

# Bounding the boundary by the minimum and maximum degree

## Citation for published version (APA):

Müller, T., Pór, A., & Sereni, J. S. (2007). *Bounding the boundary by the minimum and maximum degree*. (Report Eurandom; Vol. 2007035). Eurandom.

Document status and date: Published: 01/01/2007

### Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

### Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

#### General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
  You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

#### Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

# Bounding the boundary by the minimum and maximum degree

Tobias Müller<sup>\*</sup> Attila Pór<sup>†‡</sup> Jean-Sébastien Sereni<sup>†§</sup>

## Abstract

A vertex v of a graph G is a *boundary vertex* if there exists a vertex u such that the distance in G from u to v is at least the distance from u to any neighbour of v. We give the best possible lower bound, up to a constant factor, on the number of boundary vertices of a graph in terms of its minimum degree (or maximum degree). This settles a problem introduced by Hasegawa and Saito.

## 1 Introduction

Let G = (V, E) be a graph. For every vertex  $v \in V$ , let  $N(v) := \{u \in V : uv \in E\}$  be the *neighbourhood* of v. A vertex  $v \in V$  is a *boundary vertex of* G if there exists a vertex  $u \in V$  such that  $dist(u, v) \ge dist(u, w)$  for every  $w \in N(v)$ . Such a vertex u is a *witness* for v. The *boundary of* G is the set  $\mathcal{B}(G)$  of boundary vertices of G.

The notion of boundary was introduced by Chartrand *et al.* [1, 2] and further studied by Hasegawa and Saito [3]. They proved that for every graph G,

$$\delta(G) \le r\left(\binom{|\mathcal{B}(G)| - 1}{2} * 4\right),\tag{1}$$

<sup>\*</sup>EURANDOM, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: t.muller@tue.nl. This author would like to thank the Department of Applied Mathematics of Charles University for its hospitality during his stay in Prague when this research was conducted.

<sup>&</sup>lt;sup>†</sup>Institute for Theoretical Computer Science (ITI) and Department of Applied Mathematics (KAM), Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 118 00 Prague 1, Czech Republic. E-mails: {por,sereni}@kam.mff.cuni.cz.

<sup>&</sup>lt;sup>‡</sup>This author is supported by the Hungarian National Foundation Grant T 046246.

<sup>&</sup>lt;sup>§</sup>This author is supported by the European project IST FET AEOLUS.

where  $\delta(G)$  is the minimum degree of G. The right-hand side of (1) is the (multicoloured) Ramsey number  $r\left(\binom{|\mathcal{B}(G)|-1}{2} * 4\right)$ , that is the smallest integer n such that each colouring of the edges of  $K_n$  with  $\binom{|\mathcal{B}(G)|-1}{2}$  colours yields a monochromatic copy of  $K_4$ . As shown by Xiaodong *et al.* [4], the Ramsey number r(k \* 4) is  $\Omega(5^k)$ . Therefore, the lower bound on the number of boundary vertices yielded by (1) cannot be better than

$$|\mathcal{B}(G)| = \Omega(\sqrt{\log(\delta(G))}).$$

The following result is a significant improvement.

**Theorem 1.** For every graph G of maximum degree  $\Delta$ ,

$$|\mathcal{B}(G)| \ge \log_2(\Delta + 2).$$

The bound provided by Theorem 1 is sharp up to a multiplicative factor smaller than  $3\log_3(2) \approx 1.89$ .

**Theorem 2.** For every positive integer n, there exists a graph  $G_n$  of minimum degree  $\delta_n := 3^{n-1}$  and maximum degree  $\Delta_n := 3^n + n - 1$  with  $|\mathcal{B}(G_n)| = 3n$ . Thus,  $|\mathcal{B}(G_n)| = 3(\log_3(\delta_n) + 1) < 3\log_3(\Delta_n)$ .

In particular, we deduce that the lower bound on the size of the boundary in terms of the *minimum* degree implied by Theorem 1 is essentially best possible, which answers a question of Hasegawa and Saito [3].

As it happens the vertex-connectivity of the graph  $G_n$  in Theorem 2 is also  $3^{n-1}$ , which shows that being highly vertex-connected is not a sufficient condition for having a large boundary.

## 2 Upper bound on the maximum degree

Throughout this section, let G = (V, E) be a graph. The *endvertices* of a path P of G are the two vertices of degree 1 in P. A shortest path of G is a path whose length is precisely the distance in G between its endvertices. Given a shortest path P, an *extension* of P is a shortest path Q containing P. If Q is an extension of P, we say that P extends to Q. The proof of Theorem 1 relies on the following observation.

**Lemma 3.** Each shortest path of G extends to a shortest path between two boundary vertices.

*Proof.* Let P be a shortest path of G. If one of its endvertices is not a boundary vertex, then P extends to a longer path (which is also a shortest path between its endvertices), by the definition of a boundary vertex. As the graph G is finite, we eventually obtain an extension of P whose endvertices are boundary vertices.

For every vertex  $v \in V$ , let  $C_v : N(v) \to 2^{\mathcal{B}(G)}$  be the mapping defined by

$$C_v(u) := \{ b \in \mathcal{B}(G) : \operatorname{dist}(b, u) < \operatorname{dist}(b, v) \}.$$

The proof of the following lemma relies on Lemma 3.

**Lemma 4.** Let  $v \in V$ . For each pair (u, u') of neighbours of v,  $C_v(u) \neq C_v(u')$ . Moreover,  $C_v(u)$  is neither empty nor the whole set  $\mathcal{B}(G)$ .

*Proof.* By Lemma 3 there exists a path P containing the vertices u and u' that is a shortest path between two boundary vertices b and b'. We may assume that u is closer to b than u'. Let r := dist(u, b) and s := dist(u', b').

First suppose that  $uu' \notin E$ . In this case we may assume that v belongs to P. Since P is a shortest path,  $\operatorname{dist}(v, b) = r+1 = \operatorname{dist}(u', b)-1$ . Consequently,  $b \in C_v(u) \setminus C_v(u')$ .

Assume now that  $uu' \in E$ . Since  $\operatorname{dist}(v, b) + \operatorname{dist}(v, b') \geq \operatorname{dist}(b, b') = r + s + 1$ , it follows that  $\operatorname{dist}(v, b) \geq r + 1$  or  $\operatorname{dist}(v, b') \geq s + 1$ . By symmetry, assume that  $\operatorname{dist}(v, b) = r + 1$ . Since P is a shortest path between b and b', we deduce that  $\operatorname{dist}(u', b) = r + 1$ , and therefore  $b \in C_v(u) \setminus C_v(u')$ .

Since the edge uv extends to a shortest path between two boundary vertices, we infer that  $C_v(u)$  is neither empty nor the whole set  $\mathcal{B}(G)$ , which concludes the proof.

Proof of Theorem 1. Let v be a vertex of G of degree at least 2. By Lemma 4, there exists an injective mapping from N(v) to  $2^{\mathcal{B}(G)} \setminus \{\emptyset, \mathcal{B}(G)\}$ . Therefore the degree of v is at most  $2^{|\mathcal{B}(G)|} - 2$ , which yields the desired result.  $\Box$ 

# **3** Construction of the graph $G_n$

Fix a positive integer n. Let the vertex-set of the graph  $G_n$  be  $V := A \cup B$  where

$$A := \{0, 1, 2\}^n, \quad B := \{b_j^i : j \in \{1, \dots, n\} \text{ and } i \in \{0, 1, 2\}\}.$$

Let the edge-set of the graph  $G_n$  be

$$E := \{uv : u, v \in A\} \cup \bigcup_{\substack{j \in \{1, \dots, n\}\\i \in \{0, 1, 2\}}} \{vb_j^i : v \in A \text{ and } (v)_j = i\}.$$

The vertex  $b_j^i$  is joined to exactly those vertices  $v \in A$  whose *j*-th coordinate is *i*. Notice that the vertices of A have degree  $3^n + n - 1$ , and those of B have degree  $3^{n-1}$ . So it only remains to establish that  $\mathcal{B}(G_n) = B$ .

Note that the diameter of G is 3. For every two indices  $i \neq i'$ , and every  $j \in \{1, 2, ..., n\}$ , the path  $b_j^i v w b_j^{i'}$  is a shortest path of length 3, where  $v, w \in A$  with  $(v)_j = i$  and  $(w)_j = i'$ . Since every pair of vertices that are not both in B lie on such a shortest path, it follows that  $\mathcal{B}(G) = B$ .

# References

- G. Chartrand, D. Erwin, G. L. Johns, and P. Zhang. Boundary vertices in graphs. *Discrete Math.*, 263(1-3):25–34, 2003.
- [2] G. Chartrand, D. Erwin, G. L. Johns, and P. Zhang. On boundary vertices in graphs. J. Combin. Math. Combin. Comput., 48:39–53, 2004.
- [3] Y. Hasegawa and A. Saito. Graphs with small boundary. Discrete Math., 307:1801–1807, 2007.
- [4] X. Xiaodong, X. Zheng, G. Exoo, and S. P. Radziszowski. Constructive lower bounds on classical multicolor Ramsey numbers. *Electron. J. Combin.*, 11(1):Research Paper 35, 24 pp. (electronic), 2004.