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Abstract

For a moving boundary problem modelling the motion of a semiperme-
able membrane by osmotic pressure and surface tension we prove the exis-
tence and uniqueness of classical solutions on small time intervals. Moreover,
we construct solutions existing on arbitrary long time intervals, provided the
initial geometry is close to an equilibrium. In both cases, our method re-
lies on maximal regularity results for parabolic systems with inhomogeneous
boundary data.

Keywords: moving boundary problem, maximal continuous regularity

MSC classification: 35R37, 35K55

1 Introduction

In this paper we consider the one phase version of a moving boundary problem
modelling osmosis: A semipermeable membrane Γ(t) moves freely in an incom-
pressible fluid at rest. The membrane encloses a region Ω(t) ⊂ RN , where a
certain amount of a solute is dissolved. Its concentration at position x ∈ Ω(t) and
at time t is denoted by v = v(t, x). The evolution of the solute is given by linear
diffusion:
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∂tv − µ∆v = 0 in Ω(t),

where µ > 0 is the constant diffusivity of the solvent.
The membrane is permeable to the solvent but impermeable to the solute. This
fact combined with the local conservation of solute leads to the following condition
on the free boundary Γ(t):

vVn + µ∂nv = 0 on Γ(t),

where Vn is the normal velocity of the family {Γ(t)}, positive where Ω(t) grows,
and ∂nv denotes the derivative in the direction of the outer unit normal field of
Γ(t). In particular, this condition ensures that the total amount of solute inside
Ω(t) must be a conserved quantity.
The motion of the membrane is essentially governed by osmotic pressure and
surface tension (cf [Pi2008]):

Vn = P (ψH + χv) on Γ(t).

The positive constants P,ψ, χ are related to the permeability of the membrane,
the (constant) surface tension coefficient and the osmotic pressure. By H we
denote the (N − 1)-fold mean curvature of Γ(t), taken to be negative where Ω(t)
is convex. More details about this model and its application in experimental cell
biology can be found in [Pi2008], [Ve1992], [Ve2000], [Zaal08].
By nondimensionalizing the problem, all the constants but one appearing in the
model can be normalized to the value one. We keep the same notation for the
dimensionless variables. The remaining dimensionless parameter is denoted by κ.
It can be interpreted as the ratio of the typical time scales of diffusion of solute
and relaxation of the membrane without solute. Summarizing, we arrive at the
following set of equations:

∂tv −∆v = 0 in Ω(t),
vVn + ∂nv = 0 on Γ(t),

Vn = κH + v on Γ(t),

 (1.1)

or, equivalently,

∂tv −∆v = 0 in Ω(t),
∂nv + κHv + v2 = 0 on Γ(t),

Vn = κH + v on Γ(t).

 (1.2)
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These systems are complemented by appropriate initial conditions v(0) = v0,
Γ(0) = Γ0.
To our knowledge, rigorous analysis of osmosis problems of the described type
has been performed mainly in one space dimension situations ([MR1995]). In
[Zaal08], problem (1.1) is considered in a radially symmetric setting.
In general, it has been a successful strategy in the context of free boundary prob-
lems to apply a suitable coordinate transformation in order to obtain local well
posedness or stability results. In fact, by means of this transformation many
moving boundary problems can be reformulated as a parabolic evolution equa-
tion over a fixed pair of Banach spaces. This equation can then be treated by
abstract functional analytic methods. However, this is not true in the case of
the osmosis model, because the boundary condition for the unknown function
v cannot be ‘hidden’ in a fixed domain of definition for the transformed differ-
ential operators. This additional difficulty is also encountered, for example, in
the case of the full Stefan problem with Gibbs-Thomson correction and kinetic
undercooling which has been treated in [Kn2007]. In that work, the coordinate
transformations lead to a single evolution equation for a function describing the
moving boundary. This equation contains Volterra mappings, which are nonlocal
in time, and it is solved with the help of the theory of maximal Hölder regularity.
In this paper we use an approach different from [Kn2007]. We consider the trans-
formed system as an abstract operator equation which can be treated in a frame-
work that resembles a maximal continuous regularity setting in a parabolic con-
text. We obtain sharp regularity results this way. Nevertheless, the techniques of
deriving estimates are influenced by those which are developed in [Kn2007].
In the second part of this paper we make a first approach to a stability result
for the osmosis problem: We construct solutions near equilibria existing on ar-
bitrary long time intervals and taking values in a prescribed arbitrarily small
neighborhood of a given equilibrium. A main ingredient of the proof is the max-
imal regularity result for systems given in Theorem 2.1 in [DPZ08]. It enables
us to identify the solution as the limit of a fixed point iteration with the help of
the contraction mapping principle. A similar argument has already been used in
[EPS03], where a Stefan problem with Gibbs-Thomson correction is considered.
More precisely, our main results are given in the following theorems. For the
definition of the spaces used here we refer to Sections 2 and 4.

Theorem 1.1 Let 0 < α < β < 1, and let v0 ∈ h2,α(Ω̄0), Γ0 = ∂Ω0 of class h4,β

satisfy

∂nv0 + κH(Γ0)v0 + v2
0 = 0 on Γ0.

Then there exists a positive time T ∗ and a unique classical solution of (1.1) on
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[0, T ∗].

Observe that a pair (Γ̄, v̄) is an equilibrium solution of (1.1) if and only if it is
given by (Γ̄, v̄) = (∂B(x,R), (N − 1)κ/R) for some x ∈ RN and R > 0. Let
B := B(x,R), S := ∂B, ū := (N − 1)κ/R. For suitable σ ∈ C1(S) let θσ denote
the Hanzawa diffeomorphism and Sσ := θσ[S], see Section 2, Section 4.

Theorem 1.2 Let p > N + 2, T > 0 be given, and let (v0,Γ0) = (θρ0
∗ u0, Sρ0) for

some (u0, ρ0) ∈ Y := W
2−2/p
p (B) ×W 3−3/p

p (S). If ε > 0 is small enough, then
there is a δ(ε) > 0 with the following property: If the conditions

• (u0, ρ0) ∈ BY ((ū, 0), δ);

• ∂nv0 +H(Sρ0) + v2
0 = 0 on Sρ0

are satisfied, then (1.1) admits a unique strong solution (v,Γ) = (θρ∗u, Sρ) on
[0, T ]. Moreover,

‖(u− ū, ρ)‖Y < ε, Y := W 2,1
p (BT )×W 3−1/p,(3−1/p)/2

p (ST ).

This paper is organized as follows: In Section 2 we shall define the notion of a
classical solution of (1.1) and prepare some preliminary material. In Section 3 the
transformed version of the full problem is derived, and a proof of Theorem 1.1 is
given. Strong solutions of (1.1) near equilibria are considered in Section 4, which
contains a proof of Theorem 1.2. Finally, Section 5 contains the most technical
part of the proof of Theorem 1.1.

2 The abstract setting

Throughout the article we keep the numbers N ∈ N, N ≥ 2, 0 < β < α < 1 fixed.
From now on we shall focus on the equivalent model (1.2). We assume that

• Ω0 ⊂ RN is a domain and Γ0 := ∂Ω0 is a closed compact hypersurface of
regularity class h4,β ;

• v0 ∈ h2,α(Ω0).

Here, hm,γ denotes the little Hölder space, i.e. the closure of (sufficiently) smooth
functions in the usual Hölder space Cm,γ , where m is a non-negative natural
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number and 0 < γ < 1.
We are going to transform system (1.2) into a set of equations given over a fixed
and smooth reference domain. The unknown family of surfaces {Γ(t)} will be
described by a signed distance function with respect to that surface. In order to
do these transformations, we need some preparation:
Given any surface Σ of class C1, let T[Σ] be a tubular neighborhood of Σ, i.e. the
diffeomorphic image of the map

X[Σ] : Σ× (−δ, δ)→ RN , (x, a) 7→ x+ a · ν[Σ](x),

where ν[Σ](x) is the outer unit normal vector at x ∈ Σ and δ > 0 is sufficiently
small. It is convenient to decompose the inverse of X[Σ] into X−1

[Σ] = (P[Σ],Λ[Σ]),
where P[Σ] is the metric projection of a point x onto Σ and Λ[Σ] is the signed
distance function with respect to Σ. Let

AdΣ,T[Σ]
:= {σ ∈ C1(Σ); ‖σ‖C(Σ) < δ/5}.

It is well-known that, given σ ∈ AdΣ,T[Σ]
, the map θσ(x) := x+ σ(x) · ν[Σ](x) is a

diffeomorphism mapping Σ onto Σσ := θσ[Σ].
Due to Theorem 4.2 in [BEL2011] we can fix a triple (Ω, S, ρ0) in the following
way:

• Ω ⊂ Ω0 is a domain and Γ := ∂Ω is a closed compact real analytic hyper-
surface;

• S is a tubular neighborhood of Γ, Γ0 ⊂ S;

• ρ0 ∈ h4,β(Γ) ∩ AdΓ,S and the mapping θρ0 : Γ → Γ0 is a h4,β - diffeomor-
phism. In particular, Γ0 = Γρ0 .

From now on let (Ω,Γ, ρ0) be chosen as described above and let Ad := AdΓ,S .

Suppose that σ ∈ Ad ∩ hm,γ(Γ) for some (m, γ) ∈ N × (0, 1). It is not difficult
to see that then θσ ∈ hm,γ(Γ,RN ) and θ−1

σ ∈ hm,γ(Γσ,RN ). Moreover, given
σ ∈ Ad ∩ hm,γ(Γ), the mapping θσ extends to a diffeomorphism

θσ ∈ Diffm,γ(RN ,RN ), θσ|Ω ∈ Diffm,γ(Ω,Ωσ),

such that we have ∂Ωσ = Γσ, cf. [Es2004], Section 2. Note that for σ ∈ Ad the
surface Γσ is the zero level set of the function ϕσ defined by
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ϕσ(x) = Λ[Γ](x)− σ(P[Γ](x)),

x ∈ S, i.e. Γσ = ϕ−1
σ [{0}]. For later use we set

Lσ(x) := |∇ϕσ|(θσ(x)).

It can be shown that Lσ > 0 on Γ for all σ ∈ Ad. Finally, if ρ : [0, T ] → Ad is
time dependent, we use the notation

Ωρ,T :=
⋃

t∈(0,T )

{t} × Ωρ(t) ⊂ RN+1.

We are now ready to introduce the notion of a classical solution of (1.1):

Definition 2.1 Let v0 ∈ h2,α(Ω0) satisfy

∂nv0 + κH(Γ0)v0 + v2
0 = 0 on Γ0

and let O := h4,β(Γ) ∩ Ad inherit the topology of h4,β(Γ). A pair (v(t),Γ(t)) is
said to be a classical solution of (1.1) on [0, T ], if there exists a function ρ ∈
C([0, T ],O) ∩ C1([0, T ], h2,β(Γ)) such that

i) Γ(t) = Γρ(t), t ∈ [0, T ];

ii) v(·) ◦ θρ(·) ∈ C([0, T ], h2,α(Ω)) ∩ C1([0, T ], hα(Ω));

iii) (v(t),Γ(t)) satisfy the equations of (1.1) pointwise on [0, T ].

Note that ii) in particular implies that

• v ∈ C1,2(Ωρ,T ,R) ∩ C(Ωρ,T ,R);

• v(t) ∈ h2,α(Ωρ(t)) for t ∈ [0, T ].

3 The equations on a fixed domain - Quasilinear struc-
ture

Given σ ∈ Ad, let θ∗σ, θσ∗ denote the pull-back and push-forward operators induced
by θσ, i.e. θ∗σ f = f ◦ θσ, θσ∗ g = g ◦ θ−1

σ . If suitable functions b, ρ are time
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dependent, i.e. b = b(t, x), ρ = ρ(t, x), we define [θ∗ρ b](t, x) := [θ∗ρ(t) b(t, ·)](x),
analogue for θρ∗.
Using this notation, for suitable ρ we can introduce the transformed operators

A(ρ)u := θ∗ρ(∆(θρ∗u))

B(ρ)u := θ∗ρ(∇(θρ∗u) · ∇ϕρ/|∇ϕρ|)
H(ρ) := θ∗ρH[Γρ].

We mention that A(ρ(t)) is just the Laplace-Beltrami operator with respect to
the Riemannian metric induced by θρ(t). System (1.2) transforms into

∂tu−A(ρ)u = R(ρ, u) in Ω,
B(ρ)u = −κuH(ρ)− u2 on Γ,

∂tρ− κLρP (ρ)ρ = κLρQ(ρ) + Lρu on Γ,
u(0) = u0,
ρ(0) = ρ0,

 (3.1)

where u0 := θ∗ρ0
v0. Here we used the splitting

H(ρ) = P (ρ)ρ+Q(ρ)

as introduced in [EsSi97]. The term R arises from the transformation of the time
derivative vt and is determined by

R(w, σ)(y) = r0(κLσ[H(σ) + w], Bµ(σ)w)(y), y ∈ Ω,

where w ∈ C1(D̄), σ ∈ Ad and

r0(h, k)(y) :=

{
χ(Λ(y)) · h(P[Γ](y)) · k(y), if y ∈ Ω ∩ S
0, if y ∈ Ω \ (Ω ∩ S),

(3.2)

Bµ(σ)v(y) = θ∗σ∇(θσ∗ v)(y) · (µ[Γ] ◦ P[Γ])(y), y ∈ S

(χ being a suitable cut-off function and µ[Γ] being the exterior unit normal field of
Γ, cf. [Kn2007], [Es2004]). The derivation of R is a straightforward calculation,
cf. again [Kn2007], [Es2004].
Suppose that (u, ρ) is a solution of (3.1) in a sense to be made precise. We want
(θρ∗u,Γρ) to be a classical solution of (1.2). For this we shall consider the following
function spaces: if T > 0 is given and JT := [0, T ], let
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E0 := hα(Ω)× h2+β(Γ),

E1 := h2+α(Ω)× h4+β(Γ),
E0(JT ) := BUC(JT , E0),
E1(JT ) := BUC1(JT , E0) ∩BUC(JT , E1),

F(JT ) := BUC(JT , h
1+α(Γ)) ∩ h(1+α)/2(JT , C(Γ)).

In order to economize notation we drop the T - dependence, i.e. write E1 instead
of E1(JT ) etc. In the following, the interpolation embeddings

E1 ↪→ hθ1(JT , h
l1+σ1(Ω̄))× hθ2(JT , h

l2+σ2(Γ)); (3.3)
P1E1 ↪→ h(1+α)/2(JT , C

1(Ω̄)) (3.4)

(Pj , j ∈ {1, 2} denoting the projection) will be used repeatedly. Here,

2θ1 + l1 + σ1 = 2 + α, 2θ2 + l2 + σ2 = 4 + β, li ∈ N, σi, θi ∈ (0, 1).

Using standard interpolation results for the space variable, it is a basic compu-
tation to see that the estimates corresponding to the embeddings (3.3) and (3.4)
do not depend on the length of the interval JT .

We define the sets

Ãd = {(ν, ψ) ∈ E1 | ν ∈ Ad}, Âd = {w ∈ E1 |w(t) ∈ Ãd, t ∈ [0, T ]}

which are open subsets of E1 and E1, respectively. Our goal is to write system
(3.1) as a single operator equation. For this we define the mappings

A(w)(t) =

(
A(ρ(t)) 0

0 κLρ(t)P (ρ(t))

)
,

B̃(ν, ψ)(ζ, χ) = B(ψ)ζ,(
B(w)(v, σ)

)
(t) = B̃(w(t))(v(t), σ(t)),

L(w) = (∂t − A(w),B(w), γt),

where w = (u, ρ) ∈ E1, (v, σ) ∈ E1, (ν, ψ), (ζ, χ) ∈ E1 and γt ∈ L(E1, E1) denotes
the time trace map w 7→ w(0). It is not difficult to see that
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A ∈ C∞
(
Âd,L(E1,E0)

)
,

B̃ ∈ C∞
(
Ãd,L(E1, h

1+α(Γ))
)
,

B ∈ C∞
(
Âd,L(E1,F)

)
,

L ∈ C∞
(
Âd,L(E1,E0 × F× E1)

)
,

cf. [Kn2007], [Es2000], [EsSi97] for example, where the mappings A, B, P , Q and
L are studied in detail. Observe that the mapping properties for B follow from
(3.4) and the fact that additionally

B ∈ C∞
(
Ãd,L(C1(Ω̄), C(Γ))

)
.

Let w0 = (u0, ρ0). For given, fixed M (to be determined later) we define the
closed set

C = C(M,T ) := {w ∈ E1 |, w(0) = w0, ‖w‖E1 ≤M}.

Furthermore, we introduce the subspace

Z = {(f, g, h) ∈ E0 × F× E1 | γtg = B̃(w0)h}.

Lemma 3.1 There is a T ∗ = T ∗(w0,M) such that if T ∈ (0, T ∗] then C ⊂ Âd.
In this case L(C) ⊂ L(E1,Z).

Proof: Let w = (u, ρ) ∈ C. As w0 ∈ Ãd and

‖w(t)− w0‖E0 = ‖w(t)− w(0)‖E0 ≤MT, t ∈ [0, T ]

we get ‖ρ(t) − ρ0‖h2+α(Γ) ≤ MT and therefore ρ(t) ∈ Ad for T small as Ad is
open in h2+α(Γ). The second statement is a consequence of γt ◦ B0 = B̃(w0) ◦ γt.

Assume T ∈ (0, T ∗] and define ŵ0 ∈ E1 to be the constant function on JT with
value w0.

Lemma 3.2 (Maximal regularity for frozen coefficients)

We have
L0 = L(ŵ0) ∈ Lis(E1,Z).
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Proof: This is a consequence of Theorem 1.4 in [Lunardi89] and standard re-
sults concerning the uniformly elliptic operator Lρ0P (ρ0) on the closed compact
manifold Γ.

Our problem can now be reformulated as

L(w)w = F (w) := (R(w),G(w), w0), w ∈ C, (3.5)

where

R(w)(t) =

(
R(w(t))

Lρ(t)(κQ(ρ(t)) + u(t))

)
,

G(w)(t) = −κu(t)H(ρ(t))− u(t)2,

w = (u, ρ). It is not hard to check that

F ∈ C∞(Âd,E0 × F× E1).

An obviously necessary solvability condition is the compatibility demand F (C) ⊂
Z, i.e.

B̃(w0)w0 = G(w0). (3.6)

This will be assumed from now on. The following lemma will be proved in the
appendix.

Lemma 3.3 (Quasilinear character)

Let ε > 0 be given. There is a T ∗ = T ∗(ε,M,w0) such that if T ∈ (0, T ∗],
w1, w2 ∈ C, then

‖L(w1)− L(w2)‖L(E1,Z) ≤ ε‖w1 − w2‖E1 ; (3.7)
‖F (w1)− F (w2)‖Z ≤ ε‖w1 − w2‖E1 . (3.8)

Lemma 3.4 (Maximal regularity for variable coefficients)

There is a T ∗ = T ∗(M,w0) and a C = C(w0) such that if T ∈ (0, T ∗] then
L(C) ⊂ Lis(E1,Z) and

‖L(w)−1‖L(Z,E1) ≤ C, w ∈ C.

Proof: This is an immediate consequence of Lemma 3.2, (3.7), and standard
perturbation results for linear isomorphisms. Note, in particular, that the bound
C depends essentially only on ‖L(w0)−1‖L(Z,E1) and can therefore be chosen in-
dependently of M .

In view of Lemma 3.4 we can rewrite (3.5) as a fixed point equation

w = Φ(w) := L(w)−1F (w), w ∈ C. (3.9)
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Lemma 3.5 (Contraction)

For given M > 0, there is a T ∗ = T ∗(M,w0) such that for all T ∈ (0, T ∗] we have

‖Φ(w1)− Φ(w2)‖E1 ≤
1

2
‖w1 − w2‖E1 . (3.10)

Proof: Choose T ∗ small enough to be in the situation of Lemma 3.4, and by
(3.8), to have

‖F (w)‖Z ≤ C(w0), w ∈ C.

According to Lemma 3.3, for any ε > 0 we have, for w1, w2 ∈ C and T sufficiently
small,

‖Φ(w1)− Φ(w2)‖E1

≤ ‖L(w2)−1‖L(Z,E1)‖L(w1)− L(w2)‖L(E1,Z)‖L(w1)−1‖L(Z,E1)‖F (w1)‖
+‖L(w2)−1‖L(Z,E1)‖F (w1)− F (w2)‖Z

≤ C(w0)ε‖w1 − w2‖E1 .

This implies the assertion if we choose ε < 1/2C(w0).

Lemma 3.6 (Mapping into C)
There are constants M = M(w0), T ∗ = T ∗(w0) such that for any t ∈ (0, T ∗]
Φ(C) ⊂ C and (3.10) is satisfied.

Proof: Let M ≥ 2‖L(ŵ0)−1F (ŵ0)‖E1 + ‖ŵ0‖E1 . Then, for small T (depending
only on w0) and any w ∈ C

‖φ(w)‖E1 ≤ ‖φ(ŵ0)‖E1 +
1

2
(‖w‖E1 + ‖ŵ0‖E1) ≤M.

By Banach’s fixed point theorem we get from this

Theorem 3.7 (Short-time wellposedness)

Let w0 = (u0, ρ0) ∈ h2+α(Ω̄)× (h4+β(Γ) ∩ Ad) satisfy the compatibility condition

B(ρ0)u0 = −κu0H(ρ0)− u2
0.

Then there are constants M,T ∗ > 0 such that (3.5), or, equivalently, (3.1) has
precisely one solution in C for any T ∈ (0, T ∗].

From this one deduces the statement of Theorem 1.1 easily.
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4 Long time existence near equilibria

In this section we shall construct solutions close to equilibria living on arbitrary
long time intervals. Remember

A pair (Γ̄, v̄) is an equilibrium solution of (1.1) if and only if it is given by
(Γ̄, v̄) = (∂B(x,R), (N − 1)κ/R),

where x ∈ RN and R > 0, i.e. each equilibrium is given by a sphere and a certain
constant concentration. Without loss of generality we restrict ourselves to the
treatment of the case x = 0, R = 1. Near this equilibrium we can simplify our
abstract setting by choosing the unit sphere as reference domain:
Let Ω := B(0, 1) ⊂ RN , S := ∂Ω. Fix ρ ∈ C2(S, (−1/4,∞), χ ∈ C∞([0, 1]) such
that 0 ≤ χ′ ≤ 4, χ ≡ 0 on [0, 1/3], χ ≡ 1 on [2/3, 1]. For x ∈ RN \ {0} we will
write r = |x| and ω = ω(x) = x/r. Defining

Ωρ := {x ∈ Rn \ {0} | r < ρ(ω)} ∪ {0},

the Hanzawa diffeomorphism θρ ∈ Diff2(Ω̄, Ω̄ρ) is given by the formula

θρ(x) := (1 + ρ(ω)χ(r))x.

Since v̄ = (N − 1)κ 6= 0, near v̄ the original problem (1.1) is equivalent to

∂tv −∆v = 0 in Ω(t),
∂nv + κvH + u2 = 0 on Γ(t),

Vn = v−1∂nv on Γ(t).

 (4.1)

In this simplified situation the problem transform to

∂tu−A(ρ)u−R(u, ρ) = 0 in Ω,
∂tρ+ u−1LρB(ρ)u = 0 on S,

B(ρ)u+ αuH(ρ) + u2 = 0 on S,
u(0) = u0,
ρ(0) = ρ0,

 (4.2)
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where

A(ρ) = θ∗ρ∆θ
ρ
∗,

B(ρ)u = θ∗ρ
(
nρ · (∇θρ∗u)|Sρ

)
,

Lρ = (θ∗ρnρ · n0)−1,

R(u, ρ) = −χ(r)u−1LρB(ρ)u (g · θ∗ρ∇θρ∗u), g(y) := y,

H(ρ) = θ∗ρ(∆Sρxi · niρ),
xi(θρν) = (1 + ρ(ν))νi, ν ∈ S.

Here, nρ denotes the exterior unit normal on Sρ := ∂Ωρ, and ∆Sρ is the Laplace-
Beltrami operator on Sρ. In the equation defining H(ρ), summation over i =
1 . . . n has to be performed. Here and in the sequel, trace operators from Ω to S
will be suppressed in the notation if no confusion is likely.
As already mentioned in the introduction, we want to apply Theorem 2.1 in
[DPZ08] to system (4.2). For this we must design a framework in the scale of
Besov spaces.:

We fix p ∈ (n+ 2,∞), T > 0 and let J := [0, T ], QT := Ω× J , ΣT := S × J . For
s > 0, M ∈ {Ω, S, J}, and X a Banach space we define

W s
p (M,X) =

{
Hs
p(M,X) s ∈ N,

Bs
pp(M,X) s /∈ N, W s

p (M) := W s
p (M,R),

and for M ∈ {Ω, S} we set MT := M × J and

W s,s/2
p (MT ) := Lp(J,W s

p (M)) ∩W s/2
p (J, Lp(M)).

These spaces are given their usual norms. Recall the standard interpolation result

W s,s/2
p (MT ) ↪→W τ

p (J,W σ
p (M)) (4.3)

whenever 2τ + σ ≤ s.
Let

E1 := W 2,1
p (QT )×W

3− 1
p
, 3
2
− 1

2p
p (ΣT ),

E0 := Lp(QT )×
(
W

1− 1
p
, 1
2
− 1

2p
p (ΣT )

)2
.

Observe that for the time trace operator

γ0 =
[
(u, ρ) 7→ (u(0), ρ(0))

]
13



we have
γ0 ∈ L

(
E1, E1

)
, E1 := W 2−2/p

p (Ω)×W 3−3/p
p (S).

Thus, the following definition is meaningful:

Definition 4.1 Let (u0, ρ0) ∈ E1. If (u, ρ) ∈ E1 is a solution of (4.2), then
(v,Γ) := (θρ0

∗ u, Sρ) is said to be a strong solution of (1.1).

Let m := N − 1. Recall that (ū, 0) with ū ≡ κm is an equilibrium solution to
(4.2). We will show that near this point, the operator F given by (cf. (4.2))

F (u, ρ) =

 ∂tu−A(ρ)u−R(u, ρ)
∂tρ+ u−1LρB(ρ)u
B(ρ)u+ κuH(ρ) + u2

 (4.4)

is well-defined and smooth with respect to the spaces just defined.

Lemma 4.2 (Local Analyticity)

There is an E1-neighborhood V of (ū, 0) such that we have

F ∈ Cω(V,E0)

for F defined by (4.4).

Proof: One has to check the mapping properties separately for all terms contained
in F . To economize our notation we will occasionally write E(i)

j , V(i) for the i-th
component of Ej and V.
When X,Y , and Z are spaces of functions on the same domain of definition for
which a pointwise multiplication is defined we will write

X · Y ↪→ Z

for the fact that the map (f, g) 7→ fg is a continuous bilinear map from X × Y
to Z. In particular, X will be called a multiplication algebra if X ·X ↪→ X.

By the definition of the spaces we have

u 7→ ∂tu ∈ L
(
E(1)

1 ,E(1)
0

)
,

ρ 7→ ∂tρ ∈ L
(
E(2)

1 ,W
1
2
− 1

2p
p (J, Lp(S))

)
,

and, using (4.3) with τ = 1, σ = 1− 1/p,

ρ 7→ ∂tρ ∈ L
(
E(2)

1 , Lp(J,W
1− 1

p
p (S))

)
.
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The term A(ρ)u can be written as a sum of terms

cβ
(
∇(ρ(ω)χ(r)),∇2(ρ(ω)χ(r))

)
Dβu, 1 ≤ |β| ≤ 2,

where the coefficient functions cβ are analytic functions on a neighborhood of (0, 0)

in Rn×R(n2). Due to p > n+2 it is possible to choose τ > 1/p, σ > 2+(n−1)/p
such that 2τ+σ ≤ 3−1/p and therefore by (4.3) and Sobolev embedding theorems

E(2)
1 ↪→W τ

p (J,W σ
p (S)) ↪→ BUC(J,BUC2(S)).

Consequently,

ρ 7→
(
∇(ρ(ω)χ(r)),∇2(ρ(ω)χ(r))

)
∈ L

(
E(2)

1 , BUC(QT )n+n2
).

Together with the facts that BUC(QT ) is a multiplication algebra and

BUC(QT ) · Lp(QT ) ↪→ Lp(QT )

this implies
(u, ρ) 7→ A(ρ)u ∈ Cω

(
V,E(1)

0

)
for V sufficiently small. Similarly one shows

R ∈ Cω
(
V,E(1)

0

)
.

The boundary term u−1LρB(ρ)u is a sum of terms

(u|S)−1ci(·, ρ,∇Sρ)(Diu)|S , i = 1, . . . n

where the ci are analytic functions on the bundle⋃
ω′∈S

(
{ω′} × (−1/4,∞)× Tω′S

)
where Tω′S is the tangent space in ω′ at S. Note first that

u 7→ (Diu)|S ∈ L
(
E(1)

1 , Lp(J,W
1− 1

p
p (S))

)
and that W

1− 1
p

p (S) is a multiplication algebra. By interpolation and embedding,
we have

E(2)
1 ↪→ BUC(J,W

2− 1
p

p (S))

and therefore (with TS denoting the tangent bundle over S and slightly abused
notation)

ρ 7→ (ρ,∇Sρ) ∈ L
(
BUC(J,W

1− 1
p

p (S)×W
1− 1

p
p (S, TS))

)
.
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Together with the fact that BUC(J,W
1− 1

p
p (S)) is a multiplication algebra this

implies

ρ 7→ ci(·, ρ,∇Sρ) ∈ Cω
(
V(2), BUC(J,W

1− 1
p

p (S))
)
.

Finally,

u 7→ u|S ∈ L
(
E(1)

1 ,W
2− 1

p
,1− 1

2p
p (ΣT )

)
andW

2− 1
p
,1− 1

2p
p (ΣT ) ↪→ BUC(J,W

1− 1
p

p (S)). In the multiplication algebraBUC(J,W
1− 1

p
p (S)),

ū is invertible, and therefore the inversion v 7→ v−1 is an analytic mapping near
ū in this space. Together with the multiplication property

BUC(J,W
1− 1

p
p (S)) · Lp(J,W

1− 1
p

p (S)) ↪→ Lp(J,W
1− 1

p
p (S))

these facts imply

(u, ρ) 7→ u−1LρB(ρ)u ∈ Cω
(
V, Lp(J,W

1− 1
p

p (S))
)
. (4.5)

On the other hand, we also have

u 7→ (Diu)|S ∈ L
(
E(1)

1 ,W
1
2
− 1

2p
p (J, Lp(S))

)
,

E(2)
1 ↪→ W

1
2
− 1

2p
p (J,BUC1(S)),

u 7→ u|S ∈ L
(
E(1)

1 ,W
1
2
− 1

2p
p (J,BUC(S))

)
.

It follows from the results given in [Am1991], Sect. 4, that W
1
2
− 1

2p
p (J,BUC(S))

is a multiplication algebra and

W
1
2
− 1

2p
p (J,BUC(S)) ·W

1
2
− 1

2p
p (J, Lp(S)) ↪→W

1
2
− 1

2p
p (J, Lp(S)).

Using these results, we find in analogy to the proof of (4.5)

(u, ρ) 7→ u−1LρB(ρ)u ∈ Cω
(
V,W

1
2
− 1

2p
p (J, Lp(S))

)
and therefore together with (4.5)

(u, ρ) 7→ u−1LρB(ρ)u ∈ Cω
(
V,E(2)

0

)
.

The remaining nonlinear terms can be treated in the same fashion, using the fact
that H is a quasilinear second-order differential operator, i.e. in local coordinates
it can be written as a sum of terms of the form

dµν(ρ,∇s(ρ))∂µνρ, d(ρ,∇s(ρ)),
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where d and dµν are analytic.

To determine the linearization of F at the equilibrium, we note

A(0) = ∆, A′(0)[σ]ū = 0,

R(ū, 0) = 0, ∂1R(ū, 0)[w] = 0,

∂2R(ū, 0)[σ] = 0,

B(0) = ∂n, B′(0)[σ]ū = 0,

H(0) = −m, H ′(0)[σ] = ∆Sσ +mσ,

which can be checked by straightforward calculation, see e.g. [EsSi97a] for the
curvature term. This yields

F ′(ū, 0)[w, σ] =

 ∂tw −∆w
∂tσ + (κm)−1∂nw
B1w + C1σ

 ,

where
B1w = ∂nw + κmw, C1σ = κ2m∆Sσ + κ2m2σ. (4.6)

Remember that for the time trace operator

γ0 =
[
(u, ρ) 7→ (u(0), ρ(0))

]
we have

γ0 ∈ L
(
E1, E1

)
, E1 := W 2−2/p

p (Ω)×W 3−3/p
p (S).

Define the space

Z := {((f, g0, g1), (z, ζ)) ∈ E0 × E1 | B1z + C1ζ = g1(0)}

with its natural norm, and the operator L ∈ L(E1,Z) by

L = (F ′(ū, 0), γ0).

Lemma 4.3 (Maximal regularity)

We have
L ∈ Lis(E1,Z).

Proof: It is sufficient to show that the problem

L(u, ρ) = ((f, g0, g1), (z, ζ)) (4.7)

has precisely one solution (u, ρ) ∈ E1 for any

((f, g0, g1), (z, ζ)) ∈ E0 × E1

17



if and only if the compatibility condition B1z+C1ζ = g1(0) is satisfied. This is as-
sured by Theorem 2.1 in [DPZ08] once we check that (4.7) satisfies all assumptions
of that theorem.

Indeed, setting (in [DPZ08]) m = 1, E = F = C, A = −∆, B0 = (αm)−1∂n,
C0 = 0, and B1, C1 as in (4.6) brings (4.7) in the framework of [DPZ08] with

Y0 = Y1 = W
1− 1

p
, 1
2
− 1

2p
p (ΣT ), Zu × Zρ = E1, πZu × πZρ = E1.

(More precisely, the problem belongs to Case 1 there. Observe, in particular,
that the compatibility condition involving B0z and g0 is automatically satis-
fied.) Conditions (E)–(SC) are obviously satisfied. It remains to verify the
Lopatinskii-Shapiro condition (LS). For this purpose, one has to consider solu-
tions v : [0,∞) −→ C, σ ∈ C to the initial value problem

(λ+ |ξ′|2 − ∂2
y)v(y) = 0 (y > 0),

λσ − (κm)−1∂yv(0) = 0,
−κ2m|ξ′|2σ − ∂yv(0) = 0,

 (4.8)

depending on the parameters ξ′ ∈ Rm, λ ∈ C̄+, |ξ′| + |λ| 6= 0. Only solutions
decaying for large |ξ′| are admissible, hence

v(y) = v(0)e−ωy, ω =
√
λ+ |ξ′|2

(using the principal value of the square root), and thus(
λ (κm)−1ω

−κ2m|ξ′|2 ω

)(
σ
v(0)

)
= 0.

As we have ∣∣∣∣ λ (κm)−1ω
−κ2m|ξ′|2 ω

∣∣∣∣ = ω(λ+ κ|ξ′|2) 6= 0

this shows that (4.8) has only the trivial solution, and (LS) is satisfied.

Remark: For κ = 1 the statement of Lemma 4.3 (up to lower order terms) is just
Example 3.5 in [DPZ08].

We are ready now to prove the main result on existence of solutions to (4.2) near
equilibria.

Theorem 4.4 Let p > n+2, T > 0 be given. There is a ε0 = ε0(p, T, κ) > 0 such
that for all ε ∈ (0, ε0] there is a δ = δ(ε, p, T, κ) > 0 such that for all (u0, ρ0) ∈ E1

satisfying
‖(u0 − ū, ρ0)‖E1 < δ (4.9)
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and the compatibility condition

B(ρ0)u0 + κu0H(ρ) + u2
0 = 0 (4.10)

the problem (4.2) has precisely one solution (u∗, ρ∗) that satisfies

‖(u∗ − ū, ρ∗)‖E1 ≤ ε.

Proof: Define K ∈ Cω(V,E0) by

K(u, ρ) = F (u, ρ)− F ′(ū, 0)(u− ū, ρ).

Then K(ū, 0) = 0, K ′(ū, 0) = 0.

For η > 0 let
Bη :=

{
(u, ρ) ∈ E1 | ‖(u− ū, ρ)‖E1 ≤ η

}
and choose ε0 > 0 small enough to ensure Bε ⊂ V and

‖K ′(u, ρ)‖L(E1,E0) ≤ 1/
(
2‖L−1‖L(Z,E1)

)
, (u, ρ) ∈ Bε (4.11)

for ε ∈ (0, ε0].

Let E ∈ L(E1,E1) denote a fixed right inverse of the trace operator γ0. (Such an
operator can be constructed along the lines described in [DPZ08], Sect. 4.1.) Fix
ε ∈ (0, ε0] and let

δ = ε/max{4‖L−1‖L(Z,E1), ‖E‖L(E1,E1)}.

Pick (u0, ρ0) ∈ E1 such that (4.9) and (4.10) are satisfied. Define the closed
convex set

Mε = {(u, ρ) ∈ Bε | (u, ρ)(0) = (u0, ρ0)}

Due to our choice of δ we have E(u0, ρ0) ∈Mε so that this set is nonempty.

Note that (4.10) implies

(−K(u, ρ), (u0 − ū, ρ0)) ∈ Z, (u, ρ) ∈Mε.

In view of this we define the operator Φ : Mε −→ E1 by

Φ(u, ρ) = (ū, 0) + L−1(−K(u, ρ), (u0 − ū, ρ0)).

Observe further that (u, ρ) ∈ Mε is a solution to (4.2) if and only if it is a fixed
point of Φ. We establish the existence and uniqueness of such a fixed point by
the Banach Contraction Principle. For (u, ρ) ∈Mε we have

‖Φ(u, ρ)− (ū, 0)‖E1 ≤ ‖L−1‖L(Z,E1)

(
‖K(u, ρ)‖E0 + ‖(u0 − ū, ρ0)‖E1

)
≤ ε
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due to (4.9) and (4.11), hence Φ[Mε] ⊂ Mε. Furthermore, Φ is a contraction
because, again by (4.11),

‖Φ(u1, ρ1)− Φ(u2, ρ2)‖E1

≤ ‖L−1‖L(Z,E1)‖(K(u2, ρ2)−K(u1, ρ1), (0, 0))‖E0×E1

≤ 1
2‖(u1, ρ1)− (u2, ρ2)‖E1

for (u1, ρ1), (u2, ρ2) ∈Mε. This completes the proof.

Remark: The arguments in the proof are completely parallel to those in the proof
of [EPS03], Theorem 7.5.

Appendix: Proof of Lemma 3.3

Assume T ≤ 1 without loss of generality. Let wi = (ui, ρi), i = 1, 2. To show
(3.7), for z = (v, σ) ∈ E1 we have to show

‖(A(w1)− A(w2))z‖E0 ≤ ε‖w1 − w2‖E1‖z‖E1 , (.12)
‖(B(w1)− B(w2))z‖F ≤ ε‖w1 − w2‖E1‖z‖E1 . (.13)

Note first that there is a h1+α-neighborhood U of u0, a h3+α-neighborhood V ⊂ Ad
of ρ0, and a constant C such that for ν1, ν2, ν ∈ U , ψ,ψ1, ψ2 ∈ V and j ∈ {0, 1}

‖A(ψ1)−A(ψ2)‖L(h2+α(Ω̄),hα(Ω̄)) ≤ C‖ψ1 − ψ2‖h3+β(Γ), (.14)
‖Lψ1P (ψ1)− Lψ2P (ψ2)‖L(h4+β(Γ),h2+β(Γ)) ≤ C‖ψ1 − ψ2‖h3+β(Γ), (.15)

‖B(ψ1)− B(ψ2)‖L(h2+α(Ω̄),h1+α(Γ)) ≤ C‖ψ1 − ψ2‖h3+β(Γ), (.16)
‖B(ψ1)− B(ψ2)‖L(C1(Ω̄),C(Γ)) ≤ C‖ψ1 − ψ2‖h2+β(Γ), (.17)

‖∂B(ψ1)− ∂B(ψ2)‖L(h2+β(Γ),L(C1(Ω̄),C(Γ))) ≤ C‖ψ1 − ψ2‖h2+β(Γ), (.18)
‖∂B(ψ)‖L(h2+β(Γ),L(C1(Ω̄),C(Γ))) ≤ C, (.19)

‖R(ν1, ψ1)−R(ν2, ψ2)‖hα(Ω̄) ≤ C
(
‖ν1 − ν2‖h1+α(Ω̄)

+ ‖ψ1 − ψ2‖h2+α(Γ)

)
,(.20)

‖Lψ1Q(ψ1)− Lψ2Q(ψ2)‖h2+β(Γ) ≤ C‖ψ1 − ψ2‖h3+β(Γ), (.21)
‖H(ψ1)−H(ψ2)‖hj+α(Γ) ≤ C‖ψ1 − ψ2‖hj+2+α(Γ), (.22)
‖H(ψ1)−H(ψ2)‖C(Γ) ≤ C‖ψ1 − ψ2‖C2(Γ), (.23)

‖∂H(ψ1)− ∂H(ψ2)‖L(C2(Γ),C(Γ)) ≤ C‖ψ1 − ψ2‖C2(Γ), (.24)
‖∂H(ψ)‖L(C2(Γ),C(Γ)) ≤ C. (.25)
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Using (3.3) we find that for wi ∈ C, t ∈ J ,

‖ui(t)− u(0)‖h1+α(Ω̄) = ‖ui(t)− u0‖h1+α(Ω̄) ≤ CT 1/2M,

‖ρi(t)− ρ(0)‖h3+α(Γ) = ‖ρi(t)− ρ0‖h3+α(Γ) ≤ CT (1+β−α)/2M,

and therefore for T sufficiently small (ui(t), ρi(t) ∈ U × V.
Using (.14), (3.3), and the fact that ρ1(0) = ρ2(0) = ρ0 we can estimate now for
T small ∥∥(A(ρ1)−A(ρ2)

)
v
∥∥
C(J,hα(Ω̄))

= sup
t∈J

∥∥(A(ρ1(t))−A(ρ2(t))
)
v(t)

∥∥
hα(Ω̄)

≤ sup
t∈J
‖A(ρ1(t))−A(ρ2(t))‖L(h2+α(Ω̄),hα(Ω̄))‖v(t)‖h2+α(Ω̄)

≤ C sup
t∈J
‖ρ1(t)− ρ2(t)‖h3+β(Ω̄)‖z‖E1

≤ C sup
t∈J
‖(ρ1 − ρ2)(t)− (ρ1 − ρ2)(0)‖h3+β(Ω̄)‖z‖E1

≤ C‖ρ1 − ρ2‖h1/2(J,h3+β(Ω̄))T
1/2‖z‖E1

≤ CT 1/2‖w1 − w2‖E1‖z‖E1 .

Similarly, using (.15),∥∥(Lρ1P (ρ1)− Lρ2P (ρ1)
)
σ
∥∥
C(J,h2+β(Ω̄))

≤ CT 1/2‖w1 − w2‖E1‖z‖E1 .

These two estimates imply (.12) for T small.

To show (.13) we estimate in an analogous way, using (.16),∥∥(B(ρ1)− B(ρ2)
)
v
∥∥
C(J,h1+α(Γ))

≤ CT 1/2‖w1 − w2‖E1‖z‖E1 . (.26)

Finally, ∥∥(B(ρ1)− B(ρ2)
)
v
∥∥
h(1+α)/2(J,C(Γ))

=
∥∥(B(ρ1)− B(ρ2)

)
v
∥∥
C(J,C(Γ))

+ sup
s,t∈J

|t− s|−(1+α)/2

∥∥(B(ρ1(t))− B(ρ2(t))
)
v(t)−

(
B(ρ1(s))− B(ρ2(s))

)
v(s)

∥∥
C(Γ)

.

The first term can be estimated by (.26). For the second term we use∥∥(B(ρ1(t))− B(ρ2(t))
)
v(t)−

(
B(ρ1(s))− B(ρ2(s))

)
v(s)

∥∥
C(Γ)

≤
∥∥(B(ρ1(t))− B(ρ2(t))

)(
v(t)− v(s)

)∥∥
C(Γ)

+
∥∥[B(ρ1(t))− B(ρ2(t))−

(
B(ρ1(s))− B(ρ2(s))

)]
v(s)

∥∥
C(Γ)
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and estimate the terms on the right separately.

For the first of these terms we use (.17) and (3.4) to get∥∥(B(ρ1(t))− B(ρ2(t))
)(
v(t)− v(s)

)∥∥
C(Γ)

≤ ‖B(ρ1(t))− B(ρ2(t))‖L(C1(Ω̄),C(Γ))‖v(t)− v(s)‖C1(Ω̄)

≤ C‖ρ1(t)− ρ2(t)‖h2+β(Γ)‖v‖C(1+α)/2(J,C1(Ω̄)|t− s|
(1+α)/2

≤ C‖(ρ1 − ρ2)(t)− (ρ1 − ρ2)(0)‖h2+β(Γ)‖z‖E1 |t− s|(1+α)/2

≤ CT‖ρ1 − ρ2‖C1(J,h2+β(Γ))‖z‖E1 |t− s|(1+α)/2

≤ CT‖w1 − w2‖E1‖z‖E1 |t− s|(1+α)/2.

Finally, for the second term we use (.18) and (.19) together with (3.4), to get∥∥[B(ρ1(t))− B(ρ2(t))−
(
B(ρ1(s))− B(ρ2(s))

)]
v(s)

∥∥
C(Γ)

≤
∥∥∥∥∫ t

s
∂ξ
[
B(ρ1(ξ))− B(ρ2(ξ))

]
dξ

∥∥∥∥
L(C1(Ω̄),C(Γ))

‖v(s)‖C1(Ω̄)

≤
(
‖∂B(ρ1)− ∂B(ρ2)‖C(J,L(h2+β(Γ),L(C1(Ω̄),C(Γ)))‖ρ′1‖C(J,h2+β(Γ))

+‖∂B(ρ2)‖C(J,L(h2+β(Γ),L(C1(Ω̄),C(Γ)))‖ρ′1 − ρ′2‖C(J,h2+β(Γ))

)
|t− s|‖z‖E1

≤ CT 1−(1+α)/2
(
‖ρ1 − ρ2‖C(J,h2+β(Γ)) + ‖ρ1 − ρ2‖C1(J,h2+β(Γ))

)
·

·|t− s|(1+α)/2‖z‖E1

≤ CT 1−(1+α)/2‖w1 − w2‖E1‖z‖E1 |t− s|(1+α)/2. (.27)

If T is chosen sufficiently small, these estimates imply (.13).

To show (3.8) we use (.20) and (3.3) and estimate for t ∈ J

‖R(u1(t), ρ1(t))−R(u2(t), ρ2(t))‖hα(Ω̄)

≤ C
(
‖u1(t)− u2(t)‖h1+α(Ω̄) + ‖ρ1(t)− ρ2(t)‖h2+α(Γ)

)
= C

(
‖(u1 − u2)(t)− (u1 − u2)(0)‖h1+α(Ω̄)

+ ‖(ρ1 − ρ2)(t)− (ρ1 − ρ2)(0)‖h2+α(Γ)

)
≤ C

(
T 1/2‖u1 − u2‖h1/2(J,h1+α(Ω̄)) + T (1−α+β)/2‖ρ1 − ρ2‖h(1−α+β)/2(J,h2+α(Γ))

)
≤ CT (1−α+β)/2‖w1 − w2‖E1 . (.28)

Similarly, using (.21), the Banach algebra property of little Hölder spaces, and

‖u1(t)− u2(t)‖h2+β(Ω̄) ≤ CTα−β‖u1 − u2‖C(J,h2+α(Ω̄))
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we get

‖Lρ1(t)(Q(ρ1(t)) + u1(t))− Lρ2(t)(Q(ρ2(t)) + u2(t))‖h2+β(Γ)

≤ C(Tα−β + T 1/2)‖w1 − w2‖E1 (.29)

and using (.22)

‖(u1(t)H(ρ1(t))− u1(t)2)− (u2(t)H(ρ2(t))− u2(t)2)‖h1+α(Γ)

≤ CT (1−α+β)/2‖w1 − w2‖E1 . (.30)

Finally, the estimate

‖(u1H(ρ1)− u2
1)− (u2H(ρ2)− u2

2)‖h(1+α)/2(J,C(Γ))

≤ CT 1−(1+α)/2‖w1 − w2‖E1 (.31)

can be shown by using

‖u1(t)2 − u2(t)2 − (u1(s)2 − u2(s)2)‖C(Γ)

= 2

∥∥∥∥∫ t

s
(u1u

′
1 − u2u

′
2)(ξ) dξ

∥∥∥∥
C(Γ)

≤ 2|t− s| ·

·
(
‖u1 − u2‖C(J,C(Ω̄))‖u′1‖C(J,C(Ω̄)) + ‖u2‖C(J,C(Ω̄))‖u′1 − u′2‖C(J,C(Ω̄))

)
≤ 2CT 1−(1+α)/2|t− s|(1+α)/2‖w1 − w2‖E1 ,

s, t ∈ J , as well as arguments similar to the ones used in (.27), based on (.23)–
(.25). The estimate (3.8) follows now from (.28)–(.31) if T is chosen small enough.
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