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AN EXACT PENALTY METHOD FOR SMOOTH

EQUALITY CONSTRAINED OPTIMIZATION WITH

APPLICATION TO MAXIMUM LIKELIHOOD ESTIMATION 1

Bergsma, W.2 and Rapcsák, T.3

Abstract. A new exact penalty function is presented which turns a smooth constrained
nonlinear optimization problem into an unconstrained one. The advantage of the proposed
penalty method is that arbitrary positive penalty parameters ensure local optimality, avoiding
this way the possible ill-conditioning of the problem.

In a statistical example, the method was successfully applied to maximum likelihood esti-
mation of a class of marginal models for categorical data, involving a large number of unknown
parameters. Some theoretical results are given for general maximum likelihood problems with
constraints.

1. Introduction

The Lagrange multiplier rule was introduced in 1762, and later, in “Lagrange, J.L.,
Méchanique analytique I-II., Paris, 1788” for minimizing a function subject to equality
constraints. Based on the Lagrange multiplier rule, penalty methods were developed in
order to eliminate some or all of the constraints and add to the objective function a penalty
term which prescribes a high cost to infeasible points. A good survey on Lagrange multiplier
methods can be found in Bertsekas (1982).

In 1943, Courant introduced the quadratic penalty method where the penalty term is the
squared Euclidean norm of the constraint violations. In 1970, Fletcher studied the Lagrange
function depending only on the variables, then, gave the theoretical justification of a class
of exact penalty methods for solving smooth equality constrained nonlinear optimization
problems. Exact penalty methods were intensively investigated and a well-prepared survey
was published by Di Pillo (1994). A new smooth exact penalty function was suggested by
Christianson (1995).

The Lagrange multiplier rule was further developed by Rapcsák (1991, 1997) who com-
bined the optimization theory with Riemannian geometry in order to describe the geometric
structure of smooth nonlinear optimization problems by tensors and to extend the local

1Research partially supported by the Hungarian Scientific Research Fund, Grant Nos. OTKA-T043276,
OTKA-T043241 and Netherlands Organization for Scientific Research Grant 400-20-001.

2EURANDOM, P.O.Box 513, 5600 MB Eindhoven, The Netherlands.
3Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, Hungary.

1



results of Lagrange to global ones. In [21], the idea of Fletcher (1970) to define smooth
exact penalty functions and that of Courant (1943) to use a quadratic penalty term were
reconsidered and developed further by the global version of the global Lagrange multiplier
rule clarifying the geometric meaning as well.

In the paper, a new exact penalty function is presented for solving smooth equality
constrained nonlinear optimization problems the advantage of which is that arbitrary posi-
tive penalty parameters ensure local optimality. This exact penalty function has numerical
conditioning similar to the problem functions from which it is constructed. A penalty func-
tion like this can be used to establish termination properties for algorithms which avoid
ill-conditioned steps.

In Section 2, the constrained optimization problem is formulated and the necessary and
sufficient optimality conditions are presented. In Section 3, the Lagrange multiplier functions
depending on the variables are considered, and the derivatives of these multiplier functions
at an optimal point are obtained. In Section 4, a new exact penalty function is introduced.
This function has a local minimum at an optimal point of the constrained problem for the
arbitrary positive values of the penalty parameter. In Section 5, a quasi-Newton algorithm is
proposed which achieves superlinear convergence, and each iterative step is no more difficult
to be performed than the evaluation of the penalty function itself. In Section 6, a statistical
example is presented which leads to a smooth optimization problem. This example concerns
a class of statistical models whose theoretical properties were described in detail in Bergsma
and Rudas (2002) and whose application was described in Croon, Bergsma and Hagenaars
(2000) and references therein. In Section 7, numerical experience related to the class of
statistical models introduced in the preceding part are reported, in Section 8, the statistical
interpretation of the Lagrange function and of the exact penalty function are investigated,
and in Section 9, some conclusions are drawn.

2. Formulation of the problem

For f : Rn → R and h : Rn → R n−k, k ≥ 0, consider the following nonlinear optimiza-
tion problem (NOP):

minimize f(x)

subject to x ∈ M = {x ∈ Rn | h(x) = 0} ,
(2.1)

and the Lagrangian function

L(x, λ) = f(x)− λT h(x), x ∈ Rn, λ ∈ Rn−k, (2.2)

with Lagrange multiplier vector λ. The first and second derivatives of L with respect to x
2



are

∇L(x, λ) = ∇f(x)−
n−k∑

i=1

λi∇hi(x) = ∇f(x)− λT Jh(x), x ∈ Rn, (2.3)

HL(x,λ) = Hf(x)−
n−k∑

i=1

λiHhi(x) = Hf(x)− λT Hh(x), x ∈ Rn, (2.4)

where the symbol ∇ denotes gradient vectors which are row vectors, the symbol H Hessian
matrices, the (n− k)-tuple HhT = (Hh1, . . . , Hhn−k), and Jh the (k × n) Jacobian matrix
of the mapping h.

Let us assume that the regularity condition

r
(
Jh(x)

)
= n− k, x ∈ M, (2.5)

holds where r(Jh(x)) denotes the rank of the Jacobian matrix at the point x. Then, the
constraint set M is a differentiable manifold (see, e.g., Rapcsák, 1997). The tangent spaces
of M are given by

TMx = {v ∈ Rn | Jh(x)v = 0} , x ∈ M,

and the projection matrix onto the space spanned by the columns of Jh(x) in the form of

P (x) = Jh(x)T
(
Jh(x)Jh(x)T

)−1
Jh(x), x ∈ M. (2.6)

The first-order necessary optimality condition of problem (2.1) at an optimal point
x∗ ∈ M is the existence of a Lagrange multiplier vector λ∗ ∈ Rn−k such that

∇L(x∗, λ∗) = 0. (2.7)

The second-order necessary condition of problem (2.1) for optimality is to fulfil the first-order
necessary condition (2.7), and that the matrix

(
HL(x∗,λ∗)

)
|TM

=
(
I − P (x∗)

)
HL(x∗, λ∗)

(
I − P (x∗)

)
(2.8)

should be positive semidefinite where the symbol |TM denotes the restriction of a matrix to
the tangent space of M . A second-order sufficient condition of local minimality is to fulfil
the first-order necessary condition (2.7) and the positive definiteness of (HL(x∗,λ∗))|TM ,
where the latter is equivalent to the positive definiteness of the second covariant derivatives
of the function f on M with respect to the induced Riemannian metric (Rapcsák, 1997).
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3. Lagrange multiplier functions

The pseudoinverses of the full-rank matrices Jh(x), x ∈ M, can be written as

Jh(x)+ = Jh(x)T
(
Jh(x)Jh(x)T

)−1
, x ∈ M. (3.1)

From the first-order optimality condition, the Lagrange multipliers can be extended in the
form of

λ(x)T = ∇f(x)Jh(x)+, x ∈ M, (3.2)

from which

∇L
(
x, λ(x)

)
= ∇f(x)

(
I − P (x)

)
, x ∈ M. (3.3)

Hence, ∇L(x,λ(x)), x ∈ M, are the orthogonal projections of the gradients ∇f(x), x ∈ M,
with respect to the Euclidean metric onto the tangent spaces of M, which are the first
covariant derivatives of the function f on M with respect to the induced Riemannian metric
(Rapcsák, 1997).

The following lemma will turn out to be important:

Lemma 3.1.
(1) If x ∈ M satisfies ∇L

(
x,λ(x)

)
= 0, then,

Jλ(x)T = HL
(
x, λ(x)

)
Jh(x)+. (3.4)

(2)
Jλ(x)T = HL

(
x,λ(x)

)
Jh(x)+ +∇L

(
x, λ(x)

)
J
(
Jh(x)T

)(
Jh(x)Jh(x)T

)−1

, x ∈ M,
(3.5)

where the (i, j, k)th entry of the 3-dimensional matrix J
(
Jh(x)T )

is
∂2hj

∂xi∂xk
,∀(i, j, k).

Proof. By (3.2) ,

0 =
(
∇f(x)− λ(x)T Jh(x)

)
Jh(x)T , x ∈ M. (3.6)

By differentiating equality (3.6) , we have the matrix equation

0 = J
[(
∇f(x)− λ(x)T Jh(x)

)
Jh(x)T

]
=

(
HL

(
x,λ(x)

)− Jλ(x)T Jh(x)
)
Jh(x)T +

(
∇f(x)− λ(x)T Jh(x)

)
J
(
Jh(x)T

)
, x ∈ M.

(3.7)
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By using the assumption ∇L
(
x,λ(x)

)
= 0, we obtain that

Jλ(x)T Jh(x)Jh(x)T = HL
(
x,λ(x)

)
Jh(x)T , x ∈ M,

from which

Jλ(x)T = HL
(
x,λ(x)

)
Jh(x)T

(
Jh(x)Jh(x)T

)−1

, x ∈ M,

which is equivalent to (3.4).

From (3.7), we obtained (3.5). ¥
A similar analysis can be found in Luenberger (1972).

4. An exact penalty function

Consider the penalty function

P(x; q) = L
(
x, λ(x)

)
+

1
2
h(x)T W (x)h(x) +

1
2
q h(x)T V (x)h(x), x ∈M, (4.1)

where M = {x ∈ Rn|Jh(x) is of full rank},

W (x) = Jh(x)+T HL
(
x,λ(x)

)
Jh(x)+, x ∈M, (4.2)

and V (x), x ∈ M, is any (n− k) × (n− k) positive definite matrix function, for example,
the identity matrix or

V (x) =
(
Jh(x)Jh(x)T

)−1
, x ∈M, (4.3)

and q > 0 is a constant. The term 1
2q h(x)T V (x)h(x) is referred to as a penalty term. The

advantage of the use of the function P is that it has a strict local minimum value at the
optimal point of problem (2.1) for arbitrary positive parameters.

Theorem 4.1. Let x∗ be a local optimal point of NOP (2.1) and suppose V (x∗) is positive
definite. Then, the function P has a strict local minimum at x∗ for all q > 0.

Proof. It is sufficient to show that the gradient of P is equal to zero at x∗ and the second
derivative matrix function of P is positive definite at the local optimal point x∗. The first
derivative is

∇P(x; q) = ∇L
(
x, λ(x)

)−h(x)T Jλ(x) + h(x)T W (x)Jh(x)

+qh(x)T V (x)Jh(x) + r(x)T , x ∈M, (4.4)
5



where the components of r are quadratic in h. Thus, the first-order necessary optimality
condition holds at x∗. Note that, by using Lemma 3.1, if ∇L

(
x,λ(x)

)
= 0 for some x ∈ M,

then,

Jλ(x)T Jh(x) = HL
(
x, λ(x)

)
P (x).

Hence, the second derivative evaluated at a stationary point reduces to

HP(x; q) = HL
(
x, λ(x)

)−Jλ(x)T Jh(x)− Jh(x)T Jλ(x)

+ Jh(x)T W (x)Jh(x) + qJh(x)T V (x)Jh(x)

=HL(x,λ(x))−HL(x,λ(x))P (x)− P (x)HL(x,λ(x))

+ P (x)HL
(
x, λ(x)

)
P (x) + qJh(x)V (x)Jh(x)T

=
(
I − P (x)

)
HL

(
x, λ(x)

)(
I − P (x)

)
+ qJh(x)T V (x)Jh(x)

=
(
HL

(
x,λ(x)

))
|TM

+ qJh(x)V (x)Jh(x)T , q > 0.

(4.5)

This matrix is positive definite at any local optimal point for arbitrary positive definite
matrix V (x), since

(
HL

(
x,λ(x)

))
|TM

is nonnegative definite at a local optimal point and

the second term is positive definite. ¥

Example 4.1.

Let us solve the problem

min x2

x2
1 + x2

2 = 1, (x1, x2) ∈ R2.

Let us introduce the notation

M =
{
(x1, x2) ∈ R2 | x2

1 + x2
2 = 1

}
.

As f(x) = x2, h(x) =
1
2
x2

1 +
1
2
x2

2 −
1
2
, x ∈ R2,

∇f(x) = (0, 1) ,

∇h(x) = (x1, x2) ,

‖∇h(x)‖2 = x2
1 + x2

2 = 1,

λ(x) = ∇f(x) ∇h(x)T = x2,
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Hf(x) =
(

0 0
0 0

)
,

Hh(x) =
(

1 0
0 1

)
,

P (x) = ∇h(x)T ∇h(x) =
(

x2
1 x1x2

x1x2 x2
2

)
,

I − P (x) =
(

1− x2
1 x1x2

x1x2 1− x2
2

)
=

(
x2

2 x1x2

x1x2 x2
1

)
, x ∈ M.

In order to determine the stationary points of the problem, the following system should
be solved:

x1x2 = 0,

x2
2 = 1,

x2
1 + x2

2 = 1.

The solutions are x2 = ± 1, x1 = 0, thus, the stationary points are

(0,−1) and (0, +1) ,

and the global minimum point is x∗ = (0,−1).
By calculating the second covariant derivatives on M , we obtain that

D2f(x) =
(
Hf(x)− λ(x)Hh(x)

)
|TM

= −x2

(
I − P (x)

) (
1 0
0 1

) (
I − P (x)

)
=

−x2

(
I − P (x)

)
= −x2

(
x2

2 x1x2

x1x2 x2
1

)
, x ∈M.

Since the matrices I − P (x) , x ∈M, are positive semidefinite, D2f is positive semidefinite
iff x2 ≤ 0. It follows that the objective function is geodesic convex with respect to the induced
Riemannian metric in this domain.

Let us consider the case when the function

L
(
x,λ(x)

)
= x2 − x2h(x)

x2
1 + x2

2

, x ∈M, M =
{
x ∈R2| ∇h(x) 6= 0

}
=

{
x ∈R2� {0}} ,

has to be minimized. Then,

∇L
(
x,λ(x)

)
=

1
x2

1 + x2
2

(
2h(x)x1x2

x2
1 + x2

2

− x1x2, x2
1 +

2h(x)x2
2

x2
1 + x2

2

− h(x)

)
, x ∈M,

HL
(
x,λ(x)

)
=

x2
1 + x2

2 − 2h(x)
(x2

1 + x2
2)3

(−x2(−3x2
1 + x2

2) −x1(x2
1 − 3x2

2)

−x1(x2
1 − 3x2

2) −3x2(−3x2
1 + x2

2)

)
, x ∈M.
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It follows that the function L(x,λ(x)), x ∈M, is neither convex, nor concave.

Let us determine the stationary points by solving the following system:

2h(x)x1x2

x2
1 + x2

2

− x1x2 = 0, x2
1 +

2h(x)x2
2

x2
1 + x2

2

− h(x) = 0, (x1x2) ∈M.

The function L (x,λ(x)) , x ∈M, has the following two stationary points:

(0,−1) , (0, +1) ,

which coincide with the preceding ones. It follows that the global minimum point of the
function L

(
x, λ(x)

)
,x ∈M, is x∗ = (0,−1).

Let us consider the exact penalty function given by formulas (4.1),(4.2), (4.3) as follows:

P(x; q) = x2

(
1− h(x)

(x2
1 + x2

2)
− h(x)2

2(x2
1 + x2

2)2
+ q

h(x)2

2(x2
1 + x2

2)2

)
, x ∈M,

where q > 0. For general q, there are at most seven stationary points. The first two are
(0,−1) and (0, 1) not depending on q. Then, (0, k), where k is a real root of the equation

2qk3 + 3k2 + 2qk − 3 = 0

if such a root exists. Finally, if

−3
2
3

1
4 ≤ q ≤ 3

2
3

1
4 ,

there are stationary points at (x1, x2) with

x1 = ±
√

3
√

q2(−4 + 2
√

3)− 27 + 18
√

3 .

and

x2 =
1
9
(3−

√
3)q .

In the case of x∗ = (0,−1),

HP(x∗; q) =
(

1 0
0 q

)
, q > 0.

It follows that a stationary point of P need not be a local minimum or a stationary point
of the original constrained optimization problem.
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5. A quasi-Newton algorithm

The exact penalty function P to be minimized involves the second derivatives of the
original objective function f and of the constraint functions hi,∀i. An implementation of the
classical Newton method to find the minimum would need derivatives up to the fourth-order,
which would often be prohibitively expensive. However, it is important to use an algorithm
that takes the special structure of these functions into account. The salient feature of this
structure is that the gradients of the smooth exact penalty functions at a stationary point
involve the second derivatives of the objective and constraint functions. If these second
derivatives are unavailable or are difficult to compute, they can be suitably approximated
by using first derivatives.

If second derivatives can be computed relatively easily, then there arises the possibility
of using a Newton-like scheme for unconstrained minimization. The difficulty with this is
that the Hessian matrix of the smooth penalty functions involves the third derivatives of
the problem functions. It turns out, however, that at a Kuhn-Tucker point, the term of the
third derivative vanishes, so they can be neglected in a Newton-like algorithm without loss
of the superlinear convergence property.

Below, we describe a quasi-Newton method with iterative steps no more difficult to be
performed than to evaluate P. This method is of superlinear convergence. In the iterative
process, we replace V (x) and W (x) depending on x in P(x; q) by their fixed current estimate
so that the derivative of P simplifies. Sufficiently close to the optimal point this yields a
feasible direction to the optimal point. The simplified first derivative is

∇P(x | x0; q) = ∇L
(
x, λ(x)

)− h(x)T Jλ(x) + h(x)T W (x0)Jh(x) + qh(x)T V (x0)Jh(x),
x ∈M,

where

Jλ(x) = Jh(x)+
T

HL
(
x,λ(x)

)
+

[
Jh(x)Jh(x)T

]−1

R(x), x ∈M,

with

R(x) = ∇L
(
x,λ(x)

)[
J
(
Jh(x)T

)]T

=
n∑

i=1

∂L
(
x, λ(x)

)

∂xi

(
∂2hj(x)
∂xk∂xi

)
, x ∈M,

and x0 is the fixed current estimate. Note that R(x) = 0 at a local optimal point. Further-
more, the second derivative evaluated at a local optimal point is given as

HP(x; q) = (I − P (x))HL(x, λ(x))(I − P (x)) + qJh(x)V (x)Jh(x)T

=
(

HL
(
x,λ(x)

))

|TM

+ qJh(x)V (x)Jh(x)T .
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For k = 0, 1, 2, . . . , the quasi-Newton algorithm with superlinear convergence is

x(k+1) = x(k) − stepk

[
HP(x(k); q)

]−1

∇P(x(k); q)

for an appropriate step size stepk and an appropriate starting point x(0), which ensures a
decrease in P(x; q). The starting point depends on the problem at hand and might be an
initial guess of the optimal point. An appropriate step size can be found by trying the value
1 first, and if the new estimate does not give a decrease in the value of the objective function,
repeat halving the value of the step size until it does.

Example 5.1. Rosenbrock’s parcel problem (1960) is to minimize

f(x) = x1x2x3

subject to

h(x) = x1 + 2x2 + 2x3 − 72 = 0, x ∈ R3.

With V (x) and W (x) as in (4.2) and (4.3), the exact penalty function evaluates to

P(x; q) = x1x2x3 − 1
9
h(x)(2x1x2 + x2x3 + 2x1x3)+

2
81

h(x)2(2x1 + x2 + x3)− q

18
h(x)2, x ∈ R3.

Application of the above quasi-Newton algorithm with q = 1 and the starting point (0, 0, 0)
yielded convergence to the optimal point x∗ = (24, 12, 12) in six iterations.

6. Maximum likelihood estimation subject to constraints

Now, we should like to apply the above exact penalty method to a special class of nonlinear
optimization problems.

Let yT = (y1, . . . , yn) be a vector of Poisson random variables yi with expectation vector
µT = (µ1, . . . , µn), where µi > 0, i = 1 . . . , n. The likelihood function is given as

P (y|µ) =
n∏

i=1

e−µiµyi

i

yi!
. (6.1)

Note that often a multinomial distribution is assumed rather than an independent Poisson,
but both give the same inferential results (see, e.g., Bergsma, 1997). The expectation vector
is unknown, and it is desirable to estimate it from the data where the expectation vector may
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be subject to certain constraints. The set of values of the expectation vector satisfying a set
of constraints is called a statistical model. A commonly used estimator of the expectation
vector is the maximum likelihood estimate defined as the value of the expectation
vector maximizing the probability of observing the frequency vector subject to the model
constraints.

An important class of models is of the form

K =
{
µ ∈ Rn

+ | B log(Aµ) = 0
}

for appropriate matrices A and B, where the “log” function is taken coordinatewise.
Typically, the number of variables n may become very large, while the number of con-
straints will remain relatively small. This class of models has received considerable attention
recently. If A is the identity matrix, then K is called a loglinear model, which is probably
the most commonly used model for categorical data analysis (see, e.g., Hagenaars, 1990, and
Agresti, 2002). In general, it is awkward or impossible to smoothly parameterize K, and
it is preferable to leave the original problem formulation intact, i.e., to use a constrained
optimization technique.

To illustrate the matrix notation for the constraints let µ = (µ11, µ12, µ21, µ22) and con-
sider the restriction

(µ11 + µ12)(µ12 + µ22)
(µ21 + µ22)(µ11 + µ21)

= 1.

This is one way to formulate the model of equality of the marginal distributions in a 2× 2
table. Taking logarithms, the constraint can be given in matrix notation as

( 1 −1 −1 1 ) log







1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1







µ11

µ12

µ21

µ22





 = 0, x ∈ R4,

which is of the form B log(Aµ) = 0, x ∈ Rn.
Further details on the matrix notation and the application of models of the form

B log(A exp(x)) = 0, x ∈ Rn, are given in Croon, Bergsma and Hagenaars (2000). Ex-
tensions to even more complex types of constraints are given in Bergsma and Croon (2004).
Bergsma and Rudas (2004) described a subclass of statistical models which can be written
in the form (6.3) and which are differentiable manifolds. Section 7 describes two models like
this. The structure of the matrices A and B is implicit in their paper. In general, manifolds
of the form (6.3) can have a complicated structure.

We now formulate the maximum likelihood problem of maximizing the probability of
observing the frequency vector P (y|µ) as a function of the expectation vector µ subject to
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model constraints, in a mathematically convenient way. The kernel of the log likelihood,
i.e., the logarithm of P (y|µ) = P (y| exp(x)) with the constant term removed, is:

n∑

i=1

(yi log µi − µi), µ ∈ Rn.

To avoid the positivity restriction on the µ’s, we reparameterize them by using

xi = log µi, i = 1, . . . , n.

Then the kernel of the log likelihood becomes

fy(x) =
n∑

i=1

(yixi − exp(xi)) = yT x− 1T exp(x), x ∈ Rn,

where the function “exp” is applied coordinatewise. The model constraints in matrix nota-
tion can now be given in the form

h(x) = B log(A exp(x)), x ∈ Rn,

The optimization problem now is

max yT x− 1T exp(x)
subject to x ∈ M,

(6.2)

where

M = {x ∈ Rn|h(x) = B log(A exp(x)) = 0}. (6.3)

The derivatives of the objective function of problem (6.2) are as follows:

∇fy(x) = yT − exp(x)T , x ∈ M, (6.4)

Hfy(x) = −D(exp(x)), x ∈ M, (6.5)

where D(.) represents the diagonal matrix with the argument on the main diagonal. Let bi

be the i-th row of B. The derivatives of h are

Jh(x) = BD−1(A exp(x))AD(exp(x)), x ∈ M, (6.6)

Hhi(x) = D(AT D−1(A exp(x))bi)D(exp(x))−
D(exp(x))AT D−2(A exp(x))D(bi)AD(exp(x)), x ∈ M. (6.7)

Now it will be shown that the suggested exact penalty method fits well to the maximum
likelihood problems subject to marginal loglinear constraints. The following theorem gives
a sufficient condition for M to be a C∞ differentiable manifold.
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Theorem 6.1. Let B be an (n − k1) × (n − k2)-dimensional matrix (0 ≤ k1, k2 ≤ n − 1)
and A an (n− k2)× n-dimensional positive matrix. Then, the set

M =
{
x ∈ Rn|h(x) = B log

(
A exp(x)

)
= 0

}

is an r(B)-dimensional C∞ differentiable manifold.

Proof. The Jacobian matrices of h are given by (6.6) where D−1
(
A exp(x)

)
is an

(n−k2)× (n−k2) and
(
D exp(x)

)
is an n×n diagonal matrix for every x ∈ M, respectively.

Now, it will be shown that

r
(
Jh(x)

)
= r(B), x ∈ M.

The rows of a product matrix are linear combinations of the rows of the second matrix,
therefore,

r

((
BD−1

(
A exp(x)

)
A

)
D

(
exp(x)

)
)
≤ r

(
BD−1

(
A exp(x)

)
A

)
, x ∈ M. (6.9)

Since D
(
exp(x)

)
is invertible,

r

(
BD−1

(
A exp(x)

)
A

)
= r

(
BD−1

(
A exp(x)

)
AD

(
exp(x)

)
D−1

(
exp(x)

)) ≤

r

(
BD−1

(
A exp(x)

)
AD

(
exp(x)

))
, x ∈ M.

(6.10)

From inequalities (6.9) and (6.10),

r

(
BD−1

(
A exp(x)

)
A

)
= r

(
BD−1

(
A exp(x)

)
AD

(
exp(x)

))
, x ∈ M. (6.11)

Consider the matrices BD−1
(
A exp(x)

)
A, x ∈ M, and use the same reasoning for the

matrix A and a right inverse A− (AA−= I), then, for the matrices D−1
(
A exp(x)

)
, x ∈ M,

respectively, thus, we obtain that

r
(
Jh(x)

)
= r(B), x ∈ M,

from which the statement follows. ¥
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7. Numerical experience

Consider the data in Table 1 obtained from a national sample of the Dutch electorate
interviewed in February 1977 and March 1977. Let A denote vote intention in February, B
vote intention in March, C preference for the prime minister in February and D preference
for the prime minister in March. By yijkl we denote the number of people who responded
in category i of variable A, in category j of B, in category k of C and in category l of D.
These observed frequencies are given in Table 1. Thus, for example, y1111 = 293, y1112 = 1,
y1113 = 6, and so on. The observed marginal distributions pertaining to the turnover in vote
intention and preference for the prime minister are given in Table 2 where the meanings of
the variables are given as well. Note that the marginal observed frequencies are given as

3∑

k=1

3∑

l=1

yijkl and

3∑

i=1

3∑

j=1

yijkl.

The data have previously been studied by Hagenaars (1990) and Bergsma (1997). A rea-
sonable assumption is that the yijkl have independent Poisson distributions with unknown
means Eyijkl = µijkl > 0.

C 1 1 1 2 2 2 3 3 3
D 1 2 3 1 2 3 1 2 3 Total

A B
1 1 293 1 6 4 2 0 22 1 21 350
1 2 2 1 2 1 1 0 0 1 1 9
1 3 8 1 7 0 1 0 0 0 9 26

2 1 8 0 1 1 0 0 2 2 3 17
2 2 13 6 7 9 84 23 8 24 68 242
2 3 2 0 3 1 3 2 3 2 9 25

3 1 31 0 0 1 0 1 9 2 7 51
3 2 5 4 0 1 6 1 1 9 16 43
3 3 48 3 23 1 14 15 21 12 200 337
Total 410 16 49 19 111 42 66 53 334 1100

Table 1: Vote Intention and Preference Prime Minister in The Netherlands
(source: Hagenaars, 1990)

We note that the symbols A, B, C, and D have the same meaning in Table 1 and Table 2.
14



(a) Vote Intention: February 1977 - March 1977
B. March

Left Chr. Dem. Other Total
A. February
1. Left Wing 350 9 26 385
2. Christ. Dem. 17 242 25 284
3. Other 51 43 337 431
Total 418 294 388 1100
(b) Preference for Prime Minister: February 1977 - March 1977

D. March
Left Chr. Dem. Other Total

C. February
1. Left Wing (Den Uyl) 410 16 49 475
2. Christ. Dem. (Van Agt) 19 111 42 172
3. Other 66 53 334 453
Total 495 180 425 1100

Table 2: Turnover in Political Preference in The Netherlands: February 1977 - March 1977
(source: Hagenaars, 1990)

In Political Science, various hypotheses concerning the marginal population distributions
are of interest. A first hypothesis is that they are equal, i.e.,

3∑

k,l=1

µijkl =
3∑

k,l=1

µklij , i, j = 1, 2, 3, (7.1)

where the number of independent constraints is 8 and the number of variables n = 81.
This is called the marginal homogeneity model. Note, however, that a conspicuous
difference between the two observed (two-way) marginal tables is that their one-way marginal
distributions are different: both in February and March, the number of people who preferred
the socialist candidate Den Uyl is larger than the number of people who preferred the left-
wing party, whereas, the opposite is true for the Christian Democratic candidate, Van Agt
and the Christian Democratic Party. This reflects the “empirical regularity” that, in general,
the Prime Minister in office, Den Uyl at that time, was more popular than his party, even
among those who do not support the Prime Minister’s politics (Hagenaars, 1990, page 172).
A weaker hypothesis asserts that only the association, as measured by odds ratios, is equal
in the two tables, and is written as follows:

(∑
k,l µijkl

)(∑
k,l µi+1,j+1,kl

)
(∑

k,l µi+1,jkl

)(∑
k,l µi,j+1,kl

) =

(∑
k,l µklij

)(∑
k,l µkl,i+1,j+1

)
(∑

k,l µkl,i+1,j

)(∑
k,l µkl,i,j+1

) , i, j = 1, 2, 3.
(7.2)

An interpretation of this model is that the two-way marginal distributions are equal, except
for differences in their one-way marginals. It follows from Theorem 6.1 as well as Bergsma
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and Rudas (2002) that M is a differentiable manifold, because Jh is of full rank on M , and
from Bergsma and Rudas (2002) that M are connected for both models, (7.1) and (7.2).

Using V as given in (4.3) and q = 1, the quasi-Newton algorithm described in the previous
section was used for finding x∗ for problem (6.2) with model constraints (7.1) and (7.2),
respectively. A potential problem with finding x∗ is that certain xi may go to minus infinity,
corresponding to the µi going to zero. It is easy to verify that this is only possible if the
corresponding yi = 0. This problem was solved by adding a small constant, namely 10−50,
to those yi = 0. This constant negligably affects the value of fy and the modified vector y
was also used as a starting value. As a convergence criterion, the algorithm was stopped at
iteration k > 1 if

max
i
|x(k)

i − x
(k−1)
i | < 10−10.

At each iteration, we started with a step-size equal to 1, and if the resulting new estimate did
not lead to a higher value of P(x; q), the step-size was repeatedly halved until a higher value
of P(x; q) was obtained. The algorithm was implemented in Mathematica 5.0. The search
direction was calculated by using function LinearSolve and, to avoid numerical difficulties
the option Method→Multifrontal was used.

The estimated marginal frequencies are given in Tables 4 and 5. The maxima of fy are
3380.66 and 3431.37, respectively. A summary of the maximization procedure is given in
Table 3.

Model (7.1) Model (7.2)
# variables 81 81
# constraints 8 4
# iterations 75 6
time taken 8.1 seconds 0.7 seconds

Table 3: Summary of the maximum likelihood fitting by using a Pentium IV, 2.4 MHz

For model (7.2), the algorithm has converged very fast and automatically. However, for
model (7.1), we were unable to obtain automatic convergence, due to an ill-conditioning
of the problem close to the boundary of the parameter space and far from the optimal
value. After some experimentation, we let the algorithm run with a step-size of 0.01 for 50
iterations, a step-size of 0.1 for 20 iterations, and finally, we were able to obtain convergence
by letting the algorithm run with step-size 1 for another five iterations.

If x is in M , the likelihood ratio test statistic, defined as

G2(x∗,y) = −2 log
P (y|y)
P (y|x∗) = −2(fy(y)− fy(x∗))

has a large sample chi-square distribution with degrees of freedom equal to the dimen-
sion of M . We find G2(x∗,y) = 132.29 with 8 degrees of freedom for model (7.1) and

16



G2(x∗,y) = 30.86 with 4 degrees of freedom for model (7.2). The p-value for assessing the
fit of a model is then defined as the probability that a random variable with a chi-square
distribution of the appropriate number of degrees of freedom exceeds G2(x∗,y). We obtain
p-values of less than 10−5 for both models, which gives a very strong evidence that x 6∈ M
in both cases.

(a) Vote Intention: February 1977 - March 1977
B. March

Left Chr. Dem. Other Total
A. February
1. Left Wing 387.43 12.48 39.25 439.16
2. Christ. Dem. 16.17 179.66 31.35 227.18
3. Other 55.95 47.44 330.27 433.66
Total 459.55 239.56 400.87 1100
(b) Preference for Prime Minister: February 1977 - March 1977

D. March
Left Chr. Dem. Other Total

C. February
1. Left Wing 387.43 12.48 39.25 439.16
2. Christ. Dem. 16.17 179.66 31.25 227.18
3. Other 55.95 47.44 330.27 433.66
Total 459.55 239.56 400.87 1100

Table 4: Maximum likelihood estimates for the marginal homogeneity model (7.1) based on
the data of Table 1
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(a) Vote Intention: February 1977 - March 1977
B. March

Left Chr. Dem. Other Total
A. February
1. Left Wing 343.08 12.77 33.09 388.94
2. Christ. Dem. 20.81 224.02 36.49 281.32
3. Other 57.94 53.55 318.25 429.74
Total 421.83 290.35 387.82 1100
(b) Preference for Prime Minister: February 1977 - March 1977

D. March
Left Chr. Dem. Other Total

C. February
1. Left Wing 421.49 12.14 43.86 477.49
2. Christ. Dem. 15.09 125.58 28.54 169.21
3. Other 59.32 42.41 251.57 453.30
Total 495.90 180.13 423.97 1100

Table 5: Maximum likelihood estimates for the model (7.2) based on the data of Table 1

Other algorithms have been described in the literature for the maximum likelihood fitting
of models of the form (6.3). For more general maximum likelihood problems where param-
eters are subject to equality constraints, Aitchison and Silvey (1958) proposed a modified
Newton method, based on the first and second derivatives of the Lagrangian (2.2), so that
the search is in (2n − k)-dimensional space. This modification is based on replacing the
second derivative matrix by its expected value, presumably to obtain a stabler algorithm,
but at the loss of superlinear convergence. This method was applied by Lang (1996) to
models of the form (6.3). Bergsma modified the algorithm to obtain a dimension reduction
of the search to n-dimensional space. Numerical experience by the first author has indicated
that the latter’s algorithm appears to improve on the Aitchison and Silvey algorithm, and it
was possible to obtain automatic convergence for a wide range of problems. However, why
that algorithm works well is not understood. A drawback of that algorithm is that it has
only linear convergence, and convergence could be quite slow.

Certain models of the form (6.3) are parameterizable (see Bergsma and Rudas, 2002),
and hence the maximum likelihood estimate can also be found by unconstrained optimiza-
tion. However, since the parameterization is implicit, an approach like this would require
“iteration within iteration,” which can be prohibitively expensive.
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8. Large sample behavior of parameter estimates
and interpretation of asymptotic covariance matrix

In a setting more general than in the previous section, a smoothly constrained maximum
likelihood estimation problem can be formulated as follows. Let S be the sample space,
N ≥ 1 the sample size, y ∈ SN a vector of observations, and let x ∈ Rn be a vector of
unknown parameters. Denote the log-likelihood as a function of the unknown parameters x
by fy(x) and suppose x ∈ M = {x ∈ Rn | h(x) = 0} for some constraint vector h.

Below, without further statement, we assume that all necessary regularity conditions,
given by Aitchison and Silvey (1958), are satisfied. They proved that x∗ → x in probability
as N → ∞. Then, since ∇f(x∗) → 0, we also obtain λ(x∗) → 0 in probability. Similarly,
it follows that L(x∗,λ(x∗)) − fy(x∗) → 0 and P(x∗; q) − fy(x∗) → 0. This implies that
for large N , both the Lagrangian function L(x,λ(x)) and the penalty function P(x; q) are
similar to the objective function fy(x) close to the optimal point x∗.

Now, let x̃ be the unconstrained maximum of fy. Then, it can be shown that Hfy(x̃) is
positive definite with probability going to one. Since additionally |x̃−x∗| → 0 in probability,
we obtain that Hfy(x∗) is positive definite with probability going to one as N → ∞. The
following theorem follows:

Theorem 8.1. Suppose x ∈ M . Then as N → ∞, the probability that the maximum
likelihood estimate x∗ is a local maximum of L(x,λ(x∗)) goes to one.

By the central limit theorem, both
√

N(x − x∗) and
√

N(x − x̃) have an asymptotic
normal distribution with mean zero and covariance matrix, say, Σ0 and Σ1, respectively.
Now, it is well know that Σ1 = E(Hfy(x))−1. The asymptotic covariance matrix of Σ0 was
given by Aitchison and Silvey. Interestingly, Σ0 can be expressed as Σ1 restricted to the
tangent space of M . We next introduce some notations in order to do this.

Let R|TM,Q denote the restriction of the matrix R to the tangent space of M by using
the metric induced by the nonsingular matrix Q, i.e., with inner product 〈x,y〉 = xT Qy.
Specifically,

R|TM,Q = (I − PQ)R(I − PQ),

where

PQ = Q−1Jh(x)T (Jh(x)Q−1Jh(x)T )−1Jh(x), x ∈ M,

is the projection matrix onto the space spanned by the columns of Q−1 JhT with respect
to the metric induced by Q. With this notation, it can be shown that

Σ0 = (Σ1)TM |Σ−1
1

That is, Σ0 equals Σ1 restricted to the tangent space of M using the metric induced by Σ−1
1 .
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9. Conclusion

A new exact penalty function has been introduced which converts a smooth constrained
nonlinear optimization problem to an unconstrained optimization problem, and a quasi-
Newton method to find the optimal point with superlinear convergence was proposed. An
advantage with respect to “classical” exact penalty function approaches is that it is easy to
find an appropriate penalty parameter, and the ill-conditioning of the problem is more easily
avoided. An application of the method to Rosenbrock’s parcel problem yielded convergence
in 6 iterations. A potential drawback of the proposed approach is that the second derivatives
of both the object function and the constraint functions are needed. However, numerical
values for the penalty function and its derivatives can be efficiently calculated by using
automatic differentiation techniques.

The method was tested on maximum likelihood estimation subject to constraints. The
problem concerned multivariate categorical data with loglinear constraints on the marginal
distributions. Since for constraints like this, it is (numerically) awkward to parameterize the
constraint surface, it is best to use constrained optimization techniques. For two problems
with 81 unknown parameters, the quasi-Newton algorithm converged quickly, although for
one of the problems some experimentation with the step size was necessary to be done.

Finally, for general constrained maximum likelihood problems, the large sample behavior
of parameter estimates was considered. It was shown that the probability that the max-
imum likelihood estimate is an unconstrained maximum of the Lagrangian function goes
to one if the statistical model is true and the sample size goes to infinity. Furthermore,
an interpretation of the asymptotic covariance matrix of parameter estimates was given in
terms of the tangent space of the constraint surface.
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