

Chi 1.0 reference manual

Citation for published version (APA):
Hofkamp, A. T., & Rooda, J. E. (2008). Chi 1.0 reference manual. (SE report; Vol. 2008-04). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/367a26f9-12d8-4f4b-a794-62eb026725e1

Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://se.wtb.tue.nl/

SE Report: Nr. 2008-04

Chi 1.0 reference manual
A.T. Hofkamp and J.E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2008-04
Eindhoven, July 2008

SE Reports are available via http://se.wtb.tue.nl/sereports

Abstract

The Chi 1.0 Language Reference Manual describes the syntax and the static semantics of all
available Chi 1.0 language constructs in a compact manner. It is set up as a reference manual,
intended for users that know the language but need a more precise and complete description
of a construct.

ii

Contents

1 Introduction 1
1.1 Page references . 1
1.2 Reading railroad diagrams . 2

2 Lexical syntax 5
2.1 Lexical tokens . 5
2.2 White-space . 10

3 Types 11
3.1 Basic types . 12
3.2 Container types . 12
3.3 Function type . 14
3.4 Distribution type . 14

4 Expressions 17
4.1 Basic expressions . 17
4.2 Template instantiation . 20
4.3 Expression folding . 20
4.4 Boolean values . 23
4.5 Natural numbers . 24
4.6 Integer numbers . 26
4.7 Real numbers . 29
4.8 Strings . 32
4.9 Lists . 34
4.10 Vectors . 38
4.11 Record tuples . 39
4.12 Sets . 40
4.13 Dictionaries . 43
4.14 Enumeration values . 44
4.15 Distributions . 44
4.16 Functions . 45
4.17 Expression operator priorities . 46
4.18 Addressable expressions . 48
4.19 Constant expressions . 49

5 Statements 51
5.1 Basic statements . 51
5.2 Assignment statements . 52
5.3 Communication statements . 54
5.4 Delay statements . 55
5.5 Instantiation statements . 57
5.6 Hybrid statements . 58
5.7 Return statement . 60
5.8 Fold statement . 60
5.9 Advanced statements . 61
5.10 Unary statements . 63
5.11 Binary statements . 64
5.12 Statement operator priorities . 65

6 Declarations 67
6.1 Formal parameter declarations . 68
6.2 Local variable declarations . 69
6.3 Channels . 70
6.4 Mode definitions . 71

iii Contents

7 Definitions 73
7.1 Enumeration definitions . 74
7.2 Constant definitions . 75
7.3 Type definitions . 76
7.4 Import definitions . 76
7.5 Functions . 78
7.6 Processes . 80
7.7 Declaration body . 82
7.8 Models . 83
7.9 Template definitions . 84

Bibliography 87

A Distributions 89
A.1 Constant distributions . 90
A.2 Discrete distributions . 91
A.3 Continuous distributions . 92

Index 95

iv Contents

Chapter 1

Introduction
The Chi language is a very rich language; it has a lot of different data types and statements.
This makes it possible to express models in a very compact way. Also, Chi is a hybrid lan-
guage, which means that you can write discrete-event models, continuous-time models, and
combined discrete-event and continuous-time models, Finally, the language is largely based
on mathematics. This makes it possible to attach a clear meaning to models.

The combination of the wide variety of models and huge expressiveness makes that a single
implementation of the language in a tool is not feasible, such an implementation would be-
come too big, too complex, or too slow. As a result, the implementation uses a divide and
conquer strategy. Rather than having one big do-it-all implementation, several implementa-
tions for different subsets of the language exist in parallel. Depending on the kind of model
and purpose of the model, the modeler chooses an appropiate implementation.

Having several implementations for different subsets of the language also influences the
structure of the manuals. This document, the Chi Language Reference Manual (CLRM),
describes the full language. The subset of the language supported by a specific tool is not
described here, but in the manual of that tool instead. In general, the latter is a very short
document, it mainly describes which subset is supported without going into details. For
example, a tool manual may state that the tool supports the list data type. Details of the list
data type (what it is, its syntax, operations on lists, etc) are not provided, they should be looked
up here, in the CLRM.

1.1 Page references

Since this document is a referencemanual, it is structured around key aspects of the language
such as definitions, statements, and expressions. When one aspect is explained, it is assumed
that all other aspects are known. To assist the reader in finding more details about the aspects
he/she may not be familiar with, the manual contains page references to its definition in the
text, for example railroad diagrams[page 2]. If you want to know more about railroad diagrams,
you can go to page 2 to read about its details.

1 Page references

Zero

0
�
�

�

Figure 1.1: Raildiagram of Zero.

Ten

1
�
�

�

Zero

Figure 1.2: Raildiagram of Ten.

AorBorC
1

A�

�2
B

�3
C

�

Figure 1.3: Raildiagram of AorBorC.

OptionalBorC

�

�B

�C

�

Figure 1.4: Raildiagram of OptionalBorC.

In addition, there is an index added at the back of the manual.

1.2 Reading railroad diagrams

The syntax and the grammar of the Chi language are explained using syntax diagrams, also
known as rail(-road) diagrams. One of the smallest diagrams is shown in Figure 1.1. The
name of the rule in the diagram is Zero. It is read by starting at the left, and following the
line without making sharp turns until it ends at the right hand side. In this case, as you go
from left to right the line passes through a rounded rectangle1 with a ‘0’ in it. This means
that the syntax of Zero is ‘0’.

Diagrams can be nested. When the contents of another diagram should be used, the name of
the needed diagram is shown in a rectangular box. An example is shown in Figure 1.2. This
diagram starts with a ‘1’, followed by the contents of diagram (also called Block) Zero. Ten is
thus written as ‘1’ ‘0’.

Choice between two or more alternatives is also possible in a diagram. An example can be
seen in Diagram AorBorC in Figure 1.3. This diagram denotes that either Block A, Block B, or
Block C can be chosen. The numbers 1, 2, and 3 are track numbers. They have no meaning
in the diagram other than allowing the accompanying text to refer to a certain point in the
diagram (for example, B at Track 2).

In a diagram with choices, the first alternative (at Track 1) is sometimes empty, which indi-
cates an optional piece of text (choose between nothing, B, or C). Such a rule is shown in
Figure 1.4.

Repetition looks similar to choice, as in the ManyAB diagram in Figure 1.5. The difference
is that the circle segments at the top are in the opposite direction compared to the previous
diagram. Since you are following the lines like a train, you may not make sharp turns, so you

1The rectangle is so short in this example that it looks like a circle.

2 Introduction

ManyAB

A�

�B

�

Figure 1.5: Raildiagram of
ManyAB.

ZeroOrMoreB

�

�B

�

Figure 1.6: Raildiagram of
ZeroOrMoreB.

OneOrMoreA

A�

�

�

Figure 1.7: Raildiagram of
OneOrMoreA.

must first pass through Block A before you can go down through Block B (from right to left),
then back up and again through Block A, etc.

Sometimes, the A part is empty, which means that there is choice between zero or more times
B as shown below by Diagram ZeroOrMoreB in Figure 1.6. If the B part is empty instead, it
means that there is a choice for one or more times A as shown in Figure 1.7.

All the above constructs (sequence of Diagram Ten[page 2], choice of Diagram AorBorC[page 2],
and repetition of Diagram ManyAB[page 2]) can be combined and nested arbitrarily. The re-
sulting railroad diagrams describe the order of tokens in a Chi specification.

3 Reading railroad diagrams

4 Introduction

Chapter 2

Lexical syntax
The syntax of the language exists at two levels. The bottom level is lexical syntax. This syntax
is defined at character level. In particular, white-space (the precise definition is in Section 2.2)
is not allowed between the boxes. All diagrams in this chapter use the lexical syntax level. The
upper level is the context-free syntax level. At this level, white space constructs may be added
(or in some cases must be added) between boxes in the diagram, such as space or new-line
characters, or comments. Except for this chapter, all chapters use the context-free syntax level.

The input to the tools is the ASCII character set. That is also the format in which the input
has to be delivered to the tools. To prevent misunderstanding about the characters allowed
in this chapter, references are made to Unicode characters. Such a reference starts with
an uppercase ‘U’ followed by a four digit hexadecimal Unicode1 character identification, for
example U005C.

2.1 Lexical tokens

The Chi language has a number of basic tokens at lexical level. These are explained in the
following sections.

2.1.1 Unsigned decimal numbers

Unsigned decimal numbers are a sequence of one or more decimal digits (U0030 upto and
including U0039) as shown in the lexical Number diagram in Figure 2.1. The node 0 | 1 | . . . |
9 means selection of one of the characters ‘0’ or ‘1’ or . . . or ‘9’ (one of the U0030 upto and
including U0039). The node 1 | 2 | . . . | 9 has a similar meaning, except that the ‘0’ (U0030)
may not be chosen.

As you can see in the diagram, value 0 is entered as the single character ‘0’. All other (un-
1The entire Unicode character set is available at the Internet at http://www.unicode.org/charts/ .

5 Lexical tokens

http://www.unicode.org/charts/

Number

0
�
�

�

�

�1 | 2 | ... | 9
�
�

�

�

�0 | 1 | ... | 9
�
�

�

�

�

Figure 2.1: Raildiagram of Number.

RealNumber

Number .
�
�

�

 0 | 1 | ... | 9

�
�

�

�

�

�

�

�Number �

�.
�
�

�

 0 | 1 | ... | 9

�
�

�

�

�

�

�

�

�

� e
�
�

�

�

�E
�
�

�

�

+

�
�

�

�

�-
�
�

�

�

Number

�

Figure 2.2: Raildiagram of RealNumber.

signed) values start with a non-zero digit. In other words, the ‘0’ may not be used as prefix
for an unsigned decimal number.

Examples

Example Explanation
30458 Correct
0 Correct
023 Incorrect, unsigned decimal number may not use ‘0’ prefix
1 23 Incorrect, no white space allowed in a number

2

2.1.2 Real numbers

The syntax of a real number (a value of type real) is built on top of the lexical syntax ofNum-
ber[page 5]. Figure 2.2 shows the lexical syntax of a real number in the RealNumber diagram.

6 Introduction

StringLiteral

"
�
�

�

�

� Char�

�\
�
�

�

n

�
�

�

�\
�
�

�

t

�
�

�

�\
�
�

�

"

�
�

�

�\
�
�

�

\

�
�

�

�

�

�

�

�

"
�
�

�

Figure 2.3: Raildiagram of StringLiteral.

As you can see, a real number is a sequence of digits with a dot somewhere, or a sequence of
digits optionally with a dot and an exponent suffix with a signed exponent.

Examples

Example Explanation
0.0 Correct
1e+5 Correct
3e2 Incorrect, need sign of exponent
8 e-4 Incorrect, white space not allowed in real number

2

2.1.3 String literals

The syntax of literal strings is shown in the StringLiteral diagram in Figure 2.3. A string literal
starts with a double quote character (the QUOTATION MARK character U0022), followed
by zero or more characters (explained next), and ends with another double quote character
U0022.

A character between the double quote characters is a single printable ASCII character (U0020
upto and including U007E, except for the double quote character ‘"’ U0022 and the backslash
character ‘\’ U005C) represented by the Char block in the diagram. In addition, you can add
a LF character U000A by using a sequence of ‘\’ and ‘n’ (U005C followed by U006E) charac-
ters. A TAB character U0009 can be inserted by writing a sequence of a ‘\’ and a ‘t’ characters
(U005C followed by U0074). Finally, you can insert a double quote character U0022 by pre-
fixing it with a backslash (that is, write ‘\"’, U005C followed by U0022), and a backslash
character also by prefixing it with itself (that is, write ‘\\’, two U005C characters).

The value of a string literal is the sequence of characters between the two double quotes with
the backslash sequences translated to the character they represent.

7 Lexical tokens

Identifier

A | B | ... | Z
�
�

�

�

�a | b | ... | z
�
�

�

�

�

� A | B | ... | Z
�
�

�

�

�a | b | ... | z
�
�

�

�0 | 1 | ... | 9
�
�

�

��
�

�

�

�

Figure 2.4: Raildiagram of Identifier.

2.1.4 Identifiers and keywords

An identifier starts with a letter (U0041 upto and including U005A, and U0061 upto and in-
cluding U007A) or an underscore character U005F, followed by zero or more letters (U0041
upto and including U005A, and U0061 upto and including U007A), digits (U0030 upto and
including U0039), and/or underscore characters U005F. The Identifier diagram is shown in
Figure 2.4.

Some identifiers are special in the sense that they are reserved to be used for a particular
purpose. Such identifiers are called keywords. Keywords are shown explicitly as a terminal
box in the railroad diagrams[page 2], and may not be used for any other purpose. In particular,
a keyword may not be used as name of a (user-defined) object in the specification.

Examples

Example Explanation
ABCDEF Correct
An identifier Incorrect, white space not allowed in an identifier
variable3 Correct
3f Incorrect, identifier may not start with a digit

2

2.1.5 Filenames

A filename or path is a non-empty sequence of path elements seperated by forward slashes
U002F, optionally prefixed by a forward slash U002F. A path element is a non-empty se-
quence of letters (uppercase letters U0041 upto and including U005A, and/or lowercase let-
ters U0061 upto and including U007A), digits (U0030 upto and including U0039), minus-
sign U002D, underscore character U005F, and/or dots U002E. The lexical syntax is shown
in the Filename railroad diagram in Figure 2.5.

In general, filename is used when the character sequence refers to a file. The term path is a
more general notion, and may also refer to other things at the file system, such as directories.
A filename or path starting with a forward slash is called an absolute filename or absolute path,
since it states the entire path to a file (or directory) from the root of the file system. A relative

8 Introduction

Filename

�

�/
�
�

�

�

PathElement�

� /
�
�

�

�

PathElement

A | B | ... | Z
�
�

�

�

�a | b | ... | z
�
�

�

�0 | 1 | ... | 9
�
�

�

�-
�
�

�

��
�

�

�.
�
�

�

�

�

�

�

Figure 2.5: Raildiagram of Filename.

ModuleName

ModuleIdentifier .
�
�

�

c

�
�

�

h

�
�

�

i

�
�

�

ModuleIdentifier

Identifier

Figure 2.6: Raildiagram ofModuleName.

filename or relative path does not start from the root, but from the current working directory
(refered to as ‘. ’) instead.

When a filename refers to a Chi file, the final path elementmustmatch with theModuleName
diagram shown in Figure ??. The final path element must start with aModuleIdentifier (which
is the same as an Identifier[page 8]), and end with ‘.chi ’. This requirement is necessary to
allow Chi modules to be imported using the import statement[page 76].

9 Lexical tokens

Examples

Example Explanation
/opt/se/chi-1.0//standardlib.dast An absolute filename
mymodel.chi A relative filename
extension.py Filename of a Python program

2

2.2 White-space

White-space is a sequence of one or more constructs that is considered to be ‘unimportant’
at the context-free syntax level. In other words, arbitrary amounts of white space may be
inserted between boxes in the diagrams at the context-free syntax level without affecting the
meaning of the specification. Normally, white space is used to enhance readability of the
source, by formatting (grouping) of pieces of code, or by (textual, informal) explanation of
the code.

There are three forms of white space, namely white-space characters, line comment, and
block comment. White-space characters are the SP character U0020, the TAB character
U0009, the CR character U000D, and the LF character U000A. Often, sequences of such
characters are encountered in a source file. Technically, each character is a seperate white-
space construct. In practice, a sequence of white-space characters is normally considered to
be one unit.

Comment in Chi exists in two forms, line comment and block comment. Comment is never
interpreted by the tools, in particular, you cannot start or end a comment inside another
comment. Line comment starts with two forward slash characters U002F. Everything behind
the second slash character upto (but not including) the first LF character2 is considered to
be comment, and not interpreted by the tools. The second form of comment is the block
comment construct. It starts with the character sequence forward slash and asterisk (U002F
followed by U002A), and ends with the first occurence of the character sequence asterisk,
forward slash (U002A followed by U002F) after the start sequence. In particular, the asterisk
character of the start sequence may not be used as the first character of the end sequence
(this case is shown as the last example below). All characters between the start sequence and
the end sequence are not interpreted by the tools.

Examples

Example Explanation
// line comment Correct
/* block comment */ Correct
/*/ Incorrect, not a comment

2

2A special case is a line comment at the last line, where the last line is not terminated by a LF character. In that
case, the line comment runs upto the end of the file.

10 Introduction

Chapter 3

Types
The Chi language is a statically typed language, which means that all values and variables in
a Chi specification have a single fixed type. In this chapter, the available types are explained.

The next chapter (about expressions) will introduce syntax to create and manipulate values of
(most) types, thus allowing computations to be performed. Attaching a type to a variable is
explained in Chapter 6,

The syntax of a type is defined by the Type diagram in Figure 3.1. There are four kinds of
types, shown at Tracks 1 through 4. Basic[page 12] or elementary types[page 12] are defined in
the BasicType[page 12] block, container types[page 12] (types whose values contain values of other
types) are defined in the ContainerType[page 12] block, function types[page 14] (a type that has
functions as value) are available from the FunctionType[page 14] block, and types for stochas-
tic distributions[page 44] are available from the DistributionType[page 14] block. Finally, Track 5
allows grouping of types through the use of brackets.

Type

1
BasicType�

�2
ContainerType

�3
FunctionType

�4
DistributionType

�5
(

�
�

�

Type)

�
�

�

�

Figure 3.1: Raildiagram of Type.

11

BasicType

1
void

�
�

�

�

�2
bool

�
�

�

�3
nat

�
�

�

�4
int

�
�

�

�5
real

�
�

�

�6
string

�
�

�

�7
TypeIdentifier�

�EnumTypeIdentifier

�

�8
ModuleIdentifier .

�
�

�

 TypeIdentifier�

�EnumTypeIdentifier

�

�

Figure 3.2: Raildiagram of BasicType.

3.1 Basic types

The BasicType diagram in Figure 3.2 shows the syntax of the basic types, also known as el-
ementary types. They are expressed using a single keyword at Tracks 1 through 6, namely
the empty void type (a type without any value), the booleans[page 23] (values of the boolean
type), the natural numbers[page 24] (values of the natural number type, the set N), the inte-
ger numbers[page 26] (values of the set integer number type, the set Z), the real numbers[page 29]

(values of the real number type, the set R), and strings[page 32] (sequences of ASCII characters),
values of the string type.

Track 7 is an identifier that refers to the name of a type. This may be either the name of
an enumeration definition[page 74], or the name of a type definition[page 76]. Track 8 does the
same, except that it refers to a type[page 11] imported[page 76][page 76] from another module.

3.2 Container types

A container type is a type whose values are often called containers, since it contains (many)
values of another type. The latter values are called elements, and the latter type is called
element type. There are different kinds of container types. They differ in the way they handle
elements, in its own strong and weak points in giving access to the elements.

The syntax of container types available in Chi is shown in the ContainerType diagram in Fig-
ure 3.3. There are five container types in Chi. The first one at Track 1 is the list type, which
allows an arbitrary number of elements to be stored in a sequential order. Access to elements

12 Types

ContainerType

1
[

�
�

�

Type]

�
�

�

�

�2
ConstantExpression ∗

�
�

�

Type

�3
{

�
�

�

Type }

�
�

�

�4
{

�
�

�

Type :

�
�

�

Type }

�
�

�

�5
(

�
�

�

�

�FieldIdentifier :
�
�

�

�

Type ,
�
�

�

�

�

� �

�FieldIdentifier :
�
�

�

�

Type�

� ,
�
�

�

�

)
�
�

�

�

Figure 3.3: Raildiagram of ContainerType.

at the front and back of a list[page 34] (a value of type list type) is cheap (fast), access to elements
at the middle is costly (slow) since you have to remove the elements in front of it first (or from
the back, depending on where you start). In addition, you cannot modify an element stored
in a list (you have to construct a new list with the modified element instead).

These disadvantages are adressed in the vector type shown at Track 2. The Type[page 11] block
specifies the element type and the ConstantExpression[page 49] block denotes a constant[page 75]

value of type nat [page 12] that defines the number of elements in the container (unlike the list
type, the vector type has a fixed size).

The set type at Track 3 is useful when you (want to) have unique elements. A set[page 40] (a
value of type set type) is an unordered container, there is no first or last element. The set
type does however guarantee that each of its elements is unique (that is, the presence of each
value of its element type is a boolean function, either the value is present exactly once or it is
not).

The dictionary type shown at Track 4 is an extended form of the set type. It takes two types. The
first type at the track is called the key type, the second type at the track is called the value type.
A dictionary (a value of type dictionary type) treats its elements of the key type (commonly
refered to as keys) in the same way as a set treats its elements, each value of the key type
is either present in the dictionary once or it is not present. The extension with respect to
sets is that for each key[page 13] (each value of the key type[page 13] present in the dictionary) an
associated value of the value type[page 13] is available.

Last but not least in the container types is the record tuple type, shown at Track 5. Values of this
type are commonly refered to as record tuples,[page 39] tuples or records. Its use is in merging a
number of values (at least two) together and allow treatment of such a combination of values

13 Container types

FieldIdentifier

Identifier

Figure 3.4: Raildiagram of FieldIdentifier.

FunctionType

(
�
�

�

�

� Type�

� ,
�
�

�

�

�

)
�
�

�

->

�
�

�

Type

Figure 3.5: Raildiagram of FunctionType.

as a single entity. The unique capability of the record type is that each value may be of a
different type. For each value in the record, its type must be specified. Access to a value in a
record is by position, expressed as constant number. Since remembering the position of each
value may be difficult if you have a lot of values in a record, you can optionally give a name to
a value by prefixing its type with a FieldIdentifier and a colon. The syntax of a FieldIdentifier is
shown in Figure 3.4. As you can see, it consists of an Identifier[page 8].

WARNING: The dictionary type is not implemented yet.

3.3 Function type

The next kind of type is the function type. This type has functions as its value, that is, you can
save a function in a variable and use the variable to compute a function result. The syntax of
the function type is shown in the FunctionType diagram in Figure 3.5. The syntax of a function
type looks very similar to a header of a function definition[page 78] or declaration[page 80], except
that only the type signature of the formal parameters[page 68] is given (that is, only the types
of the formal parameters are stated rather than full variable declarations[page 67]).

3.4 Distribution type

The final type is the distribution type, the type used for storing stochastic distributions[page 44].
The syntax is shown in the DistributionType diagram in Figure 3.6. It consists of an arrow cre-
ated from a minus sign and a bigger-than character followed by the element type (the type of
values being drawn from the distribution).

14 Types

DistributionType

->

�
�

�

Type

Figure 3.6: Raildiagram of DistributionType.

15 Distribution type

16 Types

Chapter 4

Expressions
Expressions are the principle means to express computation of values in Chi. Since the
language is rich in data types, expressions form a large part of the language.

To make the manual more valuable as a reference, this chapter is not organized on the syntax
of expressions but on the data types available in the language. This results in operators being
split over the data types they take as arguments, for example, the binary addition operator ‘+’
is listed four times in this chapter, namely for the nat type, the int type, the real type, and
the set type {T} . In addition, functions from the standard library (the standardlib module)
are also added, thus creating a complete overview of available functionality with each data
type.

Besides functionality for each data type, expressions in Chi also have a number of facilities
available more than one data type. The facilities that come in the form of syntactical exten-
sions are shown in the BasicExpression[page 17] diagram, explained in Section 4.1. The ability
to combine several operators without having to write brackets is another facility, and is dis-
cussed in Section 4.17. Finally, some expressions are addressable (that is, they can be used
as a destination to store value into), while others represent a pure value. This distinction is
explained in more detail in Section 4.18.

The overal syntax of an expression is shown in the Expression diagram in Figure 4.1. The first
track shows that you can surround an expression with round brackets to treat it as a single
entity. This is particularly useful to override the default operator priorities[page 46] listed in
Section 4.17. All other tracks of the Expression[page 17] diagram are shown and explained in
more detail in the following sections.

4.1 Basic expressions

The basic expressions of the BasicExpression diagram are shown in Figure 4.2. With Track 1,
named entities can be used in expressions. Most often they are variables, but this rule is also

17 Basic expressions

Expression

(
�
�

�

Expression)

�
�

�

�

�BasicExpression

�BooleanExpression

�NatExpression

�IntExpression

�RealExpression

�StringExpression

�ListExpression

�SetExpression

�DictExpression

�VectorExpression

�RecordExpression

�DistributionExpression

�FunctionCallExpression

�

Figure 4.1: Raildiagram of Expression.

used for refering to functions, constants, and values of enumeration definitions. Track 2 does
the same, except that the named entities are prefixed with the name of the module where they
come from.

Track 3 shows the syntax of the unary derivative operator. This operator can only be applied
to addressable (Section 4.18) continuous expressions of type real . Track 4 is the syntax for
refering to the ‘old value’ of a variable (that is, the value of a variable just before assigning
a new value to it). Track 5 shows the syntax of instantiating a templated function (using a
FunctionIdentifier[page 78]). Finally, Track 6 shows the syntax of expression folding. Details of
folding can be found in Section 4.3.

WARNING: Module prefix of Track 2 and template instantiation of Track 5 are not implemented yet.

18 Expressions

BasicExpression

1
VariableIdentifier�

�EnumValueIdentifier

�FunctionIdentifier

�ConstantIdentifier

�

�

�2
ModuleIdentifier .

�
�

�

 VariableIdentifier�

�EnumValueIdentifier

�FunctionIdentifier

�ConstantIdentifier

�

�3
VariableExpression ′

�
�

�

�4
old

�
�

�

(

�
�

�

VariableExpression)

�
�

�

�5
FunctionTemplateInstantiation

�6
FoldExpression

�

Figure 4.2: Raildiagram of BasicExpression.

FunctionTemplateInstantiation

FunctionIdentifier�

�ProcessIdentifier

�

<

�
�

�

 TemplateValue�

� ,
�
�

�

�

>

�
�

�

TemplateValue

ConstantExpression�

�Type

�

Figure 4.3: Raildiagram of BasicExpression.

19 Template instantiation

4.2 Template instantiation

Template instantiation for explicit template parameters[page 84] gives concrete values to vari-
ables of template definitions[page 84] of templated functions and processes. It consists of the
name of the templated function or process, followed by one or more TemplateValue blocks.
The latter blocks are seperated from the identifier with triangular brackets. Since the tem-
plate values are processed at compile time, they must be constant.

Examples

As an example, consider a templated process definition B parameterized with a maximal
buffer size n and a type T of the buffered values.

proc B<n: nat, T: type>(chan a?, b!: T) =
|[var x: T, xs: [T] = []
:: *(len(xs) < n -> a?x ; xs := xs ++ [x]

| len(xs) > 0 -> b!hd(xs) ; xs := tl(xs)
)

]|

This general definition can be instantiated for n = 5 and type T = lot with input channel u
and output channel v by the following process instantiation[page 57].

B<5, lot>(u, v)

2

WARNING: Template instantiation for explicit parameters is not implemented yet.

4.3 Expression folding

Folding of expressions is the process of iterating through values of a container (list, set, or
vector) or a range of integral numbers, doing some processing on each value, and folding
them into a new value. The syntax of a fold expression is shown in the FoldExpression di-
agram in Figure 4.4. As you can see in the diagram, the fold expression consists of four
parts, a FoldOperator[page 22], an ExpressionIterator[page 20], a guard (the optional Track 1), and
an Expression[page 17]. The container or range used to obtain values from is specified in the
ExpressionIterator block, how to process a value is specified in the guard and the Expression
block, and how to fold values together into a new value is defined by the FoldOperator block.
Each of these steps is explained in more detail below.

4.3.1 Expression iterator

The ExpressionIterator diagram used to specify where values are obtained from, is shown in
Figure 4.5. The folding starts with a variable denoted by a VariableIdentifier[page 68] which is
assigned each value that must be processed. This variable can be used in the guard and the

20 Expressions

FoldExpression

(
�
�

�

FoldOperator ,

�
�

�

ExpressionIterator �

�

��

�1
,

�
�

�

BooleanExpression

�

,
�
�

�

Expression)

�
�

�

Figure 4.4: Raildiagram of FoldExpression.

ExpressionIterator

VariableIdentifier �

�:
�
�

�

Type

�

<-
�
�

�

�

�

� 1
Expression ..

�
�

�

Expression�

�2
Expression

�

Figure 4.5: Raildiagram of ExpressionIterator.

Expression block as read-only variable to obtain the value being processed. After the identifier,
you can optionally specify its type. If you do not specify its type, the compiler will compute
it for you. The set of values being iterated over can be specified in two ways. The first way
shown at Track 1 is to use a range similar to the iterator in statement folding[page 60] with
the first expression denoting the lower bound, and the second expression denoting the upper
bound. The values of both the lower bound and the upper bound are also processed (that
is, the iteration is inclusive both bounds). The difference of a range in expression folding
with respect to statement folding is that with expression folding, both expressions need not
be constant, they may contain variables that get assigned a value during execution of the
program. The second way of defining the values to iterate over is by means of stating a
container (a value of a container type[page 12]), as shown at Track 2.

4.3.2 Processing

For processing values, the optional guard at Track 1 and the Expression[page 17] block (the third
and fourth parts in the expression folding) are used. For each value obtained from the iterator,
first the value of guard is computed. If it holds, the new value to be used for folding is
computed using the Expression supplied as the fourth part.

If the guard consists of a BooleanExpresssion block, its value is computed. If it is true, the
guard holds. If it is false, the guard does not hold, and the value is discarded. If the guard is
empty (that is, Track 1 is bypassed), the guard always holds.

21 Expression folding

WARNING: Support of the projection operator both in the guard and the Expression block is weak in
the current implementation. As a result, you may get type errors that do not exist with the projection
at this position.

4.3.3 Folding

The values that are not discarded during processing are folded together using the FoldOpera-
tor, which is just one of seven possible binary operators in expressions. The table below lists
them (first column).

Operator Initial Purpose
+ 0 Add all values together
∗ 1 Multiply all values with each other
and true Test whether all values are true
or false Test whether (at least) one value is true
max 0 or −∞ Obtain largest value
min ∞ Obtain smallest value
++ [] Concatenate all values to a list
\/ {} Collect all values into a set

The second column lists the initial value for each operator. For the max operator, the initial
value for natural numbers is 0 and for the other numeric types, it is −∞.

Examples

Example Result
(max, i <- 0..3, i) 3, upper bound is also tried
(max, i <- [0, 1, 2, 3], i) 3, equivalent to previous example
(max, i <- 0..3, i + 2) 5, max is computed over i + 2
(max, i <- 0..7, i < 4, i + 2) 5, guard discards 4,5,6, and 7
(and, i <- 8..7, i < 0) true, empty range (upper bound is smaller

than lower bound)
(*, i <- 1..5, i) 5! = 120
(++, x <- xs, x < 6, [x*x]) [1, 4, 25], if xs = [1, 8, 2, 5]
(+, i <- 3..5, i*2) ((1 + 3 ∗ 2) + 4 ∗ 2) + 5 ∗ 2 = 25

2

In the final example, you can see the actual computation that is performed. The iterator first
assigns value 3 to variable i. Since the guard is omitted, the value of i ∗ 2 is computed, and
added to the initial value of the ‘+’ operator. Next, value 4 is assigned, causing 4 ∗ 2 to be
added to the result of the previous addition. Finally, the same happens with value 5. Then the
iterator is finished, and the result at that moment is returned as result of the fold expression.

Note: Some implementations may not have −∞ or ∞ available, they will use an approximation
instead.

22 Expressions

BooleanExpression

1
false

�
�

�

�

�2
true

�
�

�

�3
BooleanUnaryOperator Expression

�4
Expression BooleanBinaryOperator Expression

�

Figure 4.6: Raildiagram of BooleanExpression.

4.4 Boolean values

Values of the boolean data type[page 12] bool can be created andmanipulated using the syntax
of the BooleanExpression diagram in Figure 4.6. The type has two values, false and true ,
which may be entered literally in a Chi specification via Track 1 and 2. The other tracks
manipulate existing boolean values using the rules of propositional logic. Through Track 3
the boolean unary expressions become available, explained further in Section 4.4.1. The
syntax of the boolean binary expressions is shown at Track 4 and explained in Section 4.4.2.

4.4.1 Boolean unary expressions

The boolean unary expressions of Track 3 in the BooleanExpression[page 23] diagram are listed
in the table below. In the first column, the contents of the BooleanUnaryOperator block is
shown in fixed width font, the Expression[page 17] block is represented with e. The second
column states the allowed type of expression e, and the third column states the type of the
result after applying the operator. Finally, the fourth column explains the meaning of the
operator.

Unary expression Type e Result type Description
not e bool bool ¬e, boolean negation operator

There is only one boolean unary operator, namely the not operator which inverts the value
of its boolean argument.

Examples

Example Result
not true false

2

4.4.2 Boolean binary expressions

The boolean binary expressions of Track 4 in the BooleanExpression[page 23] diagram are listed
in the table below. In the first column, the contents of the first Expression[page 17] block is

23 Boolean values

represented by the e1 symbol, the BooleanBinaryOperator contents is shown in fixed width
font, and the second Expression[page 17] block is represented with e2. The second column states
the allowed type of expression e1, the third column states the allowed type of expression e2,
and the fourth column lists the type of the result after applying the operator. Finally, the fifth
column explains the meaning of the operator.

Binary expression Type e1 Type e2 Result type Description
e1 = e2 bool bool bool e1 = e2, equality test
e1 /= e2 bool bool bool e1 6 =e2, inequality test
e1 and e2 bool bool bool e1 ∧ e2, conjunction operator
e1 or e2 bool bool bool e1 ∨ e2, disjunction operator
e1 => e2 bool bool bool e1 → e2, implication operator (≡ ¬e1∨

e2)

The semantics of the boolean logic operators, also known as propositional logic operators are
explained in books about logic, for example [1]. Below, the truth tables of the logic operators
are listed for ease of reference.

e1 e2 ¬e1 e1 = e2 e1 6 = e2 e1 ∧ e2 e1 ∨ e2 e1 → e2
false false true true false false false true
true false false false true false true false
false true true false true false true true
true true false true false true true true

4.4.3 Boolean functions

The only function in the standardlib for booleans is the conversion of a boolean value to its
string representation. Its signature is listed below.

Function Description
func b2s(val b: bool) -> string Convert boolean value to string value

Examples

Example Result
b2s(true) "true"

In this example, the value true is converted to the string "true" .

2

4.5 Natural numbers

The natural numbers type is the Chi representation of the mathematical set N, the non-
negative numbers. The type of natural numbers is the natural numbers type,[page 12] written
as the basic type nat .

24 Expressions

NatExpression

1
Number�

�2
NatUnaryOperator Expression

�3
Expression NatBinaryOperator Expression

�

Figure 4.7: Raildiagram of NatExpression.

The syntax of natural numbers is shown in the NatExpression diagram in Figure 4.7. Track 1
states that literal natural number values are written as a Number[page 5] block. Tracks 2 and 3
show the unary and binary expressions on natural numbers. These operators are explained
in Sections 4.5.1 and 4.5.2.

4.5.1 Natural number unary expressions

The unary expressions on natural numbers at Track 2 in the NatExpression[page 25] diagram
are listed in the table below. In the first column, the contents of the NatUnaryOperator block
is shown in fixed width font, the Expression[page 17] block is represented with e. The second
column states the allowed type of expression e, and the third column states the type of the
result after applying the operator. Finally, the fourth column explains the meaning of the
operator.

Unary expression Type e Result type Description
- e nat int Unary negation operator, −e as integer value
+ e nat int Unary addition operator, e as integer value

There are two unary operators on natural numbers. Both promote their value to the integer
type (using these operators is the only way to obtain literal integer values). In addition, the
first operator negates its argument.

Examples

Example Result
- 23 Integer value −23

2

4.5.2 Natural number binary expressions

The binary expressions on natural numbers of Track 3 in the NatExpression[page 25] diagram
are listed in the table below. In the first column, the contents of the first Expression[page 17]

block is represented by the e1 symbol, theNatBinaryOperator contents is shown in fixed width
font, and the second Expression[page 17] block is represented with e2. The second column states
the allowed type of expression e1, the third column states the allowed type of expression e2,
and the fourth column lists the type of the result after applying the operator. Finally, the fifth
column explains the meaning of the operator.

25 Natural numbers

Binary expression Type e1 Type e2 Result type Description
e1 ˆ e2 nat nat nat e1e2

e1 * e2 nat nat nat e1 × e2
e1 / e2 nat nat real Real division e1/e2
e1 div e2 nat nat nat Integer division e1 ÷ e2 ≡ be1/e2c, the

biggest integral number smaller or
equal to e1/e2

e1 mode2 nat nat nat Integer remainder e1 mod e2 ≡ e1 −
e2 × (e1 ÷ e2)

e1 + e2 nat nat nat e1 + e2
e1 - e2 nat nat nat e1 − e2
e1 min e2 nat nat nat e1 min e2
e1 max e2 nat nat nat e1 max e2
e1 < e2 nat nat bool e1 < e2
e1 <= e2 nat nat bool e1 ≤ e2
e1 = e2 nat nat bool e1 = e2
e1 /= e2 nat nat bool e1 6 =e2
e1 >= e2 nat nat bool e1 ≥ e2
e1 > e2 nat nat bool e1 > e2

The subtraction e1 - e2 is defined only for a ≥ b.

Examples

Example Result
7/4 1.75
7 div 4 1
7 mod 4 3

2

The natural number type is the work horse of many specifications. As you can see from the
list, all the usual mathematical operations can be performed.

4.5.3 Natural number functions

Function Description
func n2s(val n: nat) -> string Convert natural number value to string value

4.6 Integer numbers

The integer number type[page 12] contains all integral numbers, that is, all negative numbers,
zero, and all positive numbers. In mathematics, this type is written as Z. The syntax of
integer numbers is shown in the IntExpression diagram in Figure 4.8. The literal integer
numbers at Track 1 are aNumber[page 5] prefixed with a ‘+’ or a ‘-’ sign, expressions with unary
operators on integer numbers at Track 2 are described in Section 4.6.1, and the expressions
with binary operators are shown in Section 4.6.2.

Note: Technically, the literal integer values as shown at Track 1 do not exist, they are a combi-

26 Expressions

IntExpression

1
+

�
�

�

�

�-
�
�

�

�

Number�

�2
IntUnaryOperator Expression

�3
Expression IntBinaryOperator Expression

�

Figure 4.8: Raildiagram of IntExpression.

nation of a IntUnaryOperator and a literal natural number value.

4.6.1 Integer number unary expressions

The integer number unary expressions of Track 2 in the IntUnaryOperator[page 27] diagram
are listed in the table below. In the first column, the contents of the IntUnaryOperator block
is shown in fixed width font, the Expression[page 17] block is represented with e. The second
column states the allowed type of expression e, and the third column states the type of the
result after applying the operator. Finally, the fourth column explains the meaning of the
operator.

Unary expression Type e Result type Description
- e int int −e, unary negation operator
+ e int int e, unary addition operator

The unary operators of the integer numbers are the same as the unary operators of the natural
numbers[page 25]. The only difference is that the argument must of of type int .

4.6.2 Integer number binary expression

The binary expressions on integer numbers of Track 3 in the IntExpression[page 26] diagram
are listed in the table below. In the first column, the contents of the first Expression[page 17]

block is represented by the e1 symbol, the IntBinaryOperator contents is shown in fixed width
font, and the second Expression[page 17] block is represented with e2. The second column states
the allowed type of expression e1, the third column states the allowed type of expression e2,
and the fourth column lists the type of the result after applying the operator. Finally, the fifth
column explains the meaning of the operator.

27 Integer numbers

Binary expression Type e1 Type e2 Result type Description

e1 ˆ e2
int nat int

e1e2{nat , int } int real

e1 * e2
{nat , int } int int

e1 × e2int nat int

e1 / e2
{nat , int } int real

Real division e1/e2int nat real
e1 div e2 int int int Integer division e1÷e2 ≡ be1/e2c,

the biggest integral number
smaller or equal to e1/e2

e1 mode2 int int int Integer remainder e1 mod e2 ≡
e1 − e2 × (e1 ÷ e2)

e1 min e2 int int int e1 min e2
e1 max e2 int int int e1 max e2

e1 + e2
{nat , int } int int

e1 + e2int nat int

e1 - e2
{nat , int } int int

e1 − e2int nat int

e1 < e2
{nat , int } int bool

e1 < e2int nat bool

e1 <= e2
{nat , int } int bool

e1 ≤ e2int nat bool

e1 = e2
{nat , int } int bool

e1 = e2int nat bool

e1 /= e2
{nat , int } int bool

e1 6 = e2int nat bool

e1 >= e2
{nat , int } int bool

e1 ≥ e2int nat bool

e1 > e2
{nat , int } int bool

e1 > e2int nat bool

The usual arithmetic operators can take a combination of a natural number argument and
an integer number argument. The less used div , mod, min , and max operators require two
integer number arguments to make extremely clear that it is an integer operation. Prefixing
a natural number value with an unary + or - operator[page 25] will perform the conversion to
the int type.

28 Expressions

RealExpression

1
time

�
�

�

�

�2
RealNumber

�3
RealUnaryOperator Expression

�4
Expression RealBinaryOperator Expression

�

Figure 4.9: Raildiagram of RealExpression.

Examples

Example Result
+7 div +4 +1
+7 mod +4 +3
+7 div -4 −2 (b+7/ − 4c = b−1.75c = −2)
+7 mod -4 −1 (+7 − −4 × (+7 ÷ −4) = +7 − −4 × −2 = +7 − +8 = −1)
-7 div +4 −2 (b−7/ + 4c = b−1.75c = −2)
-7 mod +4 +1 (−7 − +4 × (−7 ÷ +4) = −7 − +4 × −2 = −7 − −8 = +1)
-7 div -4 +1 (b−7/ − 4c = b+1.75c = +1)
-7 mod -4 −3 (−7 − −4 × (−7 ÷ −4) = −7 − −4 × +1 = −7 − −4 = −3)

Since confusion may exist in the result of applying div and modoperators on integer values,
this example includes all cases of usage of the div and modoperators.

2

4.6.3 Integer number functions

Function Description
func n2i(val n: nat) -> int Convert natural number value to integer

number value
func i2n(val i: int) -> nat Convert integer number value to natural

number value
func i2s(val i: nat) -> string Convert integer number value to string value
func abs(val i: int) -> int Return absolute value of integer number

4.7 Real numbers

The syntax of an expression with real numbers (value of type real)[page 12] is shown in dia-
gram RealExpression in Figure 4.9. The time keyword at Track 1 gives the current time of the
execution. For simulators, the current time is often an increasing number starting from 0.0.
Other tools may use a different starting point for time . Literal real values can be introduced
using the RealNumber[page 6] block at Track 2. Unary operators (+ and -) can be applied on

29 Real numbers

real values using Track 3. More details about real expressions with unary operators can be
found in Section 4.7.1. Finally, binary operators can be applied by using the syntax of Track 4.
These expressions are further explained in Section 4.7.2.

4.7.1 Real number unary expressions

The unary expressions on real numbers at Track 3 in the RealExpression[page 29] diagram are
listed in the table below. In the first column, the contents of the RealUnaryOperator block
is shown in fixed width font, the Expression[page 17] block is represented with e. The second
column states the allowed type of expression e, and the third column states the type of the
result after applying the operator. Finally, the fourth column explains the meaning of the
operator.

Unary expression Type e Result type Description
+ e real real Unary addition
- e real real Unary negation

4.7.2 Real number binary expressions

The binary expressions on natural numbers of Track 4 in the RealExpression[page 29] diagram
are listed in the table below. In the first column, the contents of the first Expression[page 17]

block is represented by the e1 symbol, the RealBinaryOperator contents is shown in fixed width
font, and the second Expression[page 17] block is represented with e2. The second column states
the allowed type of expression e1, the third column states the allowed type of expression e2,
and the fourth column lists the type of the result after applying the operator. Finally, the fifth
column explains the meaning of the operator.

30 Expressions

Binary expression Type e1 Type e2 Result type Description

e1 ˆ e2
{nat , int , real } real real

e1e2real {nat , int } real

e1 * e2
{nat , int , real } real real

e1 ∗ e2real {nat , int } real

e1 / e2
{nat , int , real } real real

Real division e1/e2real {nat , int } real

e1 + e2
{nat , int , real } real real

e1 + e2real {nat , int } real

e1 - e2
{nat , int , real } real real

e1 − e2real {nat , int } real
e1 min e2 real real real e1 min e2
e1 max e2 real real real e1 max e2

e1 < e2
{nat , int , real } real real

e1 < e2real {nat , int } real

e1 <= e2
{nat , int , real } real real

e1 ≤ e2real {nat , int } real

e1 = e2
{nat , int , real } real real

e1 = e2real {nat , int } real

e1 /= e2
{nat , int , real } real real

e1 6 = e2real {nat , int } real

e1 >= e2
{nat , int , real } real real

e1 ≥ e2real {nat , int } real

e1 > e2
{nat , int , real } real real

e1 > e2real {nat , int } real

The binary div and mod operators do not exist for arguments of type real . Instead, for
computing the (integer) division of real arguments, the floor function may be used and
the remainder of real arguments can be computed using the rmod function.

4.7.3 Real number functions

In the standardlibmodule, the following functions exist for values of type real .

4.7.3.1 Conversion functions

Function Description
func ceil(val r: real) -> int The ceiling dre, the smallest in-

teger value not less than r
func floor(val r: real) -> int The floor brc, the biggest inte-

ger value smaller than or equal
to r

func round(val r: real) -> int Round r to the nearest integer
value

func n2r(val n: nat) -> real Convert natural number value n
to value of type real

func i2r(val i: int) -> real Convert integer number value i
to value of type real

func r2s(val r: real) -> string Convert r to its string represen-
tation

func r2s(val r: real, n: nat) -> string Convert r to its string represen-
tation, with n characters

31 Real numbers

Examples

Example Result
ceil (3.2) +4
floor (3.2) +3

2

4.7.3.2 Geometric functions

Function Description
func sin(val r: real) -> real sin(r)
func cos(val r: real) -> real cos(r)
func tan(val r: real) -> real tan(r)
func asin(val r: real) -> real acos(r)
func acos(val r: real) -> real asin(r)
func atan(val r: real) -> real atan(r)

4.7.3.3 Hyperbolic functions

Function Description
func sinh(val r: real) -> real sinh(r)
func cosh(val r: real) -> real cosh(r)
func tanh(val r: real) -> real tanh(r)
func asinh(val r: real) -> real acosh(r)
func acosh(val r: real) -> real asinh(r)
func atanh(val r: real) -> real atanh(r)

4.7.3.4 Other math functions

Function Description
func abs(val r:real) -> real |r|, the absolute value of real number r
func exp(val r: real) -> real er

func ln(val r: real) -> real ln r
func log(val r: real) -> real log10 r
func sqrt(val r: real) -> real

√
r

func cbrt(val r: real) -> real r
1
3

func rmod(val r, s: real) -> real r mod s ≡ r − s × br/sc

4.8 Strings

Strings (value of type string [page 12]) are sequences of characters. They are mainly used to
add text to the output of the model in print statements. The syntax of string expressions is
shown in the StringExpression diagram in Figure 4.10. A literal string[page 7] is written using a
StringLiteral[page 7] block at Track 1. At Track 2 expressions with binary operators on values of
type string are introduced. These are explained in the next section.

32 Expressions

StringExpression

1
StringLiteral�

�2
Expression StringBinaryOperator Expression

�

Figure 4.10: Raildiagram of StringExpression.

4.8.1 String binary expressions

The binary expressions on strings of Track 2 in the StringExpression[page 32] diagram are listed
in the table below. In the first column, the contents of the first Expression[page 17] block is
represented by the e1 symbol, the StringBinaryOperator contents is shown in fixed width font,
and the second Expression[page 17] block is represented with e2. The second column states the
allowed type of expression e1, the third column states the allowed type of expression e2, and
the fourth column lists the type of the result after applying the operator. Finally, the fifth
column explains the meaning of the operator.

Binary expression Type e1 Type e2 Result type Description
e1 min e2 string string string e1 min e2
e1 max e2 string string string e1 max e2
e1 < e2 string string bool e1 < e2
e1 <= e2 string string bool e1 ≤ e2
e1 = e2 string string bool e1 = e2
e1 /= e2 string string bool e1 6 =e2
e1 >= e2 string string bool e1 ≥ e2
e1 > e2 string string bool e1 > e2
e1 ++ e2 string string string String concatenation

As you can see, string values can be compared with each other. Lexograpihcally ordering
based on the ASCII characters set is used to decide order of strings.

Examples

Example Description
"abc" min "bdf" "abc" , since it is lexographically the smallest string
"abc" ++ "bdf" "abcbdf"

2

33 Strings

ListExpression

ListLiteral�

�Expression ListBinaryOperator Expression

�

Figure 4.11: Raildiagram of ListExpression.

4.8.2 String functions

4.8.2.1 Conversion functions

Function Description
s2b(val s: string) -> bool Convert string with a boolean literal to its equiva-

lent value
s2n(val s: string) -> nat Convert string with a natural number literal to its

equivalent value
s2i(val s: string) -> int Convert string with an integer number literal to its

equivalent value
s2r(val s: string) -> real Convert string with a real number literal to its

equivalent value

4.8.2.2 Other string functions

Function Description
nl() -> string Returns string containing NL

character (ASCII value 10,
U000A), obsolete, use \n instead

tab() -> string Returns string containing TAB
character (ASCII value 9, U0009),
obsolete, use \t instead

dquote() -> string Returns string containing double
quote character (ASCII value 34,
U0022), obsolete, use \" instead

len(val s: string) -> nat Returns the number of characters
in the string

take(val s: string, n: nat) -> string Returns the first up to n characters
of string s

drop(val s: string, n: nat) -> string Returns string s , except for the
first up to n characters

4.9 Lists

Lists are values of the list container type[page 12]. Syntax of lists is shown in Figure 4.11. A list
value is either a literal list or it is an expression with a binary operator on lists. The syntax
of a literal list is expressed in the ListLiteral diagram in Figure 4.12. List expressions with a
binary operator are explained in Section 4.9.1. A literal list is zero or more, comma-seperated
expressions between square brackets. Each expression must have the same type (called α

34 Expressions

ListLiteral

[
�
�

�

�

� Expression�

� ,
�
�

�

�

�

]
�
�

�

Figure 4.12: Raildiagram of ListLiteral.

here).

Examples

Input Description
[] The empty list value for all types of lists (that is, for a list containing

any element type α)
[1, 2, 7, 2] A list of natural numbers containing natural number values 1, 2, 7, and

2 (in that order)

2

4.9.1 List binary expressions

The binary expressions on lists of the bottom track in the ListExpression[page 34] diagram are
listed in the table below. In the first column, the contents of the first Expression[page 17] block
is represented by the e1 symbol, the ListBinaryOperator contents is shown in fixed width font,
and the second Expression[page 17] block is represented with e2. The second column states the
allowed type of expression e1, the third column states the allowed type of expression e2, and
the fourth column lists the type of the result after applying the operator. Finally, the fifth
column explains the meaning of the operator.

Binary expression Type e1 Type e2 Result type Description
e1 in e2 α [α] bool Element test on lists
e1 ++ e2 [α] [α] [α] List concatenation

e1 -- e2
[α] [α] [α] Subtract list e2 from list e1
[α] {α} [α] Subtract set e2 from list e1

e1 = e2 [α] [α] [α] Equality test of lists e1 and e2
e1 /= e2 [α] [α] [α] In-equality test of lists e1 and e2

In this table, α represents any type (except void).

The list subtraction operator is similar to the difference[page 42] operator in sets. They differ in
how element values are removed from the left argument. The basic idea of the list subtraction
operator is for each element value of the right argument, the first corresponding value from
the left argument is removed. More precisely, e1 -- e2 with e1 = [x1, x2, . . . , xn] and e2 =
[y1, y2, . . . , ym] is defined as

1. If m = 0 (that is, the case e1−−[]), e1 is returned unmodified.

35 Lists

2. Ifm > 1, the right argument is split, its return value is the result of (e1−−[y1])−−[y2, y3, . . . , ym].

3. If y1 does not occur in e1 (ie m = 1 ∧ ∀xi : xi 6 = y1 for 1 ≤ i ≤ n), the left argument e1 is
returned unmodified.

4. Finally, if y1 matches with xj for the first time (ie m = 1 ∧ xj = y1 ∧ ∀xi : xi 6 = y1 for
1 ≤ i < j), xj is removed from the result (ie [x1, x2, . . . , xj−1, xj+1, . . . xn] is returned).

Examples

Example Result
+3 in [+1, -4] false, +3 is not available in the list
[1] ++ [5, 6] [1, 5, 6]
[1, 2, 3] -- [4] [1, 2, 3]
[1, 2, 3] -- [3] [1, 2]
[1, 2, 3, 2] -- [2, 1] [3, 2] (= ([1, 2, 3, 2]−−[2])−−[1] = [1, 3, 2]−−[1] = [3, 2])
[1, 2, 3, 2] -- {2, 1} [3, 2]

2

4.9.2 Functions

4.9.2.1 Conversion functions

Function Description
func l2s[T: type](val xs: [T]) -> {T} Convert list xs to a set

WARNING: The list to set function l2s has not been implemented. You can use expression
folding[page 20] instead.

36 Expressions

4.9.2.2 Other list functions

Function Description
func len[T: type](val xs: [T]) -> nat

Number of elements of list xs
func hd[T: type](val xs: [T]) -> T

First element of non-empty list xs
func tl[T: type](val xs: [T]) -> [T]

List xs except for the first element (xs must be non-empty)
func hr[T: type](val xs: [T]) -> T

Last element of non-empty list xs
func tr[T: type](val xs: [T]) -> [T]

List xs , except for the last element (xs must be non-empty)
func take[T: type](val xs: [T], n: nat) -> [T]

First upto n elements of list xs
func drop[T: type](val xs: [T], n: nat) -> [T]

List xs , except for the first upto n elements
func sort[T: type](val xs: [T], f: (T,T) -> bool) -> [T]

Return a sorted version of list xs using predicate function f (with f (x, y) = x < y)
func insert[T: type](val xs: [T], x: T, f: (T,T) -> bool) ->
[T]

Insert element x into sorted list xs using predicate function f , (with f (x, y) = x < y)

Examples

Below, an example of using sort and insert functions is provided.

from standardlib import sort, insert

func cmp(val a,b: nat) -> bool = |[ret a < b]|

model M() =
|[var xs: [nat] = [52, 79, 45, 18, 93, 85, 31, 67, 84, 45]
:: xs := sort(xs, cmp)

; !! xs, "\n"
; xs := insert(xs, 53, cmp)
; !! xs, "\n"

]|

After importing the sort and insert functions from the standardlib module, first the
compare function cmp is defined that compares two arbitrary elements from the list and
returns true iff the first argument is strictly smaller than the second argument.

The model definition Mdemonstrates use of the sort function and insert function. Note
that the compare function is given to both functions as a value of type function (that is,
sort(xs, cmp) and not sort(xs, cmp())). See Section 4.16 for more details about
this use of functions.

2

37 Lists

VectorExpression

1
<

�
�

�

 Expression�

� ,
�
�

�

�

>

�
�

�

�

�2
Expression VectorBinaryOperator Expression

�

Figure 4.13: Raildiagram of VectorExpression.

4.10 Vectors

Vectors or arrays allow a fixed number of values of the same type to be stored together. The
data type is intended primarily for replication, you want to keep a number of instances of
the same thing together, for example a number of buffers. Each value in the vector can
be accessed quickly, making the vector ideal for individual manipulation of each value in
the vector. The syntax of vector expressions is shown in the VectorExpression diagram in
Figure 4.13. The syntax of literal vector values is shown at Track 1. It is a comma-seperated
list of expressions each of the same type, surrounded by two angular brackets. The type of
such a literal vector is written as n*α, where n (n ≥ 1) is the number of expressions between
the angular brackets and α is the type of the expressions.

Examples

Example Description
< 1, 2, 3+18 > Vector of three natural numbers ie 3*nat
<false> Vector of 1*bool

2

Binary expressions that can be used to get a vector value, shown at Track 2, are explained
below.

4.10.1 Vector binary expressions

The binary expressions on vectors of Track 2 in the VectorExpression[page 38] diagram are listed
in the table below. In the first column, the contents of the first Expression[page 17] block is
represented by the e1 symbol, the VectorBinaryOperator contents is shown in fixed width font,
and the second Expression[page 17] block is represented with e2. The second column states the
allowed type of expression e1, the third column states the allowed type of expression e2, and
the fourth column lists the type of the result after applying the operator. Finally, the fifth
column explains the meaning of the operator.

Binary expression Type e1 Type e2 Result type Description
e1 . e2 n*α nat α Projection into a vector
e1 = e2 n*α n*α bool Equality test of a vector
e1 /= e2 n*α n*α bool Inequality test of a vector

The projection operator is the primary operator for accessing the contents of a vector. At the

38 Expressions

RecordExpression

1
(

�
�

�

Expression ,

�
�

�

 Expression�

� ,
�
�

�

�

)
�
�

�

�

�2
Expression RecordBinaryOperator Expression

�

Figure 4.14: Raildiagram of RecordExpression.

left of the projection operator the vector to access should be the vector to access, at the right
of the operator should be a natural number value indicating the field to access. The first field
is accessed with natural number value 0, the second field with value 1, and so on. The natural
number value used for indexing may be dynamic, that is, be computed at run time. This
makes it easy to iterate over a vector.

Equality (and inequality) tests of vectors occur at a field-by-field basis, that is, two vectors are
equal iff all their corresponding fields are equal.

Examples

Example Description
<1, 2, 3+18> . 2 Access third field (21) of vector
<1.0, 3.0> = <1.0, 5.0> false, since 3.0 6 = 5.0

2

There are no functions in the standardlibmodule for vectors.

4.11 Record tuples

Record tuples or records are used to keep a set of related but (logically) different values to-
gether, for example the lowest, the highest and the average value of some computation. The
syntax of a literal record tuple value is shown at Track 1 of the RecordExpression diagram in
Figure 4.14. It consists of two or more expression, seperated from each other with comma’s
and surrounded by a pair of parenthesis. Since the type of each value in a record tuple can
be different, the type of a record is described by listing the type of each value explicitly. The
second track states the syntax of expressions with binary operators of record tuples. These
are explained in more detail in the following section.

39 Record tuples

Examples

Example Description
(1, "data", 15, true) Literal record tuple (of type (nat, string, nat,

bool)).

2

4.11.1 Record binary expressions

The binary expressions on records of Track 2 in the RecordExpression[page 39] diagram are
listed in the table below. In the first column, the contents of the first Expression[page 17] block
is represented by the e1 symbol, the RecordBinaryOperator contents is shown in fixed width
font, and the second Expression[page 17] block is represented with e2. The second column states
the allowed type of expression e1, the third column states the allowed type of expression e2,
and the fourth column lists the type of the result after applying the operator. Finally, the fifth
column explains the meaning of the operator.

Binary expression Type e1 Type e2 Result type Description

e1 . e2
(t1, t2, . . . , tn) nat ti Projection into record

tuple e1 with index e2(α1, α2, . . . , αn) identifier αi

e1 = e2 (α1, α2, . . . , αn) (α1, α2, . . . , αn) bool Equality test
e1 /= e2 (α1, α2, . . . , αn) (α1, α2, . . . , αn) bool Inequality test

The operators of a record tuple are almost the same as the operators of a vector, namely
projection, equality test, and inequality test. The differences are in the use of a record type in
the argument type with α1, α2, . . . , αn the type of the first, second, . . .n − 1th field for a record
tuple of length n and n ≥ 2. The other difference is that the natural number value at the right
of the projection operator must be a fixed (static) value. Finally, instead of using a number to
index a field, you can also use its name if you specified it in the type definition of the record
tuple.

Examples

Example Description
(1, "data", 15, true) . 0 1, accessing first field
x.data := [] with ‘var x:(nat, data:[real]) ’, set the

second field of the record to the empty list

2

There are no functions in the standardlibmodule for records.

4.12 Sets

Sets keep collection of values of one data type. For each value, it is recorded whether or not
the value is present in the set. For this reason, each value can be present at most once in

40 Expressions

SetExpression

1
{

�
�

�

�

� Expression�

� ,
�
�

�

�

�

}
�
�

�

�

�2
SetUnaryOperator Expression

�3
Expression SetBinaryOperator Expression

�

Figure 4.15: Raildiagram of SetExpression.

a set. Also, there is no order in a set, that is there is no first, second, or last element of a
set. The syntax of set expressions is shown in the SetExpression diagram in Figure 4.15. At
Track 1 of the diagram, the syntax of a set literal value is shown, it is a (possibly empty) list of
expression seperated by comma’s, surrounded by curly brackets. Each expression normally
results in a different value of the same type. Expressions that result in a value already present
in the set are silently ignored. At Track 2 the syntax of expressions with the unary set operator
is shown. It is explained in more detail in Section 4.12.1. Finally, the syntax of expressions
with the binary set operators is defined at Track 3. They are explained in Section 4.12.2.

Examples

Example Description
{} The empty set (set without any values present)
{1, 2, 4}

Set with values 1, 2, and 4 present{2, 4, 1}
{2, 2, 1, 4}

2

4.12.1 Set unary expressions

There is one unary operator for sets, namely pick . Expressions with this operator are shown
in the table below. In the first column, the contents of the SetUnaryOperator block is shown
in fixed width font, the Expression[page 17] block is represented with e. The second column
states the allowed type of expression e, and the third column states the type of the result after
applying the operator. Finally, the fourth column explains the meaning of the operator.

Unary expression Type e Result type Description
pick e {α} α Pick an element

The pick operator is the only way to obtain an element from a non-empty set. The value
returned by the operator is present in the set (that is, (pick S) ∈ S holds for all non-empty
sets S), but which value is returned is not fixed and may differ between implementations or
between invocations of the operator. The set S being picked is not modified.

41 Sets

4.12.2 Set binary expressions

The binary expressions on sets of Track 3 in the SetExpression[page 41] diagram are listed in
the table below. In the first column, the contents of the first Expression[page 17] block is rep-
resented by the e1 symbol, the SetBinaryOperator contents is shown in fixed width font, and
the second Expression[page 17] block is represented with e2. The second column states the al-
lowed type of expression e1, the third column states the allowed type of expression e2, and the
fourth column lists the type of the result after applying the operator. Finally, the fifth column
explains the meaning of the operator.

Binary expression Type e1 Type e2 Result type Description
e1 \/ e2 {α} {α} {α} Union operator, e1 ∪ e2
e1 /\ e2 {α} {α} {α} Intersection operator, e1 ∩ e2
e1 - e2 {α} {α} {α} Set-difference operator, e1 \ e2
e1 sub e2 {α} {α} bool Sub-set operator, e1 ⊆ e2
e1 in e2 α {α} bool Element-test operator, e1 ∈ e2
e1 = e2 {α} {α} bool Equality test of sets
e1 /= e2 {α} {α} bool Inequality test of sets

The union operator merges both its arguments much like the or operator on booleans, a
value is in the resulting set if it is in the left argument, in the right argument, or both.
The intersection operator works much like the and operator on booleans, a value is in the
resulting set if it is both in the left and in the right argument. Set difference works much
like a subtraction, except that subtracting elements that are not available has no effect. A
value is in the resulting set if it was in the left argument and not in the right argument. The
sub-set operator returns true if the left argument is a subset or equal to the right argument,
that is, if all elements of the left argument are also present in the set of the right argument.
The element-test operator tests whether the value at the left of the operator is an element of
the set at the right of the operator. Finally, the equality (and inequality) operators compare
sets and return whether or not both sets are (not) equal (have the same collection of values
present).

Examples

Example Description
{1, 2} \/ {2, 3} {1, 2, 3}, second 2 ignored
{1, 2} /\ {2, 3} {2}, only one common value
{1, 2} - {2, 3} {1}
{1, 2} sub {2, 3} false, 1 is not in the set at the right side
{ 2} sub {2, 3} true
{ 2, 3} sub {2, 3}

true, all elements at the left are also at the right
{ } sub {}
1 in {1, 2} true, 1 is available in the set
5 in {1, 2} false, 5 is not available in the set

2

4.12.3 Set functions

There is one function for sets in the standardlibmodule, namely the size function to obtain
the number of elements in a set. Its definition is shown below.

42 Expressions

DictExpression

1
{

�
�

�

�

� Expression :
�
�

�

Expression�

� ,
�
�

�

�

�

}
�
�

�

�

�2
Expression DictBinaryOperator Expression

�

Figure 4.16: Raildiagram of DictExpression.

Function Description
func size[T: type](val xr: {T}) -> nat Number of elements of set xr

4.13 Dictionaries

Dictionaries are like sets,[page 40] but with each value in the dictionary you can store another
value. Both values need not be of the same type. To prevent confusion, the former values are
called ‘keys’, and the latter values are simply called ‘values’. The type of the keys is called the
key type, and the type of values is called the value type. If the key type is K and the value type
is V , the type of the dictionary is { K: V} .

The syntax of dictionary expressions is shown in theDictExpression diagram in Figure 4.16. At
Track 1 a literal dictionary value is shown. One element consists of two ExpressionsExpression[page 17]

seperated by a colon. The first expression represents the key of the element, the second ex-
pression represents the value of the element. Elements are seperated from each other by a
comma. All elements are between two curly brackets. At Track 2 the syntax of expressions
with binary operators of dictionaries are shown. The available operators are shown in the
next section.

The association of key and value, combined with fast access to a key makes dictionaries ideal
for looking up values based on key values.

4.13.1 Dictionary binary expressions

The binary expressions on dictionaries of Track 2 in the DictExpression[page 43] diagram are
listed in the table below. In the first column, the contents of the first Expression[page 17] block
is represented by the e1 symbol, the DictBinaryOperator contents is shown in fixed width font,
and the second Expression[page 17] block is represented with e2. The second column states the
allowed type of expression e1, the third column states the allowed type of expression e2, and
the fourth column lists the type of the result after applying the operator. Finally, the fifth
column explains the meaning of the operator.

Binary expression Type e1 Type e2 Result type Description
e1 . e2 {α : β} α β Projection operator

43 Dictionaries

EnumValueIdentifier

Identifier

Figure 4.17: Raildiagram of EnumValueIdentifier.

4.13.2 Dictionary functions

Currently, there are no functions for dictionaries available.

WARNING: Dictionaries are not yet implemented.

4.14 Enumeration values

An enumeration value is an EnumValueIdentifier shown in Figure 4.17. It is an identifier
defined in an enumeration definition[page 74]. The only operators allowed on these values is
equality and inequality tests shown in the following table.

Binary operator Type e1 Type e2 Result type Description
e1 = e2 E E E Equality test of two enumeration values
e1 /= e2 E E E Inequality test of two enumeration val-

ues

Type E in the above table is an enumeration type[page 74].

Examples

With the following enumeration definition[page 74] for defining an enumeration type[page 74]

flagcolors with values[page 44] red , white , and blue , the following expressions can be
written:

Example Description
red = white false
blue /= red true

2

WARNING: Enumeration values are not yet implemented.

4.15 Distributions

A distribution is used to obtain stochastic behavior. You cannot write a literal value for a
variable of a distribution type[page 14]. Instead, you must use one of the distribution functions
from the standardlibmodule listed in Appendix A.

44 Expressions

DistExpression

DistUnaryOperator Expression

Figure 4.18: Raildiagram of DistExpression.

FunctionExpression

Expression

Figure 4.19: Raildiagram of FunctionExpression.

4.15.1 Unary distribution expressions

There is one unary operator for distributions, namely sample . Its syntax is shown in the
DistExpression diagram in Figure 4.18. In the first column of the table below, the contents
of the DistUnaryOperator block is shown in fixed width font, the Expression[page 17] block is
represented with e. The second column states the allowed type of expression e, and the third
column states the type of the result after applying the operator. Finally, the fourth column
explains the meaning of the operator.

Unary expression Type e Result type Description

sample e

-> bool bool

Draw a sample of distribution e
-> nat nat
-> int int
-> real real

4.16 Functions

A function can be declared[page 80] or defined[page 78] using the func keyword, as explained
in Chapter 7. Besides calling a function (also known as function application), you can also
use a function as if it is data, and assign it to a variable, give it as actual parameter to an-
other function (which results in so-called higher order functions such as sort [page 37] or
insert [page 37]) or send a function over a channel.

Before discussing function calls, first the FunctionExpression block is explained. The diagram
of it is shown in Figure 4.19. A FunctionExpression is an expression, with the additional
requirement that the type of the expression must be a function type[page 14].

The most common use of a FunctionExpression is to call it. The syntax of such a call is shown
in the FunctionCallExpression diagram in Figure 4.20. A function call starts with a Func-
tionExpression[page 45] that states which function should be called. After it, between round
brackets, the actual parameters of the call are listed. The result of a function call is a value of
the type stated by the first (function) expression.

Function expressions can also be treated as data. Variables or parameters of the function type
can be assigned a function (through normal assignment[page 52], formal parameter[page 68] in

45 Functions

FunctionCallExpression

FunctionExpression (
�
�

�

�

� Expression�

� ,
�
�

�

�

�

)
�
�

�

Figure 4.20: Raildiagram of FunctionCallExpression.

a function call, or the receiving end of a communication[page 54]). Once assigned a value, the
function can be called through the variable as if the variable is a normal function name.

Examples

func f(val x: nat) -> nat = |[ret 1 + x]|

model P() =
|[var p: (nat) -> nat

, fv, pv: nat
:: p := f

; fv := f(1)
; pv := p(2)
; !! fv, "\n", pv, "\n"

]|

The above Chi specification defines a simple function f which returns its argument after
incrementing it by one.

In the model, variable p has a function type[page 14]. The p := f assignment assigns the
function to the variable. After the assignment you can still call the function directly, as is
demonstrated by the fv := f(1) statement, but you can also call it through variable p as
demonstrated in the pv := p(2) statement. (Note how variable p is treated as if it is a
normal function name.) Finally, both function-call results are printed.

2

4.17 Expression operator priorities

Until now, it is assumed that only one operator is used in an expression. In real programs
however, operators are normally used more often, or different operators are combined with
each other. The question is what operator is applied in what order while computing the value
of an expression. The answer to those questions is generally known as expression operator
priority,

46 Expressions

Examples

As an illustration, consider the possible meaning of the following expressions

Expression Possible meaning
1 + 2 ∗ 3 ‘(1 + 2) ∗ 3’ or ‘1 + (2 ∗ 3)’
10 − 2 − 3 ‘(10 − 2) − 3’ or ‘10 − (2 − 3)’
{1, 2, 3} − {1, 2} − {1} ‘({1, 2, 3} − {1, 2}) − {1}’ or ‘{1, 2, 3} − ({1, 2} − {1})’
{1, 2, 3} − {1, 2} /\ {1} ‘({1, 2, 3} − {1, 2}) /\ {1}’ or ‘{1, 2, 3} − ({1, 2} /\ {1})’

2

The rules of how to interpret an expression are as follows:

1. If an expression has brackets, the (sub-)expression inside the brackets is evaluated first.

2. If an expression has more than one operator, the operator with the highest priority
(lowest level in the table below) is applied first.

3. If an expression has more than one operator at the same priority (the same level), the
binding order at the level decides which operator is applied. If the binding order is
left, the left-most operator is applied first. If the binding order is right, the right-most
operator is applied first. If the binding order is none, Chi does not allow operators at
the level to be combined without using brackets to clarify the order.

Repeat applying these rules in the stated order, until the expression is reduced to its value.

The priority level of the operators and the binding order at each level is listed in the following
table.

Level Binding order Operators Description

1 none e0 < e1, e2, . . . , en > Template instantiation[pages 18, 20]

2 left e0(e1, e2, . . . , en) Function call[page 45]

3 left e1.e2 Projection
4 left e’ Derivative
5 right sample e, pick e, + e, − e Unary operators
6 right e1 ˆ e2 Power operator
7 left e1 ∗ e2, e1 /\ e2, e1 / e2, e1 div e2,

e1 mode2
Multiplication operators

8 left e1 + e2, e1 \/ e2, e1 - e2, e1 ++ e2, e1 --
e2

Addition operators

9 left e1 min e2, e1 max e2 Min and max operators
10 right not e Boolean negation operator
11 left e1 < e2, e1 <= e2, e1 = e2, e1 /= e2,

e1 >= e2, e1 > e2, e1 in e2, e1 sub e2
Relational operators

12 none e1 => e2 Boolean implication operator
13 left e1 and e2 Boolean conjunction operator
14 left e1 or e2 Boolean disjunction operator

47 Expression operator priorities

VariableExpression

VariableIdentifier �

� .
�
�

�

Expression�

�

�

�

Figure 4.21: Raildiagram of VariableExpression.

Examples

To get an understanding og how the priority operators work, here are a few examples that
may show surprising behavior, but that can fully be explained by applying the priority rules.

Expression Meaning Explanation
3 + 2 min 1 (3 + 1)min 1 The addition operator is applied first
not 5 < 2 Error Interpreted as (¬5) < 2, which has no meaning (the

‘not’ operator at level 10 is applied first)
5 = 3 = false (5 = 3) = false Compare the comparison result of (5 = 3) with ‘false’

(both operators at level 11, and left binding order)

2

4.18 Addressable expressions

In the fold statement[page 60], fold expressions, the assignment statement[page 52], and the
receive statement[page 54] computed or received values should be stored. Expressions that can
be used as storage location are called addressable expressions. Depending on the statement,
different form of addressable expressions may be used.

The simplest addressable expression is a VariableExpression block, defined in Figure 4.21.
A VariableExpression is a VariableIdentifier[page 68] (an identifier that refers to a variable or
formal parameter), optionally followed by zero or more projection operations (if the variable
or formal parameter is vector[page 38] or record tuple).

At assignment statements and receive statements, you can assign multiple variables at a time.
Such an expression is also an addressable expression, and it is defined by the AddressableEx-
pression block in Figure 4.22. As you can see, an AddressableExpression is either a Variable-
Expression[page 48] (at Track 1), or it is a tuple or a vector (at Tracks 2 and 3) of addressable
expressions. In some situations, you may omit the tuple brackets.

48 Expressions

AddressableExpression

1
VariableExpression�

�2
(

�
�

�

AddressableExpression ,

�
�

�

 AddressableExpression�

� ,
�
�

�

�

)
�
�

�

�3
<

�
�

�

 AddressableExpression�

� ,
�
�

�

�

>

�
�

�

�

Figure 4.22: Raildiagram of AddressableExpression.

ConstantExpression

Expression

Figure 4.23: Raildiagram of ConstantExpression.

Examples

Example Description
v.2 Third field in vector or tuple variable v
x, y := y, x Tuple x, y is adressable
((a, b), c) A nested addressable expression with variables a, b, and c

2

4.19 Constant expressions

At a number of places, a constant expression is needed. As you can see in the ConstantEx-
pression diagram in Figure 4.23, a constant expression is an Expression[page 17]. The difference
with the latter is that a constant expression may not change. To ensure that, only literal values
such as 132 or (2.71828, 3.14159), and references to other constants (through the ConstantIden-
tifier[page 75] block) may be used in constant expressions.

WARNING: The tools only support literal values.

49 Constant expressions

50 Expressions

Chapter 5

Statements
Since Chi is a language based on process algebra, statements are considered to be behavioral
expressions, much like ‘normal’ expressions are expressions over values. You can see this
idea in the grammar of a statement shown in the Statement diagram in Figure 5.1. Just like
normal expressions, you can group statements together by surrounding them with a pair
of round brackets, as shown at Track 1. The elementary statement is represented by the
BasicStatement[page 51] block at Track 2, which is explained in more detail in the next section.
Tracks 3 and 4 show the syntax of unary and binary statement operators. These are explained
in sections 5.10 and 5.11.

5.1 Basic statements

Rather than having one long list of basic statements, they have been split into different kinds
of basic statement according to their use. The BasicStatement diagram in Figure 5.2 shows the
kinds of basic statement available. The AssignmentStatement[page 52] block at Track 1 defines
statements for assigning values to variables, it is further explained in Section 5.2. State-

Statement
1

(
�
�

�

Statement)

�
�

�

�

�2
BasicStatement

�3
UnaryStatement

�4
BinaryStatement

�

Figure 5.1: Raildiagram of Statement.

51 Basic statements

BasicStatement
1

AssignmentStatement�

�2
CommStatement

�3
DelayStatement

�4
Instantiation

�5
HybridStatement

�6
ReturnStatement

�7
FoldStatement

�8
AdvancedStatement

�

Figure 5.2: Raildiagram of BasicStatement.

ments for communicating between processes are defined in the CommStatement[page 55] block
at Track 2, explained in Section 5.3. Delaying for some time can be specified by the delay
statements in the DelayStatement[page 55] block at Track 3 explained in Section 5.4. New pro-
cesses can be started by using process instantiation, defined in the Instantiation[page 57] block
at Track 4. The statements are further explained in Section 5.5. Statements needed for hybrid
models are made available at Track 5 by the HybridStatement[page 58] block and explained in
Section 5.6 of this chapter. TheReturnStatement[page 60] block at Track 6 defines the ret state-
ment, used exclusively in functions. Details can be found in Section 5.7. Finally, statements
for advanced users are shown at Tracks 7 and 8. The FoldStatement[page 60] block explained in
Section 5.8 shows how to fold several statements into one and the AdvancedStatement[page 61]

block introduces a number of seldomly used statements, details can be found in Section 5.9.

5.2 Assignment statements

Assignment statements assign values to variables. There are three such statements. Their
syntax is shown in the AssignmentStatement diagram in Figure 5.3. At Track 1, the most of-
ten used form of assignment is shown, namely the normal assignment statement. Nor-
mally, the statement is used without guard, and without channel expression (that is, both
the OptGuard and the OptChannel blocks are empty). In that case, the statement consists
of a comma-seperated list of variables (addressable expressions[page 48]), the := symbol, and
finally a comma-seperated list of expression values. The semantics of the statement is that
that the values at the right are copied (assigned) to the variables at the left. Note that first all
values at the right are computed before assigning them to the variables at the left.

In the official language definition ([3]), the number of values at the right must be the same as
the number of variables at the left. The implementation is more flexible, you can also expand
one record tuple[page 39] value from the right to a (nested) list of variables at the left, or vice
versa, merge several (nested) values from the right into one record tuple[page 39] variable. The
OptGuard block can be used to conditionally assign values to variables, the statement can only

52 Statements

AssignmentStatement

1
OptGuard OptChannel �

�

� AddressableExpression�

� ,
�
�

�

�

:=

�
�

�

 Expression�

� ,
�
�

�

�

�

�2
OptGuard OptChannel skip

�
�

�

�3
OptGuard {

�
�

�

 VariableExpression�

� ,
�
�

�

�

}
�
�

�

�

�

�:
�
�

�

 Expression�

� ,
�
�

�

�

>>

�
�

�

LabelIdentifier

�

OptGuard

�

�BooleanExpression ->

�
�

�

�

OptChannel

�

�ChannelExpression :
�
�

�

�

LabelIdentifier

Identifier

Figure 5.3: Raildiagram of AssignmentStatement.

be executed when the guard expression (the Expression[page 17] block before the -> symbol) is
true. If the guard is false, the statement can only wait. The OptChannel block is seldomly
used. Its main use is in results of process-algebraic reasoning about Chi programs where a
matching pair of communication statements is replaced by an assignment statement (that is,
‘h!!8 || h?x ’ is rewritten to ‘h: x := 8 ’).

At the second track, you can see the ‘skip’ statement. The reason it is part of the Assign-
mentStatement[page 52] diagram is that it is a special case of assignment, namely the case that
the list variables and the list values are both empty. The OptGuard and OptChannel blocks
have the same function as with the normal assignment statement, except that ‘skip’ is gener-
ated from a synchronization instead of a communication.

53 Assignment statements

Finally, at Track 3, the action predicate statement is shown. Although it is not used often,
it forms the foundation of assignments. The OptGuard block has the same function as at
previous tracks, it allows the assignment to be performed conditionally. The assignment it
self is expressed in two lists of expressions. The first list between curly brackets is a list
addressable expressions[page 48]. It states which variables may change. The second list of
expressions state the conditions that must hold after the assignment has taken place. The
final LabelIdentifier block defines the label that is attached to the action predicate statement.
This label is emitted when the assignment takes place.

Examples

Example Description
x := 1 Assignment of the value 1 to variable x
x, y := y, x Swapping variables x and y
t := x, y Merging values to a record tuple t
t.0, t.1 := x, y Equivalent assignment
x, y := myfunc(a, b) Splitting a record tuple returned by a

function call to seperate variables
x = 5 -> y := 3 Condition assignment, if x = 5 assign 3

to variable y
{x, y}: x=old(y), y=old(x) » tau Action predicate statement equivalent to

the swapping example
The variable swapping example works due to the fact that first the values of both y and x are
saved from the right-hand side, before assigning them to the variables at the left-hand side.
In the action predicate example, the old annotation explicitly refers to the value prior to the
assignment.

2

5.3 Communication statements

With communication statements, you can exchange information between two different pro-
cesses, or between a process and the environment. Communication between two processes
occurs at a common channel, communication with the environment happens without chan-
nel. All communication in Chi is synchronous, that is, sending of the information and
receiving of the information occurs in the same (atomic) step. In other words, either the
exchange of information has occurred or it has not occurred.

In addition, a notion of direction exists with the statements. Sending information away is
done with a send statement, and receiving information is done with a receive statement.
The direction is indicated in the statement with an exclamation mark (‘! ’) for sending of
information, and with a question mark (‘?’) for receiving of information.

Since communication is synchronous, it may happen that a send statement could be executed
in a process, but there is no matching receive statement (that is, with a common communi-
cation channel) or vice versa. In those cases, the statement waits until a matching partner
statement can also be executed. In some cases, waiting for a partner process is unwanted
behavior, if the communication statement can be executed, there should be a partner process
at the same time, delaying would be bad behavior. In other words, you want express com-
municate now. In the syntax this behavior is indicated with double exclamation marks for

54 Statements

the sending statements and with double question marks for the receiving statements. Before
discussing the syntax of the communication statements, it should be noted that the choice
between communication and delaying is not hard-coded into the language, it is enforced by
the urgent communication operator[page 61] that is normally placed at one of the outermost
levels in the model. You can override this behavior by replacing the outermost levels in an
uncooked model[page 83]. Note however that not all tools support these models.

In the CommStatement diagram in Figure 5.4, the syntax of the communication statements is
shown. Tracks 1 through 3 show the send statements and tracks 4 through 6 show the receive
statements. All statements have an OptGuard block, indicating that the statement can be
conditionally executed. If the block is not empty, the Expression[page 17] block in the OptGuard
must evaluate to true to allow the communication statement to be executed.

Tracks 1, 2, 4, and 5 have an expression in front of the direction. This expression defines
which communication channel is used. If the channel expression is missing (Tracks 3 and 6),
the statement communicates with the environment. The expressions behind the direction
indicate the information to exchange, expressions behind a send statement refer to values,
expressions behind a receive statement refer to variables (addressable expressions[page 48]). If
there are no expressions (Tracks 2 and 5) only synchronization takes place without exchange
of data.

5.3.1 Channel expressions

The channel expressions are defined in the ChannelExpression diagram in Figure 5.5. A chan-
nel expression consists of an channel identifier by means of the ChannelIdentifier[page 70]

block, optionally followed by a number of projection operations, that selects channels from a
bundle.

5.4 Delay statements

The delay statement at the first track in the DelayStatement diagram in Figure 5.6 is used most
often. The statement delays for the amount of time units indicated by the Expression[page 17]

value (a non-negative value of type nat , int , or real), and then terminates.

Examples

model M() =
|[cont x: real = 2.0
:: x’ = 1
|| delay x + 1
]|

At the start of the execution of the delay statement, the value of the expression x + 1 is 3.0.
The delay statement will thus wait for 3.0 time units, despite the fact that the value of the
expression changes as time progresses. After 3.0 time units the statement terminates. Since
it is the last statement of the model, the execution of the model also terminates.

2

55 Delay statements

CommStatement
1

OptGuard ChannelExpression !
�
�

�

�

�!!
�
�

�

�

�

�

� Expression�

� ,
�
�

�

�

�

�2
OptGuard ChannelExpression !

�
�

�

�

�!!
�
�

�

�

�3
OptGuard !!

�
�

�

 Expression�

� ,
�
�

�

�

�4
OptGuard ChannelExpression ?

�
�

�

�

�??
�
�

�

�

�

�

� AddressableExpression�

� ,
�
�

�

�

�5
OptGuard ChannelExpression ?

�
�

�

�

�??
�
�

�

�

�6
OptGuard ??

�
�

�

 AddressableExpression�

� ,
�
�

�

�

�

OptGuard

�

�BooleanExpression ->

�
�

�

�

Figure 5.4: Raildiagram of CommStatement.

56 Statements

ChannelExpression

ChannelIdentifier �

� .
�
�

�

Expression�

�

�

�

Figure 5.5: Raildiagram of ChannelExpression.

DelayStatement

1
delay

�
�

�

Expression�

�2
delay

�
�

�

(

�
�

�

Expression ::

�
�

�

Statement)

�
�

�

�

Figure 5.6: Raildiagram of DelayStatement.

At Track 2 the more generic form of a delay statement is shown. This form is called the
delay operator. After delaying for a number of time units (expressed by the value of Expres-
sion[page 17]), the statement expressed by Statement[page 51] is executed.

5.5 Instantiation statements

In Chi you can instantiate process definitions[page 81], process declarations[page 81], and mode
definitions[page 71]. Their syntax is shown in the Instantiation diagram in Figure 5.7 at Tracks
1 and 2. At Track 1, a process definition or declaration is instantiated. The ProcessIdentifier
must match the name of the process definition or declaration. If it is a templated process,
the TemplateValue[page 20] blocks are used to define the actual values of the template parame-
ters. Giving values for template parameters is called ‘template instantiation’[pages 18, 20], and
is discussed in more detail in Section 4.2. The ProcessIdentifier block and the optional Tem-
plateValue[page 20] blocks together refer to a concrete process definition or declaration that can
be instantiated. The list of expressions between round brackets are the actual arguments of
the instantiated definition. The number of arguments must match the number of formal
parameters. Also their class and type must match. The actual expressions are assigned to
the formal parameters in a component-wise fashion (the first expression is assigned to the
first formal parameter, the second expression to the second formal parameter, etc). How
each expression is assigned depends on the class[page 67] of the formal parameter. Reference
parameters[page 67] (parameters of classes cont , alg , chan , or var) refer to the variable
stated in the actual expression, value parameters[page 67] (parameters of class val) create a
local variable, and use the value of the actual expression as initial value.

At Track 2, a mode definition is instantiated.[page 71] The ModeIdentifier[page 71] block must
match with the identifier of the mode definition being instantiated. Since mode definitions
have no parameters, there are no round brackets and no list of expression list is present.

57 Instantiation statements

Instantiation
1

ProcessIdentifier �

�<

�
�

�

 TemplateValue�

� ,
�
�

�

�

>

�
�

�

�

�

�

�(
�
�

�

�

� Expression�

� ,
�
�

�

�

�

)
�
�

�

�

�2
ModeIdentifier

�

Figure 5.7: Raildiagram of Instantiation.

HybridStatement

1
RealExpression�

� ,
�
�

�

�

�

�2
(

�
�

�

jump

�
�

�

 VariableExpression�

� ,
�
�

�

�

|
�
�

�

Statement)

�
�

�

�

Figure 5.8: Raildiagram ofHybridStatement.

5.6 Hybrid statements

Hybrid statements are (as the name already suggests) statements used exclusively in hybrid
or continuous models. The syntax of the hybrid statements is shown in the HybridStatement
diagram in Figure 5.8. The hybrid statement at Track 1 is the delay predicate, more commonly
known as equation or invariant. It is a comma-seperated list of boolean expressions that will
always hold as long as the statement is active.

58 Statements

ReturnStatement

ret
�
�

�

 Expression�

� ,
�
�

�

�

Figure 5.9: Raildiagram of ReturnStatement.

Examples

model M() =
|[cont x: real = 2.0
:: x’ = 1
|| delay 3.0
]|

After initializing the continuous variable x to the value 2.0, this model delays for 3.0 time
units. During the delay, the delay predicate x′ = 1 holds, which means that during those 3.0
time units, the value of x increases linearly to 5.0.

2

The jump enabling statement shown at Track 2 adds the list of variables listed (using Vari-
ableExpression[page 48] blocks) before the vertical bar to the set of jumping variables while the
statement behind the bar is executed.

Examples

model M() =
|[cont x, y: real = (2.0, 2.0)

, chan c: real
:: x = y
|| c ! 1.0
|| (jump x, y | c ? x)
]|

In this program two continuous variables x and y exist. Via the equation x = y , both vari-
ables are always equal to each other. If a new value for the continuous variables is received
from a channel, the values of x and y must both be able to jump to the received value, other-
wise the new value will not be accepted.

2

59 Return statement

FoldStatement

(
�
�

�

 ;

�
�

�

�

� |
�
�

�

� ||
�
�

�

�

,
�
�

�

StatementIterator ,

�
�

�

Statement)

�
�

�

Figure 5.10: Raildiagram of FoldStatement.

5.7 Return statement

The return statement shown in the ReturnStatement diagram in Figure 5.9 is used in the
statement part of function definitions[page 78]. Upon execution, the computation performed
by the function ends, and the result of the computation returned to the caller is the value of
the expression behind the ret keyword.

5.8 Fold statement

Frequently, a statement is needed several times, often with small changes between different
instantiations of the statement. For the case that these changes can be expressed in a (chang-
ing with each instantiation) constant value, the fold statement may be used to instantiate the
statement (that is, unfold the fold statement), reducing the amount of code that needs to be
written and maintained.

The syntax of the fold statement is shown in the FoldStatement diagram in Figure 5.10. It con-
sists of three arguments between a pair of round brackets. The first argument is the binary
statement operator[page 64] that is to be used between different instantiations of the statement,
the second argument is the StatementIterator[page 60] block which defines the iterator to use
(the range of values used in the unfolding process as well as the name of the iterator value).
The third argument is a Statement[page 51] block which states the statement to instantiate each
time. In the statement, the iterator value may be used (as read-only constant). This value gets
a different value each time the statement is unfolded

Semantically, the entire unfolding process is performed before execution, that is, during com-
pilation of the Chi specification. The statement is copied once for each instantiation, where
the name of the iterator is replaced by its value. Different instantiations are seperated using
the connector of the first argument.

Examples

The following example sends a sequence of values to another process. The folded statement
is written as (; , i <- 0..2 , c!i) . This is equivalent to c!0 ; c!1 ; c!2 .

2

The StatementIterator diagram in Figure 5.11 defines the range used for unfolding the fold

60 Statements

StatementIterator

VariableIdentifier �

�:
�
�

�

Type

�

<-
�
�

�

�

�

�ConstantExpression ..
�
�

�

ConstantExpression

Figure 5.11: Raildiagram of StatementIterator.

statement[page 60]. The first expression defines the lower bound, the second expression de-
fines the upper bound. Both expressions must be constant values either both of type nat or
both of type int . Also, the second value must be at least as large as the first value (the range
may not be empty). The unfolding process iterates over all values between and including both
bounds.

WARNING: The current implementations limits the type of the bounds to nat type only.

5.9 Advanced statements

Most of the advanced statements are derived directly from statements in the formal semantics
([3]), and have little practical value for modelers. The statements are shown in Figure 5.12. At
Track 1 of the AdvancedStatement diagram, you can see the urgent communication operator
υH(p) to give communication priority above delays. At Track 2 the syntax of the encapsulation
operator ∂A(p) is shown. It is used to prevent actions from the Action[page 61] block from hap-
pening. The syntax of the blocked actions is shown below. At Track 3, you can see the local
scope operator which is used to introduce local variables[page 69], channels[page 70], and mode
definitions[page 71]. At Track 4, the syntax of the any-delay operator is shown. It overrides
delay behavior of the Statement[page 51] inside. The signal-emission operator u y p shown
at Track 5 is used to intialize variables to satisfy the condition expressed in the BooleanEx-
pression[page 23] block prior to executing the Statement[page 51]. Track 6 shows the deadlock
statement δ, a statement that is consistent but can neither perform an action nor delay. Fi-
nally, the inconsistent statement⊥ at Track 7 is much like the deadlock statement, except
that it is also not consistent.

In the encapsulation operator[page 61], actions can be suppressed. In Figure 5.13, the syntax
that specifies which actions should be suppressed is shown in the Action diagram. An action
starts with the name of the action, followed by one or more action patterns (one for each
argument of the action). Actions that match with the name and all the argument patterns
are suppressed (If the pattern in ActionPattern is an expression, the actual value of the action
must be equal to the value of the expression. If the pattern is a asterisk, all values match.

61 Advanced statements

AdvancedStatement
1

(
�
�

�

urgent

�
�

�

 ChannelExpression�

� ,
�
�

�

�

|
�
�

�

�

�

�Statement)
�
�

�

�

�2
(

�
�

�

encap

�
�

�

 Action�

� ,
�
�

�

�

|
�
�

�

Statement)

�
�

�

�3
|[

�
�

�

LocalDeclarations ::

�
�

�

Statement]|

�
�

�

�4
[

�
�

�

Statement]

�
�

�

�5
BooleanExpression ˜>

�
�

�

Statement

�6
deadlock

�
�

�

�7
inconsistent

�
�

�

�

Figure 5.12: Raildiagram of AdvancedStatement.

Action

lbl
�
�

�

(

�
�

�

ActionPattern)

�
�

�

�

�isa
�
�

�

(

�
�

�

ActionPattern ,

�
�

�

ActionPattern)

�
�

�

�ira
�
�

�

(

�
�

�

ActionPattern ,

�
�

�

ActionPattern �

�

�,
�
�

�

ActionPattern)

�
�

�

�ca
�
�

�

(

�
�

�

ActionPattern ,

�
�

�

ActionPattern)

�
�

�

�

ActionPattern

∗

�
�

�

�

�Expression

�

Figure 5.13: Raildiagram of Action.

62 Statements

UnaryStatement

1
∗

�
�

�

�

�2
BooleanExpression ∗>

�
�

�

�

Statement

Figure 5.14: Raildiagram of UnaryStatement.

5.10 Unary statements

There are two unary statement operators, shown in the UnaryStatement diagram in Fig-
ure 5.14. (In Section 5.9 a few additional unary operators are defined, these are however
of little practical value.)

The loop statement is shown at Track 1. This prefix causes the statement after it to be repeated
forever. For example

* c?x

will forever receive values from channel c into variable x .

The while statement shown at Track 2 behaves very much like the loop statement previously
discussed, except that the loop ends when the BooleanExpression[page 23] of the construct eval-
uates to false.

Examples

x := 1 ; x<100 *> x := x*2

After initializing x to 1, the assignment x := x*2 is repeatedly executed, until the condition
x < 100 becomes false. At that moment, the value of x is 128.

2

The while statement also checks the value of the expression before entering the loop for the
first time.

Examples

false *> x := 1

Since the expression false does not evaluate to true, the loop is never entered, and the x
:= 1 statement is never executed.

2

63 Unary statements

BinaryStatement

Statement
1

;
�
�

�

�

�2
|

�
�

�

�3
||

�
�

�

�

Statement

Figure 5.15: Raildiagram of BinaryStatement.

5.11 Binary statements

There are three binary operators on statements, as shown in Diagram BinaryStatement at
Figure 5.15. At Track 1, the sequential composition operator is shown, Track 2 displays the
syntax of the alternative composition operator, and at Track 3 defines the syntax of the parallel
composition operator. All three operators are explained below.

Statements seperated by a sequential composition operator are executed sequentially, that is,
one after the other.

Examples

x := 1 ; y := 2

In this example, the assignment statement x := 1 and the assignment statement y := 2
are connected with sequential compostion, meaning that the latter assignment will take place
after the former has ended.

2

The second way of connecting statements is by alternative composition. When two statements
are connected in this way, both statements wait together. Execution (with an action) is done
by one of the statements only, the other statement is silently discarded at that moment.

Examples

x := 1 | y := 2

Here the assignment statement to x and the assignment statement to y are connected with
alternative composition. The former statement can perform an action (and assign the value
1 to variable x). The latter statement can also perform an action (and assign the value 2 to
variable y). The alternative composition operator makes a non-deterministic choice, and excutes
either the former or the latter assignment, but not both.

2

To show the difference between waiting and performing an action, consider the following

64 Statements

example.

Examples

delay 5 | delay 3

Both statements can only delay, thus the alternative composition of both statements can also
(only) delay (only if both statements of an alternative composition can delay, the composition
can delay). After three time units, the delay 5 statement[page 55] can still delay for two time
units, but the delay 3 cannot. It can only perform an action (and terminate). As a result,
the combined statements cannot delay, the only option is to perform the action of the second
delay statement, silently discarding the first delay statement.

2

The parallel composition operator is the third way of connecting statements. Its meaning is
that both statements delay together (the same as with the alternative composition operator),
but actions are executed in arbitrary order. The combined statement terminates when both
sides have terminated.

Examples

x := 1 || y := 2

The first and the second assignment are executed in arbitrary order, that is, it does either x
:= 1 ; y := 2 or y := 2 ; x := 1 .

2

5.12 Statement operator priorities

For each statement operator a priority has been assigned to minimize the number of brackets
needed for the average specification. The order is shown in the list below.

1. Unary statement operators: Operators of the loop, and the while statement (shown in
the UnaryStatement[page 63] diagram have the highest priority. Since both operators are
prefix operators, there is never confusion of the order between them.

2. Sequential composition operator: The sequential composition operator comes directly
after the unary operators. It is shown in the BinaryStatement[page 64] diagram.

65 Statement operator priorities

Examples

|[var n: nat = 0 :: n < 5 *> c ! n ; n := n + 1]|

means

|[var n: nat = 0 :: (n < 5 *> c ! n) ; n := n + 1]|

since the unary while statement has a higher priority than the sequential composition oper-
ator.

If you want to include the increment of n in the loop, you must write brackets around the
statements in the loop explicitly, as in

|[var n: nat = 0 :: n < 5 *> (c ! n ; n := n + 1)]|

2

3. Alternative and parallel composition operators: The remaining two binary operators are al-
ternative composition operator and the parallel composition operator. These operators
bind the least strongly.

There are no priority rules between the alternative composition operator and the paral-
lel composition operator.

Examples

This means that you must use brackets to define the binding, for example

x := 1 | x := 2 || x := 3 ; x := 4

is incorrect, and must be rewritten to either

(x := 1 | x := 2) || x := 3 ; x := 4

or

x := 1 | (x := 2 || x := 3 ; x := 4)

In all cases above, the x := 3 and x := 4 statements are bound together, since the se-
quential composition operator binds stronger.

2

66 Statements

Chapter 6

Declarations
Variable declarations occur at two places, at formal parameter declarations of functions, pro-
cesses and models, and at local variable declarations.

Each variable declared in a specification has a variable class associated with it. There are four
different variable classes:

Keyword Variable class Description
var Discrete variable Its derivative is always 0, and its value does not jumpwhile

delaying. In local variable declarations, it is used to de-
clare discrete variables. In formal parameter declarations,
it is used to link the declared variables with discrete vari-
ables from its caller.

val Discrete value Behaves as a discrete variable but cannot be used in lo-
cal variable declarations. When used in formal parameter
declarations, variables are not linked with each other.

cont Continuous variable Variables of this class have a derivative, and their value
does not jump while delaying.

alg Algebraic variable It has no derivative, its value is entirely controlled by the
set of active equations. Can be used to declare algebraic
variables in local variable declarations, and to link alge-
braic variables to algebraic or continuous variables in its
caller.

chan Channel variable Used in local variable declarations to declare new chan-
nels, and in formal parameter declarations to link chan-
nels with each other.

The meaning of a variable being linked to another variable becomes clear when new values
are assigned. A change in value of one of the linked variables (by assignment for example)
causes the same change to be propagated to the other variable(s) as well. In other words,
variables and channels linked together always have the same value. Parameters with the
linking property are also known as reference parameter. Parameters without linking property
are called value parameter.

67

FormalParameterList

FormalParameterBlock�

� ,
�
�

�

�

FormalParameterBlock

val
�
�

�

�

�cont
�
�

�

�alg
�
�

�

�

VariableIdentifier�

� ,
�
�

�

�

:
�
�

�

Type�

� ,
�
�

�

�

�

�ChannelDeclaration

�

VariableIdentifier

Identifier

Figure 6.1: Raildiagram of FormalParameterList.

6.1 Formal parameter declarations

The syntax of formal parameter declarations is defined in the FormalParameterList diagram
in Figure 6.1. It consists of one or more FormalParameterBlock blocks. Each block is either
a channel declaration (explained in Section ??), or it is a list of variables being declared to
belong to a variable class and having type Type[page 11]. The VariableIdentifier block is an Iden-
tifier[page 8] except that it refers to a variable.

Examples

As an example of formal parameter declarations, consider the process definition below

proc P(chan c?: real, cont w: real, val inc: nat) =
|[inc := inc + 1

; c?w
; w := w + inc

]|

The formal parameter declararations of process P introduce a channel c , a continuous vari-
able w, and a discrete variable inc .

2

68 Statements

LocalDeclarations
1

VarDeclaration�

�2
ChannelDefinition

�3
ModeDefinition

�

�

� ,
�
�

�

�

Figure 6.2: Raildiagram of LocalDeclarations.

VarDeclaration

var
�
�

�

�

�cont
�
�

�

�

VariableIdentifier�

� ,
�
�

�

�

:
�
�

�

�

�

�Type �

�
=

�
�

�

Expression

�

��

� ,
�
�

�

�

�

�alg
�
�

�

 VariableIdentifier�

� ,
�
�

�

�

:
�
�

�

Type�

� ,
�
�

�

�

�

Figure 6.3: Raildiagram of VarDeclaration.

6.2 Local variable declarations

Local variable declarations introduce new variables inside a function definition,[page 78] pro-
cess definition,[page 81] or model definition.[page 83] The syntax of local variable declarations
is shown in the LocalDeclarations diagram in Figure 6.2. Local declarations is a comma-
seperated list of VarDeclaration[page 69], ChannelDefinition[page 70], and ModeDefinition[page 71]

blocks. Variable declarations are explained below, channel definitions are explained in Sec-
tion 6.3, and mode definitions are explained in Section 6.4.

Local variables are defined by the VarDeclaration diagram in Figure 6.3. Discrete and contin-
uous variables are declared with the ‘var ’ respectively ‘cont ’ keywords, followed by a list of
identifiers (the VariableIdentifier blocks), and a type. Optionally, the variables can be given an
initial value by means of an expression. Algebraic variables are declared in much the same
way, except that they cannot be initialized with an expression.

69 Local variable declarations

ChannelDeclaration

chan
�
�

�

 ChannelIdentifier �

�?
�
�

�

�!
�
�

�

�?!
�
�

�

�!?
�
�

�

�

�

� ,
�
�

�

�

:
�
�

�

�

�

� 1�

�2
NatExpression #

�
�

�

�

�

�

�

Type

��

� ,
�
�

�

�

ChannelIdentifier

Identifier

Figure 6.4: Raildiagram of ChannelDeclaration.

6.3 Channels

With channel declarations, you declare channels which can be used to synchronously ex-
change data between different processes. The syntax of a channel declaration is stated in the
ChannelDeclaration block in Figure 6.4. Channel declarations are used in formal parameter
declarations.[page 68] They start with the keyword chan , followed by a comma seperated se-
quence of declarations. Each declaration consists of a sequence of ChannelIdentifier blocks, a
colon, and the type of the channel. Each channel identifier (which is just an Identifier[page 8])
may be followed by a specification of the allowed directions of data transfer on the channel.
A question mark means that data is received from the channel. An exclamation mark means
that data is sent. Specifying both a question mark and an exclamation mark (in either order)
means that the channel can both be read from and be written to. The latter is also the de-
fault, which means that both read and write is allowed on a channel for which no direction is
specified.

The type of the channel consists of two parts. The first part defines the structure of the
channel(s). Either it is a single channel (use Track 1), or it is a bundle (use Track 2). The
second part defines the type of the data being transferred of the channel(s).

Channel definitions shown in the ChannelDefinition diagram in Figure 6.5 are used in local
variable declarations. They are like channel declarations, except that receive-only or write-only

70 Statements

ChannelDefinition

chan
�
�

�

 ChannelIdentifier �

�?!
�
�

�

�!?
�
�

�

�

�

� ,
�
�

�

�

:
�
�

�

�

�

� 1�

�2
NatExpression #

�
�

�

�

�

�

�

Type

��

� ,
�
�

�

�

Figure 6.5: Raildiagram of ChannelDefinition.

ModeDefinition

mode
�
�

�

 ModeIdentifier =

�
�

�

(

�
�

�

Statement)

�
�

�

�

� ,
�
�

�

�

ModeIdentifier

Identifier

Figure 6.6: Raildiagram ofModeDefinition.

channels cannot be created.

6.4 Mode definitions

A mode definition gives a name to a piece of code. They are often used to program state
machines in Chi. The syntax is shown in Figure 6.6. The ModeDefinition starts with the
modekeyword, followed by a comma seperated list of named statement fragments. The name
of each fragment is defined by theModeIdentifier block. The identifier is calledmode variable.
These mode variables may be used at any place where a statement is expected, within the
scope of the mode definitions.

71 Mode definitions

Examples

|[var n: nat
, mode reset = (n := 0; adding)

, adding = (n := n + 1; (n=5 -> reset | n < 5 -> adding))
:: reset
]|

This scope declares a discrete variable n, and two mode variables reset and adding . Exe-
cution of the scope implies execution of reset .

2

The meaning of execution of a mode variable is to execute the statements associated with the
variable instead. As you can see in the example, it is allowed to use (names of) other mode
variables including itself.

Binding of names in mode definitions is done at definition time rather than at the time of
use. That means that in the following example

|[var n: nat = 0
, mode inc = (n := n + 1)

:: |[var n: nat = 50
:: inc

; !! n
]|

; !! n
]|

the variable n declared at the first line is incremented, rather than variable n that exists at the
moment that inc is executed (which is declared at the third line). Execution of the example
will thus result in outputting values 50 and 1.

72 Statements

Chapter 7

Definitions
A Chi program is defined as a (non-empty) sequence of definitions and declarations as shown
in the ChiProgram diagram in Figure 7.1.

ChiProgram

EnumDefinitionList�

�ConstantDefinitionList

�TypeDefinitionList

�ImportDefinition

�FunctionDefinition

�FunctionDeclaration

�ProcessDefinition

�ProcessDeclaration

�ModelDefinition

�

�

�

�

Figure 7.1: Raildiagram of ChiProgram.

73

EnumDefinitionList

enum
�
�

�

�

�

� EnumTypeIdentifier =

�
�

�

{

�
�

�

 EnumValueIdentifier�

� ,
�
�

�

�

}
�
�

�

�

� ,
�
�

�

�

EnumTypeIdentifier

Identifier

EnumValueIdentifier

Identifier

Figure 7.2: Raildiagram of EnumDefinitionList.

7.1 Enumeration definitions

Enumeration definitions introduce a new type called enumeration type, and a (normally small)
set of values for that type. It is used for creating readable constant values. The syntax of
an enumeration definition is shown in Figure 7.2. An enumeration definition starts with
the keyword enum, followed by the name of the enumeration type that is defined by means
of a EnumTypeIdentifier block. Between the curly brackets, the set of allowed values of the
enumeration type is listed as a sequence of EnumValueIdentifier blocks.

Examples

The following enumeration definition creates a new enumeration type flagcolors , and
three (color) value constants red , white , and blue .

enum flagcolors = { red, white, blue }

2

With this definition, you can create variables of type flagcolors , and assign colors to
them, as in x := red .

Note: Unlike enumeration definitions in many other languages, in Chi there is no order be-
tween the different values, you cannot request the previous or next value. Testing for equality
(and in-equality) is however allowed.

WARNING: Enumeration definitions are not implemented yet.

74 Definitions

ConstantDefinitionList

const
�
�

�

�

�

� ConstantIdentifier :
�
�

�

Type =

�
�

�

ConstantExpression�

� ,
�
�

�

�

ConstantIdentifier

Identifier

Figure 7.3: Raildiagram of ConstantDefinitionList.

7.2 Constant definitions

Constant definitions are used to give names to constant values. The syntax is shown in Fig-
ure 7.3. A list of constant definitions starts with a const keyword. Each constant consists of
its name (a ConstantIdentifier, which is a (new) Identifier[page 8] that refers to a constant value),
a description of the type of the constant, and the value of the constant defined by means of a
ConstantExpression[page 49] expression.

Examples

An example of a constant definition list is

const pi: real = 3.14159265358979323846
, day : nat = 24 * 60 * 60

which states that the (upto now unused) name ‘pi’ is attached to a real constant value slightly
larger than 3 and the name ‘day’ is attached to a natural number with value 86400.

2

Semantically, using the name of a constant definition is equal to inserting its value at that
point in the program.

The syntax of the language allows an arbitrary expression at the right hand side of the defi-
nition. In theory, you are allowed to write any expression as long as it evaluates to a constant
value (that is, it consists of expression operators, literal values and other constant identifiers).
In practice, most tools cannot handle expressions such as ‘24∗60∗60’, and restrict the syntax
of a value to literal values only (that is, you must write ‘86400’ instead).

WARNING: Constant definitions are not implemented yet.

75 Constant definitions

TypeDefinitionList

type
�
�

�

 TypeIdentifier =

�
�

�

Type�

� ,
�
�

�

�

TypeIdentifier

Identifier

Figure 7.4: Raildiagram of TypeDefinitionList.

7.3 Type definitions

As with constant definitions, type definitions only attach a (new) name to an existing type. Its
main use is to make specifications more readable by allowing to use a short identifier ratther
than the (often complex) attached type. The syntax of a type definition is shown in Figure 7.4.
The name of the new type is defined by the TypeIdentifier block, an Identifier[page 8] that refers
to a type.

Examples

type lot = nat
, batch = [lot]

The type definition attaches the type nat to the type identifier ‘lot’, and the type [nat] to
the type identifier ‘batch’.

2

Chi uses structural type equivalence, which means that usage of a type identifier is equivalent
to stating its attached type at that point in the program.

Examples

var xs: batch, ys: [nat]

The example declares a new variables ‘xs’ and ‘ys’ both of the same type ([nat]).

2

7.4 Import definitions

Import definitions or import statements allow access to definitions written in other files. Its
syntax is shown in Figure 7.5. The import has two forms. At Track 1, a module is imported. At

76 Definitions

ImportDefinition

1
import

�
�

�

ModuleIdentifier�

�2
from

�
�

�

ModuleIdentifier �

�

�import
�
�

�

a
∗

�
�

�

�

�b
EnumTypeIdentifier�

�ConstantIdentifier

�TypeIdentifier

�FunctionIdentifier

�ProcessIdentifier

�ModelIdentifier

�

�

� ,
�
�

�

�

�

�

Figure 7.5: Raildiagram of ImportDefinition.

Track 2, definitions are imported. In the latter case the module is imported, and in addition,
you can either import all definitions of the module (Track 2a), or you can explicitly list which
definitions should be imported by giving a list of identifiers (at Track 2b).

Importing a module means that you can access the definitions in it by using the projection
operator on the module.

Examples

import foo

imports the foo module using the syntax of Track 1. If this module contains for example a
function definition func inc(val n:nat) -> nat , this function can be accessed us-
ing the projection operator, as in y := foo.inc(x) .

2

If you use the inc function a lot, prefixing each use may become a distraction rather than a
help. By importing the definition as well (by using the syntax of Track 2b) you can drop the
module name.

77 Import definitions

Examples

from foo import inc

This command imports the module foo (giving you access to its entire contents by means
of the projection operator as before (that is, y := foo.inc(x) still works), and it imports
the definitions named inc directly into the name space, giving you direct access as in ‘y :=
inc(x) ’.

2

While it may seem easiest to always import all definitions from a module, it does have draw-
backs due to name-space rules. For example after importing the inc definition from foo ,
you cannot define another inc because overloading of definitions is not allowed. For similar
reasons, you cannot import definitions with the same name from different modules. Last but
not least, a reader unfamiliar with the module structure has no way of finding out where an
inc definition is coming from, he has to search through all imported modules to find the
matching definition (with an explicit module reference such as y := foo.inc(x) or an
explicit import such as from foo import inc this problem is much reduced).

WARNING: Module imports are implemented (that is, the tools accept import foo), but cannot
be used since the module.name construct does not work yet (that is, you cannot do foo.inc).

7.5 Functions

A function definition[page 78] connects a name to a computation (an algorithm). Once this
connection is made, the computation can be done by using its name as part of an expres-
sion evaluation (see Chapter 4 for details). The process of activating a computation by stat-
ing its name is known as function application,[page 45] or the more common phrase function
call.[page 45] In Chi, the computations defined in a function are proper mathematical func-
tions, that is, they are not influenced from the outside, and they do not have side effects.

Functions may come in existence in two ways. Either they are defined using a FunctionDefi-
nition block (that is, they are stated complete with the implementation of the algorithm) or
they are declared using a FunctionDeclaration block (that is, they are stated without imple-
mentation). The former way is used for defining functions in Chi, the latter way is used to
declare that functions exist elsewhere and they may be used (called) by a Chi specification.
Both function definitions and function declarations are explained below.

7.5.1 Function definition

The syntax of a function definition is shown in a FunctionDefinition diagram in Figure 7.6.
The FunctionIdentifier block defines the name (which is the same as an Identifier[page 8]) of
the computation. The optional ExplicitTemplates[page 84] block defines the statically decided
function arguments, the declarations in the FormalParameterList[page 68] state the formal pa-
rameters of the function. The Type[page 11] block defines the type of the value that will be
returned by the computation. The computation algorithm itself is defined in the Function-
Body block. The function body optionally starts with declarations of local variables in the

78 Definitions

FunctionDefinition

func
�
�

�

FunctionIdentifier �

�ExplicitTemplates

�

�

�

�(
�
�

�

FormalParameterList)

�
�

�

->

�
�

�

Type =

�
�

�

FunctionBody

FunctionBody

|[
�
�

�

�

� LocalVariables�

� ,
�
�

�

�

::
�
�

�

�

Statement]|
�
�

�

FunctionIdentifier

Identifier

Figure 7.6: Raildiagram of FunctionDefinition.

LocalVariables block. It also contains a Statement[page 51] block.

Due to the mathematical nature of functions, the formal parameters[page 68] are always of the
val variable class (that is, they are always call-by-value). The local variables[page 69] in the
LocalVariables part of the FunctionBody may only be of class var . Other variable classes are
useless, since time does not progress in a function. The Statement[page 51] block of a function
body forms the implementation of the function, that is, it describes the algorithm used to
compute the value. This should be done in a strictly mathematical way, that is, without side
effects and without being influenced by external factors. To ensure this as much as possible,
the formal parameters of the function definition are always call-by-value, and statements in a
function definition may not block or delay (otherwise time would progress as side effect), the
value time may not be used (otherwise the computed value may depend on its value), and
communication with the outside world is also not possible (again to prevent influences from
outside the function). In addition, the algorithm should be deterministic, that is, each time
the function is called with the same arguments, the same answer should be returned. For
this reason, drawing values from a distribution is also prohibited. Last but not least, the last
statement executed in a function must be a return statement[page 60] to deliver the computed
value to its caller.

Examples

func add7(val i: nat) -> nat =
|[var k: nat = 7 :: ret i + k]|

2

79 Functions

FunctionDeclaration

func
�
�

�

FunctionIdentifier �

�

��

�ImplicitTemplates

�

�

�ExplicitTemplates

�

�

�

�(
�
�

�

FormalParameterList)

�
�

�

->

�
�

�

Type =

�
�

�

DeclarationBody

Figure 7.7: Raildiagram of FunctionDeclaration.

7.5.2 Function declaration

A FunctionDeclaration block shown in Figure 7.7 is used to declare a function (that is, state
that a function exists somewhere without defining its implementation). Like the function def-
inition above, a function declaration describes a computation without side effects. The Func-
tionIdentifier[page 78] states the name of the function being declared. The optional ImplicitTem-
plates[page 84] and ExplicitTemplates[page 84] are the statically decided (during the static seman-
tics phase) parameters of the function. The parameters in the FormalParameterList[page 68]

are (like the function definition) discrete call-by-value arguments filled in at the time of the
function application (that is, at the moment the function is called as part of an expression
evaluation).

Examples

func chisqrt(val v: real) -> real = { math.py, } :: sqrt

This declares the existence of a function ‘chisqrt’ which takes a real value and returns a
real value. Its definition is called ‘sqrt’ in a file called math.py.

2

7.6 Processes

Processes are used to describe behavior (in time). Like functions, the same kind of behavior
is often needed at multiple places in the specification. Rather than writing the same behavior
more than once, behavior can be instantiated from a definition or declaration at run time.
A process definition has an explicit description of its behavior (in its statement). A process
declaration has no explicit behavioral description. The former is used to describe behavior in
the Chi language, the latter is used to state that some behavior exists with a certain name
elsewhere.

80 Definitions

ProcessDefinition

proc
�
�

�

Identifier �

�ExplicitTemplates

�

�

�

�(
�
�

�

FormalParameterList)

�
�

�

=

�
�

�

ProcessBody

ProcessBody

|[
�
�

�

�

� LocalVariables�

� ,
�
�

�

�

::
�
�

�

�

Statement]|
�
�

�

ProcessIdentifier

Identifier

Figure 7.8: Raildiagram of ProcessDefinition.

The sections below explain the process definition and the process declaration syntax. Instan-
tiation of behavior is commonly known as process instantiation, and is explained in Chapter 5
that explains the statements.

7.6.1 Process definition

A process definition groups a collection of behavior under a name, and allows this behavior
to be instantiated many times with very little effort. Figure 7.8 shows the syntax of a process
definition. The ProcessIdentifier block of a process definition states the name used to refer
to this behavior. Its syntax is the same as an Identifier[page 8]. The ExplicitTemplates[page 84]

and the FormalParameterList[page 68] are used to parameterize the behavior. The former pa-
rameters are constructed statically during static semantics checking, the latter parameters are
exchanged during process instantiation. The behavior is described explicitly in the Process-
Body block. Like the body of a function definition, it allows introduction of local variables
using LocalVariables block. The final Statement[page 51] block is used to describe the behavior
of the process in time. Often, the description will use the parameters from the FormalParam-
eterList[page 68] block to interact with other processes.

7.6.2 Process declaration

A process declaration is very similar to a process definition, except that there is no body.
It just states ’somewhere, an implementation of behavior with the following name exists’.
The syntax of a process declaration is shown in the ProcessDeclaration diagram in Figure 7.9.
Like the process definition, the ProcessIdentifier block states the name of the process being
declared. The optional ImplicitTemplates[page 84] and ExplicitTemplates[page 84] are the statically
decided (during the static semantics phase) parameters of the process. The parameters in

81 Processes

ProcessDeclaration

proc
�
�

�

ProcessIdentifier �

�

��

�ImplicitTemplates

�

�

�ExplicitTemplates

�

�

�

�(
�
�

�

FormalParameterList)

�
�

�

=

�
�

�

DeclarationBody

Figure 7.9: Raildiagram of ProcessDeclaration.

DeclarationBody

{
�
�

�

 Filename�

� ,
�
�

�

�

}
�
�

�

::

�
�

�

Identifier

Figure 7.10: Raildiagram of DeclarationBody.

the FormalParameterList[page 68] are (as in the process definition) arguments filled in at the
time of process instantiation. The implementation of the process is specified in the final
DeclarationBody[page 82] block. The contents of this block is described in Section 7.7.

WARNING: Currently, there is no tool that supports process declarations.

7.7 Declaration body

The body of a function or process declaration is described by the DeclarationBody diagram in
Figure 7.10. Such a body does not describe the contents, instead it describes where to find the
contents of the function or process. The list Filename[page 8]s specify which file(s) contain the
implementation, and the Identifier[page 8] is an additional identification within the files. The
kind of files admissible for stating an implementation for a function or a process is not part
of the language. Instead, each of the Chi tools has its own way of coupling a Chi function or
process declaration to its implementation. More detailed information about this link can be
found in the tool manual of each target.

82 Definitions

ModelDefinition

model
�
�

�

ModelIdentifier �

�

�(
�
�

�

FormalParameterList)

�
�

�

=

�
�

�

ModelBody

ModelIdentifier

Identifier

Figure 7.11: Raildiagram ofModelDefinition.

ModelBody

1
<

�
�

�

 LocalVariables�

� ,
�
�

�

�

::
�
�

�

Statement >

�
�

�

�

�2
|[

�
�

�

�

� LocalVariables�

� ,
�
�

�

�

::
�
�

�

�

Statement]|
�
�

�

�

Figure 7.12: Raildiagram ofModelBody.

7.8 Models

Models are used to describe experiments, that is they define which behavior is performed by
the specification. Such amodel is defined using a model definition. Its syntax is shown in the
ModelDefinition diagram in Figure 7.11. The name of the model is stated in theModelIdentifier
block (which is the same as an Identifier[page 8] block). Run-time experiment parameters can
be defined in the FormalParameterList[page 68] block. The behavior of the specification is stated
in the ModelBody[page 83] explained below. Unlike process and function definitions, a model
has no template parameters. The formal parameters of the FormalParameterList[page 68] block
are filled in at startup of the experiment.

The actual behavior of a model is defined in aModelBody. The syntax of this block is shown in
Figure 7.12. As shown in the figure, models come in two forms (as defined in [3]). The most
basic form is the process triple 〈p,σ, E〉. The Chi equivalent of this triple is shown at Track 1,
and often refered to as the raw model definition. The reason for this name is that the process
triple is extremely basic. A number of properties normally assumed with Chi models are not
ensured with this primitive (a raw model definition allows a send without a corresponding
receive or a receive without a send, it does not favor actions above delays, and time does not
exist by default, you must add it yourself).

To make life easier for users, [3] also defines a syntactical extension of such a process triple.

83 Models

ImplicitTemplates

[
�
�

�

 TemplateDefinition�

� ,
�
�

�

�

]
�
�

�

Figure 7.13: Raildiagram of ImplicitTemplates.

ExplicitTemplates

<

�
�

�

 TemplateDefinition�

� ,
�
�

�

�

>

�
�

�

Figure 7.14: Raildiagram of ExplicitTemplates.

The Chi equivalent of this extended process triple is shown at Track 2. This form is known
as the cooked model definition. The latter form ensures that only communication can happen
(with a combined sender and receiver), delays only happen when no action can take place,
time exists and is initialized to 0.

WARNING: The raw model definition is currently not supported.

7.9 Template definitions

Function and process definitions and declarations can have statically decided parameters to
parameterize the definitions and declarations. Such parameters are called template parame-
ters named after a similar mechanism in C++. There are two forms of definitions of template
parameters, namely implicit template definitions and explicit template definitions. The for-
mer are defined in an ImplicitTemplates block shown in Figure 7.13, the latter are defined in
an ExplicitTemplates block shown in Figure 7.14. The difference between both kinds of defini-
tions is in how they obtain their value. Implicit template definitions are computed by the type
system, explicit template definitions are (explicitly) stated in the specification by the modeler.

The syntax of a template definition is shown in the TemplateDefinition diagram in Figure 7.15.
Template definitions exist in two variants, namely as value template definitions defined at
Track 1, and type template definitions defined shown at Track 2. Value template definitions
are used to introduce a value of the type indicated by the Type[page 11] block at Track 1. Type
template definitions state a type.

WARNING: Templates are not implemented yet except for implicit templates in libraries.

84 Definitions

TemplateDefinition

1
VariableIdentifier�

� ,
�
�

�

�

:
�
�

�

Type�

�2
TypeIdentifier�

� ,
�
�

�

�

:
�
�

�

type

�
�

�

�

Figure 7.15: Raildiagram of TemplateDefinition.

85 Template definitions

86 Definitions

Bibliography

[1] Michael Huth and Mark Ryan. Logic in Computer Science. Cambridge University Press,
Cambridge, 2005.

[2] Averill M. Law and David Kelton. Simulation modeling and analysis. McGraw-Hill, New
York, 1991.

[3] K.L. Man and R.R.H. Schiffelers. Formal specification and analysis of hybrid systems. PhD
thesis, Technische Universiteit Eindhoven, Eindhoven, 2006.

87

88 Bibliography

Appendix A

Distributions
In the tables below, the available distributions are listed. The first table lists constant distribu-
tions, that is, distributions that always return the same value. While they are not very good at
creating pseudo-random behavior, they may be useful for debugging purposes. The second
table lists the discrete distributions, that is, distributions returning a discrete value such as a
boolean or an integer number. Finally, the third and last table lists the available continuous
distributions.

For ease of reference, the name of the distribution as it is defined in Law & Kelton ([2]), and
the mean, variance, and range of the samples is also shown in terms of the arguments of the
distribution function.

89

A.1 Constant distributions

Function Description
Constant distribution returning the specified value

constant(b: bool) -> (-> bool)

Law & Kelton: -
Mean: b
Variance: 0
Range: {true, false}

Constant distribution returning the specified value

constant(n: nat) -> (-> nat)

Law & Kelton: -
Mean: n
Variance: 0
Range: [0,∞)

Constant distribution returning the specified value

constant(i: int) -> (-> int)

Law & Kelton: -
Mean: i
Variance: 0
Range: (−∞,∞)

Constant distribution returning the specified value

constant(r: real) -> (-> real)

Law & Kelton: -
Mean: r
Variance: 0
Range: (−∞,∞)

90 Bibliography

A.2 Discrete distributions

Function Description
Bernoulli distribution with chance p ∈ [0, 1] for true

bernoulli(p: real) -> (-> bool)

Law & Kelton: Bernoulli(p)
Mean: p
Variance: p*(1-p)
Range: {true, false}

Bernoulli distribution with chance p ∈ [0, 1] for 1

bernoulli(p: real) -> (-> nat)

Law & Kelton: Bernoulli(p)
Mean: p
Variance: p*(1-p)
Range: {0, 1}

Binomial distribution with t>0 experiments with chance p ∈ [0, 1]

binomial(p: real, t: nat) -> (-> nat)

Law & Kelton: bin(t, p)
Mean: t ∗ p
Variance: t ∗ p ∗ (1 − p)
Range: {0, 1, 2, . . . , t}

Geometric distribution, number of failed Bernoulli(p) experiments with chance p ∈ [0, 1]
before first succes

geometric(p: real) -> (-> nat)

Law & Kelton: geom(p)
Mean: (1 − p)/p
Variance: (1 − p)/(p ∗ p)
Range: {0, 1, 2, . . .}

Poisson distribution with rate r>0

poisson(r: real) -> (-> nat)

Law & Kelton: P(r)
Mean: r
Variance: r
Range: {0, 1, 2, . . .}

Discrete uniform distribution with a < b

uniform(a, b: nat) -> (-> nat)

Law & Kelton: DU(a, b-1)
Mean: (a + b − 1)/2
Variance: ((b − a)2 − 1)/12
Range: {a, a + 1, a + 2, . . . , b − 1}

Discrete uniform distribution with a < b

uniform(a, b: int) -> (-> int)

Law & Kelton: DU(a, b-1)
Mean: (a + b − 1)/2
Variance: ((b − a)2 − 1)/12
Range: {a, a + 1, a + 2, . . . , b − 1}

91 Discrete distributions

A.3 Continuous distributions

Function Description
Beta distribution with shape parameters a > 0 and b > 0

beta(a, b: real) -> (-> real)

Law & Kelton: B(a, b)
Mean: a/(a + b)
Variance: a ∗ b/((a + b)2 ∗ (a + b + 1))
Range: [0, 1]

Erlang distribution with parameter m > 0 and scale parameter b > 0, Also known as
Gamma(m, b)

erlang(m: nat, b: real) -> (-> real)

Law & Kelton: m-Erlang(b)
Mean: m ∗ b
Variance: m ∗ b2
Range: [0,∞)

92 Bibliography

Continuous distributions, continued

Function Description
Negative exponential distribution with scale parameter b > 0

exponential(b: real) -> (-> real)

Law & Kelton: expo(b)
Mean: b
Variance: b2

Range: [0,∞)
Gamma distribution with shape parameter a > 0 and scale parameter b > 0

gamma(a, b: real) -> (-> real)

Law & Kelton: Gamma(a, b)
Mean: a ∗ b
Variance: a ∗ b2
Range: [0,∞)

Lognormal distribution with b > 0

lognormal(a, b: real) -> (-> real)

Law & Kelton: LN(a, b)
Mean: exp(a + b/2)
Variance: e2∗a+b ∗ (eb − 1)
Range: [0,∞)

Normal distribution with b > 0

normal(a, b: real) -> (-> real)

Law & Kelton: N(a, b)
Mean: a
Variance: b
Range: (−∞,∞)

Triangle distribution from a to c with the top at b, a < b < c, and a > 0

triangle(a, b, c: real) -> (-> real)

Law & Kelton: triang(a, c, b)
Mean: (a + b + c)/3
Variance: (a2 + b2 + c2 − a ∗ b − a ∗ c − b ∗ c)/18
Range: [a, c]

Random distribution, mainly intended for developers

random() -> (-> real)

Law & Kelton: U(0, 1)
Mean: 1/2
Variance: 1/12
Range: [0, 1)

Continuous uniform distribution from a to b, with a < b

uniform(a, b: real) -> (-> real)

Law & Kelton: U(a, b)
Mean: (a + b)/2
Variance: (b − a)2/12
Range: [a, b)

Weibull distribution with shape parameter a > 0 and scale parameter b > 0

weibull(a, b: real) -> (-> real)

Law & Kelton: Weibull(a, b)
Mean: b/a ∗ Γ(1/a)
Variance: (b2)/a ∗ (2 ∗ Γ(2/a) − (Γ(1/a)2)/a)
Range: [0,∞)

In the weibull function, Γ(z) is the gamma function, defined as Γ(z) =
∫∞
0 t(z−1) ∗ e−tdt for

all real numbers z > 0.

93 Continuous distributions

94 Bibliography

Index
Below is the index of the reference manual. Bold page numbers refer to definitions of the
term, normal page numbers refer to use of the term.

Action diagram 61
action predicate statement 54
ActionPattern diagram 61
addressable expression 48, 52, 54, 55
AddressableExpression diagram 48
advanced statement 61
AdvancedStatement diagram 52, 61
alternative composition operator 64
any-delay operator 61
AorBorC diagram 2, 3
array 38
assignment statement 45, 48, 52
AssignmentStatement diagram 51, 52, 53
basic type 11, 12
BasicExpression diagram 17
BasicStatement diagram 51
BasicType diagram 11, 12
binary statement operator 60, 64
BinaryStatement diagram 64, 65
block comment 10
boolean logic operator 24
boolean type 12, 23
boolean unary operator 23
boolean value 12, 23
BooleanBinaryOperator diagram 24
BooleanExpression diagram 23, 61, 63
BooleanExpresssion diagram 21
BooleanUnaryOperator diagram 23
bundle 70

channel declaration 61, 70
channel type 70
ChannelDeclaration diagram 70
ChannelDefinition diagram 69, 70
ChannelExpression diagram 55
ChannelIdentifier diagram 55, 70
Char diagram 7
chi program 73
ChiProgram diagram 73
comment 10
CommStatement diagram 52, 55
communication statement 54
constant definition 75
constant distribution 90
constant value 13, 75
ConstantDefinitionList diagram 75
ConstantExpression diagram 13, 49, 75
ConstantIdentifier diagram 49, 75
container 12
container type 11, 12, 21
ContainerType diagram 11, 12
continuous distribution 92
cooked model definition 84
deadlock statement 61
declaration body 82
DeclarationBody diagram 82
delay operator 57
delay predicate 58
delay statement 55, 65

95

DelayStatement diagram 52, 55
derivative operator 18
DictBinaryOperator diagram 43
DictExpression diagram 43
dictionary 43
dictionary type 13
dictionary value 13
discrete distribution 91
DistExpression diagram 45
distribution 11, 14, 44
distribution type 14, 44
DistributionType diagram 11, 14
DistUnaryOperator diagram 45
element 12
element type 12
element-test operator 42
elementary type 11, 12
encapsulation operator 61
EnumDefinitionList diagram 74
enumeration definition 12, 44, 74
enumeration type 44, 74
enumeration value 44
EnumTypeIdentifier diagram 74
EnumValueIdentifier diagram 44, 74
equation 58
explicit template definition 20, 84
ExplicitTemplates diagram 78, 80, 81, 84
Expression diagram 17, 20, 21, 23, 24, 25, 27,

30, 33, 35, 38, 40, 41, 42, 43, 45, 49, 53,
55, 57

expression folding 20, 36
expression operator priority 17, 46
ExpressionIterator diagram 20
FieldIdentifier diagram 14
filename 8
Filename diagram 8, 82
fold expression 48
fold statement 21, 48, 60, 61
FoldExpression diagram 20
FoldOperator diagram 20, 22
FoldStatement diagram 52, 60
formal parameter 14, 45, 68, 70, 79
formal parameter declaration 68
FormalParameterBlock diagram 68
FormalParameterList diagram 68, 78, 80,

81, 82, 83
function 78
function application 45, 47, 78
function call 45, 78
function declaration 14, 45, 80
function definition 14, 45, 60, 69, 78
function type 11, 14, 45, 46
FunctionBody diagram 78
FunctionCallExpression diagram 45
FunctionDeclaration diagram 80

FunctionDefinition diagram 78
FunctionExpression diagram 45
FunctionIdentifier diagram 18, 78, 80
FunctionType diagram 11, 14
higher order function 45
hybrid statement 58
HybridStatement diagram 52, 58
identifier 8
Identifier diagram 8, 9, 14, 68, 70, 75, 76,

78, 81, 82, 83
implicit template definition 84
ImplicitTemplates diagram 80, 81, 84
import definition 76
import statement 9, 12, 76
ImportDefinition diagram 76
importing definitions 77
inconsistent statement 61
insert function 37, 45
Instantiation diagram 52, 57
IntBinaryOperator diagram 27
integer number type 12, 26
integer number unary operator 27
integer number value 12, 26
intersection operator 42
IntExpression diagram 26, 27
IntUnaryOperator diagram 27
invariant 58
jump enabling statement 59
key 13
key type 13
keyword 8
LabelIdentifier diagram 54
line comment 10
list 13, 34
list subtraction operator 35
list type 12, 34
ListBinaryOperator diagram 35
ListExpression diagram 34, 35
ListLiteral diagram 34
literal list 34
literal real number 6
literal string 7
local scope operator 61
local variable declaration 61, 69, 79
LocalDeclarations diagram 69
LocalVariables diagram 79, 81
loop statement 63
ManyAB diagram 2, 3
mode definition 57, 61, 71
mode variable 71
ModeDefinition diagram 69, 71
ModeIdentifier diagram 57, 71
model 83
model definition 69, 83
ModelBody diagram 83

96 Index

ModelDefinition diagram 83
ModelIdentifier diagram 83
module import 12, 76
ModuleIdentifier diagram 9
ModuleName diagram 9
NatBinaryOperator diagram 25
NatExpression diagram 25
NatUnaryOperator diagram 25
natural number type 12, 13, 24
natural number unary operator 25, 27, 28
natural number value 12, 24
non-deterministic choice 64
Number diagram 5, 6, 25, 26
old value 18
OneOrMoreA diagram 3
OptChannel diagram 52
OptGuard diagram 52, 55
OptionalBorC diagram 2
parallel composition operator 64
process 80
process declaration 57, 81
process definition 57, 69, 81
process instantiation 20, 57
ProcessBody diagram 81
ProcessDeclaration diagram 81
ProcessDefinition diagram 81
ProcessIdentifier diagram 57, 81
propositional logic 23
propositional logic operator 24
railroad diagram 1, 2, 8
raw model definition 83
real number type 12, 29
real number value 12, 29
RealBinaryOperator diagram 30
RealExpression diagram 29, 30
RealNumber diagram 6, 29
RealUnaryOperator diagram 30
receive statement 46, 48, 54
record tuple 48
record tuple type 13
record tuple value 13, 39, 52
record value 39
RecordBinaryOperator diagram 40
RecordExpression diagram 39, 40
reference parameter 57, 67
return statement 60, 79
ReturnStatement diagram 52, 60
send statement 54
sequential composition operator 64
set 13, 40, 43
set difference operator 35, 42
set type 13
SetBinaryOperator diagram 42
SetExpression diagram 41, 42
SetUnaryOperator diagram 41

signal-emission operator 61
size function 42
skip statement 53
sort function 37, 45
Statement diagram 51, 57, 60, 61, 79, 81
StatementIterator diagram 60
string literal 7, 32
string type 12, 32
string value 12, 32
StringBinaryOperator diagram 33
StringExpression diagram 32, 33
StringLiteral diagram 7, 32
structural type equivalence 76
sub-set operator 42
synchronous communication 54
syntax diagram 2
template definition 20, 84
template instantiation 18, 20, 47, 57
template parameter 84
TemplateDefinition diagram 84
TemplateValue diagram 20, 57
Ten diagram 2, 3
truth table 24
tuple value 13
type 11, 12
type definition 12, 76
Type diagram 11, 13, 68, 78, 84
type grouping 11
type signature 14
type template definition 84
TypeDefinitionList diagram 76
TypeIdentifier diagram 76
unary statement operator 63
UnaryStatement diagram 63, 65
uncooked model definition 55, 83
union operator 42
urgent communication operator 55, 61
value parameter 57, 67
value template definition 84
value type 13
VarDeclaration diagram 69
variable class 57, 67
variable declaration 14, 67
VariableExpression diagram 48, 59
VariableIdentifier diagram 20, 48, 68
vector 38, 48
vector type 13
VectorBinaryOperator diagram 38
VectorExpression diagram 38
void type 12
while statement 63
white space 10
Zero diagram 2
ZeroOrMoreB diagram 3

97

	Introduction
	Page references
	Reading railroad diagrams

	Lexical syntax
	Lexical tokens
	White-space

	Types
	Basic types
	Container types
	Function type
	Distribution type

	Expressions
	Basic expressions
	Template instantiation
	Expression folding
	Boolean values
	Natural numbers
	Integer numbers
	Real numbers
	Strings
	Lists
	Vectors
	Record tuples
	Sets
	Dictionaries
	Enumeration values
	Distributions
	Functions
	Expression operator priorities
	Addressable expressions
	Constant expressions

	Statements
	Basic statements
	Assignment statements
	Communication statements
	Delay statements
	Instantiation statements
	Hybrid statements
	Return statement
	Fold statement
	Advanced statements
	Unary statements
	Binary statements
	Statement operator priorities

	Declarations
	Formal parameter declarations
	Local variable declarations
	Channels
	Mode definitions

	Definitions
	Enumeration definitions
	Constant definitions
	Type definitions
	Import definitions
	Functions
	Processes
	Declaration body
	Models
	Template definitions

	Bibliography
	Distributions
	Constant distributions
	Discrete distributions
	Continuous distributions

	Index

