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ON TRIMMED POLYA ALGORITHM

J�uri Lember

Abstract� Let �E� k � k� be a separable Banach space� L���� E� the corresponding Lebesgue�

Bochner space of essentially bounded random elements� Let X � Lp��� E�� We consider the

trimmed p�predictions � the best Lp�approximations of X by the constants� obtained by the trimmed

procedure� The behavior of the trimmed p�predictions as p � � is investigated� This is the setup

of Polya algorithm� We show that the �trimmed� Lp�distance from X to E does not always converge

to the �trimmed� L��distance� The topological conditions in terms of E for such a convergence

are presented� We prove that any sequence of trimmed p�predictions converges to the set of best

L��approximations� if E has uniform ��Kadec�Klee property with respect to a suitable topology ��

Key words� Kadec�Klee property� Polya algorithm� trimming�

� Introduction

Generally� the Polya algorithm is the construction of a best L��approximation as the
limit of best Lp�approximations� as p � �� This is a quite general approach and several
approximation problems fall within this framework� Often the L��approximation of real�
valued functions has been considered� the papers �Darst� �	� and �Al�Rashed� �
� deal
with the approximation of essentially bounded random variables by the functions that are
measurable with respect to a sub ��algebra� in �Darst� et al� �
� Cuesta� Matran� ��b�
the sub ��algebra is generalized by the sub ��lattice� the Polya algorithm in the space
of continuous bounded function is studied in �Legg� Towswend� ��� Li� �
�� The above�
mentioned papers consider the best approximation of the elements of certain function�space
by the elements of a subspace� The approximation �and corresponding Polya algorithm�
by the elements of a convex set that is not necessary a subspace is carried out in �Egger�
Huotari� ��� Huotari� Li� ����

In the present paper we consider the Polya algorithm in the following settings� Let �E� k�k�
be a separable real Banach space� ���F �P� a probability space and L���� E� the corre�
sponding Lebesgue�Bochner space� We investigate the approximations of the functions in
L���� E� by the elements of E� So� in a sense� the approximation setup is the simplest �
the subspace of possible approximations consists of constant�valued functions� The com�
plexities connected with such kind of approximation are caused by the general nature of
E and P� The Polya algorithm corresponding to such setup was studied in �Darst et al��
�
�� They considered an uniformly convex Banach space E and showed the convergence
of Polya algorithm� However� as pointed out in �Cuesta� Matran� ��b�� the proof of it
was not satisfactory� The complete proof of the convergence of Polya algorithm for uni�

	



formly convex E was given in �Cuesta� Matran� ���� Moreover� in this paper an useful
connection between the approximations of X � L���� E� by means of constants and the
approximation of X by the elements of L����G�P� E� with G being a sub ��algebra of
F was established � a best Lp�approximation of regular conditional probability measure
of X given G by constants is a version of a best Lp�approximation of X by the elements
of L����G�P� E�� This relation shows that in many cases the approximation by the con�
stants is not very restrictive � the corresponding results for the approximation from the
subspace L����G�P� E� can be easily deduced�

For now on� let X � L���� E�� X � P� Vp�a� �� kX � akp and

Vp �� inf
a�E

Vp�a�� p � �� �	�	�

The elements minimizing �	�	� are called p�predictions� the quantity Vp will be referred
to as p�variance� The ��predictions are the Chebyshev centers of the support of P and
��variance is usually called the Chebyshev radius �of the support of P �� The set of
p�predictions �p � �� will be denoted by Pp�
In this paper we investigate the following questions�

	� When
Vp � Vpo as p� po� �	���

�� What is the limit limp�po Vp� if the convergence in 	� fails�


� When an � Ppo � if pn � po� �n � �� Vpn�an� � Vpn � �n�

As mentioned previously� the case po � � is of our special interest� However� we brie�y
consider also the case po ���
At the �rst sight� �	��� might seem obvious� However� it turns out that �	��� does not
always hold and this fact justi�es the question ���
Note that convergence of the sequence fang to the set Ppo can occur in the following ways�

a� an � a � Ppo �
When this holds and po ��� then the Polya algorithm converges� If E is convex� then the
p�predictions �when they exists� are unique� This needs not hold for the Chebyshev centers
�unless E is uniformly convex� and� therefore� the limit of Polya algorithm is a distinguished
element of Ppo � This particular element is often called the best best approximation�

b� the sequence fang is relatively compact with all cluster points in Ppo �
If the limit set is unique� then this means the convergence of fang� The all convergence
results in this paper are of this type�

c� d�an�Ppo�� �� i�e� the distance of an from to Ppo goes to ��
Since the limit set Ppo is bounded� for a �nite�dimensional E this type of convergence
coincides with the type b�� However� as pointed out in a remark after Corollary 
��� for a
in�nite dimensional E� this type of convergence might be �too general��

We do not impose any restrictions on P � and we investigate the stated questions in terms
of topological and geometrical properties of E� Moreover� we aim to consider all questions

�



in a more general framework of convergent metrics �section �� as well as in terms of certain
type of loss functions �sub�sections ��
� ����� It turns out that the sequence fang �po � ��
minimizes the loss function of type ���
�� and the convergence results for such �minimizing�
sequences now apply �see e�g� Lember� ������

The �impartial� trimming procedure is a known method to robustify location parameter
like p�prediction �see e�g� Gordaliza� �	b� Cuesta� Matran� ���� In order to carry out the
trimming procedure we use the trimming functions �for P � introduced in �Gordaliza� �	a��
Let � � ��� 	�� A trimming function for P at level � is a measurable map 	 � E 	� ��� 	�
satisfying

R
	�x�P �dx� 
 	� �� The trimmed p�prediction at level � is any solution of the

minimization problem

inf
�

inf
a�E

	R
	�x�P �dx�

Z
	�x�kx� akpP �dx��

where the minimization with respect to 	 is over all possible set of trimming functions
at level �� The trimming at level � yields the usual sense of p�predictions� The trimmed
Chebyshev centers are de�ned analogously� Having the trimmed p�predictions and trimmed
p�variances� we investigate the questions 	�� �� and 
� also for � 
 ��

The paper is organized as follows� In section � we consider some very basic best approx�
imation principles in connection with convergent metrics and norms� We observe that if
po�� then �	��� follows from corresponding results of convergent metrics �Lemma ��	��
In Section 
 we introduce some preliminaries about trimmings� We also generalize Lemma
��	 for case � 
 � and show its relation with the generalities in Section ��
In Section � we give the answer to the question �� �Lemma ��	� and we study the topological
conditions to guarantee the convergence 	�� It turns out that the latter holds if the loss
function ���
� attains its minimum on E� This allows to consider the question �� in terms
of �a wide class of� loss functions� It is known that ���
� attains its minimum on E if
E admits a vector space topology � such that every k � k�closed ball is sequentially ��
compact �condition A in the sequel�� When this holds� the �non�trimmed� p�predictions
always exists� the question of the existence of trimmed p�predictions under A is still open�
In Section 
 we study the question 
� under the assumption that E satis�es A� We show
that for po � � the convergence in 
� holds� if E has ��Kadec�Klee property� i�e� the
��convergence in the unit sphere of E yields strong convergence �Theorem 
���� If po ���
then 
� holds under a slightly stronger condition� E has uniform ��Kadec�Klee property
�Theorem 
�	�� Since every uniformly convex space has uniform weak Kadec�Klee property�
our result generalizes the �non�trimmed� convergence result in �Cuesta� Matran� ����






� Some preliminaries about convergent metrics

In this section we represent some general principles about convergent metrics and norms�

��� Metrics

Let S be a set� G � S� Suppose dn� d are the metrics on S satisfying dn � d �i�e�
dn�x� y�� d�x� y� �x� y � S��

We consider an arbitrary x � S� x 
� G and an arbitrary sequence of �n�optimal best dn�
approximations fgng� where gn � P

�n
n �� fg � G � dn�x� g� � dn�x�G� � �ng and �n � ��

We are interested in the following convergences�

dn�x�G�� d�x�G�� ���	�

d�gn� x�� d�x�G�� �����

For Lp�distances� ���	� and ����� means Vpn � Vp and kX� ankp� as pn � p� respectively�
When ����� holds then fgng is called to be d�minimizing� This obviously implies that
fgng is bounded with respect to the d�metric and any cluster point of fgng belongs to
P �� fg � G � d�x� g� � d�x�G�g�

At �rst note that
lim sup

n

dn�x�G� � d�x�G�

and� hence� the sequence fdn�x� gn�g is bounded� When the sequence of metrics dn tends to
d from above� i�e� dn � d� then ���	� and ����� holds� In terms of Lp�metrics� pn � p yields
�	���� However� in the following we mostly concentrate on the convergence pn � p � ��

The following proposition turns out to be useful�

Proposition ���� When

lim
n

sup
G

fj d�x� g�� dn�x� g� jg � � ���
�

then ����� and ����� holds�

Proof� The relation ���
� means that for every sequence of �n�optimal best approximations
fgng� j d�x� gn� � dn�x� gn� j � �� Thus lim supn d�x� gn� � lim supn dn�x� gn� and the
inequalities

d�x�G� � lim sup
n

d�x� gn� � lim sup
n

dn�x� gn� � lim sup dn�x�G� � d�x�G�

yield ������ Now ���	� immediately follows�

d�x�G� � lim
n
d�x� gn� � lim

n
dn�x� gn� � lim

n
dn�x�G�� �

�



��� Norms

Suppose now that S is a linear space� G � S a subspace� k � kn � k � k convergent norms
in S� As previously� we consider a �xed x 
� G�

Since G is a subspace� the relation ���
� generally fails� However� when the sequence of best
approximations fgng is bounded� then� as the following proposition shows�the supreme in
���
� can be replaced by the supreme over the unit ball of G�

Proposition ���� Let G be a subspace� Assume that �y � S

lim
n

sup
n��ky � gkn � ky � gk

�� � kgk � 	
o
� �� �����

Then we have ����� and ������

Proof� Take y � �� Then limn sup
n��kgkn � kgk�� � kgk � 	

o
� �� This implies that

sup
g�G

��kgkn
kgk

� 	
��� 	

or kgnk � kgnkn� Since kx� gnkn is bounded� the same holds for kgnkn and� hence� fgng
is bounded in k � k�metrics� Let this bound be m�
Since ����� holds for each y � S� it is not hard to see that in ����� the constant 	 can be
replaced by m� Now use Proposition ��	 with Gm � fg � kgk � mg in place of G� �

Corollary ���� Suppose G is �nite dimensional and k � kn � k � k� Then ����� and �����
hold� Moreover� gn � P in the sense of b��

Proof� Since k � kn � k � k� the norms k � kn are continuous on �E� k � k�� By �nite
dimensionality of G� the uniform convergence in ����� clearly holds� Proposition ��� now
establishes ���	� and ������ Since fgng us bounded in G� it is relatively compact with all
cluster points in P �by ������� �

Remark� Because of the �nite�dimensionality of G� the continuity of k�kn holds even if the
convergence of norms is not monotone� Thus the monotone convergence is not necessary
in Corollary ��	� This is Kripke�s theorem �e�g� Holmes� p�		���

��� Lp�norms

Consider now Lebesgue�Bochner spaces� The next proposition proves ����� provided pn �
p ���

Proposition ���� Let po � �� Y � Lpo������ Then �X � Lpo��� E� the convergence
pn � p� where pn � �	� po� yields

sup
Z�Y

jkX � Zkp � kX � Zkpn j � �� where Y �� fZ � Lp��� E� � kZ���k � Y ���g�






Proof� W�l�o�g� we assume Y ��� 
 	�
Let us estimate

sup
Z�Y

jkX � Zkpp � kX � Zkpnpn j � sup
Z�Y

Z
jkX���� Z���kp � kX���� Z���kpn jdP �

sup
Z�Y

nZ
fkX����Z���k��g

jkX���� Z���kp � kX���� Z���kpn jdP�

Z
fkX����Z���k��g

jkX���� Z���kp � kX���� Z���kpn jdP
o
�

sup
Z�Y

Z
fkX����Z���k��g

jkX���� Z���kp � kX���� Z���kpn jdP�

� sup
Z�Y

Z
fkX����Z���k��g

jkX���� Z���kp � kX���� Z���kpn jdP�

When x � ��� 	� and p 
 q� then jxp � xqj � xq � xp �
�
q

p

� q

p�q �
�
q

p

� p

p�q �� t�p� q� � ��
provided q � p or p� q�
When x � �	� k� and p 
 q� then jxp � xqj � xp � xq � kp � kq � �� provided q � p�
Hence

sup
Z

Z
fkX����Z���k��g

jkX���� Z���kp � kX���� Z���kpn jdP � t�p� pn�� ��

For each Z � Y� denoting un � maxfp� png and vn � minfp� png we now have

��kX���� Z���kp � kX���� Z���kpn
�� � �

kX���k� Y ���
�un � �kX���k� Y ���

�vn
�

provided kX���� Z���k 
 	�
Therefore� Z

fkX����Z���k��g

jkX���� Z���kp � kX���� Z���kpn jdP �

Z
��kX���k� Y ����un � �kX���k� Y ����vn �dP�

For last inequality recall the assumption Y ��� 
 	 ���
Hence

sup
Z�Y

Z
fkX����Z���k��g

jkX���� Z���kp � kX���� Z���kpn jdP �

Z
gn���dP�

where gn��� �� �kX���k�Y ���un� �kX���k�Y ����vn � �� Clearly gn���� �� �� � ��
Since gn��� � �kX���k� Y ����po and� by assumption� kXk� Y � Lp������ by dominated
convergence we have

R
gndP� ��

Thus
sup
Z�Y

jkX � Zkpp � kX � Zkpnpn j � ��

The claim now follows easily� �

�



Corollary ���� Let po ��� X � Lpo��� E�� pn � p� pn � �	� po�� Then� �m ��

sup
n��kX � akp � kX � akpn

�� � a � E� kak � m
o
� ��

Moreover� from the proof we get

sup
kak�m

Z �� kx� akp � kx� akpn
��P �dx�� �� ���
�

We can now immediately deduce the convergence of p�variances and the minimizing prop�
erty ����� in bounded interval� Let P�

po
stand for the set of ��optimal p�predictions�

Lemma ���� Let po ��� �n � �� Then the following statements hold
i� the mapping p 	� Vp is continuous on the set �	� po�	
ii� if pn � p� pn � �	� po�� then for each sequence fang� satisfying an � P

�n
pn
� we have

kX � ankp � Vp� �����

iii� �K �� � kak � K� �a � P�
p� �p � �	� po��

Proof� i� ja ii� follow from Proposition ����
iii� holds� because any minimizing sequence is bounded� The constant K can be estimated�
for all a � P�

p� p � �	� po�� kak � kXkpo � Vpo � � ���

Note that Lemma ��	 holds for general E� For uniformly convex E� the statements of
Lemma ��	 were presented in �Cuesta� Matran� ��a�� Their proof does not apply for general
E� We aimed to show how the claims of Lemma ��	 represent some general principles of
convergent metrics�

Remark� Suppose X � Lp��� E�� p � �	� po�� po ��� Then an obvious generalization of
ii� holds� Vp �� as p� po

� Trimming

We now represent some basics about �impartial� trimming� This concept was introduced
in �Gordaliza� �	a�� For notation and terminology we follow �Gordaliza� �	a� Cuesta�
Matran� ���� In the end of this section we prove the trimmed version of Corollary ���
as well as that of Lemma ��	� We also give a shorter proof for the existence of trimmed
p�predictions for �nite�dimensional E�

Let � � ��� 	�� If � is �� it will be skipped in the notation�
At �rst� let us de�ne the set of trimming functions 	 ���

	 � �� f	 � E � ��� 	��measurable�

Z
	�x�dP � 	� �� g� 	 �� �� ����	

� �

�



Let 	 � 	 �� 	 � p �� and de�ne the trimmed p�loss�functions

V �
p �a� �� �

	

	� �

Z
	�x�kx� akpP �dx��

�

p � V �
��a� �� k	�X��X � a�k��

For all 	 � p � � and 	 � 	 ��� let

V �
p �� inf

a
V �
p �a�� V �

p �a� �� inf
�����

V �
p �a��

V �
p �� inf

�����
V �
p � inf

a
V �
p �a�� �
�	�

If 	� and a� are solutions of �
�	�� they are called Lp�best trimming function at level � and
�impartial� trimmed p�prediction at level �� respectively�
The set of trimmed p�predictions at level � will be denoted by P�

p � the set of ��optimal

p�predictions will be denoted by P��
p �

When � 
 �� V �
p � �� In the following we do not assume that P has bounded support�

Therefore� if not speci�ed� we also allow the case V� ���

De�ne the trimmed essential supreme �trimmed radius� of kX � ak�

r��a� ��� kX � ak�� �� inffr � P �kx� ak 
 r� � �g�

Note that r��a� could be represented as

r��a� � inffkI
B�a�r��X��X � a�k� � I

B�a�r� � 	 ��g� �
���

The following proposition shows the obvious relation between trimmed ��loss function
and trimmed radius�

Proposition ���� V �
��a� � r��a��

Proof� By �
���� we have

V �
��a� � inf

�����
k	�X��X � a�k� � inffkI

B�a�r��X��X � a�k� � I
B�a�r� � 	 ��g � r��a��

On the other hand� for any 	 � 	 ��� we obviously have

r �� k	�X��X � a�k� � kI
B�a�r��X��X � a�k� �
�
�

where I
B�a�r� � 	 ��� Hence�

inf
�����

k	�X��X � a�k� � inffkI
B�a�r��X��X � a�k� � I

B�a�r� � 	 ��g � r��a�

and
V �
��a� � r��a� � kX � ak�� � kI

B�a�r��a���X��X � a�k�� � �
���

We now describe the trimming functions minimizing V �
p �a� over 	

�� �a is �xed�� Let

	 ��a� �� f	 � 	 � � IB�a�r��a�� � 	 � I
B�a�r��a�� P � a�s�g�

Thus� 	 ��a� consists of trimming functions that have mass 	 � � and may di�er of the
indicator of B�a� r��a�� on the boundary of B�a� r��a��� only� Note that 	 ��a� does not
depend on p� The following proposition� proved in �Gordaliza� �	a�� shows that for a
�xed a and �nite p� each element of 	 ��a� minimizes the criterion V �

p �a� over all 	 � 	 ���

Moreover� among all the functions in 	 �� only the functions form 	 ��a� can achieve V �
p �a��

�



Proposition ���� Let p � �	��� and 	 � 	 �� Then V �
p �a� � V �

p �a� i
 	 � 	 ��a��

When p � �� then the set of trimming functions� that minimize V �
��a� over 	 � can be

bigger than 	 ��a�� The following proposition gives a description of this set�
De�ne

	 ���a� �� f	 � 	 � � 	 � I
B�a�r��a�� P � a�s�g�

Proposition ���� Let 	 � 	 �� Then V �
��a� � V �

��a� i
 	 � 	 ���a��

Proof� The claim of the proposition is already mentioned in �Gordaliza� �	a� Cuesta�
Matran� ����
Let 	 � V �

��a�� Since 	 � I
B�a�r��a��� from �
��� we get

k	�X��X � a�k� � kI
B�a�r��a���X��X � a�k� � V �

��a�� �
�
�

By Proposition 	� the inequality in �
�
� is� in fact� equality� This proves the �if� part�
Suppose 	 � 	 � is such that V �

��a� � V ��a� � r��a�� By �
�
�� this means 	 � IB�a�r��a���
i�e� 	 � V �

��a�� �

Suppose p ��� Proposition 
�� does not specify� whether there exist trimming functions
that minimize V �

p �a� but do not belong to 	
��a�� Suppose 	 is such a function� By �only if�

part of Proposition 
��� the total mass of 	 must be strictly bigger than 	��� Let us denote
it via 	 � � 
 	 � �� By �if� part of Proposition 
��� 	 � 	��a� and V �

p �a� � V �
p �a�� As

showed in �Gordaliza� �	a�� this equality holds i� r��a� � r��a�� and P �B�a� r��a��� � ��
Suppose a� is a trimmed p�prediction at level � and 	� � 	 ��a�� is one of the best trim�
ming functions for a� �such functions depend on p via a�� only�� Since V ���a�� � V �

p �

the trimmed p�prediction a obviously minimizes V ��

p ��� over E� Hence� there is a dual
relationship between best trimming functions and trimmed p�predictions � each trimmed
p�prediction is a center of a ball that essentially de�nes the corresponding �the best� trim�
ming function� B�a�� r��a���� and in the same time the trimmed p�prediction minimizes
the p�loss function over this ball� See also �Gordaliza� �	a� Cuesta� Matran� ����
There might exist other points having the described duality property� For example� if P
is a probability measure in � consisting on three atoms� P ��� � ��
� P ��	� � P �	� �
���
� then the best trimmed ��predictions at level ���
 are� obviously� ���
 and ��
 with
corresponding radiuses r�	������
� � r�	�����
� � ��
� On the other hand� the point �
also has the above mentioned duality property �r�	����� � r��� � 	�� although � is not a
��prediction at level ���
�

Suppose 	 minimizes V �
� over 	 ��� and the total mass of 	 is bigger than 	� �� i�e� 	 � 	�

for some � � �� Then� by Proposition 
�
� 	 � 	��� and r� � r�� Hence� the set of trimming
functions minimizing V �

��a� over 	 �� is

	 ��� �a� �� f	 � 	 �� � 	 � I
B�a�r��a�� P � a�s�g

For example� I
B�a�r��a�� always belongs to 	

��
� �a� even if it does not belong to 	 ���a��

We now generalize Corollary ��� for trimming�

�



Corollary ���� Assume the hypotheses of Corollary ���� Then� for each � � ��� 	� we have

sup
kak�m

jV �
pn
�a�� V �

p �a�
��� �� �
���

Proof� Let a � E� Then� by Proposition 
���

j�Vp�a��
p � �Vpn�a��

pnj � j

Z
�kx� akp � kx� akpn�	�x�P �dx�j �

Z
jkx� akp � kx� akpn j	�x�P �dx� �

Z
jkx� akp � kx� akpn jP �dx��

where 	 � 	 ��a�� Hence� by ���
�

sup
kak�m

j�V �
p �a��

p � �V �
pn
�a��pn

�� � sup
kak�m

Z
jkx� akp � kx� akpn jP �dx�� �

and �
��� follows� �

Although� for positive trimming �� 
 �� we do not have a corresponding metric for random
elements� the claims of Lemma ��	 still hold�

Lemma ���� Let po ��� � � ��� 	�� �n � � � Then the following statements hold
i� the mapping p 	� V �

p is non�decreasing and continuous on the set �	� po�	

ii� if pn � p� pn � �	� po�� then for each sequence fang� satisfying an � P
��n
pn

� we have

V �
p �an�� V �

p � �
���

iii� �K �� � kak � K� �a � P��
p � �p � �	� po��

Proof� The monotonicity � V �
p �a� � V �

q �a�� if p � q � follows from the monotonicity of Lp
norm together with Proposition 
��� Now� the same for the mapping p 	� V �

p follows�

iii� Note that� for each a � E and 	 � 	 ��a�� it holds

V �
p �a� �

Vp�a�

�	� ��
�

p

�

Also note that �	 � 	 ��� �a� b � E we have the analogies to the triangle inequalities

V � �a� � V � �b� � ka� bk and kak � V �
p �a� � V �

p ��� �
���

Now� for an arbitrary a � P��
p with corresponding 	 � 	 ��a� we get

kak � V �
p �a� � V �

p ��� � V �
p � ��

kXkp

�	� ��
�

p

� V �
po
� ��

kXkpo

�	� ��
�

p

�� K�

	�



The proofs of i� and ii� go along the same line as in Proposition ��	� Let fang be an
arbitrary sequence of �n�optimal trimmed pn�predictions at level �� We know that fang is
bounded by K� Hence� by �
��� limn jV

�
pn
�an��V �

p �an�j � �� Now proceed as in the proof
of Proposition ��	 to obtain i� and ii�� �

The sequences satisfying �
��� are called minimizing �for V �
p �� When such a sequence

converges� the limit belongs to P�
p � Indeed� suppose fang satis�es �
���� an � a� Let

	n � 	 ��an�� Now� V
�
p �a� � V �n

p �a� � V �n
p �an��kan�ak � V �

p �an�� kan�ak � V �
p � The

�rst inequality follows from the de�nition of V �
p �a� and the second inequality follows from

�
����
This observation gives a short proof of the existence of trimmed p�prediction for �nite�
dimensional E� Originally the existence of trimmed p�predictions for Euclidean space was
proved �in Gordaliza� �	a�� Our proof here uses triangle inequalities �
��� and is much
shorter�

� The function t� and limits

In this section we study the limit limp�� V �
p � We show� that generally the limit is not

V �
� � r�� and we study the conditions that guarantee limp�� V �

p � r�

��� Limit limp�� V �
p

By Proposition 
�	�
V �
� � inf

a
r��a� �� r��

The quantity r� can be interpreted as the trimmed Chebyshev radius� We now introduce
another quantity� which in many cases is equal to r�� Let

��t� �� inf
a�E

Pfx � kx� ak 
 tg� t� �� infft � ��t� � �g�

At �rst note that
r� 
 t�� ��� ���	�

We allow the case t� ��� Observe that t� �� yields r� � ��
Also observe that for � 
 �� ���	� would be an equality� if in the de�nition of t� the �� ��
requirement were replaced by �� ��� We shall show that t� is the limit of V �

p as p���

For each a � E� � � ��� 	�� it holds V �
p �a�� V �

��a��

Indeed� take an arbitrary 	 � 	 ��a�� By �
��� we know that k	�X��X � a�k� � r��a� �
V �
��a� and� therefore

V �
p �a� � V �

p �a� �
� 	

	� �

Z
	�X�kX � akpdP

� �

p

� k	�X��X � a�k� � V �
��a��

Although� V �
p �a� � r��a�� �a� the following lemma shows that the same needs not hold

for the minimums�

		



Lemma ���� For each � � ��� 	�� it holds

V �
p � t� if p��� �����

Proof� Fix an arbitrary � � 	� and � 
 �� By de�nition of t�� infa Pfx � kx�ak 
 t���g 

� � 
� for some 
 
 �� Fix now a � E and 	 � 	 ��a�� Then� for p ���

�	� ��
�
V �
p �a�

�p
�

Z
	�x�kx� akpP �dx� 
 �t� � ��p

Z
fkx�ak�t���g

	�x�P �dx� 
 �t� � ��p
�

because

Pfx � kx� ak � t� � �g�

Z
fkx�ak�t���g

	�x�P �dx� � 	� � and

Pfx � kx� ak � t� � �g � 	� 
 � ��

Let now pn ��� �n � �� an � P
��n
pn

� 	n � 	 ��an�� Then�

V �
pn

� �n 
 V �n
pn

�an� 

� 


	� �

� �

pn
�t� � ��� t� � �� ���
�

The other side� Since ��t���� � �� there exists a sequence fbng such that limn P �An�� ��
where An � fx � kx� bnk 
 t� � �g� Then P �Bn�� �� where

Bn �� fx � t� � � � kx� bnk � rn�bn�g�

Let 	n � 	 ��bn�� Recall that by de�nition of 	 ��bn��

	n � I
B�bn�r��bn��

P � a�s��

It is easy to see that fbng is bounded� Then� obviously� r
��bn� is bounded as well� When

� 
 �� then the boundedness holds even if P does not posses a bounded support� Now� for
each p�

�	� ���V �
p �bn��

p �

Z
An

	n�x�kx� bnk
pP �dx� �

Z
Ac
n

	n�x�kx� bnk
pP �dx�

�

Z
An

	n�x�kx� bnk
pP �dx� � �t� � ��pP �Ac

n�

�

Z
Bn

kx� bnk
pP �dx� � �t� � ��pP �Ac

n�

� r��bn�P �Bn� � �t� � ��pP �Ac
n�� �t� � ��p�	� ���

Consequently� V �
p �bn� � t� � �� as n� �� implying that V �

p � t� � �� Thus� if pn � ��

then for each � 
 �� t� � � � lim infn V
�
pn
� lim supn V

�
pn
� t� � �� �

Corollary ���� Let P have a bounded support� Then Vp � t� where t � inffr � ��r� � �g�

��� The mappings � 	� r� and � 	� t�

Let us investigate the mapping � 	� r��a�� a � E� Clearly this mapping is non�increasing
and lower semi�continuous� Hence� for each a � E� the convergence � � �o yields r

��a��
r�o�a�� Again� the same property needs not hold when considering the minimal values�
The following property shows� that the limits are� in fact� t�o �

	�



Proposition ���� Let �o � ��� 	�� Then

lim
���o

r� � t�o � �����

Proof� Let t 
 t�o � Then infa P �kx� ak 
 t� � �o� Hence� for each � 
 �o� we can �nd a
a � E such that P �kx� ak 
 t� � �� By de�nition� r� � t� Hence� lim���o r

� � t�o �

On the other hand� let t � t�o � Then infa P �kx � ak 
 t� 
 �o� Hence� for each � � �o�
a � E� P �kx � ak 
 t� 
 �� implying that r��a� 
 t and r� 
 t� Hence� lim���o r

� 
 t�
implying that lim���o r

� 
 t�o � �

Corollary ���� The functions � 	� t� and � 	� r� di
er at most countable set of points
in ��� 	��

Proof� If � 	� r� is right�continuous at �o� then� by Proposition ���� r�o � t�o � A non�
decreasing function has at most countable set of discontinuity points� �

Corollary ���� Let P have the bounded support� Then r� � t� if � � ��

If we refer to the limit lim��� V
�
� as �zero�trimming�� then Propositions 
�	 and ��	 state

that the zero�trimming can be much better �in the sense of minimizing the loss�function
V�� than no trimmings� i�e� t � r�

Example� Let E � co� P �
P

n �enpn� pn 
 � �n� X � P � Here� en is the sequence that
has ��s everywhere but 	 in n�th place�
Let us calculate the functions � 	� r� and � 	� t��
We start with the function ��t�� At �rst� convince that ����
� � �� Consider the sequence
am � �ami �� m � 	� �� � � �� where ami � �

� � if i � m and ami � � else� Now

ken � amk �

�
�
� � if n � m

	 if n 
 m�

Hence

Pfxjkx� amk 

	

�
g � Pfxjkx� amk � 	g �

X
n�m

pn � �� as m��

i�e� ����
� � ��
Let t � ��
� �� It is easy to see that if there exists en such that ken � ak � ��
� �� then
kek � ak 
 ��
 � � for each k 
� n� Therefore

����
� �� � inf
a�E

Pfen � ken � ak 
 ��
� �g � 	�max
n

pn�

Hence

��t� �

�
	�maxn pn if t � ��� ���
�� if t � � �� � 	��

	




Thus� the function � 	� t� is the following

t� �

�
�
� � if t � ��� 	�maxn pn�
�� if t � �	�maxn pn� 	��

Let us now investigate the trimmed Chebyshev radius r�� At �rst we see that r � 	�
Indeed� let � 
 � and consider a � �a�� a�� � � �� � co� Since an � � there � N� janj � ��
when n 
 N � This means ken � ak 
 	 � �� if n 
 N � Consequently� kX � ak� 
 	 � ��
Since a was arbitrary� we get infa�E kX � akp 
 	� � or r � 	�

Finally� let us convince that r� � t�� when � 
 �� Let � � � � 	 �maxn pn� Then there
exists no such that

P
n�no

pn � �� Take a � ��
�
� � � � � �

�
� �� � � ��� where �rst no components

are �
� � Then� obviously� r��a� � �

� and the same argument as before shows that r� �
r��a� � �

�
�

When � 
 	�maxn pn� then� obviously r��en�� � �� where pn� � maxn pn�

Consequently� by Corollary ��	� Vp � ��
� as p��� but V� � 	�

In fact� it is easy to see that� lim supn Vpn � ��
� Let p �� be arbitrary and estimate Vp�
Taking am as previously� we get

kX � amk
p
p �

�X
n��

ken � amk
ppn �

�	
�

�p nX
n��

pn �
X
n�m

pn �
�	
�

�p
�

This means� that Vp � ��
�

Similarly� V �
� � ��
� when � � �� �

Remark� This simple example also shows the inconsistency of empirical Chebyshev ra�
diuses� Indeed� for any �nite sample from P � the empirical Chebyshev radius rn satis�es
rn � ��
 �here n re�ects the sample size� with an inequality i� all elements of the sample
are the same� Hence� rn � t � ��
 a�s�� while r � 	� Of course� for any positive amount of
trimming� � 
 �� we get consistency of empirical trimmed Chebyshev radiuses� i�e� r�n � r�

a�s�� if � 
 ��

In comparison with the case of the �nite p we remark that the convergence V n
p � Vp a�s�

holds �Lember� ���� Here V n
p stands for the empirical analogue of Vp�

��� Connection with loss�functions

In this section we de�ne a class of loss�functions on E� The loss functions used for non�
trimmed p�predictions belongs to this class� We also introduce some generalizations for
trimmed case� The �semi��continuity properties of this type of loss�functions turn out to
be important for the existence and for the convergence of p�predictions as well as for the
equality t� � r�� These questions with related topological assumptions will be studied in
the next sections�

	�



Let � � ����� 	� ����� be a lower semi�continuous non�decreasing discrepancy function�
De�ne a loss function on E

W � E 	� ������ W �a� �

Z
��kx� ak�P �dx� ���
�

�see also Lember� ���� Clearly the function a 	�
�
Vp�a�

�p
�p � �� is of type ���
� with

���� � ���p� When p ��� then Chebyshev centers are related to the loss function ���
� as
follows� For each s 
 � de�ne a continuous function

�s�x� �

�
�� if x � s

strictly increasing� else�

The loss function of ���
� with �s as � will be denoted by Ws�a�� We also denote

Ws �� inf
a
Ws�a��

Now� a Chebyshev Center is a solution a minimizing problem Wr�a� � Wr �see Cuesta�
Matran� ����

We now aim to describe the quantity t in terms of Ws�

Proposition ���� t � inffs �Ws � �g� where inf � ����

Proof� Let s � t� Then� for each a � E�

Ws�a� 


Z
fkx�ak�s�g

�s�kx� ak�P �dx� 
 �s�s����s�� 
 ��

where s � s� � t��
So� if t � �� the Proposition is proved� Let us assume t � � and consider s 
 t� Then
we can �nd a sequence an such that P �An� � �� where An � fx � kx � ank 
 sg� It
is not hard to see that the sequence fang is bounded� Thus there �K 
 � such that
Pfx � kx� ank � Kg � 	� This means

Ws�an� �

Z
An

�s�kx� ank�P �dx� � �s�K�P �An�� �� �

We now consider a straightforward possibility to generalize ���
� for � 
 �� De�ne

W � � E � ������ W ��a� �
	

	� �

Z
	�x���kx� ak�P �dx�� 	 � 	 ��a� �����

�see� Cuesta� Matran� ���� Again ���p for � yields trimmed p�predictions� any a� satisfying
W �

r �a
�� � � is a trimmed Chebyshev center at level �� Here� as previously� W �

s stands for
a function ����� with �s as the discrepancy function� The minimum of W �

s ��� over E will
be denoted by W �

s �
Since 	 in ����� depends on a� ����� is not a particular case of ���
� any more� Still the
analogue of Proposition ��� holds�

	




Proposition ���� t� � inffs �W �
s � �g�

Proof� Let s � t� and s � s� � t�� Then� for each a � E� 	 � 	 ��a�� we get

�	� ��W �
s �a� 


Z
fkx�ak�s�g

	�x��s�kx� ak�P �dx� 
 �s�s�����s��� �� 
 ��

since
Z
fkx�ak�s�g

	�x�P �dx� �

Z
	�x�P �dx��P �kx�ak � s�� 
 	����	���s��� � ��s�����s� 
 ��

Let t� � s� Then there obviously exists a sequence fang such that

lim sup
n

P �kx� ank 
 s� � � or lim inf
n

P �kx� ank � s� 
 	� ��

Now Z
An

	n�x�P �dx�� ��

where 	n � 	 ��an� and An � fx � kx�ank 
 sg� Indeed� if s 
 r� the statement is obvious�
If s � r� then for each n� lim supn

R
An

	n�x�P �dx� � �	����lim infn P �kx�ank � s�� � ��
Since� again� an is bounded� as in the proof of Proposition ��� we obtain that for a K ��
large enough�

�	� ��Ws�an� �

Z
An

	n�x��s�kx� ank�P �dx� � �s�K�

Z
An

	n�x�P �dx�� �� �

��� The equality t� � r� and the existence of p�prediction

Let us now investigate the conditions that guarantee the equality

t� � r�� �����

When this is the case� the limits ����� and ����� are� as one might expected� r�� We shall
see� that this question is related to the existence of p�predictions�
The following proposition� which actually is a straightforward restatement of the de�nition
of t�� gives necessary and su�cient condition for ����� in a more comfortable form �see
also� Cuesta� Matran� ��� � In the following statement� when r ��� then r �m must be
interpreted as a �arbitrary large� �nite number�

Proposition ���� Let � � ��� 	�� Then t� � r� if and only if� for each m 
 �� there exists

�m� 
 �� such that

Pfx � kx� ak 
 r� �mg 
 
 � �� �a � E� �����

	�



Proof� If ����� holds� then ��r� �m� 
 � � 
 for each m 
 �� Hence� by de�nition of t��
r� � t� � r��

If� for some m 
 �� ����� does not hold� then there would exists a sequence an such that
lim supn Pfx � kx� ank 
 r� �mg � �� Hence� ��r� �m� � � and t� � r� �m� �

Let us investigate the conditions that guarantee ������ From the de�nition of t�� it is
straightforward to see� that it holds� if� for each � 
 ��

�a��� � E � P �kx� ak 
 t� � �� � �� �����

The latter holds� if for each s� the value ��s� is attainable on E� Since ��s� is in the form
of ���
� with ��x� � I�s����x�� we can consider the question of ����� in a more general
framework� So� the rest of this section deals with the question of the existence of a� � E

satisfying
W �a�� � inf

a
W �a� ���	��

withW as in ���
�� As noted in the previous section� this question covers also the existence
of p�predictions� See also �Herrendorf� �
� Lember ����

Remark� One can see that ����� holds if� for each s� W �
s attains its minimum on E� In

the case � � �� Ws is also the type of ���
��

The existence of the solution of ���	�� depends on the topological properties of E� Clearly
W ���� being lower�semicontinuous� attains its minimum on a compact space� However� the
compactness with respect to the metric�topology is too restrictive and� in many cases� it
can be replaced by the �sequential� compactness with respect to another� usually weaker
topology on E� Of course� the new topology cannot be arbitrary weak� it has to posses
some lower�sem�icontinuity properties with respect to the norm k�k in E� We now describe
the necessary topological conditions more closely�

Let � be a topological vector space topology on E such that the norm k �k is ��sequentially
lower semi�continuous� i�e�

lim inf
xn

�
�x

kxnk 
 kxk� ���		�

This holds i� k � k�closed balls are sequentially ��closed �see� e�g�� Lember� ���� Note that�
in general� � needs not be comparable with the norm�topology in E�
Clearly the weak topology satis�es ���		�� if E is a dual� then ��weak topology satis�es
���		�� For other examples see �Khamsi� ����

Suppose an


� a� where � satis�es ���		�� Then� because of Fatou lemma W ��� is sequen�

tially ��lower semi�continuous �i�e�

lim inf
an

�
�a

W �an� 
W �a�� ���	��

Moreover� if� in addition� fang minimizes W � i�e� W �an�� infaW �a�� then the following
result holds �Lember� ������ From now on� let S�P � denote the support of P �

	�



Proposition ���� Suppose an


� a minimizes W with a continuous discrepancy function

�� Then
�x � S�P �� ��kx� ank�� ��kx� ak� ���	
�

If� in addition � is strictly increasing� we have

�x � S�P �� kx� ank � kx� ak ���	��

The condition ���		� holds� if �E� �� satis�es the following condition

A� every �norm��closed ball is sequentially ��compact�

Under A the function W ��� attains its minimum on E� Indeed� let fang be minimizing
for W � Since fang is bounded � Lember ����� and �E� �� has A� fang has a ��convergent

subsequence� an�


� a�� By ���	��� W �a�� � infaW �a��

Proposition ���� Suppose E admits a topological vector space topology � satisfying A�
Then there exists an element a� � E satisfying ����
 ��

Corollary ���� Assume �E� �� satis�es A� Then� for each � � ��� 	�� we have ����� and�
for each p � �� we have Pp 
� ��

Note that the foregoing argument does not apply for a loss�function type ������ since for
such a function� ���	�� has not proved� Therefore� we can not make statements about
the existence of non�trimmed p�predictions� In the next section we show that A implies
the existence of trimmed Chebyshev centres� The question of existence of trimmed p�
predictions under A �or� equivalently� the question of ���	�� for a loss�function as in ������
is still open�

Corollary ���� If E is a dual� then for each � � ��� 	� we have ����� and Pp 
� ��

Proof� Since E is dual� by Alaoglu�s theorem the unit ball of E is ��weak compact� Recall
the assumption that E is separable� Then the ��weak topology in BE is induced by a
metric� and the unit ball is sequentially compact� Now Corollary ��
 applies�

From Corollary ��
 follows that in a re�exive Banach space or� obviously� in �nite�dimen�
sional space the equality ����� always holds� For re�exive E and � � �� Corollary ��
 was
proved in �Cuesta� Matran� ��a��

� The convergence of p	predictions

In this section we study the convergence of trimmed pn�predictions as pn ��� Also the
convergence of non�trimmed pn�predictions as pn � p �� is considered�

	�



	�� ��convergence

Let pn � po� �n � �� We consider the sequence fang� where

kX � ankpn � V �
pn

� �n� �
�	�

Proposition ���� Let fang be as in ����� with po �� � Then� for each � 
 ��

lim sup
n

P �kx� ank 
 t� � �� � �� �
���

Proof� Suppose there exists � 
 � such that �
��� fails� Then� there exist a 
 
 � such that
along a subsequence� fan�g� we have

P �kx� an�k 
 t� � �� 
 � � 
�

Then� by ���
� we get

V �
pn�



� 


	� �

� �

p
n� �t� � ��� t� � ��

Consequently� lim supn V
�
pn

 t� � � � a contradiction with Lemma ��	� �

Suppose fang is an arbitrary sequence that satis�es �
���� Let an


� a� where � satis�es

���		�� Then �� 
 � we get

P �t� � � � kx� ak� � P �lim inf
n

kx� ank 
 t� � �� �

P �kx� ank 
 t�� eventually� � lim inf
n

P �kx� ank 
 t� � �� � ��

Consequently� P �kx� ak 
 t�� � �� i�e� a � P�
�� Hence we have the result�

Proposition ���� Let fang be as in ����� with po � �� Assume an


� a� Then a � P�

�

and
P �kx� ak � lim inf kx� ank � t�� 
 	� �� �
�
�

Remark� It can be shown that from �
��� follows W �
t�
�an�� �� where W �

s is de�ned as in
previous sections� In particular� when � � �� it means that fang minimizes a loss function
as in ���
�� Then ���	
� applies and �
�
� can be strengthened as follows

P �kx� ak � lim inf
n

kx� ank � lim sup
n

kx� ank � t� � ��

This approach does not directly apply in case � 
 ��

From �
��� we get t� � r�� Hence� ����� is a necessary condition for fang being ��relatively
compact� Clearly fang is bounded� If� in addition� every norm�closed ball is ��sequentially
compact� then fang is relatively compact� Let us state this observation as a corollary�

	�



Corollary ���� AssumeA and let fang be as in ����� with po ��� Then any subsequence
of fang contains a further subsequence converging in � to a trimmed Chebyshev center at
level ��

Note that Corollary 
�� proves the existence of trimmed Chebyshev centers for a large
class of Banach spaces� The existence of trimmed Chebyshev centers in �n is proved in
�Gordaliza� �	a�� The claim Corollary 
�� can be interpreted as follows� an



� P�

��

Since ����� is a necessary condition for a sequence satisfying �
��� being ��relatively com�
pact and the metric�topology on E satis�es ���		�� we immediately obtain that a sequence
of pn�predictions �pn ��� is not relatively compact if t� � r��

Recall Example� Let pn � �� �n �� ��
 � n�� � Vpn � We know that �n � �� We also
know that for each pn there exists an element an �� amn

from the sequence am such that
kX � ankpn � Vpn � �n� Thus� the subsequence an is as in �
�	�� This is not hard to see
mn �� as n��� Hence� there exists a further subsequence an� that has no converging
subsequence�

On the other hand� we cannot conclude that the sequence fang does not converge to the
set of Chebyshev centers of P � In fact� any element of an is a Chebyshev center�

	�� Strong convergence

We now turn to the question of the strong convergence of the sequence fang as in �
�	�
with po ��� Corollary 
�� states that having suitable topology � is E� the sequence fang
converges in � to the set P�

�� Moreover� we know that fang is minimizing in the sense
�
���� When E is uniformly convex and � � �� then the convergence of fang to the unique
Chebyshev center was proved �in Cuesta� Matran� ���� Their proof uses �
��� and cannot
be directly used for � 
 � �the trimmed Chebyshev centers are generally not unique��

We generalize the mentioned result for a larger class of Banach spaces� allowing also � 
 ��

Let �E� ��� as previously� be a topological vector space that satis�es A�

De
nition �� �E� �� satis�es ��Kadec�Klee � ��KK� property� if the ��convergence on the
unit sphere implies the strong convergence�

The de�nition can be restated as follows �See� e�g� Hu�� ����

De
nition �	 �E� �� satis�es �� Kadec�Klee property� if for each fxng in the unit ball of
E ��convergent to x� we have

kxk � 	

provided that sepfxng 
 �� where sepfxng �� infn 
�m kxm � xnk�

Indeed� Suppose �E� �� is ��KK and fxng such a sequence that kxnk � 	� xn


� x and

sepfxng 
 �� If kxk � 	� then kxnk � kxk� xn


� x and xn 
� x a contradiction with

��KK � property�

��



On the other hand� suppose �E� �� has the property described in De�nition 	�� At �rst
note� since every norm�closed ball is sequentially ��continuous� we have that for a sequence
converging in � and in the norm topology� the both limits are the same� �Let xn



� x�

xn � y� x 
� y� Then there exist � 
 � such that xn � B�y� �� eventually� but x 
� B�y� ���

Since xn


� x the latter contradicts the assumption that every norm�closed ball is ��

sequentially closed��

Suppose xn


� x� kxnk � kxk� W�l�o�g� we may assume xn� x � SE �since �E� �� is a topo�

logical vector space�� If xn 
� x� then it has a subsequence� say fxmg� that is not relatively
compact �if not� then any subsequence would have a norm�convergent �sub��subsequence
with the limit � as just observed � x and� hence� xn � x�� Not being relatively compact
in a complete metric space �recall the Banach space assumption� means the existence of
� 
 � such that fxmg does not have �nite ��net� This means� fxmg has a subsequence� say
fxm�g with sepfx	mg 
 �� By De�nition 		 we get kxk � 	� a contradiction� Hence fxng
can not have a subsequence that is not relatively compact� implying xn � x�

De
nition �� �Hu�
 �E� �� satis�es ��uniform Kadec�Klee ���UKK� property� if� for
each � 
 �� there exists v��� 
 � such that for each fxng in the unit ball of E ��convergent
to x we have

kxk � 	� v���

provided that sepfxng 
 ��

Usually �uniform� Kadec�Klee property is de�ned with respect to the weak topology� The
���uniform� Kadec�Klee property is a straightforward generalization� see also �Lennard�
��� Besbes� et al�� ��� Khamsi� ���� Most spaces encountered in practice that have ��KK
property� do actually have ��UKK propoerty� But not all� For a counterexample see �van
Dulst � Sims� �	�� Re�exive space with �weak� Kadec�Klee property is sometimes called
Je�mov � Stechkin space� Every uniformly convex space is Je�mov � Stechkin space with
uniform Kadec�Klee property� Thus� for example Lp���� lp �	 � p � �� are weak�UKK�
In particular� Hilbert space is weak�UKK�
The space l� is ��weak�UKK� sequential Orlicz spaces with the function having ���property
are weak�UKK �van Dulst et al�� �
��
Lp����spaces �p 
 �� with a�s��topology as � satisfy ��UKK �of course� it does not have
A� but still ���		�� This is useful in probabilistic applications� for example� with Skorohod
embedding�� This property be generalized for Lebesgue�Bochner spaces as well � Dilworth
et al�� �
� �
For more examples� see �Lennard� ��� Besbes et al� ��� Khamsi� ����

When E is ��UKK� then the ��convergence of fxng such that lim infn kxnk � l and
sepfxng 
 � implies the existence of 
��� l� 
 � such that

kxk � l � �� �
���

Indeed� for each � 
 �� there exists a subsequence fxn�g such that kxn�k � l��� kxk � l���
Because of the ��UKK

kxk �
�
	� v�

�

l� �
�
�
�l � ���

�	



By choosing � small enough� we can see the existence of 
 
 � such that kxk � l � 
�

Now we show that Polya algorithm converges �in the sense of b��� provided that E admits
a topology satisfying A�

Theorem ���� Suppose �E� �� satis�es A and is ��UKK� Let fang be as in ����� with
po ��� Then an � P�

��

Proof� The proof is complete if we show that any subsequence of fang contains a con�
verging subsequence� Consider an arbitrary subsequence of fang� denoted as previously�
By assumption A� it has a ��convergent subsequence �denoted as previously by fang��
Suppose fang is not relatively compact� Then there �� 
 � and a subsequence of an� say
famg such that sepfamg 
 �� Thus famg satis�es the assumptions of Proposition 
�� �
hence �
�
� holds� Let A be the corresponding set� P �A� � �� For each x � A we get

x� am


� x� a� sepfx� amg 
 � and lim infm�x� am� � t�� Thus� by �
��� we have the

existence of 
 
 � such that kx� ak � t� � 
� The latter holds for each x � A� implying
P �kx� ak � t� � 
� � �� This contradicts the de�nition of t�� �

Remark� The foregoing proof relies on �
�
�� When there exists a xo � A kxo � ak � t��
then� obviously the uniform Kadec�Klee property in Theorem 	 can be weakened to the
�nonumiform� Kadec�Klee property� However� it is easy to see that generally such an
element xo need not exists� However� for each � 
 � there exists a x� � A such that
kxo � ak � t� � �� This makes possible to use the uniform Kadec�Klee property� The
question� whether Theorem 
�	 holds with �non�uniform� KK�property� is still open�

Also note that from Theorem 
�	 follows that the set U�
� is compact� This generalizes

Theorem � in �van Dulst� Sims �	��

We conclude with a convergence result for non�trimmed pn predictions� as pn � po ���

Theorem ���� Assume �E� �� satis�es A� Let fang be as in ����� with po � �� Then
an � Ppo if one of the following conditions holds�
i� �E� �� has ��KK property	
ii� Ppo � S�

Proof� It su�ces to show that fang contains a strongly convergent subsequence� By ������
fang is minimizing for Vpo � Thus� Proposition ��
 applies�

By A� fang has a ��convergent subsequence am


� a with the limit in Ppo � From ���	
�

we get that kx� amk � kx� ak� when x � S�P ��
If �E� �� has ��KK property� then the convergence x�am � x�a obviously follows� That
proves i��
Since a � Ppo � ii� is now obvious� �

The proof of Theorem 
�� relies on ���	
� and cannot be used� if � 
 �� Therefore� the
question of the convergence of trimmed pn�predictions �with po ��� under ��KK�property
is still open�

��
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