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Abstract

We take a new look at transient, or time-dependent Little laws for queueing systems.
Through the use of Palm measures, we will show that previous laws (see [6]) can be generalized;
furthermore, within this framework a new law can be derived as well, which gives higher-moment
expressions for very general types of queueing systems; in particular, the laws hold for systems
that allow customers to overtake one another. What’s especially novel about our approach is
the use of Palm measures that are induced by nonstationary point processes, as these measures
are not commonly found in the queueing literature. This new higher-moment law is then used
to provide closed-form expressions of all moments of the number of customers in the system in
an M/G/1 preemptive-LCFS queue at a time t > 0, for any initial condition and for any of the
more famous preemptive disciplines (i.e. preemptive-resume, and preemptive-repeat with and
without resampling). The phrase “closed-form” is used here to stress that the moments can be
expressed in terms of probabilities that consist of convolutions of busy periods and residual busy
periods, and so moment-matching methods can be used to generate very simple approximations
of these quantities, as in [3]. It is also worth noting that these results appear to be new for the
M/M/1 queue as well (see [3], [4]), and so we use them to derive a nice structural form for all
of the time-dependent moments of a regulated Brownian motion (see [1], [2]).

1 Introduction

Little’s law is one of the most fundamental laws of queueing theory. For a queueing system in
steady-state, it relates L, the expected number of customers present in the system, to λ, the rate at
which customers arrive to the system, and W , the expected waiting time of a customer that arrives
during steady state; more precisely, L = λW . Numerous papers devoted to this law have appeared
in the literature over the past forty years: a nice overview of what was discovered through 1991 can
be found in Whitt [23].

In this paper we will focus on transient, or time-dependent versions of Little’s law, and their
applications. To the best of our knowledge, the first paper that specifically focused on these sort of
laws for queueing systems was Bertsimas and Mourtzinou [6]. Their method of proof involved the
use of sample-path arguments to compute the first moment of the number of customers present in
a queueing system at time t (denoted Q(t)). They also use the same type of argument to establish
a distributional relationship between Q(t) and the waiting times of all customers that arrive in the
system during the interval (0, t], so long as customers depart from the system in the same order at
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which they arrived. They allow for arbitrary initial conditions, and they also consider multiclass
queueing systems as well. What’s important to notice is that the proofs of these results require
that the necessary waiting time distributions can be expressed in terms of a limit (this is needed in
order to “condition” on having an arrival at a fixed time), and that the mean measure of the arrival
process is absolutely continuous with respect to Lebesgue measure. In particular, if N represents
the point process of arrivals (made up of points {Tn}n≥1), they assume that there exists a function
h and a random process {W (t) : t ≥ 0} such that for each t ≥ 0,

h(t) = lim
δt→0

E[N(t)]− E[N(t− δt)]
δt

and for each t, τ > 0,

h(t)dtP (W (t) > τ) :=
∞∑
n=1

P (t− dt < Tn ≤ t)P (Wn > t|Tn = t)

where Wn represents the sojourn time of the nth arrival to the system in (0,∞). From this definition,
P (W (t) > τ) can intuitively be interpreted as the probability that a customer that arrives to the
system at time t stays in the system for at least τ units of time.

We will begin by showing how Palm theory can be used to generate the laws given in [6] under less
restrictive conditions, in that this approach no longer requires that the limits mentioned above exist,
nor do we have to assume that the mean measure is absolutely continuous. Putting these laws into
a Palm framework is nice, because it gives us a natural analogue of the known Palm interpretation
for the classical versions of Little’s law. Furthermore, our approach also leads to a new law that
allows us to relate any moment of Q(t) to the sojourn times of customers that interact with the
system in [0, t]. What’s especially interesting about this law is that it is very general: it even holds
for queueing systems that allow customers to overtake one another.

Typically the type of Palm measure that is found in the queueing literature is the one that is
induced by a stationary point process. These measures are often used to analyze systems from
the perspective of an arriving or departing customer that interacts with the system while it is in
equilibrium. Introductions to the theory can be found in many places: see, for instance, Baccelli
and Brémaud [5] and Serfozo [22]. We will instead use a family of Palm measures that are induced
by point processes that do not necessarily have to be stationary, and the reader will see that their
use will allow us to “condition” on an arrival occurring at a fixed time t in the appropriate way.
These were first introduced in Ryll-Nardzewski [21], and a nice discussion on these measures can
be found in the book of Kallenberg [14]. Usage of these measures is rare in the queueing literature,
which adds to the novelty of the approach that’s featured in this paper.

The application we present is as follows: in the papers of Abate and Whitt [3, 4] they were
interested in how the moments of Q(t) behave as a function of t, where {Q(t); t ≥ 0} corresponds
to an M/M/1 queue with arrival rate λ and service rate µ. One of the main results of [3] (Theorem
3.2) showed that

E[(Q(t))n|Q(0) = 0] = n!(λE[τ ])nP

 n∑
j=1

Rτ,j ≤ t

 (1)

where {Rτ,k}k≥1 is an i.i.d. sequence of residual busy periods, and for a given x ∈ R and an
integer n ≥ 1, (x)n = x(x− 1) · · · (x− n+ 1). The proof of this result involved using the fact that,
when Q(0) = 0, Q(t) d= M(t) (here d= denotes equality in distribution), where M(t) represents the
maximum value over [0, t] of a birth-death process that moves along the integers, with a birth rate
λ and a death rate µ. Later, in [4] transform techniques were used to derive a decomposition of the
queue-length at an exponential time, and this is then used to study the behavior of E[Q(t)n|Q(0) = k]
for any n, k ≥ 1: however, even though they are able to generate equations that give insight into
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how these moments behave (see Theorems 8.4 and 8.5 of [4]), they do not give an expression for this
quantity that’s as clear as, or is analogous to, identity (1). This approach does give a nice expression
when n = 1, for arbitrary k, but it is not clear how it can immediately be used to compute the
second and higher moments, for such k. We should also point out that the time-dependent moments
of regulated Brownian motion were also studied in another series of papers by Abate and Whitt (see
[1], [2]), which do not rely on the results found for the M/M/1 queue. Similarly, in these papers it is
shown that the moments are much more difficult to compute when the process does not start at the
origin, and only the first two moments are given for any initial condition; moreover, their derived
form of the second moment does not immediately allow one to guess what the higher moments should
look like.

We will show how to use our new transient versions of Little’s law to very quickly derive the
time-dependent moments of an M/GI/1 preemptive-LCFS (Last Come First Served) queue, for any
initial condition. Our use of the term preemptive-LCFS queue will refer to systems that operate
under either the preemptive-resume or preemptive-repeat disciplines. It is also worth observing that
our results will also hold for queueing systems that “mix” both the preemptive-resume and repeat
disciplines, i.e. it also holds, for instance, if at each time a given customer begins to receive service,
it either continues where it left off (preemptive-resume), restarts from where it began the last time
(preemptive-repeat without resampling), or restarts with a new amount of work (preemptive-repeat
with resampling), where the choice of preemption used is governed by another random element. The
expressions we find are as pleasing as (1), in that they are in terms of probabilities that can be
approximated with moment-matching techniques, in the same way as (1) was approximated within
section 4 of [3].

It is interesting to note that for Q(0) = 0, the factorial moments of Q(t) were implicity computed
for the M/G/1 preemptive-resume LCFS queue as well in the work of Kella et al. [17], who were
interested in various time-dependent properties of symmetric M/G/1 queues (see Kelly [15] for a
definition). There they were able to compute the distribution ofQ(τ(q)), where τ(q) is an exponential
random variable with rate q, by making use of the fact that when Q(0) = 0, the distribution of Q(t)
can be expressed in terms of a Lévy process. In particular,

Q(t) d= ]

{
s ∈ [0, t] : X(s−) = inf

r∈[s,t]
X(r)

}
where {X(t); t ≥ 0} represents the “net-input” process, i.e.

X(t) =
N(t)∑
k=1

Sk − t

and ]{s : S(s)} denotes the number of s values for which the statement S(s) is true. Formula (1)
then quickly follows from inverting the transform of Q(τ(q)). In a sequel to this paper [12], we will
show how a transient analogue of results found in the classical ASTA (Arrivals See Time Averages)
literature can be used to derive the distributions of Q(τ(q)) for queueing models that are more
general than the ones considered here.

We begin in Section 2 by setting up the mathematical framework in which we will work through-
out this study. The derivation of our transient Little laws will be given in Section 3. In Section
4 we will show how these results can be used to gain additional insight into the time-dependent
behavior of the moments of the M/G/1 preemptive-LCFS queue, and we will conclude in Section 5
by demonstrating how the time-dependent moments of the M/M/1 queue can be used to derive all
of the corresponding moments for a regulated Brownian motion.

2 Palm Measures

Suppose N := {N(t); t ≥ 0} is a point process on (0,∞), whose points consist of the arrival times
of customers to a given queueing system. We identify these points with the sequence {Tn;n ≥ 1},
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where Tk denotes the arrival time of the kth customer to enter the system in the interval (0,∞).
Associated with the kth arrival is its waiting time Wk, and these waiting times generate a real-valued
stochastic process {W (s); s ∈ R+}, where W (s) represents the waiting time of the last customer
to arrive at or before time s: we assume W (s) = 0 if no customers have arrived in (0, s]. Finally,
let µ denote the mean measure of N , i.e. µ(A) = E[N(A)], which we will assume is σ-finite, in
that µ(K) < ∞ for all compact sets K. It is further assumed that throughout this paper, all of
our processes reside on the space (Ω,F , P ), where Ω is a complete separable metric space, F are
its associated Borel sets, and P is an arbitrary probability measure that determines the laws of all
processes on the space. Such assumptions should not be considered to be too restrictive, due to the
fact that many interesting processes associated with queueing networks reside on the space D[0,∞)
that consists of right-continuous functions with left-hand-limits, and it is well-known that this space
can be equipped with a metric that satisfies such properties.

To show how some of our transient laws simplify to their well-known stationary variants, we
will also consider stationary versions of the processes given above, which will actually be defined on
the entire real line. We will refrain from giving explicit definitions of all our stationary processes,
as their proper definition can easily be inferred from our current setting. Rather, to signify that a
process is stationary we will merely place a tilde over each random element, e.g. Ñ , Q̃(t), W̃ (s),
etc..

Under these assumptions, we know that there exists a µ-a.e. unique collection of Palm measures
{Ps}s∈R+ induced by N , that satisfy the following: for any Borel set B ⊂ R and A ∈ F ,

E[N(B)1A] =
∫
B

Pt(A)µ(dt)

where 1A is shorthand for the indicator function 1A(ω) with ω ∈ Ω, which is 1 if ω ∈ A, and 0
otherwise.

A major consequence of this definition is what is known as the Campbell-Mecke formula, which
relates the Palm distributions to expectations of stochastic integrals with respect to a point process.

Theorem 2.1 For a given stochastic process {X(t); t ≥ 0}, the following equality holds:

E

∫
R
X(s)N(ds) =

∫
R
Es[X(s)]µ(ds).

The proof of this theorem follows by applying an extension argument to the local definition of the
Palm kernel that we have provided here, and is well-known in the literature.

The reader should note that the more classical (from a queueing perspective) definition of a Palm
probability follows from this definition, when we further assume the existence of a measurable flow
{θt}t∈R on our underlying space such that all processes of interest are adapted to the flow, and
that P is θt-invariant, i.e. P (θtA) = P (A) for any A ∈ F . By measurable flow, we mean that for
each θt : Ω → Ω (i) θ0 is the identity mapping, (ii) θt is a (jointly measurable) bijection, and (iii)
θs+t = θsθt for any s, t ∈ R. Readers that are uncomfortable with the notion of such a flow can think
of it as a stationary process that contains all the information about a process we may be interested
in, so that all stationary processes of interest (i.e. queue-length and workload processes) are nice
(i.e. shift-invariant) functionals of the flow. As a matter of fact, when the underlying probability
space is D[0,∞), the standard shift operator on this space plays the role of the measurable flow.

Under these assumptions, the locally defined Palm measures are related to the classical Palm
measure in the following way: Pt(θtA) = P0(A). This will also be used at various points throughout
the paper.

3 Little Laws

Throughout this section we will assume that Q(0) = 0, but it is not difficult to extend the formulas
given below to the case when Q(0) = n, for any n ≥ 1. Indeed, we will do this when we compute
the time-dependent moments of the M/G/1 preemptive-LCFS queue in Section 4.
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Our first result is a generalization of Theorem 1 in Section 3 of [6]. It is used in the Ph.D. thesis
of Riaño [19], and can also be found for the case of Poisson arrivals in Rolski [20].

Theorem 3.1 The first moment of Q(t) satisfies the following equality:

E[Q(t)] =
∫ t

0

Ps(W (s) > t− s)µ(ds)

Proof As is true in [20], the proof of this result immediately follows from applying the Campbell-
Mecke formula:

E[Q(t)] = E

[∫ t

0

1(W (s) > t− s)N(ds)
]

=
∫ t

0

Ps(W (s) > t− s)µ(ds).

This completes the proof. ♦

Remark It is interesting to notice that the well-known version of Little’s law immediately follows
from this result. If we assume that Q̃ := {Q̃(t); t ∈ R} is stationary, then

E[Q̃(0)] =
∫ 0

−∞
P̃s(W̃ (s) > −s)λds

= λ

∫ 0

−∞
P̃0(W̃ (0) > −s)ds

= λẼ0[W̃ (0)].

�

For queueing systems that satisfy the following assumptions, it has been shown that even stronger
relationships hold between the steady-state number of customers in the system and the steady-state
sojourn time. These assumptions are also given in Theorem 1 of [7].

Assumptions 3.1 All arriving customers enter the system one-at-a-time, and remain in the system
until their service requirements are satisfied.

Assumptions 3.2 The customers leave the system in the same order in which they arrived, i.e. the
system is overtake-free.

Assumptions 3.3 The sojourn time of a customer is independent of the arrival times and service
requirements of all customers that arrive during its sojourn time.

Our next result is a generalization of Theorem 6 in [6].

Theorem 3.2 Suppose that a queueing system satisfies assumptions (3.1), (3.2), and (3.3). Then
the generating function of Q(t) is as follows:

E[zQ(t)] = 1 + (z − 1)
∫ t

0

Ps(W (s) > t− s)Es[zN(s,t]]µ(ds)
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Proof Proving this involves applying the Campbell-Mecke formula to

1(Q(t) ≥ n) =
∫ t

0

1(W (s) > t− s,N(s, t] = n− 1)N(ds).

In other words,

P (Q(t) ≥ n) =
∫ t

0

Ps(W (s) > t− s,N(s, t] = n− 1)µ(ds)

=
∫ t

0

Ps(W (s) > t− s)Ps(N(s, t] = n− 1)µ(ds).

The generating function of Q(t) can now be obtained after some simple algebra has been performed.
♦

Remark Again, it is easy to see that this result can be related to the steady-state distributional
version of Little’s law. Notice that if the arrival process is a renewal process, then

E[zQ̃(0)] = 1 + (z − 1)
∫ 0

−∞
P̃s(W̃ (s) > −s)Ẽs[zÑ(s,0]]λds

= 1 + (z − 1)
∫ ∞

0

P̃0(W̃ (0) > s)Ẽ0[zÑ(0,s]]λds.

The form of this result is different from the standard Q̃(0) d= Ñe(0, W̃ ) representation of this law (see
[7] and [13]: also, see [16] for the Poisson arrival case), where W̃ is the stationary waiting time and
Ñe is the equilibrium version of the renewal process. However, it is equivalent, and moreover, the
appearance of the z−1 term allows for very simple calculations of all factorial moments E[(Q̃(0))n],
where (x)n = x(x− 1) · · · (x− n+ 1):

E[(Q̃(0))n] = nλ

∫ ∞
0

P̃0(W̃ (0) > s)]Ẽ0[(Ñ(0, s])n−1]ds.

�

It is theoretically interesting that the following alternative transient distributional law can also be
derived, when P ∗s is the Palm measure induced by the departure process of our overtake-free system
(we still assume that we have Poisson arrivals). Let {V (t); t ≥ 0} denote a stochastic process, where
V (t) represents the sojourn time of the first customer to depart at or after time t. This result is a
transient analogue of the main result of Keilson and Servi [16].

Theorem 3.3 For 0 < z < 1, we find that

E∗t [zX(t)] = E∗t [zN(t−V (t),t]]. (2)

Furthermore,

E∗t [X(t)] = E∗t [N(t− V (t), t]] = λE∗t [V (t)]. (3)

Proof The proof of this statement is simple: it merely follows from the fact that since the system
is overtake-free, X(t) = N(t− V (t), t] if we have a departure at time t (which occurs w.p. 1 under
P ∗t ). The rest then follows from differentiation. ♦
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Notice that equation (3) is in the classical form of Little’s law, even though the expected values
are with respect to time-dependent Palm probabilities. If we generalize our setting by assuming
that N is stationary, and that the number of arrivals observed by a customer that departs at time
t is independent under P ∗t of the sojourn time of that customer, we end up with this form as well.
Eventually, for large t, E∗t [X(t)] is approximately E[X(t)], which gives the classical version of Little’s
law.

At this point we will begin to discuss a result that not only does not appear to be previously
known in any sense, but also does not have any type of stationary interpretation. In particular, we
will show that, regardless of the service discipline invoked by the queueing system, there is still a
relationship between all moments of the number of customers in the system, and their waiting times.
To do this we will have to briefly introduce a collection of multi-indexed Palm measures. These are
discussed in [14], and a queueing application can be found in [8, 9], where they use higher-order
(reduced) Palm measures to derive approximations for various performance measures associated
with queues that are experiencing light-traffic.

We will now give a very rough sketch as to how these measures are derived; the details can be
found in [14]. Based on our assumptions we know that there exists a µ2-a.e. unique probability
kernel {Ps1,s2}s1,s2∈R such that, for A ∈ F and B1, B2 ∈ B(R),

E[N(B1)N(B2)1A] =
∫
B1

∫
B2

Ps1,s2(A)µs1(ds2)µ(ds1).

where µ(B1 × B2) = E[N(B1)N(B2)] =
∫
B1
µs1(B2)µ(ds1). Such a construction can also be found

in [14]; furthermore, it is known that we can also derive measures Ps1,s2,...,sn
for any n ≥ 1, and

we can still interpret Ps1,s2,...,sn
(A) as the probability of A, given N has points at s1, s2, . . . , sn.

Moreover, from Lemma 11.2 in Kallenberg (see also Proposition 2.4 in [8] for the reduced case), we
also know that these Palm measures are consistent under iterations, in that the Palm measure Ps2
induced by N , with respect to the probability measure Ps1 is the same as Ps1,s2 . This result can be
used to prove the following:

Theorem 3.4 The factorial moments of Q(t) satisfy the following relationship: for each n ≥ 1,

E[(Q(t))n] =
∫ t

0

∫ t

0

· · ·
∫ t

0

Ps1,s2,...,sn(W (s1) > t− s1,W (s2) > t− s2, . . . ,W (sn) > t− sn)

µs1,s2,...,sn−1(dsn) · · ·µs1(ds2)µds1 (4)

where µs1,...,sk
(A) = Es1,...,sk

[N(A− {s1, . . . , sk})].

Proof We will provide the details for the proof when n = 2; it will be obvious to the reader that
the same argument follows for any arbitrary n. Notice that

E[Q(t)(Q(t)− 1)] = E[
∫ t

0

(Q(t)− 1)1(W (s) > t− s)N(ds)]

=
∫ t

0

Es[1(W (s) > t− s)(Q(t)− 1)]µ(ds)

=
∫ t

0

Es

[
1(W (s) > t− s)

[∫ t

0

1(W (u) > t− u)N(du)− 1(W (s) > t− s)− 1(W (s) ≤ t− s)
]]
µ(ds)

=
∫ t

0

Es

[
1(W (s) > t− s)

[∫ t

0,u 6=s
1(W (u) > t− u)− 1(W (s) ≤ t− s)

]]
µ(ds)

=
∫ t

0

∫
(0,s)∪(s,t]

Pu,s(W (u) > t− u,W (s) > t− s)µs(du)µ(ds).

♦
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Therefore, we see that the nth factorial moment of Q(t) can be expressed in terms of the joint
distribution of the waiting times of n customers that arrive at times s1, s2, . . . , sn ∈ (0, t]. Unfor-
tunately, applying this result is typically a very difficult task, mainly because the mean factorial
measures found in the integral typically do not have a nice form.

For queues with Poisson arrivals, however, it is actually possible to simplify this relationship. If
N is a stationary Poisson process with rate λ > 0, then it’s known that

µs1,...,sn−1(dsn) · · ·µ(ds1) = λndsn · · · ds1 (5)

which gives us the following corollary.

Corollary 3.1 If N is a stationary Poisson process with rate λ > 0, then

E[(Q(t))n] = n!λn
∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

Ps1,s2,...,sn
(W (s1) > t− s1,W (s2) > t− s2, . . . ,W (sn) > t− sn)

× dsn . . . ds2ds1. (6)

Proof The proof of this result involves applying (5) to (4), along with the fact that Ps1,...,sn(W (s1) >
t− s1, . . . ,W (sn) > t− sn) is symmetric with respect to (s1, . . . , sn). ♦

Remark Clearly, if we also assume that our queueing system is stationary and satisfies Assumptions
(3.1), (3.2), and (3.3), we find that

E[(Q̃(0))n] = n!λn
∫ 0

−∞
· · ·
∫ sn−1

−∞
P̃s1,s2,...,sn

(W̃ (sn) > −sn)dsn . . . ds1

= n!λn
∫ 0

−∞
· · ·
∫ sn−1

−∞
P̃sn

(W̃ (sn) > t− sn)dsn . . . ds1

= n!λn
∫ t

−∞
· · ·
∫ sn−1

−∞
P̃0(W̃ (0) > −sn)dsn . . . ds1

= n!λnẼ0[W̃ (0)]
∫ 0

−∞
· · ·
∫ sn−2

−∞
P̃0(RW̃ (0) > −sn−1)dsn−1 . . . ds1

= . . . = n!λn
n−1∏
k=0

E[RW̃ (0),k]

where R0,W̃ (0) = W̃ (0), R1,W̃ (0) is the residual version of W̃ (0), i.e. for any t ≥ 0,

P (R1,W̃ (0) ≤ t) =
1

E[W̃ (0)]

∫ t

0

P (W̃ (0) > s)ds

and for any n ≥ 1 Rn+1,W̃ (0) = R1,Rn,W̃ (0)
. However, it is well known that

n−1∏
k=0

E[Rk,W̃ (0)] =
E[W̃ (0)n]

n!

and so we conclude that E[(Q̃(0))n] = λnẼ0[W̃ (0)n], which is of course known, and can also be
computed from the distributional Little’s law. �

Remark Now suppose we consider the case when Q(0) = 0, and the sojourn time of each customer
that enters the system is its service time. If all services are independent of one another, then from
the proof of equation (6) (without making use of symmetric properties of the integrand) we see that
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E[(Q(t))n] = λn
∫ t

0

∫ t

0

· · ·
∫ t

0

Ps1,s2,...,sn
(W (s1) > t− s1,W (s2) > t− s2, . . . ,W (sn) > t− sn)dsn . . . ds2ds1

= (λE[B]P (R1,B ≤ t))n.

This of course agrees with the well-known, elementary fact that for an M/G/∞ queue, the distri-
bution of Q(t) is Poisson with mean λE[B]P (R1,B ≤ t). �

4 Time-dependent moments of a preemptive-LCFS queue

Consider an M/GI/1 preemptive LCFS queue, where we assume that the arrival rate is λ, and
that each customer brings with it a generally distributed amount of work S, with mean E[S].
We will assume throughout that the first moment of the busy period is finite for each type of
preemptive model considered (recall the discussion of our use of the term “preemptive LCFS queue”
in the introduction). With that being said, the reader should realize that the transient Little laws
themselves are valid for any choice of parameter values associated with our arrival and service times.
The main reason why this assumption is being made is because it will make the form of our final
results more pleasing, from an interpretation standpoint.

We begin by first computing E[(Q(t))n], while assuming that Q(0) = 0. Then from our previous
observations,

E[(Q(t))n] = n!λn
∫ t

0

· · ·
∫ s2

0

Ps1,...,sn
(W (s1) > t− s1, . . . ,W (sn) > t− sn)ds1 . . . dsn. (7)

However, a little thought shows that under this queue discipline, if s1 < s2 < . . . < sn, then

Ps1,s2,...,sn
(W (s1) > t− s1,W (s2) > t− s2, . . . ,W (sn) > t− sn)

= Ps1,s2,...,sn
(W (s1) > s2 − s1,W (s2) > s3 − s2, . . . ,W (sn) > t− sn)

= P (τ > s2 − s1)P (τ > s3 − s2) · · ·P (τ > t− sn)

where τ is a random variable that represents the busy period. Here the first equality comes from the
fact that, on the set where {W (sn) > t−sn}, W (sn−1) > t−sn−1 if and only if W (sn−1) > sn−sn−1.
The second equality follows from the fact that each event {W (si) > si+1 − si} can be expressed
in terms of the work Si that the customer arriving at time si brings to the system, along with the
points of N in (si, si+1) and their respective marks. These facts, along with N being Poisson shows
that the events are independent. Plugging this into (7) gives

E[(Q(t))n] = n!λn
∫ t

0

· · ·
∫ s2

0

P (τ > s2 − s1)P (τ > s3 − s2) . . . P (τ > t− sn)ds1ds2 · · · dsn

= n!λnE[τ ]
∫ t

0

· · ·
∫ s3

0

P (τ > s3 − s2) . . . P (τ > t− sn)P (Rτ ≤ s2)ds2 . . . dsn

= n!λnE[τ ]
∫ t

0

· · ·
∫ s3

0

P (τ > s2) . . . P (τ > t− sn)P (Rτ ≤ s3 − s2)ds2 . . . dsn

= . . . = n!(λE[τ ])nP (
n∑
k=1

Rτ,k ≤ t)

where {Rτ,k}k≥1 represents an i.i.d. sequence of residual busy periods. This of course agrees with
the double transform computed in [17], and it is also in agreement with what’s found in [3], [4].
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Similarly, if there is one customer in the system at time zero with an amount of service that is
equal in distribution to S, we see that if W1 represents its sojourn time,

E[1(W1 > t)(Q(t))n] = n!λn
∫ t

0

· · ·
∫ s2

0

Ps1,...,sn(W1 > t,W (s1) > t− s1, . . . ,W (sn) > t− sn)ds1 . . . dsn

= n!λn
∫ t

0

· · ·
∫ s2

0

P (τ > s1)P (τ > s2 − s1)P (τ > s3 − s2) . . . P (τ > t− sn)ds1 . . . dsn

= n!(λE[τ ])n

P
 n∑
j=1

Rτ,j ≤ t

− P
τ +

n∑
j=1

Rτ,j ≤ t


= n!(λE[τ ])n

P
τ +

n∑
j=1

Rτ,j > t

− P
 n∑
j=1

Rτ,j > t

 .

Notice that if there are two customers in the system at time zero instead of one, the τ found in the
above expression would have to be replaced with a convolution of two busy periods, and similarly
for any other number of customers that happen to be present at time zero.

With these calculations in mind, we are now ready to derive an expression for the time-dependent
moments.

Theorem 4.1 Suppose Q(0) = n0 ≥ 0, where the customers are labeled with the numbers 1, 2, ..., n0,
with service times that are independent and equal in distribution to S, and are served in this order
(but still under preemptive LCFS). Then

E[Q(t)n] =
n∑
l=0

S(n, l)l!(λE[τ ])lP (
l∑

k=1

Rτ,k ≤ t)

+
n∑

m=1

(
n

m

) n0∑
r=1

[(n0 − r + 1)m − (n0 − r)m]
n−m∑
k=0

S(n−m, k)k!(λE[τ ])k

×

P
 r∑
j=1

τj +
k∑
l=1

Rτ,l > t

− P ( k∑
l=1

Rτ,l > t

) .
Here the sequences {τk}k≥1 and {Rτ,k}k≥1 represent two independent, i.i.d. sequences of busy
periods and residual busy periods, respectively. Moreover, the doubly indexed sequence of integers
{S(n, k)}n≥1,1≤k≤n represent the Stirling numbers of the second kind.
Proof Our new Little’s result will allow us to write down a closed-form expression for the nth

moment of Q(t). Notice that we can write

Q(t) =
n∑
k=1

1(Wk > t) +Q0(t)

where Q0(t) =
∫ t
0
1(W (s) > t− s)N(ds). Furthermore, it is also clear that

Q(t)n =
n∑

m=0

(
n

m

) ∑
1≤r1,...,rm≤n0

1(Wmin(ri,1≤i≤m) > t)Q0(t)n−m

=
n∑

m=0

(
n

m

) ∑
1≤r1,...,rm≤n0

1(Wmin(ri,1≤i≤m) > t)
n−m∑
k=0

S(n−m, k)(Q0(t))k. (8)
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We can further simplify this expression by noticing that for a fixed nonnegative integer m ≤ n and
a fixed positive integer r ≤ m, the number of times r appears as the index of W in (8) is just

1 +
m−1∑
k=1

(
m

k

)
(n0 − r)m−k = (n0 − r + 1)m − (n0 − r)m

which follows from a simple counting argument. Thus, after making use of this fact and taking
expectations in (8), we find that

E[Q(t)n] =
n∑

m=0

(
n

m

) m∑
r=1

[(n0 − r + 1)m − (n0 − r)m]
n−m∑
k=0

S(n−m, k)E[1(Wr > t)(Q0(t))k]

so it suffices to compute the expectations found within the sum. But by applying the Campbell-
Mecke formula in the same way as before, it is easy to see that if m = 0,

E[(Q0(t))k] = k!(λE[τ ])kP

 k∑
j=1

Rτ,j ≤ t

 .

Otherwise, if m ≥ 1, we see from our previous calculations that for a positive integer r,

E[1(Wr > t)(Q0(t))k] = k!(λE[τ ])k

P
 r∑
j=1

τj +
k∑
l=1

Rτ,l > t

− P ( k∑
l=1

Rτ,l > t

) .
This completes the proof. ♦

Remark It would be very interesting to see if there is still a connection between the marginal
distributions of the M/G/1 queues under LCFS-PR and processor sharing, for an arbitrary initial
condition. In general, it appears very difficult to make use of the work of Kitaev [18] in the hopes
of establishing that they are indeed the same. Indeed, it is easy to see that the argument given
in the proof of Theorem 2.2 in Denisov and Sapozhnikov [11] cannot be used to prove this state-
ment, if we assume that each customer present in the system at time zero has a remaining amount
of work that is equal in distribution to the service time of all customers that arrive after time zero. �

5 Moments of a regulated Brownian motion

As is mentioned in [3], it is possible to rescale time and space in such a way so that the sample path of
the M/M/1 queue converges in distribution (under the Skorohod metric) to a regulated Brownian
motion (RBM) {R(t); t ≥ 0}, with drift parameter µ = −1 and diffusion coefficient σ2 = 1, as
ρ→ 1. In particular, as ρ→ 1, it is known that since the sample paths of RBM are continuous with
probability one, we see that for each t ≥ 0,

(1− ρ)
2

Q

(
2t

(1− ρ)2

)
⇒ R(t)

where (⇒) is used to denote weak convergence. Therefore, we can use our time-dependent moments
of the M/M/1 queue-length to derive the time-dependent moments of a regulated Brownian motion
for any initial condition x ≥ 0, which complements and extends the results given in [1], [2].
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Theorem 5.1 For each n ≥ 1, x ≥ 0, we find that

E[R(t)n|R(0) = x] =
n!
2n

[
P

(
n∑
k=1

Ik ≤ t

)
+

n∑
m=1

∫ x

0

[
P

(
n−m∑
l=1

Il ≤ t

)
− P

(
Tx−u,0 +

n−m∑
l=1

Il ≤ t

)]
um−1

(m− 1)!
du

]

where Tx,0 := inf{t > 0 : R(t) = 0} (assuming R(0) = x), and {Ik}k≥1 is an i.i.d. sequence of
random variables such that

P (I1 ≤ t) =
∫ ∞

0

P (Tx,0 ≤ t)2e−2xdx.

Proof To prove the result, we will define a sequence of M/M/1 queues Qn0 that begin in state
Qn0(0) = 2n0+1, with a service rate of 1 and a traffic intensity ρn0 = 1− x/2n0 . From Theorem 4.1,
we find that

E

[(
1− ρn0

2

)n
Qn0

(
2t

(1− ρn0)2

)n]
=

(
1− ρn0

2

)n n∑
l=0

S(n, l)l!
(

ρn0

1− ρn0

)l
P

(
(1− ρn0)2

2

l∑
k=1

Rτ,k ≤ t

)

+
(

1− ρn0

2

)n n∑
m=1

(
n

m

) 2n0+1∑
r=1

[
(2n0+1 − r + 1)m − (2n0+1 − r)m

] n−m∑
k=0

S(n−m, k)k!
(

ρn0

1− ρn0

)k

×

P ( (1− ρn0)2

2

k∑
l=1

Rτ,l ≤ t

)
− P

 (1− ρn0)2

2

r∑
j=1

τj +
(1− ρn0)2

2

k∑
l=1

Rτ,l ≤ t


=

1
2n

n∑
l=0

S(n, l)l!ρln0
(1− ρn0)n−lP

(
(1− ρn0)2

2

l∑
k=1

Rτ,k ≤ t

)

+
1
2n

n∑
m=1

(
n

m

) 2n0+1∑
r=1

[
(x(1− r − 1

2n0+1
))m − (x(1− r

2n0+1
))m
] n−m∑
k=0

S(n−m, k)k!ρkn0
(1− ρn0)n−m−k

×

P ( (1− ρn0)2

2

k∑
l=1

Rτ,l ≤ t

)
− P

 (1− ρn0)2

2

r∑
j=1

τj +
(1− ρn0)2

2

k∑
l=1

Rτ,l ≤ t

 .
Notice that as n0 → ∞, ρn0 → 1, and so all terms that are multiplied by the constant 1 − ρn0

disappear. Hence, as n0 →∞, the limit of the scaled nth moment is the same as the limit of

n!
2n
ρnn0

P

(
(1− ρn0)2

2

n∑
k=1

Rτ,k ≤ t

)

+
n!
2n

n∑
m=1

1
m!
ρn−mn0

2n0+1∑
r=1

[
(x(1− r − 1

2n0+1
))m − (x(1− r

2n0+1
))m
]

×

P ( (1− ρn0)2

2

n−m∑
l=1

Rτ,l ≤ t

)
− P

 (1− ρn0)2

2

r∑
j=1

τj +
(1− ρn0)2

2

n−m∑
l=1

Rτ,l ≤ t

 .
It has already been established in Corollary 5.2.2(a) of [4] that, as n0 →∞,
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(1− ρn0)2

2
Rτ,1 ⇒ I1 (9)

where the distribution of I1 is as given in the theorem. Hence, we see that for each t ≥ 0,

lim
n0→∞

n!
2n
ρnn0

P

(
(1− ρn0)2

2

n∑
k=1

Rτ,k ≤ t

)
=
n!
2n
P

(
n∑
k=1

Ik ≤ t

)
.

Furthermore, it’s also clear that for each t ≥ 0,

lim
n0→∞

n!
2n

n∑
m=1

1
m!
ρn−mn0

2n0+1∑
r=1

[
(x(1− r − 1

2n0+1
))m − (x(1− r

2n0+1
))m
]
P

(
(1− ρn0)2

2

n−m∑
l=1

Rτ,l ≤ t

)

=
n!
2n

n∑
m=1

1
m!
xmP

(
n−m∑
l=1

Il ≤ t

)
.

To complete the proof it will suffice to compute, for each t ≥ 0,

lim
n0→∞

n!
2n

n∑
m=1

1
m!
ρn−mn0

2n0+1∑
r=1

[
(x(1− r − 1

2n0+1
))m − (x(1− r

2n0+1
))m
]
P

 (1− ρn0)2

2

r∑
j=1

τj +
(1− ρn0)2

2

n−m∑
l=1

Rτ,l ≤ t

 .

We claim that, uniformly in t ≥ 0,

lim
n0→∞

2n0+1∑
r=1

[
(x(1− r − 1

2n0+1
))m − (x(1− r

2n0+1
))m
]
P

 (1− ρn0)2

2

r∑
j=1

τj ≤ t


=

∫ x

0

P (Tx−u,0 ≤ t)mum−1du. (10)

To see this, first define a sequence of functions fn0 , where fn0(z) = P
(

(1−ρn0 )2

2

∑r
j=1 τj ≤ t

)
for z ∈

[r/2n0+1, (r+1)/2n0+1). Notice that P
(

(1−ρn0 )2

2

∑r
j=1 τj ≤ t

)
can be interpreted as the probability

that the properly time and space-scaled M/M/1 queue that starts in state r/2n0+1 reaches level
zero before time t. Thus, since the sample paths of regulated Brownian motion are continuous and
leave zero immediately after reaching it, we can apply the continuous mapping theorem to conclude
that

lim
n0→∞

fn0(z) = f(z)

where f(z) = P (Tz,0 ≤ t). Establishing that (10) holds uniformly in t follows from applying the
Dominated Convergence Theorem, along with Lemma 4.1 of Dai [10]. Finally, by combining (9)
with the uniform convergence of (10), we see that

lim
n0→∞

n!
2n

n∑
m=1

1
m!
ρn−mn0

2n0+1∑
r=1

[
(x(1− r − 1

2n0+1
))m − (x(1− r

2n0+1
))m
]

×P

 (1− ρn0)2

2

r∑
j=1

τj +
(1− ρn0)2

2

n−m∑
l=1

Rτ,l ≤ t
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= lim
n0→∞

∫ t

0

n!
2n

n∑
m=1

1
m!
ρn−mn0

2n0+1∑
r=1

[
(x(1− r − 1

2n0+1
))m − (x(1− r

2n0+1
))m
]

×P

 (1− ρn0)2

2

r∑
j=1

τj ≤ t− y

 dP

(
(1− ρn0)2

2

n−m∑
l=1

Rτ,l ≤ y

)

=
n!
2n

n∑
m=1

1
m!

∫ x

0

P

(
Tx−u,0 +

n−m∑
l=1

Rτ,l ≤ t

)
mum−1du

which completes the proof. ♦
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