must have full rank np with

np € nq} If P does not have full rank one or more constraints are de-
pendenf {see (3.3.8)). Even if the Pfaff equations of all constraints
are themselves independent, the combination of all Pfaff equations in
one equation can still result in a dependent set of constraint equa-
tions. Since P is a function of g and t, the rank of P may change
whenever g and t change. Therefore we must check the rank of P for
each value of g and t. In chapter 8 attention will be given to this
problem.

5.4 Prescribed Laqrange sndfor attitude ggg;ﬂing;gi

Sometimes several Lagrange and/or attitude coordinates are prescribed
-as a function of time. The ng Lagrange coordinates will be divided
into ns prescribed and nf = nq - ns free coordinates. If needed, we
assume that the.f§rst and second derivatives to time of the prescrib-~
ed coordinates are given too. The values for the remaining nf Lagran-
ge coordinates are a priori unknown. Since our formulas were develop-
ed with the Lagrange coordinates as primary unknowns, prescribing La-
grange coordinates raise no problems. They are easily substituted in
the formulas.

Prescribing attitude coordinates is less trivial. In order to pre-
scribe attitude coordinates we use kinematic constraints. For the
reference point of these constraints the origin of.the global base
(0° = N = N') is used, while the other attachment points (Nz) will be
connected to the origin of the vector base of the bodies for which
the attitude coordinates are prescribed. In that case the constraint
equations become

g(x,t) =y - gs(t) =9 (5.4.1)
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in which»gs represents the subset of prescribed attitude coordinates.
These constraint equations can be treated as holonomic constraint
equations in exactly the same way as discussed in the preceding sec-
tion.

If we prescribed ns Lagrange coordinates, the column q and the Pfaff

matrix P will be rearranged as follows:

4 P P

9= 19 P = ghs Bhf (5.4.2)
-ns -nf

Summar

In this chapter we derived the formulas describing the kinematic be-’
haviour of a multibody system with bodies, hinges and kinematic con-
straints. To set up these formulas a tree structure of bodies and
hinges was defined. The unknown quantities in these formulas are the
Lagrange coordinates. These coordinates were defined in the first
section as the generalized coordinates of the hinges in the tree

structure.
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CHAPTER 6
DYNAMICS OF A MULTIBODY SYSTEM

6.1 Methods for deriving the egquations of motion
6.2 The virtual work principle of d‘Alembert
6.3 The final equations of motion

In dealing with the dynamic behaviour of multibody systems we first
discuss three methods of obtaining the equations of motion. These
equations are set up in section 6.2 as a function of the Lagrange
coordinates for a system with a tree structure and without kinematic
constraints. The equations for a system with kinematic constraints,
obtained by using Lagrange multipliers, are given in section 6.3. In
the same section we discuss the modifications for those cases in
which some of the Lagrange and/or attitude coordinates are prescrib-
ed.

6.1 Methods for derivi ] . E .

The Newton-Euler laws
The virtual work principle of d'Alembert
The Lagrange equations

)

Comparing the three methods

In chapter 2 we formulated the egquations of métion for one rigid body
by using the Newton-Euler laws. In addition to these laws, the vir-
tual work principle of d'Alembert and the Lagrange equations can also
be used to obtain the equations of motion (see literature review in
section 1.2). Although there are other methods like the principle of
Hamilton [Rosenberg 1977, p169] or the Appel équations [Vukobratovic
and Potkonjak 1982, p128], we will only discuss the thfee methods
mentioned above. For the sake of simplicity we consider a multibody
system with a tree structure and without kinematic constraints.
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Using the Newton-Euler laws, each body is isolated from the rest of
the system by means of a free-body diagram (see figure 6.1). The in-
teraction of a body with the rest of the system and its surroundings
is taken into account by means of the internal loads at the attach-

ment points and the external loads on the body.

figure 6.1 A free-body diagram

For each body the Newton-Euler laws yield two vector equations. The
body is equal to the time derivative of the momentum of that body.
The resulting force on a body comprises external forces as well as
that the resulting moment on a body with respect to its centre of
mass equals the time derivative of the angular momentum around the
centre of mass. For a multibody system with nb bodies, we can write

in two matrix equations

*

and gex’m + gin’m = §‘ (6.1.1)

P +F =

wex  win

S e

where gex’ §in' etc. are columns with the resulting external forces,

internal forces, etc. on the bodies as components, hence

T oot by #T
weX

1 nb
wex wex win [gin 0t gin]
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These matrix equations can be transformed into a set of scalar equa-
tions by using the matrix representation of all vectors in a vector
base. These scalar equations form a set of 6nb coupled, nonlinear se~
cond order differential equations. The unknowns in these equations
are the attitude coordinates, as well as the unknown components of
the internal force and moment vectors of the kinematic connections.

I_l 2 ! 1 1 ] le]E Qf d'B]Emhﬁlﬁ

For a multibody system the principle of d'Alembert states that

m) =0 (6.1.2)

Shenh o
St

7 7T .
ngo(g gin -1+ 83 "én,e + M -

+ .
ex X vE,in

for all kinematically admissible Ggm and 6§. As was shown in the pre-
ceding chapter, kinematically admissible variations §§m and ai can be
written as a linear combination of variations of the nq Lagrange

coordinates of the tree structure.

Using this principle, we obtain a set of nq scalar equations of mo-
tion for a multibody system with a tree structure. Internal loads due
to the hinges in the tree structure do not contribute to the virtual
work for any kinematically adnissiblg 6§n and 65 [Rosenberg 1977,
p122].

The Ladrande edguations

The third of methods for obtaining the equations df motion islbased
on the lLagrange equations. With this method the kinetic and potential
energy of the bodies must be expressed as a function of the Lagrange
coordinates q.

.
Ekin = Ekin(a'g't)' EpOt = Epottg't)' (6.1.3}

and the virtual work AW caused by the external ldads as well as the
internal loads arising out of the energetic and active connections
must be expressed as a function of 63, so that
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T T
AW = (gex+ gin)ﬁs (6.1.4)

where the columns gex and gin have ng components. The Lagrange
equations then vield

3E. . 3E..  OE
g—t(ﬂ)-%+~—m~g, i=1..nq (6.1.5)
2 1

i

5 dq, TRy

The functions Ekin = Ekin(g,é,t) and Epot = Epot(a,t) are difficult
to set up by using the formulas given in section 5.2. According to
(6.1.5) these functions must be differentiated with respect to 9 é
and t in ordexr to obtain the final set of ng equations of motion. The
resulting set of equations of motion is exactly the same as the set

obtained by using the wvirtual work principle of d'Alembert.
Comparing the three methods

Comparison of the method based on the Newton-Euler laws with the two
others shows that the most important difference is the final set of
equations of motion. The set obtained by using the Newton-Euler laws
contains énb nonlinear second-order differential equations. The set
obtained by using the virtual work principle of d'Alembert or the La-
grange equations contains only ngq nonlinear differential equations.
As the number ng is in general much smaller than 6nb, we prefer to
use the virtual work principle of d'Alembert or the Lagrange equa-
tions. There is hardly any difference between using the virtual work
principle of d'Alembert and the Lagrange equations, but as we prefer
to work with vector variables, we will use the virtual work principle
of d'Alembert.

The drawback in not using the Newton-Euler laws is that the internal
loads caused by the kinematic connections are not considered. This is
not felt to be serious. When the lLagrange coordinates and their deri-
vatives are calculated the unknown internal loads are easily deter~

mined afterwards (see section 8.5).
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6.2 Wmmmmm

Kinematically adnissible variations

The inertia loads

The external loads

The internal loads

The eqguations of motion for a t;ee structure

The virtual work principle of d'Alembert was discussed in the previ-
ous section in general terms. The method will now be discussed in de-
tail. First, kinematically admissible variations are conside;ed. Then
we deal with the contribufions of the inertia, external, and internal
loads. Finally, we set up the eguations of motion as a function of
the Lagrange coordinates and time.

Let us assume for the moment that there are no kinematic constraints

and that the multibody system has a tree structure of bodies and hin-
ges with ng Lagrange coordinates. In this section no prescibed coor-

dinates are considered. The only prescribed variables are the exter-

nal forces and the external input variables of active connections.

K. I- ]J :- .l] .!.

The virtual work principle of d'Alembert as described in (6.1.2) con-
tained the condition “"for all kinematical admissible variations égm
and GE“. For simplicity we assume that the centre of mass of each
body coincides with the origin of the local body-fixed vector base of
that body or that it has been transiated such that ;i = ;; for all

i1 € {(1..nb). In that case the variation in position and orientation
of all bodies as a function of the variation of the Lagrange coor-
dinates are given by

8, =55 = @n'sg, i = (dnTsg (6.2.1)

Substituting this result in (6.1.2) for the virtual work principle of
d'Alembert we obtain
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sq'tdmed,, +F, - D+ dmed, v 8 -

win

for all kinematically admissible &g (6.2.2)

Here the subscript m in the symbols for the moment vector and the

angular momemtum vectors is dropped.

For multibody systems with a tree structure and without kinematic
constraints the Lagrange coordinates gq are independent as long as the
matrix 2 {(see section 5.2) has a full rank. This is assumed to be
the case. Then the term in (6.2.2) between the square brackets must
be -equal to o As a result we obtain the set of ng equations of mo-

tion

Moty - Do+ ADe v B, -D =g 629
It has been stated that the equations of motions are a set of second-
order differential equations. Tge secogd*oréer derivatives will ap-
pear after the inertia loads, -; and -é, are expressed as a function
of the Lagraﬁge coordinates. These inertia loads as well as the ex-
ternal and internal loads are discussed in detail in the remaining

part of this section .
The inertia loads

The momentum 1 and angular momentum T for a rigid body were intro-
duced in (2.3.4). For all bodies of a multibody sysfem these vectors
are stored in two columns § and § with nb components. For the multi-

body system we can thus write:

4
1

. i=g (6.2.4)

SE4

where m and § are diagonal matrices with the masses and the inertia
tensors of the bodies respectively as diagonal components. In (6.2.4)
it is assumed that the centre of mass and the origin of the local
body-fixed reference base coincides for each of the bodies in the
system.
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To obtain the inertia loads we must differentiate {(6.2.4) with re-
spect to time. This yields

s 3 $ . S

i=nr, g =H+ Joy (6.2.5)
where ﬁ is a column with nb components, defined by

i = oty i=1.nb ; (6.2.6)

1

To express the inertia loads as an expliéit function of the second-
order derivatives of the Lagrange coordinates we substitute the kine-
matic formulas as derived in section 5.2. This results in

Spile

i =nl@HG+ 18 1, LB sr@hTge TR ) 621

w00

The exterpal loads

In éectien 2.3 we discussed extensively how the resulting external
load on a body is to be determined. Columns with the resulting exter-
nal forces and moments exerted on the bodies were defined in relation
(6.1.1). In general, not all external loads on a multibody sYstem are
external loads on the bodies. Some external loads may be exerted on
internal points of energetic and active connections (see chapter 7).

External loads may be expressed as a function of the Lagrangé coordi-
nates and time or as a function of the attitude coordinates and time.
However, these loads are no functions of second or higher order deri-
vatives. Since the attitude coordinates are a function of the Lagran-
ge coordinates we can write

. -+ e
= E qqn, CIE ICH- A3 (6.2.8)
The gravity load is an illustrative example of an external load ex-
pressed as a function of the attitude coordinates. If the gravity

field is directed along the -Eg base vector, then the ith component

of gex contains at least the contribution
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?:x = ..+ -gmiég ... (6.2.9)

where mi is the mass of body Bi.
Ihe internal loads

Internal loads caused by kinematic connections do not have to be con-
sidered if the virtual work principle of d'Alembert is used. These
loads do not contribute to the virtual work. Internal loads caused

by energetic connections were discussed in section 3.4 for the spe-
cial case of elements and will be discussed in a more general context
in section 7.3. Active connections without memory are treated in ex-
actly the same way as energetic connections, the only difference be-
ing the introduction of the external input variables é(t) in the con-
stitutive equation. Since & is assumed to be known as a function of
time no problems are encountered. In the case of active connections
with memory we must consider additional state variables and state
equations. In the next chapter more attention will be given to such.
connections. Since we are interested here in the equations of motion
themselves, we will assume for the moment that only active connec-

tions without memory are used.

As stated earlier in chapter 3, the constitutive behaviour of an ele-
ment never depends on second or higher order derivatives of the kine-
matic variables. Hence the resulting internal loads due to the ener-
getic and active connections are in general a function of 9, é, & and
time:

: LA . .
Ein : gin‘ﬁ'ﬁ'%'t)’ Moo= ﬁin<3:g,5,t) (6.2.10)

The equations of motion for a tree structure

To obtain the final equations of motion the results o£ the last three
subsections are substituted in the set of equations (6.2.3). This
yields

A(g,6)F = 9(g,§,1,8) (6.2.11)
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follow from: .

A= (ﬁz).g(ﬁg)‘ + tii).go(igir
8= Qex + gin + 900 |
while gex' gin and gooare defined by: (6.2.12)
fex = (gg)'gex * (??)'ﬁex
Qin = @med; ¢ dmel,
8o = ~(@Ment'§ - (FDecl + 50178 )

For a further evaluation of A we consider the kinematic energy Ekin
of the multibody system. This energy is given by

L ]

Epyp = %{é onf + § edew) (6.2.13)
L . . (3

As stated in chapter 2, the components 73 and 0’ (3 = 1..nb) of g and

é can be written as linear combinations of the time derivatives of

the attitude coordinates of Bj. Storing these coordinates in the co-

lumn é, we can write ’ k

E. =377 (6.2.14)

kin 2w

SRe

where J is the mass matrix with respect to the attitude coordinates
z. Using (5.2.30) for the relationship between é and § yields

o deT Te o7, T
Exin = %3 92g + g2z, + o,z Iz (6.2.15)

and it can be shown that

A= 2% (6.2.18)
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In chapter 5 it was stated that the transformation matrix I of oxder
ngx(6nb) has a full rank: r{Z} = nq < 6nb. Hence, the matrix 3 will
be positive definite if and only if § is a positive definite matrix
of order (6nb)x{6énb)}, that is if nj # o and Jj is positive definite
for all bodies B’ {(j = 1..nb). To ensure that the matrix J is posi~
tive definite we will only use bodies with a given mass and inertia.

6.3 The final equations of motion

Kinematic constraints
Prescribed Lagrange and/or attitude coordinates

The equations of motion as derived in the previous section hold for a
tree structure of bodies and hinges and without kinematic constraints
and no prescribed coordinates. In order to obtain the equations of
motions for a multibody system with an arbitrary topology we must mo-
dify the equations obtained so far. Some modifications are also ne-
cessary to allow for prescribed Lagrange and/or attitude coordinates.

G . .

The Lagrange coordinates of a multibody system are no longexr indepe-~
dent if the system contains kinematic constraints. This meanms that
kinematic admissible variations of these coordinates have to satisfy
the Pfaff equation

Pog = g (6.3.1)

To construct the equations of motion in this case we use Lagrange
multipliers. The Lagrange gglggg;§§§§ rule (see e.g. [Rosenberg 1977,

p132]) states that the equation (6.2.2) in which the variations g
must satisfy (6.3.1) may be replaced by the requirement that

{6.3.2)
L 2 L
g l@med, +F -D e+ @ned, + 8 -D-2=0
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holds for every 8g. Here the column A contains np Lagrange multi-
pliers. This equation is equivalent to

{6.3.3)
2 -: 3 * 3 T
(6?)'(§ex MR- U (g?)‘(gex * §) -RA=g
Similarly to section 6.2 we can also write
Mg = 9(guddit) + 2T(g ) v (6.3.4)

This set of nq equations contains ngq unknown components of § and np
unknown components of A. To determine these unknowns we must add the
set of ng constraint equations to (6.3.4). Since § is unknown we will

not use (6.3.1} itself, but its derivative with respect to time
- [ ] Py
P(g.t)g + B (9.9.t) =2 (6.3.5)

If A is positive definite, it is possible to solve (6.3.4) for § and

substitute this result in (6.3.5). After rearrangment of the terms we
obtain the equations of motion for a multibody system with an arbit-

rary topoleogy (and no prescribed Lagrange coordinates) as

S
i

B2 I RS R |
=-(PA P') [PA Q¢+ 300] (6.3.6)

Al v

p=1 |
i

In this set of equations all terms on the right-hand side are func-
tions of 9. é, i and t. The matrix product gg"gT is regular if P has
full rank. In chapter 8 the rank of P is studied in more detail.

Prescribed Lagrange and/or attitude coordinates

The equations of motion can be used to calculate the trajectories of
the Lagrange coordinates, i.e. the motions of the bodies. These tra-
jectories are functions of external loads and external input varia-
bles of active connections. Since prescribed attitude coordinates
3s(t} are modelled as (implicit) kinematic constraints (see section
5.4). the obtained trajectories may be a function of some prescribed
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attitude coordinates too. Prescribing attitude coordinates results in
a larger set of constraint equations as well as a higher number of
unknown Lagrange multipliers. Prescribed Lagrange coordinates gs(t)
can be brought into play by introducing additional (explicit) kinepa-
tic constraints. This results in an even larger set of constraint :
equations and higher number of unknown multipliers. This can be a-
voided if we use another method to deal with prescribed Lagrange
coordinates.

For those situations in which some Lagrange coordinates are prescrib-
ed as a function of time we will modify the equations of motion.
First of all the Lagrange coordinates are stored in q as described in
section 5.4. Next we permutate A and 9 in a similar way in order to
obtain:

A= b Bgg e 2=18% (6.3.7)
Aes Aes 9
Using these submatrices we can rewrite the equations of motion in the

same manner as we did to obtain (6.3.6). After some manipulatiansywe
find

A = -(BehpPe) 2 ehep(Qe - Apg(6) + B (8) + B ]

g 5;;[2;5 + Q¢ - B g (6] (6.3.8)
= b T

9 = 2sgds ~ Bh * ssgs(t)

We require the submatrlx Aff to have full rank. Then Aff is positive
definite while the same holds for the product PfAff P; if P has full

rank. The components of 93 represent the required load for prescrl—
bing the corresponding Lagrange coordinates.
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summary

In this chapter we used the virtual work principle of d'Alembert to
set up the equations of motion for a multibody system with an arbit-
rary topology. External loads as well as (Lagrange and/or attitude)
coordinates may be prescribed. External input variables of active
connections may be prescribed too, although active connections with
memory have not been considered yet. These connections will be in-

cluded in chapter 8.
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CHAPTER 7
ARBITRARY CONNECTIONS

7.1 General aspects

7.2 Kinematic connections
7.3 Energetic connections
7.4 Active connections

The connections in the previous chapters contained one element only.
In this chaptexr we discuss an element-assembly process for modelling
connections with an arbitrary topology and geometry.

7.1 General aspects

Until now all endpoints of elements were rigidly attached to points
of the surrounding bodies. In a connection Ck, consisting of nk ele~
ments E‘.. Enk, one or more endpoints of the elements can be rigidly
attached to endpoints of other elements. A nodal point of c® is a
point where endpoints of two or more elements are rigidly attached to
each other. Furthermore, each free endpoint, that is each endpoint of
an element not attached to another endpeint, is a nodal point of the

are rigidly attached to the surrounding bodies. These points are de-
noted by A1.. A" yhere na is the number of external points of c.

11.. Inl, ni being the number of internal points. The nodal points

are so numbered that nodal point Ki corresponds to internal point Ii
if i ¢ ni, and to external point Aj if 3 =1 -ni > 0. In figure 7.1
a connection is shown with four elements (nk = 4), three internal
points (ni = 3) and three external points (na = 3).

The topology of the elements in a connection is described by means of
location matrices. As will be seen in the next section we can use the
location matrix as defined in chapter 4 for kinematic connections,

These connections consist of kinematic elements with two endpoints
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per element. For connections consisting of energetic and active ele-
ments with an arbitrary number of endpoints per element, the topolo-

gical data is stored in a location matrix L.

A IS I L G G
L=|1 0 0]0 0 O T
o 1+ ojo o ofc©&
o 0 110 o of]
1 0 010 o ol
o 0 011 0 o]
o 1 010 0 ofls
0 0 0]0 1 of]
6 0 110 0 © }‘::.
o 0 010 0 1]]

figure 7.1 Connection of four (energetic) elements

Let nek,bé the number of endpoints of element Ek, k = 1..nk and let
ne be the total number of endpoints in the connection, that is

ne = [ ne (7.1.1)

Then L is a matrix with ne rows (one for each endpoint in the connec-
tion) and ni + na columns (one for each of the internal and external
points in the connection). Row 1 to row ne' refer to the endpoints of

'y ne2 refer to the endpoints of Ez, etc.

E‘, row ne' + 1 to row ne
Each row of L contains one component equal to 7, all other components
being equal to zero. If endpoint Ni of element Ek is attached to no-
dal point Kl, then the corresponding row j = ne1 +. .+ nek-§ +iof kL
has a component equal to one in column 1, that is le = 1 and Ljs = 0

for s # 1 and s = 1..ni+na, see figure 7.1.

This location matrix can be partitioned in a matrix Lin with the
first ai columns of L and a matrix gex with the remaining columns

L, | 5] (7.1.2)

1 -ad
]
-
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Each column of Lin refers to an internal point and each column of';.ex

refers to an external point.

Let c and ce be the relative position vectors of internal pOLnt I

(i-= n1) and external point AJ (j = 1..na) with respect to a refe-

rence base of the connection. These vectors are stored in columns éin
+ .

and gex' defined by:

» +1 - »1

.= c, = 7.1.
&in in |’ Sex Cex ( 3
+ni +na
" c
Cin ex

The relative position vector of endpoint Ni of element EX with re-
spect to the reference base is denoted by ﬁj where j = ne' + .. +
ne* ' +i (i=1..ne*, k= 1..nk). If the column with the position
vectors of all endpoints of the elements in the connection is denoted

by é, i.e.
=[a, .., " (7.1.4) -

then the relationship between ﬁ and éin and gex is given by

i=L ¢ _+L, ¢, (7.1.5)
v -exwex =invin

When éex and éin are known, the relative position vector of each end-
point of each element follows from (7.1.5). Knowing these vectors, we
can determine the relative position or connection vectors for element

k {k = 1..nk) with respect to the reference base of that element.

A local base is defined at each nodal point of a connection. Let c
and CJ be the rotation tensors of the local base at internal p01nt
(1 = 1..n1) and at external point A3 (j = 1..na) with respect to
the reference base of the connection. As mentioned earlier in chapter
3, a local base is defined at each endpoint of each element as well.
Let endpoint Ni of element Ek be rigidly attached to nodal point Kl.
The (constant) rotation tensor of the local base at Ni to the base at

Kl must be specified. Using the location matrix L it is possible to
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determine the orientation of the local base at all endpoints of the
elements in the connection if min and ng are known for all internal
and external points. Hence the connection tensors of each element E*

(X = 1..nk) can be determined.

The constitutive equation of a connection is the relationship between
kinematic variables at the external points (for kinematic connec-
tions) or between kinematic and force variables at these points (for
energetic and active connections). This constitutive equation is not
known a priori, but has to be derived from the constitutive equations
of the elements in the connection. The elimination process of the va-
riables at the internal points will be discussed in the next sections

for kinematic, energetic and active connections.

7.2 Rinematic connections

A kinematic connection may consist of hinge elements as well as con-
straint elements. These elements, considered in chapter 3, each have
two endpoints. We restrict ourselves to kinematic connections with
two external points and any number of internal points.

For the kinematic connection a tree structure is defined in which
each nodal point is represented by a vertex and each hinge element by
an arc. This tree structure is similar to that of a multibody system
(see chapter 4) with the difference that each vertex now represents a
nodal point instead of a rigid body. The reference vertex represents
one of the two external points, the other point being represented by
a vertex of degree one. In general, not all hinge elements can be re-
presented by an arc in the tree structure. As in chapter 4, the re-
maining hinge elements are considered as constraint elements and are
represented by chords in the graph.

The formulas derived in chapter 5 for the kinematic behaviour of a
multibody system can also be used, with some minor modifications, for
kinematic connections. Since nodal points are infinitely small, all
body-fixed vectors are zero vectors and all components of the matri-
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ces 3 3 §C and 5 are equal to 3. Similar to the column 9 1ntro-
duced in chapter %, the generalized coordxnates ‘of all hinge elements
in the tree structure are stored in a column X with ny components.
The constraint elements, including those due to the hinge elements
modelled as chords, result in constraint equations for the components
of y. In the case of implicit constraint equgtions, that are con-
straint equations for the relative attitude coordinates of the nodal
points, the equations are transformed into explicit constraint equa-
tions by means of the techniques described in section 5.3. After this
tranformation the holonomic constraint elements result in a set of

nhe explicit constraint equations of the same type as (5.3.17), i.e.
f(y,t) = g, (7.2.1)

while the nonholonomic constraint elements result in a set of nnc

constraint equations of the same type as (5.3.20), that is

. .
Byyd + Bony = & (7.2.2)
For further use (7.2.1) is differentiated with respect to time. This
results in a set of equations, similar to (7.2.2), given by

Bhyi * Bohy = @ (1.2.3)

To determine the constitutive equation of a kinematic connection, we
are interested in the relationship between the kinematic variables of
the two external points. Noting that one of these points is chosen as
the reference point, it is sufficient to derive from {7.2.1) and
(7.2.2) the constraint equations for the relative attitude coordina-
tes of the second external point with respect to the reference point.
These coordinates are stored in a column ¥ with six components. By
means of the methods from section 5.2 it is possible to determine ¥
as a function of t and of the generalized coordinates y of the hinge
elements in the tree structure of the connection, yielding

¥ = ¥yt {(71.2.4)

while differentiation with respect to time yields
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g = gy(x,t)i A A ' (7.2.5)

where y has to satisfy the holonomic constraint equations (7.2.1).
These matrix equations are similar to equations (5.3.6 & 7} for a
multibody system. The matrix XY of order 6xny and the column Xoy with

six components can be determined with the techniques from section 5.3

We assume that the holonomic constraint equations are independent,
that the rank of the matrix gh? of order’nhcxnx is equal to nhc. If
this is not the case, nhc - rank(ghx) equations are redundant and may
be neglected, while the set of equations (7.2.1) may be reduced to a
smaller set of independent equations. Using the (reduced) set it is
possible to determine nhe {= rank(ghyj) components of yas a function
of the ny - nhc other components of ¥ Defining a column [ with these

ny - nhc = ng components, we can write
¥ = xlget) (7.2.6)

where the holonomic constraint equations fly,t) = g(l(g,t),t) = g are
satisfied for all g and t. With this result and using (7.2.4)} and
{7.2.5) we can determine the relationship between ¥ é and g, é, t.
This yields

¥ = ylyt) = yiylg.t), &) ' (7.2.7
» .
x = geg + xog (7.2.3):

where the matrix gg of order 6xnmp and the column Xog with componeﬁts

are in general functions of 2 and t.

 The rank of Xg is at most equal to the lowest of the numbers 6 and
np. If rank(gg) = 6 the holonomic constraint equations (7.2.1) do not
imply any holonomic constraint for the attitude coordinates - If-
rank(ge) < 6 we have 6 - rank(gg) holonomic constraint equations for
the coordinates y. In what follows we restrict ourselves to this
case. If rank(gg) < 6 and np > ranktgg), we are confronted with the
siruation that {currently) y is not a function of np - rank(ge) com-~
pon-nts of g This implies that these components of g are {currently)
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redundant. If we are interested in the value of y at a certain time,
for example the initial time, these redundant components may be fixad
at any value. If we are interested in the trajectories, the redundant
components will be determined by integration of é.v

A trivial example of a redundant set of coordinates g occurs in a ki~
nematic connection with more then six generalized coordinates (ny>6)
and no constraint elements (ng = nvy). Another example is given in fi-
qure 7.2. The connection in this figure consists of a ball-and-socket
joint (E‘), a rigid bar element (Ez) and a seconﬂ ball-and-socket
joint (Ea). In this case all hinge elements are represented by bran-
ches in the tree structure of the connection and there are no chords.
Therefore =g and ny = = 6. However, the rank of the matrix Y

is equal to 5, since the attxtude coordxnates ¥ of external point A
with respect to the reference point A are independent’ of the rota-
tion along the longitudional axis of hinge element E®. The column of
ge corresponding to this component of 8 is a zero column.

1
A ref. point

" figure 7.2 An assembly of hinge elements

We have until now studied the holonomic constraints for the relative
attitude coordinates y. To obtain the constraint egquations for i we
must also consider the nonholonomic constraint equations (7.2.2).
From (7.2.6} we obtain a relationship between i and é and with this
result the nonholonomic equations (7.2.2) can be written as

gng§ * Bonp = 2 (7.2.9)

Assuming that rank(P ) = nnc it is possible to determine nnc compo-
nents of g as functlons of the remaining ng - nnc components of g If
o has a full rank, this expression vields
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L4 -1 .
81 = “Bng1‘Bng282  Bong’ (7.2.10)

where é1 and §2 are columns of order nnext and (ng - nnc)x? respec-
tively, while Bno1 and Bpoz 3T the partitioned submatrices of Pno
such that Engi is a regular matrix of order nncxnnc. Partitioning of
'gg similarly as in 1 and substitution of §1 results in the follow-

1 » *
ing expression for y,

+ (Y

= : -1
gg1gngtengz)gz sop ¥o,eng,gong) (7.2.11)

[}
¥ = (ggz T

Introducing an orthogonal matrix M = [ §1, 53] the matrix in front of
é can be decomposed and be written as
{(7.2.12)

- ~1 - *
!gz gQ1En919ng2 Lu :

12

13-4
[}
»

x

o
[=]

where N is an upper triangular matrix of order (ng - nnc)*(ng - nnc)
while M, and M, are matrices of order 6x(ng - nnc) and 6x{(6 - (ng -
nne)), assuming that 0 € ny - nnc € 6. If (7.2.11) is premultiplied
by gt, we obtain the two eguations

. Ts _ . T _ -1
MY = N, + M (X - ¥ 01Bno1Bong’ (7.2.13)
and
Te T -1 _ )
My + Ez(ggipngtgong - Yo = @ (7.2.14)

Bquation (7.2,14) has the form of the desired nonholonomic constraint
equation for the coordinates &. By means of (7.2.13) we can determine
éz and, by means of (7.2.10}) §1 as well.

7.3 Enerqgetic connections

In this section on energetic connections we consider assemblies of
energetic elements. Combinations of energetic and kinematic elements
in one connection are not considered. The energetic connections may
have an arbitrary topology and geometry as long as there are at least
two external points. As stated in section 3.4, the forces and moments
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exerted at the endpoints of an energetic element can be deternined at
time t if the current value and the history of the relevant kinematic
"variables and the history of the relevant force variables are known.
For a connection in a multibody system the current values of the ki-
nematic variables of the external points follow from the attitude co-
ordinates of the bodies in the system. However, the current values of
the kinematic variables of the internal points are, a priori, un~
known. Since the resulting force and moment vector on each internal
nodal point in the connection must be equal to 3, it is possible to

determine these unknowns.

The determination of the unknown kinematic variables of the internal
points is a well known subject in the ‘finite element method' [e.qg.
Zienkiewicz 1977]. Some aspects of this method will be described
roughly. To simplify the discussion we assume that the constitutive
equation for all elements in the connection depends on the current
position and force variables only, i.e. f = f(E.g,t) and ¢ = g(g).
The complications caused by constitutive equations which depend on

velocity variables and/or history are not discussed here.

The known kinematic variables of the external points are the connec-

: -+ -» :
tion vectors ¢ .. &% and the connection tensors €' .. €°2
ex ex ex ex

equation (7.1.5) we can obtain § and determine the matrix representa-

From

tion of the connection vectors of all endpoints of each element with
respect to the reference base of the element. From these matrix re-
presentations the relevant kinematic variables of the elements, i.e.
£, are obtained. Substitution of these variables in the constitutive
equation of the eneréetic element results in the forces and moments
at the endpoints of the elements. From these the resulting force and
moment vectors ?i and M at each nodal point K (1 = 1..nk) can be
determined.

If the kinematic variables of the internal points are estimates,
these forces and moments are estimates, too. Hoﬁever, since the ele-
ments are massless, the resulting force and moment vector on each in-
ternal point of the connection must be equal to 3. As long as this is
not the case, we must improve the estimated values for the kinematic
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variables of the internal points. In general this requires an itera-
tive process, Only for connections with elements having a linear con-
stitutive equation and small deformations, the solution can be deter-

mined in one step.

External loads may be applied at the internal points of a connection
but not on the elements. In that case the resulting forces # and mo-
ment ﬁi cn internal nodal point Ii {and arising from the forces and
moments at the endpoints of the element that are rigidly attached to
that nodal point) are not equal to zero but to the external force and
the external moment vectors at that nodal point Ii {i = 1..ni). The
process for the determination of the kinematic variables of the in-
ternal points as indicated above is only slightly modified by these

external loads.

7.4 Active connections

Connections with active elements are treated similarly to energetic
connections. It is permitted to combine active and energetic elements
in one active connection. For example, a muscle may be modelled as an
active connection with an (active) contraction element and one or
more (passive) elastic and/for viscous elements., For active connec-
tions the same problems, concerning the determination of the a priori
unknown values of the kinematic variables of the internal points,
arise as for energetic connections.

In the case of active connections with memory, we must solve both the
constitutive and the state equations:

k = s(x(€),g(£), 8(t),i(t),t) X, = 2t)  (7.4.0)

E(E(E) g(£), £(£),X(£),i(),£) = 9

The state equations must be solved simultaneously with the equations
of motion. As a result the state equations must be combined with the
equations of motion as described in chapter six.
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Sumpary -

Several aspects of the process of assembling a complex connection of
simple elements are discussed. In each connection it is assumed that
only elements of the same type appear, except for active connections
which may contain energetic elements. Restrictions with regard to to-

pology are only made for kinematic connections.

Based on this approach we can describe simple elements and assemble
them in systematically into complex connections. However, to achieve
an efficient numerical implementation in a general-purpose computer
program many aspects, not discussed here, require further investiga-
tion.
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CHAPTER 8
SIMULATING THE BEHAVIOUR OF MULTIBODY SYSTEMS

8.1 Introduction

8.2 Degrees of freedom of a multibody system
8.3 The kinematic simulation problem

B.4 The dfnanic simulation problen

8.5 The unknown internal loads

In this chapter we describe some aspects of‘the simulation of the be-
haviour of multibody systems. The first sectioh contains a summary of
those subjects from the previous chapters that will bé used in this
one, The determination of the degrees of freedom of a multibody sy-
stem and the simulation of the kinematic behaviour are discussed in
the second and third sections. In the fourth and fifth sections the
simulation of the dynamic behaviour and calculation of the a priori
unknown forces are studied.

8.1 Introduction

The theory presented in the previous chapter can be used for simulaz
ting the behaviour of systems with nb (nb31) bodies and an arbitraxy
number of kinematic, energetic and active connections., The first step
in the simulation of the behaviour of such a system involves the de-
finition of a tree structure of bodies and hinges and results in the
introduction of a column g of nq Lagrange coordinates. These coordi-
nates determine the position and orientation of each body in the sy-
stem uniquely, that is the column g~of the attitude coordinates of
the bodies is known as a function of g- In this step of the simula-
tion process only holonomic kinematic connections are taken into ac-
count.

As discussed in section 5.3 the holonomic constraints and eventually

prescribed attitude coordinates (implicit constraint equations) yield
a set of nhp equations for the Lagrange coordinates and are given by
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£(g.t) = ¢ (8.1.1)

Differentiation with respect to time results in a set of equations
for the time derivative §

*
Bg+B, =09 (8.1.2)
where gh is a matrix of order nhpxng while th is a column with nhp

components. In general the components of both P and B
and t.

h depend on g

Besides the holonomic constraints, nonholonomic constraints can also
occur. These are represented by a set of nnp = np - nhp equations in
é of the same type as (8.1.2) and are given (see section 5.3) by

. :
Pg+tPR =9 (8.1.3)

Combining eguations (8.1.2.) and (8.1.3) in one matrix equation
yields

Pg+R =9 (8.1.4)

where the matrix P of order npxng and the column 2 with np compo~
nents are given by:

e=|p [ % = | Bon : (8.1.5)
Bn Pon

Since {8.1.4) must hold for every time t, we can derive from (8.1.4)

an equation for the second derivatives of the Lagrange coordinates
Bg+P =29 (8.1.6)

In this equation the components of P depend on t and 9 only, while
the components of P are a function of t, q and §:
w00

’ |4 .
B = B(g.t), 2o = Booldedit) (8.1.7)
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The equations of motion for a multibody system have been derived in
chapter 6. The final set is of the form '

Aj=g+eN | | (8.1.8)

The matrix A of order ngxng, the generalized mass matrix associated
with the Lagrange coordinates q, depends on t and q. The column Q
contains the contr;butions of the external loads, the loads on the
bodies exerted by the energetic and active connections as well as a
rest term arising out of the inertia loads. The components of 9 can
be a function of t, q and é, but not of §. If active connections oc-
cur in the multibody system the generalized loads will also depend on
the state variables x of these connections. In turn, these variableé

are determined by a set of state equations
X=5(x g & & t) (8.1.9)

where ; is a set of known external input variables and 3 contains the
relevant kinematic variables of the active connections. Finally, the
np components of the column A are Lagrange multipliers which take
into account the holonomic and nonholonomic kinematic constraints
(8.1.1) and (8.1.3).

In many problems ns (ns>1) Lagrange coordinates are prescribed. The
prescribed coordinates are stored in a column 95 with ns components,
the remaining coordinates being stored in a column 9¢ with

nf = nq - ns components. It is always possible to renumber the La-

grange coordinates so that q is partitioned in s and ¢

313 ' (8.1.10)
s

Furthermore the holonomic constraints (8.1.1) can be rewritten to
yield an equation of the form

£(g,19e:t) = 2 ‘ (8.1.11)
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whiie the Pfaff equations (8.1.4) and (8.1.5) can be permutated to
give

*
Ths Phe | |95 | Y | Son | =@ (8.1.12)
gns Enf 3 gon

For the analysis of the dynamic behaviour in particular, it turns out
to be advantageous to write the last set of equations in the form

* -
B, * By + B, = Q (8.1.13)

Vuhere the matrices gs of order npxns and gf of order npxnf are defin-
ed by:

s = | Bhs |’ Bt = | Bne (8.1.14)

gns gnf

Using these matrices, the equation (8.1.6) for the second derivatives
§ can be transformed into

P9s * Bede t Bop = Q (8.1.15)

Finally, the equations of motion can be rewritten as

- 1 T

Bos Rst = | % | 8 |2 (8.1.16)
T - T

Boe 2ee | | 3¢ 8¢ Ps

where the columns 98 and 95 represent the generalized loads associa-

ted with the prescribed Lagrange coordinates 9 and the a priori un-
known Lagrange coordinates g respectively,

In the following sections we discuss four problems that are linked up

problem is the determination of the number of degrees (nd) of freedom
of a multibody system. This number is important when simulating the
kinematic behaviour of a multibody system. To simulate this behaviour
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we must prescribe exactly nd Lagrange coordinates. As will be diséus—
sed, the number nd is not a constant as suggested by the often used
Gribler rule.

sed. Its solution enables the positions, orientations, velocities,
etc. of all bodies to be obtained as function of the prescribed La-
mic behaviour to oﬁtain the trajectories of the Lagrange coordinates
and attitude coordinates. These trajectories‘are functions of the
prescribed external loads, the prescribed coordinates and, in the
case of active connections, also of the prescribed external input va-

tion of the internal forces arising out of the kinematic connections.

The formulation of each problem results in a set of equations. Some
{(numerical) methods for solving these equations are mentioned. Some-
times they fail and attention is given to the background of such
failures as well as methods to correct or aveid this.

8.2 Degrees of freedom of a multibody system

An important characteristic of the (kinematic) behaviour of a multi-
body system is its number of degrees of freedom. An easy way to cal-
culate this number would appear to be given by the Gribler rule. How-
ever, there are several examples where the Grlbler rule goes wrong
(see Sheth {19?2“9156~1?8] and Paul [1979, p276-2871).

2
SINGULAR

a b
figure 8.1 Pour-bar mechanism in singular attitude
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Several adjustments to the Grtibler rule have been suggested, but even
with these adjustments the Grfibler and similar rules are not applica-
ble if the number of degrees of freedom (temporarily) changes. This
happens, for example in the system given in figure 8.1b. Normally the
four-bar mechanism in this figure has one degree of freedom (figure
8.1a), but in the attitude shown in figure B8.1b there are two degrees
of freedom. Here the crank can continue or reverse its motion.

According to the Grilbler rule the number of degrees of freedom (nd)
is equal to the total number of Lagrange coordinates (ng} minus the
number of holonomic constraint equations (nhp). The reason why the
Gritbler rule sometimes results in wrong answers is that it is not the
pumber of holonomic constraint equations that should be used, but the
rank of the Jacobian of these equations, the rank of gh. In agreement

defined as
nd = nq - Iank(gh) (8.2.1)

Since Py = Blgit) is a function of g and t, the rank of 138 (and
hence nd) can change in time. While gh is a matrix of order nhpxng
and nhp<ngq, the rank of ?n is equal to or smaller than nhp. If

and only if rank(gh) = nhp.

In a general purpose program the determination of the rank of a ma-
trix requires the use of a numerical method. The'singular value
decomposition described by Golub and Reinsch [1971] is an adequate
method and probably the most reliable one. Another is the Gauss eli-
mination process with complete pivoting as used in the IMP program
(sheth [1972, p226]). In numerical subroutine libraries these methods
are generally available (e.g. the MFGR routine in the SS5P library of
1BM [1970, p1271). \

Note that the number of degrees of freedom is determined by the holo-
nomic constraints only. Rosenberg [1977, p37] associates the number

of degrees of freedom with the dimension of the space of accessible
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attitudes (configurations). The dimension of this space is determined
by holonomic constraints only and is not affected by’the nonholonomic
constraints. Nonholonomic constraints result in a space of admissible
variations with a lower dimension than the space of accessible atti-

tudes. In the second part of the next section, where we study the ve-

locities and accelerations, this aspect becomes important.

8.3 The kinematic simulation problem

The positions and orientations (KSP/0)
The velocities and accelerations (KSP/1, KSP/2)

The calculation of trajectories

The kinematic simulation problem (abbreviated: KSP) leads to a set of
nonlinear algebraic equations which, in general, can only be solved
numerically. Usually the KSP involves the determination of the atti-
tude coordinates, the velocities and the accelerations of the bodies
in the system. This process will be split into three parts, denoted
by KSP/0O, KSP/1 and KSP/2 respectively. Each will be discussed in the
following subsections. In the last subsection we will deal with the

calculation of trajectories.

The positions and orientations (KSP/0)

In this subsection we discuss the case in which the aim is to deter-
mine the Lagrange coordinates q at a given time t (KSP/0). Hence we
are interested in the derivatives é and §. The relevant equation for
the KSP/O is given by (8.1.1), i.e. by f{g,t) = o. This is a set of
nhp nonlinear algebraic equations for the nqg (» nhp) Lagrange coordi-
nates. For the moment we assume that these equations are independent,
that the rank of the Jacobian matrix gh is equal to nhp. From (8.2.1)
we know that the numbexr of degrees of freedom of the system at the
given time t is given by nd = nq - nhp = nq - rank(gh).

An unique solution of E(Q,t) =0 is possible only if exactly nd com-
ponents of g are prescribed at time t. From a physical point of view

this is trivial. To define the state of a system having nd degrees of

127



freedom it is necessary to prescribe exactly nd of these degrees of
freedom. Let the prescribed Lagrange coordinates be the components of
a column 9 The remaining coordinates, the components of the column
9+ must be calculated from (8.1.1) or from the equivalent set
(8.1.11)

g(gs,gf,t) =0 (8.3.1)

We assume that there is at least one solution for Ge- There may be
more solutions, but we will not go into this any further.

To solve (8 3.1) for 9¢ an iterative solver of the Newton type can be
used. Let gf be an estimate for the solutlon 9 and let a' 9 be the
error in this estimate, i.e. gf 9 - 2t 9g- Substitution in (8.3.1)
ylelds

;(35,3; + Aigf,t) =9 (8.3.2)

From this set of equations an estimate for Aigf is calculated, so
that a new estimate for 9 follows from
3;+‘ = 3; + Alﬁﬁ {8.3.3)

In the Newton-Raphson method the estimate for Algf is determined by

linearization of (8.3.2), resulting in

Ppedge = £ (8.3.4)

where g;f = ghf(SS‘Sé't) and g = £y, gf,t)..whxle the matrix th
Has been introduced earlier in (8.1.12). If phf is regular, it can be
proved that the Newton-Raphson method converges quadratic in the
neighbourhood of a solution. In literature several modifications of
this method are given (see e.y., Stoer and Bulirsch [1980, p257] ox

Gill et al. [1981, p305]}.

To start the iterative solver an initial estimate gg,is required.
Usually the solution for ¢ must be calculated at a number of discre-
te times to’ t‘, tz’ .. . Based on the assumption that 9 is a smooth
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function of time we use the obtained solution 3f(tj) as the initial

estimate for time tj = tj + At. The time step At may not be chosen

+1
too large, otherwise situations as shown in figure 8.2 can occur.

figure 8.2 Normal and mirrored attitude

We have to supply an initial estimate for 9¢ only at time t = to. If
this estimate is far away from the desired solution the solver can
converge to another solution {figure 8.2) or diverge. In both cases a
better estimate must be supplied. However, there is another way to
determine an initial estimate for ¢ at time t = ty- Assume that at
time ta the attitude coordinates of all bodies in the system are
known approximately. Using least squares technigues and the kinematic
relations between attitude coordinates and'Lagrange coordinates, gif
ven in chapter 5, a very accurate estimate for all lagrange coordina-
tes g, and hence for 9 can be calculated. This subject, to be clas-

sified as an optimization problem, will not be discussed any further.

The Newton-Raphson method fails if the matrix g;f

matrix is part of the matrix P, of order nhpxng (see 8.1.11). Since

is singular. This

we assumed that the holonomic constraint equations are independent,
rank(P, ) = nhp and there is at least one regular submatrix Py Of or-
der nhpxnhp. For a given matrix gh‘ the submatrix Ehf is completely
determined by the choice of the nd prescribed Lagrange coordinates.
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suitable choice.

An important assumption in the preceding part of this section is that

P
~h .
f(g,t) = g are independent. Then rank(gh) = nhp and nd = ng - nhp.

is a matrix with full rank, that all holonomic constraints in

The number of degfees of freedom and therefore also the number of La-
grange coordinates that must be prescribed is then known a priori.
Usually nd is constant, but in the case of a kinematic singularity
the rank of P, and thus nd changes.

As an example we again consider the four-bar mechanism in figure 8.1.
This mechanism has two holonomic constraint equations (nhp = 2} and
three Lagrange coordinates {nq = 3). If 9 - 9, # nv (integer n) the
constraint equations are independent and the number of degrees of
freedom is equal to one (nd = 1). Using the rotation of the rocker q,
as the prescribed Lagrange coordinate it is possible to simulate the
kinematic behaviour of the system. However, if q,- g, = nv the con-
straint equations become dependent and the rank of ?n reduces to one.
As a result, nd becomes egual to two and we have to specify two La-
grange coordinates instead of one. From a physical point of view this
is trivial. In the situation shown in figure 8.1b we have to specify

the direction in which the crank will rotate if 9, is changed.

In general, a numerical procedure is used to determine the rank of
Eh‘ if rank(gh) < nhp, that is if a kinematic singularity occurs,
these procedures can detect the constraint equations which are de-
pendent and the Lagrange coordinates which should be prescribed ex-
tra. This results in an extended column 9 with nq - rank(gh} = nd
instead of ng - nhp components, as well as a reduced column 9 with
rankigh} components. Deleting the dependent constraint equations and
using these columns, the earlier sketched procedure for the determi-
nation of 9 is applicable again. In the rest of this section no fur-
ther attention is paid to kinematic singularities and it is assumed
that each dependent set of constraint equations is modified to an in-
dependent set.
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In the preceding subsection on the determination of the a priori un-
known Lagrange coordinates, only the holonomic constraint equations

(8.1.1) were relevant. If we are also interested in time derivatives
of g at that time, the time derivatives of the holonomic constraint

equations (8.1.2) and the nonholonomic constraint equations (8.1.3)

must be considered, too. These equations are combined in one matrix
equation in (8.1.12). ghf is a square, regular matrix and therefore

it is possible to express éf in és and the column goh as

» -1 * =15 ‘
9t = “PnePneds = Bnelon (8.3.%)

With this result we can eliminate §f in the lower part of (8.1.12),
yielding an equation for és

(Pps ~ gnfg;;ghs)és = anE;;goh = Pon (8.3.6)
where the term between brackets represents a matrix of order nnpxnd.
Apart from special cases; this matrix has full rank nnp. This means
that it is possible to express nnp components of §svin the remaining
{(nd - nnp) components. Hence, if we want to determine all the time
derivatives of the Lagrange coordinates of a system at a time t, ex~
actly nd - nnp suitable chosen components of és must be specified.

The number of time derivatives to be specified is equal to the number
of Lagrange coordinates {ng) minus the number of independent holono-
mic and nonholondmic constraint equations (nhp + nnp). For the KSP/0
nd Lagrange coordinates have to be prescribed, while for the KSP/1 nd
- nnp time derivatives have to be prescribed. Rosenberg associates
the number nd with the dimension of the space of accessible attitudes
and the smaller number nd - nnp with that of the space of admissible
variations.

Determination of the unknown second time derivati&es of the Lagrange
coordinates § is similar to the determination of the unknown compo-
nents of §. Therefore this process, abbreviated as the KSP/2, will
not be discussed any further.
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The KSP/O and KSP/1, /2, as discussed so far, deal with the simula-
tion of the kinematic behaviour at a certain time t. At that time nd
Lagrange coordinates s and nd - nnd coordinates és’ §5 must be pre-
scribed. If we are interested in the trajectories of the Lagrange co-
ordinates, as well as the motions of the bodies, we must solve the
KSP at several points of time in a time interval [to' tf] from the

origin time to to the final time t_. We have already mentioned these

f
points of time in the discussion of the estimates for the Newton sol-

Ver.

If the system contains only holonomic constraints, nnp = 0, then we
assume that the nd components of 35(t) and their derivatives are gi-
ven. If it contains nnp nonholonomic constraints, nd-nnp compopents
of és(t) and §5(t) may be prescribed. In that case we prescribe only
nd - nnp (suitably chosen) components of g és and §s' The remaining
components of és and as are obtained by solving (8.3.6), the remain-
ing components of 9s being obtained by integration of és' Initial va-
lues for the remaining components of 9 must be specified only at
time to'

8.4 The dynamic simulation problem

Formulation of the DSP
Solution of the DSP

The third problem to be discussed is the simulation of the dynamic
behaviour of multibody systems (abbreviated: DSP). This problem léads
to a set of nonlinear differential equations which, again, must be
solved numerically. In this section we start with the formulation of
the DSP, while the second subsection discusses the numerical solution
of the DSP. '
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The DSP is described by the constraint equations (8.1.11, 12 and 19%)
and the equations of motion (8.1.16). If the system contains active
connections too, the state equations (8.1.9) must also be taken into
account. The unknown gquantities in these equations are the second de-
rivatives §f, the generalized loads 95‘ the Lagrange multipliers A
and the state variables x for the active connections. As shown in
chapter 6 it is possible to derive explicit relations for these un~

knowns:
~1 T -1 -1 T e -
N o= o(BehePe) [Pehee(Qr - Bgpdg) * BoYg * Bool (841
o= s(xgigidct) (8.4.2)
bl -1 T Te
9 = Bee(Bed + Qp — Bges) (8.4.3)
- T -
8 = Bsede ~ Bed * A0, (8.4.4)

Because of the differential equations for 3 and §f we must also spe-
cify initial conditions for ¥, ¢ and éf at the starting time to.

A basic assumption in the derivation of these equations is that the
matrices Age and gfggég; are regular. For the generalized mass matrix
Ac. this will always be true (see section 6.2). Then PfAff f is regu-
lar if and only if the matix gf of order npxng has rank np. This will
be true if and only if the matrix P has ramk np, in other words if
all holonomic and'nonholononic constraint equations are independent.
In the case of kinematic singularities, the actions described in the
previous section are applied. In the rest of the present section we

assume that Pf ff f is regular.
Solution of the DSP
Assume that at a certain time t that the values of all prescribed

variables, as well as the value of 3f' gf and X are known. With
(8.4.1~4) the values at that time for My 3f, g and 95 are obtained
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and, using an integration scheme a value for e+ éf and x can be de-
termined at the next time ti + Ati‘ This process starts at the origin
time to and ends when the final time te is reached.

To evaluate the equations for Ay §f, § and 95' a large number of cal~
culations must.be performed. Each time we have to calculate all
local-to-global rotation tensors, evaluate the positions, orienta-
tions and {(angular) velocities of the bodies as well as the behaviour
of the energetic and active connections, determine the components of
all matrices, test for kinematic singularities and finally perform
the matrix operations in the equations (8.4.1-4).

To reduce the computation effort, the time step At = ti+1 - ti is
chosen as large as possible. However, the maximum length of the time

step is restricted by an accuracy condition of the form

c, at? <o (8.4.5)
and a stability condition of the form

LAt <¢C, (8.4.6)

The constants C1, C2 and the exponent p depend on the integration
scheme, whereas & and L represent the required accuracy and the Lip~-
schitz constant (Stoer and Bulirsch [1980, p406]). The last constant
depends on the equations to be solved.

Given a certain integration scheme with known C1, Cz and p, as well
as a certain required accuracy &, no problems arise if the accuracy
conditions restrict the maximum length of the time step. This hap;
pens, for example if C2 is large and/or L is small. For small C2
and/or large L the maximum length of At is restricted by the stabili-
ty condition. In that case the length of the time step must be kept
short in order to prevent the solution from becoming unstable (see
figure 8.3). Differential equationg with a high value of L are called
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Until a few years ago, Runge-Kutta schemes were mainly used as inﬁe-
qration schemes in multibody programs. These schemes are easy to im-
plement and C2 is reasonably large. Their drawback is that in general
they require more evaluations of the differential equations than
other schemes do, especially if high accuracy is demanded (Shampine
et al. [1976]). At present linear multistep schemes with a variable-
order/variable-steplength are becoming more and more popular. Compar-
ed to the single-step Runge-Kutta schemes, which are based on Taylor
appxoxiﬁations, the linear multistep schemes are based on linear in-
terpolation polynomials. Changing both the order and the steplength
requires some overhead calculations to adapt the polynomials (Sham-
pine and Gordon [19751), but compared to the number of calculations
required for one evaluation of our equations this overhead is negli-

gible.
unslable

stable
£soldtion

"c ak t; Ati tF

figure 8.3 An unstable solution

During the numerical integration of differential equations the stabi-
lity of the solution must be verified. In general the solution may
become unstable because of stiff differential equations and because
of constraint equations which are only satisfied approximately. For
the integration of stiff differential equations there are special im-
plicit integration schemes which are unconditionally stable (Gear,
1971]). These schemes do not have to satisfy a stability condition of
the form (8.4.6) and they allow the use of long time steps. The dis~
advantage of these schemes is that, at each time step, they require
the solution of a set of nonlinear algebraic equations.
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To avoid instability caused by violated constraints we mention the
possibility of augmenting the constraint equations. As 9 is an ap-
proximation, the actual kinematic constraint equations for g éf and
§f may be violated. Therefore, instead of using the equation

Ll

Pede * Bods * Boo < 0 8.4.7)

the stability of the solution can be improved by using the augmented
equation defined by

Pege + Eﬁ =9 {8.4.8)

where B is given by (Wittenburg [1977, p176]; Baumgarte [1972])

g

- » . * 2
gﬁ h ngs * oo t ZB(Efgf MR- P 20) +P [ £ } (8.4.9)
o

In this equation B must have a low, positive value so that the extra
terms do not become dominant. If the constraint equations are satis-
fied the extra term is zero. If the constraints are violated at some
later time step, the augmented equation results in damping the devia-
tions, whereas the original constraint equations magnify these devia-
tions linearly.

8.5 Ihe unknown internal loads

The constraint loads
Loads caused by the hinges

The loads in a multibody system have been divided into inertia and
external loads as well as internal loads caused by connections. The
inertia and external loads and the generalized loads 95 are known
after solution of the dynamic simulation problem . Also known are the
internal loads caused by energetic and active connections, but the
loads caused by the kinematic constraints and the hinges in the tree

structure are still unknown. Sometimes we are interested in these
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loads, for example in order to determine bearing forces. In this sec-
tion a method for the calulation of these loads will be discussed.
First attention.is given to the unknown loads caused by the kinematic
constraints. By using the properties of the tree structure and the
Newton-Euler laws we finally determine the unknown loads caused by
the hinges in the tree structure.

Ihe constraint loads

The kinematic constraints are taken into account in the virtual work
principle of d‘Alembert by using Lagrange multipliers. As discussed
in section 3.3 these multipliers are related to the constraint forces
by

T

A= 5.
h=P22 (8.5.1)

where A is defined as

. 1,7 nc, T k . kK, T k
=LA Y T A= L] (8.5.2)
K, T k
(¢} M M in
Here Pc in and M wc in (k=1..nc) are the matrix representatlon of the

force and moment vectors on the body attached to point N of con~

straint c* ; while 2 and 3 define the relation between Gg and és ;
k

Q. ‘

There are two problems to be mentioned. To determine the unknown
loads caused by the kinematic constraints, all kinematic constraints
must be specified as implicit constraints. If, however, one or more
constraints are specified as explicit constraihts, the corresponding
rows in P are unknown and must be specified addltlonally A second
problem occurs after A has been calculated. To determine the Fc i

n
and w§ in the following two equations must be solved
L

KTk  _ [ .k KTk _ [ .k
TR s | AN TR LW Y (8.5.3)

K K

Ay Ag

K K

A g
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Normally both Yk and gk have an inverse, but in certain situations no
inverse exists. Using Bryant angles, the inverse of gk does not exist
if ¢; = % 4 nr {n=0,1,..). For a comprehensive discussion of this

problem see Wittenburg {1977, ch 2].
Loads caused by the hinges

We assume as known the attitude coordinates, the first and second de-
rivatives of these coordinates, the inertia and external loads and
the internal loads caused by all connections except the hinges in the
tree structure.

figure 8.4 The 'free-body' diagram for body B!

Let ?i and ﬁi be the resulting known force and moment on body Bi
{(i=1..nb), defined by

. - . .- Y : i .
N SIS L L M= e -7 (8.5.4)
ex in
and let §; in and ﬁ; in be the unknown force and moment exerted by

: i . '
hinge ut on body B in the regular numbered tree structure. To deter-
mine the unknown loads each body is isolated and all loads {(known and
unknown) on these bodies are introduced as shown in figure 8.4.The
unknown loads then follow from the requirement that the Newton-Euler
laws must hold for each body. This leads to a set of 2nh = 2nb vector
i and ﬁi
h,in h,in"
p92], these equations can be formulated in matrix notation as:

equations for 7 In accordance with Wittenburg [1977,
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Fesh =8 Be@eBed  voh =0 855
1 3

wh,in

Using the relationship TS = I this finally yields:

= 1F, ip = TE - B+ D0 D)

#

Fh,in = IE M, in (8.5.6)

These are simple algebraic equations with known right-hand sides.

Summary

The simulation of the kinematic and dynamic behaviour of multibody
systems was discussed in this chapter. In the first section the rele-
vant formulas were repeated. Of all formulas derived in the previous
chapters only the constraint equations and the equations of motion
remain. Before the kinematic simulation problem was formulated, we
first defined the number nd of degrees of freedom of a multibody sy-
stem., For the KSP we have to prescribe nd Lagrange coordinates. Since
nd is not constant, care should be taken when simulating the kinema-
tic behaviour. The formulation of the dynamic simulation problem is
straightforward. However, several problems can be encountered during
the solution of the equations of motion. In this chapter we have gi-
ven some attention to stiff differential equations and the stabiliza-
tion of kinematic constraints. Finaliy the calculation of the unknown
internal loads caused by the hinges and the kinematic constraints was
studied.

Several numerical solvers and possible failures of these solvers were
mentioned in this chapter. Some of these aspects will appear in the
next chapter, but systematic experiments with these solvers have not
been performed. All comments on the behaviour of these solvers are
based on literature studies and some adhoc applications.
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CHAPTER 9 S
THE THEORY APPLIED TO AN EXAMPLE

9.1 The description of the fuel injection pump
9.2 The simulation of the kinematic behaviour
9,3 The simulation of the dynamic behaviour

To demonstrate the theory an example of a multibody system will be
studied in this chapter. The example is a fuel injection pump and was
chosen as it consists of several nonstandard connections. The pump
and, in particular the nonstandard connections, will be described in
section 9.1. The simulation of its kinematic and dynamic behaviour is

studied in sections 9.2 and 9.3, respectively.

9.1 The description of the fuel injection pump

Introduction

The multibody model of the pump
The cam-roller connection

The hydrodynamic (HD) fluid film

Introduction

Fuel injection pumps are used to inject fuel at high pressure into
the combustion chambers of diesel engines. The pump iﬁ figure 9.1, a
P~-pump of Bosch (Stuttgart), consists of a pumpcasing, six plungers
and a driving shaft with six cams. Between each cam and plunger there
is a roller with an additional floating ring between roller and plun-
ger. The pumpcasing is partly filled with oil to create a hydrodyna-
mic fluid film between roller, ring and plunger. In addition, the oil
also brings about an elastohydrodynamic lubrication film between the
cam and the roller.

In this chapter we will analyse the kinematics and dynamics of the
pump in general and the lubrication characteristics and the Hertzian
stresses between the cam and roller in particular. The main purpose
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here is to illustrate the use of the theory of the preceding chapters
in a systematic analysis of a multibody system with some nonstandard
connections. From this point of view the numerical results finally

obtained are of minor importance and are therefore not verified expe-

rimentally.
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figure 9.1 The pump figurg 9.2 The model

The multibody model of the pump

The model of the pump in figure 9.1 consists of a fixed world Bo, a
driving shaft with a cam B', one roller B2 and one plunger 83. These
bodies are all considered to be rigid. The floating ring and the in-
ertia of the o0il are left out of consideration. The model, together
with the global base (xyz), is shown in figure 9.2. Only displace-
ments in the xzfplahe and rotations along the y-axis will be studied.
Therefore three instead of six coordinates are necessary for the des-
cription of the (relative) attitudes of the bodies.

We distinguish three kinematic connections: a pin-joint between g°

and B‘, a connection between B' and B2 and a prismatic joint between
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'B3 and B®. Because of the complicated camprofile, we will model the
connection between B1 and B2 by a kinematic constraint C‘, while the
pin-joint and the prismatic joint are modelled as hinges. In the
graph of this system these hinges are represented by the branches H1
and Ha, while the constraint c‘ is represented by the chord C‘. As
mentioned in chapter 4, only the branches (solid lines in figure
9.3a) are considered in the definition of a tree structure in this
graph. Because B2 is an isolated vertex, we introduce between B' and
B2 a hinge with three generalized coordinates. This yields the regu-
larly numbered graph with a tree structure of bodies and hinges as
shown in figure 9.3a. The first tree consists of B°, the pin-joint
H', the shaft B', an extra hinge HZ and the roller Bz. The other tree

contains B°, the prismatic joint 83 and the plunger B,

a) tree b) kinematic simulation c¢) dynamic simulation
figure 9.3 Graph of the pump

A constraint C? is introduced between B? and B’ for the simulation of
the kinematic behaviour (figure 9.3b). This constraint must ensure
that the roller and the pin at the bottom of the plunger stay in con-
tact. For the simulation of the dynamic behaviour we distinguish
three energetic connections: the elastohydrodynamic (EHD) fluid film
E‘, the hydrodynamic (HD) fluid film E? and the spring E> between B°
and B?. The HD fluid film E? replaces constraint ¢? used in simula-
tion of the kinematic behaviour (see figure 9.3c). Between B3 andeO
another energetic connection can be introduced to represent the vis-
cous friction in the prismatic joint. Since the estimated magnitude
of this friction force was very small (less then 1 Newton), it was
decided to leave this connection out of consideration.
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In the following subsections the nonstandard connections, that is the
HD fluid film and the cam-roller connection will shortly be describ-
ed. Only' the endpoints and relevant variables of these connectioné
are defined. A comprehensive discussion of the constitutive equations

is given in an intern report (Sol [1983]).
The cam-roller connection

The relative motion between cam and roller is described by three ge-
nerglized coordinates, these being the polar coordinates °, and r of
the centre of the roller with respect to the centre of the shaft and
the counter-clockwise rotation °, of the roller (see figure 9.4b).

The camprofile consists of a basic circle, two tangent lines, a top
circle and two small circle segments on the transition from the tan-

gent lines to the top circle.

a) geometry 'b) kinematics

figure 9.4 The cam

For the simulation bf the kinematic behaviour we assume that the cam
and roller are in contact and that the roller rolls (without slip) on
the cam. The contact condition results in a holonomic constraint .of
the form

f1(¢1§ -r =0 (8.1.1)
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while the assumption of pure rolling is expressed mathematically Sy a
nonholonomic constraint, of the form

L ] » *
P21(¢1)¢1 + P22(¢1)r - Rrwz =0 (9.1.2)

For f1 = f1(m1), 921(¢1) and P22(°i) different expressions apply to
different parts of the camprofile. For example, the expressions for

the basic circle are given by:

£, =R

3 b + Rr' P, =R

21 b ¥ Rr' P,, = 0.0 (9.1.3)

22

where Rh and Rr are the radius of the basic circle and the radius of
the roller respectively. The more complicated functions for the tan-
gent lines and the transition segments are not discussed here.

For the simulation of the dynamic behaviour we have to consider the
EHD fluid film between cam and roller (Johmson, 1970). In this case
there is no direct contact between cam and roller and some slip oc-
curs. As a result we have to drop the nonholonomic constraint
{9.1.2). The slip in the EHD fluid £ilm gives rise to a traction
force which causes the roller to rotate. This fluid film will be mo-
delled by an energetic connection. The relevant kinematic variable H
of this energetic connection is the slip, while the traction force is
the relevant force variable F (see figure 9.5a). The constitutive
equation is a relationship of the kind

F = £, £, = £ (e, ) (9.1.4)

where ft is the friction (also cal;ed traction) coefficient and A the
(a priori) unknown normal load between cam and roller. This load can
be determined after the equations of motion have been solved. In sec-
tion 9.3 some attention will be given to the iterative solution to
obtain the unknown load A. For the function ft we use the expression
derived by Houpert [1980]. This expression accounts for the nonlinear
viscous effects produced in the EHD fluid film.
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5=ML‘ oil
F ooy
} EHD contact
a) the EHD fluid film b) the HD fluid £film

figure 9.5 Relevant variables

Although the EHD fluid f£ilm has a certain thickness, the constraint
(9.1.1) is not modified. Compared to the displacements in this con-
straint, the thickness of the film (> 1 um) is negligible. Finally it
should be said that the normal load between cam and roller can become
negative. In that case the roller loses contact and the constraint

(9.1.1) is no longer active.

The HD fluid film between the roller and the plunger is considered as
an energetic connection too. Its relevant kinematic variables are the

eccentricities in the x and z directions, ¢, and €y and the angular

velocity of the roller, €, {see figure 9.5b;. As a result of the ro-
tation of the roller and the eccentricity, the HD fluid film produces
a bearing force, denoted by the relevant force variables I-‘1 and Fé,
as well as a (low) viscous friction moment, denoted by Fa' For the
constitutive equatipn of the HD fluid film a relation of the follow-

ing kind applies

E =g £, (E)' = [ ¥\ Fpu F)1 (9.1.5)
(ez)T =[e, e,, €.]
w 1" 72" 73
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In the literature on HD bearings this type of equation is known as
the impedance formula [Childs, Moes and van Leeuwen, 1977]. For the
constitutive equations for F1 and Fz we use the impedance formula for
n-bearings of finite length [Moes and Bosma, 1981]. For the determi-
nation of the friction moment ?3 a simplified formula is used as sug-
gested by van Lesuwen [1983].

9.2 The simulation of the Kinematic behaviour

To simulate the kinematic behaviour we consider the system without
the energetic comnections. As stated in the previous section, it is
assumed that the roller rolls without slip on the cam and the roller
stays in contact with the plunger. In this case we assume that the
position of the centre of the roller coincides with the position of
the pin at the bottom of the plunger. The system consists of three

bodies, three hinges, two constraints and two trees.

Topclogy
The graph of the system is shown in figure 9.3b. From this figure we
can determine the location (sub)matrices and the tree matrix. This

yields:
§,=(-1 0-1), =101, =0 1 0]
(9.2.1)
s =[+1-1 0], s=[+1 0], T=[+1 41 0
0+ 0 0 -1 0+1 0
0 0+ 0 +1 0 0 +1

Selection of the Lagrange coordinates

0f the three hinges H1 has one generalized coordinate (g), Hz has
three (¢1, r, gz) coordinates and H3 has one (z}. As Lagrange coordi-
nates we therefore use

T
9 =1la,, 9, 95 9;, 951 = [e, 9., 1, 9, 2] (9.2.2)
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Descriotion of the (elements of) conmmections.

The three hinges are characterized each by the matrix representation

of the connection tensor and vector (C, E) and their derivatives (3,
. 300). For a pin-joint like H' and a prismatic joint like #° these

quantities are given in section 3.3. For hinge #? with the Lagrange

coordinates q, = 9, 9, =r and q‘ =9, we obtain:

1,2 _ _ 22 1.2 _ 42 4
¢ = <, 0 s, | w, =0, W, = 0 {, 0o = ©1
1 0 -1
0 w=3 0
i s, <, W, =0, i
12 _[ 12 _ [ 1.2 _ [ 22 _ 2
A N T 50 el N B
(v} 0 0
| 4%, 3%, | %2
1.2 _ L s @
Yoo© €,4,59,4, 2szq2q3 (9.2.3)
]
-5 ..+2C..
29399 2929

where cl and s stand for cos(q } and 51n(q } respectively. The kine-
matic constraxnt C has already been mentloned in section 9.1,
functions of the Lagrange coordinates the constraint equations are
given by

.d .
flq,) -q, =0, P49, “Rgq =0 (9.2.4)

[
LPPS PO s

The constraint equations for the second constraint, introduced to re-
place the HD fluid film in the simulation of the kinematic behaviour,
become

@3 - ¥z)o€§ =0 and @ -2HaE% =0 (9.2.5)

where 2 is the position of the centre of the roller and §3 the posi-
tion of the centre of the pin at the bottom of the plunger.

Rinematics of the tree structure
The next step is to set up the tree matrices ﬁT TT§ , T § 0’ and Q@,
T U ¢ T 3 and substitute these matrices in the klnematlc formulas
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of section 5.2. The ﬁg matrix is given as an example, both in coordi-
nate free form and in its matrix representation with respect to the
global base, yielding

. . _ (9.2.6)
dr=|3 @2 3|, C®r=[000 -s,90c,a 000
- +2 -+
3 X 3 000 5,9, 0 €595 000
S 13 3 000 €5 0 S,y V 000
o [+ o : 000 o 0 0O 000
& 3 v 000 0 0 0 001
where Cipt By denote cos{q‘+q2) and sin(q‘+q2) respectively. After

substitution of the tree matrices we obtain the columns with all the
angular velocity vectors, the position vectors etc. For example, for
- - . .

w and r this yields

» = w'a . T= 3 (9.2.7)
w 1™ w
+{e +2e +2
wa, +waq c
3 8% 2 57

while their matrix representation with respect to the global base be-

comes::
%'=]0 |, %=| o |, %=]o (9.2.8)
—. _. _ * 0
9 9" 9
0 o 0
ot _ |~ ] oz _ [ 1 o3 _ [
A A F S PP P DR S 0
0 0 0
| 0 | %1293 | | Po7P395

where b and b_ are the z-coordinates of the matrix representations

03 3

of b~ and 333 in the global base.

Kinematic constraints
The implicit constraint equations can be rewritten as explicit equa-

tions. The constraint equations (9.2.4) are already expressed as
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functions of the Lagrange coordinates and therefore only the con-
straint equations (9.2.5) have to be rewritten. For these constraint

equations we obtain:

c = 0, 8,957 h°+ b3* 95 = 0 ) (9.2.9)

1293

The holenomic constraint equations can be written in matrix form.

This yields

(9.2.10)

30

£lg.t) = | R(a,) - q, =

€129
$42937 byt Py- g

Differentiation with respect to time furnishes us with a relation of

the form
* ”»
Phd * Bon = O Pd * Poon = 2 8.2.11)
where goh =9 and gh and Eooh are given by
L 0 P, 1 00/ Pooh = | Foor
UT14 UTz‘ BT3‘ 0 0 Tuook
GT‘S UTzG UTaG'O -1 Tgoos

The terms 912 and P are derived form (9.1.1) and the terms UT

.. UT
[e1e13
mic constraint equations in (9.2.4) can be written in matrix form as

ool 141
are components of ﬁg and ngoo' Furthermore, the nonholono-

“ w

$ . -
gng + gon = 0, gng + goon = 9 (9‘2j12)

are given by

where P =o and P and P
won w -n »woon

={ o ®, P,.-R O, Bon = LB .1

gn 22 ~o0n oo2

The terms Pzz' 923 and Pooz derived from (9.1.2)

E ]!l E!l 1. * a3 ] . ]]
The simulation of the kinematic behaviour includes the determination

of the trajectories of the positions, orientations, velocities and
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accelerations of the bodies. The number of degrees of freedom, nd; is
found as

nd = ng - rank(gh) =5-3=2 (9.2.13)

With q, representing the prescribed rotation of the driving shaft, we
still must prescribe one of the other Lagrange coordinates. For this
we select the fourth Lagrange coordinate, that is the rotation of the
roller. As a result of this choice the columns 9. and g¢ are defined
by :

a: =lq.q 1 g; =[ay a5, 4] (9.2.14)

However, there is the nonholonomic constraint for pure rolling, re-
sulting in a Pfaff matrix gn of rank one. This implies that only

nd - nnp = 1 component of és and §s may be prescribed. For this we
choose &1 and 51, while the derivatives &‘ and E‘ follow from
(8.3.6). Thus the value of q, at a certain time remains undetermined.
Since we are interested in the trajgctory of q‘, we will integrate ﬁ‘
in order to obtain the trajectory of q,. Only at the origin time to‘

must a value for q, be specified.

For the determination of the trajectories of the Lagrange coordina-
tes, also called the KSP/O, we must solve for a given ql‘the values
for the coordinates of 9 from the constraint equations (9.2.10). In-
stead of solving these equations numerically, we can rewrite the con-
straint equations in this special case in an explicit form. Since

q, # 0, the second constraint equation yvields cos(q1+q2) = 0. This
implies that q,= % + ny - q, {integer n). Substitution of this result
in the third constraint equation yields 9" hd+ ba— q.= 0. Instead of
(9.2.10) we can therefore formulate the KSP/O as

5

= on®
q, = 30" - q,
1, = R, (a,) (9.2.15)
95 = 93 - b, + by
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The coordinate q, does not appear in this set of equations. As stated
above, the value for this Lagrange coordinate is determined by inte-

gration.

To formulate the KSP/1, /2, that is to determine the derivatives of
the Lagrange coordinates gf, we must set up the matrices Ehf and Ehs
{see 8.3.5). In this case these matrices consist of the second, third
and fifth column and the first and fourth column of the matrix By
The submatrix P, . can easily be inverted analytically. With the ab-

~hf
breviations g, and 32 given by

H

* [
{o, UT1‘q1.”UT15q‘, 0] . , (9.2.16)
! UTHq%+ Tuco&' UT1Gq1+ TU006' ?002]

T
()

TQ
{32) - [Ptoo

the KSP/1 and KSP/2, as formulated in section 8.3, become

* = - *
I UTigqal(UTzu *UTL R
9= Py, . (9.2.17)
= fpzzqg + Pzaqazlar .
5 = UT,gq, + UT,.q, + UT,cq,
and
- -
9p = ~UT 9y + Mooy * U3ePogy )/ (UTpy * DTy Ppp)
Gy = Py t By ‘ (9.2.18)
9 = (By,q, + Ppdy + B MRy
4. = UT .q +TU _ +UT.q +0UT . g
g 1694 006 2692 3693

The equations for &‘ and 3‘ are obtained from the (linear) nonholomic
constraint equation itself. Using (8.3.6) results in the same equa-
tion, but now formulated in &1 and 31.

Solution of the kinematic simulation problem

The equations (9.2.13-16) have been programmed so that the solution
for q: § and § is oStained each time for a prescribed rotation of the
driving shaft. The results of a simulation with &1 = -104.7 rad/sec
{1000 rpm) is shown in figures 9.6 and 9.7.

In these figures the results for q that is the rotation of the rol-
lex, and g+ the displacement of the plunger, as well as their deri-

vatives are shown for 9. the angle of the cam, ranging from 100°.
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{t = 0 msec, just before the beginning of one of the tangent lines)
to 260° {t = 27 msec, just after returning to the basic circle).

q,
q 360 /S
4 [ 4
4 X100 deg. q; 1000 rpm
3 -320 34
L2
280
L4
0 75 15 225 O 75 s 225 2758
time (10'3 sec)
| sx10?

figure 9.6 Trajectories of q, and its derivatives

From figure 9.6 it follows that the angular velocity of the roll, &4'
increases as soon as the plunger is lifted. From an angular velocity
of 245 r/s on the basic circle to a value of 332 r/s at the top of
the cam, the angular velocity reaches a maximum value of 360 r/s.
This value is attained at the moment the camprofile changes from the
tangent lines to the transition circle segments.

" 8,-1000 rpm
9

 1x103mys?

[ ! 15
time (103sec) [

28

figure 9.7 Trajectories of g and its derivatives

The trajectory for 95 illustrates the camprofile. The changes from

the basic circle to the tangent lines, to the transition circle seg-
ments and to the top circle are clearly illustrated by the trajecto-
ries of the derivatives of 95 The deceleration of the plunger on the
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transition circles is higher than the acceleration on the tangent

lines. By chosing another camprofile these peaks may be reduced.

9-31’ : 1!. E!] i * !; .

The equations of motion
Two serious problems
The results

Simulation of the dynamic behaviour is of particular interést for‘the
analysis of the lubrication processes and the Hertzian stresses in
the contact between cam and roller. However, simulation of the dyna-
mic behaviour is more difficult than of the kinematic behaviour.
First of all we have to deal with the normal load between cam and
roller unknown a priori, second, the displacements in the HD £luid
film are extremely slight compared to the other displacements. The
first problem requires an iterative solver which must be used each
time the equations of motions are evaluated. The second problem re-
stricts the length of the time step significantly and requires a spe-

cial integration scheme suitable for stiff differential equations.

The equations of motion

Compared to the kinematic simulation problem we drop the constraint
for pure rolling as well as constraint C2 for the relative position
of the centre of the roller and the pin of the plunger. These kinema-
tic connections are replaced by the elastohydrodynamic (EHD) f£luid
film and the hydrodynamic (HD) fluid film. As mentioned in section
9.1, we denote these energetic connections by E1 and 32 respectivély.
Only the kinematic constraint for contact between cam and roller re-
mains. This constraint results in the Pfaff matrices given below

Ea=9=[°]r Efz[P.‘zo -1, 0, 0] {9.3.1)

and implies the following partition of the Lagrange coordinates

3; =lq 1 g; =la, a5 9., 95 ] (9.3.2)
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For the equations of motion we have to determine the generalized mass
matrix A and the generalized loads 900' Qex and gin' The mass and in-
ertia tensors of the bodies are easy to determine. A and Q = are for-
mulated with the known matrices of the tree structure. After parti-

tion of A and Q . we obtain:

(9.3.3)
Aig = mp(a)" + 3, + 000 B = A= [ my{ay)i 0, 3, 0]
- 2 _ _ [ * *
Aee = [ mygp"0 0 0 |, 800, £~ 2m2q3q§(q1 t qg)
0 m o2 0 m,q,(q, + q,)
o o J 0 0
0 0 0 m 0

The generalized external load Qex is completely determined by the
pressure p on top of the plunger. From EZx = { 3, 3, 3] and gex = é

it follows that
Qex = [0/ 0, 0, 0,-2p] (9.3.4)

where Ap is the area on top of the plunger. The experimentally deter-
mined pressure p = P(qi(t)) is given as a function of the angle of
the driving shaft and is therefore known as a function of time. A

normed pressure curve is shown in figure 9.8

10,
o]
Pn
P, = max. pressure
o5L . .
] 0o = starting time
1 = final time
% ty

figure 9.8 Normed pressure curve
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The actual curve starts (point to of normed curve) as soon as the
angle q, of the driving shaft reaches a value of approximately -148°,
A few degrees later, somewhere between -156° and —153°, the actual
curve ends (point t1 of normed curve). The starting point, final
point and the maximum are determined as functions of the angular ve-
locity &1 {500 - 1500 rpm} and a control variable for the fuel inlet
(ie= 9 - 1% mm). The function p = p{t) is chosen so that the experi-

mental data fits as accurately as possible.

From the relation Q. = (§T)ef, + (WT)of, it follows that the sub-

depends on the internal load vectors ?? ' ﬁ? and ??
£ in' in in

only. These internal loads on the bodies arise out of the energetic

column @,
in,

connections E‘, Ez and EB‘ The positive directions of these loads are
shown in figure 9.9. Note that the direction of #! is determined by
the normal vector of the cam profile at the contact point. The direc-
tion of this normal vector is a function of the cam angle q,- On the
basic and top circle segments the angles « and q, are equal, on the
tangent lines and the transition circle segments these angles differ.

figure 9.9 The positive directions of the internal loads

From these arrangements, one can derive the generaliied internal load

gin.f as
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_ ot 2 2 ]
gin,f = q3( F Cqp * Fis ., + F2°12) . {9.3.5)
1 2 2
Fisgr ¥ Fip ~ Fo8y,
1 2
RZF + F3
2
| Fp, m Xglag - 1) |
where Cyp = cos(a - gz) and Sy2 = sin{a - qz).

For the numerical solution of the equations of motion, the constraint
stabilization technique with the Baumgarte constant was used (see
section 8.4). The corresponding Pfaff term yields

=P + 2B{P

.4 2
%8 = P1oo 9, + BT(R,(q,) - q,} (9.3.6)

4 -
1292

Based on these results, the final equations of motion become:

_ 2, = 2. 2 2
A= my (g ) (P d, - Pg) + (9,070, - BP0 M/ (R, + (g)7)
§, = -4, + (B A +0,)/m,(q;)? (9.3.7)
4, = (g, - N/,

B, = -8, 009,

5 = stm3

1
Y

2w

- 2 Z.m 20'
Qt = {mz(q3) +J o+ inq‘ + mzfqa) q, + quk

The equations of motion as described above can be solved numerically.
Before any results are shown, some problems must be mentioned.

Two serious problems
The value of the traction force F1 depends on the traction coeffici-
ent f£f and the value of the normal load between cam and roller, indi-

cated by A. The relationship is given by

Fl o= £(MA (9.3.8)
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The normal load A is an internmal load arising out of the kinematic
constraint. As discussed in section 8.5 the normal load A and the La-
grange multiplier A are related to each other. In this case the nor- -
mal load and the internal load caused by the constraint have opposite
directions

A= A (9.3.9)

The line of action of both loads intersects the contact point and the
" centre of the roller. From this property and the relationships

9, = Q,(F, (A)), Q, = Q(F,(A)) (9.3.10)

the equation for the lLagrange multiplier A becomes an implicit, non-
linear algebraic equation of the kind
(9.3.11)
A+ m (g 2e - B G0 + B0 (N - (920, (03/1(B )% (a)? =0
2°°3 B 1271 1272 3 3 1 3
Since this equation must be solved each time the equations of motion
are evaluated, it was decided to use a fast converging Newton solver.
This solver requires the partial derivatives of 92 and 95 with re-

spect to A, given by:

ES; = =(A + Af(A))cC 91 Egl = -0+ NE)s . (9.3.12)
Y e ¢ 3r axn ¢

The derivative of the friction coefficient £(A) with respect to A was
obtained by differentiation of the expression of Houpert.

Another probiea is caused by the slight displacements in the HD bea-
ring. During the solution process, when the plunger and roller are
raised 10 mm, displacements in the HD fluid film are of order of 2
pm. Since slight displacements in this fluid film introduce large hy-
drodynamic forces, we are confronted with a set of stiff differential
equations. To solve these equations a Gear solver has been used (sub-
routine DO2EAF of the NAG library [NAG, 1981]). Again because of the
great difference in displacements, all calculations have been done
with double precision and finally with an accuracy of 10"7.
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The.xresulis

The results discussed in this subsection apply to a pump with a fuel
inlet ie = 15 mm and at = ~104.7 rad/s (1000 rpm}. It is assumed
that the radial clearance in the HD fluid film has a value of 6 um,
which implies a radius/clearance ratio of 1000. For the oil parame-
ters we have used data for a common engine oil. At a temperature of
90° ¢ these parameters have the following values:

a=1.85 10" pa"', 1 =5010°pa, n =1717"ras
All values have been scaled to 10’3 metres, 10-2 sec and 1 kg to
achieve that during the solution of the differential equations all
variables attain values in the neigbourhood of 1. For the stabiliza-
tion paranetér B, occuring in the constraint equation, a value‘of
.001 gave the best results.

V30 8o 150 M) 150
A  time (10%sec) B

figure 9.10 The trajectories of &2, &‘ and hmin at the HD bearing

In figure 9.10 &2{ ﬁ‘ and thickness hmin of the HD fluid film are
shown for three revolutions of the cam. From figure 9.10a it can be
seen that the initial values for &2 (and qz) have to be very accurate
(5 digits). The three spikes are caused by the applied fuel pressure
on top of the plunger. When figure 9.10b for &‘ is compared to figure
9.6, it can be concluded that the roller slips on the cam. At top of
the cam this slip approaches a value of 33% of the average velocity
of the EHD fluid film. From a cam angle of -145° to 0° the slip is in
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the opposite direction in order to decelerate the rotation of the
roller. The thickness in the HD fluid film is shown in figure 9.10c.
The irregularity is caused by the transient response. It is of inte-
rest to note that the eccentricity ratio in this HD bearing is rather
slight (10% .. 50%). This is an undesired situation since it results
in less stability of the bearing. If the radius/clearance ratio is
decreased from 1000 to 500 the eccentricity ratio is increased to

50% .. 75%.

h_,, &40 10000,
s 9 5 Nimen?
) Nm pm
700
6 A
3 2 400
120 130 140 120 130 140 125 130 135
A time (10%ec) B C

figure 9.11 The .trajectories of Qt' at EHD and Hertzian stress

hmin
In figures 9.11a and 9.11b some results are shown for a cam angle be-
tween 100° and 260° degrees, while figure 9.10c gives the Hertzian
stress for a cam angle between 100o and 1800. The load Q1 {figure
9.11a) is the load required at the driving shaft in order to realise
a constant angular rotation. As can be seen from figure 9.11b the EHD
fluid film thickness has an average value of .26 uym, while its mini-
mum value, obtained on the transition circle segments, is .06 um. The
latter value implies that the surfaces of the cam and roller shouid
be very smooth, so as to avoid metalic contact. In figure 9.11c the
Hertzian stress in the contact between the cam and roller is shown.
The value of 975 N/xﬁm2 is a reasonable one for a line contact. The
additional (second) spike is caused by the change in curvature at the

intersection of the tangent line and the transition circle.
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Summary

In this chapter the behaviour of a simple multibody system with some
nonstandard connections is studied. The example, a fuel injection
pump, is described in the first section. This section also describes
the nonstandard connections, that are the cam, the EHD and the HD
fluid film. The kinematic behaviour is studied in the second section.
After deriving the constraint equations, they can be solved analyti-
cally. The construction of the equations of motion is as straight-
forward as that of the constraint equations. The solution, on the
other hand has required more effort. Because of the difference be-
tween slight displacements in the HD fluid film and large displace-
ments of the plunger, we had to cope with stiff differential equa-
tions, while the inclusion of friction introduced a nonlinear alge-

braic equation.
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CHAPTER 10 |
SUMMARY AND CONCLUSIONS

In the simulation of kinematic and dynamic behaviour of multibody sy?‘
stems the study describes an approach, As stated in chapter 1 it is
the purpose of the study to develop a multibody theory which allows
us to model connections of arbitrary geometry and/or complex consti~
tutive behav1our After a literature survey we have concluded that no
such theory 15 ava;lable, but that the work of Wittenburg provides a
suitable approach to develop such a theory.

To develop a multibody theory one requires a suitable mathematical
notation to deal with the complicated equations. A notation with ma-
trices of vectors and tensors is therefore introduced in the appendix
and its use is illustrated ih chapter 2. In the subsequent éhapters
this,nptagion has been found to be useful.

A systematic approach is required to set up the equations by means of
a couéuter program. Two concepts are introduced to achieve this goal.
The concept of elements of connections is introduced to handle com-
plex connections. These elements are characterized by their endpoint
variables and constitutive equations. It is possible to define ele-
ments, store them in a library of elements and model complex connec-
tions as a set of elements. This approach, which is based on the fi-
nite elementvtecbnidue, allows us to model geobetrieally complex con~
nections, such as human liganents and muscles.

The second concept is the descriétion of the topology of a multibody
system by means of a tree structure of bodies and hinges. In chapter
4 it is shown that it is allways possible to define such a tree
structure in a multibody system. This tree structure is used in the
following chapter to define the Lagrange coordinates, these being the
generalized coordinates of the hinges of the tree. By using this tree
structure we can formulate the equations desctibing the kinematics of
multibody systems with open and closed kinematic chains as well as
holonomic and nonholonomic constraints. It is shown that it is also
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possible to automatically transform implicit constraint eguations
into explicit constraint equations. The equations of motion are
derived by using the virtual work principle of d‘'Alembert. These
equations apply to systems with open and closed kinematic chains,
with prescribed external loads as well as prescribed kinematic
variables and active connections, characterized by external inputi

variables.

Before the equations for the kinematic and dynamic simulation problem
are formulated, we give some attention to the number of degrees of
freedom of a multibody system. In general this number is not con-
stant., If it changes, special precaﬁtions should be taken to avoid
problems with the numerical solution process. The kinematic simula-
tion problem generally results in a set of implicit, nonlinear alge-
braic equations which can be solved with Newton-type solvers. To sol-
ve the dynamic simuldtion problem, the equations of motion and even-
tually the state equations of active elements must be integrated.
This results in the trajectories of the Lagrange coordinates as func-
tions of time. As soon as these trajectories are obtained, we can de-
termine the unknown internal loads in the kinematic connections (bea-

ring loads, etc.}.

Finally, the theory is illustrated by the analysis of the behaviour
of a fuel injection pump. The examﬁle shows that the theory allows us
to derive the equations systematically. The constitutive equations of
the connections in this example are derived independently of the rest
of the system. In this case it is possible to manipulate the con-~
straint equations into a set of explicit algebraic equations. The si-
mulation of the dynamic behaviour requires the solution of a set of
stiff differential equations. In this study the numerical results are
not checked experimentally.

Subjects of furthef research

The theory as presented here is primarily meant as a set of specifi-
cations for a general-purpose program for the analysis of complicated
multibody systems. A general-purpose program, in addition to the se-

lection of appropriate numerical solvers, requires a well designed
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(engineering) data base to store and retrieve the data and extensive
graphic facilities. The development of a general-purpose program
which allows the use of arbitrary connections was not possible in the
time available for this study .

However, as long as no general-purpose program is available, the
theory can serve as a basis for special-purpose programs or be used
in symbolic manipulation programs. The results shown in chapter 9
were obtained with a special-purpose program. Such special-purpose .
programs can also be developed for the design of industrial robots or
biomechanical studies of the musculo-skeletal system.

Besides the development of a general-purpose program, other topics of
further research have to do with extensions to the presented theory.
Examples of extensions are the introduction of flexible bodies, con-
tact and impact problems and the construction of partial derivatives
required for integration schemes for stiff differential equations.
The optimization of the desired behaviour of multibody systems is of
great importance, especially for the design of new systems like such
as spacecrafts, robots, wheel suspensions etc. Multibody programs
with optimization facilities are also required for more realistic
studies of the musculo-skeletal system. At present optimization stu-
dies require many simulations in order to find an optimum in a heu-
ristic way. It may be expected that a subsequent study will concen-
trate on optimization problems.
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APPENDIX
MATHEMATICAL NOTATION

A.1 The use of symbols

A.2 Vectors and tensors

A.3 Columns and matrices v .

A.4 Matrix representation of vectors and tensors

The purpose of this appendix is to explain the notations, names and
operations used in this study. The use of symbols and some typogra-
phical arrangements for these symbols are dealt with first. Next we
discuss some operation rules for vectors and tensors, introduce ma-
trices of scalars, vectors and tensors and present the rules forxr ope-
rations on such matrices. Finally we discuss the matrix representa- '

tion of vectors and tensors with regard to a vector base.

A.1 The use of symbols

The symbol for a quantity is in general the first letter of the name
of that quantity. A scalar quantity will be indicated by a simple
character, a vector by a character with an arrow on tdp of it and a
tensor by a shadowed capital. For example,

.. +
Xy 3 v, F; B, R ‘ (A.1)

A superscripted index on the right-hand side of a symbol will gener-
ally mean a number, for example body Bi. A subscripted index on the
right is generally used to indicate a subset of a certain type. For
example, the forces on a body exerted at the points O (origin of vec-
tor base) or M (centre of mass) are indicated as ?0 or fm. This is
not a strict arrangement since components of columns and matrices are
also indicated by subscripted indices. If we are dealing with the ma-
trix representation of a vector or tensor (see section A.4) a super-
scripted index on the left of the symbol is used. For example, the
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N . . -0
matrix representation of a force § with regard to a vector base e is

given by og.

A.2 Yectors and tensors

notions of distance and angle are defined in 53‘ Several operations
are defined for vectors, Well known operation rules are the addition
v+ 4, the scalar multiplication q%, the inproduct Vsu and the vector
product v*l . The tensor product Vi is defined as

e

"

(V) oW = V(dow) vwes’ L (a.2)
and has, for example, the following properties:
V(al) = alvi) Va€Rr (A.3)
3(3 + ﬁl = vu + uw ¥ 5, 2 and w € 33

vector §,ont6 a vector V. This mapping is called the inproduct of B
and U and is written as

v = Bed v,u€s (a.4)
Some operation rules for tensors are:
Bo(@ + ﬁ) = Bev + moﬁ, oBe¥ = BO{as) (3.5)
(B + C)oV = BeV + Cov, Be(Co¥) = (Bel)o¥
The jdentity tensor I and the zerc tensor 0 are defined by:
LoV = ¥, 0wv=0 vives (2.6)

I, at least if B has an inverse at all.
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A.3 Columns and matrices

Sets of scalar quantities, vectors and tensors can be stored in ma-
trices. In order to improve the readability of formulas we use the

components Ai (i e 1..ni) and a two-dimensional matrix with
components Aij (i€1..ni, j € 1..n3):

A=|a |, L R P (A.7)

A, A.. .. A, .
ni . ni1 ninj
For columns and matrices with scalars, the operation rules are well

known. For example, for the tramnsposed éT of a matrix A holds
(A'). . = A, i=1t.mi, j=1..nj (3.8)

In addition to operation rules for scalar matrices we define opera-
tion rules for matrices with vectors. The product of of a scalar
matrix a of order nixnk and a matrix ﬁ of order nkxni with vectors as
components yields a matrix ? of order nxm with tomponents 31j in
which

nk

2 . s .
vij = k§1 uikﬁkj i=1..ni, j=1..n3 (A.9)

The inproduct Vel of two matrices ¥ (of order nixnk} and § (of order
nkxnj) vields a scalar matrix W of order nixnj in which

> =4 5 . .
“15 = :1 Vikonj i=1%..ni, Jj

L]

1..n} - (A.10)

rial matrix § with components aij‘ defined by

L
-

nk
¥..= 1 ¥ =0 i=1..ni, j=

. ..nj (2.11)
13 yoy ik K3

From this definition it is easily shown that
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W' = g7 \ (2.12)
Operation rules similar to (A.9) and (A.10) apply to the product of a
tensorial matrix (i.e. a matrix with tensors as components) with a
scalar matrix, with a vectorial matrix or with another tensorial ma-
trix.

A.4 Matrix representation of vectors and tensors

+T -+ > + +

e [ €1 €y &, 1 e, = e, (A.13)
2Te =, deal = 1

W wow -3

ve=y'e, v=1{v I g =| 2 (2.14)
+
V2 )
-
VB 33

: s . P .
The column v is the matrix representation of v in ¢. Since the vector
>, v . + =T . v
base e is orthonormal, i.e. gee’ = I, we can write

o : (A.15)

M4

v =
s

A similar definition applies to tensors. For the matrix representa-
tion B of a tensor B in an orthonormal base é we wWrite

Be B = eBeg’ (2.16)
Working with the matrix representation of vectors and tensors requir-

es to indicate the base used. Since we work with vectors and tensors
in this stﬁdy and not with the matrix representations of such quanti-
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ties, we do not have to specify which base is used. This is especia1~
ly useful for multibody theories in which, in addition to the
inertial or global base éo, several body-fixed bases occur. For

examples of this coordinate-free method of notation see Wittenburg
[1977, p12-14] or Veldpaus [1980].
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LIST OF SYMBOLS

Not every symbol used in the text is included in this list. Only

those symbols essential for the theory and useful in a multibody

program are mentioned.

B S R4SH- SFh SO O3 TV B

=]
o

na
nb
nb
nc
ne
nf
nf
nh
nhe
nhp
ni
ni
nk
nnc
nnp
nm
np
nq

relative acceleration vector

body-fixed vector

connection or relative position vector

vector base

constitutive equation

external input variables of active element

momentum

location column

mass of a

number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number

number

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

body

edges (arcs)

external points

branches

bodies

kinematic constraints (chords)
endpoints

forces on a body

free Lagrange coordinates
hinges

holonomic constraints
holonomic Pfaff equations
external input variables
internal points

elements

nonholonomic constraints
nonholonomic Pfaff equations
moments on a hody

Pfaff equations

Lagrange coordinates

5.1

page

35
23
33
17, A.4
37
37, 57
26
70
25, 100
63
109
66
68, 73
85
32, 110
27
92
68
91
91
57
109
109
91
91
27
38, 86
75



ns number of prescribed Lagrange ccordinates 92

nt i number of trees 66
nv number of vertices 63
ny number of generalized coord. in kin. conn. 113
np number of reduced gen. coord. in kin. conn. 114
S surface load on body 27
gy, goy‘ gooy pfaff matriges for implicit constraints, 41

see (3.3.8-10)

Py Boy' B Pfaff matrices for constraint elements in
=y oy 00Y

zg, Bog’ 3009 a kinematic connection, see (7.2.2}3/9)113, 114

q volume load at body 27

q generalized coordinates of hinge or ‘
Lagrange coordinates of a multibody system 43, 75

t {absolute) position vector 22

s state equétieu of active element 38

t time 19

§ relative positions of endpoints, {7.1.4) 11

u scalar position variable (attitude coord.) 22

v relative velocity vector 35

v see (2.2.22) 23

¥y Yo Yoo partial derivatives of hinge element .45, 46
see (3.3.31-34)

v© see (5.3.9) 88

¥, see (2.2.7) 20

W Mo Woo partial derivatives of hinge element 45
see {3.3.28-30}

X state variables . 38

¥ relative attitude coordinates 40

Y see (3.3.36) 46

z (absoiute) attitude coorxdinates 25

A external point (attached to a body) 109

A surface area of body 27

Ai arc, edge, branch with number i 63

A generalized mass matrix 103

B rigid body 17

B body~fixed tensor . 23

§, éo‘ tree matrices with body-fixed vectors, 79
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beld
o]

iy Sy M M I A N

4‘\\n
o

-Q

)
[y]
i
®
ad

e

RO R I e R Sy oSy

-
s

P
wo! aoo

y' woy' Booy

(2]

m

-

ISRIe2 1 1 B O 1 O 1 R
$
=]
I
s -
o

sen
on
e

[¢]

|<Né<i < o« s
<

w0 w00

connection, kinematic constraints

" connection or relative rotation tensor

tree matrices with connection vectors
element of connection

force vector

relevant force variables

see (3.4.9)

hinge

see (6.2.5-6)

internal point of a connection
inertia temsor

nodal point of a connection
Lipschitz constant, see (8.4.6)
angular momentum of a rigid body
location matrices

centre of mass of rigid body
moment vector

orthogonal matrix, see {7.2.12)

reference point, ith endpoint
see (7.2.12)
origin

Pfaff matrices for explicit constraints
Pfaff matrices for implicit constraints
generalized loads

rotation tensor

Euclidian space, 3-dimensional

submatrices of location matrices L, gc

tree matrix with topology of tree struct.

tree matrices with {(absolute) velocities
of bodies, see (5.2.23, 5.2.28)

see {5.3.10)

volume of rigid body

reference vertex, vertex with number i

see (2.2.24)

tree matrices with relative velocities of

bodies, see (5.2.20, 5.2.26)
virtual work
see (2.2.12)

$.3

109, 87
33

79

32

27

50

52

64

101

109

26, 100
109

134

26

69, 110
25

27

116

33, 32
116

23

91

86

103

18

17, A.2
69

80, 81
88
25
66, 63
23

80, 81
27
20



ﬁ, ﬁo‘ goo tree matrices with angular velocities of
bodies, see (5.2.5, 5.2.10) 77, 78
¥, XO, Xoo transformation matrices, see (5.3.7-15) 88, 89
gy, gg, XO¥, gog transformation matrices, see (7.2.5 & 8§) 114
Z, go, aoo transformation matrices, see (5.2.30,31) 82
a relative angular acceleration vector 34
B Baumgarte stabilization constant 136
¥ generalized coordinates, see (7.2.1) 114
£ relevant kinematic variables 50
A Lagrange multipliers 42
5 angular variation vector 21, 35
) mass density 25
g generalized coordinates, see (7.2.6) 114
1 element of time interval (», t], history 37
5v variation of the relative position vector 36
) scalar orientation variables (attitude co.) 18
w " angular velocity vector 19
A constraint lecads, see (8.5.2) 42, 137
st relative angular variation vector 35
¥ see (3.3.5) 40
+ see (3.3.6) 40
3 relative angular velocity vector 34
gc see (5.3.9) 88
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INDEX -

acceleration : 23, 81
angular - 20, 78
relative - 35
relative angular - 34

d'Alembert
see virtual work

- angles
Bryant - 21
Cardan - 21
Euler - 25

arc 65

base
global ~ 18 57
local - 32
reference - 33 49

body
reference - 73
rigid - 17
body-fixed
- base 17
- tensor 23
- vector 23

branch 65

chain
closed kinematic - 5, 74

chord 65

connection 31, 109
active - 118
energetic - 116
kinematic - : 192
element of ~ 3
~ tensor 33
- vector 33

constraint

explicit/implicit - 90
holonomic/nonholonomic - 42, 43

kinematic -
pfaff -
coordinates
attityde -
Cartesian -
free/prescribed -
generalized -
Lagrange -
spherical -
degree of a vertex
degrees of freedom
edge

element (of connection)

active -

- = with/without memory

energetic -
kinematic -
constraint -
hinge ~

equation(s)

constitutive -

constraint -

Pfaff -

state ~

- of motion
force(s)

constraint -

external/internal -

relevant - variable
graph

modified -

closed sub -

isolated sub -

- matrices
Gribler rule
hinge, see element

1.1

37

40

24
22
92
43
75
22
66

126

63
31
38, 57
59
38, 49
37,
39
44

37
39
41
38, 58
28, 104

42, 137
27, 28
50
63
66
66
66
69
125,126



inertia
- loads
- tensor
Lagrange
- equations
- coordinates
load(s)
conservative/
nonconservative -
constraint -
external/internal -
generalized -
inertia -
location
- column
~ matrix
~ submatrix
mass

centre of ~

100
26

9,97
75

28
137
27, 101
103
100

70
69
69
25
25

generalized - matrix 103

- matrix
moment

external/internal -
momentum

angular -
multibody

- programs

- system

- theories
multipliers

Lagrange -

Lagranqé - rule
Newton-Euler laws
orientation

absolute/relative -

body -

local base -

100

27, 28
26, 100
26, 100

42
104
7, 28, %6

40
17
18

origin
body -
fixed or global -
path
point
attachment -
end -
external/internal -
nodal -
reference -
position
absolute/relative -
body -
recursive relation
rotation
(orthonormal) - tensor
relative - tensor
singular attitude
singularity
kinematic -
stiff differential
equations
suitable choice
tensor
orthonormal -
skew-symmetric -
trajectories
tree
- matrix
- structure
regular numbered -
structure
variables
scalar orientation-
scalar position -
endpoint -

external input -

I.2

17, 23
32
65

27
32
109
109
33

33, 0
11
76, 1%

18
33
125

6, 126

134
130

19
19
105, 132

70
66

68

18
22
52
57



force - 36

relevant - 50
kinematic - 32

relevant - 50
state - 38

variation

~ of orientation 35, 78
- of position 23, 81
- of relative position 36
angular - 35
relative angular ~ 35

kinematically admissible 41, 99

velocity
(linear) - 23, 80
angular - 19, 23, 78
relative - 35, 80
relative angular - 34, 76

vertex 63
reference - 66

work
virtual - 21

virtual - principle
of d'Alembert 8, 97
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STELLINGEN
behorende bij het proefschrift

KINEMATICS AND DYNAMICS OF MULTIBODY SYSTEMS

De coordinaat-vrije formulering tezamen met het opbergen van vec-
toren en tensoren in matrices bevordert de overzichtelijkheid bij
de presentatie van theorieén voor de analyse van systemen met

veel lichamen.
-~ hoofdstuk 5 en 6 van dit proefschrift

Bij de beschrijving van de topologie van een “multibody® systeem
is het begrip boomstructuur bruikbaar zowel voor systemen met een
open als met een gesloten kinematische structuur.

~ hoofdstuk 5 van dit proefschrift

De definitie van het begrip aantal graden van vrijheid in termen
van de dimensie van de ruimte van mogelijke standen van een
*multibody" systeem is behept met dezelfde beperking als de veel
oudere regel van Griibler omdat beide geen rekening houden met

kinematische singulariteiten.

~ hoofdstuk 8 van dit proefschrift
- Rosenberg, R.M.: Analytical Dynamics of Discrete Systems.
Plenum Press, New York, 1977.

De in dit proefschrift toegepaste formulering voor de analyse van
kinematische en dynamische "multibody" systemen is een goed
uitgangspunt voor de optimalisering van dergelijke systemen.



De arm en de hand van de mens kunnen op een groot aantal manieren
een lichaam van de ene stand naar een andere stand transporteren.
Een realisering in robot systemen van soortgelijke mogelijkheden
zal voordelen bieden bijv. bij het vermijden van obstakels en
kinematische singulariteiten, bij optimalisering alsmede bij het

uitvoeren van compenserende bewegingen in het geval van defecten.

Maillardet stelt dat het been van de mens tijdens de zwaaifase
van het lopen voor de analyse van het mechanische gedrag kan wor-
den geschematiseerd tot een dubbele slinger en concludeert ver-
volgens dat de bgwegingsvorm van het been overeen komt met de
tweede eigentrillingsvorm. Deze conclusie is een te vergaande
simplificatie van het niet-lineaire dynamisch gedrag van het

spier-skelet stelsel.

Maillardet,F.J.: The swing phase of locomotion. -
Engineering in Medicine, ImechE, 6: 67-75 & 101-106, 1977.

Optimaliseren van het gedrag van een complex systeem zoals het
spier—skelet-stelsel van de mens leidt tot een momenteel nauwe-

lijks oplosbaar optimaliseringsprobleem.

Het gebruik van de 4x4 notatie van Denavit en Hartenberg voor de
beschrijving van de positie en orientatie van een lichaam in een

drie-dimensionale ruimte is omslachtig en onnodig.

~ Angeles.J,: Spatial Kinematic Chains.
Springer-Verlag, Berlin, 1982.

- Hollerbach,J.M.: A recursive Lagrangian formulation of
manipulatoy dynamics and a comparative study of dynamics
formulation complexity. .
IEEE Trans. on Systems, Man and Cybernetics, SMC-10: 730~
736, 1980.

Vanaf het begin dient in de opleiding tot werktuigbouwkundig
ingenieur veel intensiever dan tot nu toe aandacht besteed te
worden aan het gebruik van (micro-)computers en van {real-time)
software.



10. Een zeilwagen met een vleugel kan een hogere topsnelheid bereiken
dan een normale zeilwagen doordat de drifthoek in het loopvlak
van de banden geringer wordt ten gevolge van de kleinere zij-

waarts gerichte aerodynamische kracht van de vleugel.
11. Geheel aangepast aan zijn gecomputeriseerde omgeving zal de

species Homo Terminum-Videns zich in de evolutie kenmerken door

vierkante groene ogen.

Geldrop, 1983-sept-22 Egbert Jan  Sol



