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Summary

Multiphysics modelling and experimental validation
of microelectromechanical resonator dynamics

The modelling of microelectromechanical systems provides a very challenging task in

microsystems engineering. This field of research is inherently multiphysics of nature,

since different physical phenomena are tightly intertwined at microscale. Typically, up
to four different physical domains are usually considered in the analysis of microsys-

tems: mechanical, electrical, thermal and fluidic. For each of these separate domains,

well-established modelling and analysis techniques are available. However, one of the

main challenges in the field of microsystems engineering is to connect models for the

behavior of the device in each of these domains to equivalent lumped or reduced-order

models without making unacceptably inaccurate assumptions and simplifications and to
couple these domains correctly and efficiently. Such a so-called multiphysics modelling

framework is very important for simulation of microdevices, since fast and accurate com-

putational prototyping may greatly shorten the design cycle and thus the time-to-market

of new products.

This research will focus on a specific class of microsystems: microelectromechanical res-

onators. MEMS resonators provide a promising alternative for quartz crystals in time

reference oscillators, due to their small size and on-chip integrability. However, because

of their small size, they have to be driven into nonlinear regimes in order to store enough
energy for obtaining an acceptable signal-to-noise ratio in the oscillator. Since these res-

onators are to be used as a frequency reference in the oscillator circuits, their steady-state

(nonlinear) dynamic vibration behaviour is of special interest.

A heuristic modelling approach is investigated for two different MEMS resonators, a

clamped-clamped beam resonator and a dog-bone resonator. For the clamped-clamped

beam resonator, the simulations with the proposed model shows a good agreement with

experimental results, but the model is limited in its predictive capabilities. For the dog-
bone resonator, the proposed heuristic modelling approach does not lead to a match be-
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x SUMMARY

tween simulations and experiments. Shortcomings of the heuristic modelling approach

serve as a motivation for a first-principles based approach.

The main objective of this research is to derive a multiphysics modelling framework for

MEMS resonators that is based on first-principles formulations. The framework is in-

tended for fast and accurate simulation of the steady-state nonlinear dynamic behaviour

of MEMS resonators. Moreover, the proposed approach is validated by means of exper-
iments. Although the multiphysics modelling framework is proposed for MEMS res-

onators, it is not restricted to this application field within microsystems engineering.

Other fields, such as (resonant) sensors, switches and variable capacitors, allow for a sim-

ilar modelling approach.

In the proposed framework, the mechanical, electrical and thermal domains are included.

Since the resonators considered are operated in vacuum, the fluidic domain (squeeze film

damping) is not included. Starting from a first-principles description, founded on partial
differential equations (PDEs), characteristic nonlinear effects from each of the included

domains are incorporated. Both flexural and bulk resonators can be considered. Next,

Galerkin discretization of the coupled PDEs takes place, to construct reduced-order mod-

els while retaining the nonlinear effects. The multiphysics model consists of the com-

bined reduced-order models from the different domains. Designated numerical tools are

used to solve for the steady-state nonlinear dynamic behaviour of the combined model.

The proposed semi-analytical (i.e. analytical-numerical) multiphysics modeling frame-

work is illustrated for a full case study of an electrostatically actuated single-crystal sili-
con clamped-clamped beam MEMS resonator. By means of the modelling framework,

multiphysics models of varying complexity have been derived for this resonator, includ-

ing effects like electrostatic actuation, fringing fields, shear deformation, rotary inertia,

thermoelastic damping and nonlinear material behaviour. The first-principles based ap-

proach allows for addressing the relevance of individual effects in a straightforward way,

such that the models can be used as a (pre-)design tool for dynamic response analysis.
The method can be considered complementary to conventional finite element simula-

tions.

The multiphysics model for the clamped-clamped beam resonator is validated by means

of experiments. A good match between the simulations and experiments is obtained,

thereby giving confidence in the proposed modelling framework.

Finally, next to the modelling approach for MEMS resonators, a technique for using these

nonlinear resonators in an oscillator circuit setting is presented. This approach, called

phase feedback, allows for operation of the resonator in its nonlinear regime. The closed-

loop technique enables control of both the frequency of oscillation and the output power
of the signal. Additionally, optimal operation points for oscillator circuits incorporating a

nonlinear resonator can be defined.



Samenvatting

Het modelleren van micro-elektro-mechanische systemem vormt een grote uitdaging in

de microsysteemtechnologie. Dit onderzoeksgebied is intrinsiek multifysisch van aard,

omdat verschillende fysische effecten nauwmet elkaar verweven zijn op microschaal. Ty-
pisch worden er tot vier verschillende domeinen beschouwd bij de analyse van microsys-

temen: mechanisch, elektrisch, thermisch en fluïdisch. Voor elk van deze afzonderlijke

domeinen zijn er goed bekende analysetechnieken voorhanden. Een van de belangrijkste

uitdagingen in het gebied van de microsysteemtechnologie is het koppelen van modellen

voor het gedrag van het systeem in elk van deze domeinen aan equivalente of verlaagde-

orde modellen, zonder daarbij onacceptabele aannames en vereenvoudigingen te doen,

en om de domeinen efficiënt te koppelen. Een zogenoemde multifysische modelleeraan-
pak is erg belangrijk voor het simuleren van microsystemen, omdat snel en nauwkeurig

prototype-ontwerp de ontwerpcyclus en daarmee de tijd die nodig is om een product op

de markt te brengen flink kan verkorten.

Dit onderzoek richt zich op een specifieke klasse van microsystemen: micro-elektro-

mechanische resonatoren. MEMS resonatoren vormen een veelbelovend alternatief voor

kwartskristallen in oscillatoren voor tijd-referentie, omdat ze klein en op de chip inte-

greerbaar zijn. Vanwege hun kleine afmetingen, moeten ze echter in niet-lineaire be-
reiken bedreven worden, om genoeg energie op te slaan voor een acceptabele signaal-

ruis-verhouding in de oscillator. Omdat deze resonatoren gebruikt gaan worden als

frequentie-referentie in oscillator circuits, is hun lange termijn (niet-lineair) dynamisch

trillingsgedrag van belang.

Een heuristische modelleeraanpak is onderzicht voor twee verschillende MEMS resona-

toren: een dubbelzijdig ingeklemde balk en een ‘dog-bone’ resonator. Voor de balk re-

sonator laten simulaties met het voorgestelde model een goede overteenkomst zien met

experimenten. De voorspellende aard van het model is echter beperkt. Voor de ‘dog-
bone’ resonator leidt het voorgestelde heuristische model niet tot een overeenkomst tus-

sen simulaties en experimenten. Tekortkomingen van de heuristische modelleeraanpak

motiveren een op grondbeginselen gebaseerde aanpak.
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xii SAMENVATTING

Het hoofddoel van dit onderzoek is om een op grondbeginsel-formuleringen gebaseerd

multifysisch modelleerkader af te leiden voor MEMS resonatoren. Dit kader is bedoeld

voor het snel en nauwkeurig simuleren van lange termijn niet-lineair dynamisch gedrag

van MEMS resonatoren. Bovendien wordt de voorgestelde aanpak gevalideerd met expe-
rimenten. Hoewel het modelleerkader wordt gepresenteerd voor MEMS resonatoren, is

de toepassing niet beperkt tot dit veld in de microsysteemtechnologie. De aanpak kan

ook gebruikt worden voor andere toepassingen, zoals (resonante) sensoren, schakelaars

en variabele condensatoren.

In het modelleerkader zijn het mechanische, het elektrische en het thermische domein

inbegrepen. Omdat de beschouwde resonatoren in vacuum opereren wordt het fluïdi-

sche domein (samengeperste-film demping) niet meegenomen. Startend vanuit een be-

schrijving van de grondbeginselen die gestaafd is op partiële differentiaalvergelijkingen
(PDVs), worden karakteristieke niet-lineaire effecten van elk van de beschouwde domei-

nen meegenomen. Zowel buigings- als bulkresonatoren kunnen beschreven worden.

Vervolgens wordt Galerkin discretisatie toegepast op de gekoppelde PDVs om verlaagde-

orde modellen te construeren met behoud van niet-lineaire effecten. Het multifysisch

model wordt gevormd door een combinatie van de verlaagde-orde modellen uit elk van

de verschillende domeinen. Vervolgens worden specifieke numerieke gereedschappen
gebruikt om het lange-termijn niet-lineair dynamisch gedrag van dit model te bepalen.

Het voorgestelde semi-analytische (i.e. analytisch-numeriek) multifysische modelleerka-

der wordt geïllustreerd aan de hand van volledige gevalsstudie van een elektrostatisch

geactueerde dubbelzijdig ingeklemde balk MEMS resonator van monokristallijn silici-

um. Met behulp van het modelleerkader zijn voor deze resonator modellen van verschil-

lende complexiteit afgeleid, waarbij effecten als elektrostatische actuatie, strooivelden,

afschuiving, rotatie-traagheid, thermoelastische demping en niet-lineair materiaalgedrag
zijn meegenomen. De op grondbeginselen gebaseerde aanpak maakt het mogelijk om

de relevantie van individuele effecten op een eenduidige manier te bepalen, waardoor de

modellen gebruikt kunnen worden als een (voor-)ontwerp gereedschap voor dynamische

respons analyse. Deze methode kan beschouwd worden als complementair aan conven-

tionele eindige elementen simulaties.

Het multifysischmodel voor de dubbelzijdig ingeklemde balk resonator is gevalideerd via

experimenten. Een goede overeenkomst tussen simulaties en experimenten is verkregen,

hetgeen vertrouwen geeft in het voorgestelde modelleerkader.

Tenslotte is, naast de modelleeraanpak voor MEMS resonatoren, een techniek beschreven
om deze niet-lineaire resonatoren in een oscillator circuit te gebruiken. Deze aanpak,

fase terugkoppeling genaamd, maakt het mogelijk om de resonator in zijn niet-lineaire

bereik aan te sturen. Met deze gesloten-lus techniek kan zowel de oscillatiefrequentie

als het uitgangsvermogen van het signaal geregeld worden. Bovendien kunnen optimale

werkpunten bepaald worden voor oscillator circuits met niet-lineaire resonator.



Nomenclature

General notation
a, A scalar
a column, vector
A matrix, tensor
ȧ time derivative
∂
∂a partial derivative with respect to a
ā non-dimensional scalar
δ variational operator
∇ gradient operator

Roman symbols
Symbol Description Unit

A area m2

B body
B column of operators for boundary conditions
F free energy
L(∆ω) phase noise at frequency offset ∆ω dBc Hz−1

L column of differential operators
R Rayleigh dissipation function J
S surface m2

T kinetic energy J
V volume m3

Uin internal (or strain) energy J
Wex external work J

A surface m2

A complex amplifier gain
C0 nominal capacitance F
C11, C12, C44 stiffness coefficients Pa

xiii



xiv NOMENCLATURE

Symbol Description Unit
(continued)

Cdec decoupling capacitance F
Ci jk third-order stiffness coefficients Pa

E Young’s modulus Pa
E Green-Lagrange strain tensor
F force N
F0 forcing amplitude N
G shear modulus Pa
GA amplifier gain
GR resonator gain
I second moment of area m4

J dilatation factor
L inductance H
K stiffness matrix
M mass matrix
M moment N m
MT thermoelastic moment N m
Mxx bending moment N m
N0 initial axial force N
Nxx axial force N
NT thermoelastic axial force N
P power W
Q Q-factor –
Qx shear force N
R resistance Ω

R complex resonator gain
S S-parameters
S entropy J K−1

S11, S12, S44 compliance coefficients Pa−1

T absolute temperature K
time function s

Te excitation period s
T matrix with thermal time constants

surface force vector N m−2

V0 voltage amplitude V
Vac ac excitation amplitude V
Vdc dc bias voltage V
Vout output voltage V
Vpi pull-in voltage V
W basis function for transverse displacement field
Y admittance S
Z impedance Ω



NOMENCLATURE xv

Symbol Description Unit
(continued)

a amplitude m
a1, a2, b1, b2 complex voltage waves V
ai, bi roots of the Timoshenko frequency equation
b beam thickness m

(lumped) damping N s m−1

c coefficient, model parameter
cp heat capacity per unit volume at constant pressure J kg−1 K−1

cL longitudinal wave propagation velocity m s−1

d0, d1, d2 electrode gaps m
e dilatation –
f frequency Hz
f0 nominal or natural frequency Hz
fe excitation frequency Hz
f force column or vector
g column of forcing functions
h beam width m
i current A

k (lumped) stiffness N m−1

thermal conductivity W m−1 K−1

kB Boltzmann’s constant J K−1

ks shear correction factor –
l beam length m
nT number of periods
n outward normal vector
p pressure Pa
pi, qi, ri generalised coordinates
q forcing parameter N kg−1

qe electric charge C
q column with mechanical degrees of freedom
r column with thermal degrees of freedom
t time s
ti j thermodynamic tension Pa
u, v, w displacements m
u displacement vector m
v voltage V
v column of state variables
w width m
w0 transverse deflection m
wmid midpoint displacement m
x state
x, y oscillator states
x, y, z cartesian coordinates m
x state column



xvi NOMENCLATURE

Symbol Description Unit
(continued)

xe equilibrium point
xp periodic solution

Greek symbols
Symbol Description Unit

Θ basis function for thermal field
Φ basis function for shear deformation field
ΦT monodromy matrix

α thermal expansion coefficient K−1

αi,βi roots of the Timoshenko frequency equation
β thermal modulus Pa K−1

γ nonlinearity parameter for qubic stiffness m4 s−2

γi j Green-Lagrange shear strain component (i 6= j) –
ǫ0 permittivity of vacuum F m−1

εi j infinitesimal linear strain component –
η electromechanical coupling coefficient V F m−1

ηi j Green-Lagrange normal strain component (i = j) –
θ temperature difference K

λ eigenvalue rad s−1

floquet multiplier
λc critical floquet multiplier
λi roots of the Euler-Bernoulli beam frequency equation

principal stretch –
µ bifurcation parameter
ν Poisson’s ratio –
ξ non-dimensional damping coefficient –
π1 longitudinal piezoresistive coefficient Pa−1

ρ density kg m−3

ρ0 resistivity Ωm
σ stress tensor Pa
σ frequency detuning Hz
σ0 initial axial stress Pa

σe surface charge density C m−2

σi j normal stress component (i = j) Pa
τ thermal relaxation time s
τi j shear stress component (i 6= j) Pa
φ eigencolumn
φ phase rad



NOMENCLATURE xvii

Symbol Description Unit
(continued)

ϕ shear deformation –
ϕ,ψ basis functions
ψ rotation rad
ψA amplifier phase rad
ψR resonator phase rad

ω angular frequency rad s−1

ω0 nominal or natural angular frequency rads−1

Indices
Symbol Description

0 nominal, natural, initial

E Euler-Bernoulli

S adiabatic

T Timoshenko
isothermal

a anchor

ex external

i j stress/strain directions

in internal

m motional

max maximum

nc non-conservative

p parasitic

s parasitic

th thermal, thermoelastic

tot total

x x-direction

y y-direction

z z-direction



xviii NOMENCLATURE

Acronyms
BAW bulk acoustic wave
BEM boundary element method
CAD computer-aided design
CF cyclic fold
CFD computational fluid dynamics
CMOS complementary metal oxide semiconductor
DRIE deep reactive ion etching
DOF degree-of-freedom
FCC face centered cubic
FD finite difference
FE finite element
FEM finite element method
FET field effect transistor
IC integrated circuit
LP limit point
MEMS microelectromechanical system
MST microsystems technology
ODE ordinary differential equation
PCB printed circuit board
PD period doubling
PDE partial differential equation
PLL phase-locked loop
RHS right-hand side
SAW surface acoustic wave
SOI silicon-on-insulator
SOLT short-open-load-trans
TCAD technology computer-aided design
VCO voltage controlled oscillator



CHAPTER ONE

Introduction

Abstract / In this chapter, a general introduction for the thesis is presented. An overview of impor-
tant demands and requirements for multiphysics modelling of dynamics in MEMS or microsys-
tems serves as the motivation for the work in this thesis and will lead to the research objectives.
Furthermore, an outline of the thesis is given.

1.1 General introduction

During the past 25 years, miniaturisation of mechanical parts has seen an increasing
number of applications in industrial andmedical fields. This has already been envisioned
– “There’s plenty of room at the bottom” – by Feynman (1960) (reprinted in Feynman
(1992) and Feynman (1993)) and it has opened the door for a new engineering discipline
calledmicrosystems technology (MST) ormicroelectromechanical systems (MEMS)1. This dis-
cipline has emerged from a combination of IC-processing (Integrated Circuit) and con-
ventional miniaturised fabrication technologies. A characteristic feature of MEMS is that
they form a field in engineering in which multiple physical domains (mechanical, electri-
cal, thermal, fluidic, optical, magnetic and chemical) meet each other. The term MEMS
refers to devices that have a characteristic length of less than 1 mm but more than 1 µm,
that combine electrical and mechanical components and that are fabricated using inte-
grated circuit batch-processing technologies.

The trend of miniaturisation has been initiated by the following two facts. Firstly, on a
small scale, systems and components perform differently, simply because of their small
size. For instance, this is due to low weight and/or different energy efficiency. The mul-
tiphysics interaction between the physical domains is a direct result of the scaling of the
systems (see Gad-el Hak, 2002; Allen, 2005). Moreover, these systems explicitly make
use of physical effects at small scale, such as negligible influence of gravity or more effi-

1The discipline is called microsystems technology in Europe, and microelectromechanical systems in the
United States, but nowadays, mostly the term MEMS is used.

1



2 1 INTRODUCTION

cient chemical reactions. Secondly, the manufacturing process of MEMS provides unique
possibilities. Due to the small size, material costs are very low, and materials can be used
that would otherwise result in prohibitive costs. Technology from IC-fabrication pro-
cesses can be used to allow production of miniature components in large volumes for
low prices. In this way, distributed systems with numerous components can be realised.

Unlike IC-technology and their explosive growth rate, the field of MEMS has shown a
higher diversity and a slower learning curve (Senturia, 2003). This is explained by the fact
that technology is progressing at a very high rate, whereas on the other hand, the MEMS
field features a huge technological diversity. The state of MEMS around 1980 was such
that most of the activity was either in basic research (materials, sensing/actuation meth-
ods and phenomena at micron scale) or the engineering science associated with the tech-
nology and devices themselves (materials, process technology, integration methodologies
and system design). Relatively little effort was devoted to actual products (Senturia, 2003).
More than 20 years later, products now dominate the field of MEMS, supported by con-
tinuing and expanding efforts in the engineering science domain. However, the basic
research has not grown to keep pace. Rather than having reached maturity, the MEMS
field has not yet evolved from the initial trial and error approach. The ratio of commer-
cially successful MEMS to the total of prototype devices created as part of research and
development efforts also reflects this (Bell et al., 2005).

Furthermore, as design complexity increases and reliability becomes a more important
issue, increasingly detailed knowledge about coupled-physics phenomena is necessary. A
solid foundation of the underlying multiphysics fundamentals is needed in the MEMS
field. Fabrication technology enables the designer to integrate many physical and chemi-
cal functions into a compact system. However, due to the small details in theminiaturised
systems, one cannot assemble a microsystem from components off the shelf, in contrast
to macrosystems. In microsystems, all components have to be designed during the de-
sign process of the whole system. Component design is an integral part of the complete
system design and can, therefore, not be separated from system design. Although the
basis for the production techniques of MEMS has been developed over the last decades,
the full technological potential of MEMS is far from understood.

Principal reasons for this are that MEMS are not only characterised by the small size of
the systems, but also by the requirement of a multidisciplinary design approach, by the
integration of many functions in a single system and by the potential of mass fabrica-
tion. As a result, microsystems design is an integral process, which requires knowledge
of system aspects ranging from mechanics and fluidics to thermodynamics and electron-
ics (Senturia, 2001; Kaajakari, 2009). Microsystem designers must have a large number
of skills and a broad experience. Furthermore, microsystems design requires knowledge
of fabrication technology to meet knowledge of the particular application of the system.

This poses a very demanding task on the designers, requiring intimate knowledge of
the whole system, but it also means that for each particular application, the design pro-
cess has to be started all over again. Currently, microsystems design is mainly rooted
in electronics. However, for both their applications and design, it is necessary that their
design scope is broadened and that all relevant disciplines are included throughout the
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design process. Although the physical basics and phenomena of the separate disciplines
in MEMS have been investigated for a long time, understanding, experimenting with and
modelling of all these aspects interacting at micro-scale is a very demanding challenge for
science and engineering disciplines in the 21st century.

Research on MEMS can be categorised in two main groups. Firstly, production tech-
niques and manufacturing principles are investigated. Secondly, multiphysics analysis
and behavioural modelling is performed. The first category will not be discussed in this
thesis. The interested reader is referred to, for instance, Senturia (2001), Gad-el Hak
(2002) and Maluf and Williams (2004). This thesis deals on the latter category and will
address the fundamentals, modelling and design of MEMS. The work will concentrate on
the modelling of dynamics in MEMS in a multiphysics context, see also Section 1.2.3.

1.2 Modelling of MEMS

As has become clear from the previous section, the modelling of MEMS provides a very
challenging task in microsystems engineering. Two important aspects related to this
task are the multiphysics nature of MEMS and the abstraction levels at which models
are developed. These topics will be described in the next two sections. In a subsequent
section, modelling with respect to dynamics in MEMS will be addressed. The modelling
considerations will lead to a list of model requirements that will provide the motivation
for the work presented in this thesis.

1.2.1 Multiphysics modelling

The field of research is inherently multiphysical of nature, since different physical phe-
nomena are tightly intertwined at microscale. Typically, up to four different physical
domains are usually considered in the analysis of microsystems: the mechanical, the
electrical, the thermal and the fluidic domain (Senturia, 2001; Gad-el Hak, 2002). For
each of these separate domains, well-established modelling and analysis techniques are
available. However, due to tight coupling between the domains at microscale, they should
not be considered separately. This greatly increases the complexity of microsystem design
problems because all disciplines involved have to be incorporated in simulation models.

Of the important challenges in micromechanical modelling, two appear to be most sig-
nificant (Senturia, 1998). The first is the critical step of connecting the behaviour of
the continuum, as expressed in, for instance, highly meshed simulations, to equivalent
lumped or reduced-order models that can be used efficiently for system-level design and
modelling. Secondly, non-steady-state dissipative behaviour has to be incorporated into
a modelling environment, without making unacceptable inaccurate assumptions or sim-
plifications. The reason why modelling and simulation for microsystems is important,
is obvious: computational prototyping, when sufficiently precise and fast, is far more
economical than physical prototyping, as it can shorten the design cycle and reduce the
time-to-market.
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Due to scaling in microelectromechanical devices, effects that normally remain hidden
in the macro-world can show up or even become dominant in microscale devices. Effects
that are negligible at macroscopic level may be important at microscopic level and vice
versa. For instance, for systems with smaller dimensions, the effect of gravity decreases,
while, simultaneously, the importance of surface effects increases. Therefore, common
reasoning, based on experience at macroscopic level is no longer valid; rules of thinking
may have to be modified. However, the boundary between the macroscopic and micro-
scopic levels is not sharp, but depends on the effects to be considered (Wautelet, 2001).

Additionally, there is a large difference between energy domains in which energy is
strictly conserved (like ideal elasticity, electromagnetic fields in linear, lossless media,
and ideal hydraulics) and those that have intrinsic dissipation mechanisms (fluidic vis-
cosity, friction, heat flow, viscoelasticity and hysteresis). It is important to discern be-
tween these energy domains because there is a major difference in their modelling. For
instance, in order to describe dynamical behaviour in conservative domains, forces can be
expressed as gradients of suitable (potential) energy functions. In the dissipative energy
domains, however, time-dependency is important as the dissipation depends explicitly on
the motion of the device considered. As a result, this poses much higher demands on the
complexity of the modelling and simulation tools.

According to Lin and Wang (2006), two groups of studies can be identified for the re-
search in the field ofmicrosystemsmodelling. The first group focuses on the introduction
of new designs or on the demonstration of new ideas. This group uses simple analytical
models (lumped or distributed) or generic finite element software to predict behaviour of
microdevices and compares this with experiments. Most of the analysis and prediction
methods are directly borrowed from the individual disciplines involved, such as linearisa-
tion, perturbation, energy methods and direct numerical integration. The second group,
on the other hand, mainly pays attention to the modelling of devices and to predicting
their dynamic behaviour. The modelling is considered the goal of the research in this
area, whereas the actual realisation of devices is considered to be less important.

The work presented in this thesis will mainly be rooted in the second group. However,
the modelling will not be considered as the goal per se. Experimental verification will
form an important and integral aspect of the work.

1.2.2 Modelling levels

The modelling and analysis of MEMS may take place on various levels of abstraction,
see Senturia (2001). In Figure 1.1, a simplified overview of these levels is depicted. Note
that this representation is specific for modelling and analysis. Other representations, con-
taining different (or more) dimensions of abstraction, such as the size of the (sub)system,
are also possible.

Four modelling levels can be identified in Figure 1.1: System, Device, Physical and Pro-
cess level. A movement to the right in the figure corresponds to a decrease in abstraction
level. Iterative exchange of information takes place between the various modelling levels.
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System

Device

Physical

Process

top-down design

bottom-up design

Figure 1.1 / Different modelling levels for MEMS (based on Senturia (2001)).

Furthermore, both at and across the modelling levels, simulation and (experimental) ver-
ification takes place. Finally, a top-down or bottom-up design approach is possible. The
different modelling levels and the flow across them will be treated in the next sections.

Process level

On the process level, the process sequence and the lithography masks for device manu-
facture are created. This is a highly numerical activity (Senturia, 2001) for which several
commercial tools have been developed, generally referred to as technology CAD (TCAD).
These tools can predict device geometry from the masks and process sequence. In this
work, the process level is the only level which will not be considered.

Physical level

The second level in microsystem design is the physical level, which describes the full
behavior of the three-dimensional continuum. Governing equations here are typically
partial differential equations (PDEs). Analytical methods can be used to find closed-form
solutions for ideal geometries, but the modelling of more realistic microstructures is of-
ten only possible with help of highly meshed 3D simulations. These models tend to have
a large number of degrees of freedom (DOFs) and consist of a combination of process (see
the process level), material and structural modelling. Due to the number of disciplines
interacting with each other, analytical analysis is either impossible or very cumbersome.
As a result, simulations in this modelling level are certainly necessary, but are impractical
for rigorously analysing (dynamic) behaviour of complete microstructures and their de-
pendency on physical parameters. Typical methods applied here are three-dimensional,
for instance, finite element (FEM), boundary element (BEM), computational fluid dynam-
ics (CFD) and finite difference (FD) methods. For each of these fields, special optimised
packages are available but coupling between them can still be difficult. However, nowa-
days, software packages with multiphysics capabilities appear2.

2For instance, finite element packages COMSOL Multiphysics (www.comsol.com) and ANSYS
(www.ansys.com).
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Device or component level

The device level is the third abstraction level in Figure 1.1 and corresponds to the domain
of, for instance, circuit and ODE (ordinary differential equations) simulators. Due to
limitations in computer resources, it is impractical to use highly detailed device level
models for simulating a complete microelectromechanical device. Instead, low(er)-order
behavioural models of the various components or disciplines involved in the device are
required. Typically, these consists of systems of ODEs, describing the dynamic behaviour.
This is often referred to as macromodelling or reduced-order modelling. In general, three
different methods can be applied to create reduced-order models (see Lishchynska et al.,
2004). Going from an analytical to a more numerical approach, these are:

• analytical derivation by applying model reduction or approximation techniques,
starting from PDEs and first principles;

• descriptive (heuristic) modelling by means of simplified models with an a priori
defined complexity;

• model extraction from dedicated and well-chosen numerical simulations (for in-
stance, FEM).

Depending on the type of modelling applied, models are generated that are still near to
physics, since they capture the essential physical behaviour of the component, while, at
the same time, they are compatible with the system level model at the highest abstraction
level. Reduced-order modelling allows the designer to determine parameter values and
load and boundary conditions for individual components or subsystems. It is used to
represent both static and dynamic behaviour to an acceptable level of fidelity.

System level

System level modelling is the highest, and most abstract level of modelling. This level
requires linking of various device (or component) level models – both electronic and
micromechanical – into a microelectromechanical system. Typically, block-diagram de-
scriptions and lumped-element circuit models for components are connected into a full
system. Mostly, this description is used for functional analysis of a design concept.

Top-down or bottom-up design approach

In general, two different design approaches are possible for designing and creating new
devices (see Figure 1.1). Within these approaches, some iteration usually takes place, but
this will not be elaborated further.

In the top-down approach, first at system level, critical design parameters in the design
space are determined. This can be done without giving much thought to which tech-
nology will be used and how implementation will take place. This is more or less a
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conceptual design phase. Once critical design parameters have been determined, focus
is shifted to examining implementation options and specific technologies through the
use of device or component level models. In this step, the system is decomposed into
components which are analysed by reduced-order models or even physical models. After
some iterations between the last two steps, prototyping (process level) and testing of the
new device can start.

In the bottom-up approach, a designer has a new idea for a microelectromechanical ap-
plication and starts with performing the necessary process and physical simulations to
determine device characteristics and to generate data necessary to create a reduced-order
model. Next, reduced-order modelling of the device is performed, together with the nec-
essary control and sensing circuitry to see how the component functions at device level.
Finally, system level modelling is conducted to determine the potential impact the device
will have on the whole system.

1.2.3 Modelling for dynamics

As stated in Section 1.1, the research presented in this thesis will address multiphysics
analysis and behavioural modelling in MEMS. The modelling approach will be developed
from a mechanical point of view with a strong focus on dynamics. The dynamic effects in
MEMS, that is, their spatio-temporal behaviour, is intrinsically nonlinear due to the small
size of the microstructures and due to multiphysics coupling between the physical fields.
For instance, nonlinear systems typically do not satisfy the superposition principle in
terms of input-output. The nonlinear dynamical effects in MEMS will be investigated by
means of modelling and simulation, together with experimental validation. Ultimately,
this will lead to a predictive modelling approach for addressing these effects. A graphical
representation of the focus of the research in this thesis is depicted in Figure 1.2.

On the left-hand side of Figure 1.2, the MEMS research field is depicted. As already de-
scribed in Section 1.1, two main research topics can be distinguished here: investigation
of production and manufacturing techniques and multiphysics modelling. On the right-

this thesis

production and
manufacturing

techniques

multiphysics
modelling

MEMS research

linear
dynamics

nonlinear
dynamics

dynamics modelling/analysis

Figure 1.2 / Research focus of the thesis: nonlinear dynamics modelling for MEMS in
multiphysics context.
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hand side of Figure 1.2, the dynamics modelling/analysis field is depicted. Both linear
and nonlinear dynamics topics are shown here. Actually, the topic of linear dynamics
may result from linearisation of the nonlinear dynamics of a system under investigation
around a certain operating point. As will become clear from Section 2.4, typical phenom-
ena that are considered in the nonlinear dynamics field are equilibrium points, periodic
solutions and their bifurcations.

The focus of the work in this thesis is depicted in the grey box in Figure 1.2: the work will
combine modelling and analysis for nonlinear dynamics with multiphysics modelling for
MEMS. This line of approach will be applied at and across the various modelling levels
depicted in Figure 1.1.

1.2.4 Model requirements

The technologies for fabricating a wide variety of MEMS devices have developed rapidly
during the past ten years (Senturia et al., 1997; Senturia, 2003), but computational tools
that allow engineers to design and optimiseMEMS have not kept pace. This forcesMEMS
designers to resort to expensive physical prototyping, which might result in an unaccept-
ably long product development cycle or unnecessarily conservative designs.

Therefore, in theMEMS field, there is a need for computational analysis and design tools,
which are efficient, accurate, versatile and applicable to practical design problems. Espe-
cially for the modelling with respect to (nonlinear) dynamics at the device of component
level, where reduced-order models are extracted from the physical level (see Figure 1.1),
mathematical expressions and functional relations for the description of the device are
needed. Important requirements for these models are the following (Senturia, 1998,
2001). The models should:

• be in an analytical or functional representation, such that reasoning about the ef-
fects of design changes is possible, without resorting to (FEM) simulations at the
physical level again;

• capture all the essential device behaviour in, preferably, only a few degrees of free-
dom;

• permit rapid calculation and insertion into system level simulation models;

• obey the laws of thermodynamics where appropriate, conserving energy in accor-
dance with the first law and dissipating energy in accordance with the second law;

• exhibit correct dependencies on device dimensions and material properties;

• represent quasistatic and dynamic behaviour for both small- and large-amplitude
excitations;

• be sufficiently accurate, when compared with experiments on suitable test devices
and with fully meshed 3D simulations, to permit the designer to proceed with con-
fidence that the final design will behave as expected.
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These requirements relate to the two main goals of models that are used as analysis and
design tool. They can be used for gaining insight in physical aspects that play a role
for MEMS devices and they can be used as a predictive modelling tool. Once the model
requirements are met, MEMS design can come to its full potential by combining both
simulations and experiments in the most effective way.

1.3 Research objectives and outline

Based on the insights from Section 1.2, the research objective for this thesis can be for-
mulated. It has become clear that one of the main challenges in the multiphysics field
of microsystems engineering is to connect models for describing the nonlinear dynam-
ical behaviour of the devices or components in each of the involved physical domains
to equivalent lumped or reduced-order models without making unacceptably inaccurate
assumptions and simplifications (which are often application dependent). This requires
correct and efficient coupling between the involved physical domains.

The main research objective of the work in this thesis is to address the model require-
ments of Section 1.2.4 by means of modelling approaches on the various levels in the
design of MEMS, see Figure 1.1. The approach is aimed at multiphysics modelling for
nonlinear dynamics in MEMS, see Section 1.2.3.

Furthermore, the research will focus on the dynamical behaviour of a specific class of
microsystems: microelectromechanical resonators, or MEMS resonators3. These res-
onators provide a promising alternative for quartz crystals in time reference oscillators,
due to their small size and on-chip integrability, see Nguyen (2005) and Nguyen (2007).
However, because of their small size, they have to be driven into nonlinear regimes in
order to store enough energy for obtaining an acceptable signal-to-noise ratio in the os-
cillator (Kaajakari et al., 2004a). Since these resonators are to be used as a frequency
reference in oscillator circuits, their steady-state (nonlinear) dynamic vibration behaviour
is of special interest, see the research focus depicted in Figure 1.2.

A heuristic modelling approach is investigated for two different MEMS resonators, a
clamped-clamped beam resonator and a dog-bone resonator. For the clamped-clamped
beam resonator, the simulations with the proposed model shows a good agreement with
experimental results, but the model is limited in its predictive capabilities. For the dog-
bone resonator, the proposed heuristic modelling approach does not lead to a match be-
tween simulations and experiments. Shortcomings of the heuristic modelling approach
serve as a motivation for a first-principles based approach.

A multiphysics modelling framework for nonlinear dynamics of MEMS resonators will
be derived that mainly takes place on the physical and device level in microsystem design,
see Figure 1.1. The modelling philosophy and the essence of first-principles based mod-
elling that underlie the framework will be explained. Also, the differences with heuristic

3Although the term MEM resonator would be grammatically correct, the term MEMS resonator is com-
monly used.
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modelling will be addressed. The framework is intended for fast and accurate simula-
tion of the steady-state nonlinear dynamic behaviour of MEMS resonators. Moreover, the
multiphysics model is validated by means of experiments. Although the multiphysics
modelling framework is proposed for MEMS resonators, it is not restricted to this appli-
cation field within microsystems engineering. Other fields, such as (resonant) sensors,
switches and variable capacitors, allow for a similar modelling approach.

The proposed semi-analytical (i.e. analytical-numerical) modeling framework is illus-
trated for a full case study of an electrostatically actuated single-crystal silicon clamped-
clamped beam MEMS resonator. The first-principles based approach allows for address-
ing the relevance of individual multiphysical effects in a straightforward way, such that
the models can be used as a (pre-)design tool for dynamic response analysis. The semi-
analytic approach can be considered to be complementary to conventional finite element
simulations. It is suitable for fast (preliminary) analysis of microdevices in order to deter-
mine influences of various multiphysical effects. Therefore, the approach is relevant and
important for simulation of MEMS, since fast and accurate computational prototyping
may greatly shorten the design cycle and thus the time-to-market of new products.

The work presented in this thesis can be categorised into the modelling levels described
in Section 1.2.2. Figure 1.3 shows a schematic overview of these modelling levels and
shows the positioning of most of the remaining chapters of the thesis. The outline is as
follows.

System

Device

Physical

Process

Ch. 5,6

Ch. (3,)7

Ch. 3

Ch. 4

Figure 1.3 / Outline and positioning of the work within the different modelling levels.

First, in Chapter 2, relevant background information on MEMS resonators and oscillator
circuits will be given. Furthermore, since a nonlinear dynamics point of view is used in
the modelling approach, some important aspects of the steady-state behaviour of nonlin-
ear dynamic systems will be described.

Next, in Chapter 3, (partly) heuristic device level models will be proposed for two case
studies: a clamped-clamped beam MEMS resonator and a dog-bone MEMS resonator.
The models will be verified by experiments. Shortcomings and limitations of heuristic
modelling will serve as the motivation for the next chapters.

In Chapter 4, the general multiphysics modelling framework for dynamics in MEMS will
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be proposed (this will take place on the physical modelling level). The philosophy behind
first-principles based modelling will be described. Next, relevant disciplines and physical
phenomena, some of which are specific for MEMS, will be discussed and the general
approach for deriving the reduced-order models will be described.

Next, the modelling framework will be applied to a case study of a clamped-clamped
beam MEMS resonator in Chapter 5. The resonator is similar to the one investigated in
the first case study in Chapter 3. Model assumptions will be elaborated and a detailed
derivation of models of varying complexity will be given. In this way, device level models
are constructed from physical level models. Furthermore, a simulation study will be
presented, in which the influence of individual nonlinear effects is investigated.

Chapter 6 contains the description of the experimental set-up. Furthermore, the mea-
surement techniques and the model parameter identification will be described which
will be used for a thorough experimental validation of the model(s) of Chapter 5.

In Chapter 7, the heuristic device level model for the clamped-clamped beam MEMS res-
onator, the first case study in Chapter 3, will be included in a system level simulation
model that uses the nonlinear MEMS resonator in an oscillator circuit. A technique,
called phase feedback, will be proposed, which allows for using the nonlinear MEMS res-
onator in a feedback circuit while the resonator operates in its nonlinear regime. Various
aspects of phase feedback will be investigated.

Finally, in Chapter 8, the main conclusions will be summarised and recommendations
for future work will be given.
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CHAPTER TWO

Background information

Abstract / Some background information on various subjects is presented in this chapter. It gives
an overview of oscillator circuits and their key properties. A historical overview of developments in
the field of micromechanical resonators is presented together with a desciption of their application
fields. The chapter ends with some concepts and tools for investigating the steady-state behaviour
of nonlinear dynamic systems.

2.1 Introduction

The research presented in this thesis focuses on microelectromechanical resonators that
are used as a frequency reference in the oscillator circuits. Conventionally used mechan-
ical quartz crystals provide high stability and exceptional precision as resonators. Over
the years, they have obtained a well-established position in, for instance, communica-
tions and sensing applications, ranging from aerospace and industrial to consumer and
automotive field. However, the ongoing trend of miniaturisation in industry demands
for resonators and oscillators with ever decreasing dimensions. The major drawback of
quartz crystals is that they are rather bulky in size and have poor integrability with IC-
technology. Their millimeter to centimeter size makes them only available as separate
packages which have to be matched to other IC components on a PCB.

Silicon micromechanical resonators provide an interesting miniature alternative for
quartz crystals in time reference oscillators. Due to their small size and on-chip inte-
grability, they have a very promising application potential that may ultimately lead to
the design of a single-chip radio. With respect to oscillator applications, micromechani-
cal resonators and quartz crystals mainly differ in their power handling capabilities (see
Lin et al., 2004). The larger quartz crystals are capable of handling much higher power
than their tiny micromechanical counterparts. As a result, micromechanical resonators
may be driven into nonlinear operation regimes more easily. For oscillator applications,
their steady-state (nonlinear) dynamic vibration behaviour is of interest, being one of the
main properties that determines oscillator performance.

13
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In the following sections, background information on several subjects will be provided.
First, in Section 2.2, an introduction to MEMS resonators and their application possibili-
ties will be presented. Additionally, a historical overview of developments in this field will
be given. Section 2.3 will provide background on one of the application fields of MEMS
resonators: oscillator circuits. Both the working principle and the key properties of os-
cillator circuits will be described. Finally, since a nonlinear dynamics point of view (see
Figure 1.2) will be utilised for the multiphysics modelling approach in the following chap-
ters, relevant concepts for analysis of the steady-state behaviour of (nonlinear) dynamical
systems will be introduced in Section 2.4.

2.2 MEMS resonators

Silicon integrated circuits have been used extensively in the field of digital circuitry since
their discovery in the early 1960s. Since the 1970s, further progress in this field has
been self-sustaining as already predicted in Nathanson et al. (1967). In other areas, one
could similarly benefit from the capabilities of integrated circuitry, but the application of
IC-technology has not progressed as rapidly.

Another area that has had a large benefit from integrated circuitry is the field of non-
digital circuits. In order to use silicon integrated circuits in non-digital systems, a com-
patible tuning element – oscillator or resonator – is needed to couple the non-digital and
the digital part (background on oscillators will follow in Section 2.3). Such a tuning de-
vice has to satisfy various constraints and properties, such as small size, capability of high
Q-factor1 and the possibility of batch fabrication conform the current IC-technology. The
use of a mechanical resonator seems to offer a promising solution that can satisfy these
constraints.

The first micromechanical resonant tuning device, compatible with silicon integrated
circuits and able to solve the aforementioned tuning problem, has been documented
by Nathanson et al. (1967). The authors describe a resonant gate transistor, which es-
sentially contains three elements that are always present in (micro)electromechanical
resonators:

1. an input transducer which converts an electric signal into a mechanical force;

2. a mechanical resonator, sufficiently isolated from the surroundings in order to ob-
tain a high Q-factor;

3. an output transducer to sense the motion of the resonator and to convert this mo-
tion into a corresponding electrical signal.

The resonant gate transistor, described in Nathanson et al. (1967), consists of a metal
(cantilever) beam electrode, clamped on one side to an insulating oxide and suspended

1The Q-factor is a measure for energy loss in a system. It can be defined as the ratio of the total energy
stored in a system to the sum of the energy losses per cycle.
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over a silicon slice. The input transducer is an insulated plate at the end of the beam,
which exerts an electrostatic force on the beam. At the mechanical resonance frequency
of the beam, appreciable vibration occurs. The motion of the beam is detected as a varia-
tion in the field-effect induced charge in the channel region of a MOS-type (Metal Oxide
Semiconductor) detector under the middle of the beam. Output is extracted as the ‘drain’
of this FET-like (Field Effect Transistor) element. The cantilever beam has a characteristic
length of around 0.5 mm, a thickness ranging from 3 to 8 µm and electrode gaps in the
order of 10 µm, yielding a mechanical resonance frequency in the range from kHz to
MHz.

The project on the resonant gate transistor was abandoned due to low Q-factors, high
temperature coefficients of frequency and aging of the metal films (Lin et al., 1992).

2.2.1 Research overview

After the first introduction of micromechanical resonators, described above, interest in
micromechanical resonators was renewed in the mid 1980s and, since then, the appli-
cations of micromechanical resonant elements have been ever increasing and they have
been of great interest for an ever expanding range of applications. The research history
in the field of microelectromechanical resonators can conveniently be represented in a
graphical overview, see Figure 2.1. This figure gives a partial overview of the research
that has followed after the paper of Nathanson et al. (1967). The vertical direction corre-
sponds to the time line. In the columns, the research contributions have been grouped
into three main application fields for microelectromechanical resonators: sensors, filters
and resonators for oscillators. These three fields will briefly be discussed next, based on
a number of selected publications. Several important contributions will be listed and key
papers have been indicated by boxes in Figure 2.1.

Resonant sensors

Research in the field of microelectromechanical resonators has started at the sensor side,
which is the biggest field of application. Resonant sensors, configured to have a mechan-
ical resonance frequency or relative phase with respect to the measurand, have an advan-
tage over conventional analogue sensors, see Langdon (1985) and Gast (1985). Namely,
their output can be measured directly in digital systems by pulse counting. For this rea-
son, resonator sensors are often referred to as being semi-digital in nature. The fre-
quency output of the resonator can easily be transmitted over large distances without
any error. Moreover, such a signal is much less susceptible to noise and interference
than non-periodic signals, and can be recovered using filtering or phase-locked-loop tech-
niques (Middelhoek et al., 1988).

The frequency change of resonant sensors can be caused by various effects (Langdon,
1985). For instance, variable stress or tension in a resonator structure may change the
resonance frequency. In this way, a stress dependent output signal is obtained. This
stress can be produced by a diaphragm (pressure sensor) or a bending beam to make a
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Figure 2.1 / Overview of the research in the field of micromechanical resonators.
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load cell. Additionally, other parameters associated with mechanical resonance, like mass
and damping, can be used to make measurements. For instance, the decay time of the
transient mechanical vibration of a resonator in a liquid depends on the viscosity of the
surrounding medium. Added mass effects due to the liquid can also be measured from
frequency changes, yielding information on the fluid density. Fluid velocity or surface
acoustic waves can be measured from phase differences between two sensing elements
placed close to each other. Finally, since both the elastic parameters and the density of
a resonator are temperature dependent, the frequency of a resonator is intrinsically a
function of temperature.

The first micromechanical sensor, a microbridge vapor sensor, was documented
in Howe and Muller (1986). The resonant element of this sensor is a polymer-coated
polycrystalline silicon microbridge.

The mechanical performance of resonators can be described by several key parame-
ters (Tudor et al., 1988). These include, but are not limited to, the mode shape, nonlinear-
ity, mode coupling, the quality factor Q, the intrinsic sensitivity to temperature and the
sensitivity to the measurand. A more extensive list of undesirable parameters is included
in Middelhoek et al. (1988) and contains drift, offset, time dependence, non-repeatability,
cross-sensitivity to temperature and strain, hysteresis, low resolution, low sensitivity, un-
suitable output impedance, self-heating and unsuitable frequency response. The nature
of these properties shows that resonator sensor design requires engineers to have an in-
timate knowledge of several closely related disciplines.

Three years after Howe and Muller (1986), the first comb drive resonator was described
in Tang et al. (1989). They described a polysilicon resonator, consisting of an interdig-
itated finger (or comb) structure that is driven electrostatically, for a virtually linear ac-
tuation. This device has served as the basis for the two other fields of application of
micromechanical resonators. Both the first micromechanical filter (Lin et al., 1992) and
the first oscillator (Nguyen and Howe, 1993a,b) have been based on Tang et al. (1989),
see Figure 2.1.

From the early 1990s, interest in resonant sensors has been growing rapidly. Many re-
searchers have acknowledged the potential of resonant sensors having semi-digital out-
put signals (Hauptmann, 1991; Stemme, 1991; Zook et al., 1991, 1992), especially for the
rapidly developing IC technology. Stemme (1991) has presented an extended review on
the various aspects that play a role in resonant silicon sensors.

The paper of Stemme (1991) also served as a basis for the resonant clamped-clamped
beam strain sensor, described in Tilmans et al. (1992), Legtenberg and Tilmans (1994)
and Tilmans and Legtenberg (1994), a few years later. These authors treat flexural
polysilicon resonators that are encapsulated in vacuum. From then, numerous differ-
ent resonator layouts have been proposed (see for instance Yao and MacDonald, 1996;
Roessig et al., 1997) and many publications have followed.
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Electromechanical filters

A second field of application for microresonators is to serve as a filtering element in
circuits. Micromechanical resonators typically can be used for electromechanical filter-
ing, HF (high-frequency) signal processing and mixing. Already in Lin et al. (1992),
a microelectromechanical filter has been demonstrated, based on coupled, lateral mi-
croresonators (Tang et al., 1989). This topology can be used to create band-pass filters.
Other examples of a similar topology have been described in Nguyen and Howe (1994)
and Nguyen (1995).

Device layouts other than comb drives have been used from 1996 onwards. For in-
stance, in Bannon et al. (1996) and Bannon et al. (2000), coupled microbridges are
used. Furthermore, in bandpass filtering applications, nonlinear effects may play an
important role. In Navid et al. (2001), a third-order intermodulation distortion in a sin-
gle capacitively-driven clamped-clamped beam micromechanical resonator is discussed.
In DeVoe (2001), piezoelectric micromechanical resonators have been investigated for
filtering purposes.

The latest developments include filters based on parametric resonance. In Napoli et al.
(2003), it is suggested, based on numerical and experimental investigations, to use para-
metric resonance in a microcantilever beam for filtering and sensor purposes. Investi-
gation of this effect is continued in Napoli et al. (2005), where coupled microcantilever
beams are considered, in order to create a bandpass filter and in Rhoads et al. (2005),
where a similar structure using comb drives is proposed.

Another example of filtering by means of microresonators is described
in Wong and Nguyen (2004). In communication receivers, often both highly selec-
tive filtering and low-loss, low-noise mixing has to take place. Instead of having two
separate or distinct components for this, these two functions can also be integrated into
one single device. For this mixer-filter, or ‘mixler’, a similar design as in Bannon et al.
(1996, 2000) is used.

Resonators for oscillators

The application field of resonators for oscillators has started from comb drive resonators
in 1993. Practically, Nguyen (Nguyen and Howe, 1993a,b) has started this field of ap-
plication and has continued this ever since (Nguyen, 1995; Nguyen and Howe, 1999).
In Nguyen and Howe (1993a), a completely monolithic high-Q oscillator is described,
which is fabricated via a combined CMOS (complementary metal-oxide-semiconductor)
and surface micromachining techniques. The resonator itself is made of polysilicon and
is both driven and sensed capacitively. In Nguyen and Howe (1993b), a similar oscillator
design is proposed, with an additional possibility for stabilisation against temperature
variations. A micro-oven technique is proposed for controlling and stabilising the center
frequency of a microresonator. The design consists of a microresonator, suspended above
a platform, whose temperature can be changed by on-platform heating resistors.

Since Nguyen (1995), more interest has been directed towards integration of mi-
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cromechanical resonators into oscillator circuits. The high Q-factor of micromechan-
ical resonators contributes to improved oscillator stability, but limited power handling
capability might prevent the oscillators from achieving the required short-term sta-
bility, or may cause nonlinear dynamic effects in resonators (Kaajakari et al., 2004a).
In Nguyen and Howe (1999), an extensive equivalent circuit analysis of a micromechan-
ical resonator based oscillator is presented.

Up to 1999, the work on resonators for oscillators has mainly concentrated on comb-
drive resonators having interdigitated or non-interdigitated combs (‘overlapping’ or ‘non-
overlapping’ fingers, respectively). However, since then, research interest has also been
directed towards other types of resonators. These other resonator layouts have been avail-
able from the sensors and filters application fields.

In Lee et al. (2001) a Pierce oscillator circuit has been proposed based on microbridge
resonators from Bannon et al. (1996) and Bannon et al. (2000). This work on oscillator
circuits has also continued for beam and disk resonators in Lin et al. (2004). All of these
devices are based on poly-Si, the isotropic variant of silicon.

InMattila et al. (2002a) andMattila et al. (2002b), single-crystal Si resonator devices have
been investigated. Both flexural and longitudinal resonators have been implemented
in oscillator circuits whose closed-loop response has been analysed and measured. The
phase noise response of these oscillators is found to be nearly as good as the one from
conventional quartz crystal based oscillators.

Their research has been continued towards oscillators based on different type of res-
onators (square plate) in Kaajakari et al. (2004c) and Kaajakari et al. (2005a).

Integrated circuits

Finally, the developments in the application fields of filters and resonators have led to inte-
gration of micromechanical components into electronic circuits. From the three applica-
tion fields described above, it has become clear that the benefits of resonators and vibrat-
ing microelectromechanical components go far beyond mere component replacement,
whether this is a sensor, filter or resonator for an oscillator. In fact, resonators are increas-
ingly becoming on-chip building blocks instead of discrete stand-alone devices (Nguyen,
2005, 2007). By connecting vibrating micromechanical structures into more general net-
works, so-called integrated micromechanical circuits, they will eventually be capable of
implementing virtually any signal processing function, which is presently realised us-
ing transistors. Reviews of the integration possibilities and demands are documented
in Nguyen (2005) and Nguyen (2007). Nowadays, a lot of research is directed towards
resonators for oscillator purposes, which is also the topic of the research presented in this
work. Backgroun information on oscillator circuits will be given in Section 2.3.
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2.2.2 Actuation and detection

The three different fields of application for microresonators (see Section 2.2.1) all require
some resonator structure that is excited into vibration and subsequent detection of this
vibration. As described in Stemme (1991) and Tilmans et al. (1992), six main types of
excitation techniques can be distinguished, each with a corresponding vibration detection
method. These are:

1. electrostatic excitation and capacitive detection;

2. dielectric excitation and capacitive detection;

3. piezoelectric excitation and detection;

4. resistive heating excitation and piezoresistive detection;

5. optical heating excitation and optical detection;

6. magnetic excitation and detection.

In contrary to macroscopic mechanical world, mechanical actuation and detection (dis-
placement measurement) is not applied, since the structures under consideration are too
small.

The research in this work will mainly be confined to the first actuation/detection princi-
ple. Electrostatic excitation combined with capacitive detection is an attractive approach
for silicon microstructures because of simplicity and compatibility with micromachin-
ing technology (Tang et al., 1989; Tilmans et al., 1992). This actuation/detection princi-
ple has been used since the first micromechanical resonators (see also Nathanson et al.,
1967). Therefore, it is used in the majority of the current research on microelec-
tromechanical resonators. Additional background on the other methods can be found
in Stemme (1991), Tilmans et al. (1992), Beeby (2004) and Kaajakari (2009).

For electrostatic actuation as well as for capacitive detection, two electrodes are used,
which are located in close proximity to each other. One electrode is formed by (a part
of) the vibrating structure and the other by a stationary surface. The driving load, an
ac voltage across the electrodes, will result in an alternating force between the two plates,
causing resonator vibration. From an electrical point of view, the pair of electrodes consti-
tutes a capacitor, whose capacitance varies with the distance between the two electrodes.
As a result, capacitive detection is based on the ac current that will be induced by the
resonator vibration. For proper operation in terms of signal conditioning, it is required
that the capacitor is dc-biased (Tilmans et al., 1992). Larger bias voltages may result in
higher ac-currents, but may also change the (nonlinear) dynamic behaviour of a resonator
significantly.

Capacitive excitation and detection is a very effective principle when resonators are oper-
ated in vacuum, avoiding air damping between the plates. However, the use of capaci-
tive excitation and detection requires relatively large electrode plates and small electrode
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gaps in order to achieve usable signal amplitudes for reasonably low excitation levels. A
solution to this problem may be found in comb-drive resonators. Here, movement or vi-
bration of the (non-)interdigitated combs results in change in the effective electrode area,
rather than the electrode distance.

2.2.3 Resonator types

All MEMS resonators consist of some vibrating mechanical part, whose vibration results
in deformation of (part of) the structure. Based on their layout and the type of structural
deformation, resonators can roughly be grouped into three different categories (Stemme,
1991), which are schematically depicted in Figure 2.2 for a cantilever beam resonator:
flexural resonators, torsional resonators and bulk or longitudinal resonators. These three
categories will be described next.

(a) flexural (b) torsional (c) longitudinal/bulk

Figure 2.2 / Three different types of vibration for a cantilever beam.

Flexural resonators

A large group of resonators consists of flexural resonators. Also the first micromechan-
ical resonator (Nathanson et al., 1967) was a flexural resonator. Structural deformation
for these resonators is out-of-plane, like a transverse vibration of a beam or diaphragm.
Basic flexural resonator shapes are cantilever beams, clamped-clamped beams (bridges)
and diaphragms or rings. For the basic flexural resonator shape in Figure 2.2(a), flexural
structural deformation takes place in almost the whole resonator. Therefore, the vibration
frequency of these resonators is highly sensitive to initial stress or strain present in the
material. Based on a doubly-clamped beam, a resonant strain gauge has been proposed
in Tilmans et al. (1992), Legtenberg and Tilmans (1994) and Tilmans and Legtenberg
(1994). The sensing principle is based on the fact that the resonant frequency changes
as a function of axial forces on the ends of the bridge, resulting in axial stress in the
resonator.

The basic resonator shapes can also be used for micromechanical filtering purposes.
For instance, in Bannon et al. (2000) and Napoli et al. (2005), two coupled bridge and
cantilever resonators have been used for filtering purposes, respectively. Cantilever and
doubly-clamped beam structures have been proposed as resonators for oscillator purposes
in Mattila et al. (2002a), Kaajakari et al. (2004a) and Lin et al. (2004).

Furthermore, vibration of a flexural resonator can take place in several different forms.
Namely, depending on the frequency at which a resonator is driven, vibration can take
place in fundamental vibrationmodes or higher (overtone) modes. Excitation of a specific
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vibration mode is achieved by electrode placement around the resonator.

Based on combinations of the basic flexural resonator shapes, a large variety of other
resonators has been designed, in which these basic shapes are used as building blocks.
For instance, some resonators resemble tuning forks (Stemme, 1991; Beeby and Tudor,
1995) and consist of at least two cantilever or doubly clamped beams. These designs
have been claimed to perform better than single-beam resonators in terms of balancing
vibration. Namely, due to anti-phase vibration of two different parts of the resonator,
losses through the suspension are supposed to be lower.

Comb drive resonators are a group of flexural resonators that make use of localised de-
formation. Almost all comb drive resonators consist of a large moving mass with combs,
suspended via thin, flexible beams, in which the structural deformation takes place. A re-
cent example of a comb drive that is used for investigation of pull-in behaviour has been
described in Rocha (2005).

Often, in comb drive resonators, two groups of combs are present, one of which is used
for driving the resonator into resonance and the other for detecting the motion by means
of a capacitance change. A limitation of comb drive resonators is that their resonance
frequencies are in the kHz range, due to their large moving mass.

Torsional resonators

Next to the resonators which feature transverse structural deformation as described
above, also resonators based on torsional deformation can be used of, see Figure 2.2(b).
One of the first torsional resonators has been described in Buser and Rooij (1990) and
consists of a vane and two torsional bars. For this resonator, structural deformation is
localised in the two torsional bars on either side of the beam. The advantage is that,
for small torsional deformations, only moments and no forces are transmitted at the
clamping parts of the resonator. Therefore, only pure shearing will be present in weak
torsion (Buser and Rooij, 1990), which is accompanied by no volume change in the ma-
terial during deformation. As a result, very little internal damping is expected.

In Turner et al. (1998), a comb-drive actuated torsional resonator is described, which is
intended for scanning probe microscopy. Similar to Buser and Rooij (1990), torsional
deformation is localised in two torsional bars. The resonator is excited parametrically, in
order to separate the drive and sense side.

Another example of a torsional resonator is found in Ataman and Urey (2006), who de-
scribe a two-axis resonant microscanner. Such devices can produce a well-controlled 2D
scan pattern, which is needed in various imaging applications. Typical oscillation fre-
quencies of torsional resonators are limited to several tens of kHz, due to the high inertia
of the resonators. This forms a limitation of torsional resonators for oscillator purposes,
since they cannot reach the high oscillation frequencies of conventional quartz crystals.



2.3 OSCILLATORS 23

Longitudinal/bulk resonators

A third group of resonators is based on bulk material deformation. The vibration pattern
in these so-called bulk resonators, consists of either surface acoustic waves (SAW) or bulk
acoustic waves (BAW), which travel along on the surface of the resonator or through the
resonator body itself, respectively. In this way, a large part of the resonator participates
in bulk vibration. Therefore, the resonators can store more energy and their damping is
approximately equal to the intrinsic material damping present in the material.

One of the first bulk acoustic resonators has been reported in Ruby and Merchant (1994).
The device consists of a thin layer of piezoelectric material (AlN), sandwiched between
two electrodes. The bulk acoustic deformation consists of a transverse bulk wave in the
piezoelectric material between the two electrodes.

Since 2002, interest has been renewed for bulk acoustic resonators. In Mattila et al.
(2002b), a single-crystal silicon beam resonator has been described, in which the vibra-
tion shape consists of a longitudinal wave in the beam. Actuation and detection of the
motion takes place electrostatically.

A two-dimensional bulk acoustic resonator has been investigated in Kaajakari et al.
(2003b, 2004c). The described square plate resonator features a bi-directional in-plane
structural deformation, in which the plate extends or contracts in both directions. Actua-
tion is realised electrostatically, using four electrodes on the sides of the plate.

Next to basic beam or plate-like structures for bulk resonators, single-crystal silicon disk
resonators have also been investigated, see for instance Pourkamali and Ayazi (2003),
Hao et al. (2004), Pourkamali et al. (2004) and Lin et al. (2004). These electrostatically
actuated resonators vibrate in elliptic bulk modes and are supported by one or more
beams on their perimeter. The support beams (or anchors) are placed at nodal points
of the elliptic mode and the electrodes are also placed at optimal locations around the
perimeter of the disk.

2.3 Oscillators

An oscillator is a system, most often an electrical circuit, that produces a stable periodic
output signal. In general, its output is sinusoidal, although the periodic output wave-
form can have sawtooth or square wave shapes, or any other periodic shape. Output
frequencies may typically range from tens of kHz to hundreds of MHz (and even GHz).
A schematic representation of an oscillator is depicted in Figure 2.3.

Virtually all oscillators consist of three essential components (Gerber and Ballato, 1985;
Vig and Ballato, 1999): an amplifier (or gain circuit), a resonator, which acts as a fre-
quency selective element and an amplitude control/limitationmechanism. The amplifier
usually consists of one or more active devices (needing power supply) and the neces-
sary biasing networks. It may also contain other elements for band limiting, impedance
matching and gain control. The amplifier design and technology, together with the res-
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Figure 2.3 / Basic oscillator circuit, containing amplifier A and resonator R.

onator, determine the oscillator (noise) performance. In addition, the resonator deter-
mines the frequency and stability (in terms of phase noise, for instance) of the generated
signal. It can be an LC circuit, a quartz crystal, a transmission line, a dielectric resonator,
a cavity resonator, or a MEMS resonator, which is able to vibrate at a specific angular fre-
quencyΩ. Next to the resonator, some other components might be present, like variable
capacitors for tuning or frequency trimming.

2.3.1 Working principle

The working principle of the oscillator circuit in Figure 2.3 can be understood by observ-
ing that the output of the resonator is fed back to the amplifier. If this happens with the
correct amplitude and phase, sustained oscillations may occur, see Salt (1987). Suppose
the amplifier has a voltage gain A and the resonator has a voltage ratio R. Consider for
the moment that a signal e exists at the input of the amplifier. The signal appearing at
the output terminal of the amplifier will be Ae. When this signal is transferred through
the resonator, the ‘new’ amplifier input reads e′ = RAe. If e′ has the same angular fre-
quency and phase as e and if |e′| ≥ |e|, the circuit will oscillate. In general, both A and
R are complex functions of the angular oscillation frequencyΩ. By writing their complex
gains as R = GR(Ω) exp( jψR(Ω)) and A = GA(Ω) exp( jψA(Ω)), respectively, the
total gain of the oscillator circuit becomes:

RA = GR(Ω)GA(Ω) exp( j(ψR(Ω) +ψA(Ω))). (2.1)

Here, GR(Ω) and GA(Ω) are the magnitudes of the resonator and amplifier gain, respec-
tively and ψR(Ω) and ψA(Ω) represent the corresponding phase shifts. The require-
ments for oscillation can now be formulated as follows:

ψR(Ω) +ψA(Ω) = 2nπ , n ∈ Z (2.2)

GR(Ω)GA(Ω) ≥ 1. (2.3)

The first condition (2.2) states that the total phase shift around the oscillator must be
an integer multiple of 2π radians. The oscillation frequency is determined by this con-
dition. At this frequency, the second condition (2.3) states that the magnitude of the
amplifier gain must be sufficient to compensate for the resonator losses. In other words,
the loop gain must be greater than unity in order for oscillations to build up. As a result,
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the signal level in the loop will continue to increase until the amplifier gain is reduced,
either by nonlinearities in the active elements or by some automatic level-control method.
Eventually, in steady-state, (2.3) becomes an equality.

When the oscillator is initially turned on, the only signal present in the circuit is (‘white’
or thermal) electrical noise associated with the components (mainly the active ones) in
the circuit. The frequency component of the noise that satisfies the phase and gain re-
quirement for oscillation is propagated around the loop with increasing amplitude, until
the steady-state situation with sustained oscillation is reached. The rate of increase of
the signal amplitude depends on the excess gain of the loop. Both the phase require-
ment (2.2) and the gain requirement (2.3) make that the resonator acts as a very selective
band-pass filter in the oscillator circuit.

2.3.2 Key properties

A number of key properties of oscillators can be listed, see Vig and Ballato (1999). The
overview, presented next, lists some of the most important properties. Depending on the
specific application of the oscillator, relevance and importance of the properties may vary.

Accuracy, stability and precision

The terms accuracy, stability and precision are the main terms used for describing oscil-
lator’s quality with respect to various influences (see Vig and Ballato, 1999). Typically,
these quantities are measured over time, and are expressed in units of ppm (parts per
million). Depending on the length of the time interval considered, indications on aging,
drift and phase noise can be obtained. In general, oscillators are designed to operate on a
certain target frequency, often called center frequency fc or nominal frequency fnom.

Accuracy is the extent to which a given measurement, or the average of a set of mea-
surements, agrees with the intended nominal frequency. The ability of a single oscillator
to produce the same frequency, without adjustment, each time it is put into operation,
is called reproducibility. Therefore, from the point of view of the user of an oscillator,
reproducibility has a similar meaning as accuracy.

Stability is a measure to describe the change in frequency of an oscillator, under influence
of various parameters like time, temperature and shock. Similar to accuracy, stability is
also expressed in ppm.

Finally, precision expresses how well a given set of measurements of one sample agrees
with the mean of the set (measure for process spread). This is not necessarily the same
as accuracy, as a frequency source could be inaccurate but precise.
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Aging

Aging (long-term stability) is the systematic cumulative change in oscillator frequency,
due to electrical, thermal, physical and chemical internal changes in the oscillator, over a
long time period (typically > 100 hours) (Vanier et al., 1992). At a constant temperature,
aging usually has an approximately logarithmic dependence on time, see also Figure 2.4.
The aging rate of an oscillator is expressed as a frequency stability in ppm per year and
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Figure 2.4 / Long-term (aging) and short-term stability of an oscillator output.

is highest when it is first turned on. Primary causes for this long-term effect are stress
relief in the oscillator material and the mounting structure, mass transfer to or from the
resonator’s surfaces (for instance due to contamination) and changes in the oscillator
circuitry. Therefore, to achieve low aging, oscillators must be fabricated and hermetically
sealed in an ultra-clean high-vacuum environment.

In order to maintain an accurate oscillation frequency, periodic oscillator adjustments
have to be made (calibration) to remove the effects of aging. In general, this can be done
in the amplifier by a slight change in the phase of the feedback signal (see Figure 2.3).

Phase noise

As the time interval during which the oscillator output is considered gets shorter, random
frequency fluctuations are resolved, see Figure 2.4. Oscillator phase noise is a measure
for short-term frequency variations or time-domain stability. Therefore, phase noise de-
termines the frequency domain uncertainty of an oscillator.

Frequency fluctuations are caused by noise in the amplifier and circuit components
and, in addition, by naturally occurring thermal noise generated in resistive elements
and by other dissipative effects, like mechanical loss, see for instance Kaajakari (2009).
The noise can have numerous adverse effects on system stability and performance,
see Vig and Ballato (1999).

To illustrate the concept of phase noise (see for instance Hajimiri and Lee, 1999;
Lee and Hajimiri, 2000; Ham et al., 2004), consider an ideal oscillator circuit that gen-
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erates a periodic signal Vout(t) with constant amplitude V0 and phaseφ0:

Vout(t) = V0 cos(ω0t +φ0). (2.4)

In practice, however, circuit and device noise is present, which causes the output of the
oscillator to be no longer ideal but to have the form:

Vout(t) = V0[1 + A(t)] f (ω0t +φ(t)). (2.5)

Here, the excess amplitude A(t) and phaseφ(t) are functions of time and f (·) is a peri-
odic function, representing the shape of the steady-state waveform output. As a result, the
output power spectrum will show sidebands close to the frequency of oscillationω0 (and
its higher harmonics if the periodic waveform f (·) is not sinusoidal). These sidebands
are generally referred to as phase noise sidebands.

From a frequency domain point of view, the short-term frequency variations of an
oscillator are usually characterised in terms of single sideband noise spectral den-
sity (Hajimiri and Lee, 1999). This is conventionally expressed in units of decibels below
the carrier per Hertz (dBc/Hz) and is given by:

L(∆ω) = 10 log

(
Psideband(ω0 +∆ω, 1 Hz)

Pcarrier

)

, (2.6)

where Psideband(ω0 + ∆ω, 1 Hz) represents the single sideband power at a frequency
offset ∆ω from the carrier in a measurement bandwidth of 1 Hz. Both amplitude A(t)
and phase φ(t) fluctuations (see (2.5)), may result in phase noise. In practice, however,
all stable oscillators have some kind of amplitude restoring mechanism, which restores
the oscillator output to the stable periodic solution. Therefore, amplitude fluctuations
A(t) will decay over time, whereas phase fluctuationsφ(t) will not. Therefore, the latter
are the dominant factor for close-in phase noise.

A well-known and widely accepted model for oscillator phase noise has been proposed
by Leeson (1966). The model is based on thermal noise considerations for a linear
time-invariant LC-oscillator and predicts the following behaviour for L(∆ω) (see Leeson,
1966; Hajimiri and Lee, 1999; Lee and Hajimiri, 2000, for details):

L(∆ω) = 10 log

{

2FkBT

Psig

[

1 +

(
ω0

2Q∆ω

)2](

1 +
ω1/ f 3

|∆ω|

)}

. (2.7)

Here, F is an empirical fitting parameter, kB is Boltzmann’s constant, T is the absolute
temperature, Psig is the average power dissipated in the resistive part of the oscillator,
ω0 is the oscillation frequency, Q is the effective quality factor of the oscillator, ∆ω is
the frequency offset from the carrier and ω1/ f 3 is the corner frequency between the 1

f 3

and 1
f 2 regions. A schematic plot of the phase noise according to (2.7) is depicted in

Figure 2.5. Regions with different slopes may be identified in L(∆ω). At very large offset
frequencies, a flat noise floor is present, at smaller frequency offsets, regions with slopes
proportional to 1

f 2 and 1
f 3 are present. The corner between these two regions is atω1/ f 3.

Details on the precise shape of the spectrum can be found in Hajimiri and Lee (1999).
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Figure 2.5 / Spectrum of the phase noise according to equation (2.7) (Leeson, 1966).

Temperature effects

In general, the frequency at which an oscillator operates, depends on the physical proper-
ties of both the resonator and the amplifier circuit. As these properties may change with
temperature, also the oscillation frequency may change, resulting in so-called tempera-
ture drift and oscillators having a certain finite warm-up time.

Temperature drift requirements are often specified in terms of frequency stability over
a relevant temperature range. Temperature and rate of temperature changes result in
thermal gradient-induced stresses and the accompanying thermal(-transient) frequency
changes. This could even result in thermal hysteresis for the oscillation frequency. This
means that an oscillator, whose temperature is raised by a few tens of degrees and then
lowered, may not return to the same frequency.

Furthermore, when power is applied to an oscillator or frequency standard, it takes a finite
amount of time before the equilibrium frequency stability is reached. Warm-up time is
the time taken by an oscillator, after turn on, to reach a steady state in which the quoted
specifications are met (Vanier et al., 1992). The warm-up time of an oscillator generally
is a function of the thermal properties of the resonator, the oscillator and input power
and the temperature prior to turn-on. It takes for simple crystal oscillators typically a few
seconds to warm up. Namely, in a high-Q circuit, it takes a finite amount of time for the
signal to build up. During this build-up, the few tens of milliwatts of power dissipated in
the oscillators change the temperature and, as a result, it takes some time for an oscillator
to reach steady-state.

Power requirement and dissipation

The resonator in an oscillator is analogous to a mechanical clock. This clock relies upon
permanent exchange between kinetic and potential energy in the resonator. Due to sev-
eral energy dissipation mechanisms, an oscillator requires energy to sustain the vibration
in the resonator. Typical values for the power dissipation range from 1 µW to 5 mW,
and usually a maximum allowable value is specified. Furthermore, excessive drive levels
may cause damaging mechanical vibration in the resonator (for both quartz crystals and
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MEMS resonators). Therefore, usually the operating point is chosen at a low-amplitude
drive level, in order to avoid damaging mechanical vibrations. By this requirement, an
oscillator is designed to operate at a nominal supply voltage and current. Their values de-
pend on the specific application. For certain applications like frequency standards, ample
power is available, but for mobile communication purposes, for instance, the oscillator
has to operate from batteries, with a typical value of Vsupply = 2.4 V. Oscillator manufac-
turers have to indicate a certain supply voltage, needed for the oscillator to operate within
specification. Changes in supply voltage cause changes in the oscillation frequency. This
sensitivity is expressed as frequency stability in ppm versus change in supply voltage.

2.4 Steady-state behaviour of nonlinear dynamical systems

In oscillator circuits, the steady-state dynamic behaviour of the resonator determines
oscillator performance. Often, nonlinear behaviour is introduced in MEMS resonators
for oscillator circuits, for example due to electrostatic actuation, nonlinear strain-
displacement relations or nonlinear constitutive equations. Therefore, in this section,
some concepts and tools for addressing the steady-state behaviour of nonlinear dynam-
ical systems will be introduced. These will be used in the following chapters, in ac-
cordance with the research focus on multiphysics modelling for nonlinear dynamics,
see Section 1.2.3. For a more detailed introduction in nonlinear dynamics, see, for
instance, Guckenheimer and Holmes (1983), Parker and Chua (1989), Seydel (1994),
Strogatz (2000), Thompson and Stewart (2002) and Thomsen (2003).

2.4.1 Nonlinear dynamical system

In general, the equations of motion for a dynamical system as considered in this work
consist of both first-order and second-order ODEs in time and can be written as

Mq̈ + fin(q, q̇, r) = fex(q, t), (2.8a)

Tṙ = fth(r, q̇), (2.8b)

where q ∈ Rn represents the column with the n system DOFs related to the second-order
variables (position) and r is the columnwith n systemDOFs related to first-order variables
(temperature). Furthermore, t ∈ R denotes time, M denotes the constant n × n mass
matrix, fin(q, q̇, r) ∈ Rn denotes the column with internal nonlinear spring, damper
and thermal forces, T denotes the constant n × n matrix with thermal time constants,
fth(r, q̇) ∈ Rn denotes the column with heat-generating terms. Coupling between the
thermal and position variables stems from thermoelastic damping. This will become
clear in Chapter 4. Finally, fex(q, t) ∈ Rn in (2.8a) denotes the external forces depending
on position and time. If fex(q, t) is not explicitly dependent on time, system (2.8) is
called autonomous, otherwise, it is called non-autonomous. The systems considered in
this work are non-autonomous. Their external forces are either constant in time (static)



30 2 BACKGROUND INFORMATION

or they are periodic with a certain fundamental excitation frequency fe. In that case, the
(minimal) period time equals Te = 1/ fe, such that:

fex(q, t + Te) = fex(q, t). (2.9)

System (2.8) can be rewritten to a set of first-order ODE by introducing the state x1 =
[
qT q̇T rT

]T
, x1 ∈ R3n. In this way, (2.8) becomes

ẋ1 = f1(x1, t), (2.10)

where the vector field f1 : R
3n → R

3n is given by (see also (2.8)):

f1(x1, t) =





q̇
M−1[fex(q, t) − fin(q, q̇, r)]

T−1fth(r, q̇)



 . (2.11)

When the system (2.10) is periodically forced with a single frequency fe, that is, the time-
dependency in fex(q, t) consists of sin(2π fet) and cos(2π fet) terms, it can be rewritten
to an autonomous system by extending its state x1 with two equations for a nonlinear
oscillator:

ẋ = x + 2π fey − y(x2 + y2),

ẏ = −2π fex + y − y(x2 + y2). (2.12)

Oscillator (2.12) has the asymptotically stable solution (x, y) = (sin(2π fet), cos(2π fet))
and can be inserted into the external forcing function instead of the explicit time-
dependency. The forcing then becomes fex(q, x, y). The extended state can be defined as

x =
[
xT

1 x y
]T
, x ∈ R3n+2 such that the autonomous form of (2.10) becomes

ẋ = f(x), (2.13)

where the vector field f : R3n+2 → R3n+2 is given by:

f(x) =









q̇
M−1[fex(q, x, y) − fin(q, q̇, r)]

T−1fth(r, q̇)
x + 2π fey − y(x2 + y2)

−2π fex + y − y(x2 + y2)









. (2.14)

The long-term response of equivalent systems (2.8) and (2.13) consists of a transient re-
sponse, after which the system settles into a steady state solution for t → ∞, which
may be a static equilibrium, a periodic solution, a quasi-periodic solution or a chaotic
solution (Thompson and Stewart, 2002; Thomsen, 2003). Moreover, steady-state solu-
tions may coexist and which solution will be reached depends on the initial condition
x(t0) = x0 of the system. For this work, quasi-periodic and chaotic solutions are not
relevant, therefore, no further information will be given on these types of solutions.
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Often, it is of interest how the dynamic behaviour of a system changes under variation
of one (or more) of the system parameters, for instance, a static load value, a dynamic
load amplitude or the excitation frequency. Therefore, consider a parameterised version
of (2.13)

ẋ = f(x,µ), (2.15)

where µ denotes a system parameter of interest. Typically, small changes in the system
parameter µ may result in small quantitative changes of the long-term system response.
However, a small change in µ may also cause a qualitative change in system behaviour.
So-called bifurcationsmark these qualitative changes in system behaviour. The parameter
value of µ at which this change occurs is called a bifurcation point. For instance, the num-
ber and/or the stability of the long-term solutions may change. A general classification of
bifurcations can be found in Guckenheimer and Holmes (1983), Thompson and Stewart
(2002) and Thomsen (2003).

A dynamical system is considered structurally stable (Guckenheimer and Holmes, 1983;
Thomsen, 2003) if there exists no infinitesimal perturbation in the parameters of the sys-
tem that results in a qualitative change of its long-term behaviour. A bifurcation can occur
when a system is structurally unstable. A system that is structurally unstable does not re-
tain its qualitative properties for small parameter changes. The qualitative behaviour of
the system for parameter values µ around a bifurcation point can be graphically repre-
sented in a so-called bifurcation diagram, in which a response measure is depicted versus
the system parameter µ.

The codimension of a bifurcation is the smallest dimension of a parameter space that
contains the bifurcation in a persistent way (Thomsen, 2003). Bifurcations that will be
studied in this work are typically co-dimension one bifurcations, which means that they
need only a single system parameter to unfold them.

In the next two sections, static equilibria and periodic solutions of the system (2.8)
or (2.13) will be discussed. The reason why these topics are relevant for MEMSwill also be
given. Furthermore, stability analysis and bifurcations for static equilibria and periodic
solutions will be described.

2.4.2 Equilibrium points, local stability and bifurcations

As stated in Section 2.2.2, mainly electrostatically actuated MEMS are be considered in
this thesis. In general, two electrodes, which are separated by a gap, are present in such a
device. Upon increasing the voltage over the electrode gap, a phenomenon called pull-in
may occur, see for instance Senturia (2001). At a certain voltage, the electrostatic force
may overcome the mechanical force (related to the stiffness) of the structure and the
electrode gap suddenly closes (pulls in). The reason for studying equilibrium points and
their stability for MEMS is because, from a static point of view, pull-in is associated with
a static equilibrium point losing its stability.

For static equilibria, consider system (2.8), in which all time-dependency is removed. The
solution to part related to the thermal variables (2.8b) will yield r = 0, since ṙ = 0 and
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q̇ = 0. When a constant, or static, external force fex(q) acts on the system (2.8a), it will
settle in an equilibrium, or a fixed point, qe of (2.8), characterised by q̇ = q̈ = 0, giving:

fin(qe) = fex(qe). (2.16)

By defining fst(q) = fin(q) − fex(q), where fst : Rn → Rn, (2.16) can be rewritten to

fst(qe) = 0. (2.17)

The equilibrium point(s) can be determined by solving the system of algebraic equa-
tions (2.17). This can be done numerically, by a zero-finding algorithm based on, for
example, (damped) Newton-Raphson iteration (Heath, 2002).

Local stability of an equilibrium point qe follows from the eigenvalues of the Jacobian
of (2.17) at an equilibrium point. The Jacobian is given by

J(qe) =
∂fst

∂q
(qe). (2.18)

It has n real eigenvalues, since it is symmetric. Let λi denote the ith eigenvalue of J(qe).
An equilibrium point qe is said to be

1. locally stable if all eigenvalues λi are positive,

2. locally unstable if one or more λi are negative,

3. at a bifurcation point if one or more λi = 0.

With respect to the type of (codimension one) bifurcations that will be encountered in
this work, only limit-points (also called saddle-node bifurcations, turning-points or fold
bifurcations, see Thomsen (2003)) are of relevance, see Figure 2.6.
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Figure 2.6 / Bifurcation diagram of an equilibrium, containing a limit-point (LP).

This type of bifurcation occurs where a branch of stable equilibrium points and a branch
of unstable equilibrium points merge. Consider Figure 2.6 where, for large parameter
values, locally no equilibrium exists. Upon decreasing the parameter, a stable and an
unstable equilibrium point are created. The name limit point (turning point) arises from
the fact that the tangent to the branch of equilibria is vertical in the bifurcation point.
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2.4.3 Periodic solutions, local stability and bifurcations

When the system (2.8) is subject to periodic forcing (2.9), it may show a periodic re-
sponse. In the MEMS field, microstructures may be excited periodically, such as vibrat-
ing sensors, filters, and resonators for oscillators. Periodic solution analysis is relevant for
these structures, since one may be interested in what response these structures have at a
certain excitation frequency. Stationary oscillations that may occur in these microstruc-
tures are denotes by the term steady-state periodic solutions. In contrast to linear systems,
the steady-state periodic response does not have to have the same period as the excitation
and it does not need to be unique. In general, the response obeys





q(t)
q̇(t)
r(t)



 =





q(t + nTTe)
q̇(t + nTTe)
r(t + nTTe)



 , (2.19)

where nT ≥ 1, nT ∈ N and Te denotes the (minimal) excitation period. If nT = 1, the
response is called harmonic, while for nT ≥ 2, the response is called a 1/nT subhar-
monic of order 1/nT or a period-nT solution. In general, for an excitation with a base
frequency fe, the system response contains higher harmonic frequencies which are inte-
ger multiples of fe. If one of these higher frequencies, say m fe causes a resonance, the
system is said to exhibit an mth superharmonic resonance (see also Fey, 1992; Fey et al.,
1996; van de Vorst, 1996). Additionally, quasi-periodic or chaotic responses may occur,
see Thompson and Stewart (2002) or Thomsen (2003), but these will not be discussed
here.

In general (autonomous) form, a periodic solution xp(t) for system (2.13) satisfies

xp(t) = xp(t + nTTe). (2.20)

Periodic solutions can be calculated numerically by solving an initial value problem as
discussed in Section 2.4.1. However, certainly for lightly-damped systems, which have
long transient responses before the steady-state solution is reached, it is much more ef-
ficient to solve a two-point boundary value problem that satisfies (2.19) or (2.20). Var-
ious numerical algorithms exists for this purpose, for instance the (multiple) shooting
method (Seydel, 1994; Nayfeh and Balachandran, 1995), the incremental harmonic bal-
ance method (Lau and Cheung, 1981; Lau et al., 1982; Pierre and Dowell, 1985), the finite
difference method (Parker and Chua, 1989; Fey, 1992) and the orthogonal collocation
method (Doedel et al., 1998). The last one will be applied extensively in this work.

Local stability of periodic solutions can be addressed using techniques that are based on
Floquet theory, see for instance Guckenheimer and Holmes (1983) and Seydel (1994).
Stability conditions follow from the linearisation of (2.13) around xp(t). A perturbed so-
lution x(t) = xp(t) + ∆x(t) must also satisfy (2.13). Stability of the periodic solution
is determined by investigating how an initial perturbation ∆x(t0) around the periodic
solution evolves in time. The mapping of an initial perturbation ∆x(t0) to the perturba-
tion ∆x(t0 + nTTe) one period time later is determined by the so-called monodromy-
matrix ΦT (Guckenheimer and Holmes, 1983; Seydel, 1994). The eigenvalues of the
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monodromy matrix ΦT are called Floquet multipliers. Similar to the eigenvalues of the
Jacobian around an equilibrium point (see Section 2.4.2), the Floquet multipliers deter-
mine the local stability of periodic solutions. They indicate the exponential growth or
decay of the perturbations ∆x in the directions of the eigenvectors of the monodromy
matrixΦT and hence the stability of the periodic solution.

For system (2.13), the monodromy matrix will have 2n + 2 (complex) Floquet multipliers
λ1, . . . , λ2n+2. For autonomous systems, there will always be a Floquet multiplier λ1 = 1
due to the freedom of phase in the system, see Seydel (1994). The remaining Floquet
multipliers determine the stability of the periodic solution. Let λi (i = 2, 3, . . . , 2n + 2)
denote the ith Floquet multiplier ofΦT for xp. The periodic solution xp(t) is said to be

1. locally stable if all |λi| < 1,

2. locally unstable if one or more |λi| > 1,

3. at a bifurcation point if one or more |λi| = 1.

The loss (or gain) of stability when a critical Floquet multiplier exits (enters) the unit
circle is accompanied with a bifurcation that depends on the point(s) where the unit cir-
cle is crossed. Three codimension one bifurcations may commonly be encountered for
periodic solutions. These are the cyclic fold, period doubling and the Neimark-Sacker bi-
furcation (Fey, 1992; Seydel, 1994; Thompson and Stewart, 2002). The third type is not
relevant for the work in this thesis and will, therefore, not be discussed.
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(a) Cyclic fold (CF) bifurcation. (b) Period doubling (PD) bifurcation.

Figure 2.7 / Bifurcations of periodic solutions.

For the cyclic fold and period doubling bifurcation, consider Figure 2.7, where a response
measure of the periodic solution (amplitude, for instance) is depicted versus a system
parameter µ. The cyclic fold bifurcation is encountered when of the critical Floquet mul-
tiplier exits (enters) the unit circle at λc = 1. This bifurcation is the periodic solution
analogy of the limit point bifurcation for equilibrium points (Section 2.4.2). At a cyclic
fold, or turning point, bifurcation limit cycles are created or destroyed, see Figure 2.7(a).
At the cyclic fold (CF) bifurcation point, the unstable and stable branches of periodic so-
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lutions connect. For parameter values below the CF point in Figure 2.7(a), locally no
periodic solution exists.

In Figure 2.7(b), the period doubling bifurcation is indicated. This bifurcation (also called
the flip or subharmonic bifurcation) occurs when the critical Floquet multiplier exits (en-
ters) the unit circle at λc = −1. At the period doubling bifurcation point (PD), a con-
tinuous branch of periodic solutions (with period nTTe) changes stability. Additionally, a
secondary branch of periodic solutions with double period (2nTTe) branches off the pri-
mary branch. The period doubling bifurcation is called super-critical if the secondary
branch is stable, whereas it is called sub-critical if the secondary branch is unstable.

2.4.4 Numerical continuation

The change of an equilibrium point qe or a periodic solution xp(t) with a change in a sys-
tem parameter µ, see (2.15) can be investigated by combining an equilibrium or periodic
solution solver with numerical continuation, or so-called path-following, techniques. By
applying numerical continuation, bifurcation diagrams can be calculated. Starting from
an initial guess, a zero finding algorithm (for equilibrium points) or a periodic solution
solver (for periodic solutions) can be applied for obtaining qe or xp(t), respectively, at a
certain system parameter value µ. Next, the solution for µ + ∆µ is calculated by using
the solution at µ as an initial guess. The solver is likely to converge for small ∆µ. This
method is called sequential continuation (see Nayfeh and Balachandran, 1995).

At bifurcation points, problems may arise when a branch of solutions reaches a turning
point (see Figures 2.6 and 2.7(a)). For small ∆µ, the solver may not converge. Therefore,
the method can be improved by implementing so-called arclength continuation. This
method is able to round corners in bifurcation diagrams, such as at the LP and CF points
in Figures 2.6 and 2.7(a), respectively.

In this work, bifurcation diagrams for equilibrium points are calculated by applying
damped Newton-Raphson iteration to find the zeros of the parameterised version of the
static equilibrium equation (2.17): fst(q,µ) = 0. Next, path-following with arclength
continuation (Parker and Chua, 1989) is used for calculating the bifurcation diagram.

Path-following for periodic solutions can also be used for calculating bifurcation diagrams
for periodic solutions (Parker and Chua, 1989; Fey et al., 1996), but in this work, these
bifurcation diagrams are calculated using the numerical package AUTO97 (Doedel et al.,
1998). This package is dedicated for continuation calculations. The method of orthog-
onal collocation with automatic meshing is used for the discretisation of the two-point
boundary value problem represented by (2.15) together with (2.20). One parameter con-
tinuation can be applied for constructing the bifurcation diagram. Local stability analysis,
based on Floquet theory, is applied and includes the detection and classification of the bi-
furcation points. Furthermore, the package supports automatic branch switching and
two parameter continuation of bifurcation points. The latter can be used to investigate
how the occurrence of certain bifurcation points can be influenced in a two parameter
subspace.
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CHAPTER THREE

Heuristic modelling of MEMS resonators1

Abstract / In this chapter, a heuristic modelling approach will be applied to two case studies: a
clamped clamped beamMEMS resonator and a dog-bone MEMS resonator. Based on experimen-
tal results for these resonators, heuristic device level models are proposed to arrive at nonlinear
dynamic models that potentially capture the experimentally observed behaviour. For the clamped-
clamped beam resonator, a good quantitative match between the simulation and experimental
results is established. However, for the dog-bone resonator, the (partly) heuristic model does not
capture the observed behaviour. The chapter is ended with conclusions on the limited capabilities
a heuristic modelling serving as the motivation for a first-principles based approach.

3.1 Introduction

Microelectromechanical silicon resonators provide an interesting alternative for quartz
crystals as accurate timing devices in oscillators for modern data and communication
applications (see Chapter 2). Their compact size, feasibility of integration with IC tech-
nology and low cost are major advantages. However, as the resonators are small in size,
they have to be driven close to or even into nonlinear regimes in order to store enough
energy for a sufficiently good signal to noise ratio (Kaajakari et al., 2004a). Nonlinearities
in MEMS silicon resonators are caused by different effects. Depending on the resonator
layout, different nonlinearities may be dominant in the dynamic behaviour of the res-
onator. The presence of the nonlinearities is relevant for oscillator performance and has
to be incorporated in future resonator and oscillator design optimisation. However, in
order to determine the influence of resonator nonlinearities on the performance of oscil-
lators, first the dynamic behaviour of resonators has to be understood. The steady-state
dynamic behaviour of the resonator can be described by a dynamic characteristic called
an amplitude-frequency curve.

In this chapter, a heuristic modelling approach for the nonlinear dynamic behaviour of

1Results from Section 3.2 are based on Mestrom et al. (2006) and Mestrom et al. (2008a).

37



38 3 HEURISTIC MODELLING OF MEMS RESONATORS

MEMS resonators will be applied to two case studies. For both a clamped-clamped beam
and a dog-bone MEMS resonator, models with a pre-defined complexity will be proposed,
which potentially capture the nonlinear dynamic behaviour. From the (mis)match be-
tween the numerical results and experimental results for the two case studies, limitations
and shortcomings of the heuristic modelling approach will become clear.

In Sections 3.2 and 3.3, two case studies for heuristic modelling will be presented. In
Section 3.2, a clamped-clamped beam MEMS resonator will be described, for which the
heuristicmodelling approach leads to a good quantitativematch between simulations and
experiments. In Section 3.3, a so-called dog-bone MEMS resonator will be considered,
for which the proposed partly heuristic model fails to capture experimentally observed
behaviour. Finally, in Section 3.4, the chapter will end with a conclusion on the limitations
and shortcomings of heuristic modelling. This serves as the motivation for the first-
principles based multiphysics modelling framework, to be presented in Chapter 4.

3.2 Case study I: clamped-clamped beamMEMS resonator

The first case study is a flexural clamped-clamped beam MEMS resonator. Such
resonators have been realised and measured by various research groups, see for in-
stance Mattila et al. (2002b) and Kaajakari et al. (2004a). However, a combined numer-
ical and experimental analysis of the nonlinear behaviour has only been limitedly ad-
dressed (Shao et al., 2008a).

In this section, a heuristic modelling approach is used that will yield a quantitative match
between the simulation and experimental results. The outline for case study I is as fol-
lows. First, in Section 3.2.1, experimental results of a clamped-clamped beam resonator
will be discussed. Next, in Section 3.2.2, a modelling approach will be proposed to de-
scribe the dynamic effects observed in the measurements. Additionally, the numerical
analysis will be described briefly. Experimental and numerical results will be compared
in Section 3.2.3. In Section 3.2.4, case I ends with some conclusions and a discussion on
the model results.

3.2.1 Experiments using a clamped-clamped beam resonator

An example of a clamped-clamped beam resonator is depicted in Figure 3.1. Its charac-
teristic vibration shape is also depicted (the dashed lines). Due to out-of-plane vibration,
the resonator is often called a flexural resonator (see Section 2.2.3). The actuation of the
resonator is realised by means of a dc (Vdc) and an ac (Vac) voltage component, which are
applied to the electrodes of the resonator by means of bias tees, see Figure 3.1. During
measurements, the resonator output voltage Vout is measured. This quantity is related to
the beam motion, as will become clear from Section 3.2.2.

Resonators are fabricated using Silicon-On-Insulator (SOI) wafers. The fabrication of the
resonator is schematically depicted in Figure 3.2. First, aluminum bondpads are defined
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Vac
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Vdc

Vdc
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gap
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Figure 3.1 / Schematic layout of the clamped-clamped beam resonator.
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(a) Define Al bond pads.

resist

Si
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(b) DRIE of top Si layer.

(c) Remove resist. (d) HF wet etching of SiO2.

Si substrate

Figure 3.2 / Fabrication of the resonator: (a) define Al bond pads, (b) DRIE of top Si layer,
(c) remove resist and (d) HF wet etch of SiO2

on the wafer surface, see Figure 3.2(a). A layer of resist is deposited on top of the wafer
and the resonator layout is defined by means of lithography. Next, the resonator layout
is etched into the 1.4 µm thick SOI layer down to the buried oxide layer by means of
deep reactive ion etching (DRIE) (Figure 3.2(b)). The resist is removed (Figure 3.2(c))
and, finally, the resonator is released from the substrate through isotropic etching of the
buried oxide layer using an HF wet etch solution (Figure 3.2(d)).

A microscope image of the clamped-clamped beam resonator can be seen in Figure 3.3.
Here, the dark grey material is silicon (Si), thin black lines are lithography etch gaps and
the light grey, grainy material corresponds to the aluminum (Al) bond pads and electrical
lines. Six aluminum bond pads can be distinguished. These are designed in such a way
that they fit the ground-signal-ground probes that are used during the measurements.
The outer four bond pads are connected to ‘ground’, such that the beam itself is grounded.
The middle two bond pads are used for actuation and measurement purposes. Further
information about the experimental setup can be found in Chapter 6.

During the experiments, performed on a custom-built set-up that is available at the NXP-
TSMC Research Center2, the MEMS resonator is located in a vacuum chamber (pressure
p = 4.6 × 10−4 mbar). A more detailed description of the experimental set-up can be

2NXP Semiconductors, Eindhoven, the Netherlands.
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Bond Pad Resonator

Figure 3.3 / Clamped-clamped beam resonator (beam dimensions: length: 44 µm, width:
4 µm and thickness: 1.4 µm).

found in Section 6.3. The steady-state dynamic behaviour of the resonator is investigated
experimentally by constructing a so-called amplitude-frequency plot. For this purpose,
the ac excitation frequency f is slowly increased (sweep up) and decreased (sweep down)
in steps of 250 Hz around the first harmonic resonance frequency of the resonator. At
each frequency, after 2 seconds (to let the transient damp out), the output voltage Vout is
measured, which is a measure for the steady-state beam motion (see also Section 3.2.2).

An example of a typical amplitude-frequency curve for the clamped-clamped beam con-
sidered is depicted in Figure 3.4. The excitation is given by a dc bias voltage of Vdc = 70 V
and an ac excitation amplitude of Vac = 139 mV. From this figure, it can be seen that
the first harmonic resonance frequency of the resonator is approximately 12.875 MHz.
However, due to nonlinearities, the resonance peak is bent to the left (lower frequencies).
As a result, in the frequency range near the resonance peak, the steady-state dynamic
behaviour of the resonator is found to depend on the sweep direction. Sudden jumps
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Figure 3.4 / Example of an amplitude-frequency curve.
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in the response, indicated by black arrows, occur at different frequencies. This is called
frequency hysteresis and has also been reported in Kaajakari et al. (2004b). However,
in Kaajakari et al. (2004b), a longitudinal/bulk mode beam resonator was investigated,
see also Figure 2.2(c). Frequency hysteresis is a typical nonlinear effect, which may be
caused by hardening, or, in this case, softening nonlinear behaviour. This will be ex-
plained in section 3.2.2.

3.2.2 Modelling approach

Mechanical model

The nonlinear phenomena observed in the measurement (Figure 3.4) demand for
a nonlinear dynamical model. A single degree-of-freedom (1DOF) model, in line
with Kaajakari et al. (2004a,b), that may capture these phenomena is a Duffing-like
model. The Duffing equation is a classical nonlinear dynamic equation which can be used
to describe the response of a periodically excitedmass–spring–damper systemwith linear
viscous damping force and a spring force containing both a linear and a cubic term. From
literature, it is well-known that a Duffing model may describe nonlinear effects like soft-
ening and hardening behaviour and sub- and superharmonic resonances (Weaver et al.,
1990; Fey et al., 1990; Thomsen, 2003). Therefore, a Duffing-like model structure will
be proposed. In contrast to a first principles-based approach, as for instance found
in Younis and Nayfeh (2003), Abdel-Rahman and Nayfeh (2003) and Nayfeh and Younis
(2005), a heuristic approach is utilised here. The single degree-of-freedom model for the
mechanical part will form a suitable starting point for gaining insight in the nonlinear
dynamics of the MEMS resonator, without the need for extensive distributed modelling.
It can be considered as a device level model, see Section 1.2.2. On the one hand, essential
nonlinear dynamics are believed to be captured by a 1DOFmodel (see also Kaajakari et al.,
2004a,b) and it will allow for a more straightforward nonlinear dynamic analysis. On the
other hand, results are likely to be less accurate than the ones based on a distributed
modelling approach. Namely, included physical effects are described in a lumped sense
(see (3.1)), instead of using a first-principles based description, and the lumped model
parameter values are determined from estimation instead of from the physical quantities
related to first-principles based modelling.

The following 1DOF model is proposed, which describes the dynamic behaviour of a
measure for the flexural displacement x of the beam resonator:

mẍ + bẋ + k(x)x = Fe(x, t), (3.1)

where m, b and k(x) are the lumped mass, the linear viscous damping constant and
the nonlinear stiffness of the system, respectively. Since the beam is excited over the total
beam length (see Figure 3.1), x is some characteristic displacementmeasure for the beam,
vibrating in the first mode. x is defined positive in downward direction in Figure 3.1.
Furthermore, ẋ and ẍ denote the first and second time derivative of x, respectively. The
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parametric excitation by the electrostatic force Fe(x, t) is modelled by:

Fe(x, t) =
1

2

C0d0

(d0 − x)2
V2

1 (t) − 1

2

C0d0

(d0 + x)2
V2

2 , (3.2)

where C0 is the capacitance over the gap when x = 0 and d0 is the corresponding initial
gap width. V1(t) and V2 denote the applied voltages on the electrodes and are written as:

V1(t) = Vdc + Vac sin(2π f t), V2 = Vdc, (3.3)

where Vdc is the so-called bias voltage, and Vac and f are the amplitude and frequency of
the ac voltage, respectively. The capacitance on the readout side for arbitrary x is given by
C(x) = C0d0/(d0 + x).

Taylor expansion of the electrostatic force about x = 0,

Fe(x, t) =
1

2

C0

d0

V2
dc

(

4
x

d0

+ 8
x3

d3
0

+ h.o.t.

)

+

1

2

C0

d0
(2VdcVac sin(2π f t) + V2

ac sin2(2π f t))

(

1 + 2
x

d0
+ 3

x2

d2
0

+ 4
x3

d3
0

+ h.o.t.

)

, (3.4)

reveals that this force introduces softening nonlinear behaviour. In (3.4), h.o.t. denotes
higher-order terms. This fourth-order Taylor expansion is only valid for small displace-
ments, i.e. x ∈ [−d0/4, d0/4]. The nonlinearity in the mechanical spring stiffness re-
sults from hardening silicon material nonlinearities (higher-order elastic effects, see Ap-
pendix A.4.2, which is in line with Kim and Sachse (2000) and Kaajakari et al. (2004a))
and hardening geometric nonlinearities (mid-plane stretching of a clamped-clamped
beam, see for instance Weaver et al. (1990) and Thomsen (2003)). A starting point for
the nonlinear mechanical stiffness function, including terms up to fourth order reads:

k(x) = k1 + k2x + k3x2 + k4x3 + k5x4, (3.5)

where k1 is the stiffness parameter in the linear part of the spring force and k2, k3, k4

and k5 denote the stiffness parameters in the nonlinear part of the spring force. This
approach allows for extension of the mechanical stiffness function to arbitrary order.

Depending on the specific layout of the clamped-clamped silicon beam resonator, k2 to
k5 each may become positive or negative, resulting in hardening or softening behaviour,
respectively. In Kaajakari et al. (2004b), a softening spring stiffness was observed (only
terms k2 and k3 for a longitudinal bulk-mode beam resonator). The higher-order stiffness
parameters k4 and k5 have not yet been found in literature related to MEMS resonators.
However, as will become clear from Section 3.2.3, where the match between simulations
and experiments will be established, these terms have to be included, at least in the cur-
rent model.

Measurement circuit

An electrical circuit is used for the actuation and detection of the beam motion. The
electrical circuit representation of Figure 3.1 is shown in Figure 3.5(a). In order to be able
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(a) Vout measurement. (b) Output circuit.

Figure 3.5 / Measurement configuration for the clamped-clamped beam resonator.

to measure the ac component of Vout, dc decoupling is present by means of an additional
decoupling capacitor Cdec. This is also depicted in Figure 3.5(a). The resonator output
voltage is measured on a 50 Ω resistor (R2).

In order to relate the output voltage Vout, measured on R2, to the beam motion, consider
Figure 3.5(b), which contains only the output part of the electrical circuit (grey part in Fig-
ure 3.5(a)). C(x) denotes the variable resonator capacitance on the measurement side of
the resonator. The differential equations with the two unknowns v and i for this electrical
circuit are determined from node analysis. By using Vout = iR2, two coupled differential
equations for current i and voltage v are obtained:

C(x)
dv

dt
= −

(
1

R1
+

∂C(x)

∂x
ẋ

)

v − i +
Vdc

R1
, (3.6a)

Cdec

(
dv

dt
− R2

di

dt

)

= i, (3.6b)

where, in (3.6a), the time derivative of the resonator capacitance C(x) is elaborated as
dC(x)

dt
= ∂C(x)

∂x
ẋ. Note that (3.6) is heuristic in nature, since the displacement x is some

measure for the beam deformation.

Thermal noise

In every electrical system, thermal agitation of the electrons inside electrical conductors
forms a source of noise. This noise is called Johnson-Nyquist or thermal noise (Johnson,
1928; Nyquist, 1928). In Nyquist (1928), the expression for the root mean square (rms)
of the noise voltage vn generated in a resistor is given as

vn =
√

4kBTR∆ f , (3.7)

where kB denotes Boltzmann’s constant, T denotes absolute temperature, R is the re-
sistor value and ∆ f is the bandwidth in which the noise is measured. An estimate for
the thermal noise can be found by using the resonator motional resistance Rm for the
resistor value R in (3.7). An expression for Rm will be derived next. Due to presence of
other resistors in the measurement circuit, the estimate for vn can be considered to be
conservative.
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In order to determine the noise generated in the circuit with the clamped-clamped beam
resonator, the resistance value of its equivalent circuit representation can be used in (3.7).
For this purpose, a linear (ki = 0, i = 2, . . . , 5) mechanicalmodel is considered, in which
the electrostatic force is expanded in a Taylor series around x = 0, see (3.4). Furthermore,
it is assumed that the ac voltage is much smaller than the bias voltage (Vac ≪ Vdc) and
that small beam motions occur (x ≪ d0). Therefore, terms in (3.4) with V2

ac, VdcVac
x
d0

(and higher) and V2
dc

x3

d3
0
are neglected, which gives

mẍ + bẋ +

(

k1 − 2
C0

d2
0

V2
dc

)

x =
C0

d0
VdcVac sin(2π f t). (3.8)

Next, the modified stiffness k1,e = k1 − 2 C0

d2
0
V2

dc and the electromechanical coupling coef-

ficient (Mattila et al., 2002a) η = C0

d0
Vdc are defined. In this way, (3.8) can be rewritten as:

mẍ + bẋ + k1,ex = ηVac sin(2π f t). (3.9)

By using the electromechanical coupling coefficient, a relation between the electrical cur-
rent and the mechanical velocity can be established as im = ηẋ (Mattila et al., 2002a).
Substitution of this relation into (3.9) followed by division by η results in:

m

η2

dim

dt
+

b

η2
im +

k1,e

η2

∫

im dt = Vac sin(2π f t). (3.10)

Equation (3.10) can be rewritten as a harmonically excited RLC circuit:

Lm
dim

dt
+ Rmim +

1

Cm

∫

im dt = Vac sin(2π f t). (3.11)

in which the motional inductance, motional resistance and motional capacitance (see
Mattila et al., 2002a) are defined as:

Lm =
m

η2
, Rm =

b

η2
=

√

k1,em

η2Q
, and Cm =

η2

k1,e

, (3.12)

respectively. Note that the quality factor Q is defined in a linear sense: Q =
√

k1m/b.
By (3.12), the mechanical parameters of the resonator are related to RLC-parameters of
the equivalent circuit. The motional resistance Rm can be used to obtain a conservative
estimate for the thermal noise using (3.7). Other noise sources or effects might also be
present in the system, both in the actuation/sensing of the resonator and in the mea-
surement equipment. However, within the scope of the current modelling approach,
individual noise effects cannot be distinguished properly and, therefore, the discussion
will be limited to thermal noise.

Numerical approach

The total simulation model for the clamped-clamped beam resonator and the measure-
ment circuit consists of a state-space description of the 1DOF resonator model (3.1) (us-
ing (3.2), (3.3) and (3.5)), together with the equations for the measurement circuit (3.6a)–
(3.6b). Therefore, the state column is defined as x = [x ẋ v i]T = [x1 x2 x3 x4]T.
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In this way, the total model can be written in a form that is more suitable for numerical
implementation, as ẋ = f(x, t), where

f(x, t) =


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
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



x2

1
m

(
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2
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1 (t) − 1

2
C0d0

(d0+x)2 V2
2

)

− d0+x1

C0d0

{(
1
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x3 + x4 − Vdc

R1
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C0d0R2

{(
1

R1
− C0d0
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(d0+x1)Cdec

)

x4 − Vdc

R1

}










. (3.13)

In the numerical simulations, this representation of the total model allows for the me-
chanical part to be calculated first and and electrical (measurement) part to be calcu-
lated afterwards, since the states x3 and x4 do not appear in the first two elements (rows)
of (3.13).

The steady-state nonlinear dynamic behaviour of the total model is investigated. Hereto,
numerical collocation and continuation techniques, available in the numerical package
AUTO (Doedel et al., 1998), are applied to the mechanical model for determining pe-
riodic solutions (resonator vibrations) for varying excitation frequency f , see also Sec-
tion 2.4.4. Next, the results from the mechanical model are used as input for the mea-
surement circuit part and time integration is applied to calculate the response of the
measurement circuit in order to obtain Vout. Results will be discussed in Section 3.2.3.

3.2.3 Numerical and experimental results

For parameter estimation and later comparison of numerical and experimental results,
a series of measurements has been performed on the clamped-clamped beam resonator.
The bias voltage during all measurements has been kept constant to Vdc = 70 V and the
ac amplitude Vac has been varied between 20 and 279 mV.

First, the measurement of the (almost) linear response at the lowest excitation value will
be used to estimate the motional resistance Rm and, thus, the thermal noise in the mea-
surements. The result of themeasurement and the numerical fit is depicted in Figure 3.6.
In this figure, the black curves (both solid and dashed) denote experimentally determined
peak to peak values of periodic solutions. These curves are rather noisy, since, for low ac
excitation values, the peak to peak value of Vout is dominated by noise. The solid grey
line denotes simulation results. Here, the response of the numerical model is shifted
vertically 3.25 mV resulting in similar peak to peak amplitudes as in the measurement.
This shift value can be justified to a large extent by the presence of thermal noise, which
will be explained below. In Figure 3.7, a part of the time history at point A in Figure 3.6
can be seen. In this figure, the solid black line denotes the measured time history and the
dashed line denotes the (scaled) ac excitation signal. The simulated time history (without
the effect of thermal noise) is depicted as a solid grey curve.

Initial estimates for the linear parameters values in the numerical model have been ob-
tained from the physical dimensions and the mass of the resonator. After some fine-
tuning, the linear parameters for the numerical model have been collected in Table 3.1.
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Figure 3.6 / Amplitude-frequency curve, Vdc = 70 V, Vac = 20 mV.
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Figure 3.7 / Part of time history at point A in Figure 3.6 at f = 12.877 MHz.

Table 3.1 / Numerical values for the linear parameters in the total model for Vdc = 70 V
and Vac = 20 mV.

Parameter Value Unit

m 0.2273 ng

k1 1.505 kN m−1

b 3.083 · 10−9 N s m−1

Q 6000 –

f0 12.949 MHz

f0,e 12.878 MHz

d0 330 nm

C0 0.185 fF

R1 1.0 MΩ

R2 50 Ω

Cdec 82 nF

ρ 2329 kg m−3
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Here, the mechanical linear natural frequency is defined as f0 = 1
2π

√
k1

m
. The actual

natural frequency of the resonator is slightly different, due to the effect of the bias voltage:

f0,e = 1
2π

√
k1,e

m
, where k1,e is defined as k1,e = k1 − 2 C0

d2
0
V2

dc, see (3.8). The value f0,e

matches very well with the measured value of 12.875 MHz, see Figure 3.4.

With these values, the motional resistance Rm can be estimated using (3.12): Rm =
1.998 MΩ. The rms thermal noise voltage results from (3.7). Measurements are per-
formed using a bandwidth of 250 MHz and the temperature of the resonator is estimated
to be 300 K. This yields an rms noise voltage of vn = 2.88 mV. This value corresponds
very well to the vertical shift of 3.25 mV applied to the numerical result in Fig. 3.6 and,
therefore, thermal noise is considered to be a plausible explanation for the observed ef-
fect. In the time history of the experimental result (Figure 3.7), the effect of the noise can
clearly be observed.

Next, measurements for higher Vac values are considered. Some parameters in the nu-
merical model are adjusted such that the simulated amplitude-frequency curves match
the measured ones. Parameters that are allowed to change are damping parameter b, the
mass m and the nonlinear stiffness parameters k2 to k5. The resonator lumped mass m is
allowed to change because for higher excitation values, a slightly different beam vibration
shape may take place, such that, effectively, more mass of the beam is moving, resulting
in a (very) small increase in lumped mass.

Results for ac excitation values of Vac = 87 mV and Vac = 279 mV are depicted in
Figures 3.8–3.9 and 3.10–3.11, respectively. In Figures 3.8 and 3.10, the measured re-
sponses are denoted by black curves (solid for sweep up and dashed for sweep down).
Furthermore, stable and unstable parts of the numerical amplitude-frequency curves (in
grey) are indicated. Solid grey curves correspond to stable periodic solutions, whereas
dashed grey curves correspond to unstable ones (not seen in measurements). The tran-
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Figure 3.8 / Amplitude-frequency curve, Vdc = 70 V, Vac = 87 mV.
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Figure 3.9 / Parts of time histories at selected points in Figure 3.8 at f = 12.86625 MHz.
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Figure 3.10 / Amplitude-frequency curve, Vdc = 70 V, Vac = 279 mV.
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(a) Time signal at point A. (b) Time signal at point B.

Figure 3.11 / Parts of time histories at selected points in Figure 3.10 at f =
12.8405 MHz.

sition between stable and unstable periodic solutions is characterised by cyclic fold (CF)
bifurcations, see Section 2.4.3. The cyclic fold bifurcations in Figures 3.8 and 3.10 are
responsible for sudden jumps in the measured amplitude-frequency behaviour during
frequency sweeps (see also Figure 3.4). This can be understood by considering the nu-
merical amplitude-frequency curves. Starting from a frequency below the fundamental
resonance, the system’s response follows the stable low amplitude branch if the excita-
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tion frequency is increased until the lower CF point. From there, an increase in frequency
makes the system ‘jump’ to the upper branch of stable solutions. This jump is clearly ob-
served in the experimental curves. An analogous explanation holds for the sweep down
behaviour by considering the upper CF bifurcation point.

A good quantitative match is obtained between the numerical and experimental results.
The shape of the softening resonance peak can be predicted accurately, as well as the
frequencies at which sudden jumps occur. Additionally, the time histories for points
B on the stable high-amplitude branches match very well (Figures 3.9(b) and 3.11(b)). A
clear distinction is present between the time histories at points A (Figs. 3.9(a) and 3.11(a)),
in which thermal noise dominates, and the time histories at points B in which the noise
is of significantly lower order than the periodic signal itself.

Furthermore, a discrepancy is present between the measured and simulated peak to peak
values for excitation frequencies lower than the fundamental resonance, most clearly seen
in Figure 3.10. Apart from the thermal noise considerations used for the linear response,
other effects are also present, resulting in an additional offset between the numerical and
experimental curves. In Chapter 6, the mismatch between the numerical and experi-
mental curves at a frequency just above the resonance frequency is found to originate
from an anti-resonance effect that can be captured using an improved description of the
measurement circuit, see Section 6.4.4. However, in the heuristic modelling approach
Chapter 3, this effect has not been included. Some discussion on this effect will follow in
Section 3.2.4.

Parameters k2 and k4 of the nonlinear stiffness function (3.5) are not needed to match the
peak to peak amplitudes of the simulation model to the experimental values. They are
set to zero. This indicates that the mechanical stiffness function is symmetric around
x = 0. This is expected, because the bias voltage Vdc is applied to both sides of the beam.
In this way, the only parameters that vary between successive measurements are b, m, k3

and k5, since they can be considered as ‘effective’ (lumped) parameters. The remaining
parameters in (3.13) are assumed to be constant over changes in Vac. Parameter variations
as a function of the ac excitation amplitude Vac are depicted in Figure 3.12. Parameters
k3 and k5 remain relatively constant after a certain Vac value. Due to limitations in the
experimental setup, steps in Vac are not uniform.

From this figure, it can be seen that the nonlinear stiffness terms have to be included
from a certain Vac value. Due to the very small characteristic flexural beam displacement
x, the nonlinear stiffness parameters terms have large magnitudes: k3 = O(1015) N/m

3

and k5 = O(1030) N/m
5. Furthermore, k3 and k5 have different signs. The negative sign

of k3 indicates softening nonlinear behaviour, which is observed in Figure 3.8. This is
not in line with analytical derivations of this coefficient as reported in Lifshitz and Cross
(2008). Namely, both midplane stretching and the nonlinear material behaviour would
result in hardening nonlinear behaviour. Instead, the additional softening that has to be
included in the model has to be caused by the lumped description of the electrostatic
forcing function Fe(x, t), see (3.2), which is not accurate enough. This will also become
clear in Chapters 5 and 6, where a first-principles description of the electrostatic forcing
is derived that predicts the softening nonlinear behaviour better.
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Figure 3.12 / Parameter variation as a function of the ac excitation voltage.

Furthermore, for large vibration amplitudes, the positive sign of k5 (hardening) partly
compensates for the softening effect of k3, since, near 12.845 MHz, the resonance peak
slightly curves upwards, see Figure 3.10. In this way, it follows that both k3 and k5 have to
be used in the model, which justifies the inclusion of higher order stiffness terms (3.5) in
the modelling approach. The damping parameter b is used for fine-tuning the location
of the cyclic fold bifurcation points such that they match the frequencies at which jumps
in the experiment occur. Finally, it can be seen that the effective lumped mass of the res-
onator is hardly influenced by Vac; only it has to be slightly increased for large excitation
values.

The parameter changes with the excitation parameter Vac, although they are relatively
small, emphasise/confirm that the modelling approach applied here is of heuristic na-
ture. The Duffing-like modelling approach does not give analytical insight in how param-
eters will change with excitation parameters. A more fundamental modelling based on
first principles will be necessary for this. This will be described in chapter 5.

In order to address the predictive value of the proposed modelling approach, amplitude-
frequency curves have been calculated for a range of Vac values using averaged values for
the fitting parameters b, m, k3 and k5. This is depicted in Figure 3.13, where, for three
Vac values, both the experimental and numerical response are depicted. For higher Vac

values, the response can be seen to become increasingly nonlinear. The calculated re-
sponses for the averaged parameter values qualitatively represent the dynamic behaviour
of the resonator for a certain Vac value. However, as indicated before, for the lumped
modelling approach, the quantitative predictive nature of the model is limited.
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Figure 3.13 / Amplitude-frequency curves for various Vac values, based on averaged val-
ues for the fitted parameters.

In order to investigate the influence of the ac excitation voltage on the size of the fre-
quency hysteresis interval, the frequencies where the cyclic fold bifurcations occur are
depicted versus Vac in Figure 3.14. From this figure, it is observed that frequency hys-
teresis occurs for Vac > 28 mV and that, for increasing Vac, the hysteresis interval first
increases but then decreases again for high Vac values (≥ 200 mV).
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Figure 3.14 / Locus of cyclic fold bifurcations near the fundamental resonance.
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Another phenomenon that has been observed in the experiments is the presence of a 1/2
subharmonic resonance, which occurs at twice the first harmonic resonance frequency,
near 25.753 MHz. For a 1/2 subharmonic resonance, the fundamental frequency in the
system response is half the excitation frequency (see also Figure 2.7(b) in Section 2.4.3).
For excitation settings Vdc = 70 V and Vac = 350 mV, the measured subharmonic
resonance is depicted in Figure 3.15. The subharmonic resonance peak is initiated by
two so-called period doubling (PD) bifurcations near f = 25.753 MHz, see the inset in
Figure 3.15. In the 1/2 subharmonic resonance peak (the upper branch of solutions),
the resonator vibrates with a fundamental frequency (around 12.875 MHz) that is half
the frequency of the excitation signal (around 25.75 MHz). This can also be seen from
the time histories at point A, see Figure 3.16, in which the period time of the response
(black solid line, labeled ‘experiment’) is twice that of the excitation (black dashed line).
The numerical model is also capable of predicting these period doubling bifurcations and
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Figure 3.15 / Experimental 1/2 subharmonic resonance, Vdc = 70 V, Vac = 350 mV.

1/2 subharmonic solution branches for parameter values of b = 4.625 × 10−10 Ns/m,
k3 = −8.0× 1015 N/m

3 and k5 = 1.1× 1030 N/m
5. The simulated amplitude-frequency

plot is also depicted in Figure 3.15, together with the measured one. A vertical shift is
applied in the numerical results in order tomatch the amplitudes of the harmonic branch.
A good correspondence is present. However, using these parameter values, the match
around the first harmonic resonance frequency of the resonator deteriorates, since too
much softening behaviour is predicted. From the time history at point A in Figure 3.15,
depicted in Figure 3.16, it is observed that both the experiment and the simulation show
a periodic response with half the excitation frequency. However, the difference in shape
between the experimental and numerical time history is significant. An explanation for
this has not yet been found.
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Figure 3.16 / Part of time history at point A in Figure 3.15 at f = 25.687 MHz. The
system response has a base frequency of 12.844 MHz.

3.2.4 Discussion

The relatively simple dynamic model of the clamped-clamped beam resonator utilised
here, is able to predict the measured resonator response for various parameter settings
qualitatively and in many cases even quantitatively. The model is a typical example of a
descriptive (heuristic) device level model (see, Section 1.2.2). Namely, the Duffing-based
model has an a priori defined complexity and is able to predict characteristic nonlinear
dynamic steady-state behaviour very well for the parameter settings used. Therefore, it
represents a good first step in the modelling process and a suitable starting point for
understanding and predicting the dynamic behaviour of MEMS resonators.

However, because of the heuristic nature of the proposed model, it is not capable of pre-
dicting the dynamic behaviour for a full range of excitation parameters. At each excitation
setting, a best fit has been made in order to obtain an optimal match between simulation
and experiment. At the bias voltage of Vdc = 70 V, already small parameter variations
for changing ac excitation voltage are required for obtaining this best fit between the
simulations and experiments. Therefore, the predictive nature of the heuristic model is
rather limited. This suggests that a more fundamental, or first principles-based, mod-
elling approach is required, which captures the subtle effects that have been observed
under excitation parameter changes. In Chapter 5, the heuristic model of Section 3.2.2
will be extended to a first-principles based model for a similar resonator, based on the
multiphysics modelling framework that will be derived in Chapter 4. Issues with respect
to the lumped model for the clamped-clamped beam MEMS resonator that have become
clear in this Section 3.2 will be treated in depth in the following chapters. These are the
following:

• Different nonlinear effects that play a role have now been modelled in a descrip-
tive way using a nonlinear stiffness function (3.5). In Chapters 4 and 5, individual
contributions will be distinguished;

• Damping in the clamped-clamped beam resonator is now included using a single
equivalent (overall) damping parameter b. Individual effects that contribute to the
damping will be described and included in the first-principles based approach;

• The offset between the simulated and measured response in Figure 3.10 will be
clarified. It is found to originate from an anti-resonance caused by the electrical
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circuit of the resonator. This effect will be included in an improved description of
the measurement circuit of the resonator, see Section 6.4.4. This will also have
implications for the thermal noise considerations used for the lumped model (see
Section 3.2.2).

3.3 Case study II: dog-bone MEMS resonator

The second case study concerns a bulk or longitudinal so-called dog-bone MEMS res-
onator. This type of resonator is based on piezoresistive readout (see Section 4.3.7)
and has been designed and fabricated at the NXP-TSMC Research Center, see for in-
stance van Beek et al. (2006), van Beek et al. (2007) and Phan et al. (2009). A more de-
tailed description of the approach applied in this section can be found in van den Hoven
(2008).

Similar to the approach used for case study I, in this section, modelling efforts for the
dog-bone MEMS resonator are presented. Based on experimentally observed nonlinear
dynamic behaviour, a partly heuristic model is proposed for this resonator. A model
structure will be used which is rooted in a finite element description and which has a
pre-defined complexity. Compared to the heuristic model presented in Section 3.2, sofar
a (complete) match between the model and experiments has not been obtained.

The outline for this case study II is as follows. First, in Section 3.3.1, a description of the
dog-bone resonator will be given and experimental results for this resonator will be pre-
sented. Next, in Section 3.3.2, the partly heuristic modelling approach that may describe
the dynamic effects observed in the measurements will be presented very briefly. This
section will not provide an extremely detailed model derivation, but will mainly sketch
the applied modelling approach. From simulation results, given in Section 3.3.3, it will
become clear that the proposed model cannot describe the experimentally observed be-
haviour very well. Section 3.3 is concluded with a discussion.

3.3.1 Experiments using a dog-bone resonator

Resonator description

The dog-bone resonator under investigation is a single-crystal silicon longitudinal, or
bulk resonator. A photo of a dog-bone resonator and its connections is depicted in Fig-
ure 3.17(a). The resonator is produced from SOI wafers, using the same process as de-
scribed in Section 3.2.1 for the clamped-clamped beamMEMS resonator. A close-up view
of the dog-bone resonator is depicted in Figure 3.17(b). This resonator consists of two
masses (resonator heads) that are connected by two parallel beams. Each beam is con-
nected to the fixed world by one support. Holes in the resonator heads are present for
etching the oxide layer of the SOI wafer.

A schematic representation of the dog-bone resonator, similar to Figure 3.17(b) is depicted
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Figure 3.17 / Pictures of the dog-bone resonator.
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Figure 3.18 / Schematic representation of the dog-bone resonator.

in Figure 3.18. The resonator x- and y-direction are oriented along the [100] and [010]
direction in the single crystal silicon, respectively (see also Appendix A.1.1). On the left
and right side of the resonator, electrodes are present which are used for electrostatic
actuation. The intended motion of the resonator consists of longitudinal stretching in
the x-direction, in which the two heads of the resonator vibrate in anti-phase. In this way,
anchor loss through the supports is supposed to be less than for the clamped-clamped
beam resonator, which should result in a high Q-factor, see also (4.14) in Section 4.3.3.
Furthermore, as can be seen in Figures 3.17(b) and 3.18, the resonator heads are quite
large and are suspended through small beams. As a result, the dog-bone resonator has
a low out-of-plane stiffness and may show out-of-plane vibrations (in z-direction), which
are undesired. In order to excite the desired mode of the dog-bone resonator, both a
bias voltage Vdc and an ac voltage amplitude Vac are applied over the electrode gaps.
The bias voltage is used for pre-stressing the resonator, whereas the ac voltage drives
the resonator into vibration. Both the resonator heads and the beams stretch due to
the excitation. However, the deformation in the resonator heads is substantially smaller
than the deformation in the beams. Typical resonance frequencies for the desired bulk
(longitudinal) mode of the resonator range from 10 to 25 MHz.
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Amplitude-frequency curves

For the experiments, the same custom-built set-up (available at the NXP-TSMC Research
Center) is used as for the clamped-clamped beam MEMS resonator, see Section 3.2. The
dog-bone resonator is located in a vacuum chamber (pressure p = 4.6× 10−4 mbar). The
steady-state dynamic behaviour of the dog-bone resonator is investigated experimentally
by constructing amplitude-frequency plots. For this purpose, the ac excitation frequency
f is swept up and down around the bulk mode vibration frequency of the resonator. The
output of the resonator is detected piezoresistively (see also Section 4.3.7), by sending
a current of 1 to 3 mA through the beams of the resonator. This is schematically de-
picted in Figure 3.19. Due to deformation of the resonator, the beams are stretched and
compressed, which causes a change in their resistance values. This resistance change
is measured as a voltage change in Vout, of which only the ac component is measured,
using a bias tee, see Figure 3.19.

Iout

Vout

Rbias

Cbias

Figure 3.19 /Measurement circuit and current path through the resonator .

Two typical amplitude-frequency responses that have been measured for the dog-bone
resonator are depicted in Figure 3.20. In Figure 3.20(a), the dog-bone resonator response
shows no frequency hysteresis. For both the sweep up and the sweep down, an almost
similar response is observed. For a higher Vac-value, for which the amplitude-frequency
curve is depicted in Figure 3.20(b), frequency hysteresis is observed. The response of the
resonator depends on the direction in which a frequency sweep is performed: when the
resonator is excited at, for instance, 15.335 MHz, the response may have a peak to peak
amplitude of either 0.31 V or 1.56 V, depending on the excitation history. Furthermore,
apparently a plateau for the amplitude is present for the high-amplitude solution during
the frequency sweep down.

Additionally, the time signals in certain frequency regions of the plateau show low-
frequent beating of the high-frequent response. Such a typical beating response is de-
picted in Figure 3.21, which shows the measured piezoresistive output voltage at an exci-
tation frequency of 15.335 MHz for the sweep down.
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Figure 3.20 / Amplitude-frequency curves at a bias voltage of Vdc = 45 V and two differ-
ent Vac-values. •: sweep up; ◦: sweep down.
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Figure 3.21 / Typical time history showing beating behaviour.

Mode coupling between in-plane and out-of-plane modes

The experimentally observed beating phenomenon depicted in Figure 3.21 is probably
caused by an energy exchange between the desired in-plane mode and some unde-
sired out-of-plane mode(s). This may be a phenomenon called mode coupling. Ac-
cording to, for instance, Iwatsubo and Saigo (1973), Roberts and Cartmell (1984) or
Cartmell and Roberts (1988), mode coupling may appear in a nonlinear, parametrically
driven system, such as the dog-bone resonator, when linear combinations of harmonic
resonance frequencies of vibration modes are near the excitation frequency or near the
harmonic frequency of the desired vibration mode. In that case, coupling of vibration
modes may occur when (see Nayfeh and Mook, 1977):

n f1 ≈ fi ± f j, n ∈ N, (3.14)
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where f1 denotes the harmonic resonance frequency of the desired mode (in this case,
the in-plane mode) and where fi and f j denote harmonic resonance frequencies of two
other modes (which could be out-of plane, in this case).

In order to experimentally investigate the energy exchange and the possibly nonlinear
mode coupling effect, experiments have been carried out using a Polytec MSA-400Micro
System Analyzer. This system can be operated as a laser-doppler vibrometer and is able
to determine out-of-plane displacements in microsystems with frequencies from 50 kHz
up to 20 MHz. The vibrometer measures only in the z-direction (see Figure 3.18), thereby
ignoring x- and y-displacements. As stated before, in-plane vibrations (in x-direction) are
detected piezoresistively.

Mode coupling is investigated by measuring the piezoresistive in-plane response and the
out-of-plane displacement (by integrating the velocities measured with the vibrometer).
By means of an external trigger, the two signals are measured simultaneously, such that
information on the phase between them can be obtained.

For the measurements, which will be described next, different dog-bone resonators are
used. The excitation settings are Vdc = 35 V and Vac = 100 mV and the excitation
frequency is set to f = 16.7724 MHz. In Figure 3.22, both the in-plane and out-of-plane
time signals are displayed. The maximum out-of-plane displacement is thus 34 nm.
Although the vertical axes of the graphs in Figure 3.22 do not have the same unit, it
can be seen that some kind of energy exchange is present between in-plane and out-of-
plane movements. An increase in out-of-plane displacement is related to a decrease in
the piezoresistive response. Spectral analysis of the out-of-plane signal (Figure 3.22) in
the Polytec system reveals that the out-of-plane movements mainly consist of a 7.25 MHz
and a 9.52 MHz contribution. Note that the sum of the out-of-plane response frequencies
equals the in-plane excitation frequency indicating that some kind of mode coupling,
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Figure 3.22 / Measured piezoresistive in-plane signal and out-of-plane displacement.
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according to (3.14) may be present.

For a different dog-bone resonator, with a nominal desired in-plane resonance frequency
around 19.13 MHz, similar behaviour has been observed. Again, the out-of-plane re-
sponse has been measured using the laser vibrometer system. An example of a typical
shape of the out-of-plane motion measured for this resonator is depicted in Figure 3.23.
The excitation settings are Vdc = 86.5 V and Vac = 150 mV with an excitation fre-
quency already mentioned above. The frequency of the observed out-of-plane mode is
much lower, 494 kHz, but the vibration displacement is substantial: up to 46.15 nm.
Again, this shows that some coupling mechanism is present between (desired) in-plane
vibration modes and (undesired) out-of-plane modes.
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Figure 3.23 / Measured out-of-plane displacement of a resonator with a resonance fre-
quency around 19.13 MHz. In grayscale, the out-of-plane displacement profile of the
resonator is depicted at maximum displacement. The grey mesh indicates the unde-
formed shape.

3.3.2 Modelling approach

In this section, the partly heuristic modelling approach that has been applied for the dog-
bone MEMS resonator will be described briefly. As stated before, the applied approach
will not lead to a good match between the simulations and experiments. The interested
reader is referred to van den Hoven (2008) for a detailed description of the model deriva-
tion. For case study I, described in Section 3.2, experimentally observed frequency hys-
teresis demanded for a Duffing-based heuristic model. However, for the experimentally
observed behaviour of the dog-bone resonator, described in Section 3.3.1, it is more dif-
ficult to assume a specific model structure beforehand. Although a periodically forced
van der Pol oscillator with cubic stiffness, or a two DOF periodically forced model with
internal resonances, see (3.14), may show frequency hysteresis (Figure 3.20) and beating
behaviour (Figure 3.21), a different approach will be utilised in this section.

The following partly heuristic modelling approach will be applied. Since coupling be-
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tween in-plane and out-of plane modes is experimentally observed, a 2D model de-
scription that is able to couple vibration modes in x-direction to vibrations modes in
z-direction, is followed. In this approach, a finite element description for the dog-bone
resonator is used for determining the linear natural frequencies and eigenmodes. Next, a
nonlinear strain-displacement relation will be applied for coupling the in-plane and out-
of-plane vibrations. Out-of-plane excitation will be introduced by a lumped description
for the electrostatic forces and moments for tapered electrodes. Finally, the numerical
implementation of the model will be described.

Vibration modes

A detailed drawing of the dog-bone resonator and its dimensions is depicted in Fig-
ure 3.24. Gaps between the resonator heads and the electrodes are denoted by d1 and
d2, for resonator heads 1 and 2, respectively. A set of nominal dimensions is used for
modelling the dynamic behaviour of the dog-bone resonator. The dimensions are listed
in Table 3.2. These dimensions correspond to dog-bone resonator, that is symmetric
around x = 0, since w1 = w4, l1 = l4, w2 = w3 and l2 = l3. In practice, asymmetry may
be present due to production tolerances.

l1

l2

l3

l4

ls

resonator
head 1

resonator
head 2

w1

w2

w3

w4

ws

b

x

y

z

ψ

Figure 3.24 / Schematic 2D representation of the dog-bone resonator.

In order to describe the resonator in a finite element formulation, it is divided into n
beam elements in x-direction. Each element has 2 nodes, such that a total of n + 1 nodes
is obtained. Each node of an element has three DOF, displacements in x- and z-direction
and rotation ψ around the y-axis, see Figure 3.24. Therefore, the model has a total of
3n + 3 DOF. Displacement in the y-direction is not modelled. The gap in the resonator,
see Figures 3.17(b) and 3.18, is not explicitly included in the model (the parallel beams
connecting the resonator heads are modelled as a single beam).

Each of the beam elements contributes to the total mass and stiffness matrix. The spe-
cific contribution depends on the type of element that is selected. For the resonator
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Table 3.2 / Nominal dimensions of the dog-bone resonator.

Parameter Value (µm) Parameter Value (µm)

l1 35 w1 64

l2 20 w2 20

l3 20 w3 20

l4 35 w4 64

ls 6 ws 3

d1 = d2 335 b 1.5

considered here, Timoshenko beam elements are chosen, which take into account the
effect of shear deformation in z-direction. The element mass and stiffness matrices,
which can be found, for instance, in Przemieniecki (1968), are assembled into the sys-
tem mass and stiffness matrix. Furthermore, the influence of the suspension of the
beams of the resonator, having dimensions ws and ls, (see Figure 3.24) is accounted for
by adding additional mass and stiffness terms to the corresponding nodes in the assem-
bled mass and stiffness matrix. For the suspension, also Timoshenko beam elements are
used (van den Hoven, 2008). Material parameters that are used for the element matrices
are given in Table 3.3.

Table 3.3 / Physical parameter values for the dog-bone resonator.

Parameter Value Unit

ρ 2329 kg m−3

E 130.02 GPa

G 79.51 GPa

ν 0.2785 (–)

By means of the assembled system mass matrix M and stiffness matrix K, where
M, K ∈ R(3n+3)×(3n+3), the undamped, free vibrations of the system can be derived from
the following equation of motion:

Mẍ + Kx = 0, (3.15)

where x =
[
x1 z1 ψ1 . . . xn+1 zn+1 ψn+1

]T
, x ∈ R(3n+3) denotes the column with

the nodal displacements in x and z-direction and rotation ψ around the y-axis. Solution
of the undamped eigenvalue problem:

[
−(2π fi)

2M + K
]
φi = 0, (3.16)

yields 3n + 3 eigenfrequencies fi and eigenmodesφi. The eleven lowest eigenfrequen-
cies are listed in Table 3.4. The eleventh eigenfrequency is listed to show that frequencies
for higher modes rapidly increase. The natural frequencies have been calculated for a
finite element discretisation in the x-direction using n = 400 elements. Each part, with
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Table 3.4 / Eigenfrequencies corresponding to the lowest eleven modes of the 2D dog-
bone resonator model for the parameter values listed in Tables 3.2 and 3.3.

Mode fi (MHz) Direction

1 0.280188 out-of-plane
2 0.355752 out-of-plane
3 2.787124 out-of-plane
4 3.241353 out-of-plane
5 9.318476 out-of-plane
6 10.158065 out-of-plane
7 14.351257 in-plane
8 18.907414 out-of-plane
9 20.575010 out-of-plane
10 22.653739 in-plane
11 30.204426 out-of-plane

length li, i = 1, 2, 3, 4 (see Figure 3.24), has been divided into 100 elements in x-direction.

A graphical representation of modes 1 and 2, and modes 7 and 10 is depicted in Fig-
ure 3.25. These correspond to the first two out-of-plane modes and the first two in-plane
modes, respectively. The eigenmodes are normalised with respect to the mass matrix.
Note that the linear in-plane and out-of-plane modes are uncoupled. Mode 10 (dashed
line in Figure 3.25(b)) is the desired mode of the dogbone resonator. This mode corre-
sponds to an anti-symmetric motion in x-direction around the middle node (node 201).
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(a) First (mode 1, solid line) and second (mode 2, dashed line) out-of-plane modes.
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(b) First (mode 7, solid line) and second (mode 10, dashed line) in-plane modes.

Figure 3.25 / First two out-of-plane (a) and in-plane (b) modeshapes. Modes are mass-
matrix normalised and mode numbers refer to Table 3.4.
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The second out-of-plane mode corresponds with the experimentally observed vibration
shape in Figure 3.23. The four modes, depicted in Figure 3.25 will be used for intro-
ducing coupling between in-plane and out-of-plane vibrations later. Notice the piecewise
continuous nature of the eigenmodes at noted 101 and 301, due to the discontinuity in
width between the resonator beams and heads, see Figure 3.24.

Excitation: electrostatic forces and moments

As stated earlier, the desired in-plane vibration mode of the dog-bone resonator is actu-
ated electrostatically. Both a bias voltage Vdc and an ac voltage with amplitude Vac and
excitation frequency f are applied to the electrodes of the resonator:

V(t) = Vdc + Vac sin(2π f t) (3.17)

The electrostatic force resulting from the voltage difference over the electrode gap, de-
pends on the gap size. It acts on the first and the last node in the finite element model.
The distance between the electrodes and the resonator is not completely constant in the
z-direction, due to the production process. Therefore, the gap may not be constant in z
direction, since both the resonator head and the electrodes have a slightly slanted face,
see Figure 3.26. This effect is called tapering and it results in out-of-plane excitation.
Namely, since the electrostatic force varies over the gap height, next to the electrostatic
force in the x-direction, also a bending moment around the y-axis and a force in the
z-direction is introduced on the first and the last node in the model. In a first approxima-
tion for the model, it will be assumed that the electrostatic field lines will remain directed
in the x-direction, such that the electrostatic force in the z-direction will be zero.

Resonator
heads

∆d1∆d1 ∆d2∆d2

ẑ ẑ

d1(z) d2(z)

x̂ x̂ b
x

y

z

ψ

Figure 3.26 / Tapering of the gaps between resonator heads and electrodes. Local coordi-
nates x̂ and ẑ are introduced for describing the tapering.

The electrostatic forces in x-direction, F1(x1) and Fn+1(xn+1), acting on the first and last
node in the model, respectively, vary with the z direction due to tapering. Therefore, they
can be eleborated as an integral expression over the gap height:

F1(x1) = −ǫ0w1V2

2

∫ b
2

− b
2

1

(d1(ẑ) + x1)2
dẑ = − ǫ0bw1V2

2(d1 − ∆d1 + x1)(d1 +∆d1 + x1)
, (3.18a)

Fn+1(xn+1) =
ǫ0w4V2

2

∫ b
2

− b
2

1

(d2(ẑ)− xn+1)2
dẑ =

ǫ0bw4V2

2(d2 −∆d2 − xn+1)(d2 +∆d2 − xn+1)
,

(3.18b)
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where ǫ0 = 8.854 · 10−12 F/m is the permittivity in vacuum and where the gaps are
described in terms of their local coordinate ẑ:

d1(ẑ) = d1(0) − 2∆d1

b
ẑ, d2(ẑ) = d2(0) − 2∆d2

b
ẑ, (3.19)

see Figure 3.26. In (3.18), d1 and d2 are used as shorthand notation for d1(0) and d2(0).
Since the electrostatic excitation varies in the z-direction, it exerts a bending moment on
the first and last node. These moments M1(x1) and Mn+1(xn+1) can be elaborated in a
similar way as the forces F1(x1) and Fn+1(xn+1):

M1(x1) =
ǫ0w1V2

2

∫ b
2

− b
2

ẑ

(d1(ẑ) + x1)2
dẑ,

=
ǫ0b2w1V2

8

(
1

(d1 −∆d1 + x1)∆d1

+
ln(d1 − ∆d1 + x1)

∆d2
1

+
1

(d1 +∆d1 + x1)∆d1

− ln(d1 +∆d1 + x1)

∆d2
1

)

, (3.20a)

Mn+1(xn+1) = −ǫ0w4V2

2

∫ b
2

− b
2

ẑ

(d2(ẑ)− xn+1)2
dẑ,

= −ǫ0b2w4V2

8

(
1

(d2 −∆d2 − xn+1)∆d2

+
ln(d2 − ∆d2 − xn+1)

∆d2
2

+
1

(d2 +∆d2 − xn+1)∆d2

− ln(d2 +∆d2 − xn+1)

∆d2
2

)

, (3.20b)

where d1(ẑ) and d2(ẑ) are given in (3.19).

Coupling between in-plane and out-of-plane modes

Apart from the bending moments due to tapering (3.20), no other coupling between in-
plane and out-of-plane modes is present, since the eigenmodes are decoupled. However,
such a coupling or energy exchange between in-plane and out-of-plane modes has been
observed in the experiments. This coupling has to be caused by some excitation mech-
anism, which can be either direct (due to tapering) or parametric. From some initial
simulations with the model, it has become clear that excitation of out-of-plane modes
cannot be described by the direct excitation due to tapering only. Therefore, the in-plane
and out-of-plane modes of the dog-bone resonator will be coupled through a nonlinear
strain-displacement relation. For this purpose, the strain εx in x-direction is described
as (Reddy and Singh, 1981):

εx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

− z
∂2w

∂x2
. (3.21)

In the derivation of themodel, which will be described next, the first two in-plane and out-
of-planemodes of the dog-bone resonator (see Figure 3.25) will be used. This combination
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of eigenmodes does not obey coupling relation (3.14), but mode 2 does resemble the
experimentally observed vibration quite well, see Figure 3.23.

The nonlinear (coupled) equations of motion for the dog-bone resonator will be derived
using Lagrange’s equations (Meirovitch, 2001; Thomsen, 2003):

d

dt

(
∂T
∂q̇

)

− ∂T
∂q

+
∂Uin

∂q
= FT

nc, (3.22)

where T denotes the kinetic energy, Uin denotes the internal or strain energy and Fnc

denotes a column with generalised forces andmoments. Column q =
[
q1 q2 q7 q10

]T

contains the time-dependent generalised coordinates of the first two out-of-plane modes
(q1 and q2) and the first two in-plane modes (q7 and q10). Note that the index corresponds
with the mode number as listed in Table 3.4.

The kinetic energy T and the strain energy Uin of the dog-bone resonator with volume V
can be calculated from:

T =
1

2
ρ

∫

V
(u̇2 + ẇ2) dV , (3.23)

Uin =
1

2

∫

V
Eε2

x dV , (3.24)

where u and w describe the displacement fields in the x- and z direction of the resonator,
respectively, and where E denotes Young’s modulus. The generalised non-conservative
forces and moments will be elaborated later. In (3.24), the term εx denotes the strain in
x-direction.

In order to evaluate the expressions for the kinetic energy (3.23) and strain energy (3.24),
expressions based on temporal and spatial derivatives of the displacement fields u and
w have to be integrated over the resonator volume V . These displacement fields will be
based on the previously calculated eigenmodes related to the first two in-plane (φ7 and
φ10) and out-of-plane (φ1 and φ2) vibration shapes of the dog-bone resonator, see Ta-
ble 3.4 and Figure 3.25. Since no analytical expressions are available for the eigenmodes,
each of them will be approximated by sixth-order piecewise continuous polynomials. The
polynomials are piecewise continuous due to the piecewise nature of the eigenmodes.
Namely, the x-direction is divided into four parts having length li, i = 1, 2, 3, 4, see Fig-
ure 3.24. In this way, u and w can be approximated by separation of variables as follows:

u(x, t) = q7(t)α7(x) + q10(t)α10(x), (3.25a)

w(x, t) = q1(t)α1(x) + q2(t)α2(x), (3.25b)

where the piecewise continuous polynomialsαi(x) are given by:

αi(x) =







αi,1(x), x ∈ [−(l1 + l2),−l2],

αi,2(x), x ∈ [−l2, 0],

αi,3(x), x ∈ [0, l3],

αi,4(x), x ∈ [l3, l3 + l4].

for i = 1, 2, 7, 10. (3.26)
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At the boundaries, the modeshapes are continuous, implying αi,1(−l2) = αi,2(−l2),
αi,2(0) = αi,3(0) and αi,3(l3) = αi,4(l3). For the sake of convenience, the arguments
of (3.25) will be omitted in the following.

By using the displacement fields (3.25) and the expressions for the modeshapes (3.26),
the kinetic energy and the internal energy can be evaluated, by splitting them in parts.
This yields for the kinetic energy:

T =
ρb

2

[

w1

∫ l2

−(l1+l2)
(u̇2 + ẇ2) dx + w2

∫ 0

−(l2)
(u̇2 + ẇ2) dx

+ w3

∫ l3

0
(u̇2 + ẇ2) dx + w4

∫ (l3+l4)

l3

(u̇2 + ẇ2) dx

]

. (3.27)

Note that the kinetic energy is independent of q, which yields ∂T
∂q

= 0 in (3.22). For the
potential energy, a similar approach is used, where (3.25) is used in the expression for εx,
see (3.21). Additionally, terms related to the support stiffness are included. Details can be
found in van den Hoven (2008).

The column Fnc with generalised nonconservative forces contains damping forces as well
as expressions related to the electrostatic forces and moments, see (3.18) and (3.20). The
damping forces are derived from a so-called Rayleigh dissipation function R, see, for
instance, Mallon et al. (2006), which reads (based on mass-matrix normalised eigen-
modes):

R(q̇) =
1

2

∫ (l3+l4)

−(l1+l2)

[

b1

(

q̇1
∂w

∂q1

)2

+ b2

(

q̇2
∂w

∂q2

)2

+ b7

(

q̇7
∂u

∂q7

)2

+ b10

(

q̇10
∂u

∂q10

)2
]

dx,

(3.28)

where bi = 2ξiωi, i = 1, 2, 7, 10 contain non-dimensional damping coefficients ξi for
the respective modes. The generalised forces related to damping can be found from
FT

nc,damping = − ∂R
∂q̇
. For the electrostatic forces (3.18) and moments (3.20), the displace-

ments x1 and xn+1 are needed. These are found by evaluating the in-plane displacement
u (3.25a) at x = −(l1 + l2) and at x = l3 + l4, respectively. A detailed expression for the
derivation of Fnc can be found in van den Hoven (2008).

By using Lagrange’s equations (3.22), the four coupled equations of motion for the dog-
bone resonator can be derived. The system of ODEs can be written as:

Mq̈ + fin(q) = Fnc(q, q̇, t), (3.29)

where M ∈ R4×4 denotes the mass matrix, fin(q) ∈ R4 denotes the column with in-
ternal nonlinear elastic forces, including the coupling between in-plane and out-of-plane
deformations. Fnc(q, q̇, t) ∈ R4 is the column with non-conservative damping and elec-
trostatic forces (which are time dependent due to V(t)). Further details can be found
in van den Hoven (2008).
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Numerical approach

Similar to the clamped-clamped beam resonator, the simulation model for the dog-bone
resonator consists of a state-space description of (3.29). The state column is defined as

x =
[
qT q̇T

]T
, such that (3.29) can be written as ẋ = f(x, t), where

f(x, t) =

[
q̇

M−1[Fnc(q, q̇, t)− fin(q)]

]

. (3.30)

Next, the steady-state nonlinear dynamic behaviour of the dog-bone resonator is investi-
gated using a similar approach as described in Section 3.2.2, based on numerical colloca-
tion and continuation techniques in AUTO (Doedel et al., 1998), see also Section 2.4.4.
For this purpose, the model has been written to non-dimensional form.

Periodic solutions will be presented in terms of x- and z-displacements at the ends of the
resonator heads. The piezoresistive detection has been found not to result in different
results (van den Hoven, 2008). Results will be discussed in Section 3.3.3.

3.3.3 Numerical results

Numerical simulations are performed with the model (3.29) in order to determine the
nonlinear steady-state dynamic behaviour of the dog-bone resonator. In Figure 3.27,
amplitude-frequency curves are depicted for the dog-bone resonator with the nominal
geometry as listed in Table 3.2. For now, the tapering of the gaps is also assumed sym-
metric: ∆d1 = ∆d2 = 50 nm. These values are a worst-case scenario with respect to
production tolerances. Results are shown for the in-plane and out-of-plane displacement
of the left-most point (node 1) on resonator head 1, see Figure 3.24. Results for the other
end of the dog-bone resonator are the same due to symmetry. In the simulations, the
frequency f is varied around the desired in-plane beam mode (around 22.6 MHz). At
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Figure 3.27 / Amplitude-frequency curves for the model with the nonlinear coupling
terms for Vac = 300 mV and three different Vdc-values.
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an ac excitation amplitude of Vac = 300 mV, results for three different bias voltages are
depicted: Vdc = 30, 60 and 90 V.

The non-dimensional damping coefficients, which are used in the Rayleigh dissipation
function (3.28), are set to ξ1 = 3.8 · 10−5, ξ2 = 4.9 · 10−5, ξ7 = 4.7 · 10−4 and
ξ10 = 8.3 · 10−4 in order to obtain an in-plane quality factor of about Q = 35000 and
an out-of-plane quality factor of about Q = 10000. These values are estimated based on
experiments, see van den Hoven (2008). Although the in-plane response has a peak to
peak amplitude of over 100 nm, see Figure 3.27(a), the calculated out-of-plane response
is only very small (in picometer range), see Figure 3.27(b). The measured out-of-plane
response, see Figure 3.22(b) is in the order of 10−8 m. Furthermore, from the simula-
tions it also follows (not depicted) that no resonance occurs at the asymmetric in-plane
eigenmode at frequency f7, which corresponds to the fact that the dog-bone resonator is
symmetric with respect to the plane x = 0.

In case of an asymmetric dog-bone resonator, in which the gaps and the tapering are set to
d1 = 355 nm, d2 = 315 nm, ∆d1 = 60 nm and ∆d2 = 40 nm, the simulation results are
about the same as the results in depicted in Figure 3.27. In addition, around f7, a small
in-plane response is observed, due to asymmetry of the dog-bone resonator. However, the
experimentally observed energy exchange between in-plane and out-of-plane modes, see
Figure 3.22, has not been found in the numerical simulations.

In Noijen et al. (2007) and Mallon et al. (2008), a similar modelling approach as used
here is applied to derive and analyse the equations of motion of macro-scale buckling
problems. It is shown that dynamic buckling can yield an unstable harmonic resonance
peak, resulting in a beating chaotic time response in which energy is exchanged be-
tween in-plane and out-of-planemodes. However, in Noijen et al. (2007) andMallon et al.
(2008), a much larger number of modes is taken into account. Therefore, it is possible
that, by increasing the number of modes, such coupling between in-plane and out-of-
plane modes may occur at lower excitation values, which corresponds to experimental
results. This is still under investigation.

3.3.4 Discussion

The partly heuristic model, proposed in Section 3.3.2 is found to be unable to describe the
experimentally observed mode-coupling behaviour (Section 3.3.1). Compared with the ex-
perimentallymeasured out-of-plane response, the finite element based 2Dmodel predicts
out-of-plane movements that are several orders-of-magnitude smaller. A nonlinear strain
displacement relation is used for coupling the in-plane and out-of-plane motions. and
tapering of the electrode gaps serves as an excitation mechanism for out-of-plane modes.

The proposed partly heuristic model for the dog-bone resonator has a fixed model struc-
ture with an a-priori defined complexity. The models is unable to describe the experi-
mentally observed coupling between in-plane and out-of-plane modes. Furthermore, the
model cannot describe the shape of the resonance peak as well as the plateau for the am-
plitude, observed in the experiments. Themain reason for this is that the model structure
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is not accurate enough in terms of coupling between in-plane and out-of-plane motion
(number of modes) and in terms of the excitation mechanisms for out-of-plane modes.
In the current model, only two in-plane and two out-of-plane modes are included. Inclu-
sion of more in-plane and out-of-plane modes may result in a better description of the
behaviour of the resonator. Furthermore, only tapering of the electrodes is included for
out-of-plane excitation. Fringing field-effects and an accurate description of the electric
field for tapered electrodes may result in more accurate results.

As described above, the partly heuristic modelling approach for case study II clearly
shows shortcomings in terms of experimentally observed effects that can be described.
In order to improve this, it is recommended to use a fully first-principles based approach
for deriving the model of the dog-bone resonator. In this way, an improved description of
in-plane and out-of-plane (parametric) excitation effects can be derived. This will provide
a systematic approach for including a large variety of excitation and nonlinear dynamic
effects that may be relevant for the dog-bone resonator.

3.4 Conclusions

Heuristic modelling has been applied to two case studies. For the case study of the
clamped-clamped beam MEMS resonator (Section 3.2), a good quantitative match be-
tween experiments and simulations with the heuristic model has been obtained. This
means that the chosen heuristic model structure, a Duffing-based model with electro-
static (parametric) excitation, is well-suited for describing the dynamic behaviour. How-
ever, because of the heuristic nature of the proposed model, it is not capable of predicting
the dynamic behaviour for a full range of excitation parameters. At each excitation set-
ting, a best fit has been made in order to obtain an optimal match between simulation
and experiment. This severely limits the predictive capabilities of the obtained model.

For the second case study, concerning a dog-bone MEMS resonator (Section 3.3), the
applied partly heuristic modelling approach sofar has proven to be unable to describe
the experimentally observed mode coupling behaviour. The main reasons for this is
the incorrect model structure with respect to the number of in-plane and out-of-plane
modes together with the excitation mechanism for out-of-plane modes. Especially by us-
ing the lumped approach for the electrostatic actuation, essential effects (fringing fields,
non-parallel electric field in the electrode gaps) are not modelled correctly. Furthermore,
whether the proposed multi-model captures the experimentally observed behaviour, de-
pends to a large extent on the number and type of modes that are included, which, in
turn depends on the complexity and the specific type of resonator considered.

A solution to the abovementioned shortcomings of heuristic modelling lies in a fun-
damental approach based on first-principles. Compared to the heuristic modelling ap-
proach, which takes place directly at the device level, one has to go one step back in the
modelling levels, namely to the physical level, see Figure 1.2.2. Once physical level de-
scriptions (typically, PDEs) have been obtained for relevant physical effects, model reduc-
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tion techniques can be applied to derive a reduced-order model that potentially captures
the experimentally observed behaviour better. This will be described in the next chapters.



CHAPTER FOUR

Multiphysics modelling framework

Abstract / This chapter describes the multiphysics modelling framework for deriving device level
models from the physical modelling level. First, some philosophy behind the modelling approach
will be detailed. Next, involved physical domains for MEMS resonators are introduced and (multi-
physical) effects occurring in these domains are described in detail by their governing equations.
Finally, the modelling framework is presented in terms of an approach for deriving reduced-order
models from the physical level models.

4.1 Introduction

From the two case studies of heuristic modelling, presented in Chapter 3, it has become
clear that, for accurate predictive modelling, a first-principles based approach is required.
For the clamped-clamped beam MEMS resonator of Section 3.2, the proposed lumped
or descriptive device level model is capable of capturing some, but not all of the experi-
mentally observed dynamical responses. Model parameters can be fine-tuned such that
the best possible fit is obtained for a certain excitation setting (see Figure 3.12), but the
predictive modelling capabilities have been found to be rather restrictive. For the dog-
bone resonator, see Section 3.3, the partly heuristic model that has been proposed, has
been found to be unable to describe the experimentally observed behaviour. However,
this holds for the specific model considered here. Other heuristic models may be able to
describe the experimentally observed behaviour. These are typical modelling issues that
are related (and inherent) to heuristic modelling.

In order to overcome these issues, a first-principles based modelling framework will
be presented in this chapter. The goal of the modelling framework is to derive device
level (reduced-order) models from the physical modelling level (see also Figure 1.1) in an
analytical or functional representation, for instance, ODEs with actual physical parame-
ters. The models are intended for fast and accurate simulation of nonlinear dynamics
of MEMS. The modelling approach will be focussed on MEMS resonators, but is not
restricted to this application field within microsystems engineering. The approach may

71
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also be applied to othermicrostructures in which the dynamic behaviour is of importance,
such as resonant sensors, resonant filters, switches and variable capacitors.

The MEMS resonators considered in this work provide a promising alternative for con-
ventional quartz crystals in oscillator circuits, see Section 2.2. The dynamic behaviour of
these resonators is one of the key phenomena that determines the oscillator performance
(Section 2.3) and has to be included in device level resonator models. Moreover, several
different nonlinear effectsmay show up in the steady-state dynamic behaviour, depending
on the specific resonator layout (see Chapter 3). The multiphysics modelling framework,
created from a mechanical engineering point of view, will provide a straightforward ap-
proach for investigating the nonlinear dynamic behaviour in MEMS resonators, thereby
providing a solution to the modelling requirements listed in Section 1.2.4.

Furthermore, the multiphysics models derived using the modelling framework will be
validated extensively by means of experiments. Heuristic modelling, as described in
Chapter 3, may have rather limited predictive capabilities. Whether a heuristic model is
able to capture experimentally observed behaviour depends to a large extent on the model
structure. The modelling framework, presented in Chapter 4 will provide a straightfor-
ward approach for the derivation of first-principles basedmultiphysicsmodels with much
better predictive qualities than heuristic models.

The majority of MEMS resonators for oscillators is operated in vacuum and makes use
of the electrostatic actuation/detection principle (see Section 2.2.2). Therefore, in the
current approach, the modelling framework will be confined to electrostatically actuated
MEMS resonators that are operated in vacuum. In general, three different physical do-
mains are involved in the modelling of these devices, see Figure 4.1: mechanical, electri-
cal and thermal. Due to operation in vacuum, the fluidic domain is not included.

Mechanical

Electrical Thermal

Figure 4.1 / Involved physical domains for MEMS resonators operating in vacuum.

In Section 4.2, the philosophy behind the modelling framework and the essence of first-
principles based modelling will be described. Next, in Section 4.3, the relevant physical
effects in each of these domains will be explained, together with the corresponding gov-
erning equations and constitutive relations at the physical level. Some effects are purely
single-domain of nature, whereas others – themultiphysical effects – typically result from
coupling across two physical domains. In Section 4.4, the modelling framework wil be
presented in terms of a methodology for deriving reduced-order models from the coupled
equations at physical level by means of Galerkin discretisation. Subsequently, numerical
solution and experimental validation takes place.
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4.2 Modelling philosophy

The essence of modelling boils down to the selection of a limited amount of relevant
physical effects to be included at a certain level of detail in a model. However, it is difficult
to know in advance what effects have to be taken into account and what level of detail
suffices.

For this purpose, the first-principles based multiphysics modelling framework will start
from the physical level, for instance, from distributed-parameter descriptions. Relevance
of effects can be addressed once physical effects that may influence the dynamic be-
haviour of MEMS resonators have been included. Effects that (at first sight) are relevant
will be described in Section 4.3. The level of detail of the model can be varied in the
Galerkin discretisation step that is applied to arrive at a reduced-order model. Often, it is
unclear beforehand how much detail should be put in a first-principles based model. A
more detailed model is not necessarily a better model.

A heuristic approach based on extensive experimental characterisation may also result in
a correct description of experimentally observed behaviour. However, such a data-based
model, consisting of, for instance, a heuristic model combined with look-up tables, may
be limited in predictive capabilities, especially when variations like fabrication tolerances
are relevant.

Furthermore, models resulting from a heuristic approach or from the first-principles
based modelling framework presented in this chapter may be the same. Namely, using
themodelling framework, reduced-ordermodels with a relatively low number of DOFwill
be created (see also Section 1.2.4 for modelling requirements). These models are simi-
lar to lumped models. However, the main advantage of the first-principles based models
over heuristic models is that actual physical parameters will appear in the coefficients that
characterise the reduced-order (lumped) model. In this way, the models provide (more)
insight into the influence of physical parameters and the sensitivity of a certain model
response to such parameters.

In line with this modelling philosophy, the first-principles based multiphysics models
that are derived using the framework will:

• enable fast and accurate simulation of (nonlinear) dynamic behaviour of MEMS
resonators;

• allow for addressing the relevance of individual (multiphysical) effects;

• form a pre-design tool for dynamic response analysis;

• be complementary to conventional finite element simulations (that can be used for
very complex geometries), allowing for fast and accurate (preliminary) simulations.

By satisfying these demands, the models can be used to gain insight in relevant physical
effects as well as to predict the dynamic behaviour of the system under investigation.
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4.3 Relevant physical effects

As has become clear from the previous section, three physical domains are involved in the
modelling of MEMS resonators (Figure 4.1). In each of these domains, several physical
effects may play a role, depending on the specificMEMS resonator layout. An overview of
relevant effects, categorised into the three physical domains, is presented in Figure 4.2.
This figure does not list all possible effects that may occur in MEMS in general, but only
presents an overview of effects that are considered to be relevant for the modelling of
MEMS resonators.

Several multiphysics effects are present in Figure 4.2. Electrostatic actuation and capac-
itive detection (both including fringing fields) couple mechanical deformation to capac-
itance changes and electrostatic force. Thermoelastic damping results from a coupling
between the heat equation in the thermal domain and structural dynamics in themechan-
ical domain through the thermoelastic material behaviour. In the next sections, all effects
depicted in Figure 4.2 will be discussed in detail by means of physical level descriptions.
Additionally, nonlinearities that may arise will be described where appropriate.

structural
dynamics

material
behaviour

anchor
loss

Mechanical

electrostatic
actuation

fringing
fields

capacitive or
piezoresistive
detection

Electrical

thermoelastic
damping

thermal
noise

Thermal

Figure 4.2 / Involved physical effects for MEMS resonators, categorised per domain (see
also Figure 4.1).
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4.3.1 Structural dynamics

The structural dynamics part in the mechanical domain is mainly governed by the ge-
ometry, the material (Si), the type of the micromechanical resonator and its characteristic
vibration shape (see also Section 2.2.3). The underlying fundamental equations are the
same for all types of resonators, but the specific form of the resulting PDEs may be dif-
ferent for flexural resonators and bulk resonators, for instance.

Beam- and plate-like structures have been widely used and studied in the microsystems
community. At the physical level, distributed modelling approaches are used for res-
onators with deformation that takes place in the whole body of the resonator, for instance
flexural and longitudinal resonators. Lumped approaches are used for resonators with
localised deformation, such as torsional resonators or comb drive resonators.

For systems such as beams with distributed parameters, vibration can be described by
partial differential equations (PDEs) and their associated boundary conditions, for in-
stance, the beam equation, plate equation or wave equation. Severalmethods are available
for deriving the PDEs for elastic solids, see, for instance Reddy and Rasmussen (1982),
Weaver et al. (1990), Meirovitch (2001) and Reddy (2007). The governing equations can
be classified into three categories: kinematics (strain-displacement relations), kinetics
(conservation of momentum) and constitutive relations (stress-strain relations). Kinemat-
ics and kinetics are described in this section, whereas constitutive equations will follow
in Section 4.3.2 on material behaviour.

Kinematics

The displacements u of a material particle of a body B can be expressed in terms of a
reference coordinate system. For instance, in a Cartesian reference frame, the displace-
ment can be written as u = (u, v, w). The deformation can be measured in terms of the
Green-Lagrange strain tensor E:

E =
1

2

[
∇u + (∇u)T + ∇u · (∇u)T

]
, (4.1)

where ∇ denotes the gradient operator with respect to the material coordinates. Compo-
nents of E are denoted by ηi j. In general, nonlinear strain-displacement relations result
from (4.1). For small deformations, the last product in (4.1) may be omitted, yielding the
infinitesimal strain tensor ε (whose components are denoted by εi j):

ε =
1

2

[
∇u + (∇u)T

]
. (4.2)

Kinetics

Consider a material body B with a volume V , bounded by a surface S . External forces T
(per unit surface area) and f (per unit mass) are acting on the body B.
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One possible way of deriving the equations of motions of the body is by using the prin-
ciple of conservation of linear momentum (Newton’s second law of motion), leading to:

∇ ·σ + ρf = ρ
∂2u

∂t2
, (4.3)

where ρ is the material density and σ is the stress tensor. (4.3) is supplemented by the
boundary conditions for the displacement and/or stress vector:

u = û, and/or σ · n̂ = T̂, (4.4)

where û and T̂ are specified displacement and stress vectors, respectively, and where n̂
denotes the outward normal.

Alternatively, the equations of motion may be derived using energy principles and varia-
tional methods based on the kinetic energy T , the internal (or strain) energy Uin and the
external workWex of a material body B. This is the method that will be used in this work.
Hamilton’s principle (Meirovitch, 2001; Reddy, 2007) states that of all possible paths that
a material particle could travel from its position at time t1 to its position at time t2, its actual
path will be one for which the integral

∫ t2

t1

(T − Uin −Wex) dt (4.5)

is an extremum (with t1 and t2 arbitrary). A necessary condition for this to hold is that the
first variation of the integrand is zero:

∫ t2

t1

(δT − δUin − δWex) dt = 0. (4.6)

The energy functions in (4.6) are given by (see Reddy, 2007):

δT =
1

2
δ

∫

V
ρ

∂u

∂t
· ∂u

∂t
dV , (4.7)

δUin =
∫

V
σ : δE dV , (4.8)

δWex = −
(∫

V
f · δu dV +

∫

S
T · δu dS

)

, (4.9)

where ‘:’ denotes the double dot product in (4.8). The negative sign in (4.9) indicates that
the work is performed on the body B. Similar to (4.3)–(4.4), the energy approach (4.6)–
(4.9) yields a set of equations of motion and the associated essential (geometric) and
natural (force) boundary conditions for the structural dynamics.

4.3.2 Material behaviour

In addition to the kinematics and kinetics described in Section 4.3.1, constitutive equa-
tions are needed to describe the material behaviour. These equations relate the stress
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tensorσ in a material to the associated Green-Lagrange strain tensor E (4.1) or infinites-
imal strain tensor ε (4.2).

The MEMS resonators under investigation in this work are made of single-crystal sili-
con, which has both electrical and mechanical properties that make it very suitable for
microfabrication, see for instance Petersen (1982) or (Stemme, 1991). Single-crystal sil-
icon is an anisotropic material, which means that its elastic behaviour depends on the
orientation of the material. An extensive overview of silicon as an engineering material is
presented in Appendix A. Taking into account the anisotropy, the constitutive equations
for silicon can be written in component form as:

σii = C11ηii + C12(η j j + ηkk), (4.10a)

τi j = C44γi j (i 6= j), (4.10b)

whereσii, τi j, ηii and γi j (= 2ηi j), (i, j = 1, 2, 3) denote normal stress, shear stress, nor-
mal Green-Lagrange strain and shear Green-Lagrange strain, respectively. The indices 1,
2 and 3 correspond with the three principal directions in thematerial, see Appendix A.1.2.
Only three independent material constants are present in (4.10a)–(4.10b): C11, C12 and
C44. Alternatively, strains can be written as a function of stresses as:

ηii = S11σii + S12(σ j j +σkk), (4.11a)

γi j = S44τi j (i 6= j), (4.11b)

which contain three independent compliance coefficients S11, S12 and S44. The values of
the second-order elastic constants Ci j and Si j are given in Table A.1. These constants can
be related to the more widely used quantities of Young’s modulus E and Poisson’s ratio
ν by relations presented in Appendix A.1.2.

Furthermore, for large deformations, nonlinear effects may arise in the constitutive equa-
tions for silicon. From literature, see for instance Seeger and Buck (1960) and Hiki
(1981), it is known that silicon exhibits a physical nonlinearity, resulting in deviation from
linear Hooke’s law (4.10a)–(4.10b). As a result, the elastic constants become a function
of the strain, see (A.31) in Appendix A.4.2. So-called third-order elastic constants describe
this behaviour. Their values are listed in Table A.2.

In case of homogeneous uni-axial loading, the effects can be taken into account in a
straightforward way (Kim and Sachse, 2000). The derivation of nonlinear Young’s mod-
ulus for this type of loading is presented in Appendix A.4.3. Young’s modulus can be
written as a function of the Green-Lagrange strain η11 as:

E(η11) = E0 + E1η11 + E2η
2
11 + . . . , (4.12)

where E1 and E2 denote linear and quadratic corrections to the linear Young’s modulus
E0. This expression can be included in the nonlinear constitutive equation for the stress:

σ11 = E(η11)η11 = (E0 + E1η11 + E2η
2
11 + . . .)η11. (4.13)

The derivation of the constants in (4.12) is presented in Appendix A.4.3. A similar ap-
proach has been reported in Kaajakari et al. (2003a) and Kaajakari et al. (2004b). Based
on these calculated constants, (4.13) can be used to determine that a 1% stress deviation
from linear theory is present at a Green-Lagrange strain of η11 = 0.0144.
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4.3.3 Loss mechanisms

Several different loss mechanisms may be present in MEMS resonators. For instance,
intrinsic material losses, thermoelastic damping, surface losses and losses through the
mounting of a MEMS device to the substrate (so-called anchor loss). Since the resonators
are operated in vacuum, fluidic loss mechanisms like air damping, acoustic radiation
and viscous drag have negligible influence. The amount of dissipation in a structure can
be expressed by means of a total mechanical quality factor Qtot, which can be expressed
as (Tilmans et al., 1992):

Qtot = 2π
W
∆W , (4.14)

where W denotes the total energy stored in the resonator and ∆W is the total energy
dissipated per cycle of vibration. All loss mechanisms contribute to the total energy dis-
sipated. Expression (4.14) is general in nature and holds for both linear and nonlinear
systems. Furthermore, a quality factor Qi can be attributed to each loss mechanism, see
for instance Yang et al. (2002), Hao and Xu (2009) or Kaajakari (2009). The expression
for Qtot becomes:

1

Qtot
=

n

∑
i=1

1

Qi
, (4.15)

where a total of n loss mechanisms is present. Several of the individual loss mechanisms
are described next.

Anchor loss is a loss mechanism in which vibration energy of the MEMS resonator is
dissipated by transmission through the resonator support(s), also called anchors. This
loss mechanism is important for MEMS resonators, since the resonator vibration in-
duces shear or normal stress in its supports. This loss mechanism will be described in
Section 4.3.4.

Intrinsic internal, or material losses depend on the purity, on the number of dislocations
and on the thermoelastic losses of the material used. In general, the losses other than
thermoelastic damping are very small for a single-crystal material (see Kaajakari (2009)
and Appendix A.1.3). It has lower losses than a poly-crystal material and it also has less
dislocations. Therefore, for resonators constructed from single-crystal silicon, the most
important internal loss mechanism is thermoelastic damping, see also Roszhart (1990).
This loss mechanism will be described in Section 4.3.5.

Furthermore, surface losses by surface defects or adsorbates may be present. These
losses are influenced by the surface roughness, by formation of an oxide layer and by
surface contamination (Yang et al., 2002). Surface loss mechanisms may be relevant for
microstructures that approach nanoscale, but have been found to be not significant for
clean silicon microresonators, see Kaajakari (2009). Therefore, this loss mechanism is
not considered here.
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4.3.4 Anchor loss

Forces and moments exerted on the resonator supports (anchors) are caused by vibration
of the resonator. They excite elastic propagating waves in the substrate, such that the
support structure will absorb some of the vibration energy of the resonator (Hao et al.,
2003; Park and Park, 2004a).

In literature, analytical work has been done on the calculation of the amount of en-
ergy dissipated per cycle. See for instance Hao et al. (2003), Park and Park (2004a,b),
Hao and Ayazi (2007) and Hao and Xu (2009). Especially Hao and Xu (2009) present
a thorough overview of the origin and calculation of support loss for clamped-clamped
beam MEMS resonators. The anchors of the beam act as excitation sources (shear stress
or normal stress) on the substrate and generate waves. These waves cause dissipation
by carrying away energy. Analytical expressions for the energy dissipation ∆W related to
anchor loss are derived in terms of the shear or normal stress at the beam ends and the
corresponding vibration displacements. Next, by means of (4.14), the quality factor of the
resonator can be calculated, which can be incorporated into the modelling framework as
a damping term.

Anchor losses can be reduced by mechanically isolating the vibrating elements from the
substrate. For instance, one could suspend the resonator at nodal (non-vibrating) points
via thin beams to the substrate. Alternatively, one could use an approach in which the
vibration in the structure is more or less balanced by using symmetry. Examples of such
structures have been discussed in Stemme (1991) and in Tilmans et al. (1992). However,
for each specific resonator type, it is advisable to investigate the effect of the dimensions
of the anchors. For instance, Q-factors have been found to depend in a nonlinear way
on the stem radius in a disk resonator suspended from a stem in the middle (Paci et al.,
2006).

4.3.5 Thermoelastic damping

As has been described in Section 4.3.3, thermoelastic damping is the most important
internal loss mechanism for resonators constructed from single-crystal silicon.

In a thermoelastic solid (any solid with a non-zero thermal expansion coefficient), a cou-
pling exists between the strain field due to mechanical deformation and the temperature
field in the solid. General theory on thermoelasticity can be found in Boley and Weiner
(1960) and Nowinski (1978). The coupling between the mechanical and thermal do-
main provides an energy dissipation mechanism that allows the system to relax to an
equilibrium through irreversible heat flow. The heat flow follows from local temperature
gradients which are caused by local strain gradients through the thermal expansion coeffi-
cient. This fundamental energy dissipation mechanism is called thermoelastic damping.
It poses an upper limit to the quality factor of any constructed resonator in which defor-
mation takes place.
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The calculations of thermoelastic damping start with the classical papers by Zener (1937,
1938, 1960), and Zener et al. (1938). A relation for the thermoelastic Q-factor for a reed
(beam) in flexural vibration is derived, based on a series approximation for the tempera-
ture profile in the beam:

Q−1 =
Eα2T0

ρcp

ωτ

1 + (ωτ)2
, (4.16)

where E is the Young’s modulus of the beam, α is the thermal expansion coefficient,
T0 is the nominal temperature and cp is the heat capacity per unit volume at constant
pressure. ω is the beam vibration frequency (for arbitrary flexural vibration mode) and τ
is the thermal relaxation time given by

τ =
h2ρcp

π 2k
, (4.17)

where h is the beam width, ρ is the material mass density and k is the thermal conductiv-
ity. Thermal properties of single-crystal silicon can be found in Appendix A.2. The heat
conduction in the beam is assumed to take place in the width direction of the beam only
(not along the length). The relation for the Q-factor (4.16) exhibits a so-called Lorentzian
behaviour as a function ofωτ and has a maximum value of Eα2T0/2cp atωτ = 1. This
can be understood as follows. When the frequencyω is much smaller than the effective
relaxation rate 1/τ of the system, it remains approximately in static equilibrium and very
little energy is dissipated. If the vibration frequency is much higher than the relaxation
rateω≫ 1/τ , the system has no time to relax, which, again, results in little dissipation.
Only when the frequency ω is near the relaxation rate 1/τ , thermal dissipation plays a
role. Especially for MEMS, this is indeed the case, since, due to their small dimensions,
the thermal relaxation time τ and the vibration frequencyω are close together.

In papers by Alblas (1961) and Shieh (1975, 1979) a more extensive approach to thermoe-
lastic coupling is presented, based on partial differential equations for the elastic body
dynamics and the first law of thermodynamics. Moreover, in Shieh (1975, 1979), thermoe-
lastic vibration and damping for Timoshenko beams is addressed. In Lord and Shulman
(1967), the effect of finite thermal conduction speed is investigated. This results in a
heat conduction equation that is second order with respect to time, instead of first order.
However, at room temperature, the characteristic time constant of the finite velocity of
conduction of silicon is very low (O(10−13) s), so the generalised theory reduces to the
conventional coupled theory (first law of thermodynamics).

Lifshitz and Roukes (2000) have extended Zener’s approach to an explicit solution for the
thermoelastic coupling for (MEM) beam resonators. Starting from the Euler-Bernoulli
beam equation and the heat equation (both including thermoelastic coupling), harmonic
motion is assumed. In this case, the solution to the heat equation can be found explicitly
and can be substituted back into the beam equation. The complex-valued temperature
profile results in a complex, frequency-dependent, stiffness in the beam equation. The
reasoning behind the complex stiffness is that the real part of the stiffness is in phase
with the elastic deformation, whereas the imaginary part is out of phase, thereby causing
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dissipation. The following expression for the Q-factor is derived:

Q−1 =
Eα2T0

ρcp

(
6

ξ2
− 6

ξ3

sinhξ + sinξ

coshξ + cosξ

)

, (4.18)

where

ξ = h

√
ωρcp

2k
. (4.19)

Variables in (4.18) and (4.19) are the same as used in (4.16) and (4.17). Good correspon-
dence is found with the expression (4.16) from Zener (1937).

Nayfeh and Younis (2004) have extended the approach of Lifshitz and Roukes (2000) to
the two-dimensional problem of thermoelastic damping in microplates, by making use
of a similar complex-valued temperature profile. Duwel et al. (2006) have used finite
element simulations to solve the coupled mechanical-thermal eigenvalue problem from
which the Q-factor of the resonator can be calculated. Prabhakar and Vengallatore (2008)
have investigated the additional effect of heat conduction along the length of the beam,
instead of the 1D heat conduction in transverse direction assumed in previous papers.
The proposed 2D approach is found to result in a larger effect of thermoelastic damping,
yielding a lower Q-factor.

For the multiphysics modelling framework, the thermoelasticity equations in general
form are required. These can be found in Boley and Weiner (1960) and Nowinski (1978).
The so-called Duhamel-Neumann relations relate stresses and strains via the stiffness
coefficients and thermal coefficients. The thermoelastic equivalent of (4.10a)–(4.10b) be-
comes:

σii = C11ηii + C12(η j j + ηkk) +βiiθ, (4.20a)

τi j = C44γi j +βi jθ (i 6= j), (4.20b)

where βi j are the thermal moduli andθ is the temperature differenceθ = T − T0 with re-
spect to a reference temperature T0. The thermoelastic version of (4.11a)–(4.11b) becomes:

ηii = S11σii + S12(σ j j +σkk) +αiiθ, (4.21a)

γi j = S44τi j +αi jθ (i 6= j), (4.21b)

where αi j denote the thermal expansion coefficients. For silicon, no thermal expansion
occurs in shear direction (αi j = 0 for i 6= j) and the thermal expansion coefficient is
the same for the three principal directions αii = α for i = 1, 2, 3 (see Appendix A.2.2).
As a result, βi j = 0 (for i 6= j) and βii = β for i = 1, 2, 3. Using these expressions,
(4.20)–(4.21) can be simplified. Furthermore, for this special case, β can be related to α
by:

β = − α

S11 + 2S12
= −(C11 + 2C12)α. (4.22)
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The general form of the heat equation is found from the first law of thermodynamics.
For material with cubic symmetry, such as single-crystal silicon, this becomes (Nowinski,
1978):

k∇2θ− ρcp
∂θ
∂t

+ T0β
∂e

∂t
= 0, (4.23)

where∇2 is the Laplacian operator and e denotes the dilatation:

e = η11 + η22 + η33. (4.24)

In general, also the other physical effects (Sections 4.3.1–4.3.7) may depend on temper-
ature. For instance, stiffness parameters depend on temperature (see Appendix A.2.4).
However, in the current approach, these effects are omitted; only thermoelastic damping
will be considered.

4.3.6 Electrostatic actuation and fringing fields

The MEMS resonators considered in this work are actuated electrostatically, see also Sec-
tion 2.2.2. Background on electrostatics can be found in, for instance Griffiths (1999).
Consider Figure 4.3, where a parallel plate capacitor is depicted schematically. The plates
are separated by a distance d and have a surface A. The top plate has a surface charge
density σe and the bottom plate has a surface charge density of equal magnitude but of
opposite sign. The total charge of a plate equals qe = σe A. The electrical field between
the plates has a value ofσe/ǫ0, where ǫ0 denotes the permittivity of vacuum. The parallel

−σe

+σe

d
z

A

Figure 4.3 / Parallel plate capacitor consisting of two plates, each having an area A and
an opposite charge density, and that are separated by a distance d.

plate capacitor in Figure 4.3 has a capacitance of (Griffiths, 1999):

C =
ǫ0A

d
, (4.25)

and the stored electrical energy in the capacitor equals:

We =
1

2
CV2 =

1

2

q2
e

C
, (4.26)

where V denotes the voltage difference over the capacitor plates and where qe = CV.
The electrostatic attracting force Fe, acting on the capacitor plates if one moves the the
top plate in Figure 4.3 over a distance dz, can be calculated from (Griffiths, 1999):

Fe = −dWe

dz
=

1

2

q2
e

C2

dC

dz
=

1

2
V2 dC

dz
. (4.27)
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Note that the total charge qe on the capacitor is assumed constant. In MEMS resonators,
displacement dz typically results from mechanical deformation (vibration) of the res-
onator.

In general, the plates of a capacitor have finite dimensions. As a result, the approximation
for a parallel plate capacitor (4.25) is no longer completely valid. The electric field is no
longer uniform between the capacitor plates and zero elsewhere, but is influenced by
the plate boundaries and dimensions. These effects are called fringing field effects. As
an illustration, Figure 4.4(a) depicts the electric field for an ideal parallel plate capacitor.
Fringing field effects are depicted in Figure 4.4(b).

(a) (b)

Figure 4.4 / Sketch of the electric fields for a parallel plate capacitor: (a) ideal parallel
plate and (b) fringing fields.

The total capacitance Ctot of the capacitor, including fringing field effects, can be written
as:

Ctot = Cpp + Cf, (4.28)

where Cpp denotes the ideal parallel plate capacitance, given by (4.25), and Cf denotes
the fringing field contribution. The general trend of fringing fields is to increase
the effective capacitance of the capacitor. Only for relatively simple geometries, an-
alytical calculations of the fringing field can be performed using so-called Schwartz-
Christoffel conformal mapping techniques, see Palmer (1937). Furthermore, Chang
(1976), van der Meijs and Fokkema (1984), and Barke (1988) provide extensions to this
approach. An overview of different expressions for calculating the contribution of fring-
ing fields is given in Leus and Elata (2004).

For the case of electrostatically actuated microbeams, work on electrostatic ac-
tuation (including fringing field effects) has been reported in Osterberg (1995),
Osterberg and Senturia (1997), Krylov and Maimon (2004), Krylov and Seretensky
(2006) and Batra et al. (2006a,b, 2007, 2008). This will be described in detail in Chap-
ter 5.

4.3.7 Capacitive or piezoresistive detection

The motion of the resonator can be detected capacitively or piezoresistively (see also Sec-
tion 2.2.2). Only these two methods are considered in this work and will be described
next.
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Capacitive detection

Motion of the MEMS resonator will result in motion of one (or both) of the capacitor
plates. This, in turn, results in generation of an electrical current. Often, one of the plates
of the capacitor is fixed and is used as the measurement electrode. For a capacitor with
capacitanceCtot(z), depending on the plate position z of themovable plate, see Figure 4.3,
the current ic will result from temporal changes in the charge qe of the capacitor:

ic =
dqe

dt
=

d (Ctot(z)V(t))

dt

= V(t)
dCtot(z)

dt
+ Ctot(z)

dV(t)

dt
= V(t)

dCtot(z)

dz

dz

dt
︸ ︷︷ ︸

ic

+ Ctot(z)
dV(t)

dt
︸ ︷︷ ︸

iac

, (4.29)

where V(t) denotes the time-dependent voltage difference applied to the moving plate
(measurement electrode) of the capacitor. The first term in (4.29), related to the time-
derivative of the capacitance Ctot is often called themotional current ic and the second one
is called the ac current iac, see also Kaajakari et al. (2005a). For capacitively sensedMEMS
resonators, the motional ic current will always be present. However, if only a dc voltage is
applied to the measurement electrode, iac will vanish. Furthermore, the measured output
voltage of the resonator depends on the exact layout of the measurement circuit.

Piezoresistive detection

When silicon is subjected to stress, the piezoresistance effect results in a resistance
change, see, for instance, Kanda (1991). In order to understand the principle, consider
a silicon bar with lentgh l, thickness b and width h. The resistance of the bar is defined
as (Kanda, 1991):

R =
ρ0l

bh
, (4.30)

where ρ0 is the resistivity of silicon in Ωm. For thin films, ρ0/b can be written as the
sheet resistance Rsheet in Ω. When the bar with resistance R, see (4.30), is stretched, a
change in resistance ∆R occurs, which can be related to the dimensional changes of the
bar and the change in resistivity by

∆R

R
=
∆l

l
− ∆b

b
− ∆h

h
+
∆ρ

ρ0
. (4.31)

The last term in (4.31), the change in resistivity, is the dominant term for semiconductor
gauges with about a factor 50 (Kanda, 1991). Therefore, dimensional changes ∆L, ∆b
and ∆h will be neglected. When silicon is subjected to a uni-axial stressσ , the change in
resistance is (Kanda, 1982, 1991):

∆R

R
≈ ∆ρ

ρ0
= π1σ , (4.32)
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where π1 denotes the longitudinal piezoresistive coefficient in Pa−1. In general,
anisotropic behaviour plays a role for the piezoresistance coefficient (Kanda, 1982,
1991), but this will not be considered here. Furthermore, the piezoresistive coefficient
is influenced by both the impurity concentration and temperature, see Kanda (1982)
and Tufte and Stelzer (1963).

Piezoresistive sensing uses a constant current is, sent through a piesoresistive element.
The resistance change ∆R results in a voltage change that can be measured. The output
voltage then equals:

Vout = is(R +∆R) = isR(1 + π1σ). (4.33)

Additional details on piezoresistive sensing can be found in Kaajakari (2009).

4.3.8 Thermal noise

Thermal noise is a combined thermal-electrical effect, caused by thermal agitation of
electrons inside electrical conductors. This noise is called Johnson-Nyquist or thermal
noise (Johnson, 1928; Nyquist, 1928) and has already been described in Section 3.2.2.
For completeness of the modelling framework, the equation describing the root mean
square (rms) of the noise voltage vn generated in a resistor is repeated here:

vn =
√

4kBTR∆ f , (4.34)

where kB denotes Boltzmann’s constant, T denotes absolute temperature, R is the resistor
value and ∆ f is the bandwidth in which the noise is measured.

4.4 Modelling framework

In Section 4.3, the governing equations at physical level have been described for effects
that are relevant for themodelling of MEMS resonators. Three differentmethods that can
be applied for creating reduced-order models have been listed in Section 1.2.2. Analytical
derivation by applying modal reduction or approximation techniques will be applied in
this work, since first-principles-based governing equations are available for the relevant
physical effects. Approximation techniques that can be applied are, for instance, modal
basis functions (Senturia et al., 1997), modal projection techniques (Mehner et al., 2003),
or the Galerkin method (Hung and Senturia, 1999; Meirovitch, 2001). These techniques
are weighted residual techniques, in which a solution is assumed in the form of a linear
combination of trial functions (also called series discretisation). In this work, the Galerkin
method will be applied, since it can be readily applied to nonlinear systems as well. In
the next section, this method will be described in detail. Finally, Section 4.4.2 will give an
overview of the multiphysics modelling framework.
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4.4.1 Construction of reduced-order models

The Galerkin method can be used as an approximation method to obtain solutions to
both linear and nonlinear PDEs. The method is general in scope and can be applied to
conservative as well as nonconservative systems (Meirovitch, 2001). Consider a system of
governing equations and boundary conditions for a domain (or volume) V , with boundary
S , in vector form:

L(v) = g(v, t), v ∈ V , (4.35a)

B(v) = 0, v ∈ S , (4.35b)

where L denotes a vector of (nonlinear) differential operators, v is a vector of state vari-
ables, and g(v, t) is a forcing function which may depend on the state variables and
time t. B denotes a vector of operators describing the boundary conditions. In gen-
eral, the state solution v(x, y, z, t) is a function of Cartesian coordinates (x, y, z) and of
time t. Typically, for the physical level models considered, L consists of the PDEs from
the structural dynamics part, derived using (4.6)–(4.9), together with the heat equation
PDE (4.23). The part related to the structural dynamics contains both first- and second-
order time derivatives of v, whereas the part related to the heat equation only contains
first-order time derivatives of v. In general, v is a function of the displacements u that are
relevant for the description of the structural dynamics, see Section 4.3.1. In system (4.35),
L, B and g are known and the goal is to determine v.

An approximate solution v̂(x, y, z, t) for v(x, y, z, t) in (4.35) is sought in a separable
form as a series expansion of spatially varying basis functionsϕi(x, y, z) andψ j(x, y, z)
and time-varying coefficients qi(t) and r j(t):

v̂(x, y, z, t) =
n

∑
i=1

qi(t)ϕi(x, y, z) +
n

∑
j=1

r j(t)ψ j(x, y, z). (4.36)

For sake of convenience, the coefficients of the basis functions have been separated into
a part that is second-order time-dependent (terms with qi(t)) and the part that is first-
order time dependent (terms with r j(t)). The choice of the corresponding basis functions
ϕi(x, y, z) and ψ j(x, y, z) depends on the specific system considered. In general, they
are chosen such that boundary conditions (4.35b) for the PDEs (4.35a) are satisfied a pri-
ori. The coefficients qi(t) and r j(t) are also called generalised coordinates or generalised
degrees of freedom (DOFs). The series approximation (4.36) is truncated at order n.

For known basis functions, the Galerkin method can be used to derive a system of ODEs
in the coefficients qi(t) and r j(t). For this purpose, the residual L(v̂) − g(v̂, t) is re-
quested to be orthogonal to each of the basis functions. This can be written as:

∫

V
ϕT

i [L(v̂)− g(v̂, t)] dV = 0,
∫

V
ψT

j [L(v̂)− g(v̂, t)] dV = 0,







∀ i, j ∈ [1, . . . , n]. (4.37)
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Elaboration of (4.37) results in the following set of equations:

Mq̈ + fin(q, q̇, r) = fex(q, t), (4.38a)

Tṙ = fth(r, q̇), (4.38b)

where both second-order and first-order equations in time are grouped according to the
state columns with generalised DOFs, q = [q1, . . . , qn]T and r = [r1, . . . , rn]T, respec-
tively. The other quantities in (4.38) have already been defined in (2.8).

Next, (4.38) can be rewritten to fst(q,µ) = 0 or ẋ = f(x,µ), for calculation of static
equilibrium points qe or periodic solutions xp(t), respectively. Subsequently, numerical
continuation of solutions can take place. This has already been explained in Section 2.4.

Numerous examples of the Galerkin method, applied to MEMS can be be found, for
instance, in Tilmans and Legtenberg (1994), Zhao et al. (2004), Krylov and Maimon
(2004) and Younis et al. (2007). General approaches, without a specific MEMS appli-
cation, can be found in Hung et al. (1997), Gabbay et al. (2000), Mehner et al. (2000)
and Nayfeh et al. (2005).

4.4.2 Framework overview

With the physical level descriptions for the relevant effects (Section 4.3) and the Galerkin
method for creating reduced-order models from this description (Section 4.4.1), the mul-
tiphysics modelling framework can be defined. A schematic overview of the framework
is depicted in Figure 4.5.

The framework starts with the various physical level descriptions for a MEMS resonator.
Blocks with physical effects and their governing equations are depicted in Figure 4.5. The
physical models are based on (4.1), (4.6)–(4.9), (4.12), (4.14), (4.20) and (4.23), (4.27),
(4.28), (4.29) or (4.33) and (4.34). Energy principles and the variational method (Hamil-
ton’s principle) are used for the structural dynamics, since these allow for straightforward
inclusion of nonlinear effects. Thermoelasticity is directly included in the constitutive
equations. Thermoelastic coupling is present between the heat equation and the struc-
tural dynamics part. The Green-Lagrange strain tensor is coupled to both the constitutive
equations and the heat equation (in the latter through the dilatation (4.24)). Fringing field
effects are included in both the electrostatic actuation and capacitive detection. Finally,
thermal noise is present in the detected output of the resonator.

Once the modelling on the physical level has been completed, Galerkin discretisation is
performed to obtain a reduced-ordermodel from the physical level descriptions. This step
is based on (4.35)–(4.37). As will become clear from Chapter 5, it may be required to per-
form the numerical simulations based on models in non-dimensional form. Otherwise,
the difference in orders of magnitude between, for instance, typical vibration frequencies
ofO(106) Hz and displacements ofO(10−7) m may cause difficulties for numerical sim-
ulation. Therefore, before Galerkin discretisation, the physical level description may be
written to non-dimensional form. As a result, the basis functions for Galerkin discretisa-
tion will also be in non-dimensional form.



88 4 MULTIPHYSICS MODELLING FRAMEWORK

By application of the Galerkin method, a device level model is derived from the physi-
cal level description. This model, consisting of a system of ODEs, is still in a functional
description, based on parameters that can be related to actual physical properties and
dimensions of the resonator. Therefore, the model is very suitable for fast and accurate
simulation of the nonlinear dynamics of MEMS resonators and for parameter studies.
Furthermore, due to the followed approach, individual physical effects can still be distin-
guished and their relevance can be addressed.

The device level model (4.38) can be rewritten to forms that are suitable for numerical
simulation. Static or dynamic analysis can be performed. In the static analysis, equi-
librium points qe and their stability are calculated (see Section 2.4.2). This type of sim-
ulation is typically used for pull-in analysis of electrostatically actuated microstructures.
In this way, pull-in curves can be determined, in which a structural displacement is de-
picted versus a static actuation voltage, which acts as the bifurcation parameter µ. In
the dynamic analysis, periodic solutions xp and their stability are determined (see Sec-
tion 2.4.3), which is relevant for determine steady-state oscillations of MEMS resonators.
Amplitude-frequency curves can be calculated by setting the excitation frequency as the
bifurcation parameter µ and by calculating the system response as a function of this fre-
quency. These nonlinear equivalents of frequency response functions have already been
introduced in Chapter 3.

Experimental validation is an integral part of the modelling framework. Results from
numerical simulations using device level models are compared with experimental ones.
If the numerical simulations have been performed based on a non-dimensional model,
the results are translated back to dimensional form. Furthermore, experimental valida-
tion may have impact on the modelling assumptions (on the physical level) and on the
Galerkin discretisation approach (choice and number of basis functions). Therefore, it
may lead to model refinements.

In general, relatively simple structural elements (such as beams and plates) are used in
the first step of the framework (physical level). These structures have the advantage that
suitable basis functions for Galerkin discretisation may be found in a straightforward
way. Often these shape functions are based on the linear, undamped modeshapes of the
structure under consideration.
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∫ t2

t1

(δT − δUin − δWex) dt = 0

δT =
1

2
δ

∫

V
ρ

∂u

∂t
· ∂u

∂t
dV

δUin =
∫

V
σ : δE dV

δWex = −
(∫

V
f · δu dV +

∫

S
T · δu dS

)

Hamilton’s principle

k∇2θ − ρcp
∂θ
∂t

+ T0β
∂e

∂t
= 0

heat equation

Q = 2π
W
∆W

anchor loss

Fe =
1

2
V2 dCtot

dz

electrostatic force

Ctot = Cpp + Cf

fringing fields

σii = C11ηii + C12(η j j + ηkk) +βiiθ

τi j = C44γi j (i 6= j)

constitutive equations

E(η11) = E0 + E1η11 + E2η
2
11 + . . .

nonlinear Young’s modulus

E =
1

2

[

∇u + (∇u)T + ∇u · (∇u)T
]

Green-Lagrange strain tensor

vn =
√

4kBTR∆ f

thermal noise
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ic = V(t)
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dz

dz

dt
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∑
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V
ϕT
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∫

V
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j [L(v̂)− g(v̂, t)] dV = 0,




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∀ i, j ∈ [1, . . . , n].
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Figure 4.5 / Schematic overview of the multiphysics modelling framework for a MEMS
resonator.



90



CHAPTER FIVE

Modelling of a clamped-clamped
beam MEMS resonator1

Abstract / In this chapter, the first-principles basedmodelling framework is applied to a case study
of a clamped-clamped beam MEMS resonator. Several models, having varying level of complexity
and including various effects are derived. The models are partly validated by means of finite
element simulations. Extensive numerical simulation is performed to address the influence of
individual nonlinear effects. Finally, a comparison of the different models motivates the choice
for the optimal model and concludes this chapter.

5.1 Introduction

In the previous chapter, the multiphysics modelling framework for dynamic simulation
of MEMS resonators has been defined. In this chapter, the framework will be applied to
the same MEMS resonator as used in Section 3.2: an electrostatically actuated clamped-
clamped beam. The heuristic model of Section 3.2 cannot describe the dynamics of this
resonator to their full extent, or in a predictive sense. One important reason for this is that
various physical phenomena thatmay play a role (see Section 4.3) have only been included
in a descriptive, lumped manner. As a result, different nonlinear dynamic effects have
been gathered into a single, effective nonlinear stiffness function (3.5), thereby losing the
ability to discern between contributions of single nonlinear effects.

The effective nonlinear stiffness function, together with the electrostatic actuation has
been able to describe the overall, Duffing-like behaviour (see Section 3.2.3). However, due
to the lumped form of the model, no insight can be gained into how physical dimen-
sions and parameters contribute to the overall dynamic behaviour through individual
physical effects (see Section 4.3). By means of the modelling framework of Chapter 4,
in this chapter, a straightforward approach will be applied to arrive at a first-principles

1Parts of this chapter have been presented in Mestrom et al. (2008b).
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92 5 MODELLING OF A CLAMPED-CLAMPED BEAM MEMS RESONATOR

based multiphysics model of the clamped-clamped beam resonator. All relevant effects
(defined in the framework) will be included, allowing for investigation of their individual
contributions.

The outline of this chapter is as follows. In Section 5.2, physical level models for the
clamped-clamped beam resonator will be derived using the modelling framework. The
models will be rewritten to non-dimensional form and will be discretised using Galerkin
discretisation. Using this approach, reduced-order models of varying complexity will be
obtained. Next, in Section 5.3, some aspects of the reduced-order models are validated
by means of finite element simulations. Simulation results for the derived models will
be presented in Section 5.4, where an extensive investigation of individual nonlinear dy-
namic effects will be performed. Additionally, the different models will be compared.
This serves as a motivation for the choice of the optimal, or most promisingmodel, which
will be validated experimentally in Chapter 6, and leads to the conclusions in Section 5.5.

5.2 Models of the clamped-clamped beamMEMS resonator

The clamped-clamped beam MEMS resonator, considered in this chapter, has already
been depicted in Figure 3.1. Schematically, the resonator is depicted again in Figure 5.1(a).
The resonator is both actuated and sensed electrostatically. The voltages on the electrodes
are denoted by V1 and V2 and the corresponding electrode gaps are d1 and d2, respectively.
Voltage V1 consists of a dc (Vdc) and an ac (Vac) component, whereas voltage V2 on the
output electrode consists only of a dc voltage Vdc. The coordinate system is chosen such
that the x-direction is along the length of the beam, y is in thickness direction and z is
in transverse direction. Displacements in (x, y, z)-direction are denoted by (u0 , v0, w0),
respectively. Figure 5.1(b) depicts an idealisation of the beam resonator having a length
l, a width h and a thickness b. The beam is clamped on both ends and its dynamic
transverse deflection is denoted by w0(x, t), where t denotes time. Figure 5.1(c) shows

(a) Schematic layout.

(b) Beam dimensions and deflection.

(c) Distributed electrostatic load.

V1

V2

d1

d2

thickness b
h

l
qe(x, t)

w0(x, t)

x, u0y, v0

z, w0

Figure 5.1 / Schematic representation of the clamped-clamped beam resonator.
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the distributed load, acting on the beam. This load comprises the combined excitation
from the electrostatic forces acting between the beam and the two electrodes.

The resonator output results from capacitive detection using electrode 2 in Figure 5.1(a).
Only the motional current ic in (4.29) (see Section 4.3.7) will be present, since V2 = Vdc.

At this point, it is useful to list the nominal values for the dimensions and the electrode
gaps of the clamped-clamped beam resonator, which will be used in the experiments in
Chapter 6. The values are listed in Table 5.1. For experimental validation, beams with
two different thickness values b will be used. The dimensions listed in Table 5.1 will have
implications with respect to the modelling, see Section 5.2.1.

Table 5.1 / Nominal dimensions of the beam resonator and the electrode gaps.

Dimension Value Unit

l 44 µm

h 4 µm

b 1.4 or 10 µm

d1, d2 330 nm

5.2.1 Assumptions

Several general assumptions, related to the mechanical domain, underly the models that
will be derived in this section. These are the following:

1. beam theory is assumed for modelling the beam. This implies that

• displacements are independent of coordinate y, see Figure 5.1, such that the
beam can be considered as 2D;

• no stress or strain is present in z-direction (σzz and εzz are not included);

• Euler-Bernoulli or Timoshenko beam theory can be used;

2. finite strains are assumed, instead of infinitesimal strains. As a result, strain com-
ponents are evaluated according to the Green-Lagrange strain tensor, instead of the
infinitesimal strain tensor (see Section 4.3.1). In this way, geometric nonlinear ef-
fects can be taken into account;

3. in-plane displacements u0 are be much smaller than transverse displacements w0:
u0 ≪ w0. Finite element simulations have confirmed that u0 is two to three orders
of magnitude smaller than w0;

4. axial inertia is neglected (u0-motion is assumed stationary);
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5. properties like Young’s modulus E, mass density ρ and shear modulus G are as-
sumed to be constant along the beam length, as well as its width h and thickness b
(implying constant area A = bh and second moment of area I = 1

12
bh3);

6. the clamping on the beam edges is assumed to be ideal.

Several different theories exist for descibing the (dynamic) behaviour of
beams (Han et al., 1999; Wang et al., 2000). Classical Euler-Bernoulli beam theory
is adequate for slender beam structures, that is, for structures with a small width-to-
length ratio h/l, see, for instance Weaver et al. (1990), Rao (1995) and Meirovitch (2001).
In this theory, transverse shear is neglected. However, for non-slender beams, having
a relatively large width-to-length ratio, transverse shear may play a significant role.
Timoshenko beam theory (Timoshenko, 1921, 1922) includes both shear deformation
and rotary inertia. In addition to the transverse deflection field w0(x, t) of Euler-Bernoulli
beam theory, a shear deformation field ϕ(x, t) is assumed, together with related inertia
terms. See also Appendix B.1 on beam theory.

From the nominal dimensions of the beam, listed in Table 5.1, it becomes clear the the
width-to-length ratio is relatively large (h/l = 1/11), which implies that slender beam
theory (Euler-Bernoulli) may no longer be adequate for describing the beam deforma-
tion. In order to investigate the effect of shear deformation, both Euler-Bernoulli and
Timoshenko beam theory will be used.

5.2.2 Physical level models

Based on the governing equations for the effects that play a role (see Section 4.3), three
different physical level models will be derived for the clamped-clamped beam resonator.
Used theories and included effects in these models are summarised in Table 5.2.

Table 5.2 / Used theories and included effects in the three different models (E: Euler-
Bernoulli; T: Timoshenko).

beam anchor fringing thermo- nonlinear
Model theory loss fields elasticity elasticity

I E ✓ ✓ ✗ ✓

II E ✓ ✓ ✓ ✗

III T ✓ ✓ ✓ ✗

All three models include fringing field effects and anchor loss. Anchor loss will be in-
cluded into the models after they have been written to non-dimensional form and have
been discretised using the Galerkin method, see Section 5.2.6 The beam motion in all
three models is detected capacitively, see Section 4.3.7. An expression for the motional
current ic, see (4.29), will be presented. Actually, this expression will be an improved ver-
sion of (3.6) used in Chapter 3. As stated before in Section 5.2.1, two options are available
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for beam theory . Models I and II are derived according to Euler-Bernoulli beam theory,
whereasmodel III is based on Timoshenko beam theory. Moreover, onlymodel I includes
nonlinear material effects (nonlinear Young’s modulus (4.12)). Only for uni-axial loading,
(4.12) can be derived in a straightforward way, see Appendix A.4.3 and Kim and Sachse
(2000). Therefore, this is only done for model I which is based on Euler-Bernoulli beam
theory. Due to the complexity of this model, thermoelastic effects have not been included.
However, models II and III both include thermoelastic effects. The resulting PDEs for
the three models will be presented in the next subsections. Detailed derivations, using
Hamilton’s principle (Section 4.5), can be found in Appendix B.2.

Model I

The PDE of model I, describing the transverse deflection w0 (w0(x, t)) according to Euler-
Bernoulli beam theory is the following:

ρA
∂2w0

∂t2
− ρI

∂4w0

∂x2∂t2
+
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∂2w0

∂x2
= qe. (5.1)

As stated before, ρ is the material mass density, A = bh is the surface area and I = 1
12

bh3

is the second moment of area. N0 is the initial axial tension in the beam. A negative axial
tension corresponds to a compressive load. Buckling is not considered in the model,
since the buckling stress (N0

A
) for out-of-plane buckling of the thin beam (b = 1.4 µm)

is over 350 MPa. Other parameters have already been introduced in Section 5.2.1 and
in (4.12). The second term on the left-hand side of (5.1) denotes rotary inertia. Terms with
E0 (E0 = E in models II and III) are related to linear elasticity, whereas terms with E1

and E2 are related to higher-order elasticity effects.

The clamped edges of the beam translate to the following boundary conditions for (5.1):

∂w0

∂x
= 0, w0 = 0 at x = 0, l. (5.2)

The distributed electrostatic load qe (qe(x, t)) acting on the beam, includes first-order
fringing field correction terms (Osterberg, 1995; Osterberg and Senturia, 1997) and is
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given by (see Appendix B.2.5):

qe =
ǫ0bV2

1 (t)

2(d1 − w0)2

(

1 + 0.65
d1 − w0

b

)

− ǫ0bV2
2

2(d2 + w0)2

(

1 + 0.65
d2 + w0

b

)

, (5.3)

where the voltages on the electrodes (see Figure 5.1) are given by:

V1(t) = Vdc + Vac sin(2π f t) and V2 = Vdc. (5.4)

As a result, excitation (5.3) contains both direct and parametric terms, since, where the
parametric excitation acts on the linear and the nonlinear terms. Such an excitation has
also been described in Rhoads et al. (2006). Furthermore, the expression for the elec-
trostatic forcing qe is in line with recently reported work on an electrostatically actuated
microbeam (Krylov et al., 2005; Krylov, 2007).

The output current, resulting from capacitive detection of the motion of the beam will be
derived in Section 6.4.4 and is given by:

iout =
Vac

Rb

sin(2π f t) + 2π f tVac(Cb + Cs) cos(2π f t)

+Vdc

∫ l

0

ǫ0b

(d2 + w0)2

(

1 + 0.65
d2 + w0

b

)
∂w0

∂t
dx. (5.5)

The last term on the right-hand side is the motional current ic, resulting from vibration
of the beam. First-order fringing field effects are included in this term. Furthermore, the
first two terms in the right-hand side of (5.5), containing resistance Rb and capacitances
Cb and Cs, are related to parasitic effects in the measurement circuit of the resonator.

Model II

The PDE of model II, describing the beam transverse deflection w0 according to Euler-
Bernoulli beam theory reads as:

ρA
∂2w0

∂t2
− ρI

∂4w0

∂x2∂t2
+ EI

∂4w0

∂x4
+

∂2 MT

∂x2

−
[

EA

2l

∫ l

0

(
∂w0

∂x

)2

dx + N0 −
1

l

∫ l

0
NT dx

]

∂2w0

∂x2
= qe, (5.6)

where the thermoelastic moment MT and the thermoelastic axial force NT are given by:

MT = Eαb
∫ h

2

− h
2

zθdz, NT = Eαb
∫ h

2

− h
2

θdz, (5.7)

where α denotes the thermal expansion coefficient. The boundary conditions for (5.6)
are the same as in (5.2) and the electrostatic force distribution qe has already been given
in (5.3)–(5.4). The output current is again given by (5.5). Apart from the terms with MT

and NT, (5.6) equals (5.1), with E1 = E and E2 = E3 = 0.
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The heat equation, describing the thermal field θ (θ(x, z, t)) of the beam is given by (see
also Appendix B):

ρcp
∂θ
∂t

= k
∂2θ

∂z2
− T0αE

∂
∂t

[

1

2

(
∂w0

∂x

)2

− z
∂2w0

∂x2

]

, (5.8)

where cp is the heat capacity of per unit volume at constant pressure and k is the thermal
conductivity. θ = T − T0 is the difference between the instantaneous temperature T
and the equilibrium temperature T0. Coupling between the mechanical domain and the
thermal domain is present through the terms MT and NT in (5.6) and terms with w0

in (5.8). Finally, (5.8) is subject to the boundary conditions:

∂θ
∂z

= 0 at z = ±h

2
, (5.9)

denoting insulation, or zero heat flux, at the top and bottom boundaries of the beam.

Model III

Model III is based on Timoshenko beam theory. Both shear deformation and rotary
inertia are included in the PDEs:

ρA
∂2w0

∂t2
− ksGA

(
∂ϕ
∂x

+
∂2w0

∂x2

)

−
[

EA

2l

∫ l

0

(
∂w0

∂x

)2

dx + N0 −
1

l

∫ l

0
NT dx

]

∂2w0

∂x2
= qe. (5.10a)

ρI
∂2ϕ

∂t2
− EI

∂2ϕ

∂x2
+

∂MT

∂x
+ ksGA

(

ϕ+
∂w0

∂x

)

= 0, (5.10b)

In addition to the PDE for the transverse displacement w0 (5.10a), an additional, coupled
PDE (5.10b) describes the shear deformation field ϕ (ϕ(x, t)). Parameter ks is the so-
called shear correction factor, which accounts for the difference between the actual shear
force over the width of the beam (z-direction) and the constant shear force predicted by
Timoshenko theory. From Kaneko (1975), the best value of ks for a rectangular cross
section (determined from theory and experiments) is determined to be:

ks =
5 + 5ν

6 + 5ν
, (5.11)

where ν denotes Poisson’s ratio. The thermoelastic moment MT and the thermoelastic
axial force NT are the same as given in (5.7).

The boundary conditions for (5.10), corresponding to clamped edges, are:

w0 = 0, ϕ = 0 at x = 0, l. (5.12)
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The electrostatic forcing qe in (5.10a) is given in (5.3)–(5.4) and the output current is given
in (5.5). Furthermore, the heat equation reads:

ρcp
∂θ
∂t

= k
∂2θ

∂z2
− T0αE

∂
∂t

[

1

2

(
∂w0

∂x

)2

+ z
∂ϕ
∂x

]

, (5.13)

and is subject to the same boundary conditions as model II (5.9). Coupling between the
mechanical domain and the thermal domain is present through the terms MT, NT and
terms with w0,ϕ in (5.10) and (5.13), respectively

5.2.3 Models in non-dimensional form

As indicated in the description of the modelling framework, Section 4.4.2, it is required
for numerical simulation to put the models in non-dimensional form. In this way, vibra-
tion frequencies of O(106) Hz and displacements of O(10−7) m, for instance, are scaled
such that they become approximately of the same order. For this purpose, introduce the
non-dimensional parameters:

x̄ =
x

l
, w̄0 =

w0

d
, t̄ = t

√

EI

ρAl4
, z̄ =

z

h
, and θ̄ =

θ

T0
. (5.14)

As a result, temporal and spatial derivatives become:

∂
∂t̄

=

√

ρAl4

EI

∂
∂t

,
∂

∂x̄
= l

∂
∂x

, and
∂
∂z̄

= h
∂

∂z
. (5.15)

Note that the shear deformation φ is already in non-dimensional form. By using (5.14)
and (5.15), the three models can be written to non-dimensional form. For notational con-
venience, the bars, denoting non-dimensional quantities, will be omitted. New parame-
ters will be introduced for the non-dimensionalised models, which are related to physical
parameters in (5.1)–(5.13). These parameters are given first:

c1,E =
αEd1h

ρcpl2
(–), c2 =

αEd2
1

ρcpl2
(–), c1,T =

αEh

ρcpl
(–), (5.16a)

cb =
b

d1
(–), cd =

d2

d1
(–), ce1 =

E1d2
1

E0l2
(–), (5.16b)

ce2 =
E2d4

1

E0l4
(–), ce3 =

E2d2
1h2

E0l4
(–), ck =

kl2

cph3

√

12

ρE
(–), (5.16c)

cl =
d1

l
(–), cm = 6

d2
1

h2
(–), cr =

h2

12l2
(–), (5.16d)

cs = 12
Gl2

Eh2
(–), cv =

6ǫ0l4

Ed3h3
(V−2), cM,E = 12

αT0l2

d1h
(–), (5.16e)

cM,T = 12
αT0l

h
(–), cN = 12

αT0l2

h2
(–) cσ = 12

l2

Eh2
(m2 N−1). (5.16f)
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Parameters cv and cσ are not in non-dimensional form, but are scaled conveniently. In
this way, excitation voltages Vdc and Vac can be applied in V and the axial tensionσ0 = N0

A

can be applied in Pa. Furthermore, as will become clear from Section 5.2.7, the output
current iout (5.5) does not need to be rewritten to non-dimensional form, since it is cal-
culated afterwards. The non-dimensional PDEs for models I, II and III will be given
next.

Model I

After applying (5.14)–(5.15), the PDE (5.1) for the flexural vibration becomes:

∂2w0

∂t2
− cr

∂4w0

∂x2∂t2
+

[

1 + ce1

(
∂w0

∂x

)2

+
3

4
ce2

(
∂w0

∂x

)4

+
9

20
ce3

(
∂2w0

∂x2

)2
]

∂4w0

∂x4

+

[

2ce1 + 9ce2

(
∂w0

∂x

)2
](

∂2w0

∂x2

)3

+

[

6ce1
∂w0

∂x
+ 9ce2

(
∂w0

∂x

)3

+
9

10
ce3

∂3w0

∂x3

]

∂2w0

∂x2

∂3w0

∂x3
−
[
∫ 1

0

{

cm

(
∂w0

∂x

)2

+
1

2
ce1cm

(
∂w0

∂x

)4

+ ce1

(
∂2w0

∂x2

)2

+
1

4
ce2cm

(
∂w0

∂x

)6

+
3

2
ce3

(
∂w0

∂x

)2(∂2w0

∂x2

)2
}

dx

+ cσσ0

]

∂2w0

∂x2
= cv

[

V2
1

1 + 0.65cb(1 − w0)

(1 − w0)2
− V2

2

1 + 0.65cb(cd + w0)

(cd + w0)2

]

, (5.17)

where the parameters are given in (5.16), and where σ0 is the axial stress in the beam.
The non-dimensional boundary conditions become:

∂w0

∂x
= 0, w0 = 0 at x = 0, 1. (5.18)

Model II

The PDE for flexural vibration w0 of the beam in model II in non-dimensional form is
given as:

∂2w0

∂t2
− cr

∂4w0

∂x2∂t2
+

∂4w0

∂x4
+ cM,E

∫ 1
2

− 1
2

∂2θ

∂x2
z dz

−
[

cm

∫ 1

0

(
∂w0

∂x

)2

dx + cσσ0 − cN

∫ 1

0

∫ 1
2

− 1
2

θ dzdx

]

∂2w0

∂x2

= cv

[

V2
1

1 + 0.65cb(1 − w0)

(1 − w0)2
− V2

2

1 + 0.65cb(cd + w0)

(cd + w0)2

]

, (5.19)
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where Leibniz’s rule for differentiation under the integral sign (see for instance Kreysig,

2006) is used for evaluating ∂2 MT

∂x2 in (5.6), using MT from (5.7).

The non-dimensional form of (5.8) becomes:

∂θ
∂t

= ck
∂2θ

∂z2
+

[

c1,E z
∂3w0

∂x2∂t
− c2

∂w0

∂x

∂2w0

∂x∂t

]

. (5.20)

Parameters used in (5.19)– (5.20) are given in (5.16). The boundary conditions for (5.19)
are given by (5.18) and those for (5.20) become:

∂θ
∂z

= 0 at z = ±1

2
. (5.21)

Model III

In non-dimensional form, the PDEs for the beam in model III become:

∂2w0

∂t2
− ks

(
1

cl

∂ϕ
∂x

+
∂2w0

∂x2

)

−
[

cm

∫ 1

0

(
∂w0

∂x

)2

dx + cσσ0 − cN

∫ 1

0

∫ 1
2

− 1
2

θ dzdx

]

∂2w0

∂x2

= cv

[

V2
1

1 + 0.65cb(1 − w0)

(1 − w0)2
− V2

2

1 + 0.65cb(cd + w0)

(cd + w0)2

]

, (5.22a)

cr
∂2ϕ

∂t2
− ∂2ϕ

∂x2
+ cM,T

∫ 1
2

− 1
2

∂θ
∂x

z dz + kscs

(

ϕ+ cl
∂w0

∂x

)

= 0, (5.22b)

together with the boundary conditions:

w0 = 0, ϕ = 0 at x = 0, l. (5.23)

The non-dimensional form of (5.13) becomes:

∂θ
∂t

= ck
∂2θ

∂z2
−
[

c1,T z
∂2ϕ

∂x∂t
+ c2

∂w0

∂x

∂2w0

∂x∂t

]

, (5.24)

which has to obey boundary conditions (5.21).

5.2.4 Galerkin discretisation

In general, Galerkin discretisation is suited for both linear and nonlinear
PDEs (Meirovitch, 2001). For nonlinear PDEs, a system of nonlinear ODEs results af-
ter discretisation. Now that the three models have been put into non-dimensional form,
reduced-order (device level) models can be derived by applying Galerkin discretisation,
see (4.35)–(4.37) in Section 4.4.1. For each of the non-dimensional PDEs in models I, II
and III, their field variables can be expressed as a sum of spatial basis functions that, a
priori, satisfy the imposed boundary conditions. The time-dependent coefficients of these
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Table 5.3 / Overview of the PDEs, the fields and their corresponding Galerkin discretisa-
tion per model (subscript E: Euler-Bernoulli; T: Timoshenko).

boundary generalised basis
Model PDE(s) conditions fields coordinates functions

I (5.17) (5.18) w0(x, t) qi(t) WE,i(x)
II (5.19) (5.18) w0(x, t) qi(t) WE,i(x)

(5.20) (5.21) θ(x, z, t) ri(t) ΘE,i(x, z)
III (5.22b) (5.23) ϕ(x, t) pi(t) ΦT,i(x)

(5.22a) (5.23) w0(x, t) qi(t) WT,i(x)
(5.24) (5.21) θ(x, z, t) ri(t) ΘT,i(x, z)

basis functions are called generalised coordinates or generalised DOFs. An overview of
the governing equations, their boundary conditions, the involved fields and their Galerkin
discretisation is given in Table 5.3 for the three derived models.

Since bothmodel I andmodel II are based on Euler-Bernoulli beam theory, the transverse
deflection of the beam can be expressed as

w0(x, t) =
n

∑
i=1

qi(t)WE,i(x), (5.25)

where basis functions WE,i(x) satisfy boundary conditions (5.18) a priori. In order to
create a reduced-order model using Galerkin discretisation, the series (5.25) is truncated
at order n. Similarly, other basis functions listed in Table 5.3 are used for series expansion
of their corresponding fields.

An important aspect of Galerkin discretisation is the choice of basis functions. These
have to be chosen carefully in order to obtain accurate results. Often, eigenmodes of
a PDE are used. An overview of the expressions for the basis functions is given in Ta-
ble 5.4. Next to the mathematical expressions, a graphical representation of the first basis
function is depicted. A detailed derivation of the basis functions in Table 5.4 is given in
Appendix B.3.

With respect to the mechanical part of the model, linear, undamped eigenmode shapes
are used as basis functions. Non-dimensional mode shapes WE,i(x) for the Euler-
Bernoulli beam in models I and II (with σ0 = 0 in (5.17) and (5.19), respectively) are
found from Blevins (1979). Mode shape pairs ΦT,i(x) and WT,i(x) for the Timoshenko
beam in model III are derived from the linear, homogeneous version (with σ0 = 0)
of (5.22) using a separation of variables method, described in, for instance, Han et al.
(1999). For both WE,i(x) andΦT,i(x), WT,i(x), roots of the frequency equation (also listed
in Table 5.4) are used in the mode shape coefficients.

Basis functions ΘE,i(x, z) and ΘT,i(x, z) for the thermal field θ(x, z) have been derived
from linearised versions of the heat equations, that is, without the term with coefficient
c2 in (5.20) and (5.24). Their detailed derivation, based on separation of variables, is also
presented in Appendix B.3. The temperature distribution in the basis functions for the
thermal field can be understood as follows. Thermoelasticity results in a temperature
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Table 5.4 / Basis functions for the fields w0 and θ and a graphical representation of the
first basis function (i = 1).

Function Expression Graph for i = 1

WE,i(x) cosh λix − cos λix −σi(sinh λix − sin λix) X

σi =
cosh λi − cos λi

sinh λi − sin λi

where λi are the roots of the frequency equation:

cos λ cosh λ− 1 = 0

ΦT,i(x) αi sin aix +βi sinh bix +αiσi(cos aix − cosh bix) X

WT,i(x) cos aix − cosh bix −σi(sin aix − αi
βi

sinh bix) X

σi =
cos ai − cosh bi

sin ai − αi
βi

sinh bi

ai =

√

(
cr + 1

kscs

)ω2
i

2 + 1
2

√
(
cr + 1

kscs

)2
ω4

i + 4
(
ω2

i − cr
kscs
ω4

i

)

bi =

√

−
(
cr + 1

kscs

)ω2
i

2 + 1
2

√
(
cr + 1

kscs

)2
ω4

i + 4
(
ω2

i − cr
kscs
ω4

i

)

αi =
(kscsa2

i −ω2
i )cl

kscsai
βi =

(kscsb2
i +ω2

i )cl

kscsbi

whereωi are the roots of the frequency equation, using ai, bi,αi,βi :

α2 sin a sinh b + 2αβ cos a cosh b −β2 sin a sinh b − 2αβ = 0

ΘE,i(x, z) c1,E
d2WE,i(x)

dx2

(
z + 1

2π sin 2πz
)

X

Z
+

-

ΘT,i(x, z) −c1,T
dΦT,i(x)

dx

(
z + 1

2π sin 2πz
)

X

Z
+

-

increase for compression and a temperature decrease for tension. Consider basis func-
tion ΘE,1(x, z), depicted in Table 5.4. Its mathematical expression contains the second
derivative of WE,1(x) with respect to x. For the mechanical basis function WE,1(x), also
depicted in Table 5.4, at the left edge, the top side is under tension, and the bottom side
is under compression. In the thermal basis function ΘE,1(x, z), this would result in a
positive temperature at the top side and a negative temperature at the bottom side. From
the graphical representation of ΘE,1(x, z), this is indeed observed to be the case.

An important aspect related to discretisation of the electrostatic forcing function (right-
hand side in (5.17), (5.19) and (5.22a)) is the following. Consider, for instance, substitution
of ∑ qiWE,i (shorthand notation for (5.25)) into the right-hand side (RHS) of (5.17), giving:

RHS = cv

[

V2
1

1 + 0.65cb(1 − ∑ qiWE,i)

(1 − ∑ qiWE,i)2
− V2

2

1 + 0.65cb(cd + ∑ qiWE,i)

(cd + ∑ qiWE,i)2

]

. (5.26)

For the Nth equation of the reduced-order system, multiplication with WE,N and inte-
gration over x from 0 to 1 has to take place, see (4.37). Due to the denominator terms
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in (5.26), no explicit, or analytic, solution can be obtained for this integral. For the basis
functions WT,i for the Timoshenko beam, the same problem arises.

Three possible solutions are available for coping with this issue. One may

1. linearise or make a Taylor expansion of the electrostatic forcing term in order to get
rid of the denominators that make an analytic solution impossible. This has been
applied in, for instance, Tilmans and Legtenberg (1994) and Younis et al. (2003);

2. pre-multiply the PDE with the (common) denominator terms in (5.26), such that
the electrostatic forcing is taken into account in an exact way. This method has been
used in Younis et al. (2003) and Nayfeh and Younis (2005), for instance;

3. integrate (5.26) directly, using numerical methods (for instance, numerical quadra-
ture). This method has been applied in, for instance Krylov et al. (2005), Krylov
(2007) and Krylov et al. (2008).

For large-amplitude motion (for instance, up to dynamic pull-in), Taylor-expansion (op-
tion 1) is only very limitedly applicable, since the electrostatic forcing function is approx-
imated accurately only in a small region, even if a large number of terms is taken into
account. This is caused by the 1/w2

0 behaviour of the electrostatic forcing functions.
Option 2 yields a computationally very complex model if a large number of modes is
used for Galerkin discretisation. Furthermore, this option results in a state-dependent
mass matrix in the reduced-order model, which may become singular during numeri-
cal simulation. Option 3 is the computationally more demanding option, but allows for
straightforward inclusion of the electrostatic forcing terms and an exact representation.
In this thesis, the last option is chosen. Fast calculation is still possible, by using carefully
selected numerical quadrature routines, see also Section 5.2.7.

5.2.5 Reduced-order models

By application of Galerkin discretisation, using the basis functions described in the pre-
vious section (see Table 5.4), reduced-order models of varying order have been derived.
From Figure 5.1, it can be seen that the electrodes span the whole beam length. For
this reason, only symmetric modes will be included as basis functions for the Galerkin
discretisation of w0(x, t) and ϕ(x, t). This approach is also followed in, for instance,
Younis et al. (2003) and Nayfeh et al. (2005). For models I and II, this translates to:
WE,i(x), with i = 1, 3, 5, . . . and for model III: ΦT,i(x), WT,i(x), with i = 1, 3, 5, . . ..
For the sake of convenience, arguments of the basis functions will be omitted in the
following.

For model I, only a single-mode discretisation has been derived, due to mathematical
complexity of the higher-order derivatives and their products in (5.17). For models II and
III, 1, 2 and 3-mode discretisations have been derived. In the following, the expressions
for the single-mode Galerkin discretisation of models I, II and III will be given and some
model features will be discussed. In order to be able to implement damping related
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to anchor loss, additional (other than thermoelastic) damping terms will be introduced
into the models by means of modal viscous damping terms. Expressions for multi-mode
Galerkin discretisations for models II and III can be found in Appendix B.4.

Model I

For the single-mode discretisation of (5.17), using w0 = q1WE,1, the general form for the
reduced-order model can be written as (see also (4.38)):

Mq̈ + fin(q, q̇) = fex(q, t), (5.27)

where the quantities in (5.27) are elaborated as:

q = q1, (5.28a)

M = 1 − cr

∫ 1

0

∂2WE,1

∂x2
WE,1 dx, (5.28b)

fin(q, q̇) = λ4
1q1 + c1q̇1 − q1

[

cm

{

q2
1

∫ 1

0

(
∂WE,1

∂x

)2

dx +
1

2
ce1q4

1

∫ 1

0

(
∂WE,1

∂x

)4

dx

+
1

4
ce2q6

1

∫ 1

0

(
∂WE,1

∂x

)6

dx

}

+ ce1q2
1

∫ 1

0

(
∂2WE,1

∂x2

)2

dx +
3

2
ce3q4

1

∫ 1

0

(
∂WE,1

∂x

)2(∂2WE,1

∂x2

)2

dx

+ cσσ0

]
∫ 1

0

∂2WE,1

∂x2
WE,1 dx + ce1λ

4
1q3

1

∫ 1

0

(
∂WE,1

∂x

)2

W2
E,1dx +

3

4
ce2λ

4
1q5

1

∫ 1

0

(
∂WE,1

∂x

)4

W2
E,1dx

+
9

20
ce3λ

4
1q3

1

∫ 1

0

(
∂2WE,1

∂x2

)2

W2
E,1dx + 6ce1q3

1

∫ 1

0

∂WE,1

∂x

∂2WE,1

∂x2

∂3WE,1

∂x3
WE,1 dx

+ 9ce2q5
1

∫ 1

0

(
∂WE,1

∂x

)3 ∂2WE,1

∂x2

∂3WE,1

∂x3
WE,1 dx +

9

10
ce3q3

1

∫ 1

0

(
∂3WE,1

∂x3

)2 ∂2WE,1

∂x2
WE,1 dx

+ 2ce1q3
1

∫ 1

0

(
∂2WE,1

∂x2

)3

WE,1dx + 9ce2q5
1

∫ 1

0

(
∂WE,1

∂x

)2(∂2WE,1

∂x2

)3

WE,1dx, (5.28c)

fex(q, t) = cv

∫ 1

0

[

V2
1

1 + 0.65cb(1 − q1WE,1)

(1 − q1WE,1)2
− V2

2

1 + 0.65cb(cd + q1WE,1)

(cd + q1WE,1)2

]

WE,1 dx. (5.28d)

Parameter λ1 in (5.28c) denotes the first root of the frequency equation for the Euler-
Bernoulli beam, see also Table 5.4. The term with c1 on the right-hand side of (5.28c) is
included to introduce viscous damping. It can be observed from the internal forces (5.28c)
that the model is nonlinear in the state q1. Furthermore, the electrostatic force, including
fringing field effects, is also nonlinear in q1.

Model II

The single-mode discretisation of (5.19) and (5.20), using w0 = q1WE,1 and θ = r1ΘE,1,
results in the following reduced-order model in general form:

Mq̈ + fin(q, q̇, r) = fex(q, t), (5.29a)

Tṙ = fth(r, q̇), (5.29b)
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where (5.29a) corresponds to the discretised version of (5.19) and (5.29b) to (5.20). The
quantities in (5.29) are given by:

q = q1, (5.30a)

r = r1, (5.30b)

M = 1 − cr

∫ 1

0

∂2WE,1

∂x2
WE,1 dx, (5.30c)

fin(q, q̇, r) = λ4
1q1 + c1q̇1 + cM,E

∫ 1

0

∫ 1
2

− 1
2

r1
∂2ΘE,1

∂x2
WE,1 z dzdx

− q1

[

cmq2
1

∫ 1

0

(
∂WE,1

∂x

)2

dx + cσσ0

]
∫ 1

0

∂2WE,1

∂x2
WE,1 dx, (5.30d)

fex(q, t) = cv

∫ 1

0

[

V2
1

1 + 0.65cb(1 − q1WE,1)

(1 − q1WE,1)2
− V2

2

1 + 0.65cb(cd + q1WE,1)

(cd + q1WE,1)2

]

WE,1 dx,

(5.30e)

T =
∫ 1

0

∫ 1
2

− 1
2

Θ2
E,1 dzdx, (5.30f)

fth(r, q̇) = ckr1

∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,1

∂z2
ΘE,1 dzdx + c1,Eq̇1

∫ 1

0

∫ 1
2

− 1
2

∂2WE,1

∂x2
ΘE,1 z dzdx. (5.30g)

Due to the fact that the basis functions ΘE,i are anti-symmetric with respect to z = 0,
they will vanish during integration from − 1

2
to 1

2
over z. As a result, terms with cN and

c2 in (5.19) and (5.20), respectively have vanished and are not found in the reduced-order
model (5.29)–(5.30). Again, viscous modal damping is introduced by the term with coef-
ficient c1 in (5.30d) Furthermore, it can be seen that (thermoelastic) coupling is present
between the mechanical part 5.29a and thermal part 5.29b by means of variables q̇ and
r. Moreover, compared to model I, only a single nonlinear term arises in (5.30d), which
is related to the mid-plane stretching term of the beam (parameter cm). The electrostatic
forcing function (5.30e) is the same as the one in model I.

Model III

The single-mode discretisation of (5.22)–(5.24), using ϕ = p1ΦT,1, w0 = q1WT,1 and
θ = r1ΘT,1, results in the following reduced-order model:

Mq̈ + fin(q, q̇, r) = fex(q, t), (5.31a)

Tṙ = fth(r, q̇), (5.31b)

where (5.31a) contains the discretised versions of (5.22) and (5.31b) contains the discretised
version of (5.24). The terms in (5.31) are given by:

q =
[
p1 q1

]T
, (5.32a)

r = r1, (5.32b)

M =

[

cr
∫ 1

0 Φ
2
T,1 dx 0

0
∫ 1

0 W2
T,1 dx

]

, (5.32c)
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fin(q, q̇, r) = C

[
ṗ1

q̇1

]

+ cr(r1) + K(q1)

[
p1

q1

]

, (5.32d)

fex(q, t) =

[
0

cv
∫ 1

0

[

V2
1

1+0.65cb(1−q1WT,1)
(1−q1WT,1)2 − V2

2
1+0.65cb(cd+q1WT,1)

(cd+q1WT,1)2

]

WT,1 dx

]

, (5.32e)

T =
∫ 1

0

∫ 1
2

− 1
2

Θ2
T,1 dzdx, (5.32f)

fth(r, q̇) = ckr1

∫ 1

0

∫ 1
2

− 1
2

∂2ΘT,1

∂z2
ΘT,1 dzdx − c1,Tq̇1

∫ 1

0

∫ 1
2

− 1
2

∂ΦT,1

∂x
ΘT,1 z dzdx, (5.32g)

where matrices C, cr(r1) and K(q1) in (5.32d) are given by:

C =

[

c1,ϕ
∫ 1

0 Φ
2
T,1 dx 0

0 c1,w

∫ 1
0 W2

T,1 dx

]

, (5.33a)

cr(r1) =

[

r1cM,T
∫ 1

0

∫ 1
2

− 1
2

∂ΘT,1

∂x ΦT,1 z dzdx

0

]

, (5.33b)

K(q1) =

[

kscs
∫ 1

0 Φ
2
T,1 dx − ∫ 1

0
∂2ΦT,1

∂x2 ΦT,1 dx kscscl

∫ 1
0

∂WT,1

∂x ΦT,1 dx

− kscs
cl

∫ 1
0

∂ΦT,1

∂x WT,1 dx −k22(q1)
∫ 1

0
∂2WT,1

∂x2 WT,1 dx

]

, (5.33c)

with, in the (2,2) element of K(q1):

k22(q1) = kscs + cmq2
1

∫ 1

0

(∂WT,1

∂x

)2
dx + cσσ0. (5.33d)

Similar to model II, terms that are linear in the basis functions ΘT,i (cN and c2 in (5.22a)
and (5.24), respectively) vanish during integration over z from − 1

2
to 1

2
. Similar to model

I and II, viscous modal damping is introduced in the discretised model by terms c1,ϕ and
c1,w in (5.33a).

Similar to model II, for model III only two nonlinear terms arise in the single-mode
discretisation: Midplane stretching is included through the parameter cm in (5.33d) and
electrostatic forcing is present in (5.32e).

Finally, in model III, thermoelastic coupling (by means of variables q̇ and r) is present
between the mechanical (5.31a) and thermal part (5.31b) (this is also similar to model II).

5.2.6 Modelling of anchor loss

Next to thermoelastic damping, the most important source of dissipation is assumed to
be anchor loss, since the resonator operates in vacuum, see also Sections 4.3.3 and (4.3.4).
Anchor loss is implemented in the reduced-models by means of viscous modal damping:
parameter c1 in (5.28c), c1 in (5.30d) and c1,ϕ and/or c1,w in (5.33a). In the multi-mode
Galerkin discretisations (see Appendix B.4), each vibration mode is accompanied by a
mechanical loss term. In (5.28c), for instance, coefficient c1 can be regarded as c1 =
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2ξ, where ξ denotes the classical non-dimensional damping coefficient of a 1DOF mass-
spring-damper system and is related to the Q-factor by:

Q =
1

2ξ
. (5.34)

For models II and III, similar considerations hold. In order to calculate the anchor loss
of the vibrating beam, the expression for the Q-factor (4.14) is used, for which both the
energy loss∆W per cycle and the total energy stored in the beamW are needed. For a lin-
ear 1DOFmass-spring-damper system, relations (4.14) and (5.34) are equivalent. Because,
another dissipation mechanism next to anchor loss is present in the system (thermoelas-
tic damping), in this section ∆W refers to energy dissipation through anchor loss and
is based on analytic relations derived by Hao et al. (2003) and Hao and Xu (2009). The
general approach in Hao and Xu (2009) assumes (see also Section 4.3.4) that the dissipa-
tion per cycle can be calculated as the integral of the stress at the suspension multiplied
by the displacement in the suspension that is induced by this stress:

∆W = π

∫

clamped region
stress · displacement. (5.35)

The displacement in the substrate is calculated from 2D elastic wave theory describing
the elastic wave propagation (Hao and Xu, 2009). For a beam, clamped on both sides, the
clamped edges act as shear stress excitation sources on the substrate. From Hao and Xu
(2009), the energy loss is then given by:

∆W = πh2bτ2
0

[
(3 − ν)(1 + ν)

4E
+
Π

πE

]

, (5.36)

where Π is given by the integral

Π =
∫ 1

0

[
ζ2(1 − ν2)√

1 −ζ2
cos

(
√

1 −ζ2
ωl

cL

)

+ 2(1 +ν)
√

1 −ζ2 cos

(
√

1 −ζ2
ωl

cL

)]

dζ . (5.37)

In (5.37) ζ is the integration variable,ω is the resonant frequency of the beam and cL is
the longitudinal wave propagation velocity in the substrate defined according to:

c2
L =

E

ρ(1 − ν2)
. (5.38)

In order to derive expressions for the total energy stored in the beam, the vibration is
assumed to be both linear and harmonic. In that case, the stored energy equals:

WE =
ω2

i

2

∫

V
ρW2

E,i(x) dV =
ρAω2

i

2

∫ l

0
W2

E,i(x) dx (5.39)

according to Euler-Bernoulli beam theory (models I and II) and:

WT =
ω2

i

2

∫

V

(
ρW2

T,i(x) + ρ(zΦT,i(x))2
)
dV

=
ω2

i

2

(

ρA
∫ l

0
W2

T,i(x) dx + ρI
∫ l

0
Φ2

T,i(x) dx
)

(5.40)
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according to Timoshenko beam theory (model III). In (5.39) and (5.40) ωi denotes the
natural frequency of mode i. Furthermore, the shear forces at the clamped ends of the
beam are:

τ0,E = −EI

A

∂3WE,i(x)

∂x3

∣
∣
∣
∣

x=0,l

for Euler-Bernoulli, (5.41)

τ0,T = ksG

(
∂WT,i(x)

∂x
+ΦT,i(x)

)∣
∣
∣
∣

x=0,l

for Timoshenko beam theory. (5.42)

For the nominal beam dimensions, listed in Table 5.1, the Q-factors related to anchor loss
can be calculated using (5.36)–(5.42) and (4.14). This gives QE ≈ 450 and QT ≈ 120 for
models I–II and model II, respectively.

Some remarks on these values are the following. Firstly, the anchor loss for the Timo-
shenko beam is higher than for the Euler-Bernoulli beam. This is expected, since the
Timoshenko beam shows more shear force, resulting in more dissipation.

Secondly, the calculated Q-factors are found to be independent of the beam thickness
b (Table 5.1). Namely, the energy loss per cycle (5.36) is linear in b, whereas the stored
energy is also linear in b (through A and I), see (5.39) and (5.40).

Finally, the values for the Q-factor are very low and roughly an order of magnitude smaller
than experimentally determined Q-factors (this will become clear from Chapter 6). In the
theory presented in Hao et al. (2003) and Hao and Xu (2009), all waves that are radiated
into the semi-infinite substrate due to the shear force at the clamped edges are assumed
to be lost. This assumption is not valid for the beam considered in this work, see for
instance Figure 3.3. Wave reflections may occur in the suspensions of the beam due
to finite dimensions of the substrate. Reflected waves result in less energy loss and,
therefore, a higher Q-factor. Since this effect cannot be quantified in a straightforward
way, (tuning) freedom will be allowed in the numerical simulations with respect to the
Q-factor related to anchor loss (see Section 6.5).

5.2.7 Numerical implementation

The reduced-order models that have been derived in Section 5.2.5 have to be written in
the form fst(q,µ) = 0 or ẋ = f(x,µ), for calculation of equilibrium points qe or periodic
solutions xp(t), respectively (see Section 2.4). First, however, the integrals in the reduced-
order models, stemming from Galerkin discretisation, have to be evaluated numerically.
Apart from these integrals, the models remain in symbolic form, allowing for parameter
studies. The procedure for deriving the models is as follows.

In the first step, the equations of motion (5.27)– (5.33) are implemented in symbolical
form in the software package MAPLE2, which is very suitable for symbolic mathematical
calculations. The integrals in (5.28), (5.30) and (5.32)–(5.33) are evaluated numerically

2Waterloo Maple Inc, Maple 12.
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using adaptive Gauss-Kronrod quadrature (Piessens et al., 1983). The combination of
trigonometric and hyperbolic functions in the basis functions, see Table 5.4, requires that
these integrals are evaluated numerically. Next, the equations are rewritten to forms that
are suitable for analysis of equilibrium points or periodic solutions. Asmentioned before,
apart from the evaluated integrals, they are still in symbolic form.

In order to calculate equilibrium points and their stability, the resulting equations,
fst(q,µ) = 0, are exported from MAPLE to MATLAB3. Stability can be determined from
the eigenvalues of the Jacobian at an equilibrium point, see also Section 2.4.2. Once a
solution has been determined, numerical continuation for equilibrium points can take
place. Path-following routines (see also Section 2.4.4) for studying bifurcations of equi-
librium points have been written in MATLAB. Furthermore, routines for evaluating the
state-dependent discretised electrostatic forcing (5.26) using numerical quadrature are
implemented.

The dynamic equations, in the form of ẋ = f(x,µ), are exported to Fortran code, which
can be used in AUTO (Doedel et al., 1998) for calculating periodic solutions and their

bifurcations. Additionally, local derivative information in terms of the Jacobians ∂f(x,µ)
∂x

and ∂f(x,µ)
∂µ is calculated symbolically in MAPLE and exported as well, since it allows for

faster computation. For this purpose, the issue of evaluating (5.26) and its derivative
arises. Custom-made functions for evaluating the discretised electrostatic forcing and its
derivatives are written in Fortran, such that they can be evaluated using Fortran numerical
integration routines directly.

Finally, in case of calculation of periodic solutions, the output current iout of the resonator
can be calculated as a postprocessing step, using (5.5). Again, this will be clarified in
Chapter 6. Results presented in Section 5.4 will be presented in terms of displacements,
since they will be used for comparison between the three derived models.

5.3 Validation with finite element solutions

In order to validate some aspects of the three models that have been derived, finite ele-
ment (FE) simulations can be used. For this purpose, Comsol Multiphysics4 will be used,
which is very suited for multiphysics calculations. Simulations will be performed for the
nominal beam geometry listed in Table 5.1, using physical parameter values as listed in
Table 5.5. The thickness b of the beam only has influence for the fringing field calcu-
lations. The x-axis of the beam is oriented in the [100] direction. Therefore, Young’s
modulus and Poisson’s ratio are given by (A.8) and (A.9). In the next three sections, a
comparison between results from FE simulations and results from models I, II and III
will be made.

3The Mathworks, Inc., Matlab 7.5.0 (R2007b).

4COMSOL AB, Comsol Multiphysics 3.4
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Table 5.5 / Physical parameter values for the reduced-order models.

Parameter Value Unit

ρ 2329 kg m−3

E 130.02 GPa

ν 0.2785 (–)

k 156 W m−1 K−1

cp 716 J kg−1 K−1

α 2.616 · 10−6 K−1

T0 300 K

5.3.1 Natural frequencies and mode shapes

First, the natural frequencies and mode shapes will be compared. For this purpose, a
modal analysis simulation is carried out in Comsol Multiphysics. The FE results are
compared with natural frequencies according to Euler-Bernoulli beam theory (models I
and II) and Timoshenko beam theory (model III). These have been calculated as solutions
of the frequency equations listed in Table 5.4.

In Comsol, the beam has been modeled as a two-dimensional structure. Three different
mesh sizes are used. The finest mesh has 8 elements over the beam width h and 320
elements along the beam length l. The calculation is a plane stress analysis and the ele-
ment type is quadratic. This type of element includes shear effects, so no explicit choice
for exclusion of shear is possible. The two edges of the beam at x = 0, l are clamped and
anisotropic material behaviour, using the stiffness coefficients from Table A.1, has been
implemented. Results for modes 1 through 7 are shown in Table 5.6. Both the FE results
and the analytical results are listed.

From Table 5.6 it can be seen that no large differences are present between the 16 × 160
mesh and the 32 × 320 mesh. Therefore, the 32 × 320 mesh is considered fine enough
for the modes considered. The natural frequencies calculated using Comsol match those

Table 5.6 / Natural frequencies of the first 7 modes of the beam (MHz). Three different
mesh sizes are used in Comsol Multiphysics.

Comsol Multiphysics Model II Model III

Mode 8 × 80 16 × 160 32 × 320 Euler-Bernoulli Timoshenko

1 15.351 15.350 15.349 15.869 15.323

2 40.503 40.498 40.497 43.743 40.422

3 75.331 75.322 75.320 85.753 75.155

4 117.444 117.431 117.426 141.754 117.111

5 165.019 164.999 164.993 211.757 164.454

6 216.650 216.623 216.615 295.759 215.775

7 271.307 271.273 271.264 393.762 270.047
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calculated using Timoshenko beam theory very well. In this way, confidence is gained in
the results from Timoshenko beam theory. The natural frequencies from Euler-Bernoulli
beam theory are significantly higher than the FE results or the results from Timoshenko.
The difference increases with the number of the mode. This is expected, since for higher
mode numbers, shear deformation has a larger influence.

In Figure 5.2, the modeshapes of symmetric modes 1, 3 and 5 are depicted. It has already
been explained why only the symmetric modes will be taken into account for Galerkin
discretisation. Figure 5.2(a) shows the FE modeshapes and Figure 5.2(b) and (c) show
the Euler-Bernoulli and Timoshenko base functions (modeshapes), respectively. At first
sight, all three sets of mode shapes look very similar. However, closer inspection shows
that both the FE and Timoshenko modeshapes have a nonzero slope at x = 0, l, whereas
the Euler-Bernuolli modeshapes do have a zero slope (as imposed by the boundary con-
ditions (5.2)). This can be observed most clearly for mode 5. Therefore, the Timoshenko
modeshapes match the FE modeshapes better in terms of boundary conditions.
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(a) Comsol simulation.
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(b) Euler-Bernoulli beam theory. (c) Timoshenko beam theory.

Figure 5.2 / Modeshapes of modes 1, 3 and 5.

5.3.2 Thermoelastic modeshapes and damping

Simplified expressions for the Q-factor related to thermoelastic damping in beams have
been derived for beams in Zener’s classical papers (Zener, 1937, 1938), see (4.16)–(4.17),
and, in an improved form, in Lifshitz and Roukes (2000), see (4.18)–(4.19). In princi-
ple, these expressions are independent of the modeshape, but in both of the theories, the
Q-factor depends on the beam vibration frequency ω. The thermal time constant (4.17)
associated with thermal relaxation can be calculated from the beam dimensions and the
physical parameter values. This yields τ = 1.733 · 10−8 s/rad, corresponding to a ther-
mal vibration frequency of 9.184 MHz, which is indeed in the range of the beam natural
frequencies. In order to calculate the Q-factor of the beam with nominal dimensions, vi-
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bration frequencies according to two beam theories can be used, see Table 5.6. Results for
modes 1, 3 and 5 are listed in Table 5.7. From the results it can be seen that the Q-factors

Table 5.7 / Q-factors for modes 1, 3 and 5, calculated according to Zener the-
ory (4.16) (Zener, 1937, 1938) and Lifshitz (4.18) (Lifshitz and Roukes, 2000) using nat-
ural frequencies from Euler-Bernoulli or Timoshenko beam theory, see Table 5.6.

Euler-Bernoulli Timoshenko

Mode Zener Lifshitz Zener Lifshitz

1 14319 14449 14079 14211

3 58508 55801 51454 49466

5 143098 129650 111271 102118

predicted by both Zener and Lifshitz are lower for the beam vibrating at natural frequen-
cies according to Timoshenko beam theory. Furthermore, for mode 1, the Q-factors are
all in the same range. For highermodes, the differences increase, which can be attributed
to the differences between the frequencies (Euler-Bernoulli versus Timoshenko), that is
also increasing, see Table 5.6.

Next, calculations for thermoelastic damping have been performed in Comsol Multi-
physics. These are based on Duwel et al. (2006) and the calculation method presented
there. This method is based on amutual coupling between the stress-strain analysis mod-
ule and the heat transfer module. Mechanical deformation forms a heat source in thema-
terial according to the dilatation term e (4.24) in (4.23) and the temperature, calculated in
the thermal domain, causes thermoelastic strains in the material through the thermoe-
lastic constitutive law (4.21). The 32 × 320 mesh, already mentioned in Section 5.3.1, is
used in Comsol Multiphysics. From a transient analysis, the complex eigenvalues λc of
the coupled system can be calculated. The imaginary parts Im{λc} denote the angular
natural frequencies and the Q-factors can be determined from (Duwel et al., 2006):

Q =

∣
∣
∣
∣

Im{λc}
2Re{λc}

∣
∣
∣
∣
. (5.43)

In model II (Euler-Bernoulli) and III (Timoshenko), the eigenvalues are calculated from
the linearisation of the model around (q, q̇, r) = (0, 0, 0). Next, the eigenvalues can be
calculated from the Jacobian of the system and the damped natural frequency and the
Q-factor can be determined. Results of this investigation are depicted in Table 5.8. It
can be seen that the damped natural frequencies of model II (Euler-Bernoulli) and model
III (Timoshenko) are slightly below the undamped frequencies, see Table 5.6. This is
expected as damping is known to reduce the natural frequency. Interestingly, however,
for the Comsol Multiphysics simulations, this is the other way around: the damped nat-
ural frequencies are (slightly) higher than the undamped ones. No explanation for this
effect has been found. Nevertheless, the damped natural frequencies from Comsol Mul-
tiphysics match the ones from the Timoshenko beam model (model III) very well.

Furthermore, for the first mode, the Q-factor from the Comsol Multiphysics simulations
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Table 5.8 /Damped natural frequencies and Q-factors according to FE simulations (32×
320 mesh) and according to calculations in this work.

Comsol Multiphysics Model II Model III

Mode f (MHz) Q (–) f (MHz) Q (–) f (MHz) Q (–)

1 15.350 14324 15.799 14549 15.321 15260

3 75.323 49700 82.962 56688 75.144 62891

5 165.003 100111 194.790 131674 164.428 157693

and the Euler-Bernoulli model is in line with the one predicted in Table 5.7 by the theories
of Zener and Lifshitz. For the Timoshenko model, the Q-factor is slightly higher, which
contradicts the observation in Table 5.7, where Timoshenko beam theory results in lower
Q-factors. However, the agreement for mode 1 gives confidence in the first-principles
basedmodelling approach inmodels II and III. For highermodes, the difference between
the Q-factors of models II and III and those from Comsol Multiphysics increases. The
Comsol Multiphysics values agree very well with the Lifshitz values listed in Table 5.7.

Results for mode 1 in Table 5.8 are also depicted graphically in Figure 5.3, where the tem-
perature part Θ(x, z) of the modeshapes is depicted as a temperature distribution (in K)
over the beam. All temperature modeshapes have been scaled similarly. Figures 5.3(a)
and (b) show the results from the simulation in Comsol Multiphysics. The explanation
for the temperature disctribution has already been given in Section 5.2.4. Figure 5.3(c)
shows a contour plot of the basis function ΘE,1(x, z) (see also Table 5.4 for the tempera-
ture field in model II). Figure 5.3(d) shows ΘT,1(x, z) for model III. The contour plots in
Figure 5.3(c) and (d) have been normalised to the same amplitude as Figure 5.3(b), such
that they can be compared. It can be seen that the temperature distribution in the finite

(a) Thermal modeshape (Comsol Multiphysics). (b) Contour plot (Comsol Multiphysics).
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Figure 5.3 / Thermoelastic modeshapes: (a) and (b) calculates from ComsolMultiphysics;
(c) and (d) basis functions for Euler-Bernoulli and Timoshenko models, respectively.
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element simulation is captured very well in the basis functions ΘE,1(x, z) and ΘT,1(x, z).
Therefore, these are believed to serve as suitable basis funtions for Galerkin discretisa-
tion. Results for modes 3 and 5 show a similar match between the FE solutions and the
basis functions.

Summarising, although there is a difference between Q-factors of models II and III
and those from Comsol Multiphysics simulations or classical theory (Zener, 1937;
Lifshitz and Roukes, 2000), a good match is obtained between the thermoelastic mode-
shape and the basis functions ΘE,i(x, z) and ΘT,i(x, z) that are used in Galerkin discreti-
sation. A major disadvantage of the classical theory is that only an expression for the
Q-factor is calculated, under the assumption of small harmonic motions. The approach
in this work allows for straightforward and explicit inclusion of thermoelastic effects in
the multiphysical nonlinear models through coupling between the mechanical and ther-
mal physical field. Furthermore, thermoelastic damping is not the only loss mechanism
present in flexural MEMS resonators. Additional loss mechanisms like anchor loss, see
Section 5.2.6, also cause dissipation. In practice, a single overall Q-factor Qtot is mea-
sured, see also (4.15) in Section 4.3.3, which can be related to the dissipation trough an-
chor loss Qa and thermoelastic damping Qth as:

1

Qtot
=

1

Qa
+

1

Qth
, (5.44)

Because of relation (5.44), it is difficult to distinguish between the different loss mecha-
nisms in measurements. Although the values for Qa, derived in Section 5.2.6, suggest
that anchor loss will be the dominant contribution in (5.44), thermoelastic damping will
not be neglected. Namely, as will become clear from Section 6.5, the calculated Qa are
much too low.

5.3.3 Fringing field effects

The final aspect of the model that is validated by means of finite element simulations is
the effect of fringing fields. For this purpose, consider the schematic representation of the
beam and its cross-section in Figure 5.4. Note that in the cross-section, Figure 5.4(b), the
electrodes are much larger than the beam. This may not be apparent from Figure 5.4(a),
but corresponds to the situation in practice, see Figure 3.3. The cross-section is in the y–z

A

A

(a) Schematic overview. (b) Cross-section A–A.
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Figure 5.4 / Schematic overview of the analysis for fringing field effects.



5.3 VALIDATION WITH FINITE ELEMENT SOLUTIONS 115

plane and shows the analysis region for the fringing fields, having a dimension of ly and
lz in y- and z-direction, respectively. Due to symmetry, the region spans only the positive
y-direction. The Comsol Multiphysics analysis is performed with the beam grounded and
with the electrode in positive z-direction having a voltage V. In Comsol, the capacitance
can be calculated from an electrostatic analysis. The analysis region dimensions ly and lz

have influence on the calculated capacitance values. Therefore, Comsol simulations have
been performed for varying values of ly and lz. Typical simulation results are depicted
in Figure 5.5, for the two different thickness values b of the beam, see Table 5.1. The
grayscale in this figure indicates the voltage, normalised to a maximum value of 1 and
the black lines denote the electrical field lines. It can be seen that fringing fields are
present between the beam and the electrode. Simulation results are listed in Table 5.9.

beam electrode

beam electrode

(a) b = 1.4 µm, ly, lz = 10 µm. (b) b = 10 µm, ly, lz = 15 µm

Figure 5.5 / Fringing field effects for two geometries and analysis regions.

According to parallel plate theory (4.25), the capacitance between the beam and a single
electrode is given by

Cpp =
ǫ0bl

d1
. (5.45)

With inclusion of first-order fringing field correction, see for instance Osterberg (1995)
and Osterberg and Senturia (1997), the total capacitance becomes:

Ctot =
ǫ0bl

d1

[

1 +
2d1

πb
+

2d1

πb
ln

(
πb

d1

)]

, (5.46)

where the parallel plate capacitance (5.45) can be recognised in the first term in the right-
hand side of (5.46). The electrostatic forcing qe with first-order fringing field correc-
tion (5.3) is also based on (5.46).

Table 5.9 lists the results for two different values of the beam thickness b and the nom-
inal geometry of Table 5.1. Analytically calculated capacitance values, according to (5.45)
and (5.46) are listed as well as simulation results form Comsol Multiphysics.
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Table 5.9 / Results for the fringing field capacitance calculations.

Capacitance in (fF)
Analysis type b = 1.4 µm b = 10 µm

parallel plate (5.45) 1.65278 11.80558
fringing field corrected (5.46) 2.54313 13.18356

Comsol ly, lz = 5 µm 2.56923 –
Multiphysics ly, lz = 10 µm 2.64167 12.77934

ly, lz = 15 µm 2.65984 12.81066
ly, lz = 20 µm 2.67532 12.83034
ly, lz = 25 µm 2.68346 12.84224

From Table 5.9, several observations can be made. Firstly, fringing field effects play a
significant role for the two beams under investigation in this chapter. Secondly, fring-
ing fields have a larger effect for the thin beam (b = 1.4 µm) than for the thick beam
(b = 10 µm). The parallel plate approximation (5.45) significantly underestimates the ca-
pacitance value. The value, obtained from the fringing field corrected capacitance (5.46),
is up to 6% lower than the value from Comsol Multiphysics, depending on the size of the
analysis region. For the thick beam, the effect of fringing fields is less pronounced. The
parallel plate capacitance is approximately 10% lower than the fringing field corrected
one. From the finite element simulations, it follows that (5.46) slightly overestimates the
capacitance (up to 3% for ly, lz = 25 µm).

Although the fringing field effect is slightly underestimated for thin beams (b = 1.4 µm)
and slightly overestimated for thick beams (b = 10 µm), it may still be concluded
that (5.46) serves as a useful first-order approximation for fringing field effects. The
analytical expression (5.46) allows for inclusion of fringing fields in functional form in
the electrostatic forcing (5.3), which is very useful for fast simulation with models I to III.

5.4 Simulation results and model comparison

From Section 5.3, confidence has been gained with respect to several separate physical
aspects of the models. In this section, simulations with the reduced-order models will
be performed, in order to investigate the influence of the various physical effects on the
static and dynamic behaviour of the clamped-clamped beam MEMS resonator. For the
beam, the nominal geometry, listed in Table 5.1 will be used, together with model param-
eter values of Table 5.5. As indicated in Section 5.2.7, results will be presented in terms
of displacements, instead of the output current iout. Furthermore, results obtained in
the next two sections will be compared to results from literature. First, in Section 5.4.1,
pull-in curves will be determined from a static analysis, studying equilibrium points and
their stability. Next, in Section 5.4.2, amplitude-frequency curves will be calculated from
the full nonlinear dynamic analysis in which periodic solutions and their stability are
determined.
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5.4.1 Equilibrium points and stability

The analysis of equilibrium points and their stability is typically used for pull-in analysis
of electrostatically actuated microstructures. As stated in Section 2.4.2, pull-in is a phe-
nomenon that may occur when the electrostatic force overcomes the mechanical force,
such that the electrodes snap together. This happens at a the so-called pull-in voltage
Vpi. In order to study equilibrium points and their stability for the three models, they
have been rewritten to the form fst(q,µ) = 0, which is numerically implemented in
MATLAB, see Section 5.2.7. Essentially, this boils down to setting all time derivatives in
models I to III to zero. Furthermore, only a single electrode is used in the static analysis
(see Figure 5.1):

V1 = Vdc, V2 = 0. (5.47)

Equilibrium points of the system are calculated as a function of the dc voltage Vdc, which
acts as the bifurcation parameterµ. Numerical continuation, or path-following, is applied
to follow the branch of equilibrium points. It is convenient to introduce the midpoint dis-
placement wmid (at x = 0.5) as a response quantity. It is defined for the non-dimensional
basis functions as:

wmid =
n

∑
i=1

qiWE,i(0.5) or wmid =
n

∑
i=1

qiWT,i(0.5), (5.48)

depending on whether the model is based on Euler-Bernoulli or Timoshenko beam the-
ory, respectively. By multiplying wmid with d1, see (5.14), the dimensional midplane dis-
placement can be calculated. Furthermore, physical effects (see Section 4.3) that are rel-
evant for equilibrium positions and their stability are mid-plane stretching (a geometric
nonlinear effect) in the beam and fringing fields in the electrostatic actuation. In mod-
els I to III, these effects have been included and are quantified by a non-dimensional
coefficient, see Section 5.2.5. Coefficient cm is related to mid-plane stretching and cb ac-
counts for fringing field effects. By setting one (or both) of these coefficients to zero, the
respective effect can be switched off.

In order to compare the three different models, first, the static analysis is performed for
the single-mode discretisation. The axial initial stress σ0 is set to zero for now. Some re-
sults for the three models are depicted in Figure 5.6 for the thin beam (b = 1.4 µm). On
the horizontal axis, the bifurcation parameterVdc is indicated. On the vertical axis wmid is
depicted ranging from 0 to d1 (see Table 5.1). In Figure 5.6, four different so-called pull-in
curves can be seen. The curves consist of a stable lower part and an unstable upper part.
Local stability of the system follows from an eigenvalue analysis, see Section 2.4.2. The
transition from the stable to the unstable part is accompanied by a limit point (LP) bifur-
cation. For a voltage Vdc that increases above the pull-in voltage Vpi at this bifurcation
point, no stable solution of the system can be found, and pull-in will occur. An increase
of the voltage beyond Vpi results in a sudden ‘snap’ of the beam to the electrode.

Furthermore, it can be seen in Figure 5.6 that model III has the lowest pull-in voltage,
Vpi = 299.44 V, and that models I,II without the effect of fringing fields (cb = 0) have
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Figure 5.6 / Static equilibrium curves for the single mode models I, II and III. cb = 0
indicates: simulation without fringing fields.

the highest pull-in voltage, Vpi = 324.42 V. All simulations show a similar midpoint dis-
placement wmid at the bifurcation point. Further numerical results are given in Table 5.10
for both the thin and the thick beam. For the sake of convenience, midplane displace-
ments are given in non-dimensional form. The pull-in displacement for an ideal paral-
lel plate approximation with a uniform gap equals w = 0.33, see for instance Senturia
(2001). Simulations with the single-mode models take approximately 30 seconds on a
Pentium IV computer, depending on the stepsize in Vdc. From these numerical results,
it becomes clear that there is virtually no difference between models I and II in terms of
pull-in voltages and midpoint displacements at pull-in. Therefore, for static analysis, ma-
terial nonlinear effects provide no added value to the model but only increase the model

Table 5.10 / Results for models I, II and III for the single-mode discretisation.

Thin beam: b = 1.4 µm

cb, cm = 0 cb = 0 cm = 0 Full model
Model Vpi (V) wmid (–) Vpi (V) wmid (–) Vpi (V) wmid (–) Vpi (V) wmid (–)

I 324.30 0.3980 324.42 0.3985 308.82 0.4100 308.95 0.4103
II 324.29 0.3980 324.42 0.3984 308.82 0.4099 308.95 0.4104
III 314.31 0.3980 314.43 0.3984 299.31 0.4100 299.44 0.4103

Thick beam: b = 10 µm

cb, cm = 0 cb = 0 cm = 0 Full model
Model Vpi (V) wmid (–) Vpi (V) wmid (–) Vpi (V) wmid (–) Vpi (V) wmid (–)

I 324.30 0.3980 324.42 0.3985 321.98 0.3998 322.10 0.4002
II 324.29 0.3980 324.42 0.3984 321.97 0.3998 322.10 0.4002
III 314.31 0.3980 314.43 0.3984 312.06 0.3999 312.18 0.4003
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complexity. Model III, based on Timoshenko beam theory, shows pull-in voltages that are
approximately 10 V lower than model I and II, which are based on Euler-Bernoulli beam
theory. This is caused by the additional shear flexibility in the model III. Inclusion of
fringing fields results in a pull-in voltage that is approximately 15 V lower. Compare, for
instance, the ‘full model’ case with a case in which cb = 0. The effect of midplane stretch-
ing is very small. For all three models parameter cm has negligible influence, which is
caused by the small ratio of d1 to h, see (5.16) and Table 5.1. However, it will become clear
from Section 5.4.2 that this parameter does play a role in dynamical simulations.

Results for the thick beam (b = 10 µm) show a similar trend. Here, however, the effect
of fringing fields is less pronounced, resulting only in a difference of approximately 2 V
in the pull-in voltage. This has already become clear in the finite element validation of
the fringing field approximation in Section 5.3.3. In fact, fringing fields cause the only
difference between the results for the thin and thick beam. The reason for this is that the
thickness dimension, as defined in Figure 5.1, normally does not play a role in models
based on beam theory. For fringing field effects, however, it does play a role. Also for the
thick beam, midplane stretching only has a marginal influence on the response values.

Next, an analysis is performed in which the effect of taking into account multiple modes
is investigated. As already indicated in Section 5.2.5, multi-mode discretisations are avail-
able for models II and III only. Results from this analysis are given in Table 5.11, again
for the thin and the thick beam. Durations of the numerical simulation range from 15
seconds for the single-mode models up to 120 seconds for model III with 3-modes on a
Pentium IV computer. From these results, it can be concluded that, for the beam under
investigation, inclusion of more modes does not result in significantly different pull-in
voltages or midpoint displacements.

Table 5.11 / Results for models II and III for single and multi-mode discretisations.

b = 1.4 µm b = 10 µm
Model Modes Vpi (V) wmid (–) Vpi (V) wmid (–)

II 1 308.95 0.4104 322.10 0.4002
1, 3 309.12 0.4087 322.27 0.3986
1, 3, 5 309.11 0.4089 322.27 0.3988

III 1 299.44 0.4103 312.18 0.4003
1, 3 299.65 0.4084 312.39 0.3983
1, 3, 5 299.63 0.4088 312.38 0.3986

As a result, it can be concluded for the static analysis that a single mode model is accurate
enough. For the nominal geometry, simulation results show that shear deformation may
not be neglected and that fringing field effects are significant (this was already found in
Section 5.3.3). Therefore, model III, with inclusion of fringing fields appears to be the
most accurate model for the beam under investigation.
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Comparison with literature

As an additional validation of both models II and III and the analysis of equilibrium
points and their stability, several comparisons with pull-in analyses reported in literature
will be performed.

In Osterberg (1995) and Osterberg and Senturia (1997), a linear Euler-Bernoulli beam
model has been proposed as a means for determining the pull-in voltage for, among oth-
ers, a clamped-clamped beam (or plate-like) device. Material parameters for the beam are:
E = 169 GPa, ν = 0.06, b = 50 µm, h = 3 µm and d1 = 1 µm. Due to the plate-like
structure of the silicon beam, an effective Young’s modulus of E/(1 − ν2) (plate mod-
ulus) is used. Furthermore, the electrostatic actuation in Osterberg and Senturia (1997)
contains the same fringing field correction as used in this work. The governing partial
differential equation for the beam has been solved by a finite difference relaxation solver.
Pull-in voltages have been reported for six test cases with varying lengths l and initial
stress values σ0. These are listed in Table 5.12. Additionally, 3D numerical simulations
results from MEMCAD5 have been listed.

In order to make a fair comparison with results from this work, numerical simulations
with model II (which is also based on Euler-Bernoulli beam theory) have been performed,
including up to three modes in the discretisation, indicated by 1; 1, 3 or 1, 3, 5. The re-
sults are also depicted in Table 5.12. From the comparison, it can be seen that quite a

Table 5.12 / Pull-in voltage Vpi (V) for several parameter values. Comparison between
results reported in Osterberg and Senturia (1997) and simulations with model II.

Parameters This work, model II
l (µm) σ0 (MPa) Osterberg MEMCAD 1 1, 3 1, 3, 5

250 0 39.5 40.1 39.39 39.41 39.41
100 56.9 57.6 58.32 58.13 58.06

−25 33.7 33.6 33.00 32.95 32.95

350 0 20.2 20.3 20.10 20.11 20.11
100 35.4 35.8 36.71 36.41 36.32

−25 13.8 13.7 12.96 12.82 12.81

good agreement is obtained, already for single-mode simulations. The MEMCAD value
is taken as reference value. Depending on the specific parameter values, agreement be-
tween MEMCAD values and model II results is achieved within 2% .

Next a comparison is made between this work and recently reported results from Krylov
(2007) and Krylov et al. (2008). In Krylov (2007), a silicon microbeam is investigated.
The beam is modelled using an Euler-Bernoulli beammodel in which both fringing field
and midplane stretching effects are included. By means of Galerkin discretisation, a
reduced-order model is created in the same way as has been done in Section 5.2.5. For a

5Microcosm Technologies, Cambridge, MA; renamed Coventor, Inc., software: CoventorWare
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beam with parameters E = 169 GPa, ν = 0.28, l = 800 µm, b = 50 µm, h = 14.4 µm
and d1 = 1 µm, a pull-in voltage of Vpi = 40.17 V is reported. Simulations with model
II yield Vpi = 40.13 V, Vpi = 40.15 V and Vpi = 40.15 V for the mode 1, mode 1, 3 and
mode 1, 3, 5 discretisations, respectively. A very good agreement is obtained. The pull-in
curve for the single-mode simulation is depicted in Figure 5.7(a).
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(a) Results for the beam in Krylov (2007). (b) Results for the beam in Krylov et al. (2008).

Figure 5.7 / Pull-in curves calculated for comparison with two recent works.

Also in Krylov et al. (2008), the pull-in behaviour of electrostatically actuated microstruc-
tures is investigated in detail. A similar modelling method is applied as in Krylov (2007)
and the work presented in this thesis. However, a different expression for fringing field
effects is used, based on van der Meijs and Fokkema (1984) and Batra et al. (2006b). For
a beam with parameters E = 169 GPa, ν = 0.28, l = 1000 µm, b = 30 µm, h = 2.1 µm
and d1 = 7.7 µm, a pull-in voltage of 60 V is reported. Simulations with model II yield
Vpi = 59.04 V, Vpi = 58.34 V and Vpi = 57.65 V for the mode 1, mode 1, 3 and mode
1, 3, 5 discretisations, respectively. Differences with Krylov et al. (2008) may be attributed
to the different expression for the fringing field effects. Again, the pull-in curve for the
single-mode discretisation is depicted in Figure 5.7(b).

Finally, further information on analysis and modelling with respect to pull-in of electro-
statically actuated microstructures can be found in, for instance, Pamidighantam et al.
(2002), and Rochus et al. (2005, 2006). In Pamidighantam et al. (2002), both the effects
of fringing fields and charge redistribution are taken into account. The latter is reported
to result in a reduction of the effective electrode area, due to charge movement, once the
beam deforms. In Rochus et al. (2005) and Rochus et al. (2006), a monolithic finite ele-
ment formulation for electromechanical coupling is proposed, in which the electric and
mechanical fields are solved simultaneously in the same formulation.
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5.4.2 Periodic solutions and stability

The analysis of steady-state periodic solutions allows for determining stationary oscil-
lations of MEMS resonators. For instance, for MEMS resonators that are used in os-
cillators, both the frequency of oscillation and the oscillation amplitude are important.
Furthermore, amplitude-frequency curves can be calculated, which are the nonlinear
equivalent of frequency response functions. In order to study periodic solutions and
their stability for the three MEMS resonator models, they are rewritten in the form
ẋ = f(x,µ). The ODEs are numerically implemented in Fortran code, which is used
by AUTO97 (Doedel et al., 1998) for calculation and numerical continuation of periodic
solutions, that is, resonator oscillations, see Section 2.4.3. The excitation voltages on the
two electrodes are set to their values in (5.4). Excitation parameters are the voltages Vdc

and Vac and the excitation frequency f . In order to calculate amplitude-frequency curves,
the frequency f in the ac part of V1 will act as the bifurcation parameter µ.

Similar to the equilibrium point analysis in previous section, the deflection wmid at the
midpoint of the beam will be the response quantity for the results. However, since peri-
odic solutions will be calculated, wmid is a function of t. Therefore, the peak to peak value
of wmid will be considered.

First, simulations are performed in order to investigate what physical effects (see Sec-
tion 4.3) are relevant for periodic solutions. This will be done for excitation settings
Vdc = 40 V and Vac = 125 mV in V1 and V2 (5.4). As has become clear from (5.16)
in Section 5.2.3, the physical effects are quantified by a non-dimensional coefficient This
parameter can be set to 0 for switching the effect off, just as has been done in Section 5.4.1.
In the following, cm denotes the midplane stretching effect, cb denotes fringing field ef-
fects and cr denotes rotary inertia. Unless stated otherwise, the effect of anchor loss is
not included, since its low Q-factor would render most of the individual physical effects
invisible. This will become clear at the end of this section.

Results of a simulation study for a single-mode discretisation of models I and II, both
based on Euler-Bernoulli beam theory, are depicted in Figure 5.8. The results are pre-
sented for the thin beam, b = 1.4 µm. Model I does not contain thermoelastic damping.
In order to be able to compare its response with the response of model II, a version of
model II without thermoelasticity is used. In both models a quality factor of Q = 15000
is used, which corresponds approximately with the quality factor related to thermoelastic
damping, see Tables 5.7 and 5.8 for mode 1.

Figure 5.8 shows the amplitude-frequency plot models I and II under influence of vari-
ous physical effects. On the horizontal axis, the excitation frequency is plotted and on the
vertical axis, the peak to peak value of wmid is shown. Stable periodic solutions are in-
dicated by solid lines, whereas unstable periodic solutions are indicated by dashed lines.
Cyclic fold bifurcations (indicated by CF) mark the transitions between stable and unsta-
ble periodic solutions, see also Section 2.4.3.

Several observations can be made from Figure 5.8, which, in fact, shows 8 response
curves. Firstly, it can be seen that there is no visible difference between the amplitude-
frequency responses of model I and model II. Therefore, it can be concluded that the
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Figure 5.8 / Eight amplitude-frequency curves including various effects for models I and
II. No visible differences are present between models I and II. cb: fringing fields, cm:
midplane stretching, cr: rotary inertia. Excitation values: Vdc = 40 V andVac = 125 mV.

influence of nonlinear elastic effects is not significant for the beam under investigation.
This has been observed in Section 5.4.1 for the equilibrium point analysis as well.

Secondly, exclusion of midplane stretching (cm), fringing fields (cb) and rotary inertia (cr)
effects do have significant influence on the amplitude frequency curve, compared to the
‘full’ analysis, in which all effects are included, see Figure 5.8. All resonance peaks show
softening nonlinear behaviour, since these bend to lower frequencies.

As expected, if midplane stretching is not included (curve with cm = 0), more softening
nonlinear behaviour occurs. In the equilibrium point analysis, this effect did not play a
significant role, but for periodic solutions, it does. Furthermore, it will become clear later
on that the midplane stretching effect is necessary to be able to describe the transition
from hardening to softening nonlinear behaviour for increasing Vdc.

From comparison of the curves ‘full’ and cb = 0, it can be seen that exclusion of fring-
ing fields results in a higher resonance frequency with a lower peak value. This is ex-
pected, since fringing fields increase the effective capacitance between the electrodes and
the beam. As a result, the effective stiffness decreases, resulting in a lower resonance
frequency, and the electrostatic force increases, resulting in a higher amplitude. The
effective stiffness, given for the lumped model in (3.8) in Section 3.2.2 depends on the
capacitance, the gap and the dc voltage.

Inclusion of rotary inertia (parameter cr) increases the inertia of the beam, thereby in-
creasing the effective, or vibrating, mass of the beam. Therefore, if rotary inertia is taken
into account, the resonance frequency is lower than for the case cr = 0. Especially for the
relatively wide beam (large h/l-ratio), this effect does play a role.

Next, a similar analysis is performed formodels II and III, both with thermoelastic effects
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included. Results for model II are virtually the same as already depicted in Figure 5.8,
but with slightly lower amplitude, since the Q-factor for thermoelastic damping equals
Q = 14549 for model II (see Table 5.8) instead of Q = 15000 used in Figure 5.8. For
model III, results are depicted in Figure 5.9. In model III, rotary inertia is included
automatically, since this serves as the inertia term in the PDE for the shear deformation
fieldϕ, see (5.22b).
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Figure 5.9 / Amplitude-frequency curves including various effects for model III. cb:
fringing fields and cm: midplane stretching. Excitation values: Vdc = 40 V and
Vac = 125 mV.

Trends for model III are similar to those observed in Figure 5.8. If midplane stretching is
not included (cm = 0), more softening nonlinear behaviour results and if fringing fields
(cb = 0) are not included, a higher resonance frequency and a lower amplitude results.
Furthermore, the resonance frequency for model III is lower than the one for models I
and II, compare the scale of the horizontal axis in Figure 5.9 with Figure 5.8. This is in
line with the difference in natural frequencies between Timoshenko and Euler-Bernoulli
beam theory, see Table 5.8.

In conclusion, from Figures 5.8 and 5.9 it follows that both midplane stretching and
fringing field effects have to be included in the analysis of periodic solutions, since they
have significant influence. In addition, for model II, rotary inertia is of importance.

In order to investigate the effect of taking into account multiple basis functions (modes)
in the Galerkin discretisation, simulations with models II and III have been performed
using mode 1, modes 1, 3 and modes 1, 3, 5. All physical effects are included. The ex-
citation settings are the same as used previously: Vdc = 40 V and Vac = 125 mV.
Amplitude-frequency curves for these simulations are depicted in Figure 5.10(a) for
model II and in Figure 5.10(b) for model III. In each of these figures, three amplitude-
frequency curves are depicted that virtually coincide (showing no visible differences).
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(a)Model II. (b) Model III.

Figure 5.10 / Results for three different (1, 2 and 3 DOF) discretisations, Vdc = 40 V and
Vac = 125 mV. For each of the models, the results almost coincide.

From the results, it becomes clear that the single-mode and multi-mode models almost
give the same results around the first harmonic resonance frequency. The clamped-
clamped beam MEMS resonator considered in this work is mainly operated around its
first harmonic resonance frequency. Therefore, it has no added value to include more
modes in the simulation model. This corresponds with the conclusion in the equilib-
rium point analysis in Section 5.4.1, where the single-mode results already give a good
prediction of the pull-in voltage for the beam under investigation.

However, in systems with low damping, a situation might occur in which a higher
mode with a harmonic resonance frequency fi shows an nth superharmonic resonance
at the first harmonic resonance peak with natural frequency f1. This may happen when
fi/n ≈ f1, where i, n = 2, 3, 4, . . .. This effect is described in, for instance, Fey et al.
(1990) and is very sensitive to damping. In the numerical simulations, performed with
modes 1, 3 and modes 1, 3, 5, this effect has not been observed. Furthermore, in the ex-
periments, described in Section 6.5, this effect is also not observed, although it may be
disguised due to the presence of measurement noise. The superharmonic resonances
may occur more easily if the modes are internally resonant. This is not the case here,
see for instance Younis and Nayfeh (2003), where the authors find that a three-to-one
internal resonance does not occur for a clamped-clamped microbeam.

Furthermore, it can be seen that the height of the resonance peaks is higher for model III
than for model II. Reasons for this are twofold. Firstly, the Q-factor in model III is some-
what higher than the one in model II, see Table 5.8. This results in a higher amplitude.
Secondly, in model III, which is based on Timoshenko beam theory, additional flexibility
is introduced by including the shear deformation field. This results in more deformation
and, hence, higher resonance peaks.

Now that it has become clear for the beam considered, that it suffices to use the single-
mode discretisation including all physical effects, except material nonlinearities (model
I), additional simulations for other excitation settings will be performed. These excitation
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settings are listed in Table 5.13 and are chosen such that the product VdcVac, which is a
measure for the harmonic excitation amplitude (due to V2-terms in the excitation), is
constant. Therefore, these settings will result in approximately the same amplitudes of
the response.

Table 5.13 / Excitation settings for simulations with models II and III.

Excitation settings
Vdc (V) Vac (mV)

10 500
20 250
30 167
40 125

Simulation results for these settings are depicted in Figures 5.11 and 5.12 for models II
and III, respectively. The results show that the type of nonlinear dynamic behaviour
changes with the excitation settings. For bias voltages of Vdc = 30 and 40 V, softening
nonlinear behaviour is observed, due to dominating softening nonlinear behaviour of the
electrostatic actuation. This has already been observed in Figures 5.8–5.10.

At Vdc = 10 V, effective hardening nonlinear behaviour is present, since the reso-
nance peak bends to higher frequencies. Apparently, the hardening effect from mid-
plane stretching (parameter cm) dominates the softening behaviour of the electrostatic
actuation. If midplane stretching is omitted (cm = 0), softening nonlinear behaviour is
found, since the remaining nonlinear dynamic effect, electrostatic forcing, has a soften-
ing nonlinear nature. This motivates the inclusion of midplane stretching in the models.
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Figure 5.11 / Amplitude-frequency curves for model II for excitation values listed in
Table 5.13.
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Figure 5.12 / Amplitude-frequency curves for model III for excitation values listed in
Table 5.13.

Namely, although midplane stretching does not give significantly different results for the
equilibrium point analysis (Section 5.4.1), it is an essential effect for the analysis of the
dynamic behaviour.

At the intermediate value of Vdc = 20 V, a resonance without frequency hysteresis re-
sults, indicating a balance between midplane stretching (hardening) and electrostatic ac-
tuation (softening).

For excitation values higher than those listed in Table 5.13, even richer nonlinear dynamic
behaviour may occur. However, the dominant nonlinear effect will be softening, resulting
from the electrostatic actuation (see also Section 7.4.5). Eventually, the response may
end in dynamic pull-in (Nayfeh et al., 2007). An extensive investigation of hardening to
softening transitions in a purely parametrically excited comb-drive resonator is reported
in Rhoads et al. (2006).

Apart from the different ranges for the resonance frequencies, the responses of models II
and III are almost the same. As explained earlier, the amplitude for model II is somewhat
lower than that of model III. Simulations with the thick beam (b = 10 µm) show similar
trends as depicted in Figures 5.8–5.12 for the thin beam. The only difference is that the
influence of fringing fields is less pronounced, an aspect which has been found in the
analysis of equilibrium points as well, see Section 5.4.1.

Finally, to conclude this section on periodic solutions, the effect of anchor loss is inves-
tigated. In Figure 5.13, simulation results are presented for model II, where a Q-factor
of 450 is used. This value corresponds to the analytically calculated value for anchor loss
in model II in Section 5.2.6. Simulations have been performed for the excitation values
listed in Table 5.13. The results show that for the (low) theoretical Q-factor related to an-
chor loss, no frequency hysteresis is found near the first harmonic resonance peak for
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Figure 5.13 / Amplitude-frequency curves for model II for excitation values listed in
Table 5.13. Anchor loss is included using a Q-factor of 450, see Table 5.8.

all excitation settings of Table 5.13. Differences in responses, related to various physical
effects, see Figures 5.8–5.12 can no longer be observed. All (subtle) effects are damped
due to the low Q-factor. Results for model III, including anchor loss are very similar to
those depicted in Figure 5.13. They only show a resonance peak at lower frequencies,
corresponding to those of Figure 5.12.

Comparison with literature

One of the first experimental observations of nonlinear dynamical effects in a MEMS res-
onator has been reported in Andres et al. (1987). Here, a hardening nonlinear response
has been measured in a silicon resonant pressure sensor. Other hardening nonlinear re-
sponses have been observed in a comb drive resonator in Pratt et al. (1991) and in a beam
resonator in Zook et al. (1992).

Theoretical work on the amplitude-frequency effect has been presented in Tilmans et al.
(1992) and Tilmans and Legtenberg (1994), where the resonance frequency of a clamped-
clamped beam microresonator has been determined by employing Rayleigh’s (or
Rayleigh-Ritz’s) energy method, see for instance Weaver et al. (1990).

Yao and MacDonald (1996) describe the first experimental observation of both harden-
ing and softening nonlinear dynamic behaviour in the same micromechanical device,
depending on the excitation values. A similar trend as in Figures 5.11 and 5.12 has been
observed.

Most of the literature before the year 2000 on nonlinear dynamic effects are based on
lumped, Duffing-like modelling approximations, with the exception of Tilmans et al.
(1992) and Tilmans and Legtenberg (1994). A different modelling approach, like the
one described in this chapter, has been presented in Abdel-Rahman et al. (2002),
Younis and Nayfeh (2003) and Younis et al. (2003). In these references, an Euler-
Bernoulli beam model, including midplane stretching, has been used (like model II) to
describe the nonlinear dynamics of a microbeam that is actuated by a single electrode. Af-
ter single-mode Galerkin discretisation, a perturbation technique, the method of multiple
scales (Nayfeh, 1981), is applied to determine an approximate solution to the amplitude-
frequency curve of the microbeam. This technique assumes small nonlinearities.
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Figure 5.14 / Amplitude-frequency curves calculated for Vdc = 8 V and two Vac-values,
using clamped-clamped microbeam parameters from Younis and Nayfeh (2003).

A typical example from Younis and Nayfeh (2003) is based on Gui et al. (1998) and de-
scribes the steady-state nonlinear dynamic response of a silicon clamped-clamped mi-
crobeam with parameters E = 166 GPa, ν = 0.22, b = 100 µm, h = 1.5 µm and
d1 = 1 µm, subject to an initial axial force of N0 = 0.00011 N. The Q-factor of the
beam is 900. At a bias voltage of Vdc = 8 V two amplitude-frequency curves have been
calculated based on the perturbation method, for Vac = 7 mV and Vac = 30 mV. Peak
amplitudes for the midpoint displacement wmid at these excitation settings are 0.04 µm
and 0.16 µm, respectively, and a hardening nonlinear response has been observed for
Vac = 30 mV. In order to make a fair comparison with these results, simulations
with model II, also based on Euler-Bernoulli beam theory, have been performed. The
results are depicted in Figure 5.14. Note that on the vertical axis, the maximum am-
plitude of the midpoint oscillation wmid is plotted, which is also the response measure
in Younis and Nayfeh (2003).

The simulated responses match those described in Younis and Nayfeh (2003) very well
in a qualitative sense: the amplitude-frequency curves in Younis and Nayfeh (2003) have
virtually the same shape as those in Figure 5.14. However, since numerical calculation
of periodic solutions (using AUTO97) is used in the current work, no approximation to
the nonlinear dynamic solution has to be made. Therefore, the amplitudes determined
from the simulations with model II are found to be 0.05 µm and 0.23 µm, for Vac =
7 mV and Vac = 30 mV, respectively. This is up to 44% higher than the values reported
in Younis and Nayfeh (2003).
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5.5 Conclusions

Based on the comparison with finite element simulations described in Section 5.3 and
the numerical simulation results described in Section 5.4, a comparison between models
I, II and III can be made.

Some model aspects have been validated with finite element simulations using Comsol
Multiphysics. These are the natural frequencies, thermoelastic damping and fringing
fields. A good correspondence has been obtained for the natural frequencies of the finite
element calculations and those of model III. The thermal modeshape and the Q-factor
related to thermoelastic damping inmodels II and IIImatchwell with the FEM results for
the first mode. For higher modes, the match becomes worse. Furthermore, the fringing
field between the resonator and the electrodes can be approximated quite well with the
first-order fringing field correction from Osterberg and Senturia (1997), see Section 5.3.3.

For both the static analysis (equilibrium points) and the dynamic analysis (periodic solu-
tions), it has become clear that the effect of nonlinear material behaviour does not play
a role, since it gives no significantly different simulation results. Therefore, model II
is preferred over model I, since the former allows for straightforward inclusion of the
relevant effect of thermoelastic damping.

Furthermore, for the static analysis of model II and III (Section 5.4.1), fringing field ef-
fects provide an improvement in the models, although their influence is less pronounced
for the thick beam (b = 10 µm). By means of finite element simulations, this effect has
also been verified, see Section 5.3.3. The effect of midplane stretching has been found to
be hardly noticeable in the responses for equilibrium calculations (pull-in curves) for the
nominal geometry of the beam (Table 5.1).

Moreover, from a comparison with literature, it has been found that models based on a
single-mode Galerkin discretisation already yield a good estimate of the pull-in voltage.
For the nominal beam geometry considered here, a single-mode discretisation is enough.
If a larger electrode gap is present, a multi-mode discretisation may give slightly better
results, since the inclusion of more modes may result in a better description of the de-
flection profile of the deformed beam.

In the dynamic analysis, both fringing fields andmidplane stretching effects do play a sig-
nificant role. Thermoelastic damping plays a role as well. For the first mode, both models
II and III have a thermoelastic damping implementation that results in Q-factors that are
in agreement with values from both literature (Zener, 1937, 1938; Lifshitz and Roukes,
2000) and finite element simulations. For higher modes, models II and III estimate the
Q-factor too high. However, for the beam considered it has been shown that single-mode
Galerkin discretised models yield results that are accurate enough. The use of multiple
modes does not result in significant improvements.

Additionally, for model II, rotary inertia influences the response significantly. Therefore,
it has to be included in the model. Furthermore, anchor loss has been found to results
in very high damping in the system. It will become clear in Chapter 6 that the Q-factor
calculated by the analytical anchor loss calculations in Section 5.2.6 is too low.
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Developed dynamic model II has been validated with results from literature. The numer-
ical method for determining periodic solutions in this work enables direct calculation of
amplitude frequency curves, so that approximations to the response do not have to be
made.

From a comparison of models II and III, it has become clear that the effect of shear
deformation has to be included in the model, since this results in lower stiffness of the
beam. For the static analysis, this results in lower pull-in voltages and for the dynamic
analysis, this results in lower resonance frequencies. The above motivates the choice for
the single-mode discretisation of model III as the best model, with all physical effects
included, except for anchor loss.

Another important conclusion from Section 5.4.2 is that, regardless of the physical ef-
fects included, the overall dynamic behaviour of the clamped-clamped beam MEMS res-
onator still features frequency hysteresis as a response, see Figures 5.8–5.12, which may
be described by a Duffing-based model. Actually, in Section 3.2, the proposed heuristic
model for the clamped-clamped beam resonator has been a Duffing-based model with
electrostatic actuation. This lumped model, has proven to be a good initial estimate for
describing the measured responses. However, in the heuristic model, small parameter
value changes are necessary to describe the behaviour for varying excitation settings.

In summary, the lumped, Duffing-based model with electrostatic actuation of Section 3.2
is able to describe some, but not all aspects of the dynamic behaviour of the clamped-
clamped beamMEMS resonator for a certain excitation setting. Furthermore, the lumped
parameters of this model have not been related to physical dimensions and physical pa-
rameters of the MEMS resonator. In order to capture the subtle details in the dynamic
response, such as the transition from hardening to softening nonlinear behaviour, or the
influence of the various physical effects, a first-principles based modelling approach is
required. The approach, as proposed in Chapter 4 has been applied in this chapter to
arrive at several models of the clamped-clamped beam MEMS resonator of varying com-
plexity. The models are still in symbolic form, without physical parameters that have to
be lumped into effective stiffness or mass quantities. Based on a simulation study, the
influence of various physical effects has been judged, thereby motivating the choice for
the single-mode discretisation of model III as the most suitable model. Experimental
verification of this model will follow in Chapter 6.
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CHAPTER SIX

Experiments on a clamped-clamped
beam MEMS resonator1

Abstract / In this chapter, the experimental validation of the derived models for the clamped-
clamped beam MEMS resonator is described. The experimental set-up and two measurement
techniques are described in detail. Small signal analysis is used to characterise the MEMS res-
onator in its linear regime using an electrical circuit representation. A custom-built Labview
interface is used for measuring nonlinear dynamic responses. By using the two measurement
techniques, relevant resonator parameters for the multiphysics models are determined. Finally,
validation of the models takes place by confronting simulation results with experiments.

6.1 Introduction

An essential part in the multiphysics modelling framework presented in Chapter 4, is
experimental validation. This is the ultimate test for assessing the validity of the derived
models. Experimental validation is used to determine and evaluate the influence of the
various physical effects that are included in the multiphysics model. Some iteration be-
tween experiments and modelling may be necessary, see Figure 4.5, since experiments
may give rise to model refinements in terms of values of the model parameters or the
structure of the model.

In order to verify the multiphysics models for the clamped-clamped beam resonator, de-
rived in Chapter 5, experimental validation will be performed in this chapter. Experi-
mental facilities and expertise at the NXP-TSMC Research Center, have been available
for this purpose. In Chapter 5, model III has been determined to be the best model
for the clamped-clamped beam MEMS resonator. Extensive validation of this model will
take place for MEMS resonators with two different thickness values (see Table 5.1). As

1Some results of this chapter have been presented in Mestrom et al. (2008b) and Mestrom et al.
(2009a).
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will become clear, two measurement techniques can be used for experimental character-
isation, small signal analysis using network analyzer measurements and nonlinear mea-
surements. The first method is a common method in electrical engineering for approx-
imating the behavior of nonlinear devices with linear equations. The method has been
used for characterising the MEMS resonator under small excitation values, for which
the resonators are assumed to operate in their linear regime. By using this approach,
resonator parameters such as the Q-factor and parasitic electric effects can be estimated
from an electrical equivalent circuit representation. The second technique is able to mea-
sure MEMS resonator responses during operation under arbitrary excitation conditions.
For these measurements, the resonator can also be operated in its nonlinear regime.

The outline of this chapter is as follows. First, a description of the clamped-clamped
beamMEMS resonator will be given in Section 6.2. Themeasurement set-up and the two
measurement techniques will be described in Section 6.3. Next, in Section 6.4, resonator
parameter estimation by means of an electrical circuit representation will be described,
and themeasurement circuit will be introduced. The actual validation of model III, which
has been derived in Chapter 5, will take place in Section 6.5. Here, results from the
measurements are confronted with simulation results for MEMS resonators with two
different thickness values. Finally, the chapter is ended with conclusions in Section 6.6.

6.2 Clamped-clamped beamMEMS resonator

Similar to the resonator described in Section 3.2, the steady-state behaviour of clamped-
clamped beam MEMS resonators is experimentally investigated in this chapter. The res-
onators are available from the NXP-TSMC Research Center. A schematic picture of the
resonator layout is depicted in Figure 6.1. The beam can be seen in the center. Six
aluminum bond pads are located around the beam. These fit the ground-signal-ground
probes that are used during the measurements. The outer four bond pads are connected
to ‘ground’, such that the beam itself is grounded. The middle two bond pads are used
for actuation and measurement purposes. Resonators are fabricated on SOI wafers. The
production process of the resonators has already been described in Section 3.2.1.

Figure 6.1 / Schematic layout of the clamped-clamped beam resonator. Thick lines are
etched trench lines, used for isolation and transduction purposes.
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The resonator beams have a nominal dimension (length l, width h and thickness b) as
listed in Table 5.1 and have a typical resonance frequency around 13 to 14 MHz. Res-
onators with different gap sizes have been developed. From device to device, both the
beam dimensions and the electrode gaps may vary slightly due to production tolerances.
These parameters can be identified from measurements. Both the beam length and the
electrode gaps influence the dynamic behaviour of the beam (l influences the resonance
frequency, the gaps influence the nonlinear electrostatic softening). Two SEM pictures of
a nominally 44 µm long beam are depicted in Figure 6.2. Actual lengths are measured
to be slightly less than their nominal design value, as indicated in Figure 6.2.

Figure 6.2 / SEM pictures of two clamped-clamped beam resonators.

Dimensions of the beam width and the electrode gaps are depicted in Figure 6.3, for two
different beams. For the resonators depicted in the figure, the nominal gaps are designed
to be around 200 nm and 300 nm, respectively. However, deviations of ± 10% are very
common, see Figure 6.3.

Figure 6.3 / Detailed SEM pictures with dimensions of the gaps and the beam width.
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6.3 Measurement set-up and techniques

6.3.1 Set-up overview

At the NXP-TSMC Research Center, a custom-built set-up is available for MEMS res-
onator measurements. It consists of the following components (see also Bontemps,
2006).

Measurements are performed in vacuum, in order to exclude squeeze film or air damping
effects. The resonator is placed inside an aluminum vacuum chamber. The vacuum
in the chamber is maintained by a Pfeiffer vacuum pump. After closing the lid of the
vacuum chamber, the pump is able to reach a pressure of below 0.01 mbar in 5 to 10
minutes. The operational pressure of the pump is 5 · 10−5 mbar.

The six aluminum bond pads of a MEMS resonator, see Figure 6.1, are used for actuation
and detection purposes. These bond pads are designed in such a way that they fit the two
three-electrode (ground-signal-ground) probes that are used during the measurements.
The probing of the resonator is done with the aid of a camera. The two probes are Süss
MicroTec Z-probes. A close-up of a wafer with the Z-probes is depicted in Figure 6.4.

Figure 6.4 / Close-up of the Z-probes connected to a resonator on a wafer.

A Keithley 230 voltage source is used to supply the bias voltage Vdc to the resonator.
Furthermore, an Agilent 33250A signal generator is available for providing the ac driving
signal Vac to excite the resonator, see also Section 6.3.2.
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6.3.2 Measurement techniques

A schematic drawing of the clamped-clamped beam resonator has already been depicted
in Figures 3.1 and 5.1. The clamped-clamped beam resonator contains two electrode gaps.
During measurements, both the electrodes are biased by a dc voltage. In addition, each
of the two electrodes can also be used as either an ac input or output, depending on the
type of measurement that is performed. Therefore, the resonator can be considered as a
two-port network.

Two possible measurement options, which will be described in Sections 6.3.3 and 6.3.4,
are available for MEMS resonators:

1. small-signal (linear) analysis using a network analyzer;

2. nonlinear measurement using a LabView2 interface.

In general, the electrical measurement set-up has a form as depicted in Figure 6.5(a). In
this figure, the set-up is depicted in case a network analyzer measurement is performed.
The resonator is located on the left. A dc (or bias) voltage is applied to the two electrodes

Port 1

Port 2

bias tee

bias tee

resonator Network
analyzer

1 MΩ1 MΩ

Vdc

ac

dc

ac + dc

R = 1 kΩ

L = 10 µH

C = 82 nF

C = 1 nF

C = 1 nF

(a) Schematic set-up for the clamped-clamped
beam MEMS resonator.

(b)Detailed electrical circuit
representation of a bias tee.

Figure 6.5 / Schematic electrical measurement set-up for a dual-gap resonator.

of the resonator by means of bias tees. The bias tees shield the network analyzer from
the bias voltage while they allow coupling of ac and dc voltages to and from the resonator,
at the same time. Schematically, the equivalent circuit of the bias tees used (PicoSecond
5530A) is depicted in Figure 6.5(b). Furthermore, 1 MΩ resistors are included (see Fig-
ure 6.5(a)) in order to avoid parasitic cross-talk between the bias tees and to make sure
that the network analyzer is not damaged in case the resonator is shorted.

2National Instruments Corporation, NI Labview 8.2.
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6.3.3 Network analyzer measurements

Measurements on the MEMS resonator by means of a network analyzer are based on
small signal analysis. The response of the system is assumed to be harmonic and linear.
An Agilent Technologies E5071C (9 kHz–4.5 GHz) ENA Series Network Analyzer is
used for the measurements. During the measurements, a dc voltage Vdc is applied to
the resonator and a two-port measurement of S-parameters (scattering parameters) is
performed. This will be explained later.

A range of excitation frequencies is set through which the network analyzer sweeps (only
upwards) the frequency of the signal of its two ports. In this way, the resonator is excited
harmonically at a certain frequency. The measured response consists of the output of the
system at the same frequency as the excitation frequency. For this purpose, the measured
signal is filtered with a very narrow bandpass filter (typically, the pass-band is set to 50 Hz
for all measurements). Measurements (single sweeps) take roughly 6 to 7 minutes each.

The network analyzer measures S-parameters, which are a function of the frequency. For
a detailed description of these non-dimensional parameters, see, for instance, Gonzalez
(1997). Several advantages of S-parameters are the following:

• S-parameters relate to signal flow, rather than to applied voltages and currents;

• they are measured in a matched impedance setting (typically a load and source of
50 Ω), since open and short-circuit type of measurements are difficult to realise;

• effects of cables, bias tees and the network analyzer itself can be eliminated by
proper calibration.

A schematic representation of a two-port network is depicted in Figure 6.6. The resonator
acts as the two-port device in the center. Incident complex voltage waves (a1, a2) and

a1

b1

a2

b2

Linear
two-port
network

ZL(Z0)ZL(Z0)

Figure 6.6 / Schematic representation of a two-port network.

reflected complex voltage waves (b1, b2) are also depicted. The reference impedance ZL

is assumed to be positive and real. By convention, it will be replaced by Z0, see also
Figure 6.6. Duringmeasurements, impedancematching in the network analyzer realises
that Z0 = 50 Ω and that either a1 = 0 or a2 = 0. The linear relations describing this
two-port network are:

b1 = S11a1 + S12a2, (6.1a)

b2 = S21a1 + S22a2, (6.1b)
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where the S-parameters are defined as

S11 =
b1

a1

∣
∣
∣
∣

a2=0

(input reflection coefficient; output properly terminated), (6.2a)

S12 =
b1

a2

∣
∣
∣
∣

a1=0

(reverse transmission coefficient; input properly terminated), (6.2b)

S21 =
b2

a1

∣
∣
∣
∣

a2=0

(forward transmission coefficient; output properly terminated), (6.2c)

S22 =
b2

a2

∣
∣
∣
∣

a1=0

(output reflection coefficient; input properly terminated). (6.2d)

S-parameters are gain (transmission) and reflection parameters. In analogy to optics,
S11 and S22 are the same as optical reflection coefficients, whereas S12 and S21 are the
same as optical transmission coefficients. However, the S-parameters depend on the
wave frequency (in this case, the ac excitation frequency) and, therefore, they have to be
determined over a relevant range of frequencies.

Furthermore, since the clamped-clamped beam MEMS resonator is a symmetric device,
S12 is equal to S21. Due to noise, however, thesemay differ slightly. Therefore, S12(= S21)
is set to the average of the measured two values.

As described earlier, calibration of the network analyzer allows for compensation in the
measured S-parameters for the effect of cables, probes, bias tees and the network analyzer
itself. Calibration consists of four steps, termed SOLT (short-open-load-trans), and has
been performed on a Süss MicroTec CSR-8 calibration substrate.

6.3.4 Labview measurements

The second measurement technique, allowing for measurements in the nonlinear
regime, uses a LabView interface that enables automated measurements. The electrical
set-up of Figure 6.5 is changed slightly, such that the Agilent signal generator is included,
which sets Vac on port 1 (input). Furthermore, a Tektronix TDS3032B sampling scope is
connected to port 2 (output) with a 40 dB amplifier placed in between the output and the
scope. The output is measured as a voltage Vout.

The LabView interface is able to control the dc voltage source, the ac signal generator
and the sampling scope. The scope has a sampling buffer of 10 000 points, which are
captured by the LabView interface and written to data files. The measurement program is
capable of setting the excitation frequency f and can perform stepped frequency sweeps
in positive and negative direction through a fully customisable frequency range. At each
frequency, after 2 s, the output voltage Vout is measured. Depending on the number of
frequency points, a single measurement, consisting of a sweep up directly followed by a
sweep down, may take from ten minutes to over an hour.

From some initial measurements, it has been found that a lot of noise is present in the
output Vout. The noise may even dominate the resonator output signal when it has a
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small amplitude (away from resonance frequencies or for small ac excitation amplitudes).
Partly, the noise can be attributed to thermal noise (see also Section 3.2.2), but it also
stems from the amplifier and scope. The amplifier has a bandwidth of 150 MHz. In
order to reduce the influence of noise, filtering is applied to the measured time signals.
An 8th-order low-pass Butterworth filter with a cut-off frequency of 100 MHz is used to
filter the signals. Since the resonators have a fundamental frequency of around 13 to
14 MHz, filtering with a cut-off frequency of 100 MHz will not significantly affect the
fundamental frequency components. In order to illustrate this, original and filtered time
signals have been plotted in Figure 6.7. Especially when the system response shows a
large output amplitude (Figure 6.7(b)), filtering is observed to influence the resonator
output signal only very little. Furthermore, it does not change the qualitative nature of
the response. Based on the filtered time signals, peak to peak values of the response can
be calculated. By doing this for a range of excitation frequencies, the peak to peak values
can be used to construct amplitude-frequency curves of the system. This can be done for
both sweep directions.
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(a) f = 13.803 MHz, small amplitude. (b) f = 13.653 MHz, large amplitude.

Figure 6.7 / Example of two original and filtered time histories.

6.4 Electrical circuit representation and parameter estima-

tion

The network analyzer measurements can be used to investigate various effects related to
the MEMS resonator. By means of an electrical equivalent circuit, insight can be gained
in motional (related to the resonator itself) and parasitic effects. This approach and the
method for estimating the linear resonator parameters, such as the Q-factor and the nat-
ural frequency of the beam, will be described in the following Sections.
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6.4.1 Electrical equivalent circuit

A possible representation for a MEMS resonator operating in its linear regime is an elec-
trical equivalent RLC-circuit, similar to the representation of a quartz crystal (Salt, 1987;
Hewlett-Packard Company, 1997a) and the lumped model in (3.11)–(3.12). A more de-
tailed electrical model (Bontemps, 2006) is depicted in Figure 6.8. In this figure, the

1 2

3

4

Cs,air

Cgap,1 Cgap,2

Cp,1 Cp,2

Rp,1 Rp,2

Rs

bulk silicon

Cm

SiO2

Rm SOI

SOI

SOI Lm

Figure 6.8 /Detailed equivalent circuit of the clamped-clamped beam resonator, in which
physical parasitic effects are indicated.

RLC-circuit of the resonator itself can be seen in the center. The layers of the SOI wafer
are indicated by the grey parts (Si: light grey, SiO2: dark grey). The substrate is the
bulk silicon layer at the bottom of Figure 6.8. Several parasitic resistors and capacitors
(indicated by subscripts p and s) can be seen around the resonator. Cs,air denotes the
shunt capacitance between the two resonator electrodes and Cgap,1 and Cgap,2 denote the
capacitances over the electrode gaps. Rs denotes a parasitic shunt resistance through the
bulk silicon layer and Cp,i and Rp,i (i = 1, 2) denote the bondpad capacitances and the
resistance between the bond pads and the bulk silicon substrate for the two electrodes.
Furthermore, terminals 1 and 2 are the ac input and output ports of the resonator. Ter-
minal 3 is on the bulk silicon layer and terminal 4 is used for grounding of the resonator.

In general, the behaviour of a two-port device, such as the clamped-clamped beamMEMS
resonator, at a fixed frequency can be represented in terms of a Π-network (or T-network)
of three complex impedances, see for instance Gonzalez (1997) or Nilsson and Riedel
(2008). Any complex impedance can be written as a parallel combination of a resistor
and a capacitor. Note that this is a purely mathematical description, which allows for
negative resistance or capacitance values. Alternatively, a series combination of a resistor
and a capacitor could be used. Figure 6.9 depicts the Π-network that describes the par-
asitics around the resonator. The parasitic components in Figure 6.9 are not completely
identical to those in Figure 6.8, but can represent the same circuit (after some elabo-
ration). Figure 6.9(a) shows the situation when a bias voltage Vdc is applied, whereas
Figure 6.9(b) shows the situation when Vdc = 0 V. In both cases, Vac 6= 0 V. For the
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Cb

Rb

Rb

CcCc RcRc

Cm RmLm

(a) Vdc 6= 0 V. (b) Vdc = 0 V.

Figure 6.9 / Equivalent resonator circuit (Π-network).

case Vdc = 0 V, no (harmonic) response occurs and the motional branch (subscript m)
is omitted. All parasitics depicted in Figure 6.8 are represented by three resistance and
capacitance values Ri and Ci (i = a, b, c), respectively. A simplified graphical representa-
tion of the Π-network of Figure 6.9(a) is depicted in Figure 6.10(a). The two-port network
representation of the resonator is depicted in Figure 6.10(b).
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i2

port 1 port 2
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network

(a) Representation using complex admittances. (b) Two-port network representation.

Figure 6.10 / Representation of the Π-network of Figure 6.9(a).

The complex admittances in Figure 6.10(a) are given by:

Yi =
1

Ri

+ jωCi, i = a, b, c, (6.3a)

Ym =
1

Rm + jωLm + 1/( jωCm)
+ jωCs. (6.3b)

The last term in (6.3b), jωCs, is optionally present in case of an additional (different
from Cs,air in Figure 6.8) shunt capacitance in the resonator. This will be explained in
Sections 6.4.3 and 6.4.4. The motional branch is omitted (Ym = 0) for the case Vdc =
0 V, since no transduction of the ac excitation is transmitted to the resonator (as described
earlier).
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6.4.2 Y-parameters calculation

From the Π-network representation of the MEMS resonator, it is possible to obtain the
Y-parameters of the system. Y-parameters, or admittance parameters (see, for instance
Gonzalez, 1997) determine the relation between current and voltage in a two-port net-
work as depicted in Figure 6.10(b):

i1 = Y11V1 + Y12V2, (6.4a)

i2 = Y21V1 + Y22V2, (6.4b)

Application of Kirchoff’s current law to the electrical circuit of Figure 6.10(a), allows for
expressing the Y-parameters expressed in terms of the admittances Ya, Yb, Yc and Ym:

Y11 = Ya + Yb + Ym, (6.5a)

Y12 = Y21 = −(Yb + Ym), (6.5b)

Y22 = Yc + Yb + Ym. (6.5c)

Furthermore, the Y-parameters relate to the measured S-parameters of the network (see
Section 6.3.3) as follows (Gonzalez, 1997; Hewlett-Packard Company, 1997b):

Y11 =
(1 + S22)(1 − S11) + S12S21

(1 + S11)(1 + S22)− S12S21
Y0, (6.6a)

Y12 =
−2S12

(1 + S11)(1 + S22)− S12S21

Y0, (6.6b)

Y21 =
−2S21

(1 + S11)(1 + S22)− S12S21
Y0, (6.6c)

Y22 =
(1 + S11)(1 − S22) + S12S21

(1 + S11)(1 + S22)− S12S21
Y0, (6.6d)

where the characteristic admittance Y0 (used for normalisation) is given by:

Y0 =
1

Z0

=
1

50
Ω−1, (6.7)

see also Figure 6.6. Similar to the S-parameters, symmetry of the resonator implies
Y12 = Y21.

If two S-parametermeasurements are performed for a certain frequency range of interest,
one for Vdc 6= 0 and one for Vdc = 0 V, the corresponding Y-parameters can be calculated
using (6.6). Note that for the case when Vdc = 0 V, Ym = 0, see Figure 6.9(b). Next, by
using (6.5), the four admittances in Figure 6.10(a) can be determined using:

Ya = (Y11 + Y12)
∣
∣
∣

Vdc=0 ∨ Vdc 6=0
, (6.8a)

Yb = −Y12

∣
∣
∣

Vdc=0
, (6.8b)

Yc = (Y22 + Y12)
∣
∣
∣

Vdc=0 ∨ Vdc 6=0
, (6.8c)

Ym = Y12

∣
∣
∣

Vdc=0
− Y12

∣
∣
∣

Vdc 6=0
. (6.8d)
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6.4.3 Parasitic and motional parameters

Once the admittance parameters Ya, Yb, Yc and Ym have been determined, it is possible
to extract the values of the parasitic resistors and capacitors. The parameters Ri and
Ci, (i = a, b, c) of the parasitic admittances Ya, Yb and Yc are assumed constant over
the frequency range considered. Therefore, they are averaged over the frequency (〈. . .〉
denotes average):

Ri =
〈 1

Re{Yi}
〉

, Ci =
〈 Im{Yi}

ω

〉

, for i = a, b, c. (6.9)

For the motional admittance Ym, the determination of the parameters is slightly more
complicated. The admittance (6.3b), without the additional parasitic term, has an analogy
with a second-order linear dynamical system:

Ym =
1

Rm + jωLm + 1/( jωCm)
+ jωCs =

jωA

ω2
V −ω2 + jωωV/Q

+ jωCs, (6.10)

where the parameters in the latter part of (6.10) are given by:

ω2
V =

1

LmCm
, A =

1

Lm
, and Q =

1

Rm

√

Lm

Cm
. (6.11)

The angular resonance frequency under application of a bias voltage Vdc is denoted by
ωV. Furthermore, the estimated Q-factor is a measure for all dissipation mechanisms in
the resonator, so it contains contributions of anchor loss, thermoelastic damping and pos-
sible other dissipation mechanisms. For a given (measured) Ym over a frequency range of
interest, parameters (6.11) can be found by numerically fitting the response (6.10) to the
measured values. Optimisation routines in Matlab are used for this purpose. Examples
of such fitted responses will be described in Section 6.5.

Finally, it is of interest how parasitic and motional parameters that are used for electrical
characterisation of the resonator behave under changes of the applied bias voltage Vdc.
The parasitic parameters Ya, Yb and Yc are assumed to be constant, but the motional
parameters in Ym will change due to the parametric excitation of the resonator, see (3.8).
Therefore, it is of interest how parameters, Rm, Lm and Cm, orωV, A and Q (6.10)–(6.11),
change with Vdc. In accordance with (3.8), the angular resonance frequencyωV (or fV, in
Hz) shows an overall trend given by:

f 2
V = f 2

0 −αfV
2
dc, (6.12)

where f0 is the first natural frequency of the microbeam without application of a bias
voltage and and αf denotes the proportionality constant. Validity of relation (6.12) can
be easily shown by considering the lumped model description in (3.8) in Section 3.2.2.
Examples of how (6.12) can be used will be given in Section 6.5.
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6.4.4 Measurement circuit

For the measurements in the nonlinear regime, using the Labview set-up, a slightly dif-
ferent approach holds. These measurements are not performed in a matched impedance
setting, as is the case for the S-parameters measurement using the network analyser, see
Section 6.3.3. The measurement circuit is similar to the one depicted in Figure 6.10(a)
and is depicted in Figure 6.11(a). It can be seen that, apart from the resonator, the same

V1V1 V2V2

Ya

Yb

Yc

Rb

Cb

Cs

C2

C2C1

Rc

i2

resonator

(a) Complete resonator circuit. (b) Output circuit only.

Figure 6.11 / Measurement circuit for the Labview measurements.

parasitic impedances Ya, Yb and Yc (6.3a) as in Figure 6.10(a) are present. The resonator
can be considered as a pair of varying capacitors C1 and C2, denoting electrode gaps 1
and 2, respectively. V1 and V2 denote the voltages applied to the electrodes and equal, see
also (5.4):

V1(t) = Vdc + Vac sin(2π f t) and V2 = Vdc. (6.13)

Parts of the circuit in Figure 6.11(a) that contribute to the measured resonator output
are depicted in Figure 6.11(b). Parasitics in Ya do not influence the output at port 2.
Furthermore, variable capacitor C2 of the resonator is used for output measurements. At
port 2, a constant voltage Vdc is present (6.13). Therefore only the resistance part Rc of Yc

is relevant. It can be seen in Figure 6.11(b) that parasitics stemming from Yb have been
included, as well as the optionally present additional shunt capacitance Cs.

The output current i2 can be found using Kirchoff’s current law and equals:

i2 =
V1 − V2

Rb

+ (Cb + Cs)
d(V1 − V2)

dt
− d(C2V2)

dt
− V2

Rc

. (6.14)

Using (6.13) gives:

i2 =
Vac

Rb
sin(2π f t) + 2π f tVac(Cb + Cs) cos(2π f t) − Vdc

dC2

dt
− Vdc

Rc
. (6.15)

The capacitance C2, including fringing field effects equals (see also (5.46) and
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Osterberg and Senturia (1997)):

C2 =
∫ l

0

ǫ0b

d2 + w0

[

1 +
2(d2 + w0)

πb
+

2(d2 + w0)

πb
ln

(
πb

d2 + w0

)]

dx, (6.16)

such that the time derivative of C2 can be elaborated as:

dC2

dt
=

∂C2

∂w0

∂w0

∂t
= −

∫ l

0

ǫ0b

(d2 + w0)2

(

1 + 0.65
d2 + w0

b

)
∂w0

∂t
dx. (6.17)

Furthermore, as shown in Figure 6.5 in Section 6.3.2, a bias tee is present to decouple
the dc component from i2. Therefore, the term

Vdc

Rc
in (6.15) is omitted. Subsituting (6.17)

in (6.15) gives the output current:

iout =
Vac

Rb
sin(2π f t) + 2π f tVac(Cb + Cs) cos(2π f t)

+Vdc

∫ l

0

ǫ0b

(d2 + w0)2

(

1 + 0.65
d2 + w0

b

)
∂w0

∂t
dx, (6.18)

which is measured on a 50 Ω resistor R50. Therefore the measured output voltage equals

Vout = R50 iout. (6.19)

In the simulation model which will be used in the next section for validation, (6.18) has
been included as a postprocessing step, in which the integral is evaluated numerically
(using Gaussian quadrature) based on the calculated beam deflection w0.

An important difference between the current approach and the one presented in Sec-
tion 3.2.2 is that in (6.18) the contributions of parasitics have been included explicitly.
This will result in an improved match between the shape of the amplitude-frequency
curves of the experiments and the simulations. Namely, the inclusion of parasitics will re-
sults in an anti-resonance in the amplitude-frequency curve for the output at a frequency
slightly higher than the resonance frequency, as will become clear from Section 6.5. Fur-
thermore, contrary to what has been done in Section 3.2.2, there is no need for modelling
the bias tee separately as in (3.6), since this does not affect the ac component of the mea-
sured output. The bias tee is considered to be transparent, such that iout is exactly the ac
part of ic in (6.15), apart from a possible small phase shift.

Finally, note that the Labview measurements are not performed in a matched impedance
setting. Due to the impedance mismatch (the resonator has a rather high impedance of
O(105) Ω), the actual, measured output voltage Vout, will be lower than the calculated
output from the model. This will become clear in the next section.

6.5 Experimental results and model validation

6.5.1 Validation approach

By using the measurement techniques and electrical parameters calculation techniques,
presented in Sections 6.3 and 6.4, respectively, experimental validation of the simulation
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model is performed. From the modelling side, it has become clear from Section 5.5 that
model III is best suitable for describing the dynamic behaviour of the clamped-clamped
beam resonator under investigation. To recapitulate, model III is based on Timoshenko
beam theory and includes all relevant physical effects. However, the analytically derived
expression for the Q-factor due to anchor loss is very low (see Section 5.2.6) and is there-
fore omitted for now. A single-mode Galerkin discretisation has been found to suffice
for accurately describing the dynamic behaviour of the resonator. This model will be vali-
dated with experiments in the next two sections, for both the thick (b = 10 µm) and thin
(b = 1.4 µm) MEMS resonator. First, however, the validation approach will be explained.

Effects like under-etching and finite production tolerances may lead to deviations from
the nominal beam geometry. Therefore, some model parameters have to be adjusted
in order to obtain the best match between simulations and experiments. Due to the
first-principles based modelling approach, actual physical parameters are still present in
symbolical form in the model. Most model parameters can be obtained directly from ac-
tual physical dimensions of the MEMS resonator and from physical properties of single-
crystal silicon. However, the electrical parameters of the measurement circuit, the beam
length l (to correct for under-etching), the dimensions of the electrode gaps d1 and d2 and
the Q-factor related to anchor loss have to be determined experimentally. A straightfor-
ward experimental-numerical approach for determining these parameters consists of the
following steps:

1. network analyzer measurements: over a range of Vdc-values:

(a) determine parasitics parameters Ri, Ci, i = a, b, c (6.9). Only Rb and Cb are
needed in (6.18);

(b) identify (fit) motional parameters Rm, Lm and Cm, as a function of Vdc, us-
ing (6.10). Optionally, identify parasitic capacitance Cs. Calculate fV and
Q (6.11) as a function of Vdc;

(c) determine f0 by fitting (6.12) to the fV-Vdc-curve;

2. determine the beam length l in simulation model III, such that the simulated f0

matches the measured value;

3. Labview measurements: over a range of Vdc values:

(a) use parasitics from step 1(a), the averaged Q-factor, Cs from step 1(b) and
length l from step 2 for simulations with the numerical model;

(b) tune electrode gaps d1 and d2 such that the simulated resonance frequencies
match the experimental ones for the range of Vdc-values considered. Assume,
for now, that d1 = d2;

(c) tune the Q-factor to obtain a match the shapes of the resonance peaks. The
Q-factor is a key parameter for the resonance peak height and the location of
cyclic fold bifurcations;
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4. validate the simulationmodel by comparing its results with experiments performed
at other Vdc and Vac excitation values.

In step 2, the length l of the beam in the model is selected to obtain a natural frequency
f0 in the simulation model that matches the experimental one. Reasons for adjusting the
beam length are the following. Due to under-etching, the effective beam length may be
slightly higher than the nominal length, see Table 5.1. However, this cannot be seen from
SEMpictures. Furthermore, inmodel III, ideal clamping of the beam ends is assumed, in
which both the rotation and shear deformation are zero (5.12). In practice, the clamping
is not ideal, resulting in increased flexibility of the suspension of the beam. This can be
compensated for by increasing the length l of the beam.

Furthermore, in step 3(b), d1 = d2 is used, which means that the electrode gaps around
the beam are assumed to be equal. However, due to production tolerances, electrode gaps
may differ from their nominal dimensions, see Figure 6.3. Therefore, the influence of
asymmetric electrode gaps d1 6= d2 will be investigated as well. If this is not explicitly
stated, however, numerical results in the next two sections are calculated using d1 = d2.

Finally, physical parameter values that are used for the simulations with model III are
obtained from literature, see also Appendix A. These parameter values are listed in Ta-
ble 6.1.

Table 6.1 / Physical parameter values used in the simulations with model III.

Parameter Value Unit

ρ 2329 kg m−3

E 130.02 GPa

G 79.51 GPa

ν 0.2785 (–)

k 156 W m−1 K−1

cp 716 J kg−1 K−1

α 2.616 · 10−6 K−1

T0 300 K

6.5.2 Results for the thick beam

Network analyzer measurements

First, results for the thick clamped-clamped beam MEMS resonator will be presented.
The beam has a thickness of b = 10 µm and a width of h = 4 µm. Network analyzer
measurements have been performed for a range of Vdc-values from 20 to 70 V, in steps
of 5 V. The ac-excitation is set to Vac = 158 mV. A reference measurement at Vdc = 0 V
has been performed in order to be able to calculate the Y-parameters according to (6.6)–
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(6.8). In this way, the motional (Ym) and parasitic admittances (Ya, Yb and Yc) have been
calculated. Parameters Ri and Ci of the parasitics are calculated using (6.9) and (6.10)
is used to fit the motional impedance Ym. An example of a measured and fitted Ym

is depicted in Figure 6.12. No additional parasitic term Cs is present in the motional
impedance. Note that outside the resonance peak, a lot of noise is present. From the fit
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Figure 6.12 / Measured and fitted Ym at Vdc = 25 V for the thick beam.

of motional impedance Ym, the resonance frequency fV and the Q-factor are calculated
using (6.11). These are depicted in Figures 6.13(a) and (b), respectively, as a function of
Vdc. The natural frequency f0 can be determined by fitting (6.12) to the fV-Vdc curve.
Next, the length of the beam l has been adjusted such that the first natural frequency in
the simulation model corresponds to the experimental value. Values for relevant parasitic
components (see (6.18)) have been listed in Table 6.2. Values for the averaged Q-factor,
natural frequency f0 and the beam length l are also listed. Note that the value of Rb

listed in Table 6.2 is negative, which is allowed in the purely mathematical description
(using a resistor in parallel with a capacitor) for the parasitic impedance Yb, see also
Section 6.4.1. Furthermore, the averaged Q-factor is listed. This is an effective Q-factor,

Table 6.2 / Parameters for the model of the thick beam, determined from the network
analyzer measurements.

Parameter Value Unit

Rb −24.256 MΩ

Cb 1.980 fF

Cs 0 F

f0 13.8389 MHz

Q 910 (–)

l 46.37 µm
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Figure 6.13 / Resonance frequency fV and Q-factor as a function of Vdc.

in which all dissipation effects are included. Its value serves as an indication, or initial
guess for the Q-factor that is to be determined by matching simulation results to the
Labview measurements.

Labview measurements

Next, Labview measurements are performed for various Vac and Vdc excitation settings.
First, for an ac excitation amplitude of Vac = 500 mV, the influence of a variation in Vdc

has been investigated. Vdc is varied between 20 and 70 V in steps of 10 V. Measurement
results for these settings are depicted in Figure 6.14(a), as a series of amplitude-frequency
curves. On the horizontal axis, the excitation frequency is depicted and on the vertical
axis, the peak to peak value of Vout is shown. It can be seen that for higher Vdc-values,
the amplitude of the response is larger (due to stronger excitation) and the resonance
frequency is lower, see also Section 5.4.2. The latter effect has already been observed
from the network analyzer measurements, see Figure 6.13(a).

Simulations with model III (single mode discretisation) have been performed, in which
Vout is included, using (6.18)–(6.19). Values for the parasitics, Rb, Cb and Cs are given in
Table 6.2. By comparison between simulation and experimental results, it is straightfor-
ward to determine values for equal electrode gaps d1 = d2, since the resonance frequency
at a certain Vdc-value changes significantly with the value of the electrode gaps. Addition-
ally, the Q-factor is adjusted such that the shapes of the simulated resonance peaks match
the experimental ones.

In the experimental results, depicted in Figure 6.13(a), it can be seen that no frequency
hysteresis has been observed. However, the resonance peaks bend a little to lower fre-
quencies, as can be observed most clearly for Vdc = 60 and 70 V. In the simulations, the
Q-factor has to be high enough to capture this effect as well.

In this way, electrode gaps of d1 = d2 = 360 nm are found, and an overall Q-factor of Q =
1320. Simulation results are depicted in Figure 6.14(b). By comparing the experimental
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and simulated responses, it can be seen that a good match has been obtained. Simulated
and measured resonance peaks are located at the same frequencies and they also have
similar shapes. Especially for the response at 70 V, it can be seen that the resonance peak
is slightly tilted to lower frequencies, due to the electrostatic softening effect. However,
no frequency hysteresis occurs, due to the low quality factor of the system.

As already indicated in Section 5.2.6 and in (5.44), the overall Q-factor is related to Qa

(anchor loss) and Qth (thermoelastic damping) and possible unmodelled dissipative ef-
fects. Anchor loss has been implemented as modal damping, see Section 5.2.6. Values
for the individual Q-factors are: Qa = 1600 and Qth = 14570. The overall Q-factor of
1320 is found from Qtot = (Q−1

a + Q−1
th )−1 (5.44). This Q-factor is higher than the value

of 910 determined from the network analyzer measurements, see Table 6.2.

Finally, for points A and B, indicated in Figures 6.14(a) and (b), parts of the time histories
have been depicted in Figure 6.15. Again, also here it can be seen that a good match
between the measured and simulated responses has been obtained. The shape of the
simulated output voltage signals matches the measured ones very well. Due to the lower
voltage amplitude of the signal at point B, the effect of noise is more pronounced (see
Figure 6.15(b)).

A mismatch in amplitude between the measured and simulated amplitude-frequency
curves can be observed from Figure 6.14. The mismatch is not caused by to the fact that
only a single mode is taken into account in the Galerkin discretisation, since simulations
with 2 and 3 modes show amplitude-frequency responses that coincide with those de-
picted in Figure 6.14. Instead, the mismatch can be attributed to two effects. Firstly, the
Labview measurements are not performed in a matched impedance configuration. The
motional resistance Rm, which determines the impedance at the peak of the resonance,
has been determined from the fit of Ym to the network analyzer measurements. It ranges
from 90 kΩ up to 1 MΩ. Since the output is measured on a 50 Ω resistor (6.19), the
measured peak to peak value of Vout will be lower than the actual amplitude. Secondly,
(thermal) noise results in an additional off-set. This off-set is largest when the resonator
output is small, for instance, at non-resonance frequencies, compare Figures 6.14(a) and
(b). The effefct can also be observed in Figure 6.15(b), where the noise results in a larger
amplitude.

The description of the measurement circuit, as shown in Figure 6.11, is an improve-
ment with respect to the one used in Section 3.2.2. It is both more accurate and more
in line with the real experimental set-up since the effect of parasitics is included as well,
see (6.18). This has consequences with respect to the thermal noise considerations. Us-
ing the more accurate description of the measurement circuit for the Labview measure-
ments, the effect of thermal noise is found to be much less than previously described in
Section 3.2.
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Figure 6.14 / Amplitude-frequency curves for Vac = 500 mV and varying Vdc.
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Figure 6.15 / Parts of time histories at selected points in Figure 6.14.
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In order to investigate the effect of asymmetric electrode gaps, simulations have been
performed for the resonator with one electrode gap 10% smaller, that is: d1 = 324 nm
or d2 = 324 nm. Simulation results for the same excitation settings as in Figure 6.14 are
depicted in Figure 6.16. From these results it can be seen that a smaller electrode gaps
results in stronger electrostatic actuation. Namely, both an increase in amplitude and a
decrease in frequency is observed, with respect to results depicted in Figure 6.14(b). Fur-
thermore, for the case with d1 = 324 nm, a small amount of frequency hysteresis occurs
for Vdc = 60 and 70 V. For the case d2 = 324 nm, frequency hysteresis occurs only at
Vdc = 70 V. The transitions from stable to unstable periodic solutions and vice versa are
characterised by cyclic fold (CF) bifurcations. The difference between Figure 6.16(a) and
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Figure 6.16 / Simulated amplitude-frequency curves, similar to Figure 6.14, using asym-
metric electrode gaps.
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(b) stems from the fact that electrode 1 is used for ac excitation, whereas electrode 2 is
used for ac detection. A smaller gap at electrode 1 results in a stronger excitation. As a re-
sult, the electrostatic softening effect in the simulation with d1 = 324 nm (Figure 6.16(a))
is more pronounced than in the simulation with d2 = 324 nm (Figure 6.16(b)).

Finally, the influence of the ac excitation value Vac is investigated at a bias voltage of
Vdc = 70 V. For this purpose, Vac is increased from 125 mV to 500 mV in steps of
125 mV. In Figure 6.17, both experimental and numerical results are depicted. Compar-
ison of Figures 6.17(a) and (b) again gives a good match, taking into account the effects
of impedance mismatch and noise.
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Figure 6.17 / Amplitude-frequency curves for Vdc = 70 V and varying Vac.



6.5 EXPERIMENTAL RESULTS AND MODEL VALIDATION 155

6.5.3 Results for the thin beam

Network analyzer measurements

The second MEMS resonator under investigation is the thin beam, which has a thickness
of b = 1.4 µm and a width of h = 4 µm. Network analyzer measurements have been
performed for a range of Vdc-values from 20 to 40 V, in steps of 5 V. The ac-excitation
is set to Vac = 50 mV. A reference measurement at Vdc = 0 V has been performed.
Using a similar approach as for the thick beam, see Section 6.5.2, the motional (Ym)
and parasitic admittances (Ya, Yb and Yc) have been determined. Parameters Ri and Ci

of the parasitics have been calculated using (6.9) and (6.10) is used to fit the motional
impedance Ym. In contrast to the thick beam, an additional shunt capacitance is present
in the description of the thin beam, denoted by Cs in (6.10). An example of a measured
and fitted Ym, for Vdc = 25 V is depicted in Figure 6.18.
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Figure 6.18 / Measured and fitted Ym at Vdc = 25 V for the thin beam.

It can be seen that the additional parasitic capacitance Cs results in an anti-resonance at
a frequency slightly higher than the resonance frequency. The overall parasitic effects
are larger for the thin beam than for the thick beam, discussed previously. That is, the
capacitance and resistance values of the parasitic components are larger, which can be
observed by comparing the values for the parasitics, see Tables 6.2 and 6.3. This will
have a significant influence in the Labview measurements as well, as will become clear
later.

From the fit of the motional impedance Ym, the resonance frequency fV and the Q-factor
have been identified. These are depicted for the range of Vdc-values in Figures 6.19(a) and
(b), respectively. A numerical fit to the fV-Vdc curve, using (6.12) allows for determining
the natural frequency f0 . The beam length l has been adjusted such that the first natural
frequency in the simulation model corresponds to the experimental value. Values for
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Figure 6.19 / Resonance frequency and Q-factor as a function of Vdc.

relevant parasitic components (see (6.18)) have been listed in Table 6.3. Values for the
averaged Q-factor, natural frequency f0 and the beam length l are also listed. Similar to
the results for the thick beam, Rb has a negative value here as well. The averaged Q-
factor, which will be used as an initial guess for matching the simulation model to the
Labview measurements, is about 5 times higher than the Q-factor for the thick beam.
The Labview measurements will be decribed next.

Table 6.3 / Parameters for the model of the thin beam, determined from the network
analyzer measurements.

Parameter Value Unit

Rb −2.9886 GΩ

Cb 4.763 fF

Cs 2.393 fF

f0 13.0724 MHz

Q 4527 (–)

l 47.75 µm

Labview measurements

Labview measurements have been performed for various Vac and Vdc excitation settings.
First, for a range of values corresponding approximately to a constant VdcVac product,
the influence of Vdc is investigated, which is varied between 10 and 40 V. The product
VacVdc roughly corresponds to the harmonic excitation amplitude (due to V2-terms in the
excitation). Values of the excitation parameters are listed in Table 6.4.
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Table 6.4 / Excitation settings corresponding approximately to VdcVac = constant.

Vdc (V) Vac (mV)
10 1000
20 500
30 300
40 250

Measurement results for the settings in Table 6.4 are depicted in Figure 6.20(a), as a
series of amplitude-frequency plots. Simulation results are depicted in Figure 6.20(b). It
can be seen that for higher Vdc-values, the resonance frequency is lower. Furthermore,
jumps in the measured amplitude-frequency curves indicate that for Vdc = 10 V, hard-
ening nonlinear behaviour is observed, whereas the curves at Vdc = 30 and 40 V show
softening nonlinear behaviour. The response at Vdc = 20 V, for Vac = 500 mV shows
a resonance without frequency hysteresis. Apparently, a balance is present between be-
tween hardening and softening nonlinear behaviour at this bias voltage. The hardening
to softening transition effect has earlier been observed in Figure 5.12. Several points on
the amplitude-frequency curves in Figure 6.20(a) have been indicated. Time signals for
these points are depicted in Figure 6.21 and will be discussed later.

Simulations with model III, single mode discretisation, have been performed. As stated
before, values for the parasitics, Rb, Cb and Cs are given in Table 6.3. Using a similar
approach as applied for the thick beam, values for equal electrode gaps d1 = d2 have
been determined. Additionally, the Q-factor is tuned such that the shapes of the simu-
lated resonance peaks match the experimental ones and such that the downward jump
frequency in experiments corresponds with the upper cyclic fold (CF) bifurcation points
in simulations. In this way, electrode gaps of d1 = d2 = 342 nm are found, and an overall
Q-factor of Q = 6210. Simulation results are depicted in Figure 6.20(b). By comparing
Figures 6.20(a) and (b), it can be seen that a good match has been obtained, since sim-
ulated and measured resonance peaks are located at the same frequencies and they also
have similar shapes. However, similar to the results for the thick beam, a mismatch in
amplitudes is present, which is caused by impedance mismatch and noise. Furthermore,
the simulation results shows the same transition from hardening to softening nonlinear
behaviour for increasing Vdc as the experimental results. In the simulations, cyclic fold
bifurcations mark the transition from stable to unstable periodic solutions. These re-
sults have been obtained for a single-mode Galerkin discretisation. Amplitude-frequency
curves, calculated using multi-mode Galerkin discretisations coincide with the single-
mode results.

For points A1, A2, B and C, indicated in Figures 6.20(a) and (b), parts of their time histo-
ries have been depicted in Figure 6.21. It can be seen that a match in shape has been ob-
tained between simulation and experimental results. The amplitude of the time histories,
however, shows a mismatch. This has also been observed as a difference in amplitude
between the measured and simulated amplitude-frequency curves in Figure 6.20. This
effect again stems from impedance mismatch and thermal noise, similar to the results
for the thick beam. The motional impedance Rm of the resonator has been determined
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Figure 6.20 / Transition from hardening to softening nonlinear behaviour for varying
excitation values.

from the network analyzer measurements and ranges from 396 kΩ up to 1.63 MΩ.

Furthermore, inclusion of the relation for the output voltage, based on (6.18)–(6.19),
results in the anti-resonance present at a frequency slightly higher than the resonance
frequency, see Figure 6.20. For reference, simulation results for the same excitation
settings (Table 6.4) are depicted in terms of the peak to peak midpoint displacement
wmid in Figure 6.22. Here, it can be seen that the amplitude-frequency curves do not
show anti-resonances slightly above the resonance frequency.
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(a) Time signal at point A1, f = 12.988 MHz. (b) Time signal at point A2, f = 12.988 MHz.
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(c) Time signal at point B, f = 13.055 MHz. (d) Time signal at point C, f = 13.072 MHz.

Figure 6.21 / Parts of time histories at selected points in Figure 6.20.
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Figure 6.22 / Simulation results of Figure 6.20(b) in terms of peak to peak midpoint
displacement wmid.

Based on the Q-factor that has been determined from matching the simulation results
to experimental results, contributions from anchor loss and thermoelastic damping can
be determined. The overall Q-factor is related to Qa (anchor loss) and Qth (thermoelastic
damping) by (5.44). Anchor loss has been implemented as modal damping. Values for
the Q-factors are: Qa = 11000 and Qth = 14250, giving a total of Q = 6210. Again, this
is higher than the value of Q = 4527 determined from the network analyzer measure-
ments, see Table 6.3.

The analytical derivation of anchor loss in Section 5.2.6, based on Hao et al. (2003)
and Hao and Xu (2009) is found to result in a Q-factor that is significantly lower than
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the experimentally determined one. The derivations in Section 5.2.6 are based on a semi-
infinite substrate, into which stress waves are radiated. Wave reflections in the suspen-
sion of the beam considered in this work are probably the main cause for the higher
Q-factor in the experiments. Namely, reflected waves result in less dissipation, yielding a
higher Q-factor.

Next, some results are presented for other excitation values than discussed so far. For
a bias voltage of Vdc = 10 V, the effect of Vac is investigated by varying it from 500
to 1250 mV in steps of 250 mV. Both experimental and simulation results for these
excitation settings are depicted in Figure 6.23. It can be seen that the results from the
simulation model correspond reasonably well with the experimental results, apart from
the amplitude values. The overall shapes of the amplitude-frequency curves correspond

1.306 1.3065 1.307 1.3075 1.308

x 10
7

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

−3

Frequency (Hz)

V
ou

t p
ea

k 
to

 p
ea

k 
(V

)

 

 

500 mV

750 mV

1000 mV

1250 mV

sweep up
sweep down

(a) Experimental results.

1.306 1.3065 1.307 1.3075 1.308

x 10
7

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

−3

Frequency (Hz)

V
ou

t p
ea

k 
to

 p
ea

k 
(V

)

 

 

500 mV

750 mV

1000 mV

1250 mV

CF

CF
CF

CF

stable
unstable

(b) Simulation results.

Figure 6.23 / Amplitude-frequency curves for Vdc = 10 V and varying Vac.
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quite well. Frequency hysteresis is observed in the experiment for Vac = 1000 and
1250 mV. In the simulated amplitude-frequency curves for these values, unstable so-
lution branches are present, which also give rise to frequency hysteresis. However, the
location of the lower CF bifurcation points does not correspond with the frequency at
which an upward jump takes place in the measured response, see, for instance, the curve
for Vac = 1250 mV. A reason for this difference has not been found.

At a different bias voltage, Vdc = 40 V, another comparison has been made between
experimental and simulation results. Vdc is set to 40 V and Vac is varied from 100
to 300 mV in steps of 100 mV. The results are depicted in Figure 6.24. Again, a
good match is obtained, in which both the resonance frequency and the shape of the
amplitude-frequency curves corresponds quite well. Again, the effect of the parasitics in
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Figure 6.24 / Amplitude-frequency curves for Vdc = 40 V and varying Vac.
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the clamped-clamped beam MEMS resonator can be observed in the measured response
in Figure 6.24(a). At a frequency around 13.005 MHz, the three amplitude-frequency
curves almost coincide. This effect is also predicted by the simulation model, see Fig-
ure 6.24(b). Furthermore, similar to the results in Figure 6.23, the location of the lower
CF bifurcation points in the simulation results does not correspond exactly with the ex-
perimentally observed upward jumps.

Another phenomenon, which has also been observed in the measurements used for the
heuristicmodelling approach (Figures 3.15 and 3.16 in Section 3.2) is the presence of a 1/2
subharmonic resonance. At excitation settings of Vdc = 30 V and Vac = 1250 mV the
1/2 subharmonic resonance is found at a frequency of approximately 26.07 MHz, which
is twice the first harmonic resonance frequency. For a 1/2 subharmonic resonance, the
fundamental frequency in the response is half the excitation frequency. Experimental and
simulation results for the 1/2 subharmonic resonance are depicted in Figure 6.25.

In order to find the 1/2 subharmonic resonance in the simulationmodel, the Q-factor has
to be increased from 6210 to 7310. By comparing simulation and experimental results, a
good match can be observed. From the simulation results, it becomes clear that the 1/2
subharmonic resonance branches are initiated by two period doubling bifurcations (PD)
around f = 26.078 MHz, see the inset in Figure 6.25(b). In Figure 6.26, time histories
are depicted for points A and B, indicated in Figure 6.25. The Vout-signals of the simula-
tion model correspond well with the experimental results. The period doubling effect can
be observed by comparing the time history at point A (Figure 6.26(a), 1/2 subharmonic
branch) with the one at point B (Figure 6.26(b), harmonic branch). In the experiment,
a jump down is observed for the sweep down at a frequency of 26.062 MHz. Due to
noise in the system, the response may have jumped to the lower, harmonic, branch.
In the numerical simulation, no cyclic fold bifurcation is found at this frequency. Ac-
tually, according to perturbation theory, nonlinear damping has to be present in order
for the stable and unstable subharmonic branches to close in a CF bifurcation, see for
instance Lifshitz and Cross (2003). In the case of Figure 6.26(b), however, the 1/2 sub-
harmonic branch will continue till dynamic pull-in at a frequency below 26 MHz.
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Figure 6.25 / Amplitude-frequency curves for the 1/2 subharmonic resonance.
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6.6 Conclusions

After description of two different measurement techniques, an electrical equivalent cir-
cuit representation of the clamped-clamped beam MEMS resonator is introduced. The
representation of the resonator in this description is only valid for small signal analysis.
Next, the twomeasurement techniques have been applied for extensive experimental vali-
dation of the most promising simulation model of Chapter 5. For this purpose, model III
has been used, which is based on Timoshenko beam theory, and includes relevant physi-
cal effects. However, since the analytically derived expression for the Q-factor due to an-
chor loss (Qa) is very low, Qa will be estimated based on measurements. A single-mode
discretisation is found to be sufficient for accurately describing the nonlinear dynamic
behaviour of the MEMS resonator under investigation.

Two clamped-clamped beam MEMS resonators have been investigated, having dimen-
sions close to the nominal geometry given in Table 5.1. A thick (b = 10 µm) and a thin
(b = 1.4 µm) beam have been used. Results show a reasonably good match between ex-
periments and simulations with the 1DOF model. Resonance frequencies and shapes of
amplitude-frequency curves, both with and without frequency hysteresis, match very well
for various excitation parameters Vdc and Vac. Therefore, confidence has been gained in
the modelling approach and the model, proposed in Chapters 4 and 5, respectively.

A first major improvement, with respect to the heuristic modelling approach applied
in Section 3.2 is that a more accurate description of the measurement circuit has been
derived, based on the electrical equivalent circuit of the clamped-clamped beam MEMS
resonator (see Sections 6.4). Electrical parameters of the measurement circuit can be
identified from experiments. The description includes parasitic electrical effects and re-
sults in a good match between simulations and experiments.

Secondly, since the model (model III) is based on first principles, most model param-
eters have been obtained directly from actual physical dimensions of the MEMS res-
onator and from physical properties of single-crystal silicon. These model parameters
have actual physical meaning (they are not lumped), which is the main benefit of using a
first-principles based approach. However, the electrical parameters of the measurement
circuit, the beam length l (to correct for under-etching), the dimensions of the electrode
gaps d1 and d2 and the Q-factor related to anchor loss have to be identified experimen-
tally. A straightforward validation approach has been proposed (Section 6.5.1) in order to
identify these parameters from experiments. As a result, by using the multiphysics mod-
elling framework together with the validation approach, a model description is obtained,
in which individual physical parameters and individual effects can be distinguished. Con-
trary to the results of the heuristicmodel for the clamped-clamped beamMEMS resonator
of Section 3.2, subtle variations in the response have now been captured.

Finally, in order to be able to make a fully quantitative comparison between the simula-
tions and the experiments, their amplitudemismatch has to be addressed. The mismatch
is present for the Labview measurements only and is caused by an impedance mismatch
in the measurement circuit of the resonator and by (thermal) noise. As a result, a differ-
ent (lower) output than the actual one is measured.



CHAPTER SEVEN

Phase feedback for nonlinear MEMS
resonators in oscillator circuits1

Abstract / In this chapter, a phase feedback approach for using nonlinear MEMS resonators in
oscillator circuits is investigated. The principle of the approach is illustrated for a nonlinear Duff-
ing resonator, which is representative for many types of MEMS resonators. Next, the approach
is applied in a system level simulation, using a device level model for a clamped-clamped beam
MEMS resonator. Phase feedback allows for operation of the resonator in its nonlinear regime and
enables control of both the frequency of oscillation and the output power of the signal. Various
aspects of phase feedback are investigated in detail and the chapter ends with conclusions.

7.1 Introduction

As indicated in Chapter 1, silicon MEMS resonators provide a promising alternative for
quartz crystals as accurate timing devices in oscillator circuits for modern data and com-
munication applications (Nguyen, 2005, 2007). Major advantages are their compact size,
feasibility of integration with IC technology and low cost. In an oscillator circuit, the
resonator acts as a frequency selective element, see Section 2.3. Linear behavior of the
resonator is often desired, since nonlinearities in the resonator may complicate oscillator
behavior and may limit the signal to noise ratio (S/N-ratio) and phase noise performance.
Conventional quartz crystal resonators are not driven into nonlinear regimes, since the
rather bulky quartz crystal units can store sufficient energy for oscillation while remain-
ing linear. Therefore, quartz crystal based oscillator circuits are often limited through
amplifier nonlinearities.

MEMS resonators inherently can store less energy, due to their smaller size,
see Kaajakari et al. (2004a). Therefore, they are often driven into nonlinear regimes at
much lower excitation amplitudes than quartz crystals. Operation in nonlinear regimes

1This chapter is based on Mestrom et al. (2007) and Mestrom et al. (2009b).
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can be circumvented by using resonator arrays to improve linearity and power handling
(see Nguyen, 2007). However, the use of arrays results in larger device dimensions.
Alternatively, bulk mode resonators can be used (see, for instance Mattila et al., 2002b;
Pourkamali and Ayazi, 2003; Hao et al., 2004; Lin et al., 2004) but these may be more
susceptible to spurious modes. Furthermore, these bulk resonators vibrate in much
stiffer modes (at higher frequencies), contrary to the so-called flexural resonators on
which this paper focuses. Electrostatically actuated flexural MEMS resonators intrinsi-
cally show nonlinear effects. For instance, the excitation is intrinsically nonlinear (de-
pends on the reciprocal of the square of the gap) and the resonators are easily driven
into nonlinear mechanical regimes, See Chapters 3 and 5. Furthermore, operation at low
excitation values often results in an unacceptably low S/N-ratio.

In this chapter, it is shown that addressing nonlinear regimes of the MEMS resonator
does not need to be a problem. Based on the heuristic device level model for the clamped-
clamped beam MEMS resonator of Section 3.2, a system level approach (see Figure 1.3)
for using nonlinear flexural MEMS resonators in an oscillator circuit is proposed. This
so-called phase feedback technique allows for active tuning of the oscillation frequency
in a closed-loop sense, by setting the phase in the feedback amplifier. The concept will be
illustrated for a nonlinear Duffing resonator. The tuning freedom of the phase feedback
approach will be investigated further by means of numerical simulations on a flexural
MEMS resonator showing characteristic nonlinear behavior. Themodel for this resonator
has been verified experimentally in Section 3.2 (Mestrom et al., 2008a).

Background on oscillator circuits has already been given in Section 2.3. Especially the
oscillation conditions (2.2)–(2.3) are relevant for phase feedback. The outline for the re-
mainder of this chapter is as follows. First, the open-loop response of a nonlinear Duffing
resonator will be explained in Section 7.2. In Section 7.3, the phase feedback principle
will be explained for this nonlinear Duffing resonator. Subsequently, the method will be
applied on simulation level to an electrostatically actuated clamped-clamped beamMEMS
resonator for which the nonlinearities are of Duffing-type. Simulation results will be pre-
sented in Section 7.4 and, finally, some conclusions will be drawn in Section 7.5.

7.2 Open-loop response of the Duffing resonator

The small size of MEMS resonators requires that they often have to be driven into nonlin-
ear regimes in order to store enough energy. Nonlinear effects include, but are not limited
to, geometric nonlinearities due to (relatively) large vibration amplitudes (Kaajakari et al.,
2004a; Thomsen, 2003), electrostatic nonlinearities due to capacitive excitation and de-
tection (Kaajakari et al., 2004a), and material nonlinearities like higher-order elastic ef-
fects (Kim and Sachse, 2000). These effects have been described in Chapter 4. From
Chapter 5, it has become clear that these nonlinear effects may effectively be described
by a simplified or lumped model with a Duffing-like structure, see also Kaajakari et al.
(2004a). Therefore, without loss of generality, the principle of phase feedback will be
explained for a Duffing system (which is a classical example of a nonlinear resonator),
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that shows qualitatively similar nonlinear dynamic behavior to a MEMS resonator. The
differential equation for the forced Duffing system is given as (Thomsen, 2003):

mẍ + bẋ + k1x + k3x3 = F0 cosΩt, (7.1)

where x denotes some characteristic displacement and parameters m, b, k1 and k3 denote
mass, damping, linear stiffness and cubic stiffness parameters, respectively. Depending
on the sign of k3, the system has a hardening (k3 > 0) or softening (k3 < 0) spring
characteristic. The forcing has an amplitude F0 and an angular excitation frequency Ω.
The Duffing oscillator is representative for certain types of MEMS resonators, as will be
discussed in Section 7.3.2. By introducing parameters

ω0 =

√

k1

m
, ξ =

b

2
√

k1m
, γ =

k3

k1
ω2

0, and q =
F0

m
, (7.2)

(7.1) can be rewritten as

ẍ + 2ξω0 ẋ +ω2
0x + γx3 = q cosΩt. (7.3)

Here, ω0 is the natural frequency of the linear system (without γ), ξ is the non-
dimensional damping coefficient, γ is the nonlinearity parameter and q is the forcing
parameter. An approximate solution to the response of the Duffing system to a resonant
excitation (Ω ≈ ω0) can be obtained by applying the method of multiple scales, which is
a perturbation technique, described in, for instance, Nayfeh (1981) or Thomsen (2003).
This method can only be applied to weakly nonlinear systems. Therefore, a small book-
keeping parameter ε ≪ 1 will be introduced to indicate that the nonlinearity is weak
compared to linear terms. For the case of resonant excitation, as considered here, small
excitations lead to large responses, so the excitation and damping terms are scaled as well:

ẍ +ω2
0x = ε(q cosΩt − 2ξω0 ẋ − γx3). (7.4)

Here, the equation has been arranged such that the left-hand side constitutes a linear
undamped system. The method of multiple scales allows for the steady-state solution
of (7.4) to be written as (Thomsen, 2003):

x = a cos(Ωt −ψ) + ε
γ

32ω2
0

a3 cos(3(Ωt −ψ)) +O(ε2), (7.5)

where a is given by the solution to the so-called frequency response equation

q2 = a2

[

(2ξω2
0)

2 +

(
3

4
γa2 − 2σω2

0

)2
]

(7.6)

and the phaseψ results from

tanψ =
−ξω0

σ − 3γ
8ω0

a2
. (7.7)
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As mentioned before, parameter ε in (7.4) and (7.5) is a small bookkeeping parameter,
which serves to indicate the order of approximation. Parameterσ in (7.6) and (7.7) is the
frequency detuning parameter σ = Ω −ω0. Furthermore, local asymptotic stability of
solutions (a,ψ) holds if (Thomsen, 2003):

(

σ − 3γ

8ω0
a2

)(

σ − 9γ

8ω0
a2

)

+ (ξω0)
2 < 0. (7.8)

By using (7.6)–(7.8), amplitude-frequency curves and phase-frequency curves can be ap-
proximated based on the fundamental harmonic term in (7.5) (ε = 0). These curves are
nonlinear equivalents to the magnitude and phase curves of the Bode diagram. They
are depicted in Figure 7.1 for the specific parameter values ω0 = 2π rad/s, ξ = 0.005,
γ = −5 m−2s−2, and q = 0.4 m/s2. Since γ < 0, see (7.2), the system will show soften-
ing. Stability of the periodic solutions has been determined by (7.8) and is also indicated.

Figure 7.1(a) contains the amplitude-frequency curve, which depicts the normalized am-
plitude (a/amax, where amax is the value at the peak) of oscillation versus normalized fre-
quencyΩ/ω0. In practice, jumps will be observed in the steady-state nonlinear dynamic
behavior of the resonator when one sweeps up and down through the fundamental res-
onance region. These jumps are also indicated in Figure 7.1 by the arrows. This effect
is also known as frequency hysteresis. The right part shows the corresponding phase-
frequency curve. Recall that both curves are based on the assumption that the system
response (7.5) may be approximated by a linear response (only the first harmonic term
in (7.5)). Otherwise, the term phase has no meaning for nonlinear systems. For the rel-
atively large value of the nonlinearity used here (γ = −5 m−2s−2), this may be only a
very crude approximation, since the Duffing resonator may no longer be considered as a
weakly nonlinear system.

For the approximation, given in (7.5), the phase can be calculated from (7.7). In Fig-
ure 7.1(b), it can be seen that the phase changes by π rad over the resonance peak, sim-

0.94 0.96 0.98 1 1.02 1.04
0

0.2

0.4

0.6

0.8

1

Ω/ω
0
 (−)

a/
a m

ax
 (

−
)

 

 

Stable
Unstable

0.94 0.96 0.98 1 1.02 1.04
0

1

2

3

Ω/ω
0
 (−)

ψ
 (

ra
d)

(a) Amplitude-frequency curve. (b) Phase-frequency curve.

Figure 7.1 / Open-loop response for the Duffing resonator (linear natural angular fre-
quency isω0).
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ilar to the phase change in a linear system. Finally, note from Figure 7.1 that both the
amplitude a and the phaseψ are not single-valued functions of the excitation frequency.

7.3 Phase feedback

7.3.1 Principle of phase feedback

In order to cope with resonator nonlinearities in an oscillator environment, a technique,
described in Greywall et al. (1994) and Yurke et al. (1995), can be applied. This will be
called phase feedback. Consider the phase-frequency curve in Figure 7.1(b) again. Al-
though the phase is not a single-valued function of the excitation frequency, this is the
case the other way around. In other words, the frequency is a single valued function of the
phase, that is Ω/ω0 = f (ψ). This is depicted in Figure 7.2(a), in which the usable range
for the phase is ψ ∈ [0, π ]. Here, displacement x of (7.3) is used as the output of the
resonator, see Figure 2.3, which is fed into the amplifier. Depending on what quantity
of the system is used for feedback, the usable range may change. The concept of phase
feedback is suitable for oscillator applications, since the resonator and amplifier together
have to satisfy gain and phase requirements (2.2)–(2.3). As a result, the frequency at
which the resonator oscillates can be actively controlled by setting the amplifier part of
the oscillator circuit to a suitable phase condition. This idea holds under the assumption
that the amplitude, the frequency and the phase of the amplifier are independent. In that
case, the resonator can be forced to oscillate at a frequency ofΩ/ω0 ≈ 0.96 with a phase
of ψ = ψR = 2 rad (see Figure 7.2(a)), by setting the amplifier phase to ψA = 2π −ψR,
see (2.2). In this way, the closed-loop behavior of the system tunes the resonator to oscil-
late at a high-amplitude solution (at the peak in the open-loop response in Figure 7.1(a)).
The amplitude-phase curve for the Duffing resonator is depicted in Figure 7.2(b).

It will become clear in Section 7.4 that, with phase feedback, the oscillator can even op-
erate on the unstable part of the curve of a nonlinear MEMS resonator. Namely, unstable
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Figure 7.2 / Open-loop response of the Duffing resonator.
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regions in the open-loop response (see Figure 7.1) are stabilized using phase feedback.
Moreover, a resonator phase near ψ = π/2 rad not only results in high-amplitude res-
onator oscillations, but also in small sensitivity of the oscillation frequency to changes
in phase. Namely, the frequency Ω/ω0 is not very sensitive for changes in ψ, since the
frequency-phase function is (almost) horizontal in the region around ψ = π/2 rad, see
Figure 7.2. The method described above has been used in a recently developed sensitive
magnetometer, described in Greywall (2005).

Two further remarks can bemade with respect to the technique of phase feedback. Firstly,
the proposed technique may seem to show similarities with a phase-locked loop (PLL),
which can also be used for generating stable frequencies, see, for instance Best (2003).
However, phase feedback is substantially different. PLLs consist of a feedback circuit in
which the phase and frequency difference between the output and a reference signal are
translated into a control signal. This signal is fed into a voltage-controlled oscillator (VCO)
that ‘locks’ the output again to the reference signal. The main difference between PLLs
and the proposed phase feedback approach is that in PLLs, a reference signal (frequency)
is present to which the output should be locked. Deviations from this reference signal
result in control effort that controls the output to its ‘locked’ state. For phase feedback,
no reference is present, since the output frequency of the circuit can be determined by
setting the phase of amplifier. In this way, phase feedback is in fact a frequency control
method, similar to the control voltage that is used in a VCO. Furthermore, no control
effort is needed, other than that of setting the phase in the amplifier once. By setting the
amplifier phase, the resonator will act as a band-pass filter that allows only the signals
that satisfy the oscillator phase condition (see (2.2)) to pass.

Secondly, the proposed phase feedback technique is not a nonlinearity cancellation tech-
nique, see, for instance Shao et al. (2008b). Cancellation of the nonlinearity of the res-
onator is not necessary for the principle to be applied. As will be shown in Section 7.4.2,
phase feedback will cause both the frequency and the amplitude to be single-valued func-
tions of phaseψ for the nonlinear MEMS resonator considered.

7.3.2 Application to a MEMS resonator

The phase feedback approach, described in the previous section, will be applied at system
model level to a clamped-clamped beam MEMS resonator. The resonator under investi-
gation consists of the single-crystal silicon beam of Chapter 3 with a length of 44 µm, a
width of 4 µm and a thickness of 1.4 µm. The device level model for the resonator has
a Duffing-like structure and is able to describe measured nonlinear dynamical behavior
rather well, see Chapter 3.

A schematic representation of the clamped-clamped beam resonator is depicted in Fig-
ure 3.1. The actuation of the resonator is realized by means of a dc (Vdc) and an ac (Vac)
voltage component, which are applied to the electrodes of the resonator by means of bias
tees, see Figure 3.1. Note that the dc voltage Vdc is applied to both electrodes of the beam,
whereas the ac voltage is applied to a single electrode.
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The device level model for the resonator has been given in (3.1)–(3.3) and (3.5). Note that
the resonator is excited parametrically. Although the beam vibration shape is continuous,
this lumped description has been found adequate for capturing the dynamic behavior of
the MEMS resonator, see Chapter 3.

The linear natural frequency of the clamped-clamped beam resonator equals f0 =

ω0/(2π) = 1/(2π)
√

k1/m. Due to electrostatic actuation, this frequency will change
slightly to f0,e = 1/(2π)

√

k1,e/m, where stiffness k1,e equals k1 offset by a V2
dc-term:

k1,e = k1 − 2C0V2
dc/d2

0, see (3.8).

The output of the resonator is measured on the electrode without the ac excitation, see
Figure 3.1. The output current iout results from capacitive detection of the resonator mo-
tion. Only the motional imot term in (4.29) remains, giving:

iout =
dqe

dt
=

d

dt

(

Vdc
C0d0

d0 + x

)

= −Vdc
C0d0

(d0 + x)2
ẋ. (7.9)

From this equation, it can be seen that the output current is roughly proportional to
minus the velocity of the resonator: iout ∝ −ẋ. Since the output iout of the MEMS
resonator will be used for phase feedback, the usable range for the resonator phaseψR will
change fromψR ∈ [0, π ] (see the Duffing resonator in Section 7.3.1) toψR ∈ [π/2, 3π/2].
This will be shown in Section 7.4.2.

In practice, the current iout can be sensed and converted into a voltage by using a trans-
impedance amplifier. In that case, the amplifier output voltage will be used for feedback
purposes.

In order to be able to perform closed-loop simulations with phase feedback, an system
level oscillator circuit model including the device level model of the nonlinear MEMS
resonator has been implemented numerically in MATLAB/SIMULINK2. The schematic
structure is depicted in Figure 7.3. The MEMS resonator block contains a SIMULINK

block diagram implementation of (3.1)–(3.3), (3.5) and (7.9).

amplifier

MEMS resonator

noise

saturation

iout

A

VdcVdc

Vac

Figure 7.3 / Block diagram of the oscillator circuit with the MEMS resonator.

2The Mathworks Inc., Matlab 7.5.0 (R2007b)
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The oscillator circuit consists of the MEMS resonator and an amplifier. The resonator is
driven by a bias voltage Vdc and an input voltage Vin = Vac on the resonator ac input.
The oscillator is self-starting due to (thermal) noise, see Section 2.3. The resonator out-
put, current iout, is amplified and fed back into the resonator. The input to the MEMS
resonator is limited in amplitude by a saturation function. Otherwise, the oscillation am-
plitude might grow till the resonator shows dynamic pull-in (see also Section 7.4.5). The
saturation element may also introduce additional nonlinearities in the system, but has
to be included in order to be able to compare closed-loop responses with open-loop re-
sponses. This will become clear in Section 7.4. Additional (nonlinear) effects, resulting
from the saturation element, are still a topic of further research.

The oscillator circuit has to satisfy the two conditions (2.2)–(2.3) in order for oscillations to
occur. Therefore, the amplifier gain A = GA(Ω) exp( jψA(Ω)) has been implemented
as a gain and a phase shift, which is an idealised representation. In practice, both the
amplifier gain and phase depend on the input as well, and can not be set arbitrarily.
Therefore, a more accurate model of the amplifier electronics would be required. How-
ever, for investigation of the principle of phase feedback, the idealised representation is
used. In the block diagram (Figure 7.3), this is implemented by means of a gain and a
transport delay with a delay time of ∆tA = ψA/(2π f0,e), where ψA denotes the required
amplifier phase. The simulation procedure consists of solving an initial value problem in
MATLAB/SIMULINK using a fixed time step solver. Simulation results for phase feedback
with the MEMS resonator will be presented in the next section.

7.4 Results

7.4.1 Open-loop response of the MEMS resonator

For the results listed in this section, the set of parameter values listed in Table 7.1 has
been used (see also Table 3.1). The value of Vac should be interpreted as the saturation
level in the saturation block in Figure 7.3. From these parameter values, the fundamental
frequency can be calculated: f0 = 12.945 MHz ( f0,e = 12.873 MHz). Furthermore, the
amplitude-frequency curve for this parameter set has been calculated numerically using
AUTO (Doedel et al., 1998) and is depicted in Figure 7.4. The maximum displacement
xmax is plotted versus the excitation frequency f = Ω/(2π) in Figure 7.4(a). The cir-
cles indicate turning points in the curves. Typical vibration amplitudes are in the order
of several tens of nanometers. The response is similar to that of the Duffing resonator,
presented earlier (see Figure 7.1(a)). In an oscillator setting, the output current iout is
available, rather than the resonator displacement. The current, which is roughly propor-
tional to −ẋ (see (7.9)), shows an amplitude-frequency curve, see Figure 7.4(b), which is
similar to that of the displacement xmax.
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Table 7.1 / Numerical values for the model parameters.

Parameter Value Unit

m 0.2275 ng

b 2.721 × 10−9 N s m−1

k1 1.505 kN m−1

k2 0.0 N m−2

k3 −6.2 × 1015 N m−3

k4 0.0 N m−4

k5 1.2 × 1030 N m−5

d0 330 nm

C0 0.185 fF

Vdc 70.0 V

Vac 180 mV
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Figure 7.4 / Amplitude-frequency curves for the MEMS resonator and the parameter
values listed in Table 7.1.

7.4.2 Oscillator response using phase feedback

The effect of phase feedback on the resonator output is investigated by means of numeri-
cal simulations with the block diagram depicted in Figure 7.3. A typical result is shown in
Figure 7.5, where the resonator output currents iout without and with phase feedback are
shown. In the case without feedback, Figure 7.5(a), the resonator is driven by noise only.
Therefore, the resonator output to this noisy excitation is its band-pass filtered response,
which will not reach a periodic solution. For feedback, the amplifier gain is chosen such
that oscillations will swing up. For Sections 7.4.2 and 7.4.3, a gain value of GA = 107 V/A
is applied. More details on the influence of the gain will follow in Section 7.4.4.

The amplifier phase is set to ψA = 2π − π rad to force the resonator to operate at
ψR = π rad. From Figure 7.5(b), it can be seen that it takes some time before the res-
onator reaches its steady-state. The time to reach steady-state depends on the excess gain
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Figure 7.5 / Output current iout.

in the feedback loop, see (2.3). No additional dissipation mechanism is added by phase
feedback. The steady-state amplitude that the periodic solution attains depends on the
amplifier gain GA and the dissipation in the resonator, which influences GR. Once the
oscillator gain condition (2.3) becomes an equality, the amplitude stops growing. The
amplifier output, which is the input of the resonator, is limited (clipped) by the satura-
tion element, see Figure 7.3. The Q-factor of the system is a measure for the dissipation
in the resonator and equals Q = 1/(2ξ) =

√

k1,em/b = 6.8 × 103, which is not ex-
tremely high. With the electrode gaps listed in Table 7.1, the Q-factor would translate to
a very large motional resistance value of Rm = 2 MΩ in an electrical equivalent circuit
representation, see (3.12) in Section 3.2.2. The motional resistance is found to result in
significant contribution of thermal noise in the open-loop response. In closed-loop this
effect will not be seen, because phase feedback filters the noise according to the oscillation
phase condition (2.2).

In steady-state, the oscillator output is periodic. The autopower spectra of the output sig-
nals with and without phase feedback have been calculated and are depicted in Figure 7.6.
In the feedback case, a resonator phase of ψR = π rad is used.

Here, the resonator output iout is used as the oscillator output in order to compare the
situation with and without feedback. In practice, however, the amplifier output voltage is
used (see Figure 2.3). From Figure 7.6, it can be seen that the output of the circuit with
phase feedback has a much higher spectral purity compared to the case without phase
feedback.

Furthermore, it can be seen that the fundamental frequency in the feedback case is
slightly lower than in the case without feedback. This is the result of the phase-
dependence of the oscillation frequency (see Figure 7.2), where a functional relation be-
tween frequency and phase exists. In order to investigate this behavior, a simulation study
has been performed in which the requested phase ψR of the resonator is varied between
π/2 and 3π/2 rad, which is the usable range for ψR for current (iout) feedback (see also
Section 7.3.2). For values ofψR ∈ [0, π/2] andψR ∈ [3π/2, 2π ] rad, no sustained oscilla-
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Figure 7.6 / Autopower spectrum of the oscillator output iout with (ψR = π rad) and
without phase feedback.

tions have been observed. For each phaseψR ∈ [π/2, 3π/2], and, consequently, for each
amplifier phaseψA = 2π −ψR, the fundamental frequency in the output is determined.
The frequency-phase curve is depicted in Figure 7.7(a). This figure is similar in shape to
Figure 7.2(a), with the difference that Figure 7.7(a) depicts closed-loop results. Note that
the local minimum of the analytical curve for the Duffing system in Figure 7.2 is present
at ψR = π/2 rad, whereas in Figure 7.7(a), the local minimum for the MEMS resonator
is present at ψR = π rad. The difference in phase for this minimum can be related to
the fact that the response of the Duffing equation is in terms of the position x, whereas
the resonator output iout in the oscillator circuit is roughly proportional to −ẋ, see (7.9).
The region to the left of the minimum (i.e. the range ψR ∈ [2, π ] rad in Figure 7.7(a))
would correspond to the unstable part of the open-loop frequency-phase curve, similar
to Figure 7.2(a). However, in case of phase feedback, no unstable part exists on the left
of the minimum. Closed-loop phase feedback stabilizes the oscillation at the open-loop
unstable part of the response. Furthermore, since the oscillation frequency changes with
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Figure 7.7 / Closed-loop response of the oscillator circuit with the MEMS resonator.
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the phase, the amplifier phase provides a means for fine-tuning the oscillation frequency.

For oscillator applications, a large S/N-ratio in the circuit output is desired. Required for
this is a high output power and low noise. Output power is a measure for the desired
fundamental frequency content. For each phase ψR, the power at the fundamental oscil-
lation frequency is calculated from the resonator output and is depicted in Figure 7.7(b).
This response is similar in shape to the open-loop amplitude-phase curve depicted in
Figure 7.2(b). However, Figure 7.7(b) shows a jittery shape which is caused by the finite
frequency resolution in the simulations. In Figure 7.7(b), it can be seen that highest
power is available at a feedback phase of about ψR = π rad, which can be explained as
follows. In general, the most effective excitation for a system is proportional to the system
velocity. A phase shift of π rad of the output signal iout (which is proportional to −ẋ) will
result in a signal proportional to ẋ that is fed back into the resonator.

Summarizing the results of this simulation study, the optimal operation point for the
MEMS resonator based oscillator circuit has been determined to be at a feedback phase
of ψR = π rad. Here, the response is at the maximum of the output current power-
phase curve (Figure 7.7(b)) and at the local minimum of the frequency-phase curve (Fig-
ure 7.7(a)), which is both very beneficial. Namely, high power results in a good funda-
mental harmonic signal component and in less amplifier effort needed for sustaining
vibrations. The local minimum in the frequency-phase curve results in little changes in
frequency for changes in phase. Additionally, since the amplifier phase ψA sets the res-
onator phaseψR, the amplifier phase can be used for fine-tuning the oscillation frequency
of the oscillator through the frequency-phase curve in Figure 7.7(a). The concept limits
are still a topic of further research. For instance, robustness of the principle with respect
to process spread of both the MEMS resonator and the amplifier electronics is of interest.

To conclude this section, a phase noise plot has been calculated from Figure 7.6. This
plot is depicted in Figure 7.8 (solid line), where the phase noise L(∆ f ) is expressed in
decibels below the carrier per Hertz. It can be seen that the narrow peak in Figure 7.6
results in a good phase noise response. For reference, Figure 7.8 can be compared with
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Figure 7.8 / Phase noise plot for the oscillator output (solid line), calculated from Fig-
ure 7.6. The dashed line is an approximation to the curve from Lin et al. (2004).
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recently reported experimental results in Lin et al. (2004) for a clamped-clamped beam
resonator with a slightly lower nominal frequency (9.34 MHz), for which an approximate
curve is depicted as a dashed line in Figure 7.8. From this comparison, it follows that the
results from the approach described in this paper are quite promising, since this results
low phase noise. An important remark here, is that the slopes of the simulated phase
noise response do not match those predicted by Leeson’s equation (2.7), see Figure 2.5.
A possible reasons for this mismatch is the following. Leeson’s model is based on ther-
mal noise considerations for a linear time-invariant LC-oscillator. The oscillator under
investigation here is nonlinear, since it is based on a nonlinear MEMS resonator. The
nonlinear effects in the MEMS resonator may result in additional noise upconversion.
Additionally, the saturation element may introduce similar effects.

7.4.3 Influence of saturation level

Next, it is investigated what influence the saturation level in the saturation block (see
Figure 7.3) has on the spectral content of the output signal. For this purpose, the satura-
tion level in the saturation block has been varied between 20 mV and 260 mV in steps
of 40 mV. First, however, the open-loop situation is investigated. Under harmonic ex-
citation, amplitude-frequency plots of the resonator have been calculated for the various
Vac-values using AUTO (Doedel et al., 1998). Results, in terms of output current, are de-
picted in Figure 7.9. From the figure, it can be seen that the resonator response changes
from almost linear (no hysteresis) to strongly nonlinear (hysteresis) for increasing Vac.
By using these Vac-values as the saturation limits in the oscillator circuit (Figure 7.3), the
transition from almost linear to nonlinear can be investigated in the closed-loop simu-
lations. Furthermore, by varying the resonator phase (by means of setting the amplifier
phase) in the usable rangeψR ∈ [π/2, 3π/2] rad, frequency-phase curves for the closed-
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Figure 7.10 / Closed-loop responses for various saturation values Vac (constant incre-
ments of 40 mV are used).

loop system can be calculated for the fundamental oscillation frequency. These are de-
picted in Figure 7.10(a). Similar to the amplitude-frequency responses of the resonator
itself (see Figure 7.9), the frequency-phase curves can be seen to become increasingly
nonlinear for higher Vac-values. Only the Vac = 20 mV simulation is (almost) linear.
This value corresponds to the upper curve in Figure 7.10(a), which is monotonically in-
creasing for increasing phase. Therefore, for linear resonators, there is almost no tuning
freedom for the frequency of oscillation by setting the resonator phaseψR. Furthermore,
the minimum in the frequency-phase curve becomes wider with increasing Vac and even
two (local) minima appear for Vac = 260 mV. This is related to the increasing amount
of nonlinearity in the system for larger amplitudes (term k5 in (3.5)). A wider minimum
indicates a smaller sensitivity of the oscillation frequency for the amplifier phase. Conse-
quently, the tolerances on the phase-setting part of the feedback amplifier have to be less
strict.

Furthermore, the power at the fundamental oscillation frequency for the two cases con-
sidered, is depicted in Figure 7.10(b) for varying Vac. As expected, higher saturation levels
result in higher output power. Furthermore, for all Vac-values, the maximum power is lo-
cated at a resonator phase around ψR = π rad. This means that the optimal operation
point in terms of frequency sensitivity for phase corresponds with the highest output
power.

From Figure 7.10, it becomes clear that the two control parameters, being amplifier phase
ψA (ψR, indirectly) and saturation value Vac, provide a means for (fine-)tuning the fre-
quency of oscillation as well as the output power of the oscillator. This demonstrates that
phase feedback is a powerful concept for nonlinear MEMS resonators.

To conclude this section, the spectral content in the oscillator output iout has been in-
vestigated for a resonator phase of ψR = π rad. Results are depicted in Figure 7.11(a).
As already stated above and as can be seen from Figure 7.11(a), an increasing saturation
value results in a lower oscillation frequency and a higher signal power. The phase noise
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Figure 7.11 / Dependence on the saturation level Vac.

responses of the oscillator for these saturation values have been calculated from the spec-
tral content. The results are very similar to the response depicted in Figure 7.8. The
oscillation frequency dependence on Vac is depicted in Figure 7.11(b).

7.4.4 Influence of amplifier gain

Furthermore, the influence of the gain in the feedback amplifier has been investigated.
The input to the amplifier is a current (iout) and its output is a voltage, the Vac input of
the resonator. Therefore, the gain has a unit of V/A (Volt per Ampere).

By varying the gain in the feedback simulations, a threshold value for the gain has
been determined: GA = 106 V/A. Below this value, oscillations will not swing up.
This high gain value results from the high motional resistance Rm of the resonator, see
Section 7.4.2. In order to generate this amount of gain, a multi-stage amplifier will
be needed. From a design perspective, another option would be to create resonators
with much lower motional resistance values, by using larger electrode areas (thicker res-
onators) and smaller gaps.

7.4.5 Response up to dynamic pull-in

It is known from literature that MEMS resonators may exhibit dynamic pull-
in (Nayfeh et al., 2007) under electrostatic forcing. Under resonance, the displacement
amplitude of the MEMS beam may become large enough (x close to ±d0) for the elec-
trostatic forcing Fe(x, t) (3.2) to cause a collapse of the beam to one of the electrodes.
For the open-loop response of the MEMS resonator, amplitude-frequency curves for two
different Vac values (500 and 635 mV) are depicted in Figure 7.12. Note that these are
significantly higher Vac-values than used sofar, see Figure 7.9. The inset in Figure 7.12
shows a zoom around the resonance frequency in which the upper turning point for
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Figure 7.12 / Open-loop amplitude-frequency curve for the MEMS resonator for Vac =
500 and 635 mV (dynamic pull-in).

Vac = 500 mV is indicated. Dynamic pull-in has been found to occur at an ac excitation
value of Vac = 635 mV, which is indicated by the upper curve, labeled ‘dynamic pull-in’.

Phase feedback simulations have been performed for the same two Vac values as in
the open-loop case. An amplifier phase of ψA = π rad has been used. Simulation
results are shown in Figure 7.13, where the spectral content has been depicted. For
Vac = 635 mV, no dynamic pull-in is observed. It can be seen that, although the res-
onator does not exhibit dynamic pull-in in closed-loop, the spectral content deteriorates
and shows side-bands compared to the results in Figure 7.11(a). This results in close-to-
carrier side-bands in the phase noise response, which is undesired. These non-harmonic
side-bands may result from an oscillator output that is no longer purely periodic. For
instance, MEMS resonators have been reported to show chaotic behaviour close to pull-in
values, see De and Aluru (2006).
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To conclude the analysis on dynamic pull-in, Vac is increased to find the value at which
the closed-loop system exhibits dynamic pull-in. This occurs at Vac = 2.3 V, which is
3.6 times higher than the open-loop dynamic pull-in voltage. The time history of iout for
pull-in is shown in Figure 7.14.
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Figure 7.14 / Output current iout during dynamic pull-in.

Summarizing, it can be concluded that phase feedback renders the system more robust
with respect to dynamic pull-in than the open-loop case, since this occurs at higher volt-
ages than in open-loop. However, with respect to the phase noise response, it is recom-
mended to stay safely away from the open-loop pull-in excitation value.

7.5 Conclusion

The principle of phase feedback has been investigated for an oscillator circuit containing
a nonlinear electrostatically actuated clamped-clamped beam MEMS resonator. The pro-
posed approach is generally applicable to MEMS resonators whose dynamics can be de-
scribed by a lumped Duffing-like model. A system level oscillator circuit model has been
used, incorporating the device level clamped-clamped beam MEMS resonator model of
Section 3.2. By means of an extensive simulation study, it has been shown that phase
feedback is a powerful technique that allows for using such a nonlinear resonator in an
oscillator circuit. Frequency-phase curves and power-phase curves are useful for selecting
optimal operation points for the phase feedback in oscillator circuits. For the nonlinear
clamped-clamped beam resonator with capacitive excitation and detection, an optimal
feedback phase has been determined as ψR = π rad. Furthermore, the influence of the
saturation level and the gain in the circuit has been investigated. Additionally the closed-
loop system has been found to be more robust with respect to dynamic pull-in than the
open-loop system. However, the phase noise response deteriorates for large saturation
values Vac. For the proposed phase feedback approach, the control parameters amplifier
phase ψA and saturation value Vac provide a means for (fine-)tuning the frequency of
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oscillation as well as the output power of the oscillator.

Based on the interesting and promising simulation results, it is recommended to ex-
perimentally investigate the described approach, in order to further validate and under-
stand the phase feedback concept and its limitations. Furthermore, possible oscillator
noise aliasing or upconversion effects stemming from nonlinearities in the resonator (see
Kaajakari et al., 2005a) or from the presence of the saturation element in the oscillator cir-
cuit should be investigated. Additionally, an improved description of the amplifier part of
the oscillator circuit has to be included.

Finally, other properties of the MEMS resonator based oscillator should be addressed,
such as accuracy, long-term stability (aging) and temperature effects (see Section 2.3.2).
Long-term stability is related to the vacuum encapsulation of the resonator. By means of
long-term experiments, these effects can be addressed. Examples of experimental work
in this field are documented in, for instance, Koskenvuori et al. (2004), Kaajakari et al.
(2005b), Kim et al. (2005), Candler et al. (2006b) and Kim et al. (2007).



CHAPTER EIGHT

Conclusions and recommendations

Abstract / The main ideas and methods are recapitulated and conclusions with respect to the
research objective are stated. Furthermore, recommendations for future work are given.

8.1 Conclusions

To recapitulate, the research objective of this thesis was to address the requirements for
multiphysics modelling, stated in Section 1.2.4, with respect to the analysis of nonlinear
dynamics in MEMS, see Section 1.2.3. Although the work has focussed on a specific class
of MEMS, namely MEMS resonators, it is not restricted to this application field. The
approach can also be applied to other fields, in which dynamics of the microstructure are
of importance, such asMEMS (resonant) sensors, filters, switches and variable capacitors.

Various modelling approaches have been derived and have been presented in this thesis.
They can be categorised into the modelling levels that are distinguished in the modelling
of MEMS devices, see Figure 1.1.

Heuristic modelling (Chapter 3)

In Chapter 3 heuristic device level modelling has been applied to two case studies. In
the first case study, a heuristic model has been proposed for an electrostatically actuated
clamped-clamped beamMEMS resonator. Inspired by experimentally observed frequency
hysteresis, a relatively simple, 1DOF Duffing-based dynamic model with electrostatic ac-
tuation has been proposed which typically may be capable of describing the observed
nonlinear dynamic response of the resonator. The model, which has an a priori defined
complexity in terms of the electrostatic actuation and its nonlinear stiffness function, is
able to describe the measured behaviour relatively well for the excitation parameter set-
tings used. However, at the same time, shortcomings of the model become clear, since
subtle variations in the resonator response that are observed in the experiments can only

183
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be described by fitting the model to each response.

In the second case study, partly heuristicmodelling has been applied to a dog-boneMEMS
resonator. The derived model, containing several heuristic elements, has proven to be un-
able to describe the experimentally observed mode coupling behaviour. Themain reasons
for this is the incorrect model structure with respect to the number of in-plane and out-of-
plane modes together with the excitation mechanism for out-of-plane modes. Especially
by using the lumped approach for the electrostatic actuation, essential effects (fringing
fields, non-parallel electric field in the electrode gaps) are not modelled correctly. Fur-
thermore, whether the proposed multi-model captures the experimentally observed be-
haviour, depends to a large extent on the number and type of modes that are included,
which, in turn depends on the complexity and the specific type of resonator considered.

The observed shortcomings of the heuristic modelling approach for the two case studies
serve as the motivation for the first-principles based approach that is described in Chap-
ter 4.

First-principles based multiphysics modelling framework (Chapters 4, 5 and 6)

In Chapter 4, the multiphysics modelling framework for nonlinear dynamics of MEMS
resonators has been presented. The philosophy behind the first-principles based mod-
elling approach has been explained. The framework is intended for fast and accurate
simulation of the nonlinear dynamic behaviour of MEMS resonators, thereby meeting
the modelling requirements stated in Section 1.2.4. Based on a first-principles descrip-
tion and formulated at the physical modelling level for the involved physical domains
(mechanical, electrical and thermal), the framework provides a straightforward approach
for deriving reduced-order (or device level) models. Relevant physical effects can be in-
cluded in the model in a systematic way. These effects may consist of couplings between
different physical fields and may be linear or nonlinear of nature. Once the description at
the physical level has been completed, a set of coupled PDEs has been obtained. Galerkin
discretisation is applied to these PDEs in order to create reduced-order models of varying
complexity, which are suited for fast and accurate simulation. Next, numerical simula-
tion and validation with experiments can be performed. Experimental validationmay lead
to model refinements, related to the involved physical effects or to the number of basis
functions included in the Galerkin discretisation.

The proposed multiphysics modelling approach has been applied to a full case study on
a clamped-clamped beam MEMS resonator in Chapters 5 and 6, similar to the one in-
vestigated in Section 3.2. In Chapter 5, the modelling framework has been applied to
derive models of varying level of complexity. For Galerkin discretisation, the undamped
uncoupled eigenmodes of the PDEs are used as spatial basis functions. Validation of
natural frequencies, modeshapes, thermoelastic damping and fringing field effects of
the models has been performed by means of comparison with finite element simula-
tions. A good match has been obtained, thereby justifying assumptions that have been
made. Both for nonlinear static and nonlinear dynamic analysis, the derived models have
been thoroughly compared with results from literature, yielding good correspondence.
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In an extensive simulation study, the relevance of various physical effects has been ad-
dressed and an optimal model with respect to degrees of freedom and included physical
effects has been chosen for the clamped-clamped beam MEMS resonator under investi-
gation. For this MEMS resonator, nonlinear material effects have been determined to be
irrelevant, whereas effects like rotary inertia and shear deformation (Timoshenko beam
theory), fringing fields and thermoelastic damping have been shown to be relevant. Addi-
tionally, it has been observed that the overall dynamic behaviour of the clamped-clamped
beamMEMS resonator still has a Duffing-like response, regardless of the physical effects
included. This confirms that the heuristic model, used in case study I in Chapter 3, has
been a good initial estimate for describing the dynamic behaviour. On the other hand,
subtle differences and variations in the response can only be described using the first-
principles based approach from Chapter 4.

In Chapter 6, the optimal model of Chapter 5 is validated experimentally. Furthermore,
an improved (more accurate) description of the measurement circuit has been added to
the model. Electrical parameters of the measurement circuit have to be determined ex-
perimentally. Next, extensive experimental validation of the simulation model has been
performed for MEMS resonators with two different thickness values. Most model param-
eters have been obtained directly from actual physical dimensions of theMEMS resonator
and from physical properties of single-crystal silicon. However, the electrical parameters
of the measurement circuit, the beam length l (to correct for under-etching), the dimen-
sions of the electrode gaps d1 and d2 and the Q-factor related to anchor loss have to be
determined experimentally. A straightforward validation approach has been proposed in
order to determine these parameters from experiments. A good correspondence between
experimental and numerical nonlinear dynamic responses has been obtained, already for
a 1DOF simulation model. In this way, confidence has been gained in the derived model
and the multiphysics modelling approach has been validated. Contrary to the results of
the heuristic model of Section 3.2, subtle variations in the response have now been cap-
tured. A major advantage of the model is that it is based on first principles, which results
in a model description in terms of parameters that have actual physical meaning and can
be related directly to resonator dimensions and material properties.

From these results, it can be concluded that the 1DOFmodel is sufficiently accurate, when
compared to experimental results, and captures essential nonlinear dynamic behaviour
for both small-amplitude and large-amplitude excitations. Furthermore, the model is in
functional representation, since its parameters have actual physical meaning and exhibit
correct dependencies on the resonator dimensions and material properties. The model is
suited for fast and accurate simulation and is in accordance with the first and second law
of thermodynamics. In this way, all of the modelling requirements of Section 1.2.4 have
been met, such that the main research objective is achieved.

Phase feedback (Chapter 7)

In Chapter 7, an approach called phase feedback has been proposed for oscillator circuits
incorporating nonlinear MEMS resonators. The heuristic model for the electrostatically
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actuated clamped-clamped beam MEMS resonator, derived in Section 3.2, has been in-
cluded in a system level simulation model for an oscillator circuit. By means of an exten-
sive simulation study with this model, phase feedback has been shown to be a powerful
technique that allows for inclusion of a MEMS resonator in an oscillator circuit, while the
resonator can operate in its nonlinear regime. Optimal operation points for the oscillator
circuit can be selected by setting the amplifier phase and the saturation value in the sys-
tem according to frequency-phase and power-phase curves. Additionally, the closed-loop
system has been found to be more robust with respect to dynamic pull-in than the open-
loop system. The control parameters of the amplifier provide a means for (fine-)tuning
both the oscillation frequency and the output power of the oscillator circuit.

8.2 Recommendations

In this section, some aspects are discussed that may be focused on in future work.

Multiphysics modelling framework

The first and most important recommendation for the multiphysics modelling frame-
work is that it should be applied to various MEMS resonators that have been modelled
with heuristic models up to now. Especially for the cases where experimental results are
available, further validation of the modelling framework can take place and insight can be
gained in physical parameters that influence the dynamic behaviour and the performance
of MEMS resonators. For thoseMEMS resonators that have a geometrically simple shape,
the framework can be applied in a relatively straightforward way. Heuristic models for
such MEMS resonators are documented in, for instance, Mattila et al. (2002b), who de-
scribes a longitudinal resonator, in Kaajakari et al. (2004c), who describe a square plate
resonator or in Hao et al. (2004), Pourkamali et al. (2004) and Lin et al. (2004), in which
bulk mode disk resonators are described. Application of the modelling framework will
provide more insight in the physical parameters that are determine the performance of
these resonators.

In the second case study in Chapter 3 (Section 3.3), a partly heuristic modelling approach
has been applied to a dog-bone MEMS resonator, see also van den Hoven (2008). This
resonator is also described in van Beek et al. (2007). The model of Section 3.3 is found to
be unable to describe experimentally observed behaviour. A new modelling effort, in line
with the framework presented in Chapter 4 should be undertaken, such that the mode
coupling phenomenon is correctly captured.

Furthermore, the obtained model description and structure according to themultiphysics
modelling framework depends to a large extent on the shape and type of the spatial basis
functions that are used for Galerkin discretisation. For a resonator with a simple geomet-
ric shape, such as the clamped-clamped beam resonator of Chapter 5, the choice of basis
functions is straightforward. However, for geometrically more complex microstructures,
such as the dog-bone resonator, the choice of spatial basis functions is far from trivial.
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In order to cope with this issue, an analytical or numerical procedure for determining
and selecting base functions for geometrically complex structures is needed. In order to
retain the first-principles nature of the modelling framework, in which actual physical pa-
rameters are present, the procedure should determine base functions in a parameterised
description. In this way, the applicability of the modelling framework can be increased to
geometrically (more) complex structures.

The modelling framework described in Chapter 4 includes the mechanical, electrical and
thermal domains. For the MEMS resonators considered in this thesis, the inclusion of
these three domains is found to be adequate. As stated before in Section 8.1, the mod-
elling framework can also be applied to other fields in which the dynamics of microstruc-
tures are of interest: MEMS resonant filters, sensors and switches, for instance. Often,
these MEMS devices are not operated in vacuum. Therefore, fluidic effects like flow,
radiation and squeeze film damping are likely to be relevant, see for instance Senturia
(2001), Veijola and Turowski (2001), Veijola (2004) or Kaajakari (2009). A logical step
in the multiphysics modelling framework is to extend it with the fluidic domain and its
related (multi)physical effects. Either first-principles based descriptions (PDEs) for these
effects have to be included such that they can be Galerkin discretised in a similar way as is
done currently, or functional descriptions for these effects can be added to the modelling
framework. Inclusion of the fluidic domain imposes quite a challenge for the modelling
framework, since (multiphysical) effects in the fluidic domain are inherently dissipative
of nature. Therefore, their explicit dependency on the motion of the microstructure has
to be taken into account.

An additional multiphysical extension to the modelling framework, the description of the
thermal domain and its couplings with the other domains may be expanded. Namely,
temperature effects, other than thermoelastic damping may be described, in which, for
instance, mechanical, electrical and fluidic parameters depend on temperature as well.
Especially for application of resonators in time reference oscillators, in which high-
performance operation over a large range of temperatures is required, the thermal be-
haviour of the resonator is very important (Vig and Ballato, 1999).

A final recommendation with respect to the multiphysics modelling framework is
the following. The analytical derivation of anchor loss, based on Hao et al. (2003)
and Hao and Xu (2009) is found to result in a Q-factor that is significantly lower than
the experimentally determined one. A possible for this is that their derivations are based
on a semi-infinite substrate, into which stress waves are radiated. In order to investigate
this and in order to derive a better description of anchor loss in the presence of non-semi-
infinite substrates, more insight has to be gained into how reflected waves influence the
loss mechanism. Understanding of anchor loss is very relevant for MEMS resonators,
since, together with thermoelastic damping, this is one of the principal loss mechanisms
for MEMS resonators that operate in vacuum.
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Phase feedback

Finally, the concept of phase feedback has been investigated and evaluated entirely by nu-
merical simulations. On simulation level, phase feedback is found to be a promising tech-
nique for using nonlinear MEMS resonators in oscillator circuits and for tuning their fre-
quency and output power. Therefore, the concept and its limitations should be further val-
idated and understood by means of experiments. Experimental validation allows for ad-
dressing possible noise aliasing effects (Kaajakari et al., 2005a) as well as accuracy, long-
term stability and temperature effects (Koskenvuori et al., 2004; Kaajakari et al., 2005b;
Kim et al., 2005; Candler et al., 2006a; Kim et al., 2007).



APPENDIX A

Silicon as an engineering material

Abstract / In this appendix, the structural, mechanical and thermal properties of silicon are de-
scribed. Additionally, some information on manufacturing techniques is included as well as the
derivation of the nonlinear Young’s modulus under uni-axial homogeneous loading.

A.1 Structural and mechanical properties

Single-crystal silicon is increasingly employed in micreoelectromechanical devices, not
only because of its electronic properties, but also because of its excellent mechanical
properties (Petersen, 1982; Stemme, 1991). General overviews of its properties are given
in Hull (1999) and INSPEC (1988), and references cited therein.

A.1.1 Crystal structure

Pure single-crystal silicon (element symbol Si) has an FCC crystal structure, in which each
silicon atom is covalently bonded to four neighbouring atoms in a tetrahedrical three-
dimensional stacking, see Figure A.1. The three main crystal directions [100], [010] and

Figure A.1 / Silicon crystal unit cell.
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[001] correspond with the edges of the unit cell. More background on crystal structures
and crystallographic planes and directions can be found in Lovett (1989) and Callister
(1999). The lattice parameter of the unit cell (edge dimension) equals d = 0.54310644 ±
0.00000008 nm at a temperature of 22.5◦C in vacuum (Hull, 1999). The density of
silicon equals ρ = 2329.00 ± 0.08 kg/m

3 at 25◦C (INSPEC, 1988).

A.1.2 Elastic properties

In contrary to polycrystalline silicon (poly-Si), the more or less isotropic equivalent of
silicon, single-crystal silicon features anisotropic elastic properties. This means that its
elastic behaviour depends on the orientation of the material. Due to the cubic crystal
structure, special symmetry properties for the relevant elastic coefficients result. Ad-
ditional background on theory on elasticity of solids and crystals can be found in, for
instance, Nye (1985), Lovett (1989) and Sadd (2005).

Second-order elastic constants

The general form of Hooke’s law for elasticity of three-dimensional solids can be given in
index-notation as

σi j = Ci jklηkl , (A.1)

where σi j is the symmetric stress tensor, Ci jkl is the fourth-order elasticity tensor and ηkl

is the symmetric Green-Lagrange strain tensor. For this notation, Einstein’s summation
convention is used, implying summation over all repeated indices. Relation (A.1) can also
be written in terms of strain as a function of stress using the fourth-order compliance
tensor Si jkl :

ηi j = Si jklσkl . (A.2)

Because of symmetry considerations in the cubic crystal structure, the stress-strain rela-
tions (A.1) and (A.2) contain numerous superfluous terms. After taking symmetry into
account, (A.1) can be written as:

σii = C11ηii + C12(η j j + ηkk), (A.3a)

τi j = C44γi j (i 6= j), (A.3b)

whereσii, τi j, ηii and γi j (= 2ηi j), (i, j = 1, 2, 3) denote normal stress, shear stress, nor-
mal Green-Lagrange strain and shear Green-Lagrange strain, respectively. The indices 1,
2 and 3 correspond with the three principal directions, that is, they coincide with three
orthogonal edges of the cubic unit cell, depicted in Figure A.1. Due to the cubic crys-
tal structure, only three independent constants are present in (A.3): C11, C12 and C44.
Similarly, (A.2) can be written as

ηii = S11σii + S12(σ j j +σkk), (A.4a)

γi j = S44τi j (i 6= j), (A.4b)
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which contain three independent compliance coefficients. Contracted (or Voigt) notation1

is used for the indices of the elastic constants Ci j and Si j. The stiffness coefficients are
related to the compliance coefficients by the following relations:

C11 =
S11 + S12

(S11 − S12)(S11 + 2S12)
, (A.5)

C12 =
−S12

(S11 − S12)(S11 + 2S12)
, (A.6)

C44 =
1

C44
. (A.7)

Numerical values for the stiffness and compliance coefficients are listed in var-
ious references (McSkimin, 1953; McSkimin and Andreatch, 1964a,b; Hall, 1967;
Goncharova et al., 1983). From an overview and comparison of these values, given in Hull
(1999), the values of Hall (1967) are considered to be the most accurate. These are listed
in Table A.1.

Table A.1 / Numerical values for stiffness and compliance coefficients at room tempera-
ture and atmospheric pressure (Hall, 1967). Errors are approximately ± 0.02%.

Stiffness Value (Pa) Compliance Value (Pa−1)

C11 1.6564 · 1011 S11 0.7691 · 10−11

C12 0.6394 · 1011 S12 −0.2142 · 10−11

C44 0.7951 · 1011 S44 1.2577 · 10−11

The elastic properties vary with orientation of the cubic crystal (see for instance
Date and Andrews, 1969; Turley and Sines, 1971; Brantley, 1973). Young’s modulus E
is defined as the ratio of stress to strain for a material that is stretched in a single direc-
tion, while it is free to move in the other directions. For instance, a stress σ11, applied in
direction 1, results in strain ε11. Young’s modulus is then E = σ11

η11
. Furthermore, due to

stretching in this direction, contraction in other directions takes place. Poisson’s ratio is
defined as the ratio of side contraction to length extension ν12 = − η22

η11
or ν13 = − η33

η11
.

To understand how Young’s modulus and Poisson’s ratio can be calculated, consider the
following example, where the three principal directions of stress and strain are chosen
along three orthogonal edges of the cubic unit cell. In this case, indices 1, 2 and 3 cor-
respond with the [100], [010] and [001] directions, respectively. Assume that a stressσ11

is applied in [100] direction on the cubic unit cell and that all other applied stresses are
zero. Either by solving (A.3a)–(A.3b) for ηii or by using (A.4a)–(A.4b) directly, Young’s
modulus in [100] direction can be found:

E[100] =
σ11

ε11
=

1

S11
= C11 − 2C12

C12

C11 + C12
. (A.8)

1Contracted notation is a mapping for the indices: 11 ∼ 1, 22 ∼ 2, 33 ∼ 3, 23 ∼ 4, 13 ∼ 5, 12 ∼ 6.
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In a similar way, Poisson’s ratio becomes:

ν[100] = ν12 = ν13 = −S12

S11

=
C12

C11 + C12

. (A.9)

Only in this specific case, it holds that ν12 = ν13. However, in general, this is not the case
and even νi j 6= ν ji. If uniaxial stresses are applied in the 2 and 3 directions ([010] and
[001] directions, respectively), similar expressions for Young’s modulus and Poisson’s
ratio result. This is due to the cubic crystal symmetry.

Figure A.2 shows the dependence of Young’s modulus E on the direction within the unit
cell. Young’s modulus is depicted as a surface and its value in an arbitrary direction is
given by the distance from this surface to the origin (0, 0, 0). From the figure, it can be
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Figure A.2 / Young’s modulus of single-crystal silicon as a function of the direction in
the cubic crystal. The value of Young’s modulus, indicated in grey scale, is given by the
distance from the surface to the origin.

seen that Young’s modulus varies from a minimum value of 130 GPa in 〈100〉 direction
to approximately 188 GPa in 〈111〉 direction. Therefore, the elastic properties of a res-
onator, constructed from single-crystal silicon, depend on how the resonator is cut from
the bulk material. Cut-directions are usually specified in terms of crystallographic planes,
see, for instance, Lovett (1989) for more information.

In-plane elastic properties of the crystal may also be calculated. As an example, consider
Figure A.3, in which Young’s modulus and Poisson’s ratio are depicted as a function of
direction in the (100) plane, specified by an angle ranging from 0 tot 90 degrees. This
figure is constructed by defining a rotational transformation, such that the first coordinate
axis (1) of the rotated coordinate system is perpendicular to the plane of interest (the
[100] direction is normal to the (100) plane). Next, rotation about this axis is performed
to obtain the directional dependence of the in-plane elastic properties. The other axes
are chosen orthogonal to each other in the plane of interest. For the example considered
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(a) Young’s modulus E in 1011 (Pa). (b) Poisson’s ratio νi j (–).

Figure A.3 / Variation of Young’s modulus and Poisson’s ratio with orientation in the
(100) plane. Poisson’s ratios are depicted for both in-plane and out-of-plane values.

here, for an angle of 0 degrees, the 1-axis corresponds with the [100] direction, the 2-axis
with the [010] direction and the 3-axis with the [001] direction (see also Figure A.1). The
radial direction in Figure A.3 specifies the magnitude of the quantity considered. Due to
cubic crystal symmetry, only the first quadrant of each plane is depicted. Furthermore,
the plot for Poisson’s ratio (Figure A.3(b)) contains three different curves. The ν12 and ν21

curves show Poisson’s ratio between one of the two in-plane directions and the direction
normal to the plane and vice versa. For instance, in case of zero rotation angle, ν21

is the ratio of side contraction in [100] direction to length extension in [010] direction,
whereas ν12 is the ratio of [010] contraction to [100] elongation. Here, it is seen that, in
general, ν12 6= ν21. The curve for ν23 shows the in-plane dependence of Poisson’s ratio.
In case of zero rotation angle, this means, length extension in [010] direction versus side
contraction in [001] direction.

Third-order elastic constants

In classical elasticity theory, strains and deformations are assumed to be infinitesimal.
As a result, the strain energy function is a homogeneous quadratic function of the
strains (Lovett, 1989; Hearmon, 1961), see also Section A.4. Non-linear elasticity theory
describes the non-linear effects in thematerial behaviour for elastic deformations that are
no longer finite (see Murnaghan, 1951; Hearmon, 1953; Zarembo and Krasil’nikov, 1971;
Hiki, 1981). On the one hand, these non-linearities arise because the components of the
strain tensor are no longer linearly related to the displacement gradients. This feature of
finite strain does not depend on the physical properties of the material considered and is,
therefore, usually termed a geometrical non-linearity. On the other hand, a physical non-
linearity is present, which arises from the fact that the internal (or strain) energy of the
deformed solid is not purely a quadratic function of the invariants of the strain tensor, but
also a cubic one, etc. This physical non-linearity is determined by elastic moduli of third
and higher order. The existence of both non-linearities results in a deviation of linear
Hooke’s law. In general, both the physical and geometrical non-linearity are present and,
therefore, they are usually considered simultaneously, see for instance, Seeger and Buck
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(1960) and Hiki (1981).

From literature (Hearmon, 1961; Every and McCurdy, 1992), it becomes clear, that crys-
tals with cubic symmetry have 6 third-order elastic constants. Measurements of these
constants have been performed by McSkimin and Andreatch (1964b) and Hall (1967)
(see also Section A.1.5). The data of Hall (1967) for pure silicon are considered to be most
accurate (Hull, 1999) and are listed in Table A.2. These third-order constants describe the

Table A.2 / Numerical values for the third-order stiffness coefficients of pure silicon at
298 K (Hall, 1967).

Constant Value (Pa) Accuracy (Pa)

C111 −7.95 · 1011 ±0.10 · 1011

C112 −4.45 · 1011 ±0.10 · 1011

C123 −0.75 · 1011 ±0.05 · 1011

C144 0.15 · 1011 ±0.05 · 1011

C166 −3.10 · 1011 ±0.05 · 1011

C456 −0.86 · 1011 ±0.05 · 1011

strain dependence of the second-order elastic constants. In generic form, stress compo-
nent σi j can be expanded as σi j ∝ Ci jklηkl +

1
2
Ci jklmnηklηmn + . . ., but for more details see

Appendix A.4 and equation (A.37). In lumped models for the material behaviour, the ef-
fect will show up as a non-linear stiffness (see for instance Kim and Sachse, 2000). The
effect of third-order elastic constants for silicon under uni-axial homogeneous loading
will be described in Section A.4.

A.1.3 Intrinsic losses

The Q-factor of a silicon microdevice depends on various dissipation mechanisms. Only
internal material losses are related to thematerial directly. The intrinsic Q-factor depends
on the purity (see also Section A.1.4), the amount of dislocations and the thermoelastic
losses of the material (Stemme, 1991). Thermoelastic losses are due to irreversible heat
conduction induced by, for instance, flexural motion of a mechanical component. Low-
level impurity single-crystal silicon resonators can have Q-factors up to 106. This value
decreases with the amount of doping. Polycrystalline materials have lower Q-factors than
single crystal materials. If a single-crystal material, such as silicon, is used, the contribu-
tion of the intrinsic material losses can often be considered negligible (Stemme, 1991),
since other dissipation mechanisms dominate the response.

A.1.4 Effect of impurities

Impurities are always present to some extent in silicon in the form of atoms of different
type than silicon. As these atoms have a smaller or larger atomic radius than the parent
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lattice atoms, their presence results in contraction or expansion of the crystal unit cell in
proportion to their concentration. The most frequent undesired impurities in silicon are
carbon and oxygen. For large amounts of impurities, even the density of the material may
change.

In addition to carbon and oxygen impurities, so-called dopant impurities are normally
added intentionally to silicon. Namely, silicon is a semiconductor material (with 4 va-
lence electrons), whose electric behaviour depends on the amount of electrons and holes
(electron deficiencies) in the material. By adding impurities with a different number
of valence electrons (dopants), the electric properties can be influenced. Atoms with 5
valence electrons produce n-type (negatively charged) semiconductors by providing ad-
ditional electrons whereas atoms with 3 valence atoms result in p-type (positive) semi-
conductors containing additional electron deficiencies, or holes. As explained by Keyes
(1976), elastic properties of semiconductors depend on the carrier concentration (amount
of electrons). As a result, elastic constants may change significantly with electronic dop-
ing concentration. For instance, the influence of doping was investigated by Hall (1967)
for n-type silicon and by Mason and Bateman (1964) for p-type silicon. It is difficult to
precisely quantify the effect of doping. However, in general, it can be stated that the typ-
ical effect of heavy doping is to decrease the second-order constants Ci j by 1–3% and to
modify the temperature dependencies. Third-order constants may change in much larger
proportions.

A.1.5 Measurement techniques

As has become clear from the previous Sections, the elastic properties of silicon are very
important since they characterise the material response. Furthermore, they depend on
the direction within the crystal and they vary with both temperature and doping level.

Several different methods are available for measuring the elastic properties of sil-
icon, allowing for determination of both second-order and third-order elastic con-
stants (Every and McCurdy, 1992; Willardson et al., 1992). These will be described next.

Ultrasonic wave propagation

In this method, ultrasonic wave velocity is measured in small specimens of silicon with
respect to various wave propagation directions. This method is based on the fact that a
pulse of ultrasonic waves (either longitudinal or transverse), started in a material spec-
imen, will reflect at the boundary interfaces of the specimen. By varying the frequency
of the induced waves, in-phase and out-of-phase conditions take place, due to reflection
of waves with a certain propagation velocity. If the density of the material is also known,
elastic moduli or stiffnesses of the material can be calculated. Moreover, the variation of
ultrasonic wave velocity with applied stress or strain reveals higher-order effects. Namely,
third-order elastic constants translate to strain (or stress) dependence of the second-order
coefficients.
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Between 1950 and 1970, the mathematical framework for both second- and third-
order elastic constants of materials has been established and numerous mea-
surements of these parameters have been performed. The method has been
used frequently, under a variety of conditions (both temperature and pres-
sure dependency of elastic moduli has been investigated) and is described in
detail in, for instance, McSkimin (1950), McSkimin (1953), Seeger and Buck
(1960), McSkimin (1961), Mason and Bateman (1964), McSkimin and Andreatch
(1964a), McSkimin and Andreatch (1964b), Thurston and Brugger (1964), Hiki (1981)
and Goncharova et al. (1983). The method described in these references, has been the
most important measurement method in the past, since it is a method by which a great
majority of third-order stiffnesses have been measured (see Every and McCurdy, 1992),
and it is the only one which, on its own, can yield a complete set of third-order constants.

Static tensile test

In static tensile tests, the deviation from linear Hooke’s law can be determined by mea-
suring the stress-strain relation of a specimen (Seeger and Buck, 1960; Hiki, 1981). This
method requires careful preparation, since the elastic non-linearity can mainly be ob-
served in tensile tests on very thin whiskers (thin single-crystal wires), having very high
yield strength. If specimens of different orientation are available, orientation dependence
can also be determined. However, this method does not yield a complete set of parame-
ters, but is more suited to determine the elastic properties in a single direction of interest.
Furthermore, very precise measurements of force and dimensional changes of the spec-
imen are needed, since calculation of Young’s modulus requires differentiation of stress
with respect to strain, which, in turn, requires differentiation of displacement with re-
spect to specimen dimension. As a result, the method has only a very limited accuracy.

Material parameter extraction

A third method for determining the elastic properties of silicon is by measuring reso-
nant frequencies or pull-in voltages of dedicated and accurately defined microstructures.
For instance, in Zhang et al. (1990), resonant microstructures are used and in Osterberg
(1995) and Osterberg and Senturia (1997), the pull-in voltage is used for electrostatically
actuatedmicrostructures. Themeasured resonance frequencies or pull-in voltages can be
compared to calculated theoretical ones, thereby providing an expression for extracting
an approximation for relevant material parameters of the structure. Like the static tensile
test method, discussed previously, this method does not yield a complete set of elastic
constants, but can be used to determine an accurate representative non-linear stiffness
relation for a certain vibration mode or structure of interest. Since the method makes
use of actual devices, it is very suited for direct (on-wafer) measurements. Moreover, even
some dedicated microstructures (with certain representative geometrical layouts) can be
designed to serve as test structures for determining material parameters.



A.2 THERMAL PROPERTIES 197

A.2 Thermal properties

A general overviews of the thermal properties of silicon is presented inHull (1999). Some
properties that are relevant for the work in this thesis, mainly related to thermoelastic
damping, will be described next. Values for the properties will be taken at a tempera-
ture around 25◦C. Additionally, the influence of temperature on the elastic constants,
described in Section A.1.2, will be discussed.

A.2.1 Specific heat

The specific heat cp of single-crystal silicon at a constant pressure is tabulated in Hull
(1999). For the work on thermoelastic damping, the value at 300 K (27◦C) will be used:

cp = 713 J kg−1 K−1. (A.10)

A.2.2 Thermal expansion coefficient

The material parameters of silicon change with temperature. Thermal expan-
sion/contraction takes place as well as change in elastic constants as a function of temper-
ature. Experimental determination of the temperature dependence of the silicon lattice
parameter (see Section A.1.1) has been described in Okada and Tokumaru (1984). Here,
the following empirical relation for the linear thermal expansion coefficient has been de-
termined, valid for temperatures between 120 K and 1500 K:

α(T) = 3.725 · 10−6
[
1 − exp(−5.88 · 10−3(T − 124))

]
+ 5.548 · 10−10T K−1. (A.11)

The accuracy of this description is about 2 · 10−7 K−1. The value for the linear thermal
expansion coefficient of silicon at a temperature of 300 K is given by Hull (1999) as

α = 2.616 · 10−6 K−1. (A.12)

The thermal expansion coefficient for the three principal directions in the crystal, see
Figure A.1, is the same and equals the one given in (A.12). In shear direction, no thermal
expansion occurs.

A.2.3 Thermal conductivity

In general, the thermal conductivity k of single-crystal silicon exhibits a temperature de-
pendence characteristic of single-crystal dielectric materials (Hull, 1999). Furthermore,
there is no directional dependence for this quantity. The value of k listed for a tempera-
ture of 300 K equals

k = 156 W m−1 K−1. (A.13)
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A.2.4 Temperature influence on elastic constants

The temperature effects on the second-order elastic constants Ci j of silicon have been
investigated by McSkimin (1953) in the range of 77–300 K, by Hall (1967) in the range
4.2–310 K and by Burenkov and Nikanorov (1974) up to 1273 K. From these references,
it is found that between 150 and 1000 K, the decrease of Ci j is fairly linear with increasing
temperature. Rates reported in literature (Burenkov and Nikanorov, 1974) are:

1

C11

dC11

dT
= −9.3 · 10−5 K−1, (A.14)

1

C12

dC12

dT
= −9.8 · 10−5 K−1, (A.15)

1

C44

dC44

dT
=

{

−1.0 · 10−4 K−1,

−7.3 · 10−5 K−1.
(A.16)

For constant C44, two different measurements have been made, which is the reason that
two values are listed in (A.16).

Information on the effect of temperature on third-order stiffness (see Table A.2) is frag-
mentary and not measured accurately. General trend is that the values increase (become
less negative) for increasing temperature (Every and McCurdy, 1992). However, when
considered in relation to the measurement errors, the effect is relatively small.

A.3 Manufacturing techniques

Manufacturing processes for microstructures bear a similarity to conventional machin-
ing in the sense that the objective is to precisely define arbitrary features in or on a block
of material. However, some important differences are the following. Firstly, microma-
chining is a parallel or batch process in which dozens to tens of thousands of identical
elements are fabricated simultaneously on the same wafer. Furthermore, in some pro-
cesses, dozens of wafers are processed at the same time. Another key difference is the
characteristic feature dimension, which is in the order of one micrometer for microstruc-
tures. This is one to two orders of magnitude smaller than what can be achieved by
conventional machining techniques.

From the mechanical and thermal properties, discussed in the previous sections, it has
become clear that high-quality single-crystal silicon, forms a promising material for mi-
crodevices. Although silicon is an intrinsically strong material, the actual properties of
a particular mechanical component strongly depend on the crystallographic orientation
and geometry, the number and size of surface, edge and bulk imperfections, and the
stresses introduced and accumulated during growth, polishing and subsequent process-
ing. Proper accounting for these conditions will result in high-quality mechanical com-
ponents with accurately known mechanical properties.

Usually, a combination of depositioning, patterning and etching steps is repeated until
completion of the microstructure is achieved. For an overview of the wide variety of
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manufacturing techniques, the reader is referred to Petersen (1982), Senturia (2001),
Maluf and Williams (2004) and Allen (2005).

A.4 Effect of third-order elastic constants

As already indicated in Section A.1.2, nonlinear material effects in silicon are both
physical and geometrical of nature. The material presented in this section is based
on Kaplan (1931), Birch (1947), Hearmon (1953), Seeger and Buck (1960), Brugger
(1964), Zarembo and Krasil’nikov (1971), Hiki (1981), Every and McCurdy (1992),
and Kim and Sachse (2000). In Sections A.4.1 and A.4.2, the difference between linear
and nonlinear elasticity theory will be explained. Finally, in Section A.4.3, the nonlinear
Young’s modulus will be derived for the case of homogeneous uni-axial loading.

A.4.1 Linear elasticity

As has become clear from Appendix A.1.2, the three-dimensional relation between stress
and strain of an elastic body is given by the generalised Hooke’s law (A.1), containing
second-order tensors σi j and εkl . The strain tensor contains elements, related to the par-
tial derivatives of displacements ui, (i = 1, 2, 3) of material points with respect to their
position vector xi, (i = 1, 2, 3). In linear elasticity theory, the so-called infinitesimal
linear strain tensor (see Hiki, 1981; Sadd, 2005) is used, which is the linear part of the
Green-Lagrange strain tensor E (which will be discussed in the next section). Its compo-
nents are given by

εi j =
1

2

(
∂ui

∂x j

+
∂u j

∂xi

)

. (A.17)

Only linear terms are present in (A.17), as displacement gradients are assumed to be
infinitesimally small. Therefore, terms containing products of deformation gradients do
not appear. When an elastic body is deformed, the work dW done per unit volume by the
external forces and the energy U stored per unit volume are given by

dW = σi jdεi j, (A.18)

U =
1

2
Ci jklεi jεkl . (A.19)

A.4.2 Nonlinear elasticity

In non-linear elasticity, displacements are no longer assumed to be infinitesimally small.
As a result, non-linear terms show up in the strain tensor, as can be seen in the compo-
nents of the non-linear Green-Lagrange strain tensor E:

ηi j =
1

2

(
∂ui

∂a j
+

∂u j

∂ai
+

∂uk

∂ai

∂uk

∂a j

)

, (A.20)
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where ai denotes the position before deformation (undeformed, or natural state). The
Green-Lagrange strain is referred to the undeformed state, whereas the stress σi j, men-
tioned before, is defined as the force per unit area in the deformed body. As a result,
(A.18) no longer holds when the higher-order effect is taken into account. Due to this
difference, a different tensor quantity, the so-called thermodynamic tension, has to be
introduced, which is related to the engineering stress σi j. Hence the work done per unit
volume becomes

dW = ti jdηi j, (A.21)

with the thermodynamic tension ti j related to the engineering stress as follows

ti j = J
∂ai

∂xk

∂a j

∂xl

σkl , (A.22)

where xi denotes the position after deformation and J is the dilatation factor or the deter-
minant of a 3 × 3 matrix containing the elements

Ji j =
∂xi

∂a j
= δi jλi (i not summed). (A.23)

In (A.23), λi is the principal stretch which can be related to the principal Lagrangian
strains ηi (ηi = ηi jδi j, i = 1, 2, 3) by

ηi =
1

2
(λ2

i − 1). (A.24)

Various thermodynamic functions can be defined by choosing either ti j or ηi j and T
(temperature) or S (entropy) as independent variables. For instance, the internal energy
U(ηi j , S) and the Helmholtz free energy F (ηi j, T) = U − TS are given in differential
form as (see Brugger, 1964; Hiki, 1981)

dU =
1

ρa

ti jdηi j + TdS, (A.25)

dF =
1

ρa
ti jdηi j − SdT, (A.26)

where U , F and S are per unit mass of the material and ρa is the material density in
natural state.

According to Brugger (1964), the formal thermodynamic definition of adiabatic (S =
constant) and isothermal (T = constant) elastic constants of second order is

CS
i jkl =

(
∂ti j

∂ηkl

)

S

= ρa

(
∂2U

∂ηi j∂ηkl

)

S

, (A.27)

CT
i jkl =

(
∂ti j

∂ηkl

)

T

= ρa

(
∂2F

∂ηi j∂ηkl

)

T

. (A.28)
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Upon ignoring the difference between adiabatic and isothermal conditions, these con-
stants can be regarded as the same constants that appear in linear elasticity (A.1). The
expressions (A.27) and (A.28) can be extended to define higher (nth) order elastic con-
stants:

CS
i jklmn... = ρa

(
∂nU

∂ηi j∂ηkl∂ηmn . . .

)

S

, (A.29)

CT
i jklmn... = ρa

(
∂nF

∂ηi j∂ηkl∂ηmn . . .

)

T

. (A.30)

By combining (A.27) and (A.29), the third-order adiabatic stiffness can also be written as

CS
i jklmn = ρa

(
∂3U

∂ηi j∂ηkl∂ηmn

)

S

=

(

∂CS
i jkl

∂ηmn

)

S

, (A.31)

which means that the third-order elastic constant describes the strain dependence of the
second order stiffness constant. By using the expressions (A.27)–(A.30), the internal
energy U and the free energy F of an elastic body can be expanded in a Taylor series
about the natural state:

ρaU(ηi j , S) = ρaU(0, S) +
1

2
CS

i jklηi jηkl +
1

6
CS

i jklmnηi jηklηmn + . . . , (A.32)

ρaF (ηi j, T) = ρaF (0, T) +
1

2
CT

i jklηi jηkl +
1

6
CT

i jklmnηi jηklηmn + . . . . (A.33)

Furthermore, the thermodynamic stresses ta
i j can be related to the natural state

by (Kim and Sachse, 2000):

ta
i j = ρa

(
∂U
∂ηi j

)

S

= ρa

(
∂F
∂ηi j

)

T

. (A.34)

In general, the fourth-order tensor, containing the second-order elastic constants Ci jkl,
has 81 (= 34) components and the sixth-order tensor containing the third-order con-
stants Ci jklmn has 729 (= 36) distinct components. However, due for materials with a
cubic crystal structure, the number of constants reduces to 3 second-order constants C11,
C12 and C44 and 6 third-order constants C111, C112, C123, C144, C166 and C456 (see for in-
stance Hearmon, 1961; Every and McCurdy, 1992). Furthermore, for cubic crystals, the
constants obey the following symmetry relations for the second-order constants:

C11 = C22 = C33, (A.35a)

C12 = C21 = C13 = C31 = C23 = C32, (A.35b)

C44 = C55 = C66, (A.35c)

and for the third-order constants:

C111 = C222 = C333, (A.36a)

C112 = C113 = C122 = C133 = C223 = C233, (A.36b)
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C123 = C123, (A.36c)

C144 = C255 = C366, (A.36d)

C166 = C155 = C244 = C266 = C344 = C355, (A.36e)

C456 = C456. (A.36f)

A.4.3 Nonlinear Young’s modulus for homogeneous uni-axial loading

For the case of homogeneous uni-axial loading, the nonlinear Young’s modulus can
be calculated using the theory from Section (A.4.2), see, for instance Kim and Sachse
(2000).

Consider a specimen that is loaded in the 1-direction only. A principal strain η1 = η11

results, yielding a principal stretch λ1, see also (A.23)–(A.24). The principal strains in the
other two directions equals η2 = η22 = η33 = η3, with corresponding principal stretch
λ2 = λ3.

Rewrite (A.22) to find σi j in terms of tkl . Next, use (A.23), substitute (A.32) into the
expression for ti j (A.34) and use this in the equation found forσi j to obtain the expression
for stressσ x

i j at a deformed point x in terms of the engineering strains:

σ x
i j =

1

λ1λ
2
2

λiλ j

(

Ci jklηkl +
1

2
Ci jklmnηklηmn

)

. (A.37)

For uni-axial loading, only the principal stress in 1-direction is nonzero: σ1 = σ11 = σ

andσ22 = σ33 = 0. Using this in (A.37), the following is obtained:

σ1 = σ =
λ1

λ2
2

(

C1kηk +
1

2
C1klηkηl

)

, (A.38a)

σ2 = 0 =
1

λ1

(

C2kηk +
1

2
C2klηkηl

)

, (A.38b)

σ3 = 0 =
1

λ1

(

C3kηk +
1

2
C3klηkηl

)

. (A.38c)

By using λi =
√

1 + 2ηi (A.24) and η2 = η3, (A.38a)–(A.38c) can be rewritten to two
nonlinear equations

√
1 + 2η1

1 + 2η2

{

C11η1 + 2C12η2 +
1

2

[
C111η

2
1 + C112(2η2

2 + 4η1η2) + 2C123η
2
2

]
}

= σ ,

(A.39a)

C12η1 + (C11 + C12)η2 +
1

2

[
C111η

2
2 + C112(η

2
1 + 3η2

2 + 2η1η2) + 2C123η1η2

]
= 0,

(A.39b)

which have to be solved in order to obtain the relation between σ and η1:

σ = η1 (E0 + E1η1 + E2η
2
1 + E3η

3
1 + . . .)

︸ ︷︷ ︸

E(η1)

. (A.40)
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The term in brackets in (A.40) denotes the nonlinear Young’s modulus E(η1).
In Kim and Sachse (2000), a power series solution for (A.40), containing terms up to
E2 is obtained by solving (A.39) symbolically. The expressions are:

E0 = C11 − 2ν0C12, (A.41a)

E1 = E0(1 + 2ν0) + C12

(
h3

ν0
− 3h1 − 6ν0h1 + 3ν0h2 − 2ν2

0h3

)
, (A.41b)

E2 = E0(2ν0 + 4ν2
0 + 2ν0g1 − 1

2
) + C12

[
( 1
ν0

+ 2)(h3 − 3ν0h1 − 6ν2
0h1

+ 3ν2
0h2 − 2ν3

0h3)− 2ν0(2h1g1 − h2g1 + g2)
]
, (A.41c)

with help variables

ν0 =
C12

C11 + C12
, (A.42a)

h1 =
C112

2C12
, h2 =

C112 + C123

C11 + C12
, h3 =

C111 + 3C112

2(C11 + C12)
, (A.42b)

g1 = h1 − h2 + ν0h3, g2 = h2
2 − h1h2 + ν0h3(2h1 − 3h2) + 2ν2

0h2
3. (A.42c)

The expression for E0 in (A.41a) corresponds with the linear Young’s modulus in [100]
direction, see (A.8).

Alternatively, (A.39) can be solved numerically for η1 and η2 as a function of σ , using the
second- and third-order constants for silicon from Tables A.1 and A.2. The result of this
numerical calculation is depicted in Figure A.4.
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Figure A.4 / Nonlinear Young’s modulus for uni-axial loading.

A numerical fit to the resulting curve gives the numerical values for the constants E0–E3

in (A.40). These are listed in Table A.3, together with the values from Kim and Sachse
(2000), using (A.41a)–(A.42c). Excellent agreement is found.
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Table A.3 / Numerical values of the coefficients in (A.40) obtained from Kim and Sachse
(2000) and by numerical calculation. Values are in GPa.

Coefficient Kim and Sachse (2000) Numerical fit

E0 130.02 130.02

E1 101.77 101.77

E2 −738.18 −738.18

E3 – −647.45



APPENDIX B

Some aspects of the clamped-clamped
beam MEMS resonator models

Abstract / In this appendix, various aspects of the models for the clamped-clamped beam MEMS
resonator are described. Their derivation using Hamilton’s principle is detailed and basis func-
tions for the Galerkin discretisation are derived. Finally, expressions for the multi-mode Galerkin
discretisations of models II and III are presented.

B.1 Beam theory

In Chapter 5, two different beam theories are used to represent the kinematics of defor-
mation for the clamped-clamped beam MEMS resonator. These are the Euler-Bernoulli
beam theory (Weaver et al., 1990; Rao, 1995; Meirovitch, 2001) and the Timoshenko
beam theory (Timoshenko, 1921, 1922). In order to describe the kinematics according
to these two theories, consider Figure B.1, in which a part of an undeformed beam is
depicted. The coordinate system is the same as used in Figure 5.1. The x-coordinate is
taken along the length of the beam. The y-direction is in the thickness direction and z
is in transverse (width) direction. In general, in beam theory the displacements (u, v, w)
along the directions (x, y, z) are only functions of x and z, see Wang et al. (2000) and the
assumptions in Section 5.2.1. Furthermore, the displacement v equals zero.

For the Euler-Bernoulli beam theory, see Figure B.1, the displacement fields u and w are
the following:

u(x, z, t) = u0(x, t) − z
∂w0(x, t)

∂x
, (B.1a)

w(x, z, t) = w0(x, t), (B.1b)

where u0 and w0 denote the longitudinal and transverse displacement of a point (x, 0)
on the midplane (z = 0) of the beam, respectively. For the sake of convenience the

205
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x, u0
y, v0

z, w0

(u0, w0)

(u0, w0)
(u, w)

(u, w)

ϕ

− dw0

dx

− dw0

dx

− dw0

dx

u0

x

z

Undeformed

Euleri-Bernoulli

Timoshenko

Figure B.1 / Kinematics according to Euler-Bernoulli and Timoshenko beam theory.

arguments of the fields u0 and w0 are omitted. The displacement field (B.1) implies that
straight lines, normal to the midplane before deformation remain straight and normal to
the midplane after deformation, see also Figure B.1.

According to Timoshenko beam theory, the displacement fields u and w are given by:

u(x, z, t) = u0(x, t) + zϕ(x, t), (B.2a)

w(x, z, t) = w0(x, t), (B.2b)

where u0 and w0 denote the same as in the Euler-Bernoulli case, and whereϕ denotes the
rotation of the cross section or the shear deformation field, see Figure B.1. In Timoshenko
beam theory (B.2), the normality assumption for lines perpendicular to the midplane of
the beam is relaxed. Instead, a constant state of transverse shear strain (and therefore
constant shear stress) is assumed with respect to the width coordinate z. For this purpose,
shear correction factors are needed in Timoshenko beam theory, in order to compensate
for the error introduced by the constant shear stress assumption.

In the following section, the kinematics from the two beam theories will be used in the
derivation of the models for the clamped-clamped beam MEMS resonator.

B.2 Models for the clamped-clamped beamMEMS resonator

In this section, a detailed derivation of the three different MEMS resonator models will
be presented. The models contain different effects, as described in Table 5.2.
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B.2.1 Strain-displacement relations

Models I and II

Models I and II are are based on Euler-Bernoulli beam theory. The strain-displacement
relations can be found by using the displacement fields (B.1) in the components of
the Green-Lagrange strain tensor (4.1). Furthermore, in Euler-Bernoulli beam theory,
only the axial strain component ηxx is assumed to be present. As a result, the strain-
displacement relations, expressed in the coordinates (x, y, z) as shown in Figure B.1, are
the following:

ηxx =
∂u0

∂x
+

1

2

(
∂w0

∂x

)2

− z
∂2w0

∂x2
, (B.3a)

ηyy = ηzz = γxy = γyz = γxz = 0. (B.3b)

Model III

Model III is based on Timoshenko beam theory, which includes, next to axial strain ηxx,
also transverse shear strain γxz. Using the displacement fields (B.2) for the components
of the Green-Lagrange strain tensor yields:

ηxx =
∂u0

∂x
+

1

2

(
∂w0

∂x

)2

+ z
∂ϕ
∂x

, (B.4a)

γxz = ϕ+
∂w0

∂x
, (B.4b)

ηyy = ηzz = γxy = γyz = 0. (B.4c)

B.2.2 Hamilton’s principle

In order to apply Hamilton’s principle (4.6) for deriving the partial differential equations
in the different models, the expressions for the variation of the kinetic energy T , the
internal (or strain) energy Uin and the external work Wex have to be evaluated, see (4.7)–
(4.9). For all three models, the expression for the external work equals:

δWex = −
∫ l

0
qe(x, t)δw0 dx, (B.5)

where qe(x, t) is the distributed electrostatic load, acting on the beam. An expression for
qe(x, t) will be derived in Section B.2.5.

Models I and II

For models I and II, based on Euler-Bernoulli beam theory, the variation of the kinetic
energy and the internal energy can be evaluated using (B.1) and (B.3). For the kinetic
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energy, this yields:

δT =
∫

V

(

ρ
∂u0

∂t
δ

∂u0

∂t
+

∂w0

∂t
δ

∂w0

∂t

)

dV

=
∫ l

0

(

ρA
∂u0

∂t
δ

∂u0

∂t
+ ρI

∂2w0

∂x∂t
δ

∂2w0

∂x∂t
+ ρA

∂w0

∂t
δ

∂w0

∂t

)

dx, (B.6)

where the first and third term in on the right-hand side of (B.6) denote axial and trans-
verse inertia, and the second term denotes rotary inertia. The internal energy becomes:

δUin =
∫

V
σxxδηxx dV

=
∫ l

0

{

Nxx

(

δ
∂u0

∂x
+

∂w0

∂x
δ

∂w0

∂x

)

+ Mxxδ
∂2w0

∂x2

}

dx, (B.7)

where the axial force Nxx and the bending moment Mxx are given by

Nxx =
∫

A
σxx dA, and Mxx = −

∫

A
σxxz dA. (B.8)

By application of Hamilton’s principle, using (B.5)–(B.8), the PDEs describing the beam,
and the associated boundary conditions can be derived. Partial integration is applied to
relieve any spatial or temporal derivative of u0 or w0 from variation, see for instance Reddy
(2007). Furthermore, the fundamental lemma of variational calculus is applied to derive
the following PDEs for variations in δu0 and δw0, respectively:

δu0 :
∂Nxx

∂x
− ρA

∂2u0

∂t2
= 0, (B.9a)

δw0 : −∂2Mxx

∂x2
+

∂
∂x

(

Nxx
∂w0

∂x

)

+ qe + ρI
∂4w0

∂x2∂t2
− ρA

∂2w0

∂t2
= 0. (B.9b)

The associated natural (force) and geometric boundary conditions for (B.9) also follow
from the derivation. These equal, respectively:

Nxx = 0 or u0 = 0

∂Mxx

∂x
− Nxx

∂w0

∂x
= 0 or w0 = 0

Mxx = 0 or
∂w0

∂x
= 0







at x = 0, l. (B.10)

Since the clamped-clamped beam MEMS resonator has fixed ends, the geometric bound-
ary conditions will be used, see (5.2).

Model III

For the model based on Timoshenko beam theory, the variation of the kinetic energy
becomes:

δT =
∫ l

0

(

ρA
∂u0

∂t
δ

∂u0

∂t
+ ρI

∂ϕ
∂t
δ

∂ϕ
∂t

+ ρA
∂w0

∂t
δ

∂w0

∂t

)

dx, (B.11)
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where, similar to the Euler-Bernoulli case, the first and third term in on the right-hand
side of (B.6) denote axial and transverse inertia, and the second term denotes rotary iner-
tia. The internal energy becomes:

δUin =
∫

V

(
σxxδηxx + τxzδγxz

)
dV

=
∫ l

0

{

Nxx

(

δ
∂u0

∂x
+

∂w0

∂x
δ

∂w0

∂x

)

+ Mxxδ
∂ϕ
∂x

+ Qx

(

δϕ+ δ
∂2w0

∂x2

)}

dx, (B.12)

where the axial force Nxx, the bending moment Mxx and the transverse shear force Qx

are given by:

Nxx =
∫

A
σxx dA, Mxx =

∫

A
σxxz dA, and Qx = ks

∫

A
τxz dA. (B.13)

In the expression for Qx in (B.13), ks denotes the shear correction factor, given in (5.11).

Similar to the approach for the Euler-Bernoulli case (models I and II), Hamilton’s princi-
ple is applied to derive the PDEs and the boundary conditions. The PDEs, for variations
δu0, δϕ and δw0 are given by, respectively:

δu0 :
∂Nxx

∂x
− ρA

∂2u0

∂t2
= 0, (B.14a)

δϕ :
∂Mxx

∂x
− Qx − ρI

∂2ϕ

∂t2
= 0 (B.14b)

δw0 :
∂Qx

∂x
+

∂
∂x

(

Nxx
∂w0

∂x

)

+ qe − ρA
∂2w0

∂t2
= 0. (B.14c)

The associated natural (force) and geometric boundary conditions for (B.14) also follow
from the derivation.

Nxx = 0 or u0 = 0

Mxx = 0 or ϕ = 0

Qx + Nxx
∂w0

∂x
= 0 or w0 = 0







at x = 0, l. (B.15)

Since the clamped-clamped beam MEMS resonator has fixed ends, the geometric bound-
ary conditions will be used, see (5.12). Other references, dealing on the derivation of
the equations of motion for a Timoshenko beam are, for instance, Traill-Nash and Collar
(1953), Kounadis (1980), Reddy and Singh (1981) and Abramovich and Elishakoff (1990).

B.2.3 Inclusion of the constitutive equations

Now that the general PDEs have been derived for all three models, the axial force Nxx,
the bending moment Mxx and the shear force Qx (for model III) have to be related to the
displacement field through the expressions for the strain and the constitutive equations.
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Furthermore, as indicated in the assumptions in Section 5.2.1, axial inertia is neglected

for the models. This implies that the terms ρA ∂2u0

∂t2 vanish in (B.9a) and (B.14a), such that
∂Nxx

∂x
= 0 remains. This implies that Nxx = constant. By using this relation, Nxx can be

solved explicitly by integrating over the length of the beam:
∫ l

0
Nxx dx =

∫ l

0

∫

A
σxx dA dx. (B.16)

Evaluation of (B.16) yields

Nxx =
1

l

∫ l

0

∫

A
σxx dA dx + N0, (B.17)

where N0 denotes the initial axial tension in the beam. In this way, by means of (B.17),
the axial force is accounted for in each of the three models.

In the following, the inclusion of the constitutive equations in each of the three models
will be described.

Model I

In the first model, nonlinear elasticity is taken into account. For this purpose, constitutive
equation (4.13):

σxx = E(ηxx)ηxx = (E0 + E1ηxx + E2η
2
xx)ηxx, (B.18)

is used, together with (B.3). Upon evaluating η2
xx and η3

xx in (B.18), terms containing
products with ∂u0

∂x
will be neglected, since the in-plane displacement u0 is two to three

orders of magnitude smaller than the transverse displacement w0, see Section 5.2.1. This
assumption has been verified by finite element simulations using Comsol Multiphysics.
The expressions for the axial force and bending moment (B.8) evaluate to:

Nxx = E0 A

[
∂u0

∂x
+

1

2

(
∂w0

∂x

)2]

+
E1 A

4

(
∂w0

∂x

)4

+ E1 I

(
∂2w0

∂x2

)2

+
E2 A

8

(
∂w0

∂x

)6

+
3E2 I

2

(
∂w0

∂x

)2(∂2w0

∂x2

)2

, (B.19a)

Mxx =

[

E0 I + E1 I

(
∂w0

∂x

)2

+
3E2 I

4

(
∂w0

∂x

)4

+
9E2 Ih2

20

(
∂2w0

∂x2

)2]∂2w0

∂x2
. (B.19b)

Using (B.19a) in (B.17) causes the term E0 A ∂u0

∂x
in the right-hand side of (B.19a) to vanish,

due to the boundary conditions u0 = 0 at x = 0, l. This results in:

Nxx =
∫ l

0

{

E0 A

2l

(
∂w0

∂x

)2

+
E1 A

4l

(
∂w0

∂x

)4

+
E1 I

l

(
∂2w0

∂x2

)2

+
E2 A

8l

(
∂w0

∂x

)6

+
3E2 I

2l

(
∂w0

∂x

)2(∂2w0

∂x2

)2
}

dx + N0. (B.20)
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Next, since Nxx = constant, (B.9b) evaluates to:

ρA
∂2w0

∂t2
− ρI

∂4w0

∂x2∂t2
+

∂2 Mxx

∂x2
− Nxx

∂2w0

∂x2
= qe. (B.21)

In order to arrive at the final PDE for model I, see (5.1) in Section 5.2.2, (B.19b) and (B.20)
are used in (B.21). The boundary conditions are given by (5.2). The expression for the
distributed electrostatic load will be derived in Appendix B.2.5.

Model II

Model II is based on linear elastic material behaviour, including the effects of thermal
expansion. For this purpose, (4.21) can be written as:

ηxx = S11σxx +αθ, (B.22a)

ηyy = ηzz = S12σxx +αθ, (B.22b)

where θ denotes the temperature difference θ = T − T0 with respect to a reference tem-
perature T0. Although ηyy and ηzz are assumed to be zero according to Euler-Bernoulli
beam theory, their expressions will be taken into account for the derivation of the heat
equation, see Appendix B.2.4. Next, (B.22a) is rewritten as:

σxx =
1

S11

(ηxx −αθ), (B.23)

where 1
S11

equals the Young’s modulus of silicon in [100]-direction, see (A.8). For the

sake of convenience, E = 1
S11

will be used in the following. By using (B.23), Nxx and Mxx

from (B.8) can be evaluated as:

Nxx = EA

[
∂u0

∂x
+

1

2

(
∂w0

∂x

)2]

− NT, (B.24a)

Mxx = EI
∂2w0

∂x2
+ MT, (B.24b)

where the thermoelastic moment MT and the thermoelastic axial force NT have been
given in (5.7) in Section 5.2.2. Substitution of (B.24a) into (B.17) leads to:

Nxx =
EA

2l

∫ l

0

(
∂w0

∂x

)2

dx + N0 −
1

l

∫ l

0
NT dx, (B.25)

which, together with (B.24b), is used in (B.21) (which is the same for models I and II),
to arrive at the final PDE for model II. The resulting equation has already been given
in (5.6). Corresponding boundary conditions are given in (5.2).
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Model III

Similar to model II, model III is based on linear elastic material behaviour and includes
the effects of thermal expansion. The constitutive equations can be written as:

ηxx = S11σxx +αθ, (B.26a)

ηyy = ηzz = S12σxx +αθ, (B.26b)

γxz = S44τxz. (B.26c)

Again, (B.26a) is rewritten to the form (B.23), where E = 1
S11

is used. Furthermore,
(B.26c) is rewritten to

τxz =
1

S44

γxz, (B.27)

where 1
S44

denotes the shear modulus G, which will be used in the following. By us-
ing (B.23) and (B.27), Nxx, Mxx and Qx from (B.13) can be evaluated as:

Nxx = EA

[
∂u0

∂x
+

1

2

(
∂w0

∂x

)2]

− NT, (B.28a)

Mxx = EI
∂ϕ
∂x

− MT, (B.28b)

Qx = ksGA

(

ϕ+
∂w0

∂x

)

, (B.28c)

where the thermoelasticmoment MT and the thermoelastic axial force NT are the same as
for model II, see (5.7). Note that (B.28a) is the same as (B.24a). Therefore, substitution
of (B.28a) into (B.17) yields also the same result, see (B.25). As a last step, substitu-
tion of (B.25), (B.28b) and (B.28c) into (B.14b) and (B.14c) yields the final PDEs as given
in (5.10). The corresponding boundary conditions are given in (5.12).

B.2.4 The heat equation

In models II and III, thermoelastic damping is included. For this purpose, the heat equa-
tion, for which the general form is given in (4.23), is used. For the models considered, it
is assumed that the heat conduction only takes place in z-direction. This gives:

ρcp
∂θ
∂t

= k
∂2θ

∂z2
+ T0β

∂e

∂t
, (B.29)

where e denotes the dilatation, given by (see also (4.24)):

e = ηxx + ηyy + ηzz. (B.30)

In the following, the effect of the shear strain γxz on the dilatation according to model III
is neglected. Therefore, the expression for the dilatation according to models II and III
is the same and can be derived by substituting (B.22) or (B.26) into (B.30):

e = (S11 + 2S12)σxx + 3αθ. (B.31)
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Next, (B.23) is used in (B.31) to arrive at:

e =
S11 + 2S12

S11

(ηxx −αθ) + 3αθ. (B.32)

By using (B.32) and the relation between the thermal expansion coefficient α and the
thermal modulus β, given in (4.22), the second term on the right-hand side of (B.29) can
be evaluated as:

T0β
∂e

∂t
= − T0α

S11 + 2S12

∂
∂t

(
S11 + 2S12

S11
(ηxx −αθ) + 3αθ

)

= −T0α

S11

∂ηxx

∂t
− 2

T0α
2

S11

(
S11 − S12

S11 + 2S12

)
∂θ
∂t

. (B.33)

Next, (A.8) and (A.9) are used to rewrite the terms with S11 and S12 to terms containing
the Young’s modulus E and Poisson’s ratio ν in the [100]-direction. Substitution of the
resulting expression into (B.29) yields:

(

ρcp + 2T0α
2 E(1 + ν)

1 − 2ν

)
∂θ
∂t

= k
∂2θ

∂z2
− T0αE

∂ηxx

∂t
. (B.34)

For silicon, using thematerial parameters listed in Table 5.5, it can be observed thatρcp ≫
2T0α

2 E(1+ν)
1−2ν

. Therefore, the second term on the left-hand side of (B.34) is omitted. The
resulting equation equals:

ρcp
∂θ
∂t

= k
∂2θ

∂z2
− T0αE

∂ηxx

∂t
. (B.35)

For model II, based on Euler-Bernoulli beam theory, (B.3a) is used in (B.35) to find the
final form of the heat equation, see (5.8). Additionally, since the PDE for the axial field
u0 is assumed to be stationary, the term ∂

∂t
( ∂u0

∂x
) is omitted. The boundary conditions for

this equation correspond to an insulated (zero heat flux) top and bottom boundary of the
beam and are given in (5.9).

For model III, based on Timoshenko beam theory, a similar approach is utilised. In this
case, (B.4a) is used in (B.35) to find the heat equation, see (5.13). Additionally, stationarity
of the PDE for the axial field is used to omit the term ∂

∂t
( ∂u0

∂x
). The boundary conditions

for the resulting equation are the same as for model II and are given in (5.9).

B.2.5 Distributed electrostatic load

The distributed electrostatic load qe can be determined as the electrostatic force per unit
length, using (4.27) and the total capacitance (including fringing fields, see Figure 4.4) be-
tween the beam and the electrodes. The effect of fringing fields is accounted for by includ-
ing first-order correction terms to the parallel plate capacitance according to Osterberg
(1995) and Osterberg and Senturia (1997). These authors base their derivation on the
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classical conformal mapping theory presented in Palmer (1937). In this way, the capac-
itances per unit length between the two electrodes and the beam become (see also Fig-
ure 5.1):

C1 =
ǫ0b

d1 − w0

[

1 +
2(d1 − w0)

πb
+

2(d1 − w0)

πb
ln

(
πb

d1 − w0

)]

, (B.36a)

C2 =
ǫ0b

d2 + w0

[

1 +
2(d2 + w0)

πb
+

2(d2 + w0)

πb
ln

(
πb

d2 + w0

)]

. (B.36b)

A voltage V1(t) is applied over electrode gap 1 and a voltage V2 is applied over electrode
gap 2, see Figure 5.1(a) and the expressions in (5.4). Therefore, by using (4.27), the dis-
tributed electrostatic load qe can be evaluated as:

qe =
1

2
V2

1 (t)
dC1

dw0

+
1

2
V2

2

dC2

dw0

=
ǫ0bV2

1 (t)

2(d1 − w0)2

(

1 +
2

π

d1 − w0

b

)

− ǫ0bV2
2

2(d2 + w0)2

(

1 +
2

π

d2 + w0

b

)

. (B.37)

In literature (Osterberg and Senturia, 1997), often the approximation 2
π
≈ 0.65 is used.

This has also been done for the expression for qe used for the three models in Chapter 5,
see (5.3).

B.3 Basis functions for Galerkin discretisation

The basis functions for Galerkin discretisation, described in Tables 5.3 and 5.4 in Sec-
tion 5.2.4 are derived from the linear homogeneous versions of the respective PDEs.
In the following sections, first the basis functions for the mechanical part of the Euler-
Bernoulli and Timoshenko beam will be described. Finally, the derivation of the basis
functions for the thermal field is presented.

B.3.1 Basis functions for Euler-Bernoulli beam

Basis functions WE,i(x) for the transverse displacement field for the Euler-Bernoulli
beam are determined for the linear, undamped and uncoupled versions of (5.17) (model
I) and (5.19) (model II). For this purpose, linear, undamped eigenmodes, found
from Blevins (1979) are used. The non-dimensional modeshapes, which, a priori, sat-
isfy the boundary conditions (5.18) are given by:

WE,i(x) = cosh λix − cos λix −σi(sinh λix − sin λix), (B.38)

where the coefficient in (B.38) is given by

σi =
cosh λi − cos λi

sinh λi − sin λi
(B.39)

and where λi are the roots of the frequency equation:

cos λ cosh λ− 1 = 0. (B.40)
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B.3.2 Basis functions for the Timoshenko beam

As basis functions for the displacement field of the Timoshenko beam (model III), eigen-
mode pairs WT,i(x), ΦT,i(x) are used. These non-dimensional modeshapes are deter-
mined from the linear, undamped and homogeneous version (with σ0 = 0) of (5.22) us-
ing a separation of variables method. The approach follows a derivation for dimensional
modeshapes described in Han et al. (1999). The homogeneous, linear version of (5.22),
without thermoelastic coupling and midplane stretching terms reads:

∂2w0

∂t2
− ks

(
1

cl

∂ϕ
∂x

+
∂2w0

∂x2

)

= 0 (B.41a)

cr
∂2ϕ

∂t2
− ∂2ϕ

∂x2
+ kscs

(

ϕ+ cl
∂w0

∂x

)

= 0, (B.41b)

Separation of variables, that is:

w0(x, t) = W(x)T(t), and ϕ(x, t) = Φ(x)T(t), (B.42)

is applied to (B.41) to arrive at:

W(x)
d2T(t)

dt2
= kscs

(
1

cl

dΦ(x)

dx
+

d2W(x)

dx2

)

T(t), (B.43a)

crΦ(x)
d2T(t)

dt2
=

[
d2Φ(x)

dx2
− kscs

(

Φ(x) + cl
dW(x)

dx

)]

T(t). (B.43b)

Here, W(x) and Φ(x) denote the spatially dependent transverse deflection and shear
deformation fields and T(t) denotes the time-dependency. Both w0(x, t) andϕ(x, t) are
assumed to have the same time-dependency. Separation of the temporal and spatial parts
of leads to:

−
d2T(t)

dt2

T(t)
= −

kscs

(
1
cl

dΦ(x)
dx

+ d2W(x)
dx2

)

W(x)
, (B.44a)

−
d2T(t)

dt2

T(t)
= −

d2Φ(x)
dx2 − kscs

(
Φ(x) + cl

dW(x)
dx

)

crΦ(x)
. (B.44b)

The left-hand side of (B.44) is a function of time t, whereas the right-hand side is a func-
tion of x. This is only possible if both sides are equal the so-called separation constant,
which will be indicated byω2. Using this separation constant, (B.44) can be written as:

d2T(t)

dt2
+ω2T(t) = 0, (B.45a)

ω2W(x) + kscs

(
1

cl

dΦ(x)

dx
+

d2W(x)

dx2

)

= 0, (B.45b)

crω
2Φ(x) +

d2Φ(x)

dx2
− kscs

(

Φ(x) + cl
dW(x)

dx

)

= 0. (B.45c)
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The spatial equations (B.45b)–(B.45c) can be written in matrix notation as

[
kscs 0

0 1

] [d2W(x)
dx2

d2Φ(x)
dx2

]

+

[
0 kscs

cl

−kscscl 0

] [dW(x)
dx

dΦ(x)
dx

]

+

[
ω2 0
0 csω

2 − kscs

] [
W(x)
Φ(x)

]

=

[
0
0

]

.

(B.46)

Furthermore, the equations for W(x) and Φ(x) can be decoupled by writing (B.46) as:

d4W(x)

dx4
+

(

cr +
1

kscs

)

ω2 d2W(x)

dx2
−ω2W(x) +

cr

kscs
ω4W(x) = 0, (B.47a)

d4Φ(x)

dx4
+

(

cr +
1

kscs

)

ω2 d2Φ(x)

dx2
−ω2Φ(x) +

cr

kscs

ω4Φ(x) = 0. (B.47b)

Since these equations have the same form, solutions for W(x) and Φ(x) will have the
same form too, and will only differ by a constant:

[
W(x)
Φ(x)

]

= duerx, (B.48)

where r and u denote eigenvalues and eigenvectors that need to be determined, respec-
tively. Substitution of (B.48) into (B.47) yields

[
kscsr

2 +ω2 kscs

cl
r

−kscsclr r2 + crω
2 − kscs

]

u = 0. (B.49)

In order to have non-trivial solutions to (B.49), the determinant of the matrix has to be
zero. This gives the eigenvalues ri and eigenvectors ui:

ri = ±
√

−
(
cr + 1

kscs

)
ω2

2
± 1

2

√
(
cr + 1

kscs

)2
ω4 + 4

(
ω2 − cr

kscs
ω4
)

(B.50)

ui =

[ − kscs

cl
ri

kscsr
2
i +ω2

]

and ui =

[
r2

i + crω
2 − kscs

kscsclri

]

, (B.51)

From (B.50), it can be seen that two of the roots are always imaginary and that the
other two are either real or imaginary, depending on the value of ω. Define the non-

dimensional critical angular frequency ωc =
√

kscs

cr
. Then, the roots are imaginary if

ω > ωc and real if ω < ωc. From the non-dimensional parameters of the beam (5.16),
the nominal beam dimensions (see Table 5.1) and the beam parameters (see Table 5.5), it
follows that ωc = O(103). Therefore, for the first eight natural frequencies of the res-
onator considered, it holds thatω < ωc. In that case, the solution (B.48) can be written
as

[
W(x)
Φ(x)

]

=
4

∑
i=1

diuierix = d1u1e jax + d2u2e− jax + d3u3ebx + d4u4e−bx, (B.52)
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where

a =

√

(
cr + 1

kscs

)
ω2

2
+ 1

2

√
(
cr + 1

kscs

)2
ω4 + 4

(
ω2 − cr

kscs
ω4
)
, (B.53a)

b =

√

−
(
cr + 1

kscs

)
ω2

2
+ 1

2

√
(
cr + 1

kscs

)2
ω4 + 4

(
ω2 − cr

kscs
ω4
)
. (B.53b)

Solution (B.52) can also be written as
[

W(x)
Φ(x)

]

=

[
C1

D1

]

sin ax +

[
C2

D2

]

cos ax +

[
C3

D3

]

sinh bx +

[
C4

D4

]

cosh bx. (B.54)

Relations between coefficients Ci and Di, i = 1, 2, 3, 4 can be established by substitut-
ing (B.54) into (B.46). This gives

D1 = αC2, D2 = −αC1, (B.55a)

D3 = βC4, D4 = −βC3, (B.55b)

whereα and β are given by:

α =
(kscsa

2 −ω2)cl

kscsa
, β =

(kscsb
2 +ω2)cl

kscsb
. (B.56)

Next, the frequency equation can be derived by applying the boundary conditions (see
also (5.23))

W(0) = W(1) = 0, Φ(0) = Φ(1) = 0 (B.57)

to (B.54), using (B.55). This gives






0 1 0 1
sin a cos a sinh b cosh b
−α 0 −β 0

−α cos a α sin a −β cosh b −β sinh b













C1

C2

C3

C4







=







0
0
0
0







. (B.58)

In order to avoid trivial solutions, the determinant of the matrix in (B.58) has to be zero.
This yields the frequency equation

α2 sin a sinh b + 2αβ cos a cosh b −β2 sin a sinh b − 2αβ = 0, (B.59)

where (B.53) and (B.56) are used. Roots ωi of the frequency equation (B.59) have to
be calculated numerically. Furthermore, by establishing relations between the different
coefficients Ci, i = 1, 2, 3, 4, the modeshapes can be found. For eigenmode i, these are
denoted by WT,i(x) and ΦT,i(x) for the transverse deflection and the shear deformation,
respectively, and are given by:

WT,i(x) = cos aix − cosh bix −σi(sin aix −
αi

βi
sinh bix), (B.60a)

ΦT,i(x) = αi sin aix +βi sinh bix +αiσi(cos aix − cosh bix), (B.60b)

where coefficient σi is given by:

σi =
cos ai − cosh bi

sin ai − αi

βi
sinh bi

. (B.61)
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B.3.3 Basis functions for the heat equation

In this section, basis functions are derived for the non-dimensional heat equation for
models II and III. For this purpose, linear (without the mid-plane stretching term) ver-
sions of the heat equations are considered. For model II, the linear, non-dimensional
heat equation is given by (see also (5.20)):

∂θ
∂t

= ck
∂2θ

∂z2
+ c1,E z

∂3w0

∂x2∂t
, (B.62)

and for model III, the non-dimensional linear heat equation reads (see also (5.24):

∂θ
∂t

= ck
∂2θ

∂z2
− c1,T z

∂2ϕ

∂x∂t
. (B.63)

Since both equations are very similar in form, the derivation of the basis function will
only be presented for (B.62).

Similar to the approach used for deriving the basis functions for the Timoshenko beam,
the principle of separation of variables is applied here. Therefore, write the temperature
field θ(x, z, t) and beam deflection w0(x, t) as

θ(x, z, t) = Θ(x, z)T(t), and w0(x, t) = W(x)T(t), (B.64)

where Θ(x, z) and W(x) denote spatial fields and T(t) denotes a function of time. Ap-
ply (B.64) to (B.62) to obtain

Θ(x, z)
dT(t)

dt
= ck

d2Θ(x, z)

dz2
T(t) + c1,Ez

d2W(x)

dx2

dT(t)

dt
, (B.65)

which can be separated as follows:

−
dT(t)

dt

T(t)
= − ck

d2Θ(x,z)
dz2

Θ(x, z) − c1,Ez d2W(x)
dx2

. (B.66)

The left-hand side of (B.66) is a function of time and the right-hand side is a function of
spatial coordinates. Therefore, (B.66) can only hold if both sides are equal to a constant,
which will be called 1

τ
. Using this separation constant, from (B.66) it follows that

τ
dT(t)

dt
+ T(t) = 0, (B.67a)

τck
d2Θ(x, z)

dz2
+Θ(x, z) = zc1,E

d2W(x)

dx2
. (B.67b)

The solution to the spatial part (B.67b) consists of a homogeneous and a non-
homogeneous part and can be written as

Θ(x, z) = C1 sin az + C2 cos az + c1,Ez
d2W(x)

dx2
, (B.68)
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where

a =
1√
τck

. (B.69)

The constants C1 and C2 follow from the boundary conditions, which require that
dΘ(x,z)

dz
= 0 at z = ± 1

2
(see (5.21)). This yields the following system of equations:

[
a cos a

2
−a sin a

2

a cos a
2

a sin a
2

] [
C1

C2

]

= −c1,E
d2W(x)

dx2

[
1
1

]

. (B.70)

Direct solution of (B.70) yields

C1 = −c1,E
d2W(x)

dx2

1

a cos a
2

, C2 = 0. (B.71)

Therefore, the temperature profile becomes (using (B.71) in (B.68)):

Θ(x, z) = c1,E
d2W(x)

dx2

(

z − sin az

a cos a
2

)

. (B.72)

This solution is very similar to the one from Lifshitz and Roukes (2000). It can be seen
that the temperature profile depends on the beam deformation W(x) with respect to the
x-direction. For a different vibration mode W(x), a different temperature profile results.
Furthermore, note that division by a cos a

2
in the mode shape (B.72) is only allowed if

a cos a
2
6= 0 ⇔

a 6= 0 ∧ a 6= (1 + 2k)π , k = 0,±1,±2, . . . (B.73)

In order to complete the solution, an expression for a has to be found, such that the time
constant τ can be related to a, using (B.69). The characteristic constants from the system
of equations for the boundary conditions can be obtained by avoiding trivial solutions,
C1 = C2 = 0 in (B.70) by setting the determinant of the matrix in these equations to
zero. This gives

2a2 cos a
2

sin a
2

= 0 ⇔ (B.74)

sin a = 0 ∧ a 6= 0, (B.75)

whose solutions are a = kπ , k = 1, 2, . . . (k = 0 is no solution, since a = 0 is not
allowed). By combining these characteristic solutions with the modeshape (B.72) and
condition (B.73), the only solutions that are valid are

a = 2kπ , k = ±1,±2, . . . (B.76)

Using the solution for k = 1 from (B.76) in (B.72) results in the following basis function
for the thermal field of model II:

ΘE,i(x, z) = c1,E
d2WE,i(x)

dx2

(
z + 1

2π
sin 2πz

)
, (B.77)
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where it can be seen that basis function ΘE,i(x, z) depends on mechanical mode WE,i(x).
Furthermore, by using (B.69), the time constant τ can be found to equal:

τ =
1

4π 2ck

. (B.78)

The thermal time constant from the classical theory on thermoelastic damping, see Zener
(1937) and Zener (1938), equals (see (4.17)):

τ =
h2ρcp

π 2k
. (B.79)

In order to compare this value with the approach for the basis functions used in this
section, the thermal time constant has also been derived using the approach of (B.64)–
(B.78) for the heat equation in dimensional form. This yields

τ =
h2ρcp

4π 2k
, (B.80)

which is a factor 4 different from (B.79). Where this difference stems from is still to be
investigated.

In a similar way, a basis function for the thermal field of model III, based on Timoshenko
beam theory, can be derived:

ΘT,i(x, z) = −c1,T
dΦT,i(x)

dx

(
z + 1

2π
sin 2πz

)
. (B.81)

Similar to the ΘE,i(x, z), also the basis function for the thermal field ΘT,i(x, z) in model
III depends on the mechanical part, through the shear deformation field ΦT,i(x).

B.4 Multi-mode Galerkin discretisations

In this section, the multi-mode Galerkin discretisations for models II and III are elab-
orated. Only the 3-mode discretisations will be presented in the following. The 2-mode
discretisations can be found by omitting the terms related to the third basis function. For
model II, this means that the terms with q5 and r5 are set to zero and for model III, terms
with p5, q5 and r5 are set to zero.

Model II

In the 3-mode discretisation, the flexural displacement field and the thermal field are
approximated using three basis functions:

w0 = q1WE,1 + q3WE,3 + q5WE,5, (B.82a)

θ = r1ΘE,1 + r3ΘE,3 + r5ΘE,5. (B.82b)
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By using (B.82), the three-mode Galerkin discretisation of (5.19) and (5.20), has the fol-
lowing general form:

Mq̈ + fin(q, q̇, r) = fex(q, t), (B.83a)

Tṙ = fth(r, q̇), (B.83b)

where (B.83a) corresponds to the 3-mode Galerkin discretised version of (5.19) and (B.83b)
corresponds to (5.20).

The matrices and columns in (B.83) are given by:

q =
[
q1 q3 q5

]T
, (B.84a)

r =
[
r1 r3 r5

]T
, (B.84b)

M = I − crAww, (B.84c)

fin(q, q̇, r) = Λq + Cq̇ + cM,EAθwr − k(q)Awwq, (B.84d)

fex(q, t) = cv






∫ 1
0 felWE,1 dx
∫ 1

0 felWE,3 dx
∫ 1

0 felWE,5 dx




 , (B.84e)

T =








∫ 1
0

∫ 1
2

− 1
2

Θ2
E,1 dzdx

∫ 1
0

∫ 1
2

− 1
2

ΘE,3ΘE,1 dzdx
∫ 1

0

∫ 1
2

− 1
2

ΘE,5ΘE,1 dzdx
∫ 1

0

∫ 1
2

− 1
2

ΘE,1ΘE,3 dzdx
∫ 1

0

∫ 1
2

− 1
2

Θ2
E,3 dzdx

∫ 1
0

∫ 1
2

− 1
2

ΘE,5ΘE,3 dzdx
∫ 1

0

∫ 1
2

− 1
2

ΘE,1ΘE,5 dzdx
∫ 1

0

∫ 1
2

− 1
2

ΘE,3ΘE,5 dzdx
∫ 1

0

∫ 1
2

− 1
2

Θ2
E,5 dzdx








, (B.84f)

fth(r, q̇) = ckAθθr + c1,EAwθq̇, (B.84g)

where I ∈ R3×3 is the identity matrix and where:

Aww =







∫ 1
0

∂2WE,1

∂x2 WE,1 dx
∫ 1

0
∂2WE,3

∂x2 WE,1 dx
∫ 1

0
∂2WE,5

∂x2 WE,1 dx
∫ 1

0
∂2WE,1

∂x2 WE,3 dx
∫ 1

0
∂2WE,3

∂x2 WE,3 dx
∫ 1

0
∂2WE,5

∂x2 WE,3 dx
∫ 1

0
∂2WE,1

∂x2 WE,5 dx
∫ 1

0
∂2WE,3

∂x2 WE,5 dx
∫ 1

0
∂2WE,5

∂x2 WE,5 dx







, (B.85a)

Λ =





λ4
1 0 0

0 λ4
3 0

0 0 λ4
5



 , C =





c1 0 0
0 c3 0
0 0 c5



 , (B.85b)

Aθw =








∫ 1
0

∫ 1
2

− 1
2

∂2ΘE,1

∂x2 WE,1 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,3

∂x2 WE,1 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,5

∂x2 WE,1 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,1

∂x2 WE,3 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,3

∂x2 WE,3 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,5

∂x2 WE,3 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,1

∂x2 WE,5 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,3

∂x2 WE,5 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,5

∂x2 WE,5 z dzdx








, (B.85c)

k(q) = cm

[

q2
1

∫ 1

0

(
∂WE,1

∂x

)2

dx + q2
3

∫ 1

0

(
∂WE,3

∂x

)2

dx + q2
5

∫ 1

0

(
∂WE,5

∂x

)2

dx + 2q1q3

∫ 1

0

∂WE,1

∂x

∂WE,3

∂x
dx

+ 2q1q5

∫ 1

0

∂WE,1

∂x

∂WE,5

∂x
dx + 2q3q5

∫ 1

0

∂WE,3

∂x

∂WE,5

∂x
dx

]

+ cσσ0, (B.85d)

fel = V2
1

1 + 0.65cb(1 − q1WE,1 − q3WE,3 − q5WE,5)

(1 − q1WE,1 − q3WE,3 − q5WE,5)2

− V2
2

1 + 0.65cb(cd + q1WE,1 + q3WE,3 + q5WE,5)

(cd + q1WE,1 + q3WE,3 + q5WE,5)2
, (B.85e)
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Aθθ =








∫ 1
0

∫ 1
2

− 1
2

∂2ΘE,1

∂z2 ΘE,1 dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,3

∂z2 ΘE,1 dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,5

∂z2 ΘE,1 dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,1

∂z2 ΘE,3 dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,3

∂z2 ΘE,3 dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,5

∂z2 ΘE,3 dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,1

∂z2 ΘE,5 dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,3

∂z2 ΘE,5 dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2ΘE,5

∂z2 ΘE,5 dzdx








, (B.85f)

Awθ =








∫ 1
0

∫ 1
2

− 1
2

∂2WE,1

∂x2 ΘE,1 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2WE,3

∂x2 ΘE,1 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2WE,5

∂x2 ΘE,1 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2WE,1

∂x2 ΘE,3 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2WE,3

∂x2 ΘE,3 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2WE,5

∂x2 ΘE,3 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2WE,1

∂x2 ΘE,5 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2WE,3

∂x2 ΘE,5 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂2WE,5

∂x2 ΘE,5 z dzdx








. (B.85g)

Model III

In the 3-mode discretisation, the flexural displacement field, the shear deformation field
and the thermal field are approximated using three basis functions:

w0 = q1WT,1 + q3WT,3 + q5WT,5, (B.86a)

ϕ = p1ΦT,1 + p3ΦT,3 + p5ΦT,5, (B.86b)

θ = r1ΘT,1 + r3ΘT,3 + r5ΘT,5. (B.86c)

Using (B.86) results in the following reduced-order model:

Mq̈ + fin(q, q̇, r) = fex(q, t), (B.87a)

Tṙ = fth(r, q̇), (B.87b)

where (B.87a) contains the 3-mode Galerkin discretised versions of (5.22) and
where (B.87b) contains the discretised version of (5.24).

The terms in (5.31) are given by:

q =
[

p1 p3 p5 q1 q3 q5

]T
, (B.88a)

r =
[
r1 r3 r5

]T
, (B.88b)

M =

[
crAϕϕ O

O Aww

]

, (B.88c)

fin(q, q̇, r) =

[
AϕϕCϕ O

O AwwCw

]

q̇ +

[
cM,TAθϕ

O

]

r +

[
kscsAϕϕ − Kϕϕ kscsclKwϕ

− kscs

cl
Kϕw −(kscs + k(q)Kww

]

q,

(B.88d)

fex(q, t) = cv












0
0
0

∫ 1
0 felWT,1 dx
∫ 1

0 felWT,3 dx
∫ 1

0 felWT,5 dx












, (B.88e)

T =








∫ 1
0

∫ 1
2

− 1
2

Θ2
T,1 dzdx

∫ 1
0

∫ 1
2

− 1
2

ΘT,3ΘT,1 dzdx
∫ 1

0

∫ 1
2

− 1
2

ΘT,5ΘT,1 dzdx
∫ 1

0

∫ 1
2

− 1
2

ΘT,1ΘT,3 dzdx
∫ 1

0

∫ 1
2

− 1
2

Θ2
T,3 dzdx

∫ 1
0

∫ 1
2

− 1
2

ΘT,5ΘT,3 dzdx
∫ 1

0

∫ 1
2

− 1
2

ΘT,1ΘT,5 dzdx
∫ 1

0

∫ 1
2

− 1
2

ΘT,3ΘT,5 dzdx
∫ 1

0

∫ 1
2

− 1
2

Θ2
T,5 dzdx








, (B.88f)

fth(r, q̇) = ckAθθr − c1,TAϕθq̇, (B.88g)
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where O ∈ R3×3 denotes the zero matrix and where:

Aϕϕ =






∫ 1
0 Φ

2
T,1 dx

∫ 1
0 ΦT,3ΦT,1 dx

∫ 1
0 ΦT,5ΦT,1 dx

∫ 1
0 ΦT,1ΦT,3 dx

∫ 1
0 Φ

2
T,3 dx

∫ 1
0 ΦT,5ΦT,3 dx

∫ 1
0 ΦT,1ΦT,5 dx

∫ 1
0 ΦT,3ΦT,5 dx

∫ 1
0 Φ

2
T,5 dx




 , (B.89a)

Aww =






∫ 1
0 W2

T,1 dx
∫ 1

0 WT,3WT,1 dx
∫ 1

0 WT,5WT,1 dx
∫ 1

0 WT,1WT,3 dx
∫ 1

0 W2
T,3 dx

∫ 1
0 WT,5WT,3 dx

∫ 1
0 WT,1WT,5 dx

∫ 1
0 WT,3WT,5 dx

∫ 1
0 W2

T,5 dx




 , (B.89b)

Cϕ =





c1,ϕ 0 0
0 c3,ϕ 0
0 0 c5,ϕ



 , Cw =





c1,w 0 0
0 c3,w 0
0 0 c5,w



 , (B.89c)

Aθϕ =








∫ 1
0

∫ 1
2

− 1
2

∂ΘT,1

∂x ΦT,1 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂ΘT,3

∂x ΦT,1 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂ΘT,5

∂x ΦT,1 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂ΘT,1

∂x ΦT,3 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂ΘT,3

∂x ΦT,3 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂ΘT,5

∂x ΦT,3 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂ΘT,1

∂x ΦT,5 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂ΘT,3

∂x ΦT,5 z dzdx
∫ 1

0

∫ 1
2

− 1
2

∂ΘT,5

∂x ΦT,5 z dzdx








, (B.89d)

Kϕϕ =







∫ 1
0

∂2ΦT,1

∂x2 ΦT,1 dx
∫ 1

0
∂2ΦT,3

∂x2 ΦT,1 dx
∫ 1

0
∂2ΦT,5

∂x2 ΦT,1 dx
∫ 1

0
∂2ΦT,1

∂x2 ΦT,3 dx
∫ 1

0
∂2ΦT,3

∂x2 ΦT,3 dx
∫ 1

0
∂2ΦT,5

∂x2 ΦT,3 dx
∫ 1

0
∂2ΦT,1

∂x2 ΦT,5 dx
∫ 1

0
∂2ΦT,3

∂x2 ΦT,5 dx
∫ 1

0
∂2ΦT,5

∂x2 ΦT,5 dx







, (B.89e)

Kwϕ =







∫ 1
0

∂WT,1

∂x ΦT,1 dx
∫ 1

0
∂WT,3

∂x ΦT,1 dx
∫ 1

0
∂WT,5

∂x ΦT,1 dx
∫ 1

0
∂WT,1

∂x ΦT,3 dx
∫ 1

0
∂WT,3

∂x ΦT,3 dx
∫ 1

0
∂WT,5

∂x ΦT,3 dx
∫ 1

0
∂WT,1

∂x ΦT,5 dx
∫ 1

0
∂WT,3

∂x ΦT,5 dx
∫ 1

0
∂WT,5

∂x ΦT,5 dx







, (B.89f)

Kϕw =







∫ 1
0

∂ΦT,1

∂x WT,1 dx
∫ 1

0
∂ΦT,3

∂x WT,1 dx
∫ 1

0
∂ΦT,5

∂x WT,1 dx
∫ 1

0
∂ΦT,1

∂x WT,3 dx
∫ 1

0
∂ΦT,3

∂x WT,3 dx
∫ 1

0
∂ΦT,5

∂x WT,3 dx
∫ 1

0
∂ΦT,1

∂x WT,5 dx
∫ 1

0
∂ΦT,3

∂x WT,5 dx
∫ 1

0
∂ΦT,5

∂x WT,5 dx







, (B.89g)

Kww =







∫ 1
0

∂2WT,1

∂x2 WT,1 dx
∫ 1

0
∂2WT,3

∂x2 WT,1 dx
∫ 1

0
∂2WT,5

∂x2 WT,1 dx
∫ 1

0
∂2WT,1

∂x2 WT,3 dx
∫ 1

0
∂2WT,3

∂x2 WT,3 dx
∫ 1

0
∂2WT,5

∂x2 WT,3 dx
∫ 1

0
∂2WT,1

∂x2 WT,5 dx
∫ 1

0
∂2WT,3

∂x2 WT,5 dx
∫ 1

0
∂2WT,5

∂x2 WT,5 dx







, (B.89h)

k(q) = cm

[

q2
1

∫ 1

0

(
∂WT,1

∂x

)2

dx + q2
3

∫ 1

0

(
∂WT,3

∂x

)2

dx + q2
5

∫ 1

0

(
∂WT,5

∂x

)2

dx + 2q1q3

∫ 1

0

∂WT,1

∂x

∂WT,3

∂x
dx

+ 2q1q5

∫ 1

0

∂WT,1

∂x

∂WT,5

∂x
dx + 2q3q5

∫ 1

0

∂WT,3

∂x

∂WT,5

∂x
dx

]

+ cσσ0, (B.89i)

fel = V2
1

1 + 0.65cb(1 − q1WT,1 + q3WT,3 + q5WT,5)

(1 − q1WT,1 − q3WT,3 − q5WT,5)2

− V2
2

1 + 0.65cb(cd + q1WT,1 + q3WT,3 + q5WT,5)

(cd + q1WT,1 + q3WT,3 + q5WT,5)2
, (B.89j)

Aθθ =


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


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∂2ΘT,1
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, (B.89k)

Aϕθ =


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


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. (B.89l)
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