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Abstract. Traditionally, the state-space explosion problem in model
checking is handled by applying abstractions and simplifications to the
model that needs to be verified. In this paper, we propose a model-driven
engineering approach that works the other way around. Instead of mak-
ing a concrete model more abstract, we propose to refine an abstract
model to make it more concrete. We propose to use fine-grained model
transformations to enable model checking of models that are as close to
the implementation model as possible. We applied our approach in a case
study. The results show that it is possible to validate models that are
more concrete when fine-grained transformations are applied.

1 Introduction

Model-driven engineering (MDE) is a software engineering paradigm in which
models play a central role throughout the entire development process [1]. MDE
combines domain-specific languages (DSLs) for modeling at a higher level of
abstraction and model transformations for the automated generation of various
artifacts, such as code from these models. Our goal is to generate reliable code
from models specified using a DSL. To increase the reliability of generated code,
formal methods such as verification can be used. Model checking is an auto-
mated verification technique that checks whether a formally specified property
holds for a model of a system [2]. An exhaustive state space search is performed
by an automated model checker to determine whether a property holds in a finite
state model of a system. Often, this state space is huge and model checking is no
longer a feasible approach for verification. Traditionally, abstractions and simpli-
fications are applied to the model to enable model checking in such cases [3–5].
We propose an MDE approach to enable model checking that works the other
way around. Instead of starting with a large model and iteratively simplifying
it, we start with a small model and iteratively refine it.

In a typical MDE development process domain-specific models are iteratively
refined using model transformations until a model is acquired with enough de-
tails to implement a system [6]. To increase the reliability of the final system,



model checking can be employed. Because of the aforementioned state-space ex-
plosion problem, model checking the final system may be infeasible. Therefore,
we propose to define a model transformation that transforms the domain-specific
models to models suitable for model checking. Using this model transformation,
model checking can be applied on the domain-specific models in every stage of
the refinement process. While model checking the final system may be infeasi-
ble, using this approach intermediate models close to the implementation can be
model checked.

In this paper, we demonstrate this approach using a domain-specific language
(DSL) for modeling systems consisting of concurrent, communicating objects.
This DSL has an intuitive graphical syntax to model the structure and behav-
ior of a system, and offers constructs such as synchronous communication over
lossless channels to make models concise. To execute models, we implemented
a chain of transformations that transform models specified using our DSL to a
restricted version of C [7]. The semantic properties of this implementation plat-
form differ from those of our DSL, which means that some construct that are
available in our DSL have no direct counterparts on the implementation plat-
form. This platform, for instance, does not offer constructs such as synchronous
communication and lossless channels. Instead, communication on the implemen-
tation platform is asynchronous and takes place over a lossy channel. To enable
transformation from our DSL to the implementation platform, the semantic gaps
between the two platforms need to be bridged [8]. Therefore, we added a number
of constructs to our DSL and implemented a number of transformations that can
be used to stepwise refine models to align the semantic properties of the DSL
with the implementation platform. These transformations replace the constructs
in a model that are not offered by the implementation platform by constructs
that it does offer, while preserving the observable behavior of the model. A final
transformation transforms the resulting model to executable code.

We also implemented a model transformation from our DSL to Spin [9], to
enable model checking of the (intermediate) domain-specific models. Our first
experiments showed that verification of the models generated by the refining
transformations using Spin was infeasible due to state-space explosion. We con-
cluded that the change induced on the models by the transformations was too
large, i.e., the transformations were too coarse-grained. Therefore, we split up
the coarse-grained transformations into more fine-grained ones. The impact of
such a fine-grained transformation on a model is smaller, i.e., the model does not
change drastically. This is reflected in the increase of the state space size that is
searched by Spin. Using this approach, intermediate models that are generated
by the fine-grained transformations can be model checked almost all the way
up to the models that can be executed, because the state space stays within
reasonable bounds.

The remainder of this paper is structured as follows. Our approach to enable
model checking of models almost all the way up to the implementation model
is discussed in Section 2. Section 3 describes the transformations that can be
used to refine the models created using the DSL as well as transformations for



transforming them to different formalisms. The experiments we conducted are
presented in Section 4. In Section 5 we reflect on our work. Section 6 describes
related work. Conclusions and directions for further research are given in Sec-
tion 7.

2 Approach

Our goal is to generate reliable code from models specified using a DSL. To
increase the reliability of generated code, formal methods such as verification
can be used. To ensure that the same model is verified and executed, models
specified using the DSL should automatically be transformed to models suitable
for these purposes. In this way, these models do not have to be created by
hand. This enables the use of formal methods without having to create models
suitable for that purpose separately. This has the advantage that engineers do
not have to learn the syntax and semantics of different languages. Moreover,
manual transformation is a slow and error-prone task.

Often, the DSL and the implementation platform have different semantical
characteristics. Therefore, the semantic gap between the two formalisms needs to
be bridged [8]. We propose to use model transformations to refine a DSL model
in such a way that the semantic properties of the DSL and the implementation
platform are aligned. In this way, the abstract DSL model becomes concrete and
transformation from the refined (concrete) DSL model to the implementation
model is merely a syntactical transformation.

To enable verification of a DSL model, a transformation from the DSL to
a formalism for verification, e.g., a model checking formalism, should be im-
plemented. Using this transformation, it is possible to verify whether both the
abstract and the concrete DSL models fulfill their requirements. From the ex-
periments presented in Section 4, we concluded that verification of an abstract
model poses no problems. However, verification of a concrete model is infeasible.
The verification takes too much time and needs too many resources.

The transformations used to refine the abstract DSL models produce interme-
diate models. These models can also be transformed to a verification formalism.
By verifying the intermediate DSL models, it is possible to verify models that
are more concrete. This approach is schematically depicted in the top half of
Figure 1. The check marks indicate models that can be verified, whereas the
crosses indicate models that cannot be verified. Our experiments showed that it
is possible to verify some of the intermediate models. However, the most concrete
model that can be verified is still not concrete enough. The reason for that is
that the change induced on the models by the transformations is too large, i.e.,
the transformations are too coarse-grained. Therefore, we propose to use more
fine-grained transformations to enable verification of more concrete models. This
can be achieved by splitting existing transformations into smaller parts. In this
way, more intermediate models are generated that can be verified. This approach
is schematically depicted in the bottom half of Figure 1. Using this approach,
it is possible to verify models that are closer to the concrete model. By replac-
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Fig. 1. Verification of intermediate models

ing the coarse-grained transformations Trs and Tabp from Figure 1 by the more
fine-grained transformations Targ , Tuni , Tll , Ttime , Tex , Tmerge , and Tint , for in-
stance, the state space of the intermediate model Mex can be explored, instead
of that of the less concrete model Mrs . These transformations are explained in
Sections 3.2 and 3.3. The example shown in Figure 1 is an illustration of one
of the experiments presented in Section 4. In different cases, the transformation
steps as well as which of them can be verified will vary.

The most concrete model that can be model checked may still not be close
enough to the implementation model. An attempt can be made to split the
transformations into even smaller parts. If this is not possible anymore, another
possibility is to apply the model transformation to part of the model only. Since
the refinement, in this case, is applied to a small part of the model, this will
most likely result in models that give rise to smaller state spaces. Using partial
refinement, the boundaries of what can be verified using model checking can be
explored even further.

Using more fine-grained transformations has some positive side-effects. Since
fine-grained transformations tend to be smaller than course-grained ones, it is
easier to locate defects in them. Also, fine-grained transformations have proven
to be more reusable than course-grained ones during our experiments. Another
advantage of having fine-grained transformations is that it enables shuffling the
order in which they are applied. This order affects the output model, i.e., some
sequences of transformations lead to more efficient implementations than others.

3 Case Architecture

In this section, we first introduce our DSL, the language used for execution,
and the differences between them. Then, we discuss both coarse-grained and
fine-grained transformations that overcome these differences by refining abstract
models to concrete models. We do not describe the transformation that trans-
forms the resulting concrete models specified using our DSL to the execution
language. Because this transformation is only applied after the platform charac-
teristics have been aligned, this transformation merely transforms syntax. This
transformation is described in [10]. Finally, we describe the language used for
verification and the transformation that transforms models specified using our
DSL to the verification language. This transformation is used in Section 4 to



illustrate the difference between the coarse-grained and fine-grained transforma-
tions.

3.1 DSL and Execution Language

Simple Language of Communicating Objects We designed a domain-
specific language called Simple Language of Communicating Objects (SLCO) [10].
It provides constructs for specifying the structure and behavior of systems con-
sisting of concurrent, communicating objects.

An SLCO model consists of a number of classes, instances of these classes
(objects), and channels. Channels are used to connect a pair of objects such that
they can send signals to each other. An example of this is shown in Figure 2. Two
objects, a1 and a2, that are instances of the same class, A, can communicate
over a channel, c. A class has ports and variables that define the structure of

a1: A
p

a2: A
p

c

Fig. 2. Two objects connected by a channel

its instances, and state machines that describe their behavior. Ports are used to
connect channels to objects. Figure 2 shows that both instances of class A have a
port p connecting them to channel c. Channels in SLCO are either synchronous
or asynchronous, and unidirectional or bidirectional. Furthermore, asynchronous
channels can be lossless or lossy. A state machine consists of variables, states, and
transitions. A transition has a source and a target state, and possibly a guard,
a trigger, an effect, or a combination of these. A guard is a boolean expression
that must hold to enable the transition from source state to target state. There
are two types of triggers: a delay and a signal reception. If the amount of time
specified by a delay has passed or if a signal is received, the transition that has
such a trigger is enabled. When a transition is made from one state into another
state, the statements that constitute the effect of the transition are executed.
There are statements for assigning values to variables and for sending signals
over channels. Figure 3 shows an example of two state machines.

Execution We use the Lego Mindstorms [11] platform for the execution of
SLCO models. The key part of this platform is a programmable Lego brick, called
RCX. This RCX has an infrared port for communication and is connected by
wires to sensors and motors for interaction with its environment. We deliberately
opted for the outdated RCX brick instead of the newer and more advanced NXT
brick to investigate the strength of our transformational approach when dealing
with a very primitive execution platform. The language we use to program these
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Fig. 3. Two state machines in SLCO

programmable bricks is called Not Quite C (NQC) [7]. NQC is a restricted version
of C, combined with an API that provides access to the various features of the
Lego Mindstorms platform such as sensors, outputs, timers, and the infrared
port. To execute SLCO models, we defined a transformation from SLCO models
to NQC code.

Language Characteristics The discussed platforms and languages have dif-
ferent characteristics. These differences are shown in Table 1. The first column

(A)synchronous Lossless/lossy Concurrent Variable and Connectivity for
communication communication objects parameter types communication

SLCO both both ∞ Integer, Boolean
Point-to-point

String

NQC asynchronous lossy limited Integer Broadcast

Table 1. Platform characteristics

lists the languages. The second column indicates whether communication is syn-
chronous or asynchronous on the corresponding platform. In case communication
is synchronous, both sender and receiver need to be available before a signal can
be sent. In this way, sender and receiver synchronize on communication. In case
communication is asynchronous, a sender can send a signal and proceed with its
execution even though the receiver is not yet ready to receive the signal. The
third column indicates whether channels are lossless or lossy. In case a chan-
nel is lossless, a signal that is sent will always arrive at the receiving end. In
case a channel is lossy, a signal that is sent may get lost. The fourth column
lists the amount of objects that can be instantiated simultaneously. In SLCO,
this amount is unlimited. For Lego Mindstorms, however, this number is limited
in practice. Because every object should be deployed on an RCX, the amount



of concurrent objects is bounded by the available number of RCX bricks. The
fifth column shows the datatypes that are available on the corresponding plat-
forms. The sixth column shows whether signals are broadcasted or sent using
point-to-point communication. When signals are broadcasted, each signal can
be received by multiple objects. In the case of point-to-point communication,
however, signals are sent from one object to exactly one other object.

3.2 Coarse-Grained Model Transformations

In Section 3.1, we explained that the characteristics of the platforms differ.
To execute SLCO models, these semantic platform gaps need to be bridged.
Therefore, we defined a number of transformations that transform an SLCO
model to a refined SLCO model with equivalent observable behavior. Each of
these transformations eliminates one of the platform gaps. An SLCO model that
uses synchronous communication only, for example, can be transformed to an
equivalent SLCO model that uses asynchronous communication only.

First, we discuss two coarse-grained transformations that bridge platform
gaps, as well as a transformation that ensures that the precondition of one of
those other transformations is met. Afterwards, we discuss the more fine-grained
versions of those transformations.

The coarse-grained transformations deal with only two of the five platform
gaps. The modeler is responsible for creating input models that do not intro-
duce problems concerning the other three gaps. These transformations do not
introduce objects and there is no transformation that can be used to reduce
the number of objects, so the modeler is responsible for creating input models
that contain as much objects as can be deployed. The coarse-grained transfor-
mations also do not introduce datatypes that can not be used in NQC. If the
input model does not use these datatypes, the transformations will result in a
deployable model. Because there is no transformation that deals with the prob-
lem of identifying the sender of a message that has been broadcasted, only input
models with two communicating parties are allowed.

Synchronized Communication over Asynchronous Channels The trans-
formation that replaces communication using synchronous signals by communi-
cation using asynchronous signals ensures that the behavior of the model is still
as desired by adding acknowledgment signals for synchronization. Whenever a
signal is sent, the receiving party sends an acknowledgement indicating that the
signal has been received. The sending party waits until the acknowledgement
has been received. In this way, synchronization is achieved.

Lossless Communication over Lossy Channels Lossless communication
over lossy channels is implemented using a variant of the alternating bit protocol
(ABP) [12].This protocol ensures that each signal that is sent, is eventually re-
ceived, assuming that not all signals get lost. This transformation adds the ABP
to a model by adding new state machines implementing the protocol to objects



that communicate over a lossy channel. These new state machines communicate
with the existing state machines in these objects using shared variables.

Exclusive Access to Ports To ensure that a model meets the precondition
of the previous transformation, we use a third transformation. When multiple
state machines communicate over the same port, the previous transformation
may only be applied if at most one of the state machines sends a message over
this port at the same time. The transformation that ensures exclusive access to
ports adds a token server to ensure that this is the case. This token server is
implemented as an additional state machine that is added to the objects directly.
The token server and the existing state machines pass information using shared
variables.

3.3 Fine-Grained Model Transformations

To minimize the influence of each transformation on the size of the state space,
we implemented a number of more fine-grained transformations. In contrast to
the coarse-grained transformations, there is a fine-grained transformation to deal
with each of the platform gaps. The transformation that replaces synchronous
signals by asynchronous signals is left unchanged. The other transformations are
described below.

Lossless communication over a lossy channel Lossless communication over
lossy channels is again implemented using the ABP. In this case, the ABP that is
added by this transformation is implemented as a number of concurrent objects
that are connected to the communicating objects using lossless channels. In
contrast, the coarse-grained version of this transformation adds the ABP as a
number of state machines to the communicating objects.

Reducing the number of objects The transformation that reduces the num-
ber of objects merges objects by creating a new object that contains all the vari-
ables, ports and state machines contained in the original objects. If two state
machines that were originally contained in two different objects communicate
over a lossless, unidirectional, synchronous channel, this form of communication
is replaced by communication using shared variables. A four-phase handshake is
used to ensure synchronized communication between the two state machines.

Replacing strings by integers Because strings are unavailable in NQC, we
implemented a transformation that replaces all string constants by integer con-
stants.

Making the sender of a signal explicit When multiple objects broadcast
signals with the same name and number of arguments over the same medium,



the receiving object cannot determine the origin of such a signal. This situation
arises when multiple RCX controllers communicate with each other, because
they communicate using infrared. To enable a receiving controller to determine
the origin of each signal it receives, a number identifying the sending object is
appended to the names of each signal.

Making all signal names equal To keep the transformation that adds the
ABP as simple as possible, our implementation of the ABP takes signals with a
fixed name as input.Before this instance of the ABP can be used to substitute
an asynchronous, lossless, unidirectional channel, the signal names that are sent
over this channel have to be changed into the fixed name it uses. We implemented
a transformation that changes the names of signals and ensures that the original
names of the signals are passed as a parameter of the signals that replace them.

Replacing a bidirectional channel by two unidirectional channels Our
implementation of the ABP can only substitute asynchronous, lossless, unidi-
rectional channels. In some cases, therefore, a transformation is needed that
replaces communication over a bidirectional channel by communication over two
unidirectional channels.

Duplicating a channel for each state machine that uses it The four-
phase handshaking we employ when merging objects does not work properly
if more than one state machine sends information over the same port at the
same time. When two objects are connected by a unidirectional channel and
multiple state machines within one of the objects send signals over this channel,
the channel must be replaced by multiple channels before these objects can be
merged. We implemented a transformation that introduces a new channel with
the same properties as the original channel for each state machine that sends
signals over this channel.

Reducing the number of channels When two objects are connected by
more than one channel, these channels can be merged into one. Therefore, we
implemented a transformation that changes the names of the signals that are
sent over the new channel, to distinguish between identical signals that were
previously sent over different channels. Merging channels can be used to optimize
a model, because it is a way to reduce the number of instances of the ABP that
need to be added.

Adding delays to transitions To prevent objects from sending signals contin-
uously, we implemented a transformation that adds delay triggers to the transi-
tions that send signals as part of their effect. This transformation also optimizes
a model, because it reduces the number of messages that are being sent, which
in turn reduces the number of collisions between messages sent via infrared.



3.4 Verification

To investigate the influence of the coarse-grained and fine-grained transforma-
tions on the size of the state space of models, we use a model checker and a
transformation that transforms SLCO models to models readable by this model
checker.

Promela Model checking is an automated verification technique that checks
whether a formally specified property holds for a model of a system [2]. We use
the model checker Spin [9] for verifying our models. The input language for Spin
is Promela. Promela has constructs for modeling selections and loops, based on
Dijkstra’s guarded commands, and primitives for message passing between pro-
cesses over channels. The syntax of expressions and assignments in the Promela
language is similar to that of C.

Transforming SLCO to Promela The transformation from SLCO to Promela
transforms every state machine describing the behavior of an object in an SLCO
model to a Promela proctype. Channels between objects are transformed to
channels between proctypes. State machines can be implemented using an im-
perative programming style in multiple ways. We chose to implement them as
jump tables using goto statements. An example of the transformation is shown
in Figure 4. State S0 depicted in Figure 4(a) is transformed to the code de-
picted in Figure 4(b). A state is transformed to a labeled selection statement.

S 0

 [ x  = =  0 ]

/  x  : =  1

S 1 S 2

y ( )  f r o m  A

/  s e n d  y ( )  t o  B

(a) State machine

 S 0 :

  i f

 : : x  = =  0  - >  x  =  1 ;  

  g o t o  S 1 ;

  : : A ? y  - >  B ! y  

  g o t o  S 2 ;

 f i ;

(b) Promela code

Fig. 4. Transforming SLCO to Promela

Every outgoing transition of state S0 is transformed to an alternative of the
selection statement. The semantics of the selection statement is such that it will
non-deterministically execute one of the alternatives for which the guard holds
and it will block if none of the guards hold. The guard is the first statement or
expression of the alternative. In case the guard is an expression, it holds if it
evaluates to true. In case the guard is a statement, it holds if the statement is
executable. When the guard holds, the statements following it can be executed.
The guard and statements of a transition are transformed to Promela code in



a straightforward way. After execution, the transition to a state has been com-
pleted and the state machine is in the target state of the transition. Therefore,
a goto statement that jumps to the label representing the target state of a tran-
sition is added after the transformed statements in the code. Because we use a
version of Spin that does not support time, we abstract from time by transform-
ing delay triggers to skip statements. A signal reception trigger is transformed
to a receive statement, which blocks until it is able to receive a message over a
channel.

4 Experiments

We performed a number of experiments to determine the size of the state space
of intermediate models generated by our chains of refining transformations. By
transforming intermediate SLCO models to Promela models, we obtain models
whose state space can be explored using Spin. For the experiments described
below, we configured Spin to explore the state-spaces by means of a depth-first
search with a maximum search depth of 1 · 108 transitions and using at most
4 ·104 megabytes of memory. After describing the models that serve as inputs in
our experiment, we show that an approach using coarse-grained transformations
quickly leads to models with very large state spaces. Then, we present the results
of our experiments using fine-grained transformations. Finally, we discuss how
applying transformations to a part of the applicable model elements only can
also be used to explore the state space of less abstract versions of models.

4.1 Cases

We apply the refining transformations described in Section 3 to three different
models. The first model consists of one object that repeatedly sends synchronous
signals over a port (the producer) and one object that is always able to receive
signals over a ports (the consumer). A channel connects the ports of the producer
to the ports of the consumer. The model is depicted in Figure 5.

The second model describes the behavior of a system consisting of three in-
teroperating conveyor belts. The leftmost part of Figure 3 shows the behavior of
one of the three components in this system. The behavior of another component
is specified using two instances of the state machine shown in the rightmost part
of Figure 3. The third component models the environment of the system and is
not described in this paper.

The third model consists of two objects that repeatedly send synchronous
signals over a port (the producers) and one object that is always able to receive
signals over two ports (the consumer). Two channels connect the ports of each
of the producers to the two ports of the consumer. The model is depicted in
Figure 6.
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Fig. 5. One producer and one consumer
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Fig. 6. Two producers and one consumer

4.2 Results

Applying coarse-grained transformations to the model of the producer and con-
sumer leads to the state space sizes shown in Table 2.

Replacing synchronous communication by asynchronous communication ap-
proximately doubles the size of the state space. Adding a number of state ma-
chines that implement the ABP to each of the two objects, however, leads to a
significant increase of the size of the state space. Although the resulting state
space of the most concrete model is much larger than the one of the interme-
diate model, it is still small enough for verification given the aforementioned
configuration of Spin.

To further illustrate the effects of the coarse-grained transformations on the
size of the state space, we applied them to the second model, which is slightly
more complex than the first. One of the components in the system of the three
conveyor belts consists of two instances of the same state machine. Both instances
communicate over the same port, which means that a token server must be
added when refining this model, before the transformation that adds the ABP
can be employed. Table 3 shows that adding a token server leads to a state space



# States # Transitions

Original 4 6

Asynchronous signals 8 11

Lossless communication 76 066 432 542 196 960

Table 2. One producer and one consumer - coarse-grained transformations

that can still be model checked. The final row in the table indicates that it is
impossible to explore the entire state space before the search depth is exceeded or
all available memory is used. This shows that the output of this transformation
is not suited for model checking, even though the input model is still relatively
small.

# States # Transitions

Original 494 1 294

Asynchronous signals 748 1 980

Token server 10 090 33 820

Lossless communication – –

Table 3. Interoperating conveyor belts - coarse-grained transformations

The results of these experiments lead us to implement the more fine-grained
versions of the transformations presented in Section 3.3. Table 4 shows the ef-
fect of the fine-grained transformations on the size of the state spaces of the
intermediate models in the case of the producer and the consumer, and Table 5
shows the effect in the case of the three interoperating conveyor belts. The trans-
formations that ensure that all signals have a fixed name, replace bidirectional
channels by two unidirectional channels, ensure that each state machine within
an object communicates with the ABP over an exclusive channel, and replace
strings by integers have no effect on the size of the state space.

In the case of the producer and the consumer, each intermediate model has
a state-space that can be explored given the aforementioned configuration of
Spin. In the case of the conveyor belts, however, merging objects leads to a
state-space that is too large to explore. Even though the most concrete model is
still unsuited for model checking, fine-grained transformations made it possible
to explore an intermediate model that is more concrete than the ones produced
using coarse-grained transformations.

4.3 Exploring the Boundaries

In both of the cases mentioned above, only two instances of the ABP are added,
because communication takes place in two directions between one pair of objects.



# States # Transitions

Original 4 6

Asynchronous signals 8 11

Fixed signal names 8 11

Unidirectional channels 8 11

Lossless communication 114 388 596 367

Delays 1 009 856 5 902 673

Merged objects 83 251 840 592 242 910

Integers instead of strings 83 251 840 592 242 910

Table 4. One producer and one consumer - fine-grained transformations

# States # Transitions

Original 494 1 294

Asynchronous signals 748 1 980

Fixed signal names 748 1 980

Unidirectional channels 748 1 980

Lossless communication 19 148 872 141 049 260

Delays 167 466 690 1 334 614 400

Exclusive channels 167 466 690 1 334 614 400

Merged objects – –

Table 5. Interoperating conveyor belts - fine-grained transformations

Table 6 shows the results for the model consisting of two producers and one
consumer. To achieve lossless communication over a lossy channel in this case,
four instances of the ABP have to be added, because communication takes place
in two directions between two pairs of objects.

Adding four instances of the objects that implement the ABP leads to an
explosion of the state space. This makes it very hard to verify properties of
this model using state space exploration. Table 7 shows the effect of adding an
instance of the ABP to respectively one, two, and three channels in the model of
two producers and one consumer, while leaving the other channels untouched.

By replacing communication over only a subset of the four channels in the
model by communication via the ABP, a model is obtained with a state space
that is significantly smaller than the state space corresponding to the model
in which communication over all channels is replaced. In this way, verification
of a model that resembles the implementation more closely than the original,
more abstract, model is possible. The same approach can be used to merge only
some of the objects in the model of the interoperating conveyor belts. In general,
applying a refining transformation to a part of the applicable elements in the
model only can be used to model check intermediate models that resemble the



# States # Transitions

Original 8 17

Asynchronous signals 33 68

Fixed signal names 33 68

Unidirectional channels 33 68

Lossless communication – –

Table 6. Two producers and one consumer - fine-grained transformations

# States # Transitions

Original 8 17

Asynchronous signals 33 68

Fixed signal names 33 68

Unidirectional channels 33 68

one ABP instance 5 188 21 335

two ABP instances 527 108 3 224 435

three ABP instances 105 715 260 879 085 750

Table 7. Two producers and one consumer - fine-grained transformations

implementation as close as possible, in cases where it is impossible to model
check the completely refined model.

5 Discussion

In Section 4, we used the model checker Spin to illustrate the effect of both
coarse-grained and fine-grained transformations on state spaces. However, our
approach is not limited to one particular model checker. The refining transfor-
mations we implemented take SLCO models as input and produce SLCO models
as output. Support for another model checker or a similar tool can be added by
implementing a single transformation from SLCO to the formalism supported
by that tool. In fact, we implemented such a transformation to a formalism for
performance analysis and simulation [10].

To clearly show the influence of our refining transformations, we used no
additional reduction or abstraction techniques. However, our approach can be
combined with such techniques in practical situations. Using one of the standard
state vector compression modes offered by Spin [13], for instance, it is possible to
explore larger state spaces. Using this compression method and the configuration
described in Section 4, the state space of the timed version of the model of the
three conveyor belts can be explored using approximately 15 · 103 megabytes,
instead of 31 · 103 megabytes.



Typically, model checking is used to verify whether a property holds for
a model of a system. Because the refining transformations modify the model,
properties under investigation may have to change as well. After adding com-
munication via the ABP to a model, for example, there are unfair traces in the
state space representing the behavior that all signals are discarded by the lossy
channel. To consider only the fair traces, a fairness constraint has to be added
to the property.

6 Related Work

Multiple proposals are presented in literature to enable model checking of huge
specifications. Clarke et al. suggest four different abstraction techniques and
demonstrate their practicality on a number of examples [4]. Another possibility,
applied by Chan et al., is to model check only a part of the system [3]. They also
applied simplifications to the model to avoid constructs that could not be han-
dled properly by their model checker. Wing and Vaziri-Farahani enabled quick
verification in a case study by applying abstractions to both the model and the
verification properties [5]. They state that the choice of what abstractions to ap-
ply takes some ‘good’ judgement. All of the aforementioned approaches work by
applying abstraction and simplification to concrete models. Our approach works
the other way around, we refine an abstract model to a more refined one. Note
that our approach does not preclude the use of abstractions and simplifications
on the (intermediate) models. The B-method [14] is developed as a means to re-
fine abstract specifications into implementations. By fulfilling a number of proof
obligations and thus proving that each refinement step is sound, it can be proven
that an implementation adheres to the corresponding initial specification. Using
the B-method, reliable code is derived starting from one initial specification,
whereas our approach focusses on automatically generating reliable code from
every possible model that can be described using our DSL.

7 Conclusions and Future Work

7.1 Conclusions

In this paper, we proposed an approach using model checking to increase the reli-
ability of code generated from models specified in a domain-specific language. A
model transformation from the domain-specific language to a language suitable
for model checking can be defined to enable model checking of domain-specific
models. Using this model transformation, model checking can be applied on the
domain-specific models in every stage of the refinement process. To deal with
the state-explosion problem we advocate to use fine-grained model transforma-
tions to stepwise refine domain-specific models. Since fine-grained transforma-
tions tend to be smaller than coarse-grained transformations, it is easier to locate
defects in them. Another advantage of fine-grained transformations is that they



may be more reusable than coarse-grained ones. When fine-grained transforma-
tions do not allow model checking of concrete enough models, it may be helpful
to apply a transformation to part of a model only.

We conducted experiments to validate our approach on multiple cases with
a DSL we defined. The results show that it is possible to validate models that
are more concrete when fine-grained transformations are applied.

7.2 Future Work

As discussed in Section 5, reduction techniques such as partial order reduction
and state vector compression can be applied to a verification model. Reduction
may also be applied to domain-specific models. Models in our DSL consist of
state machines. Therefore, algorithms for state machine composition, such as
presented in [15], may be applicable. Reducing the number of state machines in
a model may lead to smaller state-spaces.

The cases on which we applied our technique are rather small. Also the chain
of fine-grained transformations is not large. We believe these small examples
already show the advantages of the proposed approach. However, a point we see
for future work is applying the approach to larger models and more complex
transformation chains.

Model checking is one way of increasing the reliability of systems created in an
MDE process. Another way to do this is using formal correctness proofs. When
correctness of model transformations can be formally proven, model checking
is no longer required to validate intermediate results. It would then suffice to
validate the initial model only. Formally proving model transformations requires
that the semantics of source and target language are formally defined. Since a
lot of DSLs have an informal semantics only, the correctness of a model transfor-
mation cannot be proven. Therefore, model checking intermediate models may
still be required.
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