
 

Synchronization of mechanical systems

Citation for published version (APA):
Rodriguez Angeles, A. (2002). Synchronization of mechanical systems. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR558867

DOI:
10.6100/IR558867

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR558867
https://doi.org/10.6100/IR558867
https://research.tue.nl/en/publications/e44d411c-832b-4cea-b300-7a730c734913


Synchronization of
Mechanical Systems



CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Rodriguez Angeles, Alejandro

Synchronization of Mechanical Systems / by Alejandro Rodriguez Angeles. -
Eindhoven: Technische Universiteit Eindhoven, 2002.
Proefschrift. - ISBN 90-386-2634-7
NUR 950
Subject headings: control systems technology / mechanical systems; robotics /
synchronization / coupled dynamical systems / system stability; Lyapunov methods
/ feedback control / observers
Trefwoorden: regeltechnische systemen / mechanische systemen; robotica /
synchronisatie / gekoppelde dynamische systemen / stabiliteit; Lyapunov methoden
/ feedback control / observers

Printed by University Press Facilities, Eindhoven, The Netherlands
Cover design by Paul Verspaget
Copyright c© 2002, by Alejandro Rodriguez Angeles

This dissertation has been completed in partial fulfillment of the requirements of the
Dutch Institute of Systems and Control (DISC) for graduate study.

This project has been partially supported by the Eindhoven University of Technology
(Technische Universiteit Eindhoven) and by a scholarship granted by The National
Council for Science and Technology (CONACyT), México.
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Chapter 1

Introduction

1.1 General introduction

Nowadays the developments in technology and the requirements on efficiency and
quality in production processes have resulted in complex and integrated production
systems. In actual production processes such as manufacturing, automotive applica-
tions, and teleoperation systems there is a high requirement on flexibility and manoeu-
vrability of the involved systems. In most of these processes the use of integrated and
multi-composed systems is widely spread, and their variety in uses is practically end-
less; assembling, transporting, painting, welding, just to mention few. All these tasks
require large manoeuvrability and manipulability of the executing systems, often even
some of the tasks can not be carried out by a single system. In those cases the use of
multi-composed systems has been considered as an option. A multi-composed system
is a group of individual systems, either identical or different, that work together to
execute a task.
In practice many multi-composed systems work either under cooperative or under
coordinated schemes. In cooperative schemes there are interconnections between all
the systems, such that all systems have influence on the combined dynamics, while in
coordinated schemes there are only interconnections from the leader or dominant sys-
tem to the non-dominant ones. Therefore in coordinated schemes the leader system
determines the synchronized behavior of all the non-dominant systems. Note that co-
ordinated and cooperative systems are nothing else that a requirement of synchronous
behavior of the multi-composed system. Synchronization, coordination, and cooper-
ation are intimately linked subjects and very often, mainly in mechanical systems,
they are used as synonymous to describe the same kind of behavior.
The synchronization phenomenon was perhaps first reported by Huygens (1673), who
observed that a pair of pendulum clocks hanging from a light weight beam oscillated
with the same frequency. Synchronized sound in nearby organ tubes was reported by
Rayleigh in 1877 (Rayleigh 1945), who observed similar effects for two electrically or
mechanically connected tuning forks. In the last century synchronization received a
lot of attention in the Russian scientific community since it was observed in balanced
and unbalanced rotors and vibro-exciters (Blekhman 1988). Nowadays, there are
several papers related with synchronization of rotating bodies and electromechanical
systems (Blekhman et al. 1995), (Huijberts et al. 2000). On the one hand, rotating
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mechanical structures form a very important and special class of systems that, with
or without the interaction through some coupling, exhibit synchronized motion, for
example the case of vibro-machinery in production plants, electrical generators, unbal-
anced rotors in milling machines (Blekhman 1988). On the other hand, for mechanical
systems synchronization is of great importance as soon as two machines have to coop-
erate. The cooperative behavior gives flexibility and manoeuvrability that cannot be
achieved by an individual system, e.g. multi finger robot-hands, multi robot systems
and multi-actuated platforms (Brunt 1998), (Liu et al. 1999) , teleoperated master-
slave systems (Dubey et al. 1997), (Lee and Chung 1998). In medicine master-slave
teleoperated systems are used in surgery giving rise to more precise and less inva-
sive surgery procedures (Hills and Jensen 1998), (Guthart and Salisbury 2000). In
aerospace applications coordination schemes are used to minimize the error of the
relative attitude in formations of satellites (Wang et al. 1996), (Kang and Yeh 2002).
The case of group formation of multiple robotic vehicles is addressed in (Yamaguchi
et al. 2001).

Nevertheless mechanical systems are not the only application in which synchronization
plays an important role. In communication systems synchronization is used to improve
the efficiency of the transmitter-receiver systems, also synchronization and chaos have
been used to encrypt information improving security in the transmissions (Pecora and
Carroll 1990), (Cuomo et al. 1993), (Kocarev et al. 1992).

The importance of synchronization does not only lie in the practical applications that
can be obtained, but also in the many phenomena that can be explained by synchro-
nization theory. In astronomy synchronization theory is used to explain the motion
of celestial bodies, such as orbits and planetary resonances, (Blekhman 1988). In
biology, biochemistry and medicine many systems can be modelled as oscillatory or
vibratory systems and those systems show a tendency towards synchronous behavior.
Synchronous activity has been observed in many regions of the human brain, relative
to behavior and cognition, where neurons can synchronously discharge in some fre-
quency ranges (Gray 1994). Synchronous firing of cardiac pacemaker cells in human
heart has been reported in (Torre 1976). Meanwhile evidence of synchronicity among
pulse-coupled biological oscillators has been presented in (Mirollo and Strogatz 1990).
Among evidences of synchronous behavior in the natural world, one can consider the
chorusing of crickets, synchronous flash light in group of fire-flies, and the metabolic
synchronicity in yeast cell suspension, see (Winfree 1980).

Notice that synchronization in the above mentioned physical phenomena, such as bi-
ology and astronomy, appears in a natural way and is due only to the proper couplings
of the systems, which is called self-synchronization. This is the main difference with
respect to the practical applications of synchronization theory, where the synchronous
behavior is induced by means of artificial couplings and inputs, such as feedback and
feedforward controllers. This is the so-called controlled synchronization.

This thesis focuses on controlled synchronization of robot systems, which nowadays
are common and important systems in production processes. However, the general
ideas developed here can be extended to more general mechanical systems, such as
mobile robots, motors, balanced and unbalanced rotors, vibro-exciters. For better
understanding of the controlled synchronization problem first a general definition of
synchronization is introduced, second the particular problems in the case of controlled
robot synchronization are briefly listed.
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1.2 Synchronization

According to (Blekhman et al. 1995) synchronization may be defined as the mutual
time conformity of two or more processes. This conformity can be characterized by
the appearance of certain relations between some functionals for the processes. Fur-
thermore, based on the type of interconnections (interactions) in the system, different
kinds of synchronization can be defined (Blekhman et al. 1997).

• In case of disconnected systems that present synchronous behavior this is re-
ferred to as natural synchronization, e.g. all precise clocks are synchronized in
the frequency domain.

• When synchronization is achieved by proper interconnections in the systems, i.e.
without any artificially introduced external action, then the system is referred
to as self-synchronized. A classical example of self-synchronization is the pair
of pendulum clocks hanging from a light weight beam that was reported by
Huygens (1673). He observed that both pendulums oscillated with the same
frequency. Another example is the synchronization of celestial bodies, such as
rotation of satellites around planets.

• When there exist external actions (input controls) and/or artificial interconnec-
tions then the system is called controlled-synchronized, examples of this case are
most of the practical applications of synchronization theory such as transmitter-
receiver systems and synchronized oscillators in communications.

Depending on the formulation of the controlled synchronization problem distinction
should be made between internal (mutual) synchronization and external synchroniza-
tion.

• In the first and most general case, all synchronized objects occur on equal terms
in the unified multi-composed system. Therefore the synchronous motion oc-
curs as the result of interaction of all elements of the system, e.g. coupled
synchronized oscillators, cooperative systems.

• In the second case, it is supposed that one object in the multi-composed system
is more powerful than the others and its motion can be considered as indepen-
dent of the motion of the other objects. Therefore the resulting synchronous
motion is predetermined by this dominant independent system, e.g. master-
slave systems, coordinated system.

From the control point of view the controlled synchronization problem is the most
interesting, i.e. how to design a controller and/or interconnections that guarantee
synchronization of the multi-composed system with respect to a certain desired func-
tional. The design of the control input and/or interconnections is mainly based on
the feedback of the variables or signals that define the desired synchronous behavior.

1.3 Synchronization in robotic systems

Robot manipulators are widely used in production processes where high flexibility,
manipulability and manoeuvrability are required. In tasks that cannot be carried
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out by a single robot, either because of the complexity of the task or limitations of
the robot, the use of multi-robot systems working in external synchronization, e.g.
master-slave and coordinated schemes, or mutual synchronization, e.g. cooperative
schemes, has proved to be a good alternative. Coordinated and cooperative schemes
are important illustrations of the same goal, where it is desired that two or more
robot systems, either identical or different, work in synchrony (Brunt 1998), (Liu et
al. 1997), (Liu et al. 1999). This can be formulated as a control problem that implies
the design of suitable controllers to achieve the required synchronous motion.
In synchronization of robotic systems there exist several fundamental problems. First,
a functional with respect to which the desired synchronization goal is described, has to
be formulated. For this the type of robots and the variables of interest have to be taken
into account. For robot synchronization the functionals can be defined as the norm of
the difference between the variables of interest e.g. positions, velocities. Second, the
couplings or interconnections and the feedback controllers to ensure the synchronous
behavior have to be designed. The interconnections between the robots can be the
feedback of the difference between the variables of interest. Finally conditions to
guarantee the synchronization goal have to be determined.
The problem of synchronization of robotic systems seems to be a straightforward
extension of classical tracking controllers, however it implies challenges that are not
considered in the design of tracking controllers. The interconnections (interactions)
between the robots imply control problems that are not considered in classical track-
ing controllers. However the interconnections cannot be neglected since they are pre-
cisely what determine the synchronized behavior and therefore the synchronization
functional. The interconnections between the robots generate the flow of information
necessary to guarantee the synchronous behavior. Most of the tracking controllers
are only based on the signals of the controlled system, i.e. the desired and controlled
position, velocity and acceleration. Therefore any external signal, like the signals
due to couplings, is considered as a disturbance and its effects are supposed to be
minimized or even cancelled by the controller.
Besides the fundamental problems of robot synchronization there exist other problems
to be taken into account. Problems can arise because of the particular structure of
the robots, such as type of joints (rigid or elastic), kinematic pairs (prismatic, rota-
tional, etc.), transmission elements (gears, belts). Furthermore available equipment,
for instance position, velocity and acceleration measuring capabilities, noise in the
measurements and time delays, might cause other problems in robot synchronization.
Some of the frequently encountered problems in robot synchronization are briefly
discussed in the following sections.
Note that there are many other problems, such as underactuation and redundancy.
However these problems are beyond the scope of this thesis. When redundant robot
manipulators are considered the excess of actuated joints with respect to the degrees
of freedom can be used to optimize certain functionals, avoid singularities, payload
distribution, etc.. For this purpose synchronization schemes between the redundant
joints can be used, however those synchronization schemes are different from the joint
coordinate schemes considered in this thesis. On the other hand, for underactuated
manipulators there are less actuated joints than degrees of freedom. In this situation
the movement of the non-actuated joints is subject to holonomic or non-holonomic
constraints. These constraints establish relations between the actuated and non-
actuated joints, such that they can be considered as being synchronized, with the
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constraints as synchronization functionals. However, because there is no actuation
the synchronization behavior of the non-actuated joints is achieved by the design of
the robot and its own dynamics, therefore it is in fact self-synchronization.
We now briefly discuss some of the frequently encountered problems in robot syn-
chronization.

1.3.1 Velocity and acceleration measurements

The controlled synchronization problem is further complicated by the fact that fre-
quently only position measurements of the robots are available or reliable, due to a
lack of velocity and acceleration measuring equipment or noise in the measurements.
In practice, robot manipulators are equipped with high precision position sensors, such
as optical encoders. Meanwhile new technologies have been designed for measuring an-
gular velocities and accelerations, e.g. brushless AC motors with digital servo-drivers,
microcontroller based measurements (Laopoulos and Papageorgiou 1996), digital pro-
cessing (Kadhim et al. 1992), (Lygouras et al. 1998), linear accelerometers (Ovaska
and Vliviita 1998), (Han et al. 2000). However, such technologies are not very com-
mon in applications yet. Therefore, very often the velocity measurements are obtained
by means of tachometers, which are contaminated by noise. Moreover, velocity mea-
suring equipment is frequently omitted due to the savings in cost, volume and weight
that can be obtained. On the other hand acceleration measurements are indirectly
obtained by pseudo-differentiation and filtering of the position and/or velocity di-
rect measurements, such that the measurement noise is amplified and corrupts the
acceleration measurements even farther.

1.3.2 Joint flexibility

Joint flexibility (also called joint elasticity) is caused by transmission elements such
as harmonic drives, belts or long shafts and it can be modelled by considering the
position and velocity of the motor rotor and the position and velocity of the link
(De Luca and Tomei 1996), (Book 1984), (Spong 1987). Therefore the model of a
joint flexible robot has twice the dimension of an equivalent rigid robot, and thus the
controllers for flexible joint robots are more complex than those for rigid joint robots.
It has been shown that joint flexibility considerably affects the performance of robot
manipulators since it is major source of oscillatory behavior (Good et al. 1985). This
means that, to improve the performance of robot manipulators, joint flexibility has
to be taken into account in the modelling and control of such systems.

1.3.3 Friction Phenomena

Friction phenomena play an important role in control of robot manipulators. In high
performance robotic systems, friction can severely deteriorate the performance. Bad
compensation of the friction phenomena generates oscillatory behavior like limit cycles
or stick-slip oscillations, introduces tracking errors, and in some cases can generate
instability of the system (Armstrong-Hélouvry 1993), (Olsson and Åström 2001).
There is a great variety of friction models proposed in literature (Armstrong-Hélouvry
et al. 1994), (Olsson et al. 1998), and each can be classified with respect to their detail
in describing surface contact properties occurring on a microscopic and macroscopic
level. Which model is more suitable for modelling and control purposes depends on
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the physical friction phenomena observed in the system such as stiction, Stribeck
curve effects, viscous friction, etc. and on the velocity regime in which the system is
suppose to work, i.e. slow, medium, or high speed. One major limitation in modelling
friction phenomena is the complexity of the models and the drawback for parameter
identification and control that it implies.

1.4 Problem formulation

The problem of synchronization of robot systems can be very wide depending on the
kind of robots and their structural and measuring limitations, not to mention the
possible synchronization goals. Therefore, this thesis is restricted to rigid and flexible
rotational joint robots and internal or mutual synchronization (cooperative scheme)
and external synchronization (coordinated and master-slave schemes).
The robots considered are fully actuated, i.e. the number of actuators is equal to the
number of joints. It is also assumed that all the robots in the synchronization system
have the same number of joints and equivalent joint work spaces, i.e. any possible
configuration of a given robot in the system can be achieved by any other robot in the
system. It does not imply that the robots are identical in their physical parameters,
such as masses, inertias, etc.
Based on the robot manipulator structure described above and the possible synchro-
nization schemes, the synchronizing problems addressed here can be formulated as
follows.

1.4.1 External synchronization of rigid joint robots

Consider a multi-robot system formed by two or more rigid joint robots, such that the
motion of one of the robots is independent of the other ones. This dominant robot
will be referred to as the master robot. The master robot is driven by a controller
already designed and not relevant for the synchronization goal. In the ideal case the
controller ensures convergence of the master robot angular positions and velocities to
a given desired trajectory. Then the goal is to design interconnections and feedback
controllers for the non-dominant robots, hereafter referred to as slaves, such that their
positions and velocities synchronize to those of the master robot. For the design of
the slave interconnections and controllers it is assumed that only the master and slave
angular positions for all joints are available for measurement. Furthermore only the
dynamic model of the slave robot is assumed to be known, which complicates the
reconstruction of the master angular velocity and acceleration since the master robot
dynamic model is unknown.
Notice that the goal is to follow the trajectories of the master robot and not the desired
trajectories of it, since these might not be achieved because of noise, parametric
uncertainty or unmodelled dynamics of the master robot, like friction, unknown loads,
etc.
Figure 1.1 shows a schematic representation of the external synchronization problem
for the rigid joint robot case. The subindices m, s and d refer to the master robot, slave
robot, and desired master robot trajectory respectively. The variables q, q̇ represent
the angular position and velocity of the joints, and τ denotes the input torque to
the robots. Note that only the master robot position qm is transmitted to the slave
robots.
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Figure 1.1: External synchronization of rigid joint robots.

1.4.2 External synchronization of flexible joint robots

For flexible joint robots the external synchronization control problem changes into
the design of interconnections and feedback controllers for the slave robots such that
their link angular positions and velocities synchronize to the master link angular
positions and velocities. It is assumed that the only available information is the
link angular position of the master and slave robots. Therefore the rotor angular
positions, velocities and accelerations, as well as the angular velocity and acceleration
of the link have to be all reconstructed. Furthermore the dynamic model of the master
robot is assumed to be unknown, which complicates the reconstruction of its link and
rotor velocities and accelerations. Joint flexibility plays an important role in how the
interconnections between the robots are defined.

Figure 1.2: External synchronization of flexible joint robots.

Figure 1.2 shows a schematic representation of the external synchronization problem
for the flexible joint robot case. The notation is the same as for external synchroniza-
tion of rigid joint robots, but in this case also the angular position and velocity of the
rotor of the motors, denoted by θ and θ̇, have to be considered.
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1.4.3 Mutual (internal) synchronization of rigid joint robots

External synchronization of robots restricts the resulting synchronization behavior
since it is determined by the master robot, i.e. the dominant robot in the synchro-
nization system. A more versatile system is obtained when interconnections from and
to all the robots in the system, not only from the master to the slave robots, are
considered. In that situation the synchronous behavior is the result of interactions
between all the robots.
Consider a multi-robot system formed by two or more rigid joint robots such that
there exists a common desired trajectory for all of them. Then the mutual synchro-
nization control problem can be formulated as to design interconnections and feedback
controllers for all the robots in the system, such that the angular positions and veloc-
ities of any robot in the system are synchronized with respect to the common desired
trajectory and the angular positions and velocities of the other robots. It is assumed
that only angular positions of all the robots are available for measurement. Also the
dynamic models of all the robots are assumed to be known.

Figure 1.3: Mutual synchronization of rigid joint robots.

Figure 1.3 shows a schematic representation of the mutual synchronization problem
for the rigid robot case. The notation is the same as for external synchronization of
rigid joint robots. Note that in this problem the angular positions are transmitted
from and to all the robots in the system. The input torques τ for all the robots must
be designed to guarantee synchronous behavior of the system.

1.5 Goals and main contributions of the thesis

The main goal of this thesis is to prove analytically and validate experimentally that
synchronization in multi-composed mechanical systems can be achieved in case of par-
tial knowledge of the state vector of the systems, i.e. only positions are measured. For
this purpose synchronization schemes based on interconnections between the systems,
feedback controllers and observers are proposed.
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The role of the observers, which are model based, is to reconstruct the missing states
of the systems that are used in the feedback controller. Of course, there are other
alternative ways of estimating velocity and acceleration signals, like numerical differ-
entiation or low pass filters (Kadhim et al. 1992), (Laopoulos and Papageorgiou 1996),
(Lygouras et al. 1998), and in principle such alternatives could be used in the synchro-
nization schemes developed here. These alternative techniques have the advantage of
simplicity in implementation, but present a reduced bandwidth and in general there
is not (or it is too difficult to determine) an analytical method to guarantee stability
of the synchronizing scheme. The use of model-based observers is considered because
one of the main goals is to provide a systematic way of proving and guaranteeing the
synchronous behavior of the multi-composed system.
The feedback controller establishes the interconnections between the systems and
determines the control action that guarantees the synchronous behavior of the multi-
composed system. The feedback controllers considered here are based on a computed
torque structure.
Because mechanical systems include a large variety of systems, and since it is impos-
sible to address all of them, this thesis focuses on robot manipulators. Nonetheless
the ideas developed here can be extended to other mechanical systems such as mobile
robots, motors and generators.
To experimentally validate the proposed synchronization controllers a multi-composed
robot system formed by two robot manipulators is considered as experimental setup.
The robots in the experimental setup are industrial transposer robots designed by the
Centre for Manufacturing Technology (CFT) Philips laboratory. These robots are in-
stalled at the Dynamics and Control Technology Laboratory at Eindhoven University
of Technology. The robots have four degrees of freedom and are fully actuated by
brushless DC servo-motors. The robots are identical in their structure and design,
therefore they are represented by the same dynamic model. However, the robots are
different in their parameters such as friction coefficients and inertias.

The main contributions of the thesis can be listed as follows.

• For external synchronization schemes (master-slave) two synchronization schemes
are proposed, one for rigid joint robots and one for flexible joint robots. In both
cases it is proved that synchronization can be achieved assuming only angular
position measurements in all the interconnected robots. Moreover the syn-
chronization scheme is decentralized and it does not require knowledge of the
dynamic model of the master (dominant) system, but only the dynamic model
of the slave system is required.

• For mutual (internal) synchronization only rigid joint robots are considered.
It is proved that synchronization can be achieved when considering only an-
gular position measurements in all the interconnected systems. The proposed
synchronization controller is decentralized, but since there is not a dominant
system, the dynamic model of all the interconnected systems are required.

• A simulation and experimental study shows the applicability and performance of
the proposed synchronization controllers (external and mutual synchronization)
for rigid joint robots. The experimental study also addresses the problems that
are often encountered in robotic practical implementations. For external syn-
chronization of flexible joint robots a simulation study shows the performance
of the proposed synchronization controller.
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1.6 Outline of the thesis

Chapter 2 presents some basic material and results on which the thesis is based. In
Section 2.1 some mathematical tools and stability concepts used throughout the thesis
are presented. The dynamic models of rigid and flexible joint robots are introduced
in Section 2.2, including their most important properties. The experimental setup is
introduced in Section 2.3, where a brief description of the robots and their dynamic
models are presented.
Chapter 3 addresses the problem of external synchronization of rigid joint robots. The
synchronization scheme formed by a feedback controller and model based observers is
presented and the stability proof is developed. Simulation and experimental results on
one degree of freedom systems are included to show the applicability and performance
of the proposed controller. The main contribution of this chapter is a gain tuning
procedure that ensures synchronization of the interconnected robot systems. Some
of the results of this chapter have been presented in the articles (Rodriguez-Angeles
and Nijmeijer 2001a), (Rodriguez-Angeles and Nijmeijer 2001b), (Rodriguez-Angeles
et al. 2002b).
The case of external synchronization for flexible joint robots is addressed in Chapter 4.
The chapter starts by explaining the differences between rigid and flexible joint robots
and the effects on the design of the synchronization scheme. The synchronization
scheme for flexible joint robots and stability analysis are presented. The chapter in-
cludes a gain tuning procedure that guarantees synchronization of the interconnected
robot systems. Simulation results on one degree of freedom systems are included to
show the viability of the controller. Results presented in this chapter have been re-
ported in the articles (Rodriguez-Angeles and Nijmeijer 2002b), (Rodriguez-Angeles
et al. 2002c).
The problem of internal (mutual) synchronization of rigid robots is treated in Chapter
5. This chapter presents a general synchronization scheme for the case of mutual
synchronization of rigid robots. The chapter includes a general procedure to choose
the interconnections between the robots to guarantee synchronization of the multi-
composed robot system. Simulation and experimental results on one degree of freedom
systems are included to show the properties of the controller. Results of this chapter
have been reported in the article (Rodriguez-Angeles and Nijmeijer 2002a)
Chapter 6 presents a simulation and experimental study that shows the applicability
and performance of the synchronization schemes for rigid joint robots. Particular
attention is given to practical problems that can be encountered at the moment of
implementing the proposed synchronization schemes. The robots in the experimental
setup have four degrees of freedom, such that the complexity in the implementation
is higher than in the simulations and experiments included in Chapters 3 and 5.
Further extensions of the synchronization schemes designed here are discussed in
Chapter 7. Some conclusions and recommendations related to synchronization in
general and robot synchronization in particular are presented in Chapter 8.



Chapter 2

Preliminaries

This chapter presents some mathematical preliminaries about stability and Lyapunov
theory that are used throughout the thesis. Some definitions on stability and Lya-
punov stability are briefly presented. For a more detailed synthesis on dynamical
systems and stability the reader is referred to (Khalil 1996) and (Sastry 1999). Propo-
sition 2.23 is especially useful in proving uniform ultimate stability of a system, and
it is the main support of the stability analysis throughout this thesis.
The dynamic model of the rigid joint robot and the flexible joint robot are presented
in Section 2.2. Some structural properties of both kind of robots are also introduced.
These properties are useful throughout the stability analysis.
The experimental setup considered in Chapters 3 and 5 is introduced in Section 2.3.
The dynamic model and estimated parameters of the robots are presented together
with a brief description of the experimental setup.

2.1 Mathematical preliminaries and stability con-
cepts

2.1.1 Basic definitions

Norms Throughout the thesis vector norms are Euclidean and they are denoted by
‖·‖, while for matrices the induced norm ‖A‖ =

√
λmax (AT A) is employed, with

λmax (·) the maximum eigenvalue. Moreover, for any positive definite matrix A we
denote by Am and AM its minimum and maximum eigenvalues respectively. For a
basic introduction about norms and induced norms the reader is referred to (Desoer
and Vidyasagar 1975) and (Khalil 1996).
The following result is useful in proving positive definitiveness of symmetric block
matrices.

Lemma 2.1 (Johnson 1990) If L ∈ �m×m and M ∈ �n×n are given positive semidef-
inite matrices and X ∈ �m×n , then the symmetric block matrix

χLM =
[

L X
XT M

]
(2.1)
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is positive semidefinite if and only if there exists a matrix C ∈ �m×n , such that
X = L1/2CM1/2.
If L and M are positive definite, this criterion is equivalent to∥∥∥L−1/2XM−1/2

∥∥∥ ≤ 1

Moreover χLM is positive definite if and only if L and M are positive definite and∥∥∥L−1/2XM−1/2
∥∥∥ < 1 (2.2)

Definition 2.2 A functional is a real-valued function on a vector space V , usually
of functions. The reason the term ”functional” is used is because V can be a function
space, e.g.

V = {f : [0, 1] → � such that f is continous}

in which case e.g. T (f) = f(0), T (f) =
1∫
0

f(s)ds are linear functionals on V .

Definition 2.3 Consider an autonomous smooth nonlinear dynamical system repre-
sented by the differential equation

ẋ(t) = f(t, x(t)) (2.3)

A point x = x∗ in the state space is said to be an equilibrium point of (2.3) if
f(t, x∗) ≡ 0 for all t ≥ 0. An equilibrium point x∗ has the property that for any t ≥ 0
if the state of the system starts at x∗ it will remain at x∗ for all future time.

Definition 2.4 A sphere of radius r around the origin is denoted by Br i.e.,

Br = {x ∈ �
n | ‖x‖ < r}

Definition 2.5 A function f : �n → �m is said to be continuous at a point x if
given any ε > 0 a constant δ > 0 exists such that

‖x − y‖ < δ ⇒ ‖f(x) − f(y)‖ < ε (2.4)

Definition 2.6 A function f : �n → �m is said to be piecewise continuous on a
set S if it is continuous on S except for a finite number of points.

Definition 2.7 A function f : �n → �m is said to be uniformly continuous on
a set S if for all x, y ∈ S and given an ε > 0 a constant δ > 0 exists (depending
only on ε) such that (2.4) holds.

Often uniform continuity of a function f : � → � can be verified by means of the
following lemma.

Lemma 2.8 Consider a differentiable function f : � → �. If a constant M ∈ � exist
such that

sup
x∈�

∣∣∣∣ dfdx
(x)

∣∣∣∣ ≤ M,

then f is uniformly continuous on �.
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Definition 2.9 A vector-valued function f : �n × � → �n satisfies a Lipschitz
condition in x, with Lipschitz constant γ > 0, if for a given x1, x2 and uniformly in
t,

‖f(t, x1) − f(t, x2)‖ ≤ γ ‖x1 − x2‖ (2.5)

If the Lipschitz condition (2.5) holds for all x1, x2 ∈ �n then the function f(t) is
referred to as globally Lipschitz and as locally Lipschitz when it holds only in a
region of �n .

Definition 2.10 A continuous function α : [0, a) → [0,∞) is said to belong to class
K (α ∈ K) if it is strictly increasing and α(0) = 0.

Definition 2.11 A continuous function β : [0, a) × [0,∞) → [0,∞) is said to belong
to class KL (β ∈ KL) if for each fixed s the mapping β(r, s) belongs to class K with
respect to r, and if for each fixed r the mapping β(r, s) is decreasing with respect to s
and β(r, s) → 0 as s → ∞.

2.1.2 Lyapunov Stability

Consider the non-autonomous system described by

ẋ = f(t, x) (2.6)

where f : �+ × D → �n is piecewise continuous on �+ × D and locally Lipschitz in
x on �+ × D, and D ⊂ �n is a domain that contains the origin x = 0. We assume
that the origin is an equilibrium point for (2.6).
For studying the stability of the equilibrium point x = 0 we introduce the following
notations and definitions.

Definition 2.12 The equilibrium point x = 0 of (2.6) is said to be (locally) stable
(in the sense of Lyapunov) if a positive constant r > 0 exist such that for all
(t0, x(t0)) ∈ �+ × Br a function α ∈ K exist such that

‖x(t)‖ ≤ α(‖x(t0)‖) ∀t0 ≥ 0, ∀x(t0) ∈ Br (2.7)

If the above bound holds for all (t0, x(t0)) ∈ �
+ × �

n , the origin is globally stable.

Definition 2.13 The equilibrium point x = 0 of (2.6) is said to be

• (locally) asymptotically stable if a constant r > 0 exist such that for all pairs
(t0, x(t0)) ∈ �+ × Br a function β ∈ KL exist such that

‖x(t)‖ ≤ β(‖x(t0)‖ , t − t0) ∀t ≥ t0 ≥ 0, ∀x(t0) ∈ Br (2.8)

• semi-globally asymptotically stable if for each constant r > 0 and for all
pairs (t0, x(t0)) ∈ �+ × Br a function β ∈ KL exist such that (2.8) holds.

• globally asymptotically stable (GAS) if a function β ∈ KL exist such that
for all pairs (t0, x(t0)) ∈ �+ × �n (2.8) holds.
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Definition 2.14 The equilibrium point x = 0 of (2.6) is said to be (locally) expo-
nentially stable if it is (locally) asymptotically stable and (2.8) is satisfied with

β(r, s) = kre−γs k > 0, r > 0, γ > 0

In a similar way we can define the equilibrium point x = 0 of (2.6) to be semi-globally
exponentially stable and globally exponentially stable (GES).

Definition 2.15 The equilibrium point x = 0 of (2.6) is said to be uniformly stable
if a positive constant r > 0 and α ∈ K exist, both independent of t0, such that

‖x(t)‖ ≤ α(‖x(t0)‖) ∀t ≥ t0 ≥ 0, ∀x(t0) ∈ Br

If the above bound holds for all (t0, x(t0)) ∈ �+×�n , the origin is globally uniformly
stable.

Definition 2.16 The equilibrium point x = 0 of (2.6) is said to be

• (locally) uniformly asymptotically stable if a constant r > 0 and a function
β ∈ KL exist, both independent of t0, such that

‖x(t)‖ ≤ β(‖x(t0)‖ , t − t0) ∀t ≥ t0 ≥ 0, ∀x(t0) ∈ Br (2.9)

• semi-globally uniformly asymptotically stable if for each constant r > 0
and for all (t0, x(t0)) ∈ �+ ×Br a function β ∈ KL exist such that (2.9) holds.

• globally uniformly asymptotically stable (GUAS) if a function β ∈ KL
exist such that for all (t0, x(t0)) ∈ �+ × �n (2.9) holds.

Definition 2.17 The equilibrium point x = 0 of (2.6) is said to be (locally) uni-
formly exponentially stable / semi-globally uniformly exponentially stable
/ globally uniformly exponentially stable (GUES) if it is (locally) uniformly
asymptotically stable / semi-globally uniformly asymptotically stable / globally uni-
formly asymptotically stable and (2.9) is satisfied with

β(r, s) = kre−γs k > 0, r > 0, γ > 0.

To prove stability properties of a system many methods are based on what is called
Lyapunov functions, and one of the most common theorem is Lyapunov’s stability
theorem, see (Khalil 1996).

Theorem 2.18 Let x = 0 be an equilibrium point for (2.6) and D ⊂ �
n be a domain

containing x = 0. Let V : D → �n be a continuously differentiable function, such
that

V (0) = 0 and V (x) > 0 in D − {0}
V̇ (x) ≤ 0 in D

Then x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0}
then x = 0 is asymptotically stable.
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Notice that for asymptotic stability it is required that V̇ (x) < 0 in D−{0}. However,
there are some auxiliary theorems that allow to conclude asymptotic stability when
V̇ (x) ≤ 0. For autonomous systems it is still possible to prove asymptotic stability
when V̇ (x) ≤ 0 by considering LaSalle’s Theorem, while for non-autonomous systems
Barbalat’s Lemma is useful in proving asymptotic stability.

Theorem 2.19 LaSalle’s Theorem: Given the system (2.6) suppose that a
Lypaunov function candidate V is found such that, along the solution trajectories

V̇ ≤ 0 (2.10)

Then (2.6) is asymptotically stable if V̇ does not vanish along any solution of (2.6)
other than the null solution, that is, the system (2.6) is asymptotically stable if the
only solution of (2.6) satisfying

V̇ ≡ 0 (2.11)

is the null solution.

Lemma 2.20 Barbalat’s Lemma: Let φ : � → � be a uniformly continuous
function on [0,∞). Suppose that limt→∞

∫ t

0
φ(τ)dτ exists and is finite. Then,

φ(t) → 0 as t → ∞.

2.1.3 Stability of perturbed systems

Consider the system
ẋ = f(t, x) + g(t, x) (2.12)

where f : [0,∞) × D → �n and g : [0,∞) × D → �n are piecewise continuous in t
and locally Lipschitz in x on [0,∞) × D, and D ⊂ �n is a domain that contains the
origin x = 0. We think of this system as a perturbation of the nominal system (2.6).
The perturbation term g(t, x) could result from modelling errors or uncertainties and
disturbances which exist in any realistic problem. In a typical situation, we do not
know g(t, x) but we might know some information about it, like knowing an upper
bound on ‖g(t, x)‖ .
Assume that the origin x = 0 is an exponentially stable equilibrium point for the
nominal system (2.6). If the perturbation vanishes at the origin, i.e. g(t, 0) = 0 for all
t, then there exist conditions on g(t, x) to prove that the origin is still an exponential
stable equilibrium point for the perturbed system (2.12), see ((Khalil 1996), Theorem
5.1).
In the more general case we do not know that g(t, 0) = 0. Then the origin x = 0
may not be an equilibrium point of the perturbed system (2.12). The best we can
hope is that if the perturbation term g(t, x) is small in some sense, then x(t) will be
ultimately bounded by a small bound; that is, ‖x(t)‖ will be small for sufficient large
t. This brings in the concept of ultimate boundedness.
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Definition 2.21 The solutions of ẋ = f(t, x) are said to be uniformly ultimately
bounded if there exist positive constants b and c such that for every α ∈ (0, c) there
is a positive constant T = T (α) such that

‖x(t0)‖ < α ⇒ ‖x(t)‖ ≤ b, ∀ t ≥ t0 + T (2.13)

The solutions of ẋ = f(t, x) are said to be globally uniformly ultimately bounded
if (2.13) holds for arbitrarily large α. Uniform ultimate boundedness is usually referred
to as practical stability. The constant b in (2.13) is referred to as the ultimate
bound.

The following result supports the stability analysis that is carried out in this thesis.
This result is a modified version of a theorem by (Chen and Leitmann 1987), see
also (Berghuis and Nijmeijer 1994). It states that a system is uniformly ultimately
bounded if it has a Lyapunov function whose time-derivative is negative definite in
an annulus of a certain width around the origin.

Lemma 2.22 (Berghuis and Nijmeijer 1994) Consider the following function g : � →
�

g(y) = α0 − α1y + α2y
2, y ∈ �

+ (2.14)

where αi > 0, i = 0, 1, 2. Then g(y) < 0 if y1 < y < y2, where

y1 =
α1 −

√
(α2

1 − 4α2α0)
2α2

, y2 =
α1 +

√
(α2

1 − 4α2α0)
2α2

(2.15)

Proposition 2.23 (Chen and Leitmann 1987) Let x(t) ∈ �n be the solution of the
differential equation

ẋ(t) = ϑ(t, x(t))

with ϑ(t, x(t)) Lipschitz and initial condition x(t0) = x0, and assume there exists a
function V (x(t), t) that satisfies

Pm ‖x(t)‖2 ≤ V (x(t), t) ≤ PM ‖x(t)‖2 (2.16)

V̇ (x(t), t) ≤ ‖x(t)‖ · g (‖x(t)‖) < 0 for all y1 < ‖x(t)‖ < y2 (2.17)

with Pm and PM positive constants, g(·) as in (2.14), and y1, y2 as in (2.15). Define
δ :=

√
P−1

m PM . If y2 > δy1, then x(t) is locally uniformly ultimately bounded,
that is, given dm = δy1, there exists d ∈ (dm, y2) such that

‖x0‖ ≤ r ⇒ ‖x(t)‖ ≤ d for all t ≥ t0 + T (d, r)

where

T (d, r) =

{
0 r ≤ R

PM r2−PmR2

−α0R+α1R2−α2R3 R < r < δ−1y2

and R = δ−1d.
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2.2 Dynamic models of robot manipulators

In this section dynamic models of rigid and flexible joint robots are introduced. Many
ways exist to develop such models. For instance one can use the Lagrangian or
Hamiltonian formulation of classical mechanics (Goldstein 1980), (Book 1984), which
lead to a description based on differential equations. A different approach, based on a
network representation of physical systems, is provided by the bond-graph technique
(Breedveld et al. 1991), (Stramigioli 1998), whose multi-domain character is very
useful in mechatronics. In this thesis the considered dynamic models are based on the
Lagrangian approach. The resulting Lagrangian models possess structural properties
due to the mechanics of the robots. The structural properties of the dynamical models
that are used in this thesis are briefly listed in Section 2.2.3.
Section 2.2.4 gives a brief introduction into friction phenomena in robot manipula-
tors. Particular attention is given to the friction phenomena since it greatly affects the
performance of the robots. Although in some cases friction phenomena can straight-
forwardly be compensated, in general friction phenomena require special treatment.

2.2.1 Rigid joint robots

Consider a rigid joint robot with n joints, i.e. with joint coordinates q ∈ �n . Assume
that all the joints are rotational and fully actuated. The kinetic energy of the robot
is given by T (q, q̇) = 1

2 q̇T M(q)q̇, with M(q) ∈ �n×n the symmetric, positive definite
inertia matrix, and the potential energy due to gravity is denoted by U(q). Hence,
applying the Euler-Lagrange formalism (Goldstein 1980), (Spong and Vidyasagar
1989) the dynamic model of the rigid joint robot is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (2.18)

where g(q) = ∂
∂q U(q) ∈ �n denotes the gravity forces, C(q, q̇)q̇ ∈ �n represents the

Coriolis and centrifugal forces, and τ denotes the [n × 1] vector of torques.
The dynamic model (2.18) does not account for some dynamic effects such as distur-
bances or friction, therefore the model (2.18) is referred to as nominal and frictionless.
In case that friction phenomena are considered, we assume that friction effects can
be compensated separately from the synchronization controller action. Feedback or
feedforward schemes can be considered in order to compensate for friction effects.

2.2.2 Flexible joint robots

Joint flexibility, also called joint elasticity, considerably affects the performance of
robot manipulators (Good et al. 1985), since they are a major source of oscillatory
behavior. This means that in order to improve the performance of robot manipulators,
joint flexibility has to be taken into account in the modelling and control of such
systems. Joint flexibility can be caused by transmission elements such as harmonic
drives, belts, or long shafts, and can be modelled by considering the position and
velocity of the motor rotor θ, θ̇, and of the link q, q̇. Thus, the order of the dynamic
model for a flexible joint is twice that of a rigid joint. Consequently, the control laws
proposed for flexible joint robots are more complex than those for rigid robots.
From the modelling point of view two dynamic models for the flexible joint robot have
been considered. In (Book 1984) and (Tomei 1991) an extended model for flexible joint
robots is presented, which includes the full nonlinear dynamic interactions among



22 Chapter 2. Preliminaries

joint flexibilities and inertial properties of links and actuators. On the other hand, if
it is assumed that the kinetic energy of the electrical actuators is due only to their
own rotor spinning, then a reduced model is obtained (Spong 1987).
The dynamic model of a flexible joint robot can be obtained by extending the proce-
dures already used for rigid robots (Book 1984). Consider a flexible joint robot, with
n rigid links, all joints being flexible, rotational, and actuated by electrical drives.
Let q ∈ �n be the link positions and θ ∈ �n be the rotor positions, as reflected
through the gear ratios. The difference qi − θi is the i−th joint deformation. In view
of small deformations, elasticity is modelled by means of a linear spring. The rotors
of the motors are modelled as balanced uniform bodies having their centre of mass
on the rotation axis, so that the inertia matrix and the gravity term in the dynamic
model are independent from the motor position θ. From (Book 1984) it follows that
the extended dynamic model for a flexible joint robot is given by

M(q)q̈ + B1(q)θ̈ + N1(q, q̇, θ̇) + K(q − θ) = 0 (2.19)
B1(q)q̈ + Jθ̈ + C3(q, q̇)q̇ + K(θ − q) + Bvθ̇ = τ (2.20)
N1(q, q̇, θ̇) = C(q, q̇)q̇ + C1(q, θ̇)q̇ + C2(q, q̇)θ̇ + g(q) (2.21)

where the symmetric positive definite inertia matrix M(q) ∈ �n×n , the Coriolis and
centrifugal term C(q, q̇)q̇ ∈ �

n , and the gravity term g(q) ∈ �
n are all related to the

rigid links, J ∈ �n×n is the constant diagonal inertia matrix of the motors, K ∈ �n×n

is the constant diagonal matrix of the joint stiffness, Bv ∈ �n×n is the diagonal
positive definite viscous friction coefficient matrix, and τ(·) is the n−vector of torques
supplied by the motors. The matrices B1(q), C1(q, θ̇), C2(q, q̇), and C3(q, q̇) ∈ �n×n

represent coupling effects between the link and rotor at inertial and centrifugal level.
Assuming that the motion of the rotors can be considered as pure rotations with
respect to an inertial frame, the kinetic energy of each rotor is due to its own spin-
ning. Therefore, the inertial and centrifugal coupling between links and rotors can
be neglected and a reduced dynamic model is obtained, see (Spong 1987). Following
(Spong 1987) and the Lagrangian approach (De Luca and Tomei 1996), it follows that
the flexible joint robot dynamics can be modelled as

M(q)q̈ + N(q, q̇) + K(q − θ) = 0 (2.22)
Jθ̈ + K(θ − q) + Bv θ̇ = τ (2.23)
N(q, q̇) = C(q, q̇)q̇ + g(q) (2.24)

Notice that the extended (2.19 - 2.21) and reduced (2.22 - 2.24) dynamic models only
account for static viscous friction phenomena. For flexible joint robots the viscous
friction induces damping in the dynamic model, such that the stability properties of
the proposed synchronization scheme can be proved. Other kinds of friction phenom-
ena can be considered in the models (2.19 - 2.21) and (2.22 - 2.24), and as in the
rigid joint robots friction effects are assumed to be separately compensated from the
synchronization control action.
The reduced model (2.22 - 2.24) satisfies the conditions for full state linearization and
decoupling via static state feedback. Meanwhile it has been proved (De Luca and
Lanari 1995) that the extended model (2.19 - 2.21) is fully linearizable and decouplable
via dynamic state feedback and a general algorithm is proposed in (De Luca and
Lucibello 1998). In (De Luca 1998) the feedback linearization techniques are applied
to the case of mixed rigid/elastic joints. Nevertheless other kind of techniques like
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singular perturbation and robust control have been investigated to design controllers
for rigid-link flexible-joint robots, see (Lozano and Brogliato 1992), (Qu 1995).
All the above mentioned controllers assume that all state variables are available for
measurement, implying the presence of additional sensors in each joint. In practice
this is difficult if not impossible to achieve. Besides the complexity in the implemen-
tation of measuring equipment, velocity measuring equipment is frequently omitted
due to the savings in cost, volume, and weight that can be obtained. To overcome this
problem numerical differentiation, filters and the design of observers have been con-
sidered, see Section 1.3.1. For flexible joint robots several observer designs have been
proposed. In (Nicosia et al. 1988) a nonlinear observer based on pseudolinearization
techniques has been proposed, a high gain observer is presented in (Jankovic 1995),
and a semiglobal nonlinear observer is designed in (Nicosia and Tomei 1995). In (Lim
et al. 1997), (Dixon et al. 2000) adaptive controllers based on backstepping and filters
requiring only link and actuator position measurements have been proposed. In this
thesis we proposed linearizing feedback controllers and model based observers based
only in link position measurements.

2.2.3 Properties of the dynamic model of the robots

The dynamic model of the rigid and flexible joint robot given by (2.18) and (2.22,
2.23) have the following properties.

• The inertia matrix M(q) ∈ �n×n is symmetric and positive definite for all
q ∈ �n . The rotor inertia matrix J ∈ �n×n is a diagonal constant positive
definite matrix.

• If the matrix C(q, q̇) ∈ �n×n is defined using the Christoffel symbols (Spong
and Vidyasagar 1989), then the matrix Ṁ(q) − 2C(q, q̇) is skew symmetric, i.e.

xT
(
Ṁ(q) − 2C(q, q̇)

)
x = 0 for all x ∈ �

n (2.25)

• In addition, for the previous choice of C(q, q̇), it follows that

C(q, q̇) =

 q̇T C1(q)
...

q̇T Cn(q)

 (2.26)

where Ci(q) ∈ �n×n i = 1, . . . , n are symmetric matrices (Craig 1988). It follows
that for any scalar α and for all q, x, y, z ∈ �n

C(q, x)y = C(q, y)x
C(q, z + αx)y = C(q, z)y + αC(q, x)y (2.27)

• M(q), C(q, q̇) and g(q) are bounded with respect to q, with bound different from
0, (Lewis et al. 1993), so

0 < Mm ≤ ‖M(q)‖ ≤ MM , ‖g(q)‖ ≤ gM for all q ∈ �
n (2.28)

‖C(q, x)‖ ≤ CM ‖x‖ for all q, x ∈ �
n (2.29)

Note that the properties (2.27) and (2.29) are due to linear dependence of the
Coriolis and centrifugal torques on the second argument.
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• The diagonal positive definite viscous friction coefficient matrix Bv ∈ �n×n is
bounded, with bound different from 0, i.e.

0 < Bv,m ≤ ‖Bv‖ ≤ Bv,M

• The dynamic model (2.22), (2.23) can be transformed into a linear system via
static state feedback (Spong 1987). The relation from the new input to the
output q is given by n independent chains of 4 integrators.

2.2.4 Friction phenomena

Various mathematical models have been proposed to describe a number of friction
phenomena (Armstrong-Hélouvry et al. 1994), (Olsson et al. 1998). Which model
is more suitable for modelling and control purposes depends on the physical friction
phenomena observed in the system, such as stiction, Stribeck curve effects, viscous
friction, and on the velocity regime in which the system is supposed to work, i.e.
slow, medium or high speed. One major limitation in modelling friction phenomena
is the complexity of the models and the drawback for parameter identification and
control that it implies. Due to the complexity of the physical mechanism underlying
friction, most models are of an empirical nature. Furthermore a distinction can be
made between static and dynamic models depending on the inclusion of frictional
memory. For static friction models, this friction memory is omitted, whereas for
dynamic friction models this memory behavior is described with additional dynamics
between velocity and the friction force.
Dynamic friction models are useful to describe stick-slip phenomena and presliding
displacements, such as elastic and plastic deformations of the asperity junctions be-
fore macroscopic sliding. In dynamic friction models the idea is to introduce extra
state variables (or internal states) that determine the level of friction that depends
on velocity. The evolution in time of the state variables is governed by a set of
differential equations. Often the introduced state variables can be given a physical
interpretation, which depends on the physical mechanism that the friction model is
supposed to describe, see (Haessig and Friedland 1991), (Dupont and Dunlap 1995),
(Canudas de Wit et al. 1995), and (Bliman and Sorine 1995).
Static friction models are characterized by the absence of internal states, i.e. they
do not increase the order of the system. Static friction phenomena include Coulomb,
viscous and Stribeck effects. The static friction models are static maps from the
relative velocity between the two contact surfaces to the friction force. Several models
for static friction have been proposed in the literature, see (Armstrong-Hélouvry et
al. 1994), (Olsson et al. 1998).
In general dynamic friction models are more complicated than the static models.
The advantages of dynamic friction models over static models are important at very
low velocities, where dynamic friction greatly affects the performance of the systems.
However, the use of dynamic friction models is not justified for medium and high
velocities. Therefore only static friction models are considered throughout this thesis.
A major difficulty in static models is the discontinuity that the Coulomb friction
represents. The discontinuity at zero velocity may lead to non-uniqueness of the
solution of the equation of motion, and numerical problems if such a model is used in
simulations. A way to deal with the Coulomb discontinuity is to use approximations
based on tangent or exponential functions. In this thesis we consider an approximation
based on exponential functions as follows. Consider the friction model proposed in
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(Hensen et al. 2000), where the torque f(q̇) due to friction is modelled as

f(q̇) = Bv q̇ + Bf1

(
1 − 2

1 + e2w1q̇

)
+ Bf2

(
1 − 2

1 + e2w2q̇

)
(2.30)

where Bv is the viscous friction coefficient and the remaining terms model the Coulomb
and Stribeck friction effects. The coefficients w1, w2 determine the slope in the approx-
imation of the sgn function in the Coulomb friction and the Stribeck curve. Figure
2.1 shows typical friction forces obtained with the model (2.30). The coefficients in
the model (2.30) were set as the estimated friction parameters listed in Table 2.1. Be-
cause of the particular values of the parameters Bf1, Bf2, w1 and w2 Stribeck friction
effects are not present in Figure 2.1. For more friction models and a detailed discus-
sion about friction effects the reader is referred to (Armstrong-Hélouvry et al. 1994).
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Figure 2.1: Continuous friction forces, static friction model (2.30)

Friction compensation

From the literature study (Armstrong-Hélouvry et al. 1994) a clear distinction can be
made between non-model and model based friction compensation. In non-model based
compensation the friction effects are compensated by using information of internal
variables of the system, e.g. tracking errors, phase lag, etc., but without considering
any friction model whatsoever. Examples of non-model based friction compensation
controllers are the widely used stiff PD control and integral control, while impulsive
control and dual mode control are less well known, see (Armstrong-Hélouvry 1991).
On the other hand the model-based methods compensated the friction force by ap-
plying an equivalent control force in opposite direction. The most commonly used
model-based compensation method is a fixed compensation based on an identified
friction model. Other not so well know model based compensation techniques are
adaptive control (Canudas de Wit and Lischinsky 1997) and learning control (Otten
et al. 1997), which however are less used and have limited applicability.
From a control viewpoint friction compensation can be based on feedforward or feed-
back techniques. In the feedforward case the desired (commanded) frictional depen-
dencies, such as velocities, position and/or acceleration, are used to compute the
compensation control (command) force, whereas in the feedback setting the actual
or instantaneous quantities are used. For most applications, only the instantaneous
position is measured and consequently frictional dependencies such as velocity and
acceleration must be reconstructed or estimated.
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Friction phenomena in rigid joint robots

The dynamic model for the rigid joint robot (2.18) does not account for friction phe-
nomena. Nonetheless friction phenomena always appear in practical implementations
and have to be compensated in order to improve the performance of the robots. Fric-
tion phenomena appear as an additive term in the dynamic model (2.18). To include
friction phenomena in the dynamic model (2.18) the torques τ can be written as

τ = τe − f(q̇)

where τe is the [n × 1] vector of external or control torques and f(q̇) corresponds to
the torques due to friction effects. Consequently (2.18) becomes

M(q)q̈ + C(q, q̇)q̇ + g(q) + f(q̇) = τe (2.31)

As mentioned, there are several friction models, but throughout the thesis the friction
forces f(q̇) are considered to be modelled by (2.30).

Friction phenomena in flexible joint robots

The dynamic model for the flexible joint robot (2.22 - 2.24) only accounts for viscous
friction effects. To include some other friction phenomena different from viscous
friction, the torques τ in the dynamic model (2.22 - 2.24) can be written as

τ = τe − f(q̇)

where τe is the [n × 1] vector of external or control torques and f(q̇) corresponds to
the torques due to friction effects. Consequently (2.22 - 2.24) become

M(q)q̈ + N(q, q̇) + K(q − θ) = 0
Jθ̈ + K(θ − q) + Bvθ̇ + f(θ̇) = τe (2.32)

f(θ̇) = Bf1

(
1 − 2

1 + e2w1θ̇

)
+ Bf2

(
1 − 2

1 + e2w2θ̇

)
Remark 2.24 In the model (2.30) it is assumed that the friction is symmetric, and
it is only a function of the joint velocity. However, in many robot applications it turns
out that friction also exhibits some dependence on the joint position. Here, it is also
assumed that the friction effects are decoupled with respect to the joint velocities, i.e.
the friction effects on the i-th joint only depend on the i-th joint velocity.

2.3 Experimental setup

In order to experimentally validate the proposed synchronization controllers a multi-
robot system formed by two robots is considered. The robots in the experimental
setup are industrial transposer robots designed by the Centre for Manufacturing
Technology (CFT) Philips laboratory. These robots are installed at the Dynamics
and Control Technology Laboratory at the Eindhoven University of Technology. The
robots in the multi composed system are referred to as robot 1 and 2.
The robots have four degrees of freedom and are fully actuated by brushless DC
servomotors. The robots are equipped with encoders attached to the shaft of the
motors with a resolution of 2000 PPR. Although the shaft of the motors and the
corresponding links are connected by belts, the pair servomotor-link prove to be stiff
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enough to be considered as a rigid joint. The robots are identical in their structure
and design, therefore they are represented by the same dynamic model. However the
physical parameters such as inertias, friction coefficients, etc., are different for each
robot. For implementation of the controllers and communication with the robots,
the experimental setup is equipped with a DS1005 dSPACE system, with a processor
PPC750, a clock of 480 MHz and a bus clock of 80 MHz. Throughout the experiments
the sampling frequency of the DS1005 dSPACE system was set to 2 kHz.
The robots have 4 degrees of freedom, but for the sake of clarity in the implementation
in Chapters 3 and 5 only the middle link of the upper arm was used in the experiments.
The other 3 degrees of freedom of the robots were locked such that only the middle
links were able to move. Figure 2.2 shows the middle link of the robots. This link
can rotate around its axis mounted in the based of the robot. Experiments with the
four degrees of freedom of the robots are presented in Chapter 6.

Figure 2.2: The transposer robot and its middle link.

Since in Chapters 3 and 5 only the medium link of the robots is considered, in this
section the dynamic model for this link is presented. The dynamic model for the four
degrees of freedom of the robot is presented in Appendix H, together with a more
detailed description of the transposer robots and the experimental setup.
In the position in which the 3 degrees of freedom of the transposer robot were locked,
the model of the middle link, in both robots, can be described by (i = 1, 2)

Jiq̈i − gmi cos(−qi − α) + fi(q̇i) = τi (2.33)

fi(q̇i) = Bv,iq̇i + Bf1,i

(
1 − 2

1 + e2w1,iq̇i

)
+ Bf2,i

(
1 − 2

1 + e2w2,iq̇i

)
(2.34)

with g = 9.81 m/s2 the acceleration due to the gravity. The torque fi(q̇i) models the
friction with Bv,i the viscous friction coefficient and the other terms representing the
Coulomb and Stribeck friction effects.
The physical parameters of the dynamic model (2.33, 2.34) have been estimated us-
ing an extended Kalman filter in a similar way to the work presented in (Kostic et
al. 2001). The input torque τi for collecting the data to run the Kalman filter was set
as a P controller, with a desired trajectory qd(t) of frequency 0.4 Hz. The estimated
parameters are listed in Table 2.1.
Figures 2.3 shows the estimated τe,i and measured torques τi for robots 1 and 2. The
estimated torque τe,i is obtained from the dynamic model (2.33, 2.34) and the esti-
mated parameters in Table 2.1. It is worth to mention that the same methodology,
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controller and trajectories were used in both robots. However, robot 2 presents bet-
ter fitting between the estimated and measured input control than robot 1. Thus the
dynamic model (2.33, 2.34) and the estimated parameters in Table 2.1, are better rep-
resentation of the dynamics of robot 2 than robot 1. The differences in the estimated
parameters may be due to weariness in the motors and transmission elements, even
to better maintenance of robot 2. By simple inspection of the robots it is apparent
that the robot 1 presents more weariness in the motors and transmission elements
than robot 2. The peaks in the estimated input control τe,i are due to friction effects,
it is the robots present high frictional effects, particularly Coulomb friction.

Ji

[
Kg · m2

]
mi [Kg · m] Bv,i

[
Kg · m2/s

]
Robot 1 1.6627 2.8360 8.9815
Robot 2 1.7098 2.8027 6.1010

Bf1,i

[
Kg · m2/s2

]
Bf2,i

[
Kg · m2/s2

]
w1,i

Robot 1 -10.6147 27.3291 27.6979
Robot 2 -8.4152 19.4356 36.0641

w2,i α [rad]
Robot 1 12.0224 2.5607
Robot 2 16.2942 2.5607

Table 2.1: Estimated parameters for robot 1 and 2.
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Figure 2.3: Estimated τe,i (solid) and measured torque τi (dashed) for robots 1,2.

In Chapter 3 there exists a desired reference qd(t), that is to be followed by the
master robot, that corresponds to robot 1, while robot 2 has the role of slave robot.
Meanwhile in Chapter 5 a common desired trajectory qd(t) for both robots, robot 1
and 2, is considered. For comparison the same desired trajectory qd(t) is considered in
both Chapters 3 and 5. The desired trajectory qd(t) is a series of harmonic functions
with fundamental frequency ω, which is given by

qd(t)=2.13+0.15 sin(2πωt)+0.05 sin(4πωt)−0.03 sin(6πωt)+0.02 sin(8πωt) (2.35)

The constant offset value 2.13 centers the amplitude of the oscillation of qd(t) in the
middle of the span of the middle joint of the transposer robots. The other coefficients
in (2.35) have been chosen arbitrarily, only taking into account the limits of the joint.



Chapter 3

External synchronization of
rigid joint robots

3.1 Introduction

In this chapter a novel approach for external position and velocity synchronization of
two or more rigid joint robot manipulators under a master-slave scheme is presented.
The external synchronization controller is only based on position measurements of the
master and slave robots. Results in this chapter have been previously reported in the
articles (Rodriguez-Angeles and Nijmeijer 2001a), (Rodriguez-Angeles and Nijmeijer
2001b), (Rodriguez-Angeles et al. 2002b).
The general setup is as follows: consider a multi-robot system that is formed by two
(or more) fully actuated rigid joint robots with n joints each. Assume that the motion
of one of the robots is independent of the other robots. This robot is the dominant one
and is referred to as the master robot, while the non-dominant robots are referred to as
the slave robots. The master robot is driven by an input torque τm(·), that, in the ideal
case, ensures convergence of the joint angular positions and velocities qm, q̇m ∈ �n to
a desired trajectory qd, q̇d ∈ �n . However, the input torque τm is unknown, as well
as the joint angular velocity and acceleration q̇m, q̈m, and the master robot dynamic
model. Under these assumptions, the goal is to design a control law τs(·) for the slave
robot, such that its joint angular position and velocity qs, q̇s ∈ �n synchronize with
those of the master robot, i.e. qm, q̇m. Also we assume that the slave joint velocities
and accelerations q̇s, q̈s are not available for measurement. Therefore, the control
law τs that is to be designed, can only depend on angular position measurements
of both robots, i.e. qm, qs, and estimated values of the joint angular velocities and
accelerations q̇m, q̈m, q̇s, q̈s. Figure 3.1 shows a schematic representation of the general
setup for external synchronization of rigid joint robots.
Notice that the goal is to follow the trajectories of the master robot qm, q̇m, and
not the desired master robot trajectories qd, q̇d, which may not be achieved because
of noise, parametric uncertainty or unmodelled dynamics of the master robot, like
unmodelled friction phenomena, unknown loads, etc.
Throughout this chapter and without loss of generality a multi-robot system formed
by two rigid joint robots is considered. Hereafter the subindices m, s distinguish
between the master and slave robot. The cases of robot with and without friction
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Figure 3.1: External synchronization of rigid joint robots.

effects are both addressed.
If friction effects are ideally compensated, then the robots can be considered as fric-
tionless and can be modelled as (see Section 2.2.1)

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = m, s (3.1)

while, when friction forces fi(q̇i) are considered the model changes to

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) + fi(q̇i) = τi (3.2)

In this chapter the particular friction model fi(q̇i) introduced in Section 2.2.4 is
considered

fi(q̇i) = Bv,iq̇i + Bf1,i

(
1 − 2

1 + e2w1,iq̇i

)
+ Bf2,i

(
1 − 2

1 + e2w2,iq̇i

)
(3.3)

One of the problems in synchronization in general is to formulate the functionals
that describe the synchronized behavior. In our particular problem we consider that
synchronization occurs when the angular position and velocity of the master and slave
robot coincide for all t ≥ 0, or asymptotically for t → ∞. Then one can introduce
synchronization indices as the angular variables of interest

J(q(t), q̇(t)) =
[

q(t)T q̇(t)T
]

(3.4)

with the corresponding set of functionals

fsync(qm, q̇m, qs, q̇s) = ‖J(qm, q̇m) − J(qs, q̇s)‖ (3.5)

The chapter is organized as follows. A synchronization controller for frictionless
robots, assuming full state measurements is presented in Section 3.2. Section 3.3
presents a modified synchronization controller formed by a feedback control and two
nonlinear observers. The stability analysis of the synchronization closed loop system
is given in Section 3.3.6. A gain tuning procedure for the observers and feedback
controller gains is given in Section 3.4. Section 3.5 describes a friction compensation
scheme of the particular friction phenomena modelled by (3.3). A simulation and
experimental study in a one degree of freedom system is presented in Section 3.6.
The chapter closes with some concluding remarks and discussion about the proposed
synchronization controller, Section 3.7.
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3.2 Synchronization controller based on state feed-
back

If the master and slave positions, velocities and accelerations are available for mea-
surement, then master slave synchronization can be obtained by using some of the
tracking controllers proposed in literature. For instance, consider the tracking con-
troller proposed by Paden and Panja (1988) and take the master position qm, velocity
q̇m, and acceleration q̈m as desired trajectories for the slave robot. Then we propose
a synchronization controller of the form

τs = Ms(qs)q̈m + Cs(qs, q̇s)q̇m + gs(qs) − Kd ė − Kpe (3.6)

with the synchronization errors e, ė ∈ �n defined by

e := qs − qm, ė := q̇s − q̇m (3.7)

Ms(qs), Cs(qs, q̇s), gs(qs) are as in Section 2.2.1, and Kp, Kd ∈ �n×n are positive
definite gain matrices.

Remark 3.1 Note that the synchronization functionals fsync(qm, q̇m, qs, q̇s), defined
by (3.5), can be written in terms of the synchronization errors e, ė, i.e.

fsync(qm, q̇m, qs, q̇s) =
∥∥[ eT ėT

]∥∥
By using standard stability techniques, it can be proved that the controller (3.6) yields
asymptotic synchronization between the master and slave robots.

Theorem 3.2 For any positive definite gain matrices Kp, Kd, the synchronization
closed loop system formed by the slave robot (3.1) and the controller (3.6) is asymp-
totically stable.

Proof: From the properties of the Coriolis term (see Section 2.2.3) it follows that the
synchronization closed loop system is given by

Ms(qs)ë = −Cs(qs, q̇s)ė − Kd ė − Kpe (3.8)

Take as a Lyapunov function

V =
1
2
ėT Ms(qs)ė +

1
2
eT Kpe

then along the error dynamics (3.8) the time derivative of V results in

V̇ = −ėT Kd ė

Note that V̇ is only a negative semi-definite function of the state. Nevertheless, by
using stability theorems such as LaSalle’s theorem (Theorem 2.19) and Barbalat’s
lemma (Lemma 2.20) it can be proved that the only invariant set that satisfies V̇ = 0
along trajectories of the closed loop systems is {(e, ė) = (0, 0)} , see (Lewis et al. 1993).
Therefore it can be concluded that the synchronization errors e, ė are asymptotically
stable for any positive definite matrices Kp, Kd, thus the slave robot synchronizes in
position and velocity to the master robot.
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3.3 Synchronization controller based on estimated
variables

As stated in the introduction, it is assumed that there is no access to (q̇m, q̈m) and
(q̇s, q̈s), but only joint positions qm and qs can be measured. Therefore, the synchro-
nization controller (3.6) cannot be implemented. As an alternative the synchroniza-
tion controller can be formed by a feedback control law and two nonlinear model based
observers. In this way the synchronization controller τs(·) depends on position mea-
surements (qm, qs) and estimated values for the velocities (q̇m, q̇s) and accelerations
(q̈m, q̈s).

3.3.1 Feedback control law

With the controller (3.6) in mind, and under the assumptions that the friction effects
have been compensated, the estimated values are available, and the nonlinearities and
parameters of the slave robot are known, we propose the controller τs for the slave
robot as

τs = Ms(qs)̂̈qm + Cs(qs, ̂̇qs)̂̇qm + gs(qs) − Kd
̂̇e − Kpe (3.9)

were ̂̇qs, ̂̇e, ̂̇qm, ̂̈qm ∈ �n represent the estimates of q̇s, ė, q̇m and q̈m respectively, the
synchronization errors e, ė ∈ �

n are defined by (3.7), Ms(qs), Cs(qs, ̂̇qs), gs(qs) are
defined as in Section 2.2.1, and Kp, Kd ∈ �n×n are positive definite gain matrices.

3.3.2 An observer for the synchronization errors e, ė

Estimated values for the synchronization errors e, ė (3.7) are denoted by ê, ̂̇e; these
estimated values are obtained by the full state nonlinear Luenberger observer

d

dt
ê = ̂̇e + Λ1ẽ (3.10)

d

dt
̂̇e = −Ms(qs)−1

[
Cs(qs, ̂̇qs) ̂̇e + Kd

̂̇e + Kp ê
]

+ Λ2ẽ

where the estimated position and velocity synchronization errors ẽ, ˜̇e are defined by

ẽ := e − ê, ˜̇e := ė − ̂̇e (3.11)

and Λ1, Λ2 ∈ �n×n are positive definite gain matrices.

3.3.3 An observer for the slave joint variables qs, q̇s

Lets q̂s, ̂̇qs denote estimated values for qs, q̇s. To compute these estimates, we propose
the full state nonlinear observer

d

dt
q̂s = ̂̇qs + Lp1q̃s (3.12)

d

dt
̂̇qs = −Ms(qs)−1

[
Cs(qs, ̂̇qs) ̂̇e + Kd

̂̇e + Kpe
]

+ Lp2q̃s

where the estimated position and velocity errors q̃s and ˜̇qs are defined by

q̃s := qs − q̂s
˜̇qs := q̇s − ̂̇qs (3.13)

and Lp1, Lp2 ∈ �n×n are positive definite gain matrices.
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3.3.4 Estimated values for q̇m, q̈m

As stated, the master robot variables q̇m, q̈m are not available, therefore estimated
values for q̇m, q̈m are used in τs (3.9). However, the master robot dynamic model
is assumed to be unknown, then the variables q̇m, q̈m must be reconstructed based
on information of the slave robot and the synchronization closed loop system. From
(3.7) and the definition of the estimated variables ê, ̂̇e, q̂s, ̂̇qs, we can consider that
estimated values for qm, q̇m, q̈m are given by

q̂m = q̂s − ê̂̇qm = ̂̇qs − ̂̇e (3.14)̂̈qm =
d

dt

(̂̇qs − ̂̇e)
from the definition of the observers (3.10), (3.12) it follows that

̂̈qm = −(Ms(qs)−1Kp + Lp2)ẽ + Lp2q̃s

which gives a clear insight into how the master joint acceleration ̂̈qm is reconstructed.

Remark 3.3 In the feedback control (3.9) and the observer (3.12) the available signal
e is used, instead of its estimate ê. This is done to take advantage of the available
information, i.e. the position measurement qs and the synchronization position error
e. As a result robustness and better stability and performance during transients are
obtained.

Remark 3.4 Note that, in (3.10) and (3.11) the estimate for the synchronization
error ė is given by ̂̇e, not by

.

ê= d
dt ê. This definition introduces an extra correcting

term in
.

ẽ, as it follows from (3.10), (3.11) that
.

ẽ= ė−
.

ê= ˜̇e − Λ1ẽ

The term Λ1ẽ gives faster estimation performance, especially during transients, but it
has some negative effects on noise sensitivity, since it amplifies noise measurements
on ẽ.
The same can be said for observer (3.12) and the estimation position and velocity
errors (3.13).

Figure 3.2 shows a schematic representation of the proposed synchronization controller
for rigid joint robots.

3.3.5 Synchronization closed loop error dynamics

To simplify the synchronization closed loop error dynamics and the stability analysis
the following assumptions on the gain matrices Kp, Kd, Lp1, Lp2, Λ1, Λ2 are consid-
ered.

Assumption 3.5 The gain matrices Λ1, Λ2 and Lp1, Lp2 satisfy

Λ1 = Lp1, Λ2 = Lp2 (3.15)
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Figure 3.2: External synchronization of rigid joint robots.

Assumption 3.6 The gain matrices Kp, Kd, Lp1, Lp2 are symmetric.

Furthermore two coordinate transformations are introduced.

Lemma 3.7 Consider the synchronization errors (e, ė), the estimated synchroniza-
tion errors (ẽ, ˜̇e) and the estimated position and velocity errors (q̃s, ˜̇qs), which are
defined by (3.7), (3.11), and (3.13).
Introduce the coordinate transformation defined by

q̃m := ẽ − q̃s
.

q̃m:= ˜̇e − ˜̇qs − Lp1q̃m (3.16)
.

q̃s:= ˜̇qs − Lp1q̃s

and

q̄ := e − q̃m
.
q̄:= ė−

.

q̃m (3.17)

Define the vectors x, y ∈ �
6n as

xT :=
[

ėT eT ˜̇eT
ẽT ˜̇qT

s q̃T
s

]
(3.18)

yT :=
[

.
q̄

T
q̄T

.

q̃
T

m q̃T
m

.

q̃
T

s q̃T
s

]
(3.19)

then x and y are related by
x = Ty (3.20)

where

T =


I 0 I 0 0 0
0 I 0 I 0 0
0 0 I Lp1 I Lp1

0 0 0 I 0 I
0 0 0 0 I Lp1

0 0 0 0 0 I

 (3.21)
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Proof: The proof follows from the definition of the coordinate transformations.

Remark 3.8 Note that from the definition of the variables q̃m,
.

q̃m, (3.16), it follows
that

q̃m = q̂m − qm,
.

q̃m=
.

q̂m −q̇m

therefore, q̃m,
.

q̃m can be interpreted as the estimation error in the joint variables of
the master robot qm, q̇m.
Meanwhile, q̄,

.
q̄ satisfy

q̄ = qs − q̂m,
.
q̄= q̇s−

.

q̂m

thus, they represent the error between the slave trajectories and estimated master
trajectories, i.e. the practical errors that are fedback into the system. Note that qm

is available for measurement and is used in the controller (3.9) and both observers
(3.10).

In the new error coordinates, the synchronization closed loop error dynamics can be
formulated as follows.

Lemma 3.9 Consider the synchronization closed loop system formed by the slave
robot (3.1), the controller (3.9), and both observers (3.10), (3.12). Then, in the
variables defined by (3.13), (3.16), and (3.17), the synchronization closed loop error
dynamics are given by

Ms(qs)
..
q̄ +Cs(qs, q̇s)

.
q̄ +Kd

.
q̄ +Kpq̄ = Cs(qs,

.

q̃s +Lp1q̃s)
( .
q̄ −Lp1q̃m

)
+Ms(qs)Lp1

.

q̃m +Cs(qs, q̇s)Lp1q̃m + Kd

( .

q̃s +Lp1(q̃s + q̃m)
)
− Kpq̃m (3.22)

..

q̃m= −Ms(qs)−1Kp (q̃m + q̃s) − Lp1

.

q̃m −Lp2q̃m − q̈m (3.23)

..

q̃s= Ms(qs)−1[−Kp (q̃m + q̃s) +
(
Cs(qs,

.

q̃s +Lp1q̃s) − 2Cs(qs, q̇s)
)

×
( .

q̃s +Lp1q̃s

)
] − Lp1

.

q̃s −Lp2 (q̃m + q̃s) (3.24)

Proof: See Appendix A.

Remark 3.10 Note that the master acceleration q̈m appears in the synchronization
error dynamics (3.22 - 3.24) as a non-vanishing disturbance. Therefore the origin of
the closed loop error space is not an equilibrium any more for (3.22 - 3.24). The best
that can be expected is that the closed loop errors will be ultimately bounded, with a
ultimate bound function of the master acceleration q̈m.

3.3.6 Stability analysis

The following assumption is required in order to prove the convergence properties of
the synchronization closed loop system.
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Assumption 3.11 The signals q̇m(t) and q̈m(t) are bounded, i.e. there exist VM and
AM such that

sup
t

‖q̇m(t)‖ = VM < ∞ (3.25)

sup
t

‖q̈m(t)‖ = AM < ∞ (3.26)

In practice, it is often not difficult to obtain bounds for q̇m(t) and q̈m(t) based on
the desired motion qd(t), q̇d(t) and q̈d(t) of the master robot. Although due to friction
effects, tracking errors, etc., the actual motion of the master robot may differ from
its desired motion, one could still deduce suitable values for VM and AM . Also the
bounds VM and AM can be obtained by considering the structural limitations of the
robots, such as maximum velocities and accelerations of the motors.
The stability properties of the synchronization closed loop system are summarized in
the following theorem.

Theorem 3.12 Consider the master and slave robots described by (3.1), the slave
robot in closed loop with the control law (3.9), and both observers (3.10), (3.12).
Introduce scalar parameters εo, λo, µo, γo, defined throughout the proof, such that

λo > 0, µo > 0, γo > 0, εo > 0 (3.27)

Then the synchronization closed loop errors ė, e, ˜̇e, ẽ, ˜̇qs, q̃s are semi-globally uniformly
ultimately bounded if the gain matrices Kd, Kp, Lp1, Lp2 are chosen such that their
minimum eigenvalues, denoted by Kd,m, Kp,m, Lp1,m, and Lp2,m, satisfy

Lp2,m > max
{
µ2

o, γ2
o , Lp2q4, Lp2q5, Lp2q6

}
Lp1,m > max {2µo, Lp1q3, Lp1q5,a, Lp1q5,b}
Kp,m > max {Kpq2, Kpq6}
Kd,m > max {Kdq1} (3.28)

Moreover, the ultimate bound can be made arbitrarily small, by a proper choice of
Kp,m and Lp1,m.
The scalars Lp2q4, Lp2q5, Lp2q6, Lp1q3, Lp1q5,a, Lp1q5,b, Kpq2, Kpq6, Kdq1 are defined in
the gain tuning procedure given in Section 3.4.

Proof: The proof is based on a Lyapunov function, whose time derivative along the
synchronization error dynamics (3.22 - 3.24) is negative in an annulus around the
origin. In this section a sketch of the proof is given. The details behind the sketch of
the proof can be found in Appendix B.

Remark 3.13 Note that the conditions implied by Theorem 3.12 and the Assump-
tions 3.5, 3.6, 3.11 are only sufficient, but not necessary, to ensure stability and
boundedness of the synchronization system. Hence for different values of λ0, ε0, µ0

and γ0, different minimum eigenvalues of the gains Kp, Kd, Lp1 and Lp2 would be
obtained.
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Lyapunov function

Consider the vector y ∈ �6n defined by (3.19), and take as a candidate Lyapunov
function

V (y) =
1
2
yT P (y)y (3.29)

where P (y) = P (y)T is given by

P (y) =


εo

[
Ms(qs) λoMs(qs)

λoMs(qs) Kp + λoKd

]
0 0

0
[

I µ(q̃m)I
µ(q̃m)I Lp2

]
0

0 0
[

I γ(q̃s)I
γ(q̃s)I Lp2

]


εo, λo ∈ � are positive constants to be determined, and µ(q̃m), γ(q̃s) are defined by

µ(q̃m) :=
µo

1 + ‖q̃m‖ , γ(q̃s) :=
γo

1 + ‖q̃s‖ (3.30)

with µo, γo ∈ � positive constants to be determined; µ(q̃m), γ(q̃s) are bounded, such
that

0 < µ(q̃m) ≤ µo, and 0 < γ(q̃s) ≤ γo (3.31)

Sufficient conditions for positive definiteness of P (y) are

Kd,m > λoMs,M , Lp2,m > max
{
µ2

o, γ2
o

}
(3.32)

Therefore, conditions (3.27, 3.28), together with the boundedness of µ(q̃m), γ(q̃s),
imply that there exist constants Pm and PM such that

1
2
Pm ‖y‖2 ≤ V (y) ≤ 1

2
PM ‖y‖2 (3.33)

Derivative of the Lyapunov function and negative definiteness of V̇ (y)

Along the error dynamics (3.22 - 3.24), by using Assumption 3.6, and by introducing
the vector yN as

yT
N :=

[ ∥∥∥ .
q̄
∥∥∥ ‖q̄‖

∥∥∥ .

q̃m

∥∥∥ ‖q̃m‖
∥∥∥ .

q̃s

∥∥∥ ‖q̃s‖
]

(3.34)

it follows that the time derivative of (3.29), i.e. V̇ (y), has an upperbound given by,
(see Appendix B for a detailed computation)

V̇ (y) ≤ ‖yN‖
(
α0 − QNm ‖yN‖ + α2 ‖yN‖2

)
(3.35)

where QNm > 0 is the minimum eigenvalue of the matrix QN = QT
N

QN =

 Q11N Q12N Q13N

QT
12N

Q22N Q23N

QT
13N

QT
23N

Q33N

 (3.36)
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with the block matrices

Q11N = εo

[
Kd,m − λoMs,M

1
2λoVM (Cs,M − Ms,pM )

1
2λoVM (Cs,M − Ms,pM ) λoKp,m

]

Q12N =
εo

2

[ −Ms,MLp1,M Kp,M − Kd,MLp1,M − Cs,MLp1,MVM

−λoMs,MLp1,M λo (Kp,M − Kd,MLp1,M − Cs,MLp1,MVM )

]
Q13N =

εo

2

[ −Kd,M −Kd,MLp1,M

−λoKd,M −λoKd,MLp1,M

]
Q22N =

[
Lp1,m − 2µo

1
2

(
M−1

s,mKp,M + µoLp1,M

)
1
2

(
M−1

s,mKp,M + µoLp1,M

)
µo

(
M−1

s,mKp,m + Lp2,m

) ]
Q23N =

[
0 1

2M−1
s,mKM

1
2

(
M−1

s,mKp,M + Lp2,M

)
1
2

(
(µo + γo)M−1

s,mKp,M + γoLp2,M

) ]
Q33N =

[
Lp1,m − 2γo + 2M−1

s,mCs,MVM q56

q56 q66

]

q56 =
1
2
(
M−1

s,mKp,M + γoLp1,M

)
+ M−1

s,mCs,MVM (Lp1,M + γo)

q66 = γo

(
M−1

s,mKp,m + Lp2,m + 2M−1
s,mCs,MVMLp1,m

)
and α0, α2 are positive scalars given by

α0 = (1 +
√

µo)
√

AM (3.37)

α2 =
√

8M−1
s,mCs,M

(√
γo +

√
Lp1,M

)
+
√

εoCs,M

(
1 +

√
λo

)(
Lp1,M + 2

√
Lp1,M

)
+M−1

s,mCs,M (5 +
√

γo + 2Lp1,M +
√

γoLp1,M + L2
p1,M + γo + Lp1,M

√
γo +

+
√

8γoLp1,M ) + εo

(√
Cs,M

(
1 + 2

√
Lp1,M

)
+
√

λo(Ms,pM + Cs,M )
)

+

+
√

εoλo

(
2
√

Cs,M

(
1 +

√
Lp1,M

)
+
√

Ms,pM + Cs,M

)
(3.38)

If the gains Kd, Kp, Lp1, Lp2 and the constants εo, λo, µo, γo satisfy conditions (3.27)
and (3.28), then QN given by (3.36) is positive definite. Then the right-hand side
in (3.35) corresponds to (2.17), and together with (3.33) and Proposition 2.23, this
allows to conclude local uniform ultimate boundedness of yN (3.34) and consequently
of y (3.19). By (3.20) we therefore conclude that the original state x, given by (3.18),
is locally uniformly ultimately bounded.
Moreover, α2 depends explicitly on Lp1,M , so that y2 defined as in Proposition 2.23
can be made arbitrarily small by a proper chose of Lp1,M , and thus the ultimate
bound for the closed loop errors ė, e, ˜̇e, ẽ, ˜̇qs, q̃s can be made arbitrarily small. Notice
that the minimum value for y2 is given by QNm/(2α2), and recall that QN (3.36)
depends on Kp,m.
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On the other hand, a region of attraction is given by

B =

{
x ∈ �

6n | ‖x‖ <
y2

‖T ‖

√
Pm

PM

}
(3.39)

where T is given by (3.21), Pm, PM are defined by (3.33), and y2 as in Proposition
2.23, with (2.17) given by (3.35). Since the size of the region of attraction B (3.39) is
proportional to y2, this region can be expanded by increasing y2. Thus the uniform
ultimate bounded result is semi-global.

Remark 3.14 The conditions given by (3.28) imply relations between the minimum
and maximum eigenvalues of Lp1, Lp2, and at the same time QNm and α2 depend on
the maximum eigenvalue of Lp1. All these relations have to be taken into account to
choose the control and observer gains Kd, Km, Lp1, Lp2. Nevertheless y2 > δy1 (see
Proposition 2.23) can be always satisfied.
On the other hand Lp2 is also related to the value of PM , see (3.33) , such that by
increasing Lp2, PM also increases. But there is still freedom on the gain Kd, such
that the ratio Pm/PM can be kept far from zero, and thus shrinking of the region of
attraction is avoided.

The ultimate boundedness result of the synchronization closed loop system is due
to the absence of measurements of q̈m, see (3.35) and (3.37), such that the ultimate
bound of the errors is proportional to the master acceleration q̈m. This yields the
following Corollary in case of set point regulation of the master robot.

Corollary 3.15 If set point regulation of the master robot is considered and the mas-
ter robot controller is able to achieved steady state in finite time, then q̇m(t) = 0,
q̈m(t) = 0 for t ∈ (t2,∞), t2 ≥ t0, being the convergence time of the master robot
trajectories. If the conditions on Theorem 3.12 are satisfied, then the control law
(3.9), and both observers (3.10), (3.12) yield semi-global exponential convergence of
the synchronization closed loop errors ė, e, ˜̇e, ẽ, ˜̇qs, q̃s for t ≥ t2.

Proof: From (3.35), (3.37) we have the following. If the conditions in Theorem 3.12
are satisfied, and q̈m(t) = 0 for t ∈ (t2,∞), t2 ≥ t0, then for t ≥ t2 (3.35) reduces to

V̇ (y) ≤ ‖yN‖2 (−QNm + α2 ‖yN‖)

with QNm > 0.
On the other hand, the region of attraction (3.39) guarantees that QNm > α2 ‖yN‖ ,
and thus V̇ (y) has an upperbound given by

V̇ (y) ≤ −κ ‖yN‖2 for all t ≥ t2.

From the last inequality and (3.33), we conclude that there exist some constants
m∗, ρ > 0, such that

‖y(t)‖2 ≤ m∗e−ρt ‖y(t2)‖2 for all t ≥ t2

by (3.20) we can conclude the same for x given by (3.18).
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Remark 3.16 Throughout the presentation and analysis of the synchronization con-
troller, it has been assumed that the master robot has a controller that assures conver-
gence to a desired trajectory. The master controller is independent from the synchro-
nization controller presented in Section 3.3. Therefore, the master robot convergence
time and stability properties are irrelevant for the proposed synchronization controller.
It can even happen that the master robot convergence time is ∞, like in case of asymp-
totic stability of the master robot.

3.4 Gain tuning procedure

The following step by step gain tuning procedure gives a constructive way to guarantee
stability and ultimate boundedness of the synchronization closed loop system, such
that synchronization between the master and slave robots is achieved.

1. Determine the bounds of the master trajectories q̇m, q̈m, the physical parameters
Ms(qs), Cs(qs, q̇s) and their partial derivatives with respect to qs.

2. Choose the weighting factors λ0 > 0, ε0 > 0, µ0 > 0 and γ0 > 0 and a bound
for the maximum eigenvalue of the gains Kp, Kd, Lp1 and Lp2.

3. By considering the matrix QN given by (3.36) determine the minimum eigen-
value of the gain matrices Kp, Kd, Lp1 and Lp2, such that QN is a positive
definite matrix. For this a set of nonlinear algebraic equations must be solved.

Let ∆Qi denote the determinant of the i-th leading minor of QN . Then sufficient
conditions for positive definiteness of QN are given by (3.28) with Lp2q4, Lp2q5, Lp2q6,
Lp1q3, Lp1q5,a, Lp1q5,b, Kpq2, Kpq6, and Kdq1 given by

• Kdq1 = λoMs,M ,

• Kpq2 = λoVM (Ms,pM−Cs,M )2

4(Kd,m−λoMs,M ) ,

• Lp1q3: denotes the solution of the equation ∆Q3 = a1Lp1q3 + a2 = 0,with
a1, a2 the resultant coefficients in the factorization of Lp1,m in ∆Q3, and Lp1,m

substituted by Lp1q3.

• Lp2q4: denotes the solution of the equation ∆Q4 = b1Lp2q4 + b2 = 0, with
b1, b2 the resultant coefficients in the factorization of Lp2,m in ∆Q4, and Lp2,m

substituted by Lp2q4.

• Lp1q5,a = 2(γo − Cs,MVMM−1
s,M ),

• Lp1q5,b: denotes the largest solution of the equation ∆Q5 = c0 + c1Lp1q5 +
c2L

2
p1q5 = 0, with c0, c1, c2 the resultant coefficients in the factorization of Lp1,m

in ∆Q5, and Lp1,m substituted by Lp1q5.

• Lp2q5: denotes the solution of the equation c2 = r1Lp2q5 + r2 = 0, with c2 as in
Lp1q5,b, r1, r2 the resultant coefficients in the factorization of Lp2,m in c2, and
Lp2,m substituted by Lp2q5.
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• Lp2q6: denotes the largest solution of the equation ∆Q6 = to + t1Lp2q6 +
t2L

2
p2q6 = 0, with t0, t1, t2 the resultant coefficients in the factorization of Lp2,m

in ∆Q6, and Lp2,m substituted by Lp2q6.

• Kpq6: denotes the solution of the equation t2 = s1Kpq6 + s2 = 0, with t2 as
in Lp2q6, s1, s2 the resultant coefficients in the factorization of Kp,m in t2, and
Kp,m substituted by Kpq6.

3.5 Friction compensation

This section presents the extension of the synchronization scheme of Section 3.3 in
case that robots with friction effects are considered. The synchronization scheme
developed here has been implemented to obtain the experimental results reported in
Section 3.6 and Chapter 6. A sketch of the stability proof of the synchronization
closed loop system is given. A formal analysis goes along the same lines as given in
the proof of Theorem 3.12.
The dynamic model (3.1) does not account for friction phenomena. Nonetheless
friction phenomena always appear in practical implementations and have to be com-
pensated in order to improve the performance of the robots. How to compensate for
friction phenomena highly depends on the way of modelling such effects. Because of
this, compensation of friction phenomena in the proposed synchronization schemes is
treated and presented separately from the synchronization problem. The core of sep-
arate compensation of friction phenomena in robot manipulators lies in the fact that
the effects of friction phenomena are in general bounded as function of the velocity,
and moreover friction phenomena appear as an additive term in the dynamic model
(3.1).
First we analyze the scenarios that are obtained for feedforward and feedback friction
compensation in the synchronization controller proposed in Section 3.3. Recall that
throughout this thesis the particular friction model given by (3.3) is considered.
In case of feedforward friction compensation there is the requirement of master robot
velocity measurements q̇m (as desired or commanded synchronization trajectory), see
the synchronization feedback control (3.9) and the synchronization errors (3.7). How-
ever, it has been assumed that such measurements are not available, and neither is the
master robot dynamic model, so that model based observers can also not be designed.
Therefore, if feedforward friction compensation is considered the master robot veloc-
ity q̇m has to be reconstructed by using non-model based observers, e.g. high gain, or
numerical differentiation and filtering techniques, with implicit implementation and
bandwidth problems, see Section 1.3.1. On the other hand the observer proposed
in Section 3.3.3 reconstructs the instantaneous slave robot velocity q̇s that can be
used directly for feedback friction compensation. Therefore, for friction compensa-
tion in the synchronization controller presented in Section 3.3, feedback techniques
are chosen over feedforward techniques.
Considering the friction model given by (3.3) and the dynamic model of the robot
manipulators given by (3.2), it follows that the feedback controller τs (3.9) can be
modified as

τsf = τs + fs(̂̇qs)

= Ms(qs)̂̈qm + Cs(qs, ̂̇qs)̂̇qm + gs(qs) − Kd
̂̇e − Kpe + fs(̂̇qs) (3.40)
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with the friction compensation term fs(̂̇qs) given by

fs(̂̇qs) = Bv,s
̂̇qs + Bf1,s

(
1 − 2

1 + e2w1,s
�q̇s

)
+ Bf2,s

(
1 − 2

1 + e2w2,s
�q̇s

)
and ̂̇qs the estimated slave velocity obtained by the observer (3.12).
The estimates for the velocity synchronization error ̂̇e and the master velocity and
acceleration ̂̇qm, ̂̈qm are obtained by the same observers as in the frictionless case, i.e.
observer (3.10) and relations (3.14).
The stability analysis of the closed loop system formed by the synchronization con-
troller (3.40), the observers (3.10), (3.12) and the slave robot goes in the same way
as for frictionless rigid join robots. The support of the stability analysis is the fact
that the friction model (3.3) implies that∥∥∥fs(̂̇qs) − fs(q̇s)

∥∥∥ ≤ Bv,sM

∥∥∥˜̇qs

∥∥∥+ 2Bf1,sM + 2Bf2,sM (3.41)

with ˜̇qs the velocity estimation error, and Bv,sM , Bf1,sM , Bf2,sM the maximum
eigenvalue of the coefficient matrices Bv,s, Bf1,s, Bf2,s.

Because the friction effects appear as an additive term in the robot dynamics (3.1) and
the controller (3.40), then the difference fs(̂̇qs)−fs(q̇s) appears in the synchronization
closed loop error. Then by considering the Lyapunov function (3.29) it follows that the
bound (3.41) appears in the bound of the derivative of the Lyapunov function (3.35).
Following the same steps as in the frictionless rigid robot case it can be concluded
that semi-global uniform stability is obtained.

3.6 Simulation and experimental study

The proposed synchronization controller for rigid joint robots τsf , given by (3.40), has
been implemented on a one degree of freedom master and slave system. The master
and slave system correspond to the medium link of two identical transposer robots
fabricated by the Centre for Manufacturing Technology (CFT) Philips Laboratory.
The experimental setup, the dynamic model and the estimated parameters for the
robots are given in Section 2.3. The master robot corresponds to robot 1 in Section
2.3, while robot 2 has the role of slave robot. The desired trajectory for the master
robot qd(t) is a harmonic series given by (2.35).
The master and slave controllers τmf , τsf are implemented according to (3.40), with
τm, τs as in (3.9). The friction compensation term fi(̂̇qi) is a function of the estimated
velocity ̂̇qi, that is obtained by the observer (3.12).
From the tuning gain procedure given on Section 3.4, it follows that for the values
λ0 = 5 × 10−7, ε0 = 0.0003, µ0 = 0.0001, γ0 = 0.02, the synchronization system is
stable and the errors are bounded if the slave scalar gains satisfy Kp,s > 0, Kd,s >
8 × 10−7, Lp1,s > 35, and Lp2,s > 0. Since the physical parameters of the master
and slave robot are very similar, it is expected that similar values of the gains would
render a stable master system. After a series of experiments in order to decrease the
synchronization position error e, the gains on the master and slave controllers were
set as listed in Table 3.1. These gains have been used in all the experiments and
simulations presented in this chapter.
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Kp,i Kd,i Lp1,i Lp2,i

master robot 2500 80 100 2200
slave robot 2500 80 100 2200

Table 3.1: Control gains in master and slave controllers.

qi(0) [rad] q̇i(0) [rad/s] q̂i(0) [rad]
master robot 2.13 0 1.98
slave robot 2.00 0 1.98̂̇qi(0) [rad/s] êi(0) [rad] ̂̇ei(0) [rad/s]

master robot 0 0.1 0
slave robot 0 0.1 0

Table 3.2: Initial conditions for master and slave robot.

The initial position of the links and the initial conditions in the observers (3.10),
(3.12) were chosen as in Table 3.2
First a comparative study between simulated and experimental results is presented.
The experimental results closely match the simulated results, which validates the
model of the system (2.33, 2.34) and the estimated physical parameters listed in table
2.1. Since the experimental results are so close to the simulated ones, the predicted
stability and convergence properties of the proposed synchronization controller (3.9
or 3.40) are shown by experimental results rather than by numerical simulations.

Simulation and experimental results

The master and slave dynamic model (2.33, 2.34) were implemented in the standard
Simulink distribution for Matlab version 6.0 Release 12 to numerically simulate the
synchronization closed loop system. The gains and initial conditions were set as in
Tables 3.1 and 3.2. The frequency of the master robot desired trajectory qd(t), given
by (2.35), was set as ω = 0.4 Hz.
Figure 3.3 show the master and slave position trajectories, simulated qm,s, qs,s and
measured qm, qs. The simulated and measured positions match very well after the
transient period has finished. The initial mismatch is due to large values of the input
torques during the simulations, which exceed the maximum torque of the physical
robots (τmax = 500 [Nm]), see Figure 3.4. Boundedness of the input controls is an
important open problem in Control Theory, since it can generate instability of the
closed loop system. However the study of this problem is beyond the scope of this
thesis.
The simulated and measured slave input torques τs,s, and τs are presented in Figure
3.4. Note that τs,s, and τs only correspond to the synchronization controller (3.9),
i.e. they do not include the friction compensation term fs(̂̇qs) of the controller (3.40),
although the controller (3.40) has been implemented in both the master and slave
robot. Since there is no bound on the input control during the simulations, τs,s

presents large overshoots during the transient. These overshoots are the reason of
mismatch between the simulated and measured data during the transient period.
After the transient has finished, the simulated and measured slave torques are quite
similar.
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The synchronization errors e = qs−qm, simulated and measured, are shown in Figure
3.5. After the transient period has finished the simulated and measured synchroniza-
tion errors match very well.
Figure 3.6 presents the simulated (∗,s) and measured estimated error for the syn-
chronization error ẽ (observer (3.10)) and for the joint slave position q̃s (observer
(3.12)) after the transient has finished. Both observers show good performance and
convergence properties, and the simulated and real errors match almost perfectly.

Comparative results for different controllers

For the sake of comparison a PD and PID controller were also implemented on the
slave system. The gains of the PD, PID controllers were set equal to the proportional
and derivative gains in the synchronization controller, i.e. Kp = 2500, Kd = 80. The
gain in the integral part of the PID control was set as Ki = 20. The velocity in the
friction compensation term fs(̂̇qs) was obtained by using the numerical differentiator
function supplied in the DS1005 dSPACE system. The frequency of the master robot
desired trajectory qm,d(t) was set as ω = 0.2 Hz, since it was observed that for frequen-
cies higher than ω = 0.2 Hz the closed loop system with the PD and PID controllers
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ẽs

ẽ
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became unstable. Note that the PD and PID controllers have not been optimized in
any sense, but for comparison purposes their gains have been chosen equal to those
of the synchronization controller. The values of the gains Kp = 2500, Kd = 80 in the
synchronization controller have not been optimized either, but chosen by trial and
error in between the limits obtained from the gain tuning procedure, Section 3.4.
Figure 3.7(left) presents the master qm, and slave robot trajectories qs for the syn-
chronization controller (3.9 or 3.40), the PD controller, qs,,PD, and the PID controller,
qs,PID. Since the proportional Kp and derivative Kd gains are the same for all con-
trollers, they showed similar performance during the transient, such as oscillations on
the overshoot. However, after the transient has finished, the PD and PID showed poor
convergence, while the synchronization controller (3.9, 3.40) showed good convergence
between the master and slave trajectories, as can be seen form the synchronization
errors shown in Figure 3.7(right).
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Sensitivity to desired trajectories

As mentioned in the Remark 3.10 the value of the ultimate bound is a function of the
master acceleration q̈m. To show this property, two different values for the frequency
on the master desired trajectory qm,d(t) have been considered, ω = 0.2, 0.6 Hz. None
of the controller gains have been changed during the experiments.
Figure 3.8 show the master qm and slave qs robot position for ω = 0.2, 0.6 Hz. Smaller
synchronization errors are obtained when ω = 0.2 Hz which agrees with the predicted
performance of the synchronization controller.
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Figure 3.8: Master qm (dashed) and slave positions qs (solid) for ω = 0.2, ω = 0.6.

It is worth to mention that the estimated parameters listed in Section 2.3 were ob-
tained based on a trajectory with frequency of ω = 0.4 Hz. Therefore the bandwidth
of the dynamic model (2.33, 2.34) together with the estimated parameters listed in
Table 2.1 is centered in 0.4 Hz. Thus the synchronization errors for ω = 0.2, 0.6 Hz
are also partially due to the estimated parameters.
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Disturbance rejection

The proposed synchronization controller is robust against disturbances and paramet-
ric uncertainty. A payload of 2.0 kg. was used as a disturbance on the master and
slave systems. The frequency on the desired trajectory qm,d(t) was set as ω = 0.4 Hz.
Figure 3.9(left) shows the tracking error in the master robot em = qm − qm,d and the
synchronization error in the slave robot es = qs − qm when the payload of 2.0 kg was
set on the master robot, from t = 30.8s to t = 39.3s. It can be observed that the
load generates a jump in the master tracking error, while the slave robot is practically
not affected. Figure 3.9(right) present the synchronization errors when the payload
of 2.0 kg was set on the slave robot, from t = 104.5s to t = 113.5s. As expected
the master robot is not affected because there is not interaction from the slave to the
master robot. On the other hand, it can be observed that the payload has minimum
effects on the slave robot.
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The same controller (3.9, 3.40), with the same gains, has been implemented in both
robots, master and slave. However the master robot seems to be more sensitive to
disturbances than the slave robot. This sensitivity to disturbances that is shown
by the master robot can be due to the differences in the physical parameters of the
robots, particularly the friction coefficients. It can also be due to the accuracy of the
estimated parameters, see the validation figure presented in Section 2.3. From Figure
2.3 it is evident that the slave robot parameters are better estimated than those of
the master robot.

3.7 Concluding remarks and discussion

• The proposed synchronization controller yields practical position and velocity
synchronization in the joint space. Position and velocity synchronization in the
Cartesian space, i.e. spatial coordinates, is obtained only if the length of the
links of the slave robot are equal to the corresponding links in the master robot.

• The variables q̃m,
.

q̃m, defined by (3.16), can be interpreted as the estimation
error in the joint variables of the master robot qm, q̇m. Therefore, q̃m,

.

q̃m give
an idea of how well the estimation of the master robot variables can be made
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based on measured and estimated variables of the slave robot. So, the slave
robot, under the proposed synchronization controller, can be considered as a
physical estimator for the master robot dynamics in the joint space.

• The uniform ultimate boundedness result is of semi-global nature, with region
of attraction (3.39). This region of attraction and the bound for the closed
loop errors depend on y2 in a proportional way. This is an intrinsic property
of the considered method, see proposition 2.23 and Section 3.3.6, and thus a
compromise has to be made.

Nevertheless, the region of attraction mainly depends on the initial estimate
errors. Therefore, if small initial estimate errors (see observers (3.10) and (3.12))
are chosen, then high initial synchronization errors can be considered. The high
dependency on the estimate errors is the price to be paid for the lack of available
measurements or high quality measurements.

• Even without knowledge of the bounds in (3.27) and (3.28), the synchronization
closed loop system can be made uniformly ultimately bounded by selecting the
control gains large enough. However, such high gain implementations are not
always desirable in practical circumstances, since high gains might generate
large overshoots during transients and amplify noisy measurements.

• The controller and observer gains in the proposed synchronization controller
can be interpreted physically as damping or stiffness in the closed loop system.
Consequently, an insight of how the gains affect the closed loop performance
and how to tune them can be obtained, which in general is more difficult to
determine for other techniques like variable structure implementations, sliding
controls, etc..

• The controller and observers (3.9), (3.10) and (3.12) are model based, never-
theless the stability analysis allows a straightforward robustness analysis for
parametric uncertainties. Because of linearity of the robot dynamical model
(3.1), we have that parametric uncertainties appear as an additive term in V̇ ,
given by (B.1). Thus, if we consider bounded parametric uncertainties, then
this new bounded term appears in (3.35). So, by retuning the gains we can
ensure that V̇ is negative definite, such that the convergence properties of the
closed loop system are preserved.

In case of unmodelled dynamics the stability analysis is not valid any more in
general, since it greatly depends in the type of unmodelled phenomena.

Adaptive extensions of the proposed synchronization scheme can be obtained
by following the work presented in (Berghuis 1993), see for instance the work
presented in (Lee and Chung 1998). Of course the dynamics of the adaptive part
and the adaptation error dynamics must be considered in the stability analysis.

• The proposed synchronization controller (3.9), (3.10) and (3.12) provides a sys-
tematic way of proving stability and boundedness of the closed loop system.
This is a drawback of some other schemes for estimating velocities, such as nu-
merical differentiation or low pass filters. For those techniques, in general, there
do not exist formal stability proofs or a methodology to guarantee stability of
the synchronization closed loop system.



Chapter 4

External synchronization of
flexible joint robots

4.1 Introduction

This chapter addresses the problem of synchronization of robot manipulators with
flexible joints. It is assumed that not all the joint state variables are measured, e.g.
link and rotor velocities are unknown, which is a very common situation when joint
flexibility is present. The main goal is to ensure synchronization between two (or
more) robots, where the robots for which the control will be designed (slaves) have
flexible joints, and the robot, whose trajectories are to be followed (master), may or
may not have flexible joints. Results in this chapter have been reported on the articles
(Rodriguez-Angeles and Nijmeijer 2002b), (Rodriguez-Angeles et al. 2002c).
Joint flexibility can be caused by transmission elements such as harmonic drives, belts,
or long shafts, and considerably affects the performance of robot manipulators (Good
et al. 1985), since it is a major source of oscillatory behavior. Joint flexibility can
be modelled by considering the position and velocity of the motor rotor θ, θ̇, and the
position and velocity of the link q, q̇. Therefore, the order of the dynamic model for
a flexible joint is twice that of a rigid joint, consequently, the control laws proposed
for flexible joint robots are more complex than those for rigid robots.
In this chapter we consider a multi-robot system formed by two fully actuated robots
with n joints each and working in a master-slave scheme, such that the subindices
m, s identify the master and slave robot respectively. Assume that the master robot
is driven by an input torque τm(·), which in the ideal case ensures convergence of the
link position and velocity variables qm, q̇m to a desired trajectory qd, q̇d. However, the
input torque τm, the dynamic model and parameters of the master robot, as well as
the link velocity and acceleration variables q̇m, q̈m, are not available for design of the
slave control law τs(·). Also we assume that the rotor position θs, and the link and
rotor velocities and accelerations q̇s, q̈s, θ̇s, θ̈s are not available. Therefore, the control
law τs, which is to be designed such that the link variables qs, q̇s ∈ �n synchronize
with the variables qm, q̇m, can only depend on link position measurements of both
robots, i.e. qm, qs, and estimated values of θs, θ̇s, q̇m, q̈m, q̇s, q̈s.
Figure 4.1 shows a schematic representation of the external synchronization problem
for the flexible joint robots.
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Figure 4.1: External synchronization of flexible joint robots.

Notice that the goal is to follow the link trajectories of the master robot qm, q̇m,
not the desired trajectories qd, q̇d for the master robot, which may not be realized
due to model uncertainties or disturbances in the system, e.g. noise, unknown loads.
Therefore, flexible joint robot synchronization occurs when the angular link position
and link velocity of the master and slave robot coincide for all t ≥ 0, or asymptotically
for t → ∞. One can introduce synchronization indices as the link variables of interest

J(q(t), q̇(t)) =
[

q(t)T q̇(t)T
]

with the corresponding set of functionals

fsync(qm, q̇m, qs, q̇s) = ‖J(qm, q̇m) − J(qs, q̇s)‖
From Section 2.2.2 it follows that the reduced model for the flexible joint robot dy-
namics is given by (for i = m, s, the master and slave robot respectively)

Mi(qi)q̈i + Ni(qi, q̇i) + Ki(qi − θi) = 0 (4.1)
Jiθ̈i + Ki(θi − qi) + Bv,iθ̇i = τi (4.2)

Ni(qi, q̇i) = Ci(qi, q̇i)q̇i + gi(qi) (4.3)

Notice that the dynamic model of the flexible joint robot (4.1 - 4.3) accounts for
viscous friction phenomena. In this case the viscous friction induces damping in the
dynamic model, such that the stability properties of the proposed synchronization
scheme can be proved. Other kinds of friction phenomena may be treated as in
the case of rigid joint robots, i.e. these might be compensated separately. In order
to include some other friction phenomena different than static viscous friction it is
possible to consider the dynamic model given by (2.32), i.e.

Mi(qi)q̈i + Ni(qi, q̇i) + Ki(qi − θi) = 0 (4.4)
Jiθ̈ + Ki(θi − qi) + Bv,iθ̇i + fi(θ̇i) = τe (4.5)

with the friction forces fi(θ̇i) modelled similar to (2.30), i.e.

fi(θ̇i) = Bf1,i

(
1 − 2

1 + e2w1,i θ̇i

)
+ Bf2,i

(
1 − 2

1 + e2w2,i θ̇i

)
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Several authors have addressed the problem of tracking in rigid-link flexible-joint
robots assuming the full state available, (De Luca 1998), (Lozano and Brogliato 1992),
(Qu 1995). But there are few controllers that assume partial knowledge of the state,
see (Lim et al. 1997), (Dixon et al. 2000). They proposed adaptive controllers based
on backstepping and filters requiring only link and actuator position measurements.
In our setup we assume only link position measurements, which makes our synchro-
nization controller quite attractive since not velocity measuring equipment is required.
The chapter is organized as follows. A nominal controller, assuming that all signals
θs, θ̇s, qm, q̇m, qs, q̇s are available, is introduced in Section 4.2. Section 4.3 presents an
implementation of the nominal controller based on estimated values for θs, θ̇s, q̇m, q̇s,
which are obtained by two observers. The synchronization closed loop system formed
by the slave robot and the modified nominal controller and observers is obtained
in Section 4.3.3, and the stability analysis is presented in Section 4.3.4. Section 4.4
summarizes a gain tuning procedure for the parameters in the controller and observers.
A simulation study in a one degree of freedom master and slave robot is presented in
Section 4.5. The chapter closes with some concluding remarks and discussions about
the proposed synchronization controller.

4.2 Synchronization controller based on state feed-
back

Assume that (4.1), (4.2) define the dynamics of two robots which are interconnected
in a synchronization master slave scheme where the subindices m,s identify the master
and slave robot respectively. Based on inverse dynamics computation and according
to De Luca and Lucibello (1998), the slave robot with dynamic model (4.1), (4.2) can
be fully linearized and decoupled via the static feedback control law

τs = Ks(θs − qs) + Bv,sθ̇s + JsK
−1
s

[
Ms(qs)v(t) + α(qs, q̇s, q̈s, q

(3)
s )

]
(4.6)

α(qs, q̇s, q̈s, q
(3)
s ) = 2Ṁs(qs, q̇s)q(3)

s + (M̈s(qs, q̇s, q̈s) + Ks)q̈s + N̈(qs, q̇s, q̈s, q
(3)
s ) (4.7)

On the other hand (4.1) establishes a relation between q̈s, q
(3)
s , and lower order vari-

ables qs, q̇s, θ̇s. From (4.1) it follows that

q̈s = −M−1
s (qs) (N(qs, q̇s) + Ks(qs − θs)) (4.8)

q(3)
s = −M−1

s (qs)
(
Ṁs(qs, q̇s)q̈s + Ṅ(qs, q̇s, q̈s) + Ks(q̇s − θ̇s)

)
(4.9)

Therefore (4.6) can be written as function of qs, q̇s, θs, θ̇s, i.e.

τs = Ks(θs − qs) + β(qs, q̇s, θs, θ̇s) + ϕ(qs)v(t) (4.10)

β(qs, q̇s, θs, θ̇s) = Bv,sθ̇s + JsK
−1
s α(qs, q̇s, q̈s, q

(3)
s )

ϕ(qs) = JsK
−1
s Ms(qs)

Applying the control law (4.6) to the slave robot (4.1), (4.2) yields the linear decoupled
closed loop system

q(4)
s = v(t) (4.11)
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To ensure synchronization between the slave and the master robot an additional
feedback for v(t) is proposed as

v(t) = q(4)
m − K3e

(3) − K2ë − K1ė − K0e (4.12)

with the synchronization errors defined by

e = qs − qm, ė = q̇s − q̇m (4.13)

where Ki ∈ �n are gain matrices, and qm is the master link position trajectory, that
has to be at least four times continuously differentiable, i.e. qm ∈ C4.
Clearly, there exist general choices for the gain matrices Ki such that the closed loop
systems is stable, but for simplicity we assume that Ki = kiIn, i = 0, 1, 2, 3 , with
ki positive scalars. Then, it is straightforward to conclude that the synchronization
error e will tend to zero exponentially, if the scalars ki, i = 0, 1, 2, 3 are chosen such
that the polynomial s4 + k3s

3 + k2s
2 + k1s + k0 is Hurwitz.

4.3 Synchronization controller based on estimated

variables

As stated in the introduction of this chapter, it is assumed that only the link positions
qm, qs are measured, therefore (4.6) cannot be implemented. Moreover, also v(t) in
(4.12) cannot be implemented since it depends on higher order derivatives of qs, qm.

Let q̂s, ̂̇qs, θ̂s, and ̂̇θs denote estimated values for the link and rotor variables qs, q̇s, θs, θ̇s,
and let v̂(t) denote the implementation of v(t), given by (4.12), based on estimated

synchronization errors. Assuming that q̂s, ̂̇qs, θ̂s,
̂̇
θs and v̂(t) are available the lineariz-

ing feedback control (4.10) can be modified as

τs = Ks(θ̂s − q̂s) + β(qs, ̂̇qs, θ̂s,
̂̇θs) + ϕ(qs)v̂(t) (4.14)

with β(qs, ̂̇qs, θ̂s,
̂̇
θs) given by

β(qs, ̂̇qs, θ̂s,
̂̇θs) = Bv,s

̂̇θs + JsK
−1
s α(qs, ̂̇qs, ̂̈qs, q̂

(3)
s )

α(qs, ̂̇qs, ̂̈qs, q̂
(3)
s ) = 2Ṁs(qs, ̂̇qs)q̂

(3)
s + (M̈s(qs, ̂̇qs, ̂̈qs) + Ks)̂̈qs + N̈(qs, ̂̇qs, ̂̈qs, q̂

(3)
s )

where according to (4.8), (4.9), estimates for q̈s, q
(3)
s are given by

̂̈qs = −M−1
s (qs)

(
N(qs, ̂̇qs) + Ks(q̂s − θ̂s)

)
(4.15)

q̂
(3)
s = −M−1

s (qs)
(
Ṁs(qs, ̂̇qs)̂̈qs + Ṅ(qs, ̂̇qs, ̂̈qs) + Ks(̂̇qs − ̂̇θs)

)
(4.16)

4.3.1 An observer for the synchronization errors e, ė

Based on the work of Berghuis and Nijmeijer (1994), we propose an implementation
of the controller v(t), given by (4.12), based on estimates, of the form

v̂(t) = −K3ẇ2 − K2ẇ1 − K1

.

ê −K0ê (4.17)
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where ê,
.

ê, ẇ1, ẇ2 represent estimates for e, ė, ë, e(3) respectively. They are obtained
by the observer

.

ê= w1 + Γ1ẽ, ẇ1 = w2 + Γ2ẽ

ẇ2 = w3 + Γ3ẽ, ẇ3 = Γ4ẽ (4.18)

with the estimation synchronization errors defined by

ẽ = e − ê,
.

ẽ= ė−
.

ê (4.19)

and Γi ∈ �n×n , i = 1, 2, 3, 4 diagonal positive definite gain matrices.

4.3.2 An observer for the slave variables qs, q̇s, θs, θ̇s

Based on the dynamic model (4.1), (4.2), we propose the full state nonlinear Luen-
berger observer

d

dt
q̂s = ̂̇qs + µ1q̃s

d

dt
̂̇qs = −M−1

s (qs)
(
N(qs, ̂̇qs) + Ks(q̂s − θ̂s)

)
+ µ2q̃s (4.20)

d

dt
θ̂s = ̂̇θs + µ3q̃s

d

dt
̂̇θs = J−1

s

(
τs(qs, q̂s, ̂̇qs, θ̂s,

̂̇θs) − Ks(θ̂s − q̂s) − Bv,s
̂̇θs

)
+ µ4q̃s (4.21)

where q̂s,
̂̇qs, θ̂s,

̂̇θs correspond to the estimates of qs, q̇s, θs, θ̇s, and µ1, µ2, µ3, µ4 ∈
�n×n are diagonal positive definite gain matrices. The joint estimation errors are
defined by

q̃s = qs − q̂s, ˜̇qs = q̇s − ̂̇qs

θ̃s = θs − θ̂s,
˜̇
θs = θ̇s − ̂̇

θs

(4.22)

Figure 4.2 shows a diagram of the proposed synchronization controller.
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Figure 4.2: External synchronization of flexible joint robots.
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4.3.3 Synchronization closed loop error dynamics

In this section compact synchronization closed loop error dynamics, that are suitable
for a straightforward Lyapunov stability analysis, are presented.

Lemma 4.1 Consider the master and slave flexible joint robots, which are described
by (4.1 - 4.3), the slave robot in closed loop with the control law τs (4.14, 4.17) and
the observers (4.18), (4.20), and (4.21). In terms of qs, q̇m, q̈m, q

(3)
m , the joint esti-

mation errors q̃s,
.

q̃s, θ̃s,
.

θ̃s, the synchronization errors e, ė, ë, e(3) and the estimation
synchronization errors ẽ,

.

ẽ,
..

ẽ, ẽ(3), the synchronization closed loop error dynamics are
given by

e(4) + K3e
(3) + K2ë + K1ė + K0e = q(4)

m + K3

(
ẽ(3) + Γ1

..

ẽ +Γ2

.

ẽ
)

+K2

(..

ẽ +Γ1

.

ẽ
)

+ K1

.

ẽ +K0ẽ

−M−1
s (qs)Φ(qs, q̇m, q̈m, q(3)

m , ė, ë, e(3), q̃s,
.

q̃s, θ̃s,
.

θ̃s) (4.23)

ẽ(4) + (Γ1 − K3)ẽ(3) + (Γ2 − K3Γ1 − K2)
..

ẽ +(Γ3 − K3Γ2 − K2Γ1 − K1)
.

ẽ

+(Γ4 − K0)ẽ = q(4)
m − K3e

(3) − K2ë − K1ė − K0e

−M−1
s (qs)Φ(qs, q̇m, q̈m, q(3)

m , ė, ë, e(3), q̃s,
.

q̃s, θ̃s,
.

θ̃s) (4.24)

..

q̃s= −M−1
s (qs)

(
(2Cs(qs, ė + q̇m) − Cs(qs,

.

q̃s +µ1q̃s))(
.

q̃s +µ1q̃s)

+ Ks(q̃s − θ̃s)
)
− µ1

.

q̃s −µ2q̃s
..

θ̃s= −J−1
s Ks(θ̃s − q̃s) − J−1

s Bv,s

( .

θ̃s +µ3q̃s

)
− µ3

.

q̃s −µ4q̃s

(4.25)

Proof: See Appendix C.
Notice that the synchronization error dynamics (4.23) and (4.24) resemble a linear
system which is perturbed by Φ. Also note that the error dynamics (4.25) can be
considered as a non-linear perturbed system.

Lemma 4.2 Define states x1, . . . , x8 ∈ �n as x1 = e, x2 = ė, x3 = ë, x4 = e(3), x5 =

ẽ, x6 =
.

ẽ, x7 =
..

ẽ, x8 = ẽ(3), and y ∈ �4n as y1 = q̃s, y2 =
.

q̃s, y3 = θ̃s, y4 =
.

θ̃s, and let
the state vectors x and y be given by x = [ xT

1 xT
2 xT

3 xT
4 xT

5 xT
6 xT

7 xT
8 ]T

and y = [ yT
1 yT

2 yT
3 yT

4 ]T .
Then the synchronization closed loop error dynamics (4.23), (4.24), and (4.25) can
be written as

ẋ = Ax − BM−1
s (qs)Φ(qs, q̇m, q̈m, q

(3)
m , x2, x3, x4, y1, y2, y3, y4) + Bq

(4)
m

ẏ = f(qs, q̇m, x, y)
(4.26)

where the matrices A ∈ �8n×8n , B ∈ �8n×n are given by
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A =



0 In 0 0 0 0 0 0
0 0 In 0 0 0 0 0
0 0 0 In 0 0 0 0

−K0 −K1 −K2 −K3 K0 π1 π2 K3

0 0 0 0 0 In 0 0
0 0 0 0 0 0 In 0
0 0 0 0 0 0 0 In

−K0 −K1 −K2 −K3 K0 − Γ4 π1 − Γ3 π2 − Γ2 K3 − Γ1


(4.27)

B =
[

0 0 0 In 0 0 0 In

]T (4.28)

π1 = K3Γ2 + K2Γ1 + K1, π2 = K3Γ1 + K2

with 0, In ∈ �n×n the zero and identity matrices.
The nonlinear vector function f(qs, q̇m, x, y) is given by

f(qs, q̇m, x, y) =



y2

−M−1
s (qs) (2Cs(qs, x2 + q̇m) − Cs(qs, y2 + µ1y1))

× (y2 + µ1y1) − M−1
s (qs)Ks(y1 − y3) − µ1y2 − µ2y1

y4

−J−1
s Ks(y3 − y1) − J−1

s Bv,s (y4 + µ3y1) − µ3y2 − µ4y1


(4.29)

Proof: This follows from simple substitution of the states x and y.

4.3.4 Stability analysis

The stability analysis is based on a Lyapunov function, whose derivative can be
bounded in terms of the closed loop errors. It is proven that the bound is nega-
tive in an annulus around the origin. In order to derive bounds on the derivative of
the Lyapunov function the following assumption is required.

Assumption 4.3 The signals q̇m, q̈m, q
(3)
m , q

(4)
m are bounded for all t ∈ [t0,∞), there-

for there exist VM , AM , DM and EM such that

sup
t

‖q̇m‖ = VM < ∞, sup
t

‖q̈m‖ = AM < ∞

sup
t

∥∥∥q(3)
m

∥∥∥ = DM < ∞, sup
t

∥∥∥q(4)
m

∥∥∥ = EM < ∞ (4.30)

In practice, it is often not difficult to obtain the master trajectories bounds (4.30) on
the basis of the desired trajectories qd(t) and its derivatives, although due to friction
effects, tracking errors, etc., the actual motion of the master robot may differ from
its desired motion. Also the bounds VM , AM , DM , and EM can be obtained by
considering the structural limitations of the robots, such as maximum velocities and
accelerations of the motors.
On the other hand, for the sake of simplicity the following assumption is considered.
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Assumption 4.4 All gains in the control (4.14), (4.17), and the observer (4.18)
are a positive multiple of the unit matrix, i.e. of the form K = kI, where k is a
positive scalar associated to the respective gain and I denotes the identity matrix of
appropriate dimensions.

Based on the above assumptions, the main result of this chapter is formulated as
follows.

Theorem 4.5 Consider the master and slave flexible joint robots, which are described
by (4.1 - 4.3), the slave robot in closed loop with the control law τs (4.14, 4.17) and
the observers (4.18), (4.20) and (4.21).
If the gain matrices Ki and Γj, i = 0, 1, 2, 3, j = 1, 2, 3, 4 are chosen such that A,
given by (4.27), is Hurwitz, and additionally the minimum and maximum eigenvalues
of the gains µl, l = 1, 2, 3, 4, i.e. µlm and µlM , satisfy

µ1m > max{0, 2M−1
sm (λ0 − CMVM ) , (2λ0Msm)−1

× (4λ2
0 − MsmKsm − 2CMVM (2λ0 + Msmµ1M ) + MsmMsMµ2M

)} (4.31)

µ2m > max
{
0,−a−1

31 a30,−a−1
41 a40

}
(4.32)

µ3m > max {0, µ33 , µ34 } , µ3M < min
{
µ−

33, µ
−
34

}
(4.33)

µ4m > max
{
0, J−1

sm

(
4η2

0 − JsmKsm − 2η0Bv,sM + Jsmµ4M

)}
(4.34)

where Msm and Jsm are the minimum eigenvalue of the link and motor rotor inertia
matrices, and the scalars λ0, η0, µ33 , µ34 , µ−

33, µ
−
34, a30, a31, a40, a41 are defined in the

gain tuning procedure in Section 4.4. Then the joint estimation errors q̃s,
.

q̃s, θ̃s,
.

θ̃s,
the synchronization errors e, ė, ë, e(3) and the estimation synchronization errors ẽ,
.

ẽ,
..

ẽ, ẽ(3) are semi-globally uniformly ultimately bounded.

Proof: The proof is divided in three parts. First the candidate Lyapunov function
and conditions for positive definitiveness are presented. In the second part it is shown
that the derivative of the Lyapunov function along (4.26) is bounded, and finally in
the third part sufficient conditions for negative definiteness are formulated.

Remark 4.6 Notice that (4.31) establishes a relation between the minimum and max-
imum eigenvalue of the gain µ1, and thus they cannot be assigned arbitrarily. The
same holds for the gain µ4. Also notice that the maximum eigenvalue of µ3 is bounded
by (4.33), so it cannot be arbitrarily large.

Lyapunov function

Consider the system defined by (4.26), and take as a candidate Lyapunov function
V (x, y), given by

V (x, y) = xT Pxx +
1
2
yT Py(y)y (4.35)

where the positive definite symmetric matrix Px is the solution of the Lyapunov equa-
tion PxA + AT Px = −Qx, for any given symmetric positive definite matrix Qx, and
Py(y) is given by
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Py(y) =


[

Ks + 2λ0µ1 + β1In 2λ0In

2λ0In Ms(qs)

]
0

0
[

Ks + µ4 + β2In 2η(y3)In

2η(y3)In Js

]


with β1, β2 scalars to be determined, and η(y3) defined by

η(y3) :=
η0

1 + ‖y3‖

λ0, η0 > 0 are scalar constants. Then for all y3 = θ̃s, y4 =
.

θ̃s, it holds that

0 < ‖η(y3)‖ < η0, η̇(y3)yT
4 y3 ≤ η0 ‖y4‖2

Existence of Px is guaranteed if A, which is given by (4.27), is Hurwitz, see (Khalil
1996). By Assumption 4.4, a sufficient condition for A being Hurwitz is that the
scalar polynomial λ(s), given by

λ(s) = s8 + γ1s
7 + γ2s

6 + γ3s
5 + (γ4 + k1γ1 + k2γ2 + k3γ3)s4

+(k0γ1 + k1γ2 + k2γ3 + k3γ4)s3 + (k0γ2 + k1γ3 + k2γ4)s2

+(k0γ3 + k1γ4)s + k0γ4 (4.36)

is Hurwitz. ki, γj are the scalars associated to the gains Ki and Γj , i = 0, 1, 2, 3,
j = 1, 2, 3, 4.
Therefore, by choosing the gains ki and γj , i = 0, 1, 2, 3, j = 1, 2, 3, 4, it can be ensured
that the matrix A is Hurwitz, so there exists a unique positive symmetric matrix Px,
which satisfies PxA + AT Px = −Qx, for any given symmetric positive definite matrix
Qx.
On the other hand, sufficient conditions for positive definiteness of Py(y) are

µ1m >
1

2λ0Msm

(
4λ2

0 − MsmKsm − Msmβ1

)
µ4m >

1
Jsm

(
4η2

0 − JsmKsm − Jsmβ2

)
(4.37)

Finally, positive definiteness of Px and Py(y) imply positive definiteness of V (x, y) in
(4.35). Moreover, there exist positive constants Pm and PM such that

1
2
Pm ‖ξ‖2 ≤ V (x, y) ≤ 1

2
PM ‖ξ‖2 (4.38)

where ξT =
[

xT yT
]
.

Derivative of the Lyapunov function

Along the error dynamics (4.26), the time derivative of V in (4.35) is given by

V̇ = −xT Qxx − xT PxBM−1
s Φ − ΦT M−1

s BT Pxx + yT Py(y)f(x, y) +

+
1
2
yT Ṗy(qs, y)y + xT PxBq(4)

m + q(4)T
m BT Pxx (4.39)

which can be written as

V̇ = − [ x y
]T [ Qx Qxy

QT
xy Qy

] [
x
y

]
+ Ω(qs, q̇m, q̈m, q(3)

m , q(4)
m , x, y) (4.40)
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with Qx ∈ �8n×8n the symmetric positive definite matrix Qx = −(PxA + AT Px).
Qy ∈ �

4n×4n is given by

Qy =


2λ0(M−1

s Ks + µ2) α1 α2 α3

αT
1 Msµ1 − 2λ0 α4

1
2Jsµ3

αT
2 αT

4 2η(y3)J−1
s Ks α5

αT
3

1
2 (Jsµ3)T αT

5 Bv,s − 2η(y3)In


(4.41)

α1 = −1
2
(β1In + Msµ2)

α2 = −λ0M
−1
s Ks + η(y3)(µ4 + J−1

s Bv,sµ3 − J−1
s Ks)

α3 =
1
2

(Bv,sµ3 + Jsµ4 − Ks)

α4 = η(y3)µ3 − 1
2
Ks

α5 = η(y3)J−1
s Bv,s − 1

2
(µ4 + β2In)

Qxy ∈ �8n×4n depends on the entries of Px, and it is given by

Qxy =



Px14 + Px18

Px24 + Px28

Px34 + Px38

Px44 + Px48

PT
x45 + Px58

PT
x46 + Px68

PT
x47 + Px78

PT
x48 + Px88


M−1

s KsJ
−1
s

[
(Bv,sµ3 − Ks) 0 Ks Bv,s

]
(4.42)

The scalar function Ω(qs, q̇m, q̈m, q
(3)
m , q

(4)
m , x, y) is locally Lipschitz in all its arguments

and is given by

Ω = −xT PxBM−1
s (Φ + KsJ

−1
s Ks(y1 − y3) − KsJ

−1
s Bv,s(y4 + µ3y1))

+xT PxBq(4)
m − (Φ + KsJ

−1
s Ks(y1 − y3) + q(4)T

m BT Pxx

−KsJ
−1
s Bv,s(y4 + µ3y1))T M−1

s BT Pxx

− (2λ0y
T
1 M−1

s + yT
2

)
(2Cs(qs, x2 + q̇m) − Cs(qs, µ1y1)) (y2 + µ1y1)

+2λ0y
T
1 M−1

s Cs(qs, y2) (y2 + µ1y1) + yT
2 Cs(qs, y2)µ1y1 + 2η̇(y3)yT

4 y3 (4.43)

Boundedness of V̇

The next lemma synthesizes a general bound for V̇ given by (4.40).

Lemma 4.7 Consider V̇ given by (4.40) and introduce the vectors xN , yN , and ξN

xN = [ ‖x1‖ ‖x2‖ ‖x3‖ ‖x4‖ ‖x5‖ ‖x6‖ ‖x7‖ ‖x8‖ ]T

yN = [ ‖y1‖ ‖y2‖ ‖y3‖ ‖y4‖ ]T (4.44)

ξN =
[

xT
N yT

N

]T
Then, an upperbound for the time derivative of V is given by



4.3 Synchronization controller based on estimated variables 59

V̇ ≤ −ξT
NRV ξN + Θ(VM , AM , DM , EM , ξN ) (4.45)

with Vm, Am, Dm, Em given by (4.30), Θ(Vm, Am, Dm, Em, ξN ) a scalar function that
contains products of at most 5th order in terms of the entries of ξN , and the matrix
RV is given by

RV =
[

Rx Rxy(VM , AM , DM )
RT

xy(VM , AM , DM ) Ry(Vm)

]
(4.46)

where Rx ∈ �
8×8 is a positive definite matrix. Rx, Rxy ∈ �

8×4 , Ry ∈ �
4×4 , and Θ

are given in Appendix D.
Proof: See Appendix D.

The upperbound of V̇ given by (4.45) is in terms of the entries of the vector ξN , so
that it can be reduced to a function of the norm of ξN .

Lemma 4.8 In terms of the vector ξN defined by (4.44), the upperbound of V̇ given
by (4.45) can be reduced to

V̇ ≤ ‖ξN‖
(
r0 − r1 ‖ξN‖ + r2 ‖ξN‖2 + r3 ‖ξN‖3 + r4 ‖ξN‖4

)
(4.47)

where r1 is the minimum eigenvalue of the matrix RV in (4.46), and the positive
scalars r0(EM ), r2(µ1M , µ3M ), r3(µ1M ), r4(µ1M ) are obtained from the term
Θ(VM , AM , DM , EM , ξN ), with VM , AM , DM , EM the upperbounds for q̇m, q̈m, q

(3)
m ,

and q
(4)
m , which are defined by (4.30) .

Proof: This follows directly from (4.45) and the definition of ξN .

Negative definiteness of V̇

Equation (4.47) establishes an upperbound for V̇ , and this upperbound is negative if
and only if r1 is positive and large enough to dominate the other terms.
The scalar r1 is the minimum eigenvalue of the matrix RV (4.46), so, r1 is positive if
and only if RV is positive definite. Lemma 2.1 is useful to prove positive definiteness
of RV . Before applying Lemma 2.1, it is required to prove that the matrix Ry is
positive definite. The conditions to fulfill this requirement are summarized in the
following proposition.

Proposition 4.9 Consider Ry ∈ �
4×4 defined in (4.46), and define scalars β1, β2 as

β1 = 2CMVM (2M−1
smλ0 + µ1M ) − MsMµ2M

β2 = 2η0J
−1
smBv,sM − µ4M (4.48)

where �m and �M denote the minimum and maximum eigenvalue of the matrix �.
Then sufficient conditions for positive definiteness of Ry are

1. λ0 > 0

2. µ1m > max{0, 2M−1
sm (λ0 − CMVM )}

3. 0 < η0 < min
{

Bv,sm

4 , Υ
}
,
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with Υ = 1
8JsM

(
JsMBv,sm +

(
J2

sMB2
v,sm + 8JsMJ2

smKsm

)1/2
)

4. µ3m > max {0, µ33 , µ34 }, µ3M < min
{
µ−

33, µ
−
34

}
5. µ2m > max

{
0,−a−1

31 a30,−a−1
41 a40

}
with µ33 , µ34 , µ−

33, µ
−
34, a30, a31, a40, a41 given in Appendix E.

Proof: See Appendix E.

The conditions listed in Theorem 4.5 clearly imply the conditions in the above propo-
sition, therefore it can be ensured that Ry is positive definite and then Lemma 2.1
can be used.
For RV , given by (4.46), the condition (2.2) can be written as∥∥∥R−1/2

x RxyR−1/2
y

∥∥∥
2

< 1

On the other hand, notice that Rxy depends on the gains µ1 and µ3, but does not
depend on µ2, η0, λ0. Then, if the gains µ1, µ3 have been chosen according to Propo-
sition 4.9, it follows that Rxy is only determined by Px (4.35), which on its turn is
determined by Qx (4.40). By choosing Qx (4.40) and the minimum eigenvalue of the
gain µ2 such that det(Qx) � 1 and det(Ry) � 1, it then follows that the entries of

R
−1/2
x RxyR

−1/2
y are small. As a result

∥∥∥R−1/2
x RxyR

−1/2
y

∥∥∥
2

< 1 can be ensured, and

thus RV , given by (4.46), is positive definite. Moreover the minimum eigenvalue of
RV , i.e. r1, is proportional to the minimum eigenvalue of µ2, which implies that r1

can be chosen such that it dominates the other terms in (4.47). To emphasize the last
conclusion, notice that r0, r2, r3, r4 do not depend on the gain µ2.
Finally, notice that according to Section 4.3.4, Proposition 4.9, and the above para-
graph, it follows that if conditions in the Theorem 4.5 are fulfilled, then the function
V, given by (4.35), is a Lyapunov function with V̇ < 0 in an annulus around the origin,
denoted by βc. Therefore the closed loop errors are uniformly ultimately bounded in
this annulus βc. The annulus βc in which V̇ < 0 defines the convergence region, such
that in this region the terms r2 ‖ξN‖2 , r3 ‖ξN‖3 , and r4 ‖ξN‖4 are small and thus
dominated by r1 ‖ξN‖.
Note that the uniform ultimate boundedness of the synchronization errors is only
valid in the convergence region βc, and thus the result is of local nature. Nevertheless
r1 is proportional to the gain µ2, and none of the coefficients r0, r2, r3, r4 depend on
µ2. Therefore, by selection of µ2, the coefficient r1 can be increased, which results in
enlargement of the convergence region βc. Thus, the uniform ultimate boundedness
of the synchronization errors is semi-global.

The ultimate boundedness result is due to the absence of measurements of derivatives
of the master trajectory qm, specifically q

(4)
m through the coefficient r0(EM ) in (4.47),

therefore we have the following corollary.

Corollary 4.10 If set point regulation of the master robot is considered and the mas-
ter robot controller is able to achieved steady state in finite time, then q̇m(t) = 0,
q̈m(t) = 0, q

(3)
m (t) = 0, and q

(4)
m (t) = 0 for t ∈ (t2,∞), with t2 ≥ t0 the convergence
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time of the master robot trajectories. If additionally the conditions in Theorem 4.5
are satisfied, then the control law (4.14), and the observers (4.18), (4.20), and (4.21)
yield local exponential convergence of the synchronization closed loop errors.

Proof: If q
(4)
m (t) = 0 for t ∈ (t2,∞), t2 ≥ t0, then the upperbound for q

(4)
m is zero for

t ∈ (t2,∞), t2 ≥ t0, and thus from Assumption 4.3 it follows that

EM = sup
t≥t2

∥∥∥q(4)
m

∥∥∥ = 0

which implies that r0(EM ) = 0 in (4.47). Therefore, if conditions in Theorem 4.5 are
satisfied, then for t ≥ t2 (4.47) reduces to

V̇ ≤ ‖ξN‖2
(
−r1 + r2 ‖ξN‖ + r3 ‖ξN‖2 + r4 ‖ξN‖3

)
(4.49)

with r1, r2, r3, r4 > 0, and V̇ ≤ 0 in the convergence region βc. As a consequence,
there exist a positive scalar κ, such that V̇ has an upperbound given by

V̇ ≤ −κ ‖ξN‖2 for all t ≥ t2

From the last equation and (4.38), we conclude that there exist some constants m∗, ρ >
0, such that

‖ξN (t)‖2 ≤ m∗e−ρt ‖ξN (t2)‖2 for all t ≥ t2

and thus by the definition of ξN (t) given by (4.44), it follows that the close loop errors
are semi-globally exponentially stable with convergence region βc.

Remark 4.11 The proposed synchronization controller (4.14, 4.17) is designed to
guarantee synchronization between two robots. Nevertheless it can be used as a tracking
controller by taking the desired trajectory qd(t) as the master robot trajectory qm(t).
In case of tracking the desired trajectory qd(t) and its derivatives are known, such that
q
(4)
m = q

(4)
d can be included through the control (4.17). In such case the closed loop

error (4.26) does not depend on q
(4)
m = q

(4)
d , and the stability analysis would result

in V̇ given by (4.49). Therefore, for tracking of a known desired reference qd(t) the
proposed synchronization controller (4.14, 4.17) with v̂(t) (4.17) modified as

v̂(t) = q
(4)
d (t) − K3ẇ2 − K2ẇ1 − K1

.

ê −K0ê

yields semi-global exponential convergence of the closed loop errors.

4.4 Gain tuning procedure

The gain tuning procedure can be summarized as follows

1. Choose the gains ki and γj , i = 0, 1, 2, 3, j = 1, 2, 3, 4 such that λ(s) in (4.36)
is Hurwitz.

2. Determine the bounds of the physical parameters Ms(qs), Cs(qs, q̇s), gs(qs), Bv,s

and their partial derivatives with respect to qs.

3. Determine the bounds on the master trajectories q̇m, q̈m, q
(3)
m , q

(4)
m .
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4. Choose λ0 > 0, µ1M > 0, µ4M > 0 and a maximum bound for the maximum
eigenvalue of µ2, i.e. µ2M .

5. Choose µ1, such that µ1m > max{0, 2M−1
sm (λ0 − CMVM ), (2λ0Msm)−1

× (4λ2
0 − MsmKsm − 4CMVMλ0 − 2CMVMMsmµ1M + MsmMsMµ2M

)}
6. Choose η0, such that

0 < η0 < min{Bv,sm

4 , 1
8JsM

(
JsMBv,sm +

(
J2

sMB2
v,sm + 8JsMJ2

smKsm

)1/2
)
}

7. Select µ3, such that µ3m > max {0, µ33 , µ34 }, µ3M < min
{
µ−

33, µ
−
34

}
, with

µ33 , µ34 , µ−
33, µ

−
34 as in Appendix E.

8. µ4m > max
{
0, J−1

sm

(
4η2

0 − JsmKsm − 2η0Bv,sM + Jsmµ4M

)}
9. Choose Qx a symmetric positive definite block diagonal matrix, with n×n block

entries, such that det(Qx) � 1.

10. Determine Px such that PxA + AT Px = −Qx

11. Choose µ2, such that µ2m > max
{
0,−a−1

31 a30,−a−1
41 a40

}
, with a30, a31, a40,

and a41 as in Appendix E, and µ2m large enough to ensure that∥∥∥R−1/2
x RxyR

−1/2
y

∥∥∥
2

< 1.

4.5 Simulation study

The slave and master robot considered in the simulation consist of one rigid link with
a flexible joint, rotating in a vertical plane. The dynamic model is given by

Miq̈i + Ki(qi − θi) +
1
2
migli sin(qi) = 0

Jiθ̈i + Ki(θi − qi) + Bv,iθ̇i = τi

the subindex i = m, s denote the master and slave robot respectively.
The parameters of the master and slave robot are listed in Table 4.1.

Mi

[
Kg · m2

]
mi [Kg · m] Ki

[
Kg · m2/s2

]
master robot 0.5 1.4 75
slave robot 0.4 1.0 100

Bv,i

[
Kg · m2/s

]
Ji

[
Kg · m2

]
li [m]

master robot 2 0.04 1.0
slave robot 5 0.02 1.0

Table 4.1: Master and slave robot parameters

The master robot is driven by the nominal control law given by (4.6) and (4.12), and
the gains on (4.12) are chosen as k0m = 1, k1m = 3, k2m = 6, k3m = 3. The desired
link master trajectory is

qmd(t) = 1 + 0.5 sin(t) [rad].

The scalar gains, involved in the slave synchronization controller (4.17), and the
observers (4.18), (4.20), and (4.21) are chosen to be k0 = 65, k1 = 40, k2 = 10,
k3 = 4, γ1 = 40, γ2 = 700, γ3 = 4000, γ4 = 1000, µ1 = 1, µ2 = 5, µ3 = 1, µ4 = 5.
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The initial conditions on the master robot, slave robot, and the observers given by
(4.18), (4.20), and (4.21) are chosen as in Table 4.2.

qi [rad] q̇i [rad/s] θi [rad] θ̇i [rad/s]
master robot 1.0 0 1.1 0
slave robot 0.5 0 0.51 0

ê [rad] w1 [rad/s] w2

[
rad/s2

]
w3

[
rad/s3

]
slave robot -0.1 0 0 0

q̂s [rad] ̂̇qs [rad/s] θ̂s [rad] ̂̇
θs [rad/s]

slave robot 0.4 0 0 0

Table 4.2: Initial conditions in slave and master robot.

Figure 4.3(left) shows the master and slave robot position qm and qs. The position
synchronization error e is shown in Figure 4.3(right). The estimation errors of the
slave link and rotor position (observer 4.20 and 4.21) are presented in Figures 4.4.
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As it is shown in Figure 4.3, the synchronization error between the master and slave
link position is stable and bounded after the transient period has finished. The same
is concluded for the estimation errors in Figures 4.4.
In agreement with the stability analysis, the simulations have shown that the final
bound of the errors depends on the gains µ2 and K0. Meanwhile the transient behavior
is mainly determined by µ1, µ3 and the gain K1. This is due to the fact the K1 defines
the poles of the linear part Ax in (4.26), and µ1, µ3 weigh the effect of the estimation
errors through the term Φ in (4.26). Therefore if µ1, µ3 are large, as well as the
estimation errors, then the term Φ has a large influence in the synchronization error
dynamics, and this large influence lasts until the estimation errors reach the vicinity
of zero.
The simulation study shows that in order to minimize the peaks during the transient
period, it is important to tune the gains in v̂(t), given by (4.17), such that the polyno-
mial (4.36) corresponds to an overdamped system. At the same time the gains µ1, µ3

should be set small to minimize the influence (through the term Φ) of the estimation
errors.

4.6 Concluding remarks and discussion

• The proposed synchronizing controller yields practical link position and velocity
synchronization in the joint space. Position and velocity synchronization in the
Cartesian space is obtained only if the length of the links of the slave robot are
equal to the corresponding links in the master robot.

• Notice that the synchronization controller for flexible joint robots, given by
(4.14), (4.17), and the observers (4.20) and (4.21), only requires measurements
of the master robot link position qm, not of the rotor position θm. Therefore
the master robot may or may not have flexible joints.

• Even without knowledge of the bounds considered in (4.31 - 4.34), the syn-
chronization closed loop system can be made uniformly ultimately bounded, by
selecting the control gains large enough. However, the value of the gains must
not be so large such that the condition (4.33) is violated.

• The controller and observers (4.14), (4.20) and (4.21) are model based, nev-
ertheless the stability analysis allows a straightforward robustness analysis for
parametric uncertainties. At the same time adaptive versions of the proposed
synchronization controller can be obtained by considering linear parametric rep-
resentation of the dynamic model (4.1, 4.2).

• The proposed synchronization controller, linearization feedback (4.14) plus the
observers (4.20) and (4.21), provides a systematic way of proving stability and
boundedness of the synchronization closed loop system. This is a drawback of
some other schemes for estimating velocities, such as numerical differentiation
or low pass filters. For those techniques, in general, there do not exist for-
mal stability proofs or a methodology to guarantee stability of the closed loop
system.

• Static friction phenomena can be treated in a similar way as for synchronization
of rigid joint robots, see Section 3.5.



Chapter 5

Mutual synchronization of
rigid joint robots

5.1 Introduction

This chapter addresses the problem of mutual synchronization of rigid joint robots,
assuming only angular position measurements of the robots. Results of this chapter
are reported in the article (Rodriguez-Angeles and Nijmeijer 2002a).
The general setup is as follows. Consider a multi-robot system formed by p (p ≥ 2)
rigid joint robots together with a common desired trajectory for all of them, denoted
by qd, q̇d. Then, the mutual synchronization control problem can be formulated to
design interconnections and controllers τi(·) for all the robots in the system, such that
the angular positions and velocities qi, q̇i ∈ �n of the i-th robot in the system are
synchronized with respect to the common desired trajectory qd, q̇d and to the angular
positions of the other robots qj , q̇j ∈ �n , (j = 1, . . . , p, j �= i).
It is assumed that the dynamic model of each robot is known and free of uncertainties
and modelling errors. The major constraint to design the synchronization controller
is that only the angular positions of all the robots are measured. Partial knowledge
of the reference signals and the working (feedback) signals – only positions measure-
ments of all the robots are assumed – demands the reconstruction of the missing
required signals. This problem is solved by using nonlinear model-based observers.
The estimated variables (velocities and accelerations) are used in a feedback loop,
such that the overall mutual synchronization controller, i.e. feedback controller plus
the observers, guarantees mutual synchronization of the multi-robot system.
Figure 5.1 shows a schematic representation of the mutual synchronization problem for
the rigid robot case. Note that in this problem the angular positions are transmitted
from and to all the robots in the system.
The cases of rigid joint robots with and without friction effects are addressed in this
chapter. If friction effects are ideally compensated, then the robots can be considered
as frictionless and can be modelled as (see Section 2.2.1)

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = 1, . . . , p (5.1)
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Figure 5.1: Mutual synchronization of rigid joint robots.

while, when friction forces fi(q̇i) are considered the model changes to

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) + fi(q̇i) = τi (5.2)

in this chapter the particular friction model fi(q̇i) introduced in Section 2.2.4 is con-
sidered

fi(q̇i) = Bv,iq̇i + Bf1,i

(
1 − 2

1 + e2w1,iq̇i

)
+ Bf2,i

(
1 − 2

1 + e2w2,iq̇i

)
(5.3)

According to the statement of the mutual synchronization problem, mutual syn-
chronization occurs when the angular position and velocity of all the robots qi, q̇i,
i = 1, . . . , p, coincide at any instant of time, or at least asymptotically, and at the
same time coincide with the common desired trajectory qd, q̇d. Then one can introduce
synchronization indices as

Ji(qi(t), q̇i(t)) =
[

qi(t)T q̇i(t)T
]

with the corresponding set of functionals

fsync(qi, q̇i, qj , q̇j)i,j = ‖Ji(qi, q̇i) − Jj(qj , q̇j)‖ i, j = 1, . . . , p, j �= i

fsync(qi, q̇i, qd, q̇d)i,i = ‖Ji(qi, q̇i) − Jd(qd, q̇d)‖ i = 1, . . . , p, (5.4)

The chapter is organized as follows. A synchronization controller for frictionless
robots, assuming all measurements available is presented in Section 5.2. Section
5.3 presents a modified synchronization controller formed by feedback controllers and
nonlinear observers. The stability analysis of the synchronization closed loop system
is given in Section 5.3.3. A gain tuning procedure for the observers and feedback
controller gains is given in Section 5.4. Section 5.5 describes a friction compensation
scheme of the particular friction phenomena modelled by (5.2, 5.3). A simulation and
experimental study in a one degree of freedom system is presented in Section 5.6.
The chapter closes with some concluding remarks and discussion about the proposed
synchronization controller, Section 5.7.
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5.2 Synchronization controller based on state feed-
back

If the full state of all the robots in the multi-composed system is available, then one
can propose a mutual synchronization controller as follows.
Let the controller τi for the i-th robot be given by

τi = Mi(qi)q̈ri + Ci(qi, q̇i)q̇ri + gi(qi) − Kd,iṡi − Kp,isi i = 1, . . . , p (5.5)

where Mi(qi), Ci(qi, q̇i), gi(qi) are defined as in (5.1), Kp,i, Kd,i ∈ �n×n are posi-
tive definite gain matrices, ṡi is the synchronization error at velocity level, si is the
synchronization error at position level.
The synchronization errors ṡi, si ∈ �n are defined as

si := qi − qri, ṡi := q̇i − q̇ri (5.6)

with qri, q̇ri the reference signals.
In order to generate interactions between the robots and to guarantee the synchronous
behavior, define the reference signals as

qri = qd −
p∑

j=1,j �=i

Kcp i,j(qi − qj) (5.7)

q̇ri = q̇d −
p∑

j=1,j �=i

Kcv i,j(q̇i − q̇j), q̈ri = q̈d −
p∑

j=1,j �=i

Kca i,j(q̈i − q̈j)

where Kcp i,j , Kcv i,j , Kca i,j ∈ �n×n , i, j = 1, . . . , p, are positive semidefinite di-
agonal matrices that define the interactions – at position, velocity and acceleration
levels – between the robots in the system.
Note that the reference signals (5.7) are function of the desired trajectory qd and
coupling errors (partial synchronization errors). Thus (5.6) and (5.7) illustrate a trade
off in the reference signals. On the one hand each robot will be enforced to follow
the desired common trajectory qd(t). On the other hand the robots should mutually
synchronize. The second term in the right hand side of qri, q̇ri, and q̈ri represents
the “feedback” of the relative synchronization errors between the i-th robot and the
other robots in the system. Under appropriate conditions in the controller gains, the
reference signals (5.7) give rise to a synchronous behavior between all the robots in the
system. The gains Kcp i,j , Kcv i,j , Kca i,j allow to weigh the synchronization errors
between the robots and the desired common trajectory. Therefore, these errors can be
penalized; as a result priority to synchronicity between the robots or with respect to
the common desired trajectory can be assigned. This is particularly important during
transients when large errors can cause instability and/or compromise the synchronous
behavior of the complete multi-robot system.

Assumption 5.1 For simplicity it is assumed that for all i, j = 1, . . . , p the coupling
gains Kcp i,j , Kcv i,j , Kca i,j satisfy

Kcp i,j = Kcv i,j = Kca i,j = Ki,j
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Define the partial synchronization errors between the i-th and the j-th robots in the
multi-robot system by

ei,j = qi − qj , ėi,j = q̇i − q̇j , for all i, j = 1, . . . , p, i �= j (5.8)

and for j = i as
ei,i = qi − qd, ėi,i = q̇i − q̇d (5.9)

Then the synchronization errors ṡi, si ∈ �
n defined by (5.6) can be written as

si = ei,i +
p∑

j=1,j �=i

Ki,jei,j , ṡi = ėi,i +
p∑

j=1,j �=i

Ki,j ėi,j (5.10)

note that si, ṡi are linear combinations of the partial synchronization errors between
the robots in the multi-composed system.

Remark 5.2 The norm of the partial synchronization errors (5.8, 5.9) correspond
to the synchronization functionals (5.4).

5.2.1 Synchronization closed loop error dynamics

Substitution of the controller (5.5) and the reference signals (5.7) in the robot dy-
namics (5.1) yields the synchronization closed loop systems (for i = 1, . . . , p)

Mi(qi)q̈i + Ci(qi, q̇i)q̇i = Mi(qi)

q̈d −
p∑

j=1,j �=i

Ki,j(q̈i − q̈j)


+Ci(qi, q̇i)

q̇d −
p∑

j=1,j �=i

Ki,j(q̇i − q̇j)

− Kd,iṡi − Kp,isi (5.11)

It is obvious that the variable q̈i generates an algebraic loop, because it appears in
both sides of the equality, and thus some problems about the implementation of the
controller (5.5) can arise. This algebraic loop will be discussed later, and for the
moment we will focus on the stability of the closed loop system.
From the definition of the synchronization errors si, ṡi, given by (5.6), it follows that
(5.11) can be written as

Mi(qi)s̈i = −Ci(qi, q̇i)ṡi − Kd,iṡi − Kp,isi i = 1, . . . , p (5.12)

Notice that (5.12) implies that the synchronization error dynamics is decoupled for
every i = 1, . . . , p. In fact all the couplings between the robots are modelled by
si, ṡi, s̈i, such that in these variables the synchronization error dynamics for each
robot in the system are decoupled.

5.2.2 Stability analysis

The stability properties of the synchronization error dynamics (5.12) are summarized
in the following theorem.
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Theorem 5.3 Consider the closed loop system formed by the controller (5.5), the
reference signals (5.7) and the robot dynamics (5.1). Then the synchronization errors
si, ṡi are globally asymptotically stable if the control gains Kd,i, Kp,i, i = 1, . . . , p are
positive definite.

Proof: Define the vector s =
[

s1 · · · sp

]
and take as Lyapunov function

V (s, ṡ) =
p∑

i=1

{
1
2
ṡT

i Mi(qi)ṡi +
1
2
sT

i Kp,isi

}
(5.13)

It is obvious that V (s, ṡ) is positive definite for all Kp,i > 0, si, ṡi, and V (s, ṡ) = 0 if
and only if si = 0, ṡi = 0.
The time derivative of V (s, ṡ) is given by

V̇ (s, ṡ) =
p∑

i=1

{
ṡT

i Mi(qi)s̈i +
1
2
ṡT

i Ṁi(qi)ṡi + ṡT
i Kp,isi

}
Along the closed loop error dynamics (5.12) it follows that

V̇ (s, ṡ) =
p∑

i=1

{
−ṡT

i Kd,iṡi + ṡT
i

(
1
2
Ṁi(qi) − Ci(qi, q̇i)

)
ṡi

}

By anti-symmetry of the matrix 1
2Ṁi(qi) − Ci(qi, q̇i) this reduces to

V̇ (s, ṡ) = −
p∑

i=1

ṡT
i Kd,iṡi (5.14)

Therefore V̇ (s, ṡ) is negative semi-definite for all Kd,i > 0; thus the synchronization
errors si, ṡi are stable, but asymptotically stability cannot be concluded yet. To prove
asymptotic stability Barbalat’s lemma is used, see Lemma 2.20.

• V > 0 and V̇ ≤ 0 imply that V approaches a finite limit, i.e.

lim
t→∞

∫ t

0

V̇ (s, ṡ)dt = lim
t→∞−

p∑
i=1

∫ t

0

ṡT
i Kd,iṡidt = a (5.15)

with a a constant.

• From (5.12) it follows that s̈i is bounded, so that

V̈ (s, ṡ) = −2
p∑

i=1

ṡT
i Kd,is̈i

is bounded. This proves that V̇ (s, ṡ) is uniformly continuous.

• Because of the uniform continuity of V̇ (s, ṡ), (5.15), and by Barbalat’s lemma
it follows that

lim
t→∞ V̇ (s, ṡ) = 0
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so, it can be concluded that ṡi(t) → 0 as t → ∞.

In the limit when t → ∞ it follows from (5.12) that

Mi(qi)s̈i = −Kp,isi

Assume that si(t) �= 0 as t → ∞, then it implies that s̈i(t) �= 0 as

t → ∞, so that ṡi(t) �= 0 as t → ∞ which yields a contradiction. Thus the
only invariant set that satisfies V̇ (s, ṡ) = 0 is the origin. Therefore it can be
concluded that si, ṡi are globally asymptotically stable.

It has been proven that the synchronization errors si, ṡi are globally asymptotically
stable. However, note that si, ṡi are linear combinations of the partial synchronization
errors. Therefore, it is still necessary to prove that si, ṡi being asymptotically stable
implies global asymptotic synchronization between the robots.
The following lemma is useful in proving asymptotic stability of the synchronization
errors.

Lemma 5.4 Consider the diagonally dominant matrix Mc(Ki,j) ∈ �(n·p)×(n·p) , given
by

Mc(Ki,j) =



(In +
p∑

j=1,j �=1

K1,j) −K1,2 · · · −K1,p

−K2,1 (In +
p∑

j=1,j �=2

K2,j) · · · −K2,p

...
. . .

−Kp,1 −Kp,2 · · · (In +
p∑

j=1,j �=p

Kp,j)


(5.16)

with Ki,j, i, j = 1, . . . , p the coupling matrices defined in the reference trajectories qri

in (5.7), thus Mc(Ki,j) can be considered as a coupling matrix between the robots in
the multi-composed system.
The matrix Mc(Ki,j) is nonsingular for all positive semidefinite diagonal matrices
Ki,j, i, j = 1, . . . , p. Moreover,

Mc(Ki,j)


q1

q2

...
qp

 =


qd

qd

...
qd

 ⇔


q1

q2

...
qp

 =


qd

qd

...
qd

 (5.17)

holds for all positive semidefinite diagonal matrices Ki,j .

Proof: By definition of the reference signals qri in (5.7) the coupling gains Ki,j ,
i, j = 1, . . . , p are diagonal positive semidefinite matrices, therefore, all their diagonal
entries are greater than or equal to zero. By using Gerschgorin’s theorem about
location of eigenvalues (Stewart and Sun 1990), it follows that all eigenvalues of the
matrix Mc(Ki,j) ∈ �(n·p)×(n·p) lie in the union of the n · p disks

Di,r : Di,r

1 +
p∑

j=1,j �=i

Ki,j,r,

p∑
j=1,j �=i

|−Ki,j,r|
 i = 1, . . . , p, r = 1, . . . , n
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where D(z, w) = {v ∈ � | |v − z| ≤ w}, such that z is the center of the disk, w is the
radius of the disk. The subindex r refers to the non-zero entry in the r-th row of the
matrices Ki,j ∈ �n×n , i.e. we have a disk for each row of the matrix Mc(Ki,j).
Because Ki,j ≥ 0, for all i, j = 1, . . . , p, it follows that all the diagonal entries of Ki,j

are nonnegative, so that for all i = 1, . . . , p, r = 1, . . . , n

1 +
p∑

j=1,j �=i

Ki,j,r >

p∑
j=1,j �=i

Ki,j,r

which implies that zero is not in the union of the disks Di,r, thus zero is not an
eigenvalue of the matrix Mc(Ki,j). Therefore, the matrix Mc(Ki,j) is nonsingular for
all diagonal positive semidefinite coupling matrices Ki,j , i, j = 1, . . . , p.
Since the matrix Mc(Ki,j) is non singular, it follows that for any y ∈ �n·p , there is
a unique x ∈ �n·p such that Mc(Ki,j)x = y is satisfied. Consider a vector x with all
entries equal to qd, then for each row of the product Mc(Ki,j)x it follows that1 +

p∑
j=1,j �=i

Ki,j,r −
p∑

j=1,j �=i

Ki,j,r

 qd = qd

Therefore the equality (5.17) holds for all diagonal positive semidefinite matrices Ki,j.

Theorem 5.5 Global asymptotic stability of the synchronization errors si, ṡi implies
global asymptotic synchronization of all the robots in the multi-composed synchroniza-
tion system, i.e. for all i, j = 1, . . . , p, we have that qi → qd, q̇i → q̇d as t → ∞, so
that qi → qj, q̇i → q̇j as t → ∞.

Proof: From (5.10) it follows that in the limit when t → ∞

 s1

...
sp

 =


e1,1 +

p∑
j=1,j �=1

K1,je1,j

...

ep,p +
p∑

j=1,j �=p

Kp,jep,j

 =

 0
...
0

 (5.18)

with r = 1
2p(p + 1) different partial synchronization errors ei,j , since by definition

ei,j = −ei,j .
From the definition of the partial synchronization errors (5.8), (5.9) it follows that
(5.18) implies that

Mc(Ki,j)


q1

q2

...
qp

 =


qd

qd

...
qd


with Mc(Ki,j) given by (5.16).
Therefore from Lemma 5.4 it follows that

Mc(Ki,j)


q1

q2

...
qp

 =


qd

qd

...
qd

 ⇔


q1

q2

...
qp

 =


qd

qd

...
qd

 (5.19)
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The equality (5.19) implies that for all i, j = 1, . . . , p, qi → qd, , so that qi → qj . In a
similar way it can be proved that q̇i → q̇d as t → ∞, so that q̇i → q̇j as t → ∞.

Remark 5.6 The matrix Mc(Ki,j) defined by (5.16) is nonsingular for all positive
semidefinite diagonal coupling matrices Ki,j, i, j = 1, . . . , p, i.e. including Ki,j = 0,
see Lemma 5.4. Therefore partial synchronization of the robots in the system can be
considered, i.e. some Ki,j = 0. Moreover, by definition of the coupling gains Ki,j

master slave synchronization can be achieved.

5.2.3 Algebraic loop

Substitution of the controller (5.5) and the reference trajectories (5.7) in the robot dy-
namics (5.1) yields an algebraic loop in the synchronization closed loop systems given
by (5.11). The question is how to implement the controller (5.5) and the reference
signals (5.7) if they depend on the acceleration q̈i(t).
By straightforward algebraic manipulation the synchronization closed loop dynamics
(5.11) can be rewritten as

Mc(Ki,j)


q̈1

q̈2

...
q̈p

 =


q̈d − M1(q1)−1 (C1(q1, q̇1)ṡ1 + Kd,1ṡ1 + Kp,1s1)
q̈d − M2(q2)−1 (C2(q2, q̇2)ṡ2 + Kd,2ṡ2 + Kp,2s2)

...
q̈d − Mp(qp)−1 (Cp(qp, q̇p)ṡp + Kd,pṡp + Kp,psp)


with the matrix Mc(Ki,j) given by (5.16).
From Lemma 5.4 it follows that the matrix Mc(Ki,j) is always invertible for all positive
semidefinite diagonal matrices Ki,j for all i, j = 1, . . . , p, and therefore

q̈1

q̈2

...
q̈p

 = Mc(Ki,j)−1


q̈d − M1(q1)−1 (C1(q1, q̇1)ṡ1 + Kd,1ṡ1 + Kp,1s1)
q̈d − M2(q2)−1 (C2(q2, q̇2)ṡ2 + Kd,2ṡ2 + Kp,2s2)

...
q̈d − Mp(qp)−1 (Cp(qp, q̇p)ṡp + Kd,pṡp + Kp,psi)

 (5.20)

Equation (5.20) represents the synchronization closed loop dynamics (5.11) without
any algebraic loop. Therefore (5.20) defines the manifold in which the synchroniza-
tion closed loop dynamics lie if the controller (5.5) is implemented and there are no
uncertainties in the dynamic model (5.1). The synchronization closed loop dynamics
written as (5.20) fully represents the closed loop system formed by the robot dynamics
(5.1), the controller (5.5) and the reference signals (5.7).

5.3 Synchronization controller based on estimated
variables

As mentioned in the introduction, it is assumed that only angular joint positions
qi, i = 1, . . . , p, are measured. Therefore, the synchronization controller (5.5) cannot
be implemented. As an option the controller τi for the i-th robot, given by (5.5),
can be modified to only depend on positions measurements qi and qj , and estimated
values for the velocities q̇i and q̇j and accelerations q̈i, q̈j , i, j = 1, . . . , p, j �= i.
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Let the controller τi for the i-th robot be given by

τi = Mi(qi)̂̈qri + Ci(qi, ̂̇qi)̂̇qri + gi(qi) − Kd,i
̂̇si − Kp,isi i = 1, . . . , p (5.21)

where Mi(qi), Ci(qi, ̂̇qi), gi(qi) are defined as in (5.1), and Kp,i, Kd,i ∈ �n×n are
positive definite gain matrices. Because of the assumption that only angular joint
positions qi, i = 1, . . . , p, are measured, the reference signals q̇ri, q̈ri, defined by (5.7),
and thus the velocity synchronization error ṡi, given by (5.6), cannot be implemented
directly. In (5.21) ̂̇si denotes the estimate of the velocity synchronization error ṡi,
given by (5.6). ̂̇qi, ̂̈qri and ̂̇qri are estimates of the angular velocity q̇i and the reference
signals q̇ri, q̈ri, (5.7).
The estimates ̂̇qri, ̂̈qri are given by

̂̇qri = q̇d −
p∑

j=1,j �=i

Kcv i,j(̂̇qi − ̂̇qj) (5.22)

̂̈qri = q̈d −
p∑

j=1,j �=i

Kca i,j(̂̈qi − ̂̈qj) (5.23)

where ̂̇qi, ̂̈qi ∈ �n represent estimates of q̇i, q̈i respectively. Then it follows that the
estimate for the synchronization error ṡi is given by

̂̇si = ̂̇qi − ̂̇qri

or in terms of estimates for the partial synchronization errors

̂̇si := ̂̇ei,i +
p∑

j=1,j �=i

Kcv i,j
̂̇ei,j (5.24)

with ̂̇ei,i, ̂̇ei,j given by

̂̇ei,j = ̂̇qi − ̂̇qj , for all i, j = 1, . . . , p, i �= ĵ̇ei,i = ̂̇qi − q̇d, for i = j (5.25)

For simplicity in the stability analysis, it is assumed that Assumption 5.1 is satisfied,
i.e. the positive semidefinite diagonal coupling matrices Kcp i,j , Kcv i,j , Kca i,j ∈
�n×n , i, j = 1, . . . , p, are such that Kcp i,j = Kcv i,j = Kca i,j = Ki,j .

5.3.1 An observer for the joint variables

An observer for estimating the joint variables qi, q̇i in the dynamic model of the i-th
robot given by (5.1), is given by

d

dt
q̂i = ̂̇qi + µi,1q̃i (5.26)

d

dt
̂̇qi = −Mi(qi)−1

[
Ci(qi, ̂̇qi)̂̇qi + gi(qi) − τi

]
+ µi,2q̃i
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where q̂i, ̂̇qi,
d
dt
̂̇qi represent estimates for qi, q̇i, q̈i, and the estimation position and

velocity errors q̃i and ˜̇qi, ˜̈qi are defined by

q̃i := qi − q̂i
˜̇qi := q̇i − ̂̇qi, ˜̈qi =

d

dt

(
q̇i − ̂̇qi

)
=

d

dt
˜̇qi (5.27)

and µi,1, µi,2 ∈ �
n×n are positive definite gain matrices.

The estimated reference signals ̂̈qri (5.23) depend on estimates of the accelerations ̂̈qi,
i = 1, . . . , p. Therefore when τi, given by (5.21), is substituted in (5.26), it generates
an algebraic loop between the set of p observers, in a similar way as in Section 5.2.1.
Nevertheless the algebraic loop in the observers (5.26) can be solved by pure algebraic
manipulation, such that the observers (5.26), the control τi (5.21) and the reference
signals ̂̇qri, ̂̈qri (5.22, 5.23) can all be implemented.

Lemma 5.7 The observers defined by (5.26) can be written in the form (for i =
1, . . . , p)

d

dt
q̂i = ̂̇qi + µi,1q̃i

d

dt
̂̇qi = f(q̈d, qj , ̂̇qj , q̃j , ej, ̂̇ej) j = 1, . . . , p (5.28)

with f(·) a known nonlinear function that is Lipschitz in q̈d, qj, ̂̇qj, q̃j, ej, ̂̇ej.

Proof. After substitution of τi (5.21) in the observer defined by (5.26), it follows that
the second equation of (5.26) can be written as (for i = 1, . . . , p)

(I +
p∑

j=1,j �=i

ki,j)
d

dt
̂̇qi −

p∑
j=1,j �=i

ki,j
d

dt
̂̇qj = q̈d + µi,2q̃i +

−Mi(qi)−1
[
Ci(qi, ̂̇qi)̂̇si + Kd,i

̂̇si + Kp,isi

]
(5.29)

such that a system of n · p equations with n · p unknowns is obtained.
Define the vectors x, y ∈ �n·p as

x =
[

d
dt
̂̇qT

1
d
dt
̂̇qT

2 · · · d
dt
̂̇qT

p

]T

y =
[

yT
1 yT

2 · · · yT
p

]T
where

yi = q̈d + µi,2q̃i − Mi(qi)−1
[
Ci(qi, ̂̇qi)̂̇si + Kd,i

̂̇si + Kp,isi

]
then the system of differential equations defined by (5.29) can be written as

Mc(Ki,j)x = y

with the matrix Mc(Ki,j) given by (5.16).
Since the matrix Mc(Ki,j) is non singular, see Lemma 5.4, then the system of coupled
differential equations (5.29), admits a unique solution, given by

x = Mc(Ki,j)−1y
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Note that the above solution corresponds to the algebraic system of differential equa-
tions (5.29), but not to the differential equations, since by definition xi = d

dt
̂̇qT

i for
i = 1, . . . , p.

The observers defined by (5.28) are an equivalent representation of the observers
defined by (5.26), but in (5.28) the algebraic loop has been avoided by decoupling the
acceleration dependency in (5.26). For implementation purposes the observer (5.28)
is more convenient than (5.26), however (5.26) allows a more straightforward stability
analysis than (5.28).
Figure 5.2 shows a schematic representation of the proposed synchronization controller
for rigid joint robots (p = 2).
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Figure 5.2: Mutual synchronization of rigid joint robots.

5.3.2 Synchronization closed loop error dynamics

Throughout the formulation of the error dynamics it is assumed that Assumption
5.1 is satisfied. For simplicity in the closed loop error formulation and the stability
analysis the following assumption is introduced.

Assumption 5.8 The gains in the controller (5.21) and the observers (5.26) are a
positive multiple of the unit matrix, i.e of the form K = kI with k a positive scalar
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and I the identity matrix of appropriate dimensions. It is also assumed that the gain
matrices at velocity and position level are equal for all the observers, i.e.

µi,1 = µ1I, µi,2 = µ2I, for all i = 1, . . . , p

Lemma 5.9 The synchronization error dynamics of the closed loop formed by the p
robots, modelled by (5.1), the synchronization controllers (5.21), and the observers
(5.26), is given by

..

q̃i= Mi(qi)−1Ci(qi,
.

q̃i +µ1q̃i)
( .

q̃i +µ1q̃i − 2q̇d − 2ėi,i

)
− µ1

.

q̃i −µ2q̃ (5.30)

Mi(qi)s̈i = −Ci(qi, ėi,i + q̇d)ṡi − Kd,iṡi − Kp,isi

−Ci

(
qi, ėi,i + q̇d−

.

q̃i −µ1q̃i

) p∑
j=1,j �=i

Ki,j

( .

q̃i +µ1q̃i−
.

q̃j −µ1q̃j

)

−Ci(qi,
.

q̃i +µ1q̃i)

q̇d −
p∑

j=1,j �=i

Ki,j ėi,j


+Kd,i

 .

q̃i +µ1q̃i +
p∑

j=1,j �=i

Ki,j

( .

q̃i +µ1q̃i−
.

q̃j −µ1q̃j

)
+Mi(qi)

p∑
j=1,j �=i

Ki,j(Mi(qi)−1Ci(qi,
.

q̃i +µ1q̃i)
( .

q̃i +µ1q̃i − 2q̇d − 2ėi,i

)
−µ1

.

q̃i −µ2q̃i + µ1

.

q̃j +µ2q̃j

−Mj(qj)−1Cj(qj ,
.

q̃j +µ1q̃j)
( .

q̃j +µ1q̃j − 2q̇d − 2ėj,j

)
) (5.31)

Proof: The proof is given in Appendix F.

Note that the second equation of the coupled synchronization error dynamics (5.31)
corresponds to the synchronization error (5.12) with a disturbance that vanishes when
q̃i = 0,

.

q̃i= 0. Therefore, it can be expected that if the estimation errors q̃i,
.

q̃i tend
asymptotically to zero, then the origin of the synchronization errors si, ṡi is still an
equilibrium point for (5.31). Thus, we can conjecture that must exist conditions on
the observer gains, control gains and coupling gains that ensure stability (asymptotic
stability) of the coupled synchronization errors.

5.3.3 Stability analysis

The following assumption is required to prove stability of the synchronization closed
loop system.

Assumption 5.10 The common desired trajectory at velocity level q̇d(t) is bounded,
i.e. there exist a positive scalar VM such that

sup
t

‖q̇d(t)‖ = VM < ∞ (5.32)
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Based on the Assumptions 5.1, 5.8, and 5.10, the main result of this chapter is for-
mulated as follows.

Theorem 5.11 Consider a multi-robot system formed by p rigid joint robots with
dynamic models given by (5.1). Each robot in closed loop with the controller (5.21),
the reference signals (5.22, 5.23) and the observers (5.26). Introduce a positive scalar
parameter η0, which is defined and used throughout the proof.
Then the p robots in the multi-composed system are semiglobally exponentially syn-
chronized, i.e. for i, j = 1, . . . , p, qi → qj, q̇i → q̇j exponentially in a region that can
be made arbitrarily large, if the scalar in the gains Kp,i Kd,i, µ1, µ2 are chosen such
that for i = 1, . . . , p

Kp,i > 0, Kd,i > 0, η0 > 0 (5.33)

µ1 > max
{
µ∗

1,1, . . . , µ
∗
1,p

}
(5.34)

µ2 > max

{
1

M2
i,m

(
η2
0 − η0µ1 − 2VMCi,M

(
µ1 + η0M

−1
i,m

))
, µ∗

2,1, . . . , µ
∗
2,p

}
(5.35)

where µ∗
i,1, µ

∗
i,2 are scalars given in the gain tuning procedure in Section 5.4, and �m,

�M stand for the minimum and maximum eigenvalue of the matrix �.

Proof: A sketch of the proof is presented in this section. First the Lyapunov function
and conditions for positive definitiveness are presented, then the derivative of the
Lyapunov function along the closed loop error dynamics (5.30, 5.31) is bounded and
sufficient conditions for negative definiteness are formulated. The details behind the
proof can be found in Appendix G.

Lyapunov function

Consider the coupled synchronization error dynamics given by (5.30) and (5.31). De-
fine the vectors s, q̃ as

s =
[

s1 · · · sp

]
, q̃ =

[
q̃1 · · · q̃p

]
(5.36)

and take as a Lyapunov function

V (ṡ,
.

q̃, s, q̃) =
p∑

i=1

Vi(ṡi,
.

q̃i, si, q̃i) (5.37)

where
Vi(ṡi,

.

q̃i, si, q̃i) = Vi,1(ṡi, si) + Vi,2(
.

q̃i, q̃i) i = 1, . . . , p (5.38)

Vi,1(ṡi, si) =
1
2
ṡT

i Mi(qi)ṡi +
1
2
sT

i Kp,isi (5.39)

Vi,2(
.

q̃i, q̃i) =
1
2

[
.

q̃
T

i q̃T
i

] [
Mi(qi) ηi(q̃i)In

ηi(q̃i)In µ2 + βiIn

] [ .

q̃i

q̃i

]
(5.40)

with ηi(q̃i) defined as

ηi(q̃i) =
η0

1 + ‖q̃i‖ (5.41)
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βi is given by

βi = η0µ1 + 2VMCi,M

(
µ1 + η0M

−1
i,m

)− µ2 (1 − Mi,m) (5.42)

where Assumptions 5.8, 5.10 have been used. The scalars Ci,M , Mi,m are the bounds
of the Coriolis term and the inertia matrix, ηo is a positive scalar to be determined.
Note that ηi(q̃i) is bounded by

0 < ηi(q̃i) < η0

Moreover, it follows that

η̇i

.

q̃
T

i q̃i = −ηi

(
q̃T
i

.

q̃i

1 + ‖q̃i‖

)
.

q̃
T

i q̃i ≤ ηi

∥∥∥ .

q̃i

∥∥∥2

so that
η̇i

.

q̃
T

i q̃i ≤ η0

∥∥∥ .

q̃i

∥∥∥2

Notice that Vi,1(ṡi, si) in (5.38) corresponds to the Lyapunov function (5.13), which
has been considered for the case of synchronization based on full state measurements.
Vi,1(ṡi, si) is a sum of quadratic positive terms, therefore it is positive definite. On
the other hand a sufficient condition for positive definiteness of Vi,2(

.

q̃i, q̃i) is given by

µ2 >
1

M2
i,m

(
η2
0 − (η0 + 2VMCi,M )µ1 − 2VMCi,Mη0M

−1
i,m

)
(5.43)

with Mi,m the minimum eigenvalue of the matrix Mi(qi).
Define the coupled synchronization error sc as

sc =
[

ṡ
.

q̃ s q̃
]

(5.44)

then the Lyapunov function (5.37) satisfies

Pm ‖sc(t)‖2 ≤ V (sc(t)) ≤ PM ‖sc(t)‖2 (5.45)

for some positive scalar Pm, PM .

Time derivative of the Lyapunov function

Consider the vector q̃ defined by (5.36). Then along the error dynamics (5.30, 5.31)
the time derivative of the Lyapunov function (5.37) has an upperbound given by, (see
Appendix G for a detailed computation)

V̇i(ṡi,
.

q̃i, si, q̃i) ≤ −
[
‖ṡi‖

∥∥∥ .

q̃
∥∥∥ ‖q̃‖

]
Mvi

[
‖ṡi‖

∥∥∥ .

q̃
∥∥∥ ‖q̃‖

]T

+ ‖Φ3,i‖ (5.46)

with ‖Φ3,i‖ an upperbound of Φ3,i, which is given by

‖Φ3,i‖ =
(
2 ‖ṡi‖ +

∥∥∥ .

q̃
∥∥∥+ µ1 ‖q̃‖

)(∥∥∥ .

q̃
∥∥∥+ µ1 ‖q̃‖

)
×

×
Ci,M

(∥∥∥ .

q̃
∥∥∥+ η0M

−1
i,m ‖q̃‖

)
+ ‖ṡi‖

p∑
j=1,j �=i

Ki,j

(
Ci,M + Mi,mM−1

j,mCj,M

)
+Ci,M ‖ṡi‖

(∥∥∥ .

q̃
∥∥∥+ µ1 ‖q̃‖

)‖ṡi‖ + 2
(
‖ṡi‖ +

∥∥∥ .

q̃
∥∥∥+ µ1 ‖q̃‖

) p∑
j=1,j �=i

Ki,j

 (5.47)
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and the matrix Mvi given by

Mvi =

 Mvi,11 Mvi,12 µ1Mvi,12

Mvi,12 Mvi,22 0
µ1Mvi,12 0 Mvi,33

 (5.48)

Mvi,11 = Kdi (5.49)

Mvi,12 = −1
2

Kdi − VMCi,M + 2VM

p∑
j=1,j �=i

Ki,j

(
Mi,mM−1

j,mCj,M − Ci,M

) (5.50)

Mvi,22 = Mi,mµ1 − 2η0 − 1
2
Mi,pM + 2VMCi,M (5.51)

Mvi,33 = η0

(
µ2 + 2µ1VMCi,MM−1

i,M

)
(5.52)

Lemma 5.12 The matrix Mv,i, given by (5.48) is positive definite if

η0 > 0, Kdi > 0 (5.53)

µ∗
1,i > M−1

i,m

(
M2

vi,12

Mvi,11
+ 2η0 +

1
2
Mi,pM − 2VMCi,M

)
(5.54)

µ∗
2,i >

µ2
1M

2
vi,12Mvi,22

η0

(
Mvi,11Mvi,22 − M2

vi,12

) − 2µ1VMCi,MM−1
i,M (5.55)

Proof: Follows from Sylvester’s criterion about positive definiteness of a matrix based
on the principal minors, see (Johnson 1990).

In (5.54, 5.55) µ∗
1,i, µ∗

2,i, are equivalent to µ1, µ2, but the notation is used to emphasize
that for each matrix Mvi, i = 1, . . . , p, a different µ1, µ2 will be obtained, therefore a
sufficient condition for all the matrices Mvi, i = 1, . . . , p being positive definite is to
take µ1, µ2 as the maximum of µ∗

1,i, µ∗
2,i that are obtained for each Mvi, i = 1, . . . , p.

Consider the vector sc defined by (5.44), then V̇i(ṡi,
.

q̃i, si, q̃i) given by (5.46) results
in

V̇i(ṡi,
.

q̃i, si, q̃i) ≤ ‖sc‖2 (−Mvi,m + α ‖sc‖) (5.56)

where Mvi,m is the minimum eigenvalue of the matrix Mvi, i = 1, . . . , p, so that Mvi,m

is positive if the conditions (5.53, 5.54, and 5.55) are satisfied.
The coefficient α is determined by ‖Φ3,i‖ and is given by

α = Ci,M (1 + µ1)

1 + 2(2 + µ1)
p∑

j=1,j �=i

Ki,j

+ (3 + µ1)(1 + µ1) ×

×
Ci,M (1 + η0M

−1
i,m) +

p∑
j=1,j �=i

Ki,j

(
Mi,mM−1

j,mCj,M + Ci,M

) (5.57)

The minimum eigenvalue of Mvi, i.e. Mvi,m, is proportional to the gain µ2, while α
is independent of µ2. Therefore by increasing µ2 it can be ensured that

V̇i(ṡi,
.

q̃i, si, q̃i) ≤ ‖sc‖2 (−Mvi,m + α ‖sc‖) < 0 i = 1, . . . , p
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Thus the matrix V̇ (ṡ,
.

q̃, s, q̃), given by (G.1), is negative definite. Moreover, it follows
that there exist a positive scalar κ, such that V̇ has an upperbound given by

V̇ ≤ −κ ‖sc‖2 for all t ≥ 0

From the last equation and (5.45), we conclude that there exist some constants m∗, ρ >
0, such that

‖sc(t)‖2 ≤ m∗e−ρt ‖sc(0)‖2 for all t ≥ 0

and thus by the definition of sc given by (5.44), it follows that the synchronization
closed loop errors are semi-globally exponentially stable with convergence region βc

given by

βc =

{
sc | ‖sc‖ <

Mvi,m

α

√
Pm

PM

}
(5.58)

Since the synchronization error sc is exponentially stable, it follows that s, and si, for
i = 1, . . . , p, are exponentially stable too. The proof that the partial synchronization
errors ei,j , i, j = 1, . . . , p are exponentially stable, and thus the robots in the multi-
composed system are semi-globally exponentially synchronized, follows in the same
lines as in the proof of Theorem 5.5.

Remark 5.13 The stability analysis of the closed loop system formed by the p robots,
with dynamic model (5.1), and the controller (5.21) results in semi-global exponential
stability, see Theorem 5.11. While the closed loop formed by the p robots and the
controller (5.5) results in global asymptotic stability, see Theorem 5.3. Nonetheless,
exponential convergence of the closed loop formed by the p robots and the controller
(5.5) can be proved by considering the upper bound of the time derivative of the Lya-
punov function (5.13), then the proof follows as in Theorem 5.11.

5.4 Gain tuning procedure

The gain tuning procedure to ensure the stability results stated in Theorem 5.11 can
be summarized as follows

1. Determine the bounds of the physical parameters Mi(qi), Ci(qi, q̇i), Ṁi(qi).

2. Determine the bound of the common desired trajectory at velocity level q̇d, i.e.
VM .

3. Choose positive semidefinite coupling gains Ki,j for i, j = 1, . . . , p, j �= i.

4. Choose the scalars on the gains Kp,i, and Kd,i, for i = 1, . . . , p, and the auxiliary
scalar η0, to be positive.

5. For i = 1, . . . , p determine the value µ∗
1,i, that is given by (5.54), and take µ1 as

the maximum of all µ∗
1,i.

6. For i = 1, . . . , p determine the value µ∗
2,i, that is given by (5.55), and take µ2 as

the maximum of all µ∗
2,i and

1
M2

i,m

(
η2
0 − η0µ1 − 2VMCi,M

(
µ1 + η0M

−1
i,m

))
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5.5 Friction compensation

In a similar way as for external synchronization of rigid joint robots, see Section
3.5, friction phenomena can be considered in the case of mutual synchronization.
Considering the dynamic model of the robot manipulators with friction effects given
by (5.2), it follows that the feedback controller τi (5.21) can be modified as

τif = τi + fi(̂̇qi)

= Mi(qi)̂̈qri + Ci(qi, ̂̇qi)̂̇qri + gi(qi) − Kd,i
̂̇si − Kp,isi + fi(̂̇qi) (5.59)

with the friction compensation term fi(̂̇qi) given by

fi(̂̇qi) = Bv,i
̂̇qi + Bf1,i

(
1 − 2

1 + e2w1,i
�q̇i

)
+ Bf2,i

(
1 − 2

1 + e2w2,i
�q̇i

)
and ̂̇qi the estimated for the velocity of the i-th robot, that is obtained by the observer
(5.28).
The stability analysis of the closed loop system formed by the synchronization con-
troller (5.21), the observers (5.28 ), and the robots in the multi-composed systems,
follows in the same way as for frictionless rigid joint robots. As in Section 3.5, the
support of the stability analysis is the fact that the friction model (5.3) implies that∥∥∥fi(̂̇qi) − fi(q̇i)

∥∥∥ ≤ Bv,iM

∥∥∥˜̇qi

∥∥∥+ 2Bf1,iM + 2Bf2,iM (5.60)

with ˜̇qi the velocity estimation error, and Bv,iM , Bf1,iM , Bf2,iM the maximum eigen-
value of the coefficient matrices Bv,i, Bf1,i, Bf2,i.
Because the friction effects appear as an additive term in the robot dynamics (5.1)
and the feedback controller (5.59), it follows that the difference fi(̂̇qi)−fi(q̇i) appears
in the synchronization closed loop error. Then by considering the Lyapunov function
(5.37) it follows that the bound (5.60) appears in the bound of the derivative of the
Lyapunov function (G.4). Then following the same steps as in the frictionless robot
case, semi-global exponential stability of the closed loop synchronization error can be
concluded.

5.6 Simulation and experimental study

The proposed mutual synchronization controller for rigid joint robots τif , given by
(5.59), has been implemented on a one degree of freedom multi-robot system. The
robots correspond to the medium link of two identical transposer robots fabricated
by the Centre for Manufacturing Technology (CFT) Philips Laboratory. The exper-
imental setup, the dynamic model and, the estimated parameters for the robots are
given in Section 2.3. The common desired trajectory qd(t) for both robots, referred
to as robot 1 and 2, is a harmonic series given by (2.35).
The synchronization controllers τ1f , τ2f are implemented according to (5.59), with
τ1, τ2 as in (5.21). The friction compensation term fi(̂̇qi) is a function of the estimated
velocity ̂̇qi, that is obtained by the observer (5.26).
From the tuning gain procedure given in Section 5.4, it follows that for the coupling
gains K1,2 = K2,1 = 100, the scalar η0 = 1, and the gains Kd,1 = Kd,2 = 2, the
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mutual synchronization system is stable if the gains in the observers (5.26) satisfy
µ1 > 65, µ2 > 2120. After a series of experiments in order to decrease the partial
synchronization position errors ei,j , the gains in the controllers and observers were
set as listed in Table 5.1. The initial position of the links and the initial conditions
in the observers (5.28) were chosen as in Table 5.2.

Kp,i Kd,i µ1 µ2

Robot 1 2500 50 500 5000
Robot 2 2500 50 500 5000

Table 5.1: Control gains in robots 1 and 2.

qi(0) [rad] q̇i(0) [rad/s] q̂i(0) [rad] ̂̇qi(0) [rad/s]
Robot 1 2.26 0 2.13 0
Robot 2 2.00 0 1.98 0

Table 5.2: Initial conditions in robots 1 and 2.

First a comparative study between simulated and experimental results is presented.
The experimental results closely match the simulated results, which validates the
model of the system (2.33, 2.34) and the estimated physical parameters listed in Table
2.1. Therefore, the predicted stability and convergence properties of the proposed
synchronization controller (5.21 or 5.59) are shown by experimental results rather
than by numerical simulations.

Simulation and experimental results

The dynamic model (2.33, 2.34) of robot 1 and 2 were implemented in the standard
Simulink distribution for Matlab version 6.0 Release 12 to simulate the synchroniza-
tion closed loop system. The gains and initial conditions were set as in Tables 5.1
and 5.2. The frequency of the common desired trajectory qd(t), given by (2.35), was
set as ω = 0.4 Hz.
Figure 5.3 shows the robot position trajectories, simulated q1,s, q2,s and measured
q1, q2. The simulated and measured positions match very well after the transient
period has finished. The mismatch during the transient is due to large input torques
during the simulations, which exceed the maximum torque of the physical robots,
(τmax = 500 [Nm]), see Figures 5.4 and 5.5.
The simulated and measured input torques τ1,s, τ2,s and τ1, τ2 are presented in Figures
5.4 and 5.5. Although the controller (5.59) has been implemented in both robots,
the input controls τ1,s, τ2,s and τ1, τ2 in Figures 5.4 and 5.5 only correspond to the
synchronization controller (5.21), i.e. they do not include the friction compensation
term fi(̂̇qi) of the controller (5.59).
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Figure 5.3: Position trajectories: desired qd (solid), experimental qj (dashed), and
simulated qj,s (dotted), robot j = 1, 2.
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Figure 5.4: Input torques, simulated τ1,s (dashed) and measured τ1 (solid), robot 1.
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Figure 5.5: Input torques, simulated τ2,s (dashed) and measured τ2 (solid), robot 2.
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Since there is no bound on the input control during the simulations, τ1,s, τ2,s present
large overshoots during the transient. These overshoots are the reason of mismatch
between the simulated and measured data during the transient period. After the
transient has finished, the simulated and measured slave torques are very similar.

Comparison between synchronization and tracking controllers

The mutual synchronization controller (5.21) yields a synchronous behavior through
the coupling gains Ki,j . When the coupling gains are set to zero, i.e. Ki,j = 0 the
synchronization controller (5.21) becomes the tracking controller proposed by Paden
and Panja (1988) but based on estimated velocities. In this section a comparative
study between the mutual synchronization controller - coupled case K1,2 = K2,1 = 100
- and the tracking controller - uncoupled case K1,2 = K2,1 = 0 - is presented. The
frequency in the common desired trajectory is ω = 0.4 Hz.
Figure 5.6 shows the robot position trajectories qd, q1 and q2 for the coupled and
uncoupled cases, while the partial synchronization errors are shown in Figure 5.7. It
is obvious that in the coupled case the cross error e1,2 = q1 − q2 converges faster
than the errors with respect to qd, i.e. e1,1 = q1 − qd, e2,2 = q2 − qd. This proves
the mutual synchronization behavior. Meanwhile for the uncoupled case, the errors
e1,1, e2,2 converge faster than e1,2, since there is not any interaction between them.
After the transient has finished the errors in the coupled case are smaller than in
the uncoupled one, particularly the cross error e1,2. Also notice that the mutual
synchronization controller forces a small cross error e1,2 by penalizing the errors e1,1,
e2,2, see Figure 5.7(right).
Figure 5.8 presents the estimation error for the joint positions (observer (5.28)) after
the transient has finished. Notice that the mutual synchronization controller yields
smaller estimation errors than the uncoupled case. The reference signals (5.7) con-
strain the variety in which the synchronization errors evolve and at the same time
give more information to the observer (5.28), such that better convergence in the
estimation is achieved.
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Figure 5.6: Position trajectories: desired qd (solid), q1 (dashed), q2 (dotted). Coupled
case -synchronization- (left) and uncoupled case -tracking- (right).
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Figure 5.7: Partial synchronization errors: e1,1 (dashed), e2,2 (dotted), e1,2 (solid).
Coupled case -synchronization- (left) and uncoupled case -tracking- (right).
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Figure 5.8: Estimation joint position errors: q̃1 (solid), q̃2 (dashed). Coupled case
-synchronization- (left) and uncoupled case -tracking- (right).

Sensitivity to desired trajectory

To show the sensitivity of the synchronization controller (5.21) to the desired trajec-
tory qd(t), two different values for the frequency on the common desired trajectory
qd(t) have been considered, ω = 0.2, 0.6 Hz. None of the controller gains have been
changed during the experiments.
Figure 5.9 show the trajectories qd, q1, q2 for ω = 0.2, 0.6 Hz. Note that the mutual
synchronization controller yields smaller errors than the external synchronization con-
troller presented in Chapter 3, see Figure 3.8. It is due to the cross synchronization
errors introduced by the reference (5.7).
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Figure 5.9: Position trajectories: desired qd (solid), q1 (dashed) and q2 (dotted) for
ω = 0.2 Hz, ω = 0.6 Hz.

Although the stability analysis proves that the synchronization errors should converge
exponentially to zero independently of the desired trajectory, it is not the case in the
Figure 5.9. Smaller synchronization errors are obtained when ω = 0.2 Hz. The fre-
quency dependency of the convergence in the errors can be due to limited bandwidth
of the model (2.33, 2.34). Recall that the estimated parameters listed in Section 2.3,
Table 2.1 were obtained based on a trajectory with frequency of ω = 0.4 Hz. There-
fore the bandwidth of the dynamic model (2.33, 2.34) together with the estimated
parameters is center in 0.4 Hz. Thus the synchronization errors for ω = 0.2, 0.6 Hz
are also partially due to the estimated parameters.

Disturbance rejection

The proposed mutual synchronization controller is robust against disturbances and
parametric uncertainty. A payload of 2.0 kg. was used as a disturbance on the robots.
The frequency on the common desired trajectory qd(t) was set as ω = 0.4 Hz.
Figure 5.10(left) shows the partial synchronization errors e1,1, e2,2, e1,2 when the
payload of 2.0 kg was set on the robot 1, from t = 503.8s to t = 514.5s. It can be
observed that the load generates a jump in the synchronization errors, nonetheless
the robots react to compensate the disturbance and force a small cross error e1,2. The
partial synchronization error e1,1 presents the largest jump because the payload is set
on this robot.
Figure 5.10(right) shows the partial synchronization errors e1,1, e2,2, e1,2 when the
payload of 2.0 kg was set on the robot 2, from t = 420.1s to t = 428.5s. Note that
the mutual synchronization controller keeps the cross error e1,2 small by penalizing
the errors e1,1 and e2,2. Since the payload is set in the robot 2, this robot presents
the largest error with respect to the desired trajectory, i.e. e2,2.
The robot 1 seems to be more sensitive to disturbances than the robot 2, although
the same controller (5.21, 5.59), with the same gains, has been implemented in both
robots. The sensitive to disturbances of robot 1 can be due to the differences on
the physical parameters of the robots, particularly the friction coefficients. It can
be also due to the accuracy of the estimated parameters, see the validation figure
presented in Section 2.3. From Figure 2.3 it is evident that the parameters of robot
2 are better estimated than those of robot 1. Also by simple inspection on the
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robots it is apparent that the robot 1 presents more weariness on the servomotors
and transmission elements than the robot 2.
Similar sensitivity in the master robot, actually the same robot as robot 1, has been
observed in Figure 3.9 for the external synchronization scheme. However the mutual
synchronization controller achieves smaller errors when the payload of 2 Kg is set on
robot 1, compare Figures 3.9, 5.10. Similar results follow for robot 2, that corresponds
to the slave robot in the external synchronization scheme.

5.7 Concluding remarks and discussion

• The proposed synchronizing controller yields practical link position and velocity
synchronization in the joint space. Position and velocity synchronization in the
Cartesian space, i.e. spatial coordinates, is obtained only if the length of the
links of the slave robot are equal to the corresponding links in the robots in the
multi-composed system.

• Even without knowledge of the bounds implied in (5.34 - 5.35), the synchro-
nization closed loop system can be made exponentially stable, by selecting the
control gains large enough. Although high gains are not desirable since they
may amplified the noise in the position measurements and increase the mag-
nitude of the overshoots during transients, diminishing the performance of the
synchronization closed loop system.

• The controller and observers (5.21), and (5.26) are model based, nevertheless
the stability analysis allows a straightforward robustness analysis for parametric
uncertainties. At the same time on-line adaptation of the robot parameters can
be included in the proposed synchronization controller by considering linear
parametric representation of the dynamic model (5.1), see the work presented by
Sun and Mills (2002). Thus adaptive versions of the proposed synchronization
controller can be easily obtained.

• Although the result of exponential stability cannot be achieved in practical
implementations because of non model dynamics or parametric uncertainties,
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the proposed mutual synchronization controller provides a systematic way of
proving stability of the synchronization closed loop system.

• The reference signals (5.7) give a clear insight in the trade off between the
synchronization errors between the robots and with respect to the common
desired trajectory. These reference signals force the mutual synchronization
behavior of the multi-composed system. The mutual synchronization behavior
induced by the reference signals (5.7) is particularly useful during transients or
sudden disturbances on the robots such as unknown payloads.

• The advantage of the proposed mutual synchronization scheme over traditional
tracking controllers and the master slave scheme proposed in Chapter 3 lies in
the ability to control the relationships between the position and velocities of all
the robots in the system. In other words, the proposed controller regulates not
only the convergence of the position and velocity of the robots to the common
desired trajectory, but also how these errors converge between them, which
greatly improves the performance during transients. Nevertheless, note that
the coupling between the robots can generate instability when one of the robots
has a major failure, in this situation the couplings from and to the “out of order”
robot must be switched to zero.

• The idea of cross coupling errors or partial synchronization errors ei,j has been
exploited by several authors, as well as defining synchronization relations that
are function of ei,j, see for instance (Sun and Mills 2002) and (Feng et al.
1993). However the mentioned works report only set point synchronization, not
tracking synchronization. On the other hand the proposed controllers are based
on full state feedback, i.e. all states are assumed to be measured.

• The ideas behind the synchronization controller (5.21), the observer (5.26), and
the reference signals (5.7) are quite general; thus they can be extended to other
systems different from robot manipulators, such as communication systems,
mobile robots, coupled generators, multi-satellite systems.



Chapter 6

Experimental case study

6.1 Introduction

In Chapters 3 and 5 the convergence and stability properties of the proposed synchro-
nization controllers have been experimentally validated on a one degree of freedom
multi-robot system. The multi-robot system corresponds to the medium link of two
identical transposer robots fabricated by the Centre for Manufacturing Technology
(CFT) Philips Laboratory, see Section 2.3 for a description of the one degree of free-
dom multi-robot system. However, these transposer robots have 4 degrees of freedom,
which are fully actuated by 4 brushless DC servomotors. To support the applicabil-
ity of the proposed synchronization controllers in complex multi-robot systems this
chapter gives synchronization results for the four degrees of freedom of the robots.
Section 6.2 presents a brief description of the transposer robots and the dynamic
model of the robots is introduced. Experimental results with the 4 degrees of freedom
of the robots with the external synchronization controller (Chapter 3) are presented
in Section 6.3. For the mutual synchronization controller (Chapter 5) experimental
results with the 4 degrees of freedom are shown in Section 6.4. The chapter closes with
some remarks about the implementation of the proposed synchronization controllers,
Section 6.5.

6.2 The CFT transposer robot

The CFT transposer robot is a Cartesian basic elbow configuration robot. It consists
of a two links arm which is placed on a rotating and translational base, and it has a
passively actuated tool connected at the end of the outer link, see Figure 6.1. The
CFT robot is a pick and place industrial robot used for assembling. It has 4 degrees
of freedom in the Cartesian space, denoted by xci (i = 1, . . . , 4), and 7 degrees of
freedom in the joint space, denoted by qj (j = 1, . . . , 7), and is actuated by 4 DC
brushless servomotors. Although the robot has 7 degrees of freedom in the joint space,
3 of them are kinematically constrained, with the set of constrained joints given by
{q3, q6, q7}. Therefore the robot can be represented in the joint space by 4 degrees of
freedom {q1, q2, q4, q5} actuated by 4 servomotors. Although the shaft of the motors
and the corresponding links are connected by means of belts, the servomotor-link pair
proved to be stiff enough to be considered as a rigid joint.
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Figure 6.1: The CFT-transposer robot

The 4 Cartesian degrees of freedom are rotation, up and down, forward and backward
of the arm, forward and backward of the whole robot, see Figure 6.1. The robot is
equipped with encoders attached to the shaft of the motors with a resolution of 2000
PPR, which results in an accuracy of ±0.5 [mm] in all motion directions. The tool
connected at the end of the outer link is a kinematically constrained planar support.
The tool is passively actuated and designed to remain horizontal at all time. A more
detailed description of the structure of the robot can be found in Appendix H.
For implementation of the controllers and communication to the robots, the experi-
mental setup is equipped with a DS1005 dSPACE system, with a processor PPC750,
a clock of 480 MHz and a bus clock of 80 MHz. Throughout the experiments the
sampling frequency of the DS1005 dSPACE system was set to 2 kHz.

6.2.1 Joint space dynamics

The multi-robot system is formed by two structurally identical transposer robots,
so that they have the same kinematic and dynamic model. However, the physical
parameters of the robots, such as masses, inertias, friction coefficients are different
for both robots. The multi-robot system has been installed in the Dynamics and
Control Technology Laboratory of the Department of Mechanical Engineering at the
Eindhoven University of Technology.
Hereafter the notation qi, for i = 1, 2 refers to the i-th robot in the multi-composed
system, rather than to the j-th joint, j = 1, 2, 4, 5, in the i-th robot. From the
Euler-Lagrange approach (Spong and Vidyasagar 1989), (Lewis et al. 1993), and the
Denavit-Hartenberg parameters listed in Table H.2, the dynamics of the transposer
robots are given by, (see also Section 2.2)

M(qi)q̈i + C(qi, q̇i)q̇i + g(qi) + f(q̇i) = τi, i = 1, 2 (6.1)

f(q̇i) = Bv,iq̇i + Bf1,i

(
1 − 2

1 + e2w1,iq̇i

)
+ Bf2,i

(
1 − 2

1 + e2w2,iq̇i

)
(6.2)

with, qi = [ qi,1 qi,2 qi,4 qi,5 ]T the vector of generalized coordinates of robot
i, M(qi) ∈ �

4×4 the symmetric, positive definite inertia matrix, g(qi) ∈ �
4 denotes

the gravity forces, C(qi, q̇i)q̇i ∈ �4 represents the Coriolis and centrifugal forces,
f(q̇i) ∈ �4 are the forces due to friction effects, and τi = [ τi,1 τi,2 τi,4 τi,5 ]T is
the vector of external torques.
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The parameters in the matrices M(qi), C(qi, q̇i) and the gravity vector g(qi) are listed
in Table H.3 in Appendix H. The physical parameters of the robots in M(qi), C(qi, q̇i),
g(qi) and f(q̇i) have been estimated by using extended Kalman filters and least square
methods in a similar way to the work presented in (Kostic et al. 2001).

6.3 External synchronization of a complex multi-

robot system

Recall that the proposed external synchronization controller for the slave robot τsf ,
(3.40), is given by

τsf = Ms(qs)̂̈qm + Cs(qs, ̂̇qs)̂̇qm + gs(qs) − Kd
̂̇e − Kpe + fs(̂̇qs) (6.3)

with the friction compensation term fs(̂̇qs) given by

fs(̂̇qs) = Bv,s
̂̇qs + Bf1,s

(
1 − 2

1 + e2w1,s
�q̇s

)
+ Bf2,s

(
1 − 2

1 + e2w2,s
�q̇s

)
and the estimated variables ̂̇e, ̂̇qs obtained by the observers

d

dt
ê = ̂̇e + Λ1ẽ

d

dt
̂̇e = −Ms(qs)−1

[
Cs(qs, ̂̇qs) ̂̇e + Kd

̂̇e + Kp ê
]

+ Λ2ẽ (6.4)

and

d

dt
q̂s = ̂̇qs + Lp1q̃s

d

dt
̂̇qs = −Ms(qs)−1

[
Cs(qs, ̂̇qs) ̂̇e + Kd

̂̇e + Kpe
]

+ Lp2q̃s (6.5)

with the synchronization error e and the estimation errors ẽ, q̃s given by

e = qs − qm, ẽ = e − ê, q̃s = qs − q̂s (6.6)

The estimated variables ̂̇qm and ̂̈qm are given by

̂̇qm = ̂̇qs − ̂̇e, ̂̈qm = −(Ms(qs)−1Kp + Lp2)ẽ + Lp2q̃s (6.7)

The experimental setup with the four degrees of freedom of the robots is described
in Section 6.2. The dynamic model and the estimated parameters for the robots are
given in Section 6.2.1 and Appendix H. The master robot corresponds to robot 1 in
Appendix H, while robot 2 has the role of slave robot.
The desired trajectory for the master robot qd(t) is obtained by transformation of a
desired trajectory given in Cartesian coordinates xcj,d(t), j = 1, . . . , 4, that is given
by

xcj,d(t) = a0,j + a1,j sin(2sf,jπωt) + a2,j sin(4sf,jπωt)
+a3,j sin(6sf,jπωt) + a4,j sin(8sf,jπωt) (6.8)
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with the coefficients ai,j , i = 0, . . . , 4, j = 1, . . . , 4 given in Table 6.1. The coefficients
a0,j have been chosen as the middle value of the allowed displacements in the robots,
while ai,j , i = 1, . . . , 4 were chosen to achieve the combination of maximum displace-
ment and velocity allowed by the robots. This is done to generate a trajectory in
amplitude that can be executed by the multi-robot system.

ai,j i = 0 i = 1 i = 2 i = 3 i = 4 sf,j

j = 1 -0.1343 [m] -0.05 [m] -0.015 [m] -0.005 [m] -0.01 [m] 1.0
j = 2 0.2766 [m] 0.05 [m] 0.03 [m] -0.03 [m] 0.02 [m] 1.0
j = 3 2.4 [rad] 0.15 [rad] 0.05 [rad] -0.03 [rad] 0.02 [rad] 1.0
j = 4 -0.265 [m] 0.2 [m] 0.1 [m] -0.05 [m] 0.05 [m] 0.25

Table 6.1: Coefficients of the desired trajectory xcj,d(t), j = 1, . . . , 4.

The fundamental frequency of the master robot’s desired trajectory xcj,d(t), given by
(6.8), is set as ω = 0.4 Hz.
The joint space desired trajectory qd(t) is obtained by transformation of the desired
Cartesian trajectories xcj,d(t), j = 1, . . . , 4 using the inverse kinematics, see (H.7).
The master robot is driven by PID controllers with control gains listed as in Table 6.2.
After a series of experiments to decrease the synchronization position error e = qs−qm,
the gains on the slave robot controller (6.3) were set as listed in Table 6.3.

KP KD KI

joint q1 11000 50 2000
joint q2 10000 50 1000
joint q4 40000 600 1000
joint q5 40000 600 1000

Table 6.2: Control gains in the master robot PID controllers.

Kp Kd Lp1 Lp2

joint q1 10000 1200 500 100000
joint q2 8000 100 500 100000
joint q4 8000 100 500 100000
joint q5 8000 100 500 100000

Table 6.3: Control gains in the slave robot synchronization controller.
The initial position of the links and the initial conditions in the observers (6.4), (6.5)
were chosen as in Table 6.4. The master and slave robot start from a steady state,
therefore the joint velocity q̇(0), the estimated joint velocity ̂̇q(0), and the estimated
synchronization error ̂̇e(0) are all equal to zero. The initial condition for the estimated
synchronization error ê(0) in observer (6.4) was set equal to zero.
Figures 6.2 and 6.3 show the master qm,j (dashed) and slave qis,j (solid) position
trajectories for the joints j = 1, 2, 4, 5. The synchronization errors e = qs − qm after
the transient period has finished are shown in Figures 6.4 and 6.5.
From Figures 6.2 - 6.5 it is evident that synchronization between the master and slave
robot is achieved, such that bounded synchronization errors are obtained. Further
experiments showed that the synchronization errors can be decreased by increasing
the gains Kp, which agrees with the result stated in Theorem 3.12.
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q1(0) [m] q2(0) [rad] q4(0) [rad] q5(0) [rad]
master robot -0.095 -0.4 -0.9615 2.1473
slave robot -0.079 0.0 -1.0355 2.1165

q̂1(0) [m] q̂2(0) [rad] q̂4(0) [rad] q̂5(0) [rad]
slave robot -0.07 0.1 -1.0 2.0

Table 6.4: Initial conditions for master and slave robot.

The observers (6.4) and (6.5) perform very well and yield estimation errors of the
order of 1/10 of the synchronization errors e. The plots are not shown since they are
very similar to the plots presented in Chapter 3, Figure 3.6. Those interested in the
estimation errors and performance of the observers (6.4) and (6.5) can find the plots
in the website http://www.wtb.tue.nl/ at the Dynamics and Control Group section.
The influence of the gains Kd and Lp1 is related to the response to sudden changes on
the system (transients, changes on trajectory, etc.). The increasing of the gains Kd

and Lp1 might result in large overshoots, amplification of noise in the measurements
and saturation of the torques in the servo-motors.
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6.4 Mutual synchronization of a complex multi-
robot system

Recall that the mutual synchronization controller τi,f , proposed in Chapter 5, (5.59),
is given by

τif = Mi(qi)̂̈qri + Ci(qi, ̂̇qi)̂̇qri + gi(qi) − Kd,i
̂̇si − Kp,isi + fi(̂̇qi) (6.9)

with the friction compensation term fi(̂̇qi) given by

fi(̂̇qi) = Bv,i
̂̇qi + Bf1,i

(
1 − 2

1 + e2w1,i
�q̇i

)
+ Bf2,i

(
1 − 2

1 + e2w2,i
�q̇i

)
the estimated variables ̂̇qi are obtained by the observer (5.26), i.e.

d

dt
q̂i = ̂̇qi + µi,1q̃i

d

dt
̂̇qi = −Mi(qi)−1

[
Ci(qi, ̂̇qi)̂̇qi + gi(qi) − τi

]
+ µi,2q̃i (6.10)
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but rewritten such that the algebraic loop is avoided, see Lemma 5.7.
The synchronization si, ei,j , and the estimation q̃i errors, i, j = 1, 2, are given by

si = ei,i +
p∑

j=1,j �=i

Ki,jei,j , ei,i = qi − qd, ei,j = qi − qj , q̃i = qi − q̂i (6.11)

The robots in the multi-robot system are identified as robot 1 (R1) and robot 2 (R2)
as in Appendix H.
The desired common trajectory for the robots qd(t) is obtained by transformation of
a desired trajectory given in Cartesian coordinates xcj,d(t), j = 1, . . . , 4, that is given
by (6.8) with the coefficients ai,j , i = 0, . . . , 4, j = 1, . . . , 4 given in Table 6.5.
Note that the desired trajectory for mutual synchronization and for external syn-
chronization - Section 6.3, Table 6.1 - are defined by the same signal (6.8), but with
different coefficients. This is done to generate a trajectory in amplitude that can be
executed by the multi-robot system. The desired trajectory (6.8) with coefficients as
in Table 6.1 demands torques that exceed the limits in the servomotors when mutual
synchronization is intended. In general the torque to achieve the synchronization goal
in the mutual synchronization case is higher than for external synchronization.

ai,j i = 0 i = 1 i = 2 i = 3 i = 4 sf,j

j = 1 -0.1343 [m] -0.02 [m] -0.015 [m] -0.005 [m] -0.005 [m] 1.0
j = 2 0.2766 [m] 0.05 [m] 0.03 [m] -0.03 [m] 0.02 [m] 1.0
j = 3 2.4 [rad] 0.2 [rad] 0.1 [rad] -0.05 [rad] 0.05 [rad] 1.0
j = 4 -0.265 [m] 0.15 [m] 0.05 [m] -0.03 [m] 0.02 [m] 0.25

Table 6.5: Coefficients of the desired trajectory xcj,d(t), j = 1, . . . , 4.

The fundamental frequency of the desired common trajectory xcj,d(t) given by (6.8)
is set as ω = 0.4 Hz. The joint space desired trajectory qd(t) is obtained by transfor-
mation of the desired Cartesian trajectories xcj,d(t), j = 1, . . . , 4 by considering the
inverse kinematics, see (H.7).
The controller and observer gains for the robots R1 and R2 are set equal for the
corresponding joints. For the coupling gains symmetric synchronization is chosen,
i.e. the coupling gains between the robot are equal, K1,2 = K2,1. After a series
of experiments in order to decrease the synchronization position errors ei,i and ei,j,
i, j = 1, 2, the gains on the synchronization controller (6.9) and the coupling gains
Ki,j were set as listed in Table 6.6.

i = 1, 2 Kp,i Kd,i µi,1 µi,2 K1,2

joint q1 10000 600 500 20000 1
joint q2 10000 300 600 55000 2
joint q4 10000 300 600 55000 1
joint q5 10000 300 600 55000 2

Table 6.6: Control and coupling gains in the mutual synchronization controller.

The initial position of the links and the initial conditions in the observers (6.10) were
chosen as in Table 6.7. The robots start from a steady state, therefore the joint
velocity q̇i(0) and the estimated joint velocity ̂̇qi(0) are all equal to zero.
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q1(0) [m] q2(0) [rad] q4(0) [rad] q5(0) [rad]
robot 1 -0.06 -0.1 -1.0 2.115
robot 2 -0.079 0.2 -1.09 2.06

q̂1(0) [m] q̂2(0) [rad] q̂4(0) [rad] q̂5(0) [rad]
robot 1 and 2 -0.08 0.0 -0.9899 1.9805

Table 6.7: Initial conditions for robots 1 and 2 and observer (6.10).

Figures 6.6 and 6.7 show the desired common trajectory qd(t) (solid), and the position
trajectories qi,j for the robots i = 1, 2, (R1 - dashed, R2 - dotted), and the joints
j = 1, 2, 4, 5. The synchronization errors e1,1 = q1 − qd (dashed), e2,2 = q1 − qd

(dotted), and e1,2 = q1 − q2 (solid), after the transient period has finished are shown
in Figures 6.8 and 6.9.
From Figures 6.6 - 6.9 it is evident that synchronization between the robots is
achieved, such that bounded synchronization errors are obtained. Particularly Figures
6.7(right) and 6.9(right) show that the synchronization errors e1,1, e2,2 are penalized
in order to minimize the coupled synchronization error e1,2. Thus mutual synchro-
nization between the robots is favored over the synchronization between the robots
and the desired common trajectory qd. This behavior is induced by the coupling gains
Ki,j through the nominal reference variables qri. Further experiments show that the
synchronization errors can be decreased by increasing the gains Kp,i, which agrees
with the stability analysis.
As in the experimental results reported in Chapter 5, Figure 5.8, the estimation errors
q̃i are at most of the order of 1/10 of the partial synchronization error e1,2. Plots of
the estimation errors are not presented since they are very similar to Figure 5.8(left)
presented in Chapter 5. Those interested in the estimation errors and performance of
the observer (6.10) can find the plots in the website http://www.wtb.tue.nl/ at the
Dynamics and Control Group section.
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Figure 6.8: Synchronization errors e1,1 (dashed), e2,2 (dotted), and e1,2 (solid), joints
q1, q2.
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6.5 Conclusions and discussion

The external and mutual synchronization experiments that have been presented in
this chapter lead to the following main conclusions.

• Synchronization, either external or mutual, of complex multi-robot systems can
be achieved when only position measurements are available. Synchronization
can be achieved by considering model based feedback controllers and observers.

• The proposed synchronization controller are model based. Therefore they are
susceptible to errors in the modelling and identification of the robots, particu-
larly for highly complex or coupled robots. However, the experiments show that
the proposed synchronization controllers are robust against parametric uncer-
tainties. Although the dynamic model (6.1) with the parameters listed in Table
H.3 do not accurately model the robots, see validation Figures H.3 - H.6, the
proposed controllers for external and mutual synchronization yield synchroniza-
tion errors of the order of the resolution of the encoders.

• The controller and observer gains in the proposed synchronization controller can
be physically interpreted. Thus they can be chosen intuitively during the tuning
of the controllers. During the experiments it was observed that the gains Kp,
Kp,i, Lp,2 and µi,2 are all related to the feedback of the position measurements
and the errors at position level. Therefore they have effects on the final bound of
the synchronization errors. Since the positions are the only source of information
in the system, these gains play the major role in the convergence and stability
response of the synchronization closed loop system. On the other hand, the
gains Kd, Kd,i, Lp,1 and µi,1 are all related to feedback of variables at velocity
level, thus they have effects on the overshoots and transient response. Since
velocity is not measured, all those variables related to velocity level are result
of estimation by observers. In case of noisy measurements in the system or bad
estimated variables, large values of Kd, Kd,i, Lp,1 and µi,1 lead to instability.

• During the experiments it was not attempted to obtain the best ”performance”
for the synchronization of the multi-robot system. Since the goal was to show
that synchronization based only on position measurements is viable in complex
systems, it is likely that for the specific multi-robot system some ”performance”
improvement can be accomplished. For instance the synchronization error e1,2

for the joint q5, see Figure 6.9(right), can be decreased by increasing the gain
Kp,i. Nevertheless, the chosen set of gains illustrate the properties of the mutual
synchronization controller, particularly how the errors e1,1, e2,2 are penalized to
favor the error e1,2.



Chapter 7

Extensions

The ideas about synchronization of robot manipulators that have been presented in
this thesis are general and can be extended to synchronization in other mechanical
systems different from robot manipulators.
This chapter presents an extension of the external synchronization controller proposed
in Chapter 3 to leader-follower mobile robots and an extension of the mutual syn-
chronization controller proposed in Chapter 5 to attitude formations of multi-satellite
systems. The extensions are presented in a general overview and without a complete
stability analysis. The purpose of this chapter is to give some guidelines on how the
proposed synchronization controllers can be modified to be applied to other systems
different from robot manipulators.
Synchronization of the class leader-follower for mobile robots is presented in Section
7.1. Attitude formations of multi-satellite systems is addressed in Section 7.2. First
a brief description of the dynamic model of the satellite is introduced, then the use of
synchronization to achieve attitude formation of the members in a group of satellites
systems is presented. The proposed extensions are validated by simulations.
The chapter closes with some remarks and discussions about other extensions for the
synchronization problem addressed on this thesis.

7.1 Leader-follower synchronization of mobile robots

The control of mobile robots in Cartesian space is highly complicated because such
systems are underactuated and subject to non-holonomic constraints. In the Cartesian
space the mobile robot has 3 degrees of freedom while it has 2 external input controls.
Nevertheless several tracking and stabilizing controllers have been proposed for those
systems, e.g. (Canudas de Wit and Sordalen 1992), (Samson and Ait-Abderrahim
1991).
In this section we consider the particular controller presented in (Lefeber et al. 2001) to
extend the ideas behind the external synchronization controller (master-slave scheme),
Chapter 3, to a leader-follower configuration for mobile robots. Like in Chapter 3 the
core of the synchronization controller is to use the measurements of the master (leader)
system as desired trajectory for the slave system. We assume that one of the error
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coordinates is not measured, thus in the synchronization controller the unmeasured
error coordinate is reconstructed by an observer.
The kinematic model of the mobile robots is presented in Section 7.1.1. Section 7.1.2
presents the proposed leader-follower synchronization controller. Simulation results
presented in Section 7.1.3 validate the proposed synchronization controller.

7.1.1 Kinematic model of the mobile robot

The configuration of a mobile robot in the Cartesian space is given by

q(t) = [ x(t) y(t) θ(t) ] (7.1)

where q denotes the generalized Cartesian coordinates, x(t) and y(t) are the coordi-
nates of the mass center of the mobile robot, and θ(t) denotes the heading angle. The
kinematic model of the mobile robot in the Cartesian coordinates q is given by

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω (7.2)

where no-slip of the wheels is assumed, and the forward velocity v and the angular
velocity ω are considered as inputs.
The no-slip condition on the wheels imposes the non-holonomic constraint

ẋ sin θ − ẏ cos θ = 0 (7.3)

As a result from Brockett’s Theorem (Brockett 1983) the mobile robot modelled by
(7.2) with the non-holonomic constraint (7.3) cannot be stabilized to a desired config-
uration via differentiable, or even continuous, pure-state feedback. Nevertheless there
exist possible solutions to control such systems, for instance discontinuous feedback
(Canudas de Wit and Sordalen 1992), time-varying continuous feedback (Samson and
Ait-Abderrahim 1991), or the cascaded approach (Lefeber et al. 2001).

7.1.2 Leader-follower synchronization controller

Consider two mobile robots in a leader-follower configuration such that the subindices
l, f distinguish between the variables of the leader and follower system respectively.
The kinematic model of the leader and follower mobile robot is given by (7.2), such
that according to (Lefeber et al. 2001) the synchronization error coordinates between
the systems can be expressed by xe

ye

θe

 =

 cos θf sin θf 0
− sin θf cos θf 0

0 0 1

 xl − xf

yl − yf

θl − θf

 (7.4)

and the error dynamics is given by

ẋe = ωfye − vf + vl cos θe

ẏe = −ωfxe + vl sin θe (7.5)

θ̇e = ωl − ωf (7.6)

Then the leader-follower problem can be stated as to design inputs vf and ωf for the
follower mobile robot such that the synchronization errors xe, ye, θe tend to zero. In
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certain pursuit navigation problems it might happen that one of the synchronization
position errors xe, ye cannot be measured, or at least not accurately. This of course
complicates the leader-follower problem. Nevertheless the use of observers can solve
the above problem by reconstructing the missing synchronization position error. In
this section (as in (Lefeber et al. 2001)) we assume that we are unable to measure the
forward synchronization error xe, so only values of ye and θe are available. The case
of unmeasured ye can be addressed analogously.
In (Lefeber et al. 2001) several tracking controllers and observers are proposed. We
consider the particular combination of controller and full order observer given by

ωf = ωl + c1θe, c1 > 0 (7.7)
vf = vl + c2x̂e − c3ωlŷe, c2 > 0, c3 > −1 (7.8)

where x̂e, ŷe are generated by the observer

˙̂xe = ωlŷe + vl − vf − l2ωl(ye − ŷe), l2 > −1 (7.9)
˙̂ye = −ωlx̂e + l1(ye − ŷe) l1 > 0 (7.10)

According to (Lefeber et al. 2001), if ωl is persistently exciting (PE) then the closed
loop system (7.5, 7.7, 7.8) is globally uniformly exponentially stable (GUES).

7.1.3 Simulation study

The controller for the leader mobile robot ωl, vl is similar to the one for the follower
mobile robot (7.7), (7.8), and is given by

ωl = ωr + c1θe,l, c1 > 0 (7.11)
vl = vr + c2xe,l − c3ωrye,l, c2 > 0, c3 > −1 (7.12)

where ωr, vr are the inputs on a model reference of the form given by (7.2) and
(xe,l, ye,l, θe,l) are the tracking errors between the leader mobile robot and its ref-
erence, defined similarly to (7.4). The follower mobile robot is controlled by the
proposed synchronization scheme (7.7), (7.8) together with the observer (7.9), (7.10).
The control gains in the controller for the leader and follower mobile robot are listed
in Table 7.1.

c1 c2 c3 l1 l2
leader 6.0 1.5 -0.4

follower 20.0 25.0 -0.5 10 50

Table 7.1: Gains in the leader and follower controllers.

The leader mobile robot is commanded to move along a circle of radius 1 [m] with
constant velocity, thus the inputs in the model reference are ωr = 1 and vr = 1. The
initial conditions in the leader and follower mobile robots are listed in Table 7.2. The
initial conditions for the observer (7.9, 7.10) are set as x̂e(0) = 0 and ŷe(0) = 0.
Figures 7.1 - 7.3 show the Cartesian coordinates xi, yi and θi for the leader (i = l)
and the follower (i = f) mobile robots. The synchronization coordination errors xe, ye

and θe defined by (7.4) are shown as well.
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i = l, f xi [m] yi [m] θi [rad]
leader 0.5 -0.5 -1

follower -0.2 -0.75 -2.0

Table 7.2: Initial conditions of the mobile robots.
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tion error θe

From Figures 7.1 - 7.3 it can be concluded that the Cartesian coordinates of the
follower mobile robot match with the Cartesian coordinates for the leader mobile
robot. Thus the leader-follower synchronization goal is achieved.

7.2 Attitude formations of multi-satellite systems

This section presents an extension of the mutual synchronization controller presented
in Chapter 5 to the problem of attitude formations of multi-satellite systems. The
proposed extension is based on the work presented in (Kang and Yeh 2002). In (Kang
and Yeh 2002) a controller based on the so-called reference projection is proposed.
The reference projection is nothing else but a definition of a synchronization goal
equivalent to the nominal reference qri defined by (5.7).
The proposed synchronization controller is decentralized and intended for multi-
satellites systems. The dynamics of a satellite systems is presented in Section 7.2.1,
then the synchronization strategy and controller are proposed in Section 7.2.2. The
proposed synchronization controller is validated by simulations in a two satellites
system, Section 7.2.3.

7.2.1 Dynamics of the satellite system

To model the dynamics of a satellite two coordinate frames are introduced. The frame
E = {E1, E2, E3} has its origin in the centre of mass of the satellite. The vectors Ei,
i = 1, 2, 3 point to fixed inertial directions. This frame system E is almost identical
to a fixed frame, except that its origin moves with the satellite. The origin of the
rotating frame e = {e1, e2, e3} coincides with the origin of E, but the three axes of e
rotate with the satellite.
Let SO(3) be the set of orthogonal (3, 3)-matrices with determinant 1. A matrix
R ∈ SO(3) represents a rotation matrix that transforms e into E, i.e.[

E1 E2 E3

]
=
[

e1 e2 e3

]
R (7.13)

Therefore, a matrix in SO(3) represents the orientation of a satellite.
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The dynamics of each satellite in the multi-satellite system is defined by the equations

Ṙ = S(ω)R
Jω̇ = S(ω)Jω + u (7.14)

where u = [ u1 u2 u3 ]T is the control torque and J is the inertia matrix of the
spacecraft. The vector ω = [ ω1 ω2 ω3 ] ∈ �3 represents the angular velocity in
the rotating frame, i.e.

ω = ω1e1 + ω2e2 + ω3e3 (7.15)

The matrix S(ω) ∈ �3×3 is defined by

S(ω) =

 0 w3 −w2

−w3 0 w1

w2 −w1 0

 (7.16)

Although the orthogonal matrix R ∈ SO(3) is suitable to define the dynamics of
the satellite (7.14), the use of quaternions is more convenient to define the desired
trajectories and references for the satellites. Quaternions are coordinate systems
used for the attitude of rigid bodies, More details about quaternions can be found in
(Chovotov 1991). Different from SO(3) quaternions involve the use of unit vectors in
�

4 to determine the attitude. A quaternion is a scalar plus a vector, totalling four
elements. Three of the elements describe a vector, which defines an axis of rotation.
The fourth element, a scalar, defines the magnitude of a rotation angle about the
axis. Let a quaternion q be defined as

q =
[

q0 q1 q2 q3

]
(7.17)

in which

q0 = cos
(µ

2

)
, q1 = m1 sin

(µ

2

)
, q2 = m2 sin

(µ

2

)
, q3 = m3 sin

(µ

2

)
(7.18)

Where m =
[

m1 m2 m3

]T is a unit vector representing the direction of the Euler
vector, µ is the rotation angle about m. Such that qo represents the rotation angle in
quaternions form, q1, q2 and q3 represent the rotation angle µ around the vectors m1,
m2 and m3 which represent the axes x, y and z of the frame E respectively. Since the
rotation matrices R ∈ SO(3) and the quaternions q0, q1, q2 and q3 represent a rotation
about and axis, these representations are equivalent and there exist transformations
from one to the other.
Suppose that R = (rij)3×3 ∈ SO(3) is the matrix of rotation in (7.13), then in terms
of quaternions q0, q1, q2 and q3

r11 = q2
1 − q2

2 − q2
3 + q2

0 , r12 = 2(q1q2 + q3q0), r13 = 2(q1q3 − q2q0)
r21 = 2(q1q2 − q3q0), r22 = −q2

1 + q2
2 − q2

3 + q2
0 , r23 = 2(q1q0 + q2q3) (7.19)

r31 = 2(q1q3 + q2q0), r32 = 2(−q1q0 + q2q3), r33 = −q2
1 − q2

2 + q2
3 + q2

0

In terms of the components of a rotation matrix R ∈ SO(3), the quaternions can be
expressed as

q1 =
1

4q0
(r23 − r32), q2 =

1
4q0

(r31 − r13)

q3 =
1

4q0
(r12 − r21), q0 = ±1

2
(1 + r11 + r22 + r33)

1
2 (7.20)
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7.2.2 Synchronization strategy and controller

In (Kang and Yeh 2002) a stabilizing feedback controller based on H∞-theory is
proposed. A so-called reference projection is given to the feedback controller to achieve
the synchronization behavior. The reference is defined based on the synchronization
goal and the desired attitude trajectory. The synchronization controller proposed in
this section is based on the feedback controller given in (Kang and Yeh 2002), the
difference lies in the definition of the nominal reference (reference projection).
According to (Kang and Yeh 2002) a feedback controller in the rotating frame that
stabilizes the attitude of the satellite is given by

u(R, Re) = −a

2
ω +

b

2
R

3∑
i=1

S(RT
e (i))RT (i) (7.21)

where a, b are positive scalar gains. RT (i) and RT
e (i) represent the i-th column vector

of the transpose of the actual R rotation matrix and the desired rotation matrix Re,
which is determined by the desired rotation angle µd about the desired axis. The
desired rotation angle µd can be expressed in quaternions qd or rotation matrix Re,
since from the relations (7.18 - 7.20) these representations are equivalent.
The synchronization mode between the systems is achieved by defining a nominal
reference that is based on the synchronization goal. The nominal reference is given
by the desired trajectory and terms that compensate for coupling errors between the
systems to be synchronized. Consider for instance the nominal reference for n-robots
qri proposed in Chapter 5,

qri = qd −
p∑

j=1,j �=i

Kcp i,j(qi − qj), i = 1, . . . , n (7.22)

where qd is the common desired trajectory for the robots, and Kcp i,j are coupling
gains that multiply the partial synchronization errors (qi − qj).
In (Kang and Yeh 2002) the so-called reference projection for a virtual desired tra-
jectory (for two satellites) is proposed as

Rei = R

(
qd + ρ(qj − qi)
‖qd + ρ(qj − qi)‖

)
, i, j = 1, 2 i �= j (7.23)

where qd is the desired rotation, and q1, q2 are the actual rotation angle of the
satellites, all represented in quaternions. The reference projection (7.23) determines
a virtual desired attitude, which is a compromise between the attitude error (qi −
qd) and the formation error (qi − qj). However the virtual desired attitude is not
necessarily close to the desired attitude given by the quaternions qd. Moreover the
reference projection can give rise to numerical problems in case the denominator
‖qd + ρ(qj − qi)‖ becomes zero.
Note the similarities between the references qri and Rei. Based on this similarities
and to avoid the above mentioned problems in the definition of Rei (7.23), we propose
a simpler nominal reference for the attitude formation problem as

Rei = R(qd + ρ(qi − qj)), i, j = 1, 2, i �= j (7.24)

It is worth to mention what the projection reference (7.23) and the nominal reference
(7.24) represent and how they are obtained. The reference rotation matrix Rei ∈
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SO(3) represents a rotation of a satellite about one of its axes by an angle µ, i.e.
rotate the satellite and angle µ about one of the axes of frame E, such that the new
orientation of the frame e with respect to the frame E is given by Rei, see (7.13).
In (7.23) and (7.24) the rotation angle is expressed by means of quaternions (relation
(7.18)). Such quaternions are used to define the rotation matrix R(q) by consid-
ering the relationship (7.19). Also notice that the quaternions qi for the satellites
are obtained from the actual rotation matrix R, given by (7.14), by considering the
relationship (7.20). The use of quaternions in (7.23) and (7.24) simplifies the def-
inition of the nominal reference. If the nominal reference is defined directly in the
rotational matrices space SO(3) then matrix multiplication and other mathematical
complications related with matrix manipulation would arise.
As will be shown in the simulation study in the next subsection, the feedback controller
(7.21) and the nominal reference (7.24) yield synchronous attitude formation of multi-
satellite systems.

7.2.3 Simulation study

The multi-satellite system in the simulation study is formed by two identical satellites
with dynamics given by (7.14) and diagonal inertia matrix

J =

 1.0 0 0
0 0.63 0
0 0 0.85

 (7.25)

The satellites rotate an angle µi (i = 1, 2) about the z-axis. The initial rotation
angle of the satellites is µ1 = 0.0 [rad] and µ2 = 0.1 [rad] for satellites sat1 and sat2
respectively, such that the rotation matrices R1 and R2 are given by

R1 =

 1 0 0
0 1 0
0 0 1

 , R2 =

 0.995 0.0998 0
−0.0998 0.995 0

0 0 1

 (7.26)

The desired attitude of the satellites is

Rd =

 0.9801 0.1987 0
−0.1987 0.9801 0

0 0 1

 (7.27)

which corresponds to a desired rotation angle µd = 0.2 [rad] about the z-axis. By con-
sidering the relations (7.18) or equivalently (7.20) it follows that the desired rotation
angle in quaternions is given by

q0,d = 0.9950, q1,d = 0, q2,d = 0, q3,d = 0.0998 (7.28)

the quaternions q1,d and q2,d are zero because the rotation is about the z-axis, thus
only the vector m3 is considered in (7.18).
The synchronization or attitude formation error between the satellites ef is given by

ef = µ1 − µ2 (7.29)
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The gains in the feedback controller for the satellites i = 1, 2, ui(Ri, Rei), given by
(7.21), are set as a = 10 and b = 1. The coupling gain ρ in the nominal reference
(7.24) is set as ρ = 1 for synchronous control and ρ = 0 for uncoupled satellites, i.e.
neglecting the synchronous goal.
Figures 7.4 and 7.5 show the rotation angle µ1 and µ2 and the synchronization attitude
formation error ef with and without synchronization, respectively.
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Figure 7.4: Angle rotations µ1 (solid), µ2 (dashed) and synchronization attitude error
ef , coupled case
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ef , uncoupled case

From comparison between Figures 7.4 and 7.5 it is clear that the synchronization
goal and the nominal reference (7.24) radically change the evolution of the attitude
formation error ef = µ1−µ2. The synchronization controller yields faster convergence
between the satellites such that the attitude formation error ef between the satellites
converges faster than the errors between the desired and actual rotation angles µi−µd,
i = 1, 2. This makes the effects of the synchronization goal evident.
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7.3 Discussion

This chapter has presented extensions of the synchronization ideas proposed previ-
ously, particularly the external synchronization strategy, Chapter 3, to leader-follower
mobile robots and the mutual synchronization strategy presented in Chapter 5 to
multi-satellite systems. Clearly, the proposed ideas can be extended to other mechan-
ical systems. For instance (Sun and Chiu 2002) proposed a synchronization controller
for lifting platforms that are actuated by two electrohydraulic cylinders. The prob-
lem of coordination of multiple mobile robots has been addressed in (Hirata and
Kosuge 2000) and (Siméon et al. 2002). Controlled synchronization of differential
mobile robots has been studied in (Sun et al. 2002).
Although the simulation results presented in this chapter show that the definition of
a synchronization goal together with a stabilizing or tracking controller can induce
synchronization behavior in the system, this is not true in general. Since the synchro-
nization goal is a function of the desired trajectory for a system and coupling errors
between the systems, it implies a trade off between the systems to be synchronized.
Thus if the synchronization behavior puts too much weight on the interaction between
the systems and less on the desired trajectory, it may lead to instability or limit cy-
cling. Particularly instability in the synchronization systems can be generated when
there exists a contradiction between the coupled behaviors that are induced by the
synchronization goal. Thus, in general the synchronization goal has to be formulated
taking into account the nature of the systems and the proper couplings defined in it.
And after the synchronization goal is defined a stability analysis of the synchronization
closed loop system is required in each case.
The proposed leader-follower synchronization controller for mobile robots, Section
7.1, is particularly interesting since it shows that synchronization can be achieved in
underactuated (non-holonomic) systems.



Chapter 8

Conclusions and
recommendations

Many systems in nature present a tendency towards synchronization. But what is in-
teresting from a control view point is to induce synchronization in a system or a group
of individual systems. This controlled synchronization problem has been addressed
in this thesis and this chapter presents general conclusions and recommendations for
further extensions and research.

8.1 Concluding remarks

• The thesis proves analytically and experimentally that synchronization, either
external or mutual, of multi-composed systems (particularly, fully actuated
robot-manipulators) can be achieved when only position measurements are avail-
able. Synchronization can be achieved by considering model based feedback
controllers and observers.

• Two classes of synchronization problems are studied in this thesis, external
(Chapters 3 and 4) and mutual synchronization (Chapter 5). In external syn-
chronization information is shared only from the leading system (master) to
the follower systems (slaves), while in mutual synchronization there is a flow of
information between all the involved systems. Mutual synchronization is based
on the idea of defining synchronization goals based on coupling errors between
all the systems.

The proposed mutual synchronization scheme controls the relationships between
the position and velocities of the individual systems in the multi-composed
system. In other words, the mutual synchronization goal is to regulate not
only the convergence of the position and velocity of the individual system to
the common desired trajectory, but also how the trajectories of each system
converge with respect to each other. The mutual synchronization behavior
has major effects during transients or sudden disturbances, so that the mutual
synchronized multi-composed system presents better performance according to
certain criteria such as convergence time, overshoots and coupled errors during
transients.
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Two serious drawback of the mutual synchronization approach are the require-
ment of sharing information between the systems and the assumption that the
dynamic model of the systems are known. In practical situations there is lim-
ited access to the systems and their variables. As proven in this thesis the
problem of sharing information between the systems can be solved by using
model based observers, although the requirement of the dynamic model of the
systems remains as a problem.

• The assumption of availability of the dynamic model of all the systems has
been relaxed in the proposed external synchronization controller, at least for
master-slave systems, Chapters 3 and 4. The proposed external synchronization
controllers, Chapters 3 and 4, guarantee synchronization of the slave systems
to the master system, when only the dynamic model of the slave systems and
position measurements are available.

• The proposed synchronization controllers provide a systematic way of proving
stability and boundedness of the synchronization closed loop system. The sta-
bility analysis shows that the synchronization result achieved is of a semi-global
nature. In general a region of attraction can be established, and this region as
well as the conditions on the controller and observer gains are quite conserva-
tive. Thus, there may exist more freedom on the initial errors and the controller
gains than the ones predicted by the region of attraction and the proposed gain
tuning procedures.

The outcome of the gain tuning procedures presented at the end of the Chapters
3, 4, and 5 seems quite conservative, and only guarantees convergence and
stability of the system. Therefore, once the boundaries of the controller and
observer gains have been determined, these gains have to be chosen according
to the desired transient and steady response of the synchronization system. As a
guideline, first the gains in the observer can be chosen to obtain small estimation
errors in the observers, then the gains in the feedback part of the synchronization
controller can be tuned to achieved small synchronization errors. This tuning
procedure resembles the ”separation principle” that holds in linear systems, but
unfortunately does not hold in general for nonlinear systems.

• Since the proposed synchronization controllers are model based, they present
great dependence on the model of the systems to be synchronized. Therefore
the synchronization controllers are susceptible to errors in the modelling and
identification of the systems, particularly for highly complex or coupled systems.
The proposed synchronization controllers proved to be robust against paramet-
ric uncertainties. Moreover the proposed controllers can be easily extended to
include on-line adaptation of the parameters in the model of the systems. An
adaptive version of the proposed controllers is obtained by considering linear
parametric representations of the dynamic model of the systems.

• Although the thesis focuses on synchronization of multi-robot manipulators, the
proposed synchronization ideas are quite general and applicable to different me-
chanical systems. Some extensions of the proposed synchronization controller
to systems different from robot-manipulators, such as mobile robots and satel-
lites, have been presented in Chapter 7. The extension to the leader-follower
mobile robot problem presented in Section 7.1 is particularly interesting since it
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shows that synchronization can be induced in underactuated (non-holonomic)
systems.

The proposed extensions presented in Chapter 7 show that the definition of
a synchronization goal together with a stabilizing or tracking controller can
induce synchronization in a multi-composed system, however this is not true
in general. Since the synchronization goal includes the desired trajectory and
coupled errors between the systems, it implies a trade off between the systems
to be synchronized. Thus if the synchronization behavior puts too much weight
on the interaction between the systems and less on the desired trajectory, it may
lead to instability or limit cycling. Therefore a formal analysis of the stability
and convergence of the synchronous behavior is required in each case.

8.2 Recommendations

The study and applications of synchronization phenomena have recently raised great
interest in the control community. To understand why, consider the great variety of
systems and applications in which synchronization improves the performance of the
systems or allows a task to be executed. Therefore the study of synchronization phe-
nomena and their applications are research problems which are not only challenging
but motivating as well. In this section we list a few open problems in synchronization,
particularly controlled synchronization, that directly arise from this thesis.

• A general framework that ensures synchronization of a large class of
systems. Although the definition of a synchronization goal based on coupling
errors combined with a stabilizing or tracking controller seems to be enough to
induce synchronization, this is in general not true. Therefore a general frame-
work and conditions in which such combination, synchronization goal plus con-
troller, yields synchronization are required. Such general framework should
provide a synchronization control strategy for a large variety of systems more
than for particular cases as the actual state of art is.

• Information shared between the systems. The synchronization goal and
coupling errors are based on sharing information between the systems to be
synchronized. But the information that is shared may be redundant according
to the synchronization goal and therefore the question that arises is: what is
the minimum amount of information necessary to achieve synchronization ?

• Definition of the synchronization goal. The first step in a controlled syn-
chronization problem is to define the synchronization goal. This goal not only
determines the desired synchronous behavior of the system, but most impor-
tant from a control view point, it gives an idea of the information that has to be
shared between the systems and how this information is given to the controller.
For instance one can define a synchronization goal such that full synchronization
or partial synchronization is achieved. Partial synchronization is particularly in-
teresting since it allows clustering of a multi-composed system. Thus certain
subsets of the multi-composed system may be working in a synchronous mode,
whereas other subsets present a different synchronous mode.

Another example is formations of mobile systems. One could define two or more
mobile systems being synchronized when they keep a fixed distance between
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them. Also keeping the velocity and heading angles equal for all the systems
can be considered as synchronization.

• Definition of the reference trajectories that force the synchroniza-
tion via the feedback controller. The synchronous behavior in a controlled
synchronization system is determined by the synchronization functional and
synchronization goal, which can be used to define the nominal reference or the
so-called projection reference that is given to the controller. As a rule of thumb
the nominal reference is a function of the desired trajectory and some terms that
compensate for coupling errors between the individual systems. The coupling
errors are in charge of the synchronous behavior, whereas the desired trajectory
determines the task to be executed by the synchronized systems. In this thesis
the nominal reference has been defined as a sum of the coupling errors, but
different definitions for the nominal reference can be considered. For instance
the integral of the coupling errors, or a polynomial function, etc., would result
in a different synchronization functional.

• Synchronization of underactuated systems . The robot manipulators con-
sidered in the thesis are fully actuated. But an obvious question is under what
conditions synchronization can be induced in underactuated systems. The ex-
tension proposed for leader-follower mobile robots, Section 7.1, shows that such
underactuated (non-holonomic) system can be synchronized. However many
questions are open such as what kind of underactuated systems are suitable for
synchronization, either external or mutual; which kind of constraints should be
satisfied by the non-actuated part of the system, etc..

In principle the constrains that are imposed by the underactuated part of the
system should lie in the manifold define by the synchronization goal. If that
is not the case it is impossible for the dynamics of the system to achieve the
synchronization goal keeping the dynamics in the constraints.



Appendix A

Proof of Lemma 3.9

In this appendix we develop the synchronization closed loop dynamics given by (3.22,
3.23, and 3.24). First, we obtain the error dynamics in terms of the synchronization
errors (e, ė), the estimation synchronization errors (ẽ, ˜̇e), and the estimation position
and velocity errors (q̃s, ˜̇qs), and second we consider the coordinate transformation
defined by (3.16), (3.17).

Synchronization error dynamics

Substitution of τs (3.9) in (3.1), by adding and subtracting Kdė + Ms(qs)q̈m +
Cs(qs, q̇s)q̇m, and considering the synchronization errors defined by (3.7), we obtain
that

Ms(qs)ë + Cs(qs, q̇s)ė + Kdė + Kpe = Ms(qs)
(̂̈qm − q̈m

)
+Cs(qs, ̂̇qs)̂̇qm − Cs(qs, q̇s)q̇m − Kd

( ̂̇e − ė
)

(A.1)

From (3.7), (3.11), (3.13), and (3.14), the following equalities can be established

q̂m − qm = ẽ − q̃ŝ̇qm − q̇m = ˜̇e − ˜̇qs (A.2)̂̈qm − q̈m =
d

dt

(˜̇e − ˜̇qs

)
Considering (3.11), (3.13), (A.2) and Property (2.27), it follows that

Cs(qs, ̂̇qs)̂̇qm − Cs(qs, q̇s)q̇m = Cs(qs, q̇s)˜̇e − 2Cs(qs, q̇s)˜̇qs

+Cs(qs, ˜̇qs)˜̇qs + Cs(qs, ˜̇qs)ė − Cs(qs, ˜̇qs)˜̇e (A.3)

Substitution of (A.3) in (A.1), and considering (3.11), (A.2), yields

Ms(qs)ë + Cs(qs, q̇s)ė + Kdė + Kpe = Ms(qs)
d

dt

(˜̇e − ˜̇qs

)
+Kd

˜̇e − 2Cs(qs, q̇s)˜̇qs + Cs(qs, ˜̇qs)˜̇qs + Cs(qs, ˜̇qs)ė

−Cs(qs, ˜̇qs)˜̇e + Cs(qs, q̇s)˜̇e (A.4)
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Estimation synchronization error dynamics

Define states x1, x2 ∈ �n as x1 := e, x2 := ė, and obtain a state space representation
for (A.4). In the states x1, x2 the estimation synchronization errors (3.11) are given
by

ẽ = x1 − ê, ˜̇e = x2 − ̂̇e (A.5)

Therefore, from the state space representation of (A.4) and the observer defined by
(3.10), the estimation synchronization error dynamics are given by

d

dt
ẽ = ˜̇e − Λ1ẽ

d

dt
˜̇e = Ms(qs)−1{−Cs(qs, q̇s)x2 − Kdx2 − Kpx1 + Ms(qs)

d

dt

(˜̇e − ˜̇qs

)
+Cs(qs, q̇s)˜̇e + Cs(qs, ̂̇qs) ̂̇e +

(
Cs(qs, ˜̇qs) − 2Cs(qs, q̇s)

) ˜̇qs

+Cs(qs, ˜̇qs)
(
x2 − ˜̇e)+ Kd

˜̇e + Kd
̂̇e + Kp ê} − Λ2ẽ

Considering (3.13), (A.2), (A.5) and after a straightforward computation, these equa-
tions reduce to

d

dt
ẽ = ˜̇e − Λ1ẽ (A.6)

d

dt
˜̇qs = Ms(qs)−1{−Kpẽ − 2Cs(qs, q̇s)˜̇qs + Cs(qs, ˜̇qs)˜̇qs} − Λ2ẽ (A.7)

Estimation joint position and velocity error dynamics

From the definition of the synchronization errors (3.7), it follows that

q̈s = ë + q̈m (A.8)

Define states z1, z2 ∈ �n as z1 := qs, z2 := q̇s, and obtain a state space representation
for (A.4). In the states z1, z2 the estimation position and velocity errors (3.13) are
given by

q̃s = z1 − q̂s, ˜̇qs = z2 − ̂̇qs (A.9)

So, from the state space representation for (A.4), with states z1, z2, and observer
(3.12), the estimation position and velocity error dynamics are given by

d

dt
q̃s = ˜̇qs − Lp1q̃s

d

dt
˜̇qs = Ms(qs)−1{−(Cs(qs, z2) + Kd)ė − Kpe + Ms(qs)

d

dt

(˜̇e − ˜̇qs

)
+Cs(qs, z2)˜̇e +

(
Cs(qs, ˜̇qs) − 2Cs(qs, z2)

)˜̇qs + Cs(qs, ˜̇qs)ė

−Cs(qs, ˜̇qs)˜̇e + Cs(qs, ̂̇qs) ̂̇e + Kd
˜̇e + Kd

̂̇e + Kpe} − Lp2q̃s + q̈m

Considering (3.13), (A.2), and (A.9), these equations reduce to

d

dt
q̃s = ˜̇qs − Lp1q̃s (A.10)

d

dt
˜̇qs =

d

dt
(˜̇e − ˜̇qs) + Ms(qs)−1{−2Cs(qs, z2)˜̇qs + Cs(qs, ˜̇qs)˜̇qs}

−Lp2q̃s + q̈m (A.11)
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Finally, from (A.7) and (A.11), it follows that

d

dt
q̃s = ˜̇qs − Lp1q̃s (A.12)

d

dt
˜̇e = Ms(qs)−1{−2Kpẽ − 2Cs(qs, q̇s)˜̇qs + Cs(qs, ˜̇qs)˜̇qs}

−2Λ2ẽ + Lp2q̃s − q̈m (A.13)

where the fact that z2 = q̇s has been used.

Coordinate transformations

Consider the coordinate transformation defined by (3.16), subtraction of (A.7, A.12)
from (A.6, A.13) gives rise to the dynamics for q̃m,

.

q̃m

d

dt
q̃m = ˜̇e − ˜̇qs − Lp1q̃m

d

dt

(˜̇e − ˜̇qs

)
= −Ms(qs)−1Kp (q̃m + q̃s) − Lp2q̃m − q̈m

where Assumption 3.5 has been used.
From (A.7), (A.12), it follows that

d

dt
q̃s = ˜̇qs − Lp1q̃s

d

dt
˜̇qs = Ms(qs)−1

{
−Kp (q̃m + q̃s) − 2Cs(qs, q̇s)˜̇qs + Cs(qs, ˜̇qs)˜̇qs

}
−Lp2 (q̃m + q̃s)

From the last four equations we obtain the error dynamics (3.23) and (3.24). By
adding and subtracting Kpq̃m+Cs(qs, q̇s)Lp1q̃m+KdLp1q̃m+M(qs)(Lp1

.

q̃m −Lp1Lp1q̃m)
from (A.4), and considering the coordinate transformation defined by (3.16) and
(3.17), this yields (3.22).
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Appendix B

Proof of Theorem 3.12

In this appendix we present the details behind the proof of the Theorem 3.12.

Time derivative of the Lyapunov function V (y)

Consider the Lyapunov function V (y) defined by (3.29), along the error dynamics
(3.22 - 3.24), and by using Assumption 3.6, the time derivative of (3.29) becomes

V̇ (y) = −yT Q(y)y + β (y, q̇s, q̈m) (B.1)

where

β (y, q̇s, q̈m) = εo

( .
q̄

T
+λoq̄

T
)

Cs(qs,
.

q̃s +Lp1q̃s)
( .
q̄ −Lp1q̃m

)
+εo

.
q̄

T
Cs(qs, q̇s)Lp1q̃m − εoλoq̄

T Cs(qs, q̇s)
( .
q̄ −Lp1q̃m

)
+
(

.

q̃
T

s +γq̃T
s

)
×Ms(qs)−1

(
Cs(qs,

.

q̃s +Lp1q̃s) − 2Cs(qs, q̇s)
)( .

q̃s +Lp1q̃s

)
+εoλo

.
q̄

T
Ṁs(qs)q̄ + µ̇

.

q̃
T

m q̃m + γ̇
.

q̃
T

s q̃s −
(

.

q̃
T

m +µq̃T
m

)
q̈m (B.2)

and Q(y) = Q(y)T is given by

Q(y) =

 Q11 Q12 Q13

QT
12 Q22 Q23

QT
13 QT

23 Q33

 (B.3)

with the block matrices

Q11 = εo

[
Kd − λoMs(qs) 0

0 λoKp

]

Q12 =
εo

2

[ −Ms(qs)Lp1 Kp − KdLp1

−λoMs(qs)Lp1 λo (Kp − KdLp1)

]
Q13 =

εo

2

[ −Kd −KdLp1

−λoKd −λoKdLp1

]
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Q22 =
[

Lp1 − µI 1
2

(
Ms(qs)−1Kp + µLp1

)
1
2

(
Ms(qs)−1Kp + µLp1

)T
µ
(
Ms(qs)−1Kp + Lp2

) ]

Q23 =
[

0 1
2Ms(qs)−1Kp

1
2

(
Ms(qs)−1Kp + Lp2

)
1
2

(
(µ + γ)Ms(qs)−1Kp + γLp2

) ]

Q33 =
[

Lp1 − γI 1
2

(
Ms(qs)−1Kp + γLp1

)
1
2

(
Ms(qs)−1Kp + γLp1

)T
γ
(
Ms(qs)−1Kp + Lp2

) ]
To conclude stability of the variable y defined by (3.19), we require positive defi-
niteness of Q(y) and boundedness of the term β(y, q̇s, q̈m) along the synchronization
closed loop error dynamics (3.22 - 3.24).

Boundedness of β(y, q̇s, q̈m)

First, from the definition of µ(q̃m), γ(q̃s) (3.30), it follows that

µ̇
.

q̃
T

m q̃m = −µ

(
q̃T
m

.

q̃m

1 + ‖q̃m‖

)
.

q̃
T

m q̃m ≤ µ
∥∥∥ .

q̃m

∥∥∥2

(B.4)

γ̇
.

q̃
T

s q̃s = −γ

(
q̃T
s

.

q̃s

1 + ‖q̃s‖

)
.

q̃
T

s q̃s ≤ γ
∥∥∥ .

q̃s

∥∥∥2

(B.5)

Then by boundedness of µ(q̃m), γ(q̃s) (3.31) it is obtained that

µ̇
.

q̃
T

m q̃m ≤ µo

∥∥∥ .

q̃m

∥∥∥2

, and γ̇
.

q̃
T

s q̃s ≤ γo

∥∥∥ .

q̃s

∥∥∥2

(B.6)

On the other hand, the definition of the synchronization errors (3.7) implies that

q̇s = ė + q̇m

Then, from the definition of
.
q̄, (3.17), we obtain a relation between q̇s and

.
q̄, which

is given by

q̇s =
.
q̄ +

.

q̃m +q̇m (B.7)

Finally, the definition of the inertia matrix Ms(qs) implies that

Ṁs(qs) =
d

dt
Ms(qs) =

∂Ms(qs)
∂qs

q̇s

hence, by property (2.28) and since qs only appears like argument of trigonometric
functions in Ms(qs), i.e. sine and cosine functions, we conclude that

Ms,pm ‖q̇s‖ ≤
∥∥∥Ṁs(qs)

∥∥∥ ≤ Ms,pM ‖q̇s‖ (B.8)

where

Ms,pm ≤
∥∥∥∥∂Ms(qs)

∂qs

∥∥∥∥ ≤ Ms,pM
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Then, from (B.6 - B.8), properties (2.28), (2.29), and taking into account Assumption
3.11, it follows that β(y, q̇s, q̈m) has an upperbound given by

β (y, q̇s, q̈m) ≤ −εoλoCs,M ‖q̄‖
(∥∥∥ .

q̄
∥∥∥− Lp1,M ‖q̃m‖

)(∥∥∥ .
q̄
∥∥∥+ ‖q̃m‖ + VM

)
+εoCs,MLp1,M

∥∥∥ .
q̄
∥∥∥ ‖q̃m‖

(∥∥∥ .
q̄
∥∥∥+ ‖q̃m‖ + VM

)
− AM

(∥∥∥ .

q̃m

∥∥∥+ µo ‖q̃m‖
)

+εoCs,M

(∥∥∥ .
q̄
∥∥∥+ λo ‖q̄‖

)
×
(∥∥∥ .

q̃s

∥∥∥ (
∥∥∥ .
q̄
∥∥∥− Lp1,m ‖q̃m‖) + ‖q̃s‖ (Lp1,M

∥∥∥ .
q̄
∥∥∥− L2

p1,m ‖q̃m‖)
)

−2M−1
s,mCs,M

(∥∥∥ .

q̃s

∥∥∥+ γo ‖q̃s‖
)(∥∥∥ .

q̃s

∥∥∥+ Lp1,M ‖q̃s‖
)

×
(∥∥∥ .

q̄
∥∥∥+ ‖q̃m‖ + VM

)
+ εoλoMs,pM

∥∥∥ .
q̄
∥∥∥ ‖q̄‖(∥∥∥ .

q̄
∥∥∥+ ‖q̃m‖ + VM

)
+ µo

∥∥∥ .

q̃m

∥∥∥2

+γo

∥∥∥ .

q̃s

∥∥∥2

+ M−1
s,mCs,M

(∥∥∥ .

q̃s

∥∥∥+ γo ‖q̃s‖
)(∥∥∥ .

q̃s

∥∥∥+ Lp1,M ‖q̃s‖
)2

(B.9)

From the upperbound of β(y, q̇s, q̈m) (B.9), the upperbound of µ(q̃m), γ(q̃s) (3.31),
and considering yN defined by (3.34), it follows that V̇ (y) (B.1) can be upperbounded
as in equation (3.35).
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Appendix C

Proof of Lemma 4.1

In this appendix the synchronization closed loop error dynamics given by (4.23),
(4.24), and (4.25) are developed.
From the definition of the synchronization errors (4.13) it follows that

q̇s = ė + q̇m, q̈s = ë + q̈m, q(3)
s = e(3) + q(3)

m (C.1)

Consider a state space representation of the robot dynamics (4.1), (4.2), with states
qs, q̇s, θs, θ̇s, then from the nonlinear observer (4.20), (4.21) and the joint estimation
errors (4.22), it follows that

.

q̃s = ˜̇qs − µ1q̃s
.˜̇qs = −M−1

s (qs)
((

2Cs(qs, q̇s) − Cs(qs, ˜̇qs)
) ˜̇qs + Ks(q̃s − θ̃s)

)
− µ2q̃s

.

θ̃s = ˜̇θs − µ3q̃s (C.2)
.˜̇θs = −J−1

s Ks(θ̃s − q̃s) − J−1
s Bv,s

˜̇θs − µ4q̃s

The first and third equation of (C.2) imply that˜̇qs =
.

q̃s +µ1q̃s,
..

q̃s=
.˜̇qs −µ1

.

q̃s (C.3)˜̇θs =
.

θ̃s +µ3q̃s,
..

θ̃s=
.˜̇θs −µ3

.

q̃s (C.4)

therefore (C.1) and (C.2) yield the joint estimation error dynamics (4.25).
On the other hand, consider the joint estimation errors given by (4.22), and introduce

the variables ˜̈qs, q̃
(3)
s as ˜̈qs = q̈s − ̂̈qs, q̃

(3)
s = q(3)

s − q̂
(3)
s (C.5)

Differentiating (4.1) twice, and by considering (4.2), the control law τs (4.14), and
property (2.26) it follows that

Ms(qs)
(
q(4)
s − v̂(t)

)
+ Ψ(qs, q̇s, q̈s, q

(3)
s , q̃s, ˜̇qs, ˜̈qs, q̃

(3)
s , θ̃s,

˜̇
θs) = 0 (C.6)

where Ψ(qs, q̇s, q̈s, q
(3)
s , q̃s, ˜̇qs, ˜̈qs, q̃

(3)
s , θ̃s,

˜̇
θs) represents the mismatch with the desired

linearization system, which is caused by absence of the high order derivatives of
qs, qm, θs.
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Notice that (C.6) depends on the signals q̇s, q̈s, q
(3)
s and ˜̈qs, q̃

(3)
s . Nevertheless this

dependency can be changed in terms of the synchronization errors ė, ë, e(3) and q̃s,
.

q̃s.
According to the definition of ˜̈qs (C.5), and by considering (4.8), (4.15) and (C.3)˜̈qs = −M−1

s (qs)
((

2Cs(qs, q̇s) − Cs(qs,
.

q̃s +µ1q̃s)
)( .

q̃s +µ1q̃s

)
+ Ks(q̃s − θ̃s)

)
(C.7)

In a similar way, but considering (C.5), (4.9) and (4.16), it follows that

q̃
(3)
s = −M−1

s (qs)(Ṁs(qs, q̇s)q̈s − Ṁs(qs, ̂̇qs)̂̈qs + Ṅ(qs, q̇s, q̈s)

−Ṅ(qs, ̂̇qs, ̂̈qs) + Ks(˜̇qs − ˜̇θs)) (C.8)

where, by considering property (2.26) and after a straightforward computation

Ṁs(qs, q̇s)q̈s − Ṁs(qs, ̂̇qs)̂̈qs =
∂Ms(qs)

∂qs

(˜̇qsq̈s + (q̇s − ˜̇qs)˜̈qs

)
(C.9)

Ṅ(qs, q̇s, q̈s) − Ṅ(qs, ̂̇qs, ̂̈qs) = Cs(qs, ˜̇qs)q̈s +
(
Cs(qs, q̇s) − Cs(qs, ˜̇qs)

) ˜̈qs

+
∂gs(qs)

∂qs

˜̇qs +

 Cs1(qs)
...

Csn(qs)

(˜̈qsq̇s + (q̈s − ˜̈qs)˜̇qs

)

+q̇s
∂

∂qs

 Cs1(qs)
...

Csn(qs)

(˜̇qs

.
qs +(q̇s − ˜̇qs)˜̇qs

)
+

+˜̇qs

∂

∂qs

 Cs1(qs)
...

Csn(qs)

((q̇s − ˜̇qs)(q̇s − ˜̇qs)
)

(C.10)

Let Φ(qs, q̇m, q̈m, q
(3)
m , ė, ë, e(3), q̃s,

.

q̃s, θ̃s,
.

θ̃s) denote the function

Ψ(qs, q̇s, q̈s, q
(3)
s , q̃s, ˜̇qs, ˜̈qs, q̃

(3)
s , θ̃s,

˜̇θs) after substitution of the relations (C.3), (C.4),
(C.7), (C.8), (C.9), (C.10),and (C.1), then

Φ(qs, q̇m, q̈m, q(3)
m , ė, ë, e(3), q̃s,

.

q̃s, θ̃s,
.

θ̃s) = Ψ(qs, q̇s, q̈s, q
(3)
s , q̃s, ˜̇qs, ˜̈qs, q̃

(3)
s , θ̃s,

˜̇θs)
(C.11)

where Φ(qs, q̇m, q̈m, q
(3)
m , ė, ë, e(3), q̃s,

.

q̃s, θ̃s,
.

θ̃s) is the result of a long, but straightfor-
ward, chain of substitutions and simplifications.
Substitution of (C.11) and (4.17) in (C.6), and taking into account (4.18), yields the
synchronization error dynamics (4.23).
Consider the nonlinear observer (4.18) and the estimation synchronization errors
(4.19), then it follows that

ê(4) − Γ1ẽ
(3) − Γ2

..

ẽ −Γ3

.

ẽ −Γ4ẽ = 0 (C.12)

Subtraction of (C.12) from the synchronization error dynamics (4.23), and considering
the estimation synchronization errors (4.19), yields the estimation synchronization
error dynamics (4.24).



Appendix D

Proof of Lemma 4.7

In this appendix we provide a general bound for the derivative of the Lyapunov matrix
(4.35) along the synchronization closed loop error dynamics (4.26). Such derivative
is given by (4.40).
Before getting the bound of (4.40) some bounds on the physical parameters are re-
quired.
From the properties of the matrices Ms(qs), Cs(qs, q̇s)q̇s, the gravity term gs(qs), (see
Section 2.2.3), and because their nonlinear terms contain only sinusoidal functions of
qs, we have that for all qs ∈ �n , their partial derivatives can be bounded as∥∥∥∥∂Ms(qs)

∂qs

∥∥∥∥ ≤ MpM ,

∥∥∥∥∂2Ms(qs)
∂q2

s

∥∥∥∥ ≤ MppM

∥∥∥∥∂gs(qs)
∂qs

∥∥∥∥ ≤ GpM ,

∥∥∥∥∂2gs(qs)
∂q2

s

∥∥∥∥ ≤ GppM∥∥∥∥∥∥∥
 Cs1(qs)

...
Csn(qs)


∥∥∥∥∥∥∥ ≤ CqM ,

∥∥∥∥∥∥∥
∂

∂qs

 Cs1(qs)
...

Csn(qs)


∥∥∥∥∥∥∥ ≤ CpM

∥∥∥∥∥∥∥
∂2

∂q2
s

 Cs1(qs)
...

Csn(qs)


∥∥∥∥∥∥∥ ≤ CppM

For the sake of simplicity and without loss of generality, assume that Qx = −(PxA +
AT Px) is a symmetric positive definite block diagonal matrix, with n×n block entries,
and denote the i-th diagonal n × n block of Qx by Qxi. Then from the definition of
xN , yN , and ξN (4.44), and V̇ given by (4.40), it follows that the term xT Qxx in
(4.40) can be bounded as xT

NRxxN , with Rx ∈ �8×8 given by

Rx = diag{QxiM} i = 1, . . . , 8 (D.1)

where QxiM is the maximum eigenvalue of Qxi, and such that positive definiteness of
Qx implies that Rx is positive definite.
On the other hand, from the matrix Qy (4.41), the term Ω (4.43), and by considering
the bounds of Ms(qs), Cs(qs, q̇s)q̇s, Bv,s and gs(qs), and the partial derivatives of
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Ms(qs), Cs(qs, q̇s), it follows that yT Qyy can be bounded as yT
NRyyN , with Ry ∈ �4×4

given by

Ry =


α∗

0 α∗
1 α∗

2 α∗
3

α∗
1 Msmµ1m − 2λ0 + 2CMVM η0µ3M − 1

2KsM
1
2JsMµ3M

α∗
2 η0µ3M − 1

2KsM 2η0J
−1
sMKsm α∗

4

α∗
3

1
2JsMµ3M α∗

4 Bv,sm − 4η0

 (D.2)

α∗
0 = 2λ0(M−1

sM (Ksm + 2CMVMµ1m) + µ2m)

α∗
1 = CMVM (2M−1

smλ0 + µ1M ) − 1
2
MsMµ2M − 1

2
β1

α∗
2 = −λ0M

−1
smKsM + η0(µ4M + J−1

smBv,sMµ3M − J−1
smKsM )

α∗
3 =

1
2

(Bv,sMµ3M + JsMµ4M − KsM )

α∗
4 = η0J

−1
smBv,sM − 1

2
µ4M − 1

2
β2

The matrices Rx and Ry are related to the bounds of the quadratic terms in x and y

of V̇ given by (4.40). Nevertheless, there exist bilinear cross terms in x and y, coming
from Qxy (4.42) and Ω. These quadratic cross terms are bounded, such that, Rxy

corresponds to the bound of the bilinear cross terms of∥∥∥xT PxB
[
−M−1

s (Φ + KsJ
−1
s (Ks(y1 − y3) − Bv,s(y4 + µ3y1))) + q(4)

m

]∥∥∥
+
∥∥xT Qxyx

∥∥
Consider Φ + KsJ

−1
s Ks(y1 − y3) − KsJ

−1
s Bv,s(y4 + µ3y1), which can be bounded as∥∥Φ + KsJ

−1
s Ks(y1 − y3) − KsJ

−1
s Bv,s(y4 + µ3y1)

∥∥ ≤ Φ1 + Φr (D.3)

where Φ1 contains terms of first order in x, y, and Φr contains the remaining terms
(orders 2, 3 and 4). After a long and straightforward computation it is obtained that
Φ1 is given by

Φ1 = ((a1 + a3)µ1M + a2 + a3µ3M ) ‖y1‖ + (a1 + a3) ‖y2‖ + a2 ‖y3‖ + a3 ‖y4‖
with

a1 = 2M−1
smCMVM [AM (MpM + 2CqM ) + GpM + KsM

+V 2
M (MpM + 2CpM )] + CpMVM

(
6AM + 2M−1

smCMV 2
M

)
+ 4CppMV 3

M

+2
(
A2

M + CpMAMVM + 2M−1
smCpMCMV 2

M

)
+ M−1

smVM (2MpM + CM + CqM )

× [GpM + 3CpMV 2
M + (MpM + CM + CqM )(AM + 2M−1

smV 2
M )
]
+

+DM (2MpM + CM + CqM ) + 2M−1
smCMVMAM (MpM + 2CqM )

+2GppM + 2MppMAMVM

a2 = KsmM−1
sm

{
2AM (MpM + 2CqM ) + GpM + KsM + V 2

M (MpM + 2CpM )
}

+Ksm[M−1
smCpMVM (2 + VM )

+(M−1
smVM )2(MpM + CM + CqM )(2MpM + CM + CqM )]
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a3 = KsmM−1
smVM (2MpM + CM + CqM )

Therefore, the matrix Rxy is given by

Rxy = M−1
smPQ

[
R∗

1 a1 + a3 a2 + K2
sMJ−1

sm a3 + KsMJ−1
smBv,sM

]
(D.4)

PQ =



(Px14 + Px18)M

(Px24 + Px28)M

(Px34 + Px38)M

(Px44 + Px48)M

(PT
x45 + Px58)M

(PT
x46 + Px68)M

(PT
x47 + Px78)M

(PT
x48 + Px88)M


R∗

1 = (a1 + a3) µ1M + a2 + a3µ3M + KsMJ−1
sm(Bv,sMµ3M − Ksm)

Remark D.1 Notice that a1, a2, a3 are uniquely determined by the physical param-
eters of the slave robot and the bounds of the master trajectories, and thus they do
no depend on the control and observer gains. As a consequence a1, a2, a3 must be
evaluated only once and it can be done prior the gain tuning procedure.

At this point all the quadratic terms of V̇ have been bounded in terms of Rx, Ry, Rxy,
and xN , yN , ξN . Therefore it is only necessary to bound all the remaining terms
originated from Ω. From (4.43) and considering (D.3), it follows that∥∥∥Ω(qs, q̇m, q̈m, q(3)

m , q(4)
m , x, y)

∥∥∥ ≤ Θ(VM , AM , DM , EM , ξN ) (D.5)

where Θ(VM , AM , DM , EM , ξN ) is given by

Θ = 2xT
NPQ

[
M−1

smΦr + EM

]
+ CMµ1M ‖y1‖ ‖y2‖2

+2λ0CMM−1
sm ‖y1‖ ‖y2‖ (‖y2‖ + µ1M ‖y1‖)

+CM (µ1M ‖y1‖ + 2 ‖x2‖)
(
2λ0M

−1
sm ‖y1‖ + ‖y2‖

)
(‖y2‖ + µ1M ‖y1‖)

with PQ as in (D.4).



126 Appendix D. Proof of Lemma 4.7



Appendix E

Proof of Proposition 4.9

In this appendix we provide conditions to ensure positive definiteness of the matrix
Ry given by (D.2), which is a necessary condition to prove positive definiteness of the
matrix Rv given by (4.46).
First, notice that the definition of β1, β2 given by (4.48), imply that α∗

1 = 0, α∗
4 = 0

in Ry (D.2).
Second, let Ryi denote the determinant of the i−th leading minor of Ry, then condi-
tions for Ryi > 0, i = 1, . . . , 4, are given by

• Ry1 > 0 if λ0 > 0, µ1m > 0, and µ2m > 0

• Ry2 > 0 if µ1m > 2M−1
sm (λ0 − CMVM )

• For Ry3, first notice that it can be written as Ry3 = a31µ2m + a30, with a31 =
b32µ

2
3M + b31µ3M + b30, and b32 < 0. Then a31 > 0 if µ33 < µ3m, µ3M < µ−

33,
where

µ33 =
1

4JsMη0

(
2JsMKsM − 4 (2JsMη0KsM (Msmµ1m + 2(CMVM − λ0)))

1/2
)

µ−
33 =

1
4JsMη0

(
2JsMKsM + 4 (2JsMη0KsM (Msmµ1m + 2(CMVM − λ0)))

1/2
)

because a31 > 0, then µ2m > −a−1
31 a30 implies Ry3 > 0.

• Ry4 can be written as Ry4 = a41µ2m + a40, with a41 = b42µ
2
3M + b41µ3M + b40,

and b42 < 0 if η0 holds

0 < η0 < min
{

Bv,sm

4
,

1
8JsM

(
JsMBv,sm +

(
J2

sMB2
v,sm + 8JsMJ2

smKsm

)1/2
)}

Then b42 < 0 implies that a41 > 0 if µ34 < µ3m, µ3M < µ−
34, where

µ34 =
1

2 (η0(2JsM (4η0 − Bv,sm)) − J2
smKsm)

(2JsMKsmη0(4η0 − Bv,sm)

+ (2JsMKsmη0)
1/2 ((4η0 − Bv,sm)[J2

smK2
sM

+8η0 (2λ0 − 2CMVM − Msmµ1m)
(
J−1

sMJ2
smKsm − 2η0(4η0 − Bv,sm)

)
])1/2)
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µ−
34 =

1
2 (η0(2JsM (4η0 − Bv,sm)) − J2

smKsm)
(2JsMKsmη0(4η0 − Bv,sm)

− (2JsMKsmη0)
1/2 ((4η0 − Bv,sm)[J2

smK2
sM

+8η0 (2λ0 − 2CMVM − Msmµ1m)
(
J−1

sMJ2
smKsm − 2η0(4η0 − Bv,sm)

)
])1/2)

because a41 > 0, then µ2m > −a−1
41 a40 implies Ry4 > 0.

If the above conditions are satisfied, then the determinants of all the leading minors
of Ry are positive. Therefore by Sylvester’s criterion it follows that Ry is positive
definite.



Appendix F

Proof of Lemma 5.9

In this appendix we develop the synchronization closed loop error dynamics of the
multi-composed system of p robots in closed loop with the controller (5.21) and the
observers (5.26). First the error dynamics for the observers (5.26) is obtained, then
the coupled synchronization error dynamics is formulated. Through the formulation
of the error dynamics, Assumptions 5.1 and 5.8 are considered.

Observer error dynamics

Let xi,1 = qi and xi,2 = q̇i define states for the i-th robot dynamics given by (5.1).
Then from a state space representation of (5.1), with states xi,1 and xi,2, and the
observer defined by (5.26), it follows that after substitution of the control τi given by
(5.21)

d

dt
q̃i = ˜̇qi − µ1q̃i (F.1)

d

dt
˜̇qi = Mi(qi)−1

[
Ci(qi, ̂̇qi)̂̇qi − Ci(qi, q̇i)q̇i

]
− µ2q̃i

From the definition of the estimation errors (5.27) and the properties of the Coriolis
term, Section 2.2.3, it is obtained that

Ci(qi, ̂̇qi)̂̇qi − Ci(qi, q̇i)q̇i = Ci(qi, ˜̇qi)
(˜̇qi − 2q̇i

)
The partial synchronization errors (5.9) imply that q̇i = q̇d + ėi,i. Therefore after a
simple computation is it obtained that the observer error dynamics is given by

..

q̃i= Mi(qi)−1Ci(qi,
.

q̃i +µ1q̃i)
( .

q̃i +µ1q̃i − 2q̇d − 2ėi,i

)
− µ1

.

q̃i −µ2q̃i (F.2)

Synchronization error dynamics

From the dynamics of the robots (5.1) and the synchronization controller (5.21) it
follows that

Mi(qi)
(
q̈i − ̂̈qri

)
+Ci(qi, q̇i)q̇i−Ci(qi, ̂̇qi)̂̇qri = −Kd,i

̂̇si−Kp,isi i = 1, . . . , p (F.3)
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On the one hand, from the definition of the estimate of the reference signal ̂̈qri given
by (5.23), the partial synchronization errors (5.8) and the estimation errors (5.27), it
is obtained that

q̈i − ̂̈qri = ëi,i +
p∑

j=1,j �=i

Ki,j ëi,j −
p∑

j=1,j �=i

Ki,j

(˜̈qi − ˜̈qj

)
(F.4)

and from the observer error dynamics (F.1) it follows that

˜̈qi − ˜̈qj = Mi(qi)−1Ci(qi,
.

q̃i +µ1q̃i)
( .

q̃i +µ1q̃i − 2q̇d − 2ėi,i

)
− µ2q̃i

−Mj(qj)−1Cj(qj ,
.

q̃j +µ1q̃j)
( .

q̃j +µ1q̃j − 2q̇d − 2ėj,j

)
+ µ2q̃j (F.5)

In a similar way, but from the definition of ̂̇qri given by (5.22), it follows that

̂̇si := ėi,i +
p∑

j=1,j �=i

Ki,j ėi,j−
.

q̃i −µ1q̃i +
p∑

j=1,j �=i

Ki,j

(
−

.

q̃i −µ1q̃i+
.

q̃j +µ1q̃j

)
(F.6)

On the other hand from the properties of the Coriolis term, Section 2.2.3, the defini-
tion of ̂̇qri given by (5.22) and the observer error dynamics (F.1) it follows that

Ci(qi, q̇i)q̇i − Ci(qi, ̂̇qi)̂̇qri = Ci(qi, ėi,i + q̇d)

ėi,i +
p∑

j=1,j �=i

Ki,j ėi,j


+Ci

(
qi, ėi,i + q̇d−

.

q̃i −µ1q̃i

) p∑
j=1,j �=i

Ki,j

( .

q̃i +µ1q̃i−
.

q̃j −µ1q̃j

)

+Ci(qi,
.

q̃i +µ1q̃i)

q̇d −
p∑

j=1,j �=i

Ki,j ėi,j

 (F.7)

From equations (F.2) and (F.3) it follows that the synchronization closed loop error
dynamics are given by (for i = 1, . . . , p)

..

q̃i= Mi(qi)−1Ci(qi,
.

q̃i +µ1q̃i)
( .

q̃i +µ1q̃i − 2q̇d − 2ėi,i

)
− µ1

.

q̃i −µ2q̃i (F.8)

Mi(qi)

ëi,i +
p∑

j=1,j �=i

Ki,j ëi,j

 = Mi(qi)
p∑

j=1,j �=i

Ki,j

(˜̈qi − ˜̈qj

)
−
(
Ci(qi, q̇i)q̇i − Ci(qi, ̂̇qi)̂̇qri

)
− Kd,i

̂̇si − Kp,isi (F.9)

Substitution of equations (F.4 - F.7) in (F.9), and considering the synchronization
errors si, ṡi, defined by (5.6), results in the synchronization error dynamics (5.30,
5.31).



Appendix G

Proof of Theorem 5.11

In this appendix we present the details behind the proof of the Theorem 5.11

Time derivative of the Lyapunov function V (ṡ,
.

q̃, s, q̃)

The time derivative of the Lyapunov function (5.37) along the error dynamics (5.30,
5.31) is given by

V̇ (ṡ,
.

q̃, s, q̃) =
p∑

i=1

V̇i(ṡi,
.

q̃i, si, q̃i) =
p∑

i=1

{
V̇i,1(ṡi, si) + V̇i,2(

.

q̃i, q̃i)
}

(G.1)

where according to (5.39) and (5.40)

V̇i,1(ṡi, si) = ṡT
i Kp,isi + ṡT

i Mi(qi)s̈i +
1
2
ṡT

i Ṁi(qi)ṡi (G.2)

V̇i,2(
.

q̃i, q̃i) =
( .

q̃T
i Mi(qi) + ηi(q̃i)q̃T

i

)
..

q̃i +
1
2

.

q̃T
i Ṁi(qi)

.

q̃i

+ηi(i)
.

q̃T
i q̃i + η̇i(q̃i)

.

q̃T
i q̃i + q̃T

i (µ2 + βiIn)
.

q̃i (G.3)

From the synchronization closed loop error dynamics (5.30, 5.31), and by the prop-
erties of the Coriolis term, it follows that

V̇i,1(ṡi, si) = −ṡT
i Kd,iṡi − ṡT

i Ci(qi,
.

q̃i +µ1q̃i)

q̇d −
p∑

j=1,j �=i

Ki,j ėi,j


−ṡT

i Ci

(
qi, ėi,i + q̇d−

.

q̃i −µ1q̃i

) p∑
j=1,j �=i

Ki,j

( .

q̃i +µ1q̃i−
.

q̃j −µ1q̃j

)

+ṡT
i Kd,i

 .

q̃i +µ1q̃i +
p∑

j=1,j �=i

Ki,j

( .

q̃i +µ1q̃i−
.

q̃j −µ1q̃j

)+ ṡT
i Mi(qi) ×

×
p∑

j=1,j �=i

Ki,j

[
Mi(qi)−1Ci(qi,

.

q̃i +µ1q̃i)
( .

q̃i +µ1q̃i − 2q̇d − 2ėi,i

)
− µ1

.

q̃i −µ2q̃i

+µ1

.

q̃j +µ2q̃j − Mj(qj)−1Cj(qj ,
.

q̃j +µ1q̃j)
( .

q̃j +µ1q̃j − 2q̇d − 2ėj,j

)]
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V̇i,2(
.

q̃i, q̃i) =
(
Mi(qi)−1Ci

(
qi,

.

q̃i +µ1q̃i

)( .

q̃i +µ1q̃i − 2q̇d − 2ėi,i

)
− µ1

.

q̃i −µ2q̃
)
×

×
( .

q̃T
i Mi(qi) + ηi(q̃i)q̃T

i

)
+

1
2

.

q̃T
i Ṁi(qi)

.

q̃i +ηi(i)
.

q̃T
i

.

q̃i +η̇i(q̃i)
.

q̃T
i q̃i + q̃T

i (µ2 + βiIn)
.

q̃i

After a long but straightforward computation and by considering Assumptions 5.1,
5.8, 5.10, the properties of the robot dynamics, and the bound of Ṁi(qi) given by

Mi,pm ‖q̇i‖ ≤
∥∥∥Ṁi(qi)

∥∥∥ ≤ Mi,pM ‖q̇i‖

it follows that V̇i(ṡi,
.

q̃i, si, q̃i) in (G.1) is bounded as

V̇i(ṡi,
.

q̃i, si, q̃i) ≤ −
(

Mi,mµ1 − 2η0 − 1
2
Mi,pM + 2VMCi,M

)∥∥∥ .

q̃i

∥∥∥2

−Kdi ‖ṡi‖2 − η0

(
µ2 + 2VMCi,MM−1

i,mµ1

) ‖q̃i‖2

+
(
βi − η0µ1 − 2VMCi,M

(
µ1 + η0M

−1
i,m

)
+ µ2(1 − Mi,m)

) ∥∥∥ .

q̃i

∥∥∥ ‖q̃i‖

+

Kdi − VMCi,M +
p∑

j=1,j �=i

Ki,j (Kdi − Mi,mµ1 − 3VMCi,M )

 ‖ṡi‖
∥∥∥ .

q̃i

∥∥∥
+

µ1 (Kdi − VMCi,M ) +
p∑

j=1,j �=i

Ki,j (Kdiµ1 − Mi,mµ2 − 3VMCi,Mµ1)

 ‖ṡi‖ ‖q̃i‖

+ (Mi,mµ1 − Kdi + VMCi,M ) ‖ṡi‖
p∑

j=1,j �=i

Ki,j

∥∥∥ .

q̃j

∥∥∥+ 2VMMi,m ‖ṡi‖ ×

×
p∑

j=1,j �=i

Ki,j

(
M−1

j,mCj,M

∥∥∥ .

q̃j

∥∥∥)+ 2µ1VMMi,m ‖ṡi‖
p∑

j=1,j �=i

Ki,j

(
M−1

j,mCj,M ‖q̃j‖
)

+ (Mi,mµ2 − Kdiµ1 + µ1VMCi,M ) ‖ṡi‖
p∑

j=1,j �=i

Ki,j ‖q̃j‖ + Φ3,i (G.4)

with Φ3,i given by

Φ3,i = Ci,M ‖ṡi‖
(∥∥∥ .

q̃i

∥∥∥+ µ1 ‖q̃i‖
) p∑

j=1,j �=i

Ki,j ‖ėi,j‖
+

(∥∥∥ .

q̃i

∥∥∥+ η0M
−1
i,m ‖q̃i‖

)
×

×Ci,M

(∥∥∥ .

q̃i

∥∥∥+ µ1 ‖q̃i‖
)(∥∥∥ .

q̃i

∥∥∥+ µ1 ‖q̃i‖ − 2 ‖ėi,i‖
)
−
(
‖ėi,i‖ −

∥∥∥ .

q̃i

∥∥∥− µ1 ‖q̃i‖
)
×

×Ci,M ‖ṡi‖
p∑

j=1,j �=i

Ki,j

(∥∥∥ .

q̃i

∥∥∥− ∥∥∥ .

q̃j

∥∥∥+ µ1 (‖q̃i‖ − ‖q̃j‖)
)

+ Mi,m ‖ṡi‖ ×

×
p∑

j=1,j �=i

Ki,j(M−1
i,mCi,M

(∥∥∥ .

q̃i

∥∥∥+ µ1 ‖q̃i‖
)(∥∥∥ .

q̃i

∥∥∥+ µ1 ‖q̃i‖ − 2 ‖ėi,i‖
)

−M−1
j,mCj,M

(∥∥∥ .

q̃j

∥∥∥+ µ1 ‖q̃j‖
)(∥∥∥ .

q̃j

∥∥∥+ µ1 ‖q̃j‖ − 2 ‖ėj,j‖
)
) (G.5)

From the definition of βi in (5.42 ), the coefficient of the bilinear term
∥∥∥ .

q̃i

∥∥∥ ‖q̃i‖ in
(G.4) is equal to zero. Therefore from q̃ in (5.36) the bound (G.4) results in (5.46).



Appendix H

Dynamic model of the CFT
robot

Here the dynamic model and kinematic relations of the CFT transposer robots in
the multi-robot system are presented. The multi-robot system, formed by two CFT
robots, is installed in the Dynamics and Control Technology Laboratory of the De-
partment of Mechanical Engineering at the Eindhoven University of Technology. The
individual robots in the multi-composed system are referred to as robot 1 (R1) and
robot 2 (R2).
The robot has four degrees of freedom, which are depicted in Figure 6.1. A schematic
representation of the robot in the Cartesian space is given in Figure H.1. The trans-
lational movement correspond to the degree of freedom of the body attached to frame
{1}. The rotational base corresponds to the body attached to frame {2}. The up and
down, forward and backward movements correspond to the degrees of freedom of the
origin of the frame {7}, denoted by Pe. The point Pe is the point where the passively
actuated tool is connected.
The transposer robot is a Cartesian robot, but the synchronization controllers pro-
posed in Chapters 3 and 5 are designed in the joint space. Therefore the first step
for implementing the controllers is to relate the Cartesian and joint spaces. For this
a direct kinematic model in both spaces is required. The kinematic model of the
robot can be formulated based on the Denavit-Hartenberg parameters (Craig 1988),
while the dynamic model can be formulated based on Denavit-Hartenberg parameters
and the Euler-Lagrange approach (Spong and Vidyasagar 1989), (Lewis et al. 1993).
A detailed formulation of the kinematic and dynamic model of the CFT transposer
robot can be found in the technical report (Rodriguez-Angeles et al. 2002a).

Direct kinematics in the Cartesian space

Consider Figure H.1 and denote the 4 Cartesian degrees of freedom of the robot
as xc1, xc2, xc3 and xc4, such that xc1, xc2 correspond to the up and down, forward
and backward movement of the arm respectively, and xc3, xc4 are the rotation and
translation of the base in which the arm is mounted.
Figure H.1 shows a schematic diagram of the robot, xc3, xc4 are absolute coordinates
and are referred with respect to an inertial frame – frame {0} – at the base of the
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Figure H.1: CFT-transposer robot: Cartesian coordinates

robot. The coordinates xc1, xc2 are relative coordinates and are referred with respect
to a frame at the edge of the translational platform – frame {e}. xc2 is defined under
the consideration that the upper arm is aligned with the y0 axis. xc4 is the distance
from the origin of frame {0} to the origin of frame {e}.
The physical dimensions of the CFT-robot are listed in Table H.1, di i+1 denotes the
distance between the origin of frame {i} and {i + 1}, ds is the distance between the
origin of frame {1} and {e}, and Li denotes the length of the i-th link.

Dimension Value [m] Dimension Value [m]
L2, d1 2 0.25 L8 0.48

L4 0.05 d4, d5 0.0
L5 0.35 d6 0.04
L6 0.30 ds 0.185
L7 0.08 d2 0′ 0.0916

Table H.1: Dimensions of the robot.

Consider the point Pe as the origin of frame {7}, then the coordinates of Pe with
respect to the frame {0} are given by

xPe,0 = (xc2 − ds) cos(xc3 − 0.8292)
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ype,0 = xc4 + ds + (xc2 − ds) sin(xc3 − 0.8292) (H.1)
zpe,0 = L2 + 0.25 − xc1

As mentioned the passively actuated tool, that is attached to the end of the upper
arm is constrained to remain horizontal at all time. Therefore the coordinates of the
tip of the tool (xT , yT , zT ) with respect to the frame {0} are given by

xT = (xc2 − ds + L8) cos(xc3 − 0.8292)
yT = xc4 + ds + (xc2 − ds + L8) sin(xc3 − 0.8292) (H.2)
zT = L2 + 0.25 − xc1 − L7

Equations (H.2) correspond to the direct kinematics of the robot and determine any
position of the tip of the tool in the robot working space as function of the robot
coordinates xc1, xc2, xc3 and xc4.

Direct kinematics in the joint space

To define the direct kinematics of the robot, the-Denavit Hartenberg parameters are
considered, in particular the convention presented in (Craig 1988) is used. According
to (Craig 1988) the frames can be assigned as in Figure H.2, with the resulting
Denavit-Hartenberg parameters listed in Table H.2. Li is the length of link i, di

is the offset of each link along the zi−axis, q1, q3 are the translations along z1, z3

respectively, and for i = 2, 4, 5, 6, 7, qi is the rotation angle about the zi−axis. All
the dimensions of the robot are listed in Table H.1.

i ai αi di qi

0 0 −π
2 — —

1 0 π
2 q1 0

2 0 −π
2 L2 q2

3 0 −π
2 q3 −π

2

4 L4 0 0 q4

5 L5 0 0 q5

6 L6 0 d6 q6

7 L7 0 d7 q7

8 L8 0 0 π
2

9 — — 0 0

Table H.2: Denavit-Hartenberg parameters for the CFT-robot

The Denavit-Hartenberg parameters listed in Table H.2 and the frames in Figure H.2
account for 7 joints, i.e. qi, i = 1, . . . , 7. However, by construction the joints q3, q6,
and q7 are kinematically constrained as function of q4, q5 as follows

q3 = L4

(
cos

(
−q4 − q5 +

π

2

)
+ cos

(
−q4 +

π

2

))
+ d2 0′ (H.3)

q6 = −q5 (H.4)

q7 = π − q4 (H.5)
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Figure H.2: Frames for the CFT-transposer robot

According to (Craig 1988) and by considering the Denavit-Hartenberg parameters
(Table H.2), and the kinematic constraints (H.3 - H.5), it follows that the direct
kinematics between the tip position of the tool (xT , yT , zT ) and the actuated joints
q1, q2, q4, and q5 is given by

xT = − (L8 + d2 0′) sin(q2) +
1
2

[cos(−q2 + q4) − cos(q2 + q4)] L6

+
1
2

[cos(q5 − q2 + q4) − cos(q5 + q2 + q4)] (L5 − L4)

yT = q1 + (L8 + d2 0′) cos(q2) − 1
2

[sin(q2 + q4) − sin(q4 − q2)] L6 (H.6)

−1
2

[sin(q5 − q2 + q4) + sin(q5 + q2 + q4)] (L5 − L4)

zT = L2 − L7 + (L6 + L4) cos(q4) + L5 cos(q4 + q5)

Since the direct kinematics (H.2) and (H.6) represent the same point in the space
with respect to frame {0}, it follows that there exists a unique relation between the
Cartesian coordinates xc1, xc2, xc3 and xc4 and the joint coordinates q1, q2, q4, and
q5.

From the geometry of the robot it follows that the Cartesian coordinates xc1, xc2, xc3
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and xc4 and the joint coordinates q1, q2, q4, and q5 are related as

xc1 = 0.25 − (L4 + L6) (cos(q4 + q5) + cos(q4))
xc2 = d2 0′ − ds − L6 (sin(q4 + q5) + sin(q4))
xc3 = q2 + 2.4 (H.7)
xc4 = q1 − ds

The relation (H.7) defines the direct kinematics between Cartesian coordinates and
joint coordinates. It is important since it allows to transform quantities and variables
between the Cartesian and the joint spaces, for instance, forces and torques via the
Jacobian of (H.7). A particular use of (H.7) is the design of desired trajectories in
the joint space. Note that equations (H.2) and (H.6) represent the same point in
the space with respect to frame {0}. But for any given desired trajectory for the
tip of the robot, denoted by (xT,d(t), yT,d(t), zT,d(t)) , it is easier to solve (H.2) than
(H.6). Then the desired tip trajectory is transformed in a desired trajectory in terms
of the Cartesian coordinates xc1, xc2, xc3 and xc4, and by the inverse of (H.7) it is
transformed in a desired trajectory for the joint coordinates q1, q2, q4, and q5. This
sequence of transformations is used in the experiments in order to generate joint space
desired trajectories for the proposed synchronization schemes.

Joint space dynamics

The dynamics of the CFT transposer robots are given by (6.1, 6.2), i.e.

M(qi)q̈i + C(qi, q̇i)q̇i + g(qi) + f(q̇i) = τi, i = 1, 2 (H.8)

f(q̇i) = Bv,iq̇i + Bf1,i

(
1 − 2

1 + e2w1,iq̇i

)
+ Bf2,i

(
1 − 2

1 + e2w2,iq̇i

)
(H.9)

The entries of the matrices M(qi), C(qi, q̇i) and the gravity vector g(qi) can be
computed one by one from the Denavit-Hartenberg parameters (Table H.2), see
(Lee 1982), (Rodriguez-Angeles et al. 2002a). In this section the entries of the dy-
namics of the CFT robot are given, and a set of estimated physical parameters for
robot R1 and R2 are listed in Table H.3.
Since the robots R1 and R2 in the multi-composed system are structurally identical,
they are described by the same dynamic model, but they differ in the physical pa-
rameters. The dynamic model of the transposer robot (H.8, H.9) includes 32 physical
parameters, denoted by θi,j , i = 1, 2, j = 1, . . . , 32, where i identifies the robot and j
the parameter. A detailed parametrization of the dynamics (H.8, H.9) and physical
interpretation of the parameters θi,j can be found in (Rodriguez-Angeles et al. 2002a).

Entries of the inertia matrix M(qi)

The entries of the symmetric inertia matrix M(qi) ∈ �4×4 , as function of the general-
ized coordinates qi = [ qi,1 qi,2 qi,4 qi,5 ]T of robot i, i = 1, 2, and the parameters
θi,j , j = 1, . . . 32 are given by

M1,1 = θi,1 + θi,11 + θi,12
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M1,2 = (−θi,12d2 0′ − θi,11d2 0′ − θi,3) sin(qi,2) + (θi,2 + d6θi,11) cos(qi,2)

+
1
2
((L4 − L5) (θi,12 + θi,11) − θi,9)(cos(qi,5 + qi,2 + qi,4)

− cos(qi,5 − qi,2 + qi,4))

+
1
2
(θi,7 + θi,5 + θi,12L6)(cos(−qi,2 + qi,4) − cos(qi,2 + qi,4))

+
1
2
(θi,8 + θi,6)(sin(qi,2 + qi,4) − sin(−qi,2 + qi,4))

+
1
2
(− sin(qi,5 − qi,2 + qi,4) + sin(qi,5 + qi,2 + qi,4))θi,10

M1,3 =
1
2
(−θi,5 − θi,7 − θi,12L6)(cos(qi,2 + qi,4) + cos(−qi,2 + qi,4))

+
1
2
((L4 − L5)(θi,12 + θi,11) − θi,9)(cos(qi,5 − qi,2 + qi,4)

+ cos(qi,5 + qi,2 + qi,4))

+
1
2
(θi,8 + θi,6)(sin(qi,2 + qi,4) + sin(−qi,2 + qi,4))

+
1
2
(sin(qi,5 + qi,2 + qi,4) + sin(qi,5 − qi,2 + qi,4))θi,10

M1,4 =
1
2
((L4 − L5)(θi,11 + θi,12) − θi,9)(cos(qi,5 + qi,2 + qi,4)

+ cos(qi,5 − qi,2 + qi,4))

+
1
2
(sin(qi,5 + qi,2 + qi,4) + sin(qi,5 − qi,2 + qi,4))θi,10

M2,2 = ((L5 − L4) (sin(qi,5) + sin(qi,5 + 2qi,4)) − 2 cos(qi,4)d2 0′)θi,8 + θi,4

+(−2d2 0′ cos(qi,4 + qi,5) − L4 sin(2qi,5 + 2qi,4))θi,10 + θi,12d
2
2 0′

+((
1
2
− 1

2
cos(2qi,5 + 2qi,4))

(
L2

5 + L2
4

)
+ 2L4d2 0′ sin(qi,4 + qi,5) + d2

6

+d2
2 0′ + ((cos(2qi,5 + 2qi,4) − 1)L4 − 2d2 0′ sin(qi,4 + qi,5))L5)θi,11

+((cos(2qi,4) − cos(qi,5) − 1 + cos(qi,5 + 2qi,4))L4

−2d2 0′ sin(qi,4))θi,5 − 2(sin(qi,4 + qi,5)L5 + sin(qi,4)L6)d2 0′θi,12

+((cos(qi,5 + 2qi,4) − cos(qi,5)) (L4 − L5) − 2d2 0′ sin(qi,4))θi,7

−1
2
θi,12(cos(2qi,4) − 1)L2

6 −
1
2
(cos(2qi,5 + 2qi,4) − 1)

(
L2

5 + L2
4

)
θi,12

+(−L4 (sin(2qi,4) + sin(qi,5 + 2qi,4) + sin(qi,5)) − 2 cos(qi,4)d2 0′)θi,6

+((cos(2qi,5 + 2qi,4) − 1)L4 + (cos(qi,5) − cos(qi,5 + 2qi,4))L6)L5θi,12

+((cos(2qi,5 + 2qi,4) − 1)L4 − 2d2 0′ sin(qi,4 + qi,5))θi,9

+(2 sin(qi,4 + qi,5)d2 0′ − (cos(qi,5) + cos(qi,5 + 2qi,4))L6)L4θi,12

M2,3 = −θi,7d6 cos(qi,4) + θi,8d6 sin(qi,4) + θi,11d6(L4 − L5) cos(qi,4 + qi,5)

M2,4 = θi,11d6(L4 − L5) cos(qi,4 + qi,5)
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M3,3 = (((L5 − L6)L4 + 2L5L6)θi,12 + L5L4θi,11 + (θi,9 − θi,5 − θi,7)L4

+2θi,7L5) cos(qi,5) + L4(θi,6 + θi,8) sin(2qi,4)

−L4((
1
2
L4 + L6)θi,12 +

1
2
L4θi,11 + θi,5 + θi,7) cos(2qi,4)

−L4((L6 + L5)θi,12 + L5θi,11 + θi,9 + θi,7 + θi,5) cos(qi,5 + 2qi,4)
+(θi,8 + θi,10 + θi,6)L4 sin(qi,5 + 2qi,4) + ((2L5 − L4)θi,8

−(θi,6 + θi,10)L4) sin(qi,5) + (L2
4 + (L6 − L5)L4 + L2

5 + L2
6)θi,12

+((
1
2
L4 − L5)(θi,12 + θi,11) − θi,9)L4 cos(2qi,5 + 2qi,4)

+(L2
5 − L5L4 + L2

4)θi,11 + (θi,7 − θi,9 + sin(2qi,5 + 2qi,4)θi,10 − θi,5)L4

M3,4 =
1
2
(sin(qi,5 + 2qi,4) − sin(qi,5))L4θi,6 +

1
2
θi,12(cos(2qi,5 + 2qi,4) + 1)L2

4

+(
1
2

cos(qi,5) − cos(2qi,5 + 2qi,4) − 1
2

cos(qi,5 + 2qi,4) − 1)L4θi,9

+(
1
2

sin(qi,5 + 2qi,4) + sin(2qi,5 + 2qi,4) − 1
2

sin(qi,5))L4θi,10

+(L5 cos(qi,5) − 1
2
(cos(qi,5) + cos(qi,5 + 2qi,4))L4)θi,7

+((L5 − 1
2
L4) sin(qi,5) +

1
2
L4 sin(qi,5 + 2qi,4))θi,8 + θi,12L

2
5

+(L2
5 +

1
2
(cos(qi,5) − cos(qi,5 + 2qi,4))L4L5 +

1
2
(1 + cos(2qi,5 + 2qi,4))

× (L2
4 − 2L4L5

)
)θi,11 − 1

2
(cos(qi,5) + cos(qi,5 + 2qi,4))L4θi,5

+(cos(qi,5)L6 − 1
2
(2 + 2 cos(2qi,5 + 2qi,4) + cos(qi,5 + 2qi,4)

− cos(qi,5))L4)L5θi,12 − 1
2
θi,12(cos(qi,5) + cos(qi,5 + 2qi,4))L6L4

M4,4 = ((
1
2
L2

4 − L5L4)(θi,12 + θi,11) − L4θi,9) cos(2qi,5 + 2qi,4)

+(
1
2
L2

4 − L5L4 + L2
5)(θi,12 + θi,11) + (sin(2qi,5 + 2qi,4)θi,10 − θi,9)L4

Entries of the Coriolis matrix C(qi, q̇i)

The entries of the Coriolis matrix C(qi, q̇i) ∈ �
4×4 , as function of the generalized

coordinates qi = [ qi,1 qi,2 qi,4 qi,5 ]T of robot i, i = 1, 2, and the parameters
θi,j , j = 1, . . . 32 are given by

C1,1 = C2,1 = C3,1 = C4,1 = 0

C1,2 =
1
2
(θi,7 + θi,5 + L6θi,12)((q̇i,2 − q̇i,4) sin(qi,4 − qi,2) + (q̇i,2 + q̇i,4)

× sin(qi,2 + qi,4)) − ((θi,12 + θi,11)d2 0′ + θi,3)q̇i,2 cos(qi,2)
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+
1
2
(θi,9 + (L5 − L4) (θi,12 + θi,11))((q̇i,4 + q̇i,2 + q̇i,5)

× sin(qi,5 + qi,2 + qi,4) + (q̇i,2 − q̇i,4 − q̇i,5) sin(qi,5 − qi,2 + qi,4))

−(θi,2 + d6θi,11)q̇i,2 sin(qi,2) +
1
2
(θi,8 + θi,6)((q̇i,2 − q̇i,4) cos(qi,4 − qi,2)

+(q̇i,2 + q̇i,4) cos(qi,2 + qi,4)) +
1
2
((q̇i,2 − q̇i,4 − q̇i,5)

× cos(qi,5 − qi,2 + qi,4) + (q̇i,4 + q̇i,2 + q̇i,5) cos(qi,5 + qi,2 + qi,4))θi,10

C1,3 =
1
2
(θi,8 + θi,6)((q̇i,4 − q̇i,2) cos(qi,4 − qi,2) + (q̇i,2 + q̇i,4) cos(qi,2 + qi,4))

+
1
2
(θi,9 + (L5 − L4)(θi,12 + θi,11))((q̇i,4 + q̇i,2 + q̇i,5)

× sin(qi,5 + qi,2 + qi,4) + (q̇i,4 − q̇i,2 + q̇i,5) sin(qi,5 − qi,2 + qi,4))

+
1
2
(θi,5 + θi,7 + L6θi,12)((q̇i,4 − q̇i,2) sin(qi,4 − qi,2) + (q̇i,2 + q̇i,4)

× sin(qi,2 + qi,4)) +
1
2
((q̇i,4 + q̇i,2 + q̇i,5) cos(qi,5 + qi,2 + qi,4)

+(q̇i,4 + q̇i,5 − q̇i,2) cos(qi,5 − qi,2 + qi,4))θi,10

C1,4 =
1
2
((q̇i,4 + q̇i,2 + q̇i,5) cos(qi,5 + qi,2 + qi,4) + (q̇i,4 − q̇i,2 + q̇i,5)

× cos(qi,5 − qi,2 + qi,4))θi,10 +
1
2
(θi,9 + (L5 − L4)(θi,12 + θi,11))

×((q̇i,4 + q̇i,2 + q̇i,5) sin(qi,5 + qi,2 + qi,4)
+(q̇i,4 + q̇i,5 − q̇i,2) sin(qi,5 − qi,2 + qi,4))

C2,2 = −1
2
(L4θi,6 − L5θi,8 + θi,8L4)((2q̇i,4 + q̇i,5) cos(2qi,4 + qi,5)

+q̇i,5 cos(qi,5)) − q̇i,4d2 0′(θi,5 + θi,7 + L6θi,12) cos(qi,4)
−(q̇i,4 + q̇i,5)(θi,9 + (L5 − L4)(θi,12 + θi,11))d2 0′ cos(qi,4 + qi,5)

−1
2
(q̇i,4 + q̇i,5)(2L4θi,9 − (L5 − L4)2(θi,12 + θi,11)) sin(2qi,5 + 2qi,4)

−1
2
q̇i,4(2L4θi,5 − L2

6θi,12) sin(2qi,4) − q̇i,4L4θi,6 cos(2qi,4)

+
1
2
(L4 (θi,5 + θi,7) + L6θi,12 (L4 − L5) − L5θi,7)(q̇i,5 sin(qi,5)

−(2q̇i,4 + q̇i,5) sin(2qi,4 + qi,5)) + (q̇i,4 + q̇i,5) sin(qi,4 + qi,5)d2 0′θi,10

−(q̇i,4 + q̇i,5) cos(2qi,5 + 2qi,4)L4θi,10 + d2 0′ q̇i,4(θi,8 + θi,6) sin(qi,4)

C2,3 =
1
2
q̇i,2(L2

6θi,12 − 2L4θi,5) sin(2qi,4) − q̇i,2 cos(2qi,5 + 2qi,4)L4θi,10

+
1
2
q̇i,2((L5 − L4)2(θi,12 + θi,11) − 2L4θi,9) sin(2qi,5 + 2qi,4)

+(q̇i,2d2 0′θi,10 + d6θi,11(q̇i,4 + q̇i,5)(L5 − L4)) sin(qi,4 + qi,5)
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−(((L5 − L4)(θi,12 + θi,11) + θi,9)d2 0′)q̇i,2 cos(qi,4 + qi,5)
+q̇i,2((L5 − L4)(L6θi,12 + θi,7) − L4θi,5) sin(2qi,4 + qi,5)
+(q̇i,4d6θi,8 − q̇i,2(L6θi,12 + θi,7 + θi,5)d2 0′) cos(qi,4)
+(q̇i,2(θi,8 + θi,6)d2 0′ + q̇i,4d6θi,7) sin(qi,4)
+q̇i,2((L5 − L4)θi,8 − L4θi,6) cos(2qi,4 + qi,5) − q̇i,2L4θi,6 cos(2qi,4)

C2,4 = ((q̇i,4 + q̇i,5)(L5 − L4)d6θi,11 + q̇i,2d2 0′θi,10) sin(qi,4 + qi,5)

+
1
2
q̇i,2((L5 − L4)2(θi,12 + θi,11) − 2L4θi,9) sin(2qi,5 + 2qi,4)

−((L5 − L4)(θi,12 + θi,11) + θi,9)d2 0′ q̇i,2 cos(qi,4 + qi,5)
−q̇i,2L4θi,10 cos(2qi,5 + 2qi,4)

−1
2
q̇i,2(L4θi,6 + θi,8(L4 − L5))(cos(qi,5) + cos(2qi,4 + qi,5))

+
1
2
q̇i,2((L5 − L4)(L6θi,12 + θi,7) − L4θi,5)(sin(2qi,4 + qi,5) − sin(qi,5))

C3,2 = q̇i,2L4θi,10 cos(2qi,5 + 2qi,4) + q̇i,2L4θi,6 cos(2qi,4)
+q̇i,2d2 0′(θi,9 + (L5 − L4)(θi,12 + θi,11)) cos(qi,4 + qi,5)

−q̇i,2d2 0′ sin(qi,4 + qi,5)θi,10 +
1
2
q̇i,2(2L4θi,5 − L2

6θi,12) sin(2qi,4)

+q̇i,2(L4θi,5 − (L5 − L4)(L6θi,12 + θi,7)) sin(2qi,4 + qi,5)

+
1
2
q̇i,2(−(L5 − L4)2(θi,12 + θi,11) + 2L4θi,9) sin(2qi,5 + 2qi,4)

+q̇i,2d2 0′(θi,5 + θi,7 + L6θi,12) cos(qi,4) − q̇i,2d2 0′(θi,8 + θi,6) sin(qi,4)
+q̇i,2(L4θi,6 + θi,8(L4 − L5)) cos(2qi,4 + qi,5)

C3,3 =
1
2
L4(q̇i,4 + q̇i,5) ((2L5 − L4)(θi,12 + θi,11) + 2θi,9) sin(2qi,5 + 2qi,4)

−1
2
q̇i,5((2L5L6 − L6L4 + L5L4)θi,12 + (2L5 − L4)θi,7 + θi,11L5L4

+L4(θi,9 − θi,5)) sin(qi,5) + L4(q̇i,4 + q̇i,5)θi,10 cos(2qi,5 + 2qi,4)

+
1
2
L4(2q̇i,4 + q̇i,5)((L5 + L6)θi,12 + θi,7 + L5θi,11 + θi,5 + θi,9)

× sin(2qi,4 + qi,5) + L4q̇i,4(θi,8 + θi,6) cos(2qi,4)

+
1
2
L4q̇i,4((L4 + 2L6)θi,12 + 2θi,7 + L4θi,11 + 2θi,5) sin(2qi,4)

+
1
2
L4(2q̇i,4 + q̇i,5)(θi,8 + θi,6 + θi,10) cos(2qi,4 + qi,5)

−1
2
q̇i,5(L4(θi,6 + θi,10) + θi,8(L4 − 2L5)) cos(qi,5)

C3,4 = (
1
2
(θi,8 + θi,10 + θi,6) cos(2qi,4 + qi,5) + θi,10 cos(2qi,5 + 2qi,4))L4

×(q̇i,4 + q̇i,5) − 1
2
(q̇i,4 + q̇i,5)(L5L4θi,12 + (2L5 − L4)(θi,7 + L6θi,12)
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+θi,11L5L4 + L4(θi,9 − θi,5)) sin(qi,5) +
1
2
L4(q̇i,4 + q̇i,5)((L5 + L6)θi,12

+θi,7 + L5θi,11 + θi,5 + θi,9) sin(2qi,4 + qi,5)

+
1
2
L4(q̇i,4 + q̇i,5)((2L5 − L4)(θi,12 + θi,11) + 2θi,9) sin(2qi,5 + 2qi,4)

+
1
2
(q̇i,4 + q̇i,5)((2L5 − L4)θi,8 − L4(θi,10 + θi,6)) cos(qi,5)

C4,2 = q̇i,2d2 0′((L5 − L4)(θi,12 + θi,11) + θi,9) cos(qi,4 + qi,5)

+
1
2
q̇i,2((L5 − L4)(L6θi,12 + θi,7) − L4θi,5) (sin(qi,5) − sin(2qi,4 + qi,5))

+
1
2
q̇i,2(2L4θi,9 − (θi,12 + θi,11)(L5 − L4)2) sin(2qi,5 + 2qi,4)

+q̇i,2L4θi,10 cos(2qi,5 + 2qi,4) − q̇i,2d2 0′θi,10 sin(qi,4 + qi,5)

+
1
2
q̇i,2(L4θi,6 − (L5 − L4)θi,8)(cos(qi,5) + cos(2qi,4 + qi,5))

C4,3 =
1
2
q̇i,4(L4(θi,9 − θi,5 + θi,11L5) + (2L5L6 − L6L4 + L5L4)θi,12

+(2L5 − L4)θi,7) sin(qi,5) + L4(q̇i,4 + q̇i,5)θi,10 cos(2qi,5 + 2qi,4)

+
1
2
q̇i,4L4((L5 + L6)θi,12 + θi,7 + L5θi,11 + θi,5 + θi,9) sin(2qi,4 + qi,5)

+
1
2
q̇i,4L4(θi,8 + θi,6 + θi,10) cos(2qi,4 + qi,5)

+
1
2
L4(q̇i,4 + q̇i,5)((2L5 − L4)(θi,12 + θi,11) + 2θi,9) sin(2qi,5 + 2qi,4)

+
1
2
q̇i,4(L4(θi,6 + θi,10) + θi,8(L4 − 2L5)) cos(qi,5)

C4,4 =
1
2
L4(q̇i,4 + q̇i,5)((2L5 − L4)(θi,12 + θi,11) + 2θi,9) sin(2qi,5 + 2qi,4)

+L4(q̇i,4 + q̇i,5)θi,10 cos(2qi,5 + 2qi,4)

Entries of the gravity vector g(qi)

The entries of the gravity vector g(qi) ∈ �4 as function of the generalized coordinates
qi = [ qi,1 qi,2 qi,4 qi,5 ]T of robot i, i = 1, 2, the parameters θi,j , j = 1, . . . 32,
and the acceleration due to gravity g = 9.81 m/s2, are given by

g1 = g2 = 0

g3 = −g(θi,9 + θi,12L5 + L5θi,11) sin(qi,4 + qi,5) − g(θi,6 + θi,8) cos(qi,4)
−g(θi,5 + θi,12(L6 + L4) + L4θi,11 + θi,7) sin(qi,4) − gθi,10 cos(qi,4 + qi,5)

g4 = −g(θi,9 + θi,12L5 + L5θi,11) sin(qi,4 + qi,5) − gθi,10 cos(qi,4 + qi,5)
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Entries of the vector of friction forces f(q̇i)

The friction forces f(q̇i) ∈ �4 in the transposer robot are model by (6.2), such
that the entries of f(q̇i) can be written as function of the generalized velocities
q̇i = [ q̇i,1 q̇i,2 q̇i,4 q̇i,5 ]T for the i robot, and the parameters θi,j , i = 1, 2,
j = 1, . . . 32,

f1(q̇i,1) = θi,13q̇i,1 + θi,17

(
1 − 2

1 + e2θi,25q̇i,1

)
+ θi,21

(
1 − 2

1 + e2θi,29 q̇i,1

)

f2(q̇i,2) = θi,14q̇i,2 + θi,18

(
1 − 2

1 + e2θi,26q̇i,2

)
+ θi,22

(
1 − 2

1 + e2θi,30 q̇i,2

)
f3(q̇i,4) = θi,15q̇i,4 + θi,19

(
1 − 2

1 + e2θi,27q̇i,4

)
+ θi,23

(
1 − 2

1 + e2θi,31 q̇i,4

)
f4(q̇i,5) = θi,16q̇i,5 + θi,20

(
1 − 2

1 + e2θi,28q̇i,5

)
+ θi,24

(
1 − 2

1 + e2θi,32 q̇i,5

)
Estimated parameters

Physically in the Dynamics and Control Laboratory the robots for which the param-
eters have been estimated R1 and R2 correspond to the robot with plate numbers
677528 and 669358 respectively
The physical parameters θi,j , i = 1, 2, j = 1, . . . 32 of the transposer robots have been
estimated by using an extended Kalman filter and the least square method, in a similar
way to the work presented in (Kostic et al. 2001). The estimated parameters are listed
in Table H.3, see (Rodriguez-Angeles et al. 2002a) for a physical interpretation of the
parameters θi,j , i = 1, 2, j = 1, . . . 32. The control τi for collecting the data to run
the Kalman filter and the least square algorithm was set as a P-controller, with a
harmonic signal as desired trajectory qd(t) with fundamental frequency of 0.4 Hz.
As a manner of validation of the dynamic model (H.8) and (H.9) and the estimated
physical parameters listed in Table H.3, a comparison study between measured τi and
estimated τe,i input torques is carried out. Figures H.3 - H.6 show the estimated τei,j

(solid) and measured input control τi,j (dashed) for robots R1 and R2, i = 1, 2, and
the joints j = 1, 2, 4, 5. The estimated input control τe,i is obtained from the dynamic
model (6.1) and (6.2) and the estimated parameters listed in Table H.3, by using the
measured variables qi,j , q̇i,j and q̈i,j originated by the measured torque τi,j .
It is worth to mention that the same methodology, was used in both robots, i.e.
controller and trajectories. However, Figures H.3 - H.6 show better fitting between
the estimated and measured input control for robot R2 than for robot R1. Thus the
dynamic model (H.8) and (H.9) and the estimated parameters, listed in Table H.3, are
a better representation of the dynamics of robot R2 than robot R1. The differences
in the estimation of the parameters may be due to weariness in the servomotors and
transmission elements, or to a better maintenance of robot R2. Indeed by manual
inspection of the robots it is apparent that the robot R1 presents more weariness in
the servomotors and transmission elements than robot R2.
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Parameter Robot R1 (i = 1) Robot R2 (i = 2)
θi,1 147.0161 121.3049
θi,2 2.1448 0.3107
θi,3 -0.6363 4.1955
θi,4 0.5931 1.7453
θi,5 0.1701 0.8316
θi,6 -0.0561 0.8687
θi,7 0.8392 0.8105
θi,8 1.9397 1.6721
θi,9 -0.1428 -0.1879
θi,10 1.7807 1.7850
θi,11 0.1498 0.8759
θi,12 4.4844 4.1328
θi,13 83.2945 97.2600
θi,14 11.2104 9.0999
θi,15 16.6527 11.6257
θi,16 13.6684 9.6229
θi,17 -72.6918 -54.9912
θi,18 -32.9333 18.4710
θi,19 5.2337 -3.5232
θi,20 -3.0435 -5.8564
θi,21 -85.4138 -46.5915
θi,22 -42.4819 11.1605
θi,23 -4.3254 2.2684
θi,24 5.5640 8.2304
θi,25 149.9624 150.3190
θi,26 142.7894 136.8945
θi,27 8.6392 -35.3699
θi,28 27.6979 36.0641
θi,29 -100.2648 -98.9881
θi,30 -142.2786 -170.4702
θi,31 -1.8278 -89.3236
θi,32 12.0224 16.2942

Table H.3: Estimated parameters for the CFT transposer robots.
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Figure H.3: Estimated τei,1 (solid) and measured torque τi,1 (dashed), joint q1, robots
R1 and R2.
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Figure H.4: Estimated τei,2 (solid) and measured torque τi,2 (dashed), joint q2, robots
R1 and R2.
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Figure H.5: Estimated τei,4 (solid) and measured torque τi,4 (dashed), joint q4, robots
R1 and R2.
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Figure H.6: Estimated τei,5 (solid) and measured torque τi,5 (dashed), joint q5, robots
R1 and R2.
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Summary

This thesis addresses the possibility of inducing synchronous behavior in mechanical
systems. Synchronization of mechanical systems is important since it gives rise to
robust and dexterous systems. Synchronization forces a coordination or interaction
between separate parts of a composed system, so that more complex and demanding
tasks can be executed, mainly tasks that cannot be executed by an individual part
of the composed system. The synchronization behavior can induce an optimal set
of interactions between systems, such that minimization of some functional can be
achieved, e.g. task time execution, norm of the relative errors between the systems,
payload distribution. The performance of the systems is in this way improved. Exam-
ples of synchronization in mechanical systems are tele-operated master-slave robots
used in surgery and hazardous environments, vibro-machinery used in mining, multi-
robot systems for production systems or in special applications such as multi-fingered
robot hands.

The goal of the thesis can be stated as to design controller schemes that ensure syn-
chronization of two or more mechanical systems, either identical or different. The
major assumption, which restricts the design of the controllers, is that only position
measurements in all the systems are available. The absence of measurements of veloc-
ities and accelerations is solved by considering model based observers. The measured
positions and the estimated velocities and accelerations, obtained by the observers, are
used in feedback controllers, which ensure synchronization of the mechanical systems.

In the thesis special attention is given to robot manipulators for which mutual (co-
operative) and external (coordination) synchronization is considered. Nevertheless,
the developed ideas can be extended to more general systems, such as mobile robot
systems, multi-satellite systems, communication systems, and electro-mechanical sys-
tems such as electrical generators. In particular the proposed synchronization ideas
are extended to formation (platooning) of mobile robots and attitude formation of
satellites, for which general ideas and guidelines are presented. The proposed exten-
sions are validated by simulations.

The results in the thesis are supported by analytical proofs and experimental results.
The experiments show the predicted synchronization behavior and thus validate the
practical viability of the proposed synchronization schemes. Two industrial transposer
robots form the experimental setup. The robots are installed at the Dynamics and
Control Technology laboratory of the Department of Mechanical Engineering at the
Eindhoven University of Technology.
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In the particular case of synchronization of robot manipulators several problems have
to be faced at the practical implementation stage. The structure and design of the
robots result in dynamical and structural problems such as friction phenomena, joint
flexibility, high order and complex dynamic models, etc.. Many of these problems
are addressed in the thesis. The way these practical problems are solved in order to
implement the proposed synchronization schemes is discussed throughout the thesis.

Further extensions of the proposed synchronization ideas and recommendations for
research in controlled synchronization of systems are pointed out. Most of the recom-
mended lines of research represent challenging open problems that have arisen from
this thesis.



Samenvatting

Dit proefschrift onderzoekt de mogelijkheden voor het synchroniseren van mechani-
sche systemen. Synchronisatie, van met name mechanische systemen, is belangrijk
omdat het kan leiden tot meer robuuste en flexibele systemen. Synchronisatie betekent
coördinatie of interactie tussen de samenstellende delen van systeem zodat complexere
of ingewikkeldere taken kunnen worden uitgevoerd, met name taken die niet door
een enkel systeem kunnen worden uitgevoerd. Synchronisatie leidt in zo’n geval tot
(optimale) interactie tussen individuele systemen zodat de performance van het to-
tale systeem verbeterd wordt, bijvoorbeeld kleinere productie tijd, een minimale re-
latieve fout tussen de individuele systemen of een optimale last distributie. Voor-
beelden van synchronisatie in mechanische systemen zijn op afstand bediende master-
slave robots voor operaties in ziekenhuizen of inspecties in schadelijke omgevingen,
trillingscompensatoren in mijnen, multi-robot systemen in productie systemen of spe-
ciale toepassingen zoals meervingerige kunsthanden.

Het doel van dit proefschrift is het ontwerpen van regelaars die synchronisatie tussen
twee of meer mechanische systemen, zowel identieke als verschillende systemen, garan-
deren. De voornaamste beperking die we aan het ontwerp stellen, is dat alleen positie
informatie van alle samenstellende systemen via metingen beschikbaar is voor de
regelaar. De ontbrekende informatie over snelheden en versnellingen wordt werkregen
middels model-gebaseerde waarnemers. De gemeten posities en de geschatte snelhe-
den en versnellingen worden gebruikt in feedback regelaars, die de synchronisatie van
de mechanische systemen garanderen.

De aandacht in dit proefschrift is met name gericht op robot manipulatoren. Zowel
samenwerkende (of gemeenschappelijke) synchronisatie als coördinerende (of externe)
synchronisatie schema’s worden onderzocht. De resultaten kunnen echter gegene-
raliseerd worden naar meer algemene systemen, zoals mobiele robots, multi-satelliet
systemen, communicatie processen en elektromechanische systemen zoals elektrische
generatoren. In dit proefschrift worden de voorgestelde synchronisatie schema’s
toegepast op formatie-problemen van mobiele robots en satellieten. De voorgestelde
uitbreidingen worden gevalideerd middels simulaties. Hierbij worden enkele algemene
ideeën en richtlijnen gepresenteerd.

De resultaten van dit proefschrift worden onderbouwd door analytische bewijzen en
experimentele resultaten. De experimenten tonen de voorspelde synchronisatie en on-
dersteunen de praktische haalbaarheid van de voorgestelde synchronisatie schema’s.
De experimentele opstelling bestaat uit twee industriële transposer robots in het Dy-
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namics and Control laboratorium van de faculteit Werktuigbouwkunde van de Tech-
nische Universiteit Eindhoven.

Bij de praktische implementatie van synchronisatie van robot manipulatoren moeten
diverse problemen overwonnen worden. De configuratie en het ontwerp van de robots
leidt tot hoge orde, complexe, dynamische modellen en specifieke problemen zoals
wrijving en flexibiliteit in scharnieren en verbindingspunten. Veel van deze problemen
komen in dit proefschrift aan de orde. De oplossingen waarmee de voorgestelde syn-
chronisatie schema’s in de experimentele opstellingen konden worden gëımplementeerd
worden uitgebreid besproken in dit proefschrift.

Mogelijke uitbreidingen van de voorgestelde synchronisatie ideeën en aanbevelingen
voor verder onderzoek naar geregelde synchronisatie worden voorgesteld. De meeste
aanbevolen onderzoekslijnen vertegenwoordigen uitdagende onopgeloste problemen.



Resumen

Esta tesis estudia la posibilidad de inducir sincronización en sistemas mecánicos. Sin-
cronización de sistemas mecánicos es importante ya que da lugar a sistemas mas
robustos y capaces de realizar tareas mas complejas. Por medio de la sincronización
varias relaciones e interacciones entre los sistemas son forzadas, tal que algunos obje-
tivos pueden ser satisfechos, por ejemplo minimizar el tiempo de ejecución de la tarea,
minimizar el error relativo entre los sistemas, ya sea de posición, velocidad, o ambos.
Como resultado se obtienen sistemas mas eficaces y con mejor desempeño. Existe
un sin numero de ejemplos de sistemas mecánicos que trabajan bajo un esquema de
sincronización, teleoperación de sistemas robóticos maestro-esclavo los cuales son us-
ados en teleciruǵıa o en ambientes peligrosos, maquinaria basada en vibración y que
es usada en mineŕıa, sistemas multi-robot tales como manos multi-dedo, etc.

El objetivo de esta tesis puede ser formulado como diseñar esquemas de control
que aseguren sincronización de dos o mas sistemas mecánicos, los cuales pueden ser
idénticos o diferentes. La hipótesis que restringe el diseño del esquema de control para
synchronización es que solamente están disponibles mediciones de las posiciones de
los sistemas. La ausencia de mediciones de velocidad y aceleración en los sistemas a
ser sincronizados es resuelta por medio de observadores de estado basados en modelo.
Los valores de velocidad y aceleración que son obtenidos por los observadores son
usados en esquemas de control basados en retroalimentación , los cuales aseguran la
sincronización de los sistemas mecánicos.

En esta tesis se le da especial atención a sistemas de robot manipuladores, para los
cuales dos tipos de sincronización son estudiados: sincronización mutua (cooperación)
y sincronización externa (coordinación). No obstante la tesis se enfoca en robot ma-
nipuladores, las ideas que se exponen pueden ser aplicadas a sistemas mas generales
como por ejemplo: robots móviles, sistemas de varios satélites, sistemas de comuni-
cación, y sistemas electromecánicos tales como generadores eléctricos y motores. En
particular la tesis presenta extensiones de las ideas propuestas al caso de seguimiento
en robots móviles y formaciones de satélites. Las extensiones propuestas en la tesis
presentan las ideas generales que originan el tipo de sincronización deseado en los
sistemas mencionados. Las extensiones propuestas son validadas por medio de simu-
laciones.

Los resultados presentados en esta tesis están avalados por pruebas anaĺıticas y resul-
tados experimentales que muestran la sincronización predicha anaĺıticamente. Esto
además de validar los resultados de la tesis da idea del aspecto practico y de aplicación
de los esquemas de control para sincronización propuestos en la tesis. La plataforma
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para experimentos esta formada por dos robots industriales instalados en el laborato-
rio de Tecnoloǵıa, Dinámica y Control del Departamento de Ingenieŕıa Mecánica de
la Universidad Tecnológica de Eindhoven (Technische Universiteit Eindhoven).

En el caso particular de sincronización de robot manipuladores existen varios proble-
mas, aparte del de sincronización, que tienen que ser resueltos para poder implementar
un esquema de control. La estructura y diseño de los robots que se desean sincronizar,
y que son dos aspectos intŕınsecos a cualquier robot, dan lugar a problemas tales como
fricción en las articulaciones y motores, flexibilidad en las uniones, aśı como modelos
dinámicos altamente complejos y de orden alto. Varios de los problemas previamente
mencionados son revisados en esta tesis y la manera en que fueron resueltos se expone
a lo largo de la tesis.

La tesis presenta posibles extensiones de los esquemas de control para sincronización
propuestos, aśı como sugerencias para posibles ĺıneas de investigación en sincronización
de sistemas. Las ĺıneas de investigación aqúı propuestas representan problemas sin
resolver en sincronización de sistemas y la mayoŕıa de ellos surgieron durante la real-
ización de esta tesis.
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