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Chapter 1

Introduction

Large-scale flows in the ocean and the atmosphere possess three special charac-
teristics: they are stratified in density; they are affected by the Earth’s rotation;
and they are shallow (their depth is much smaller than their horizontal length
scales). The importance of these three characteristics resides partly in that they
can enforce the two-dimensionality of flows. In other words, if any of these three
characteristics is important enough, flows could present some special features char-
acteristic of two-dimensional (2D) flows.

1.1 Characteristics of two-dimensional flows

Among the distinctive characteristics of 2D flows, the dual-cascade in 2D turbu-
lence derived by Kraichnan (1967) might be the most renowned. This dual-cascade
consists of a direct enstrophy cascade towards smaller scales and an inverse energy
cascade towards larger scales. This property owes its existence to the absence of
vortex stretching in 2D flows, which causes 2D turbulence to be essentially different
from its three-dimensional (3D) counterpart in which the energy simply cascades
from larger to smaller scales where it is dissipated by viscosity.

A significant numerical effort has been put into validating the prediction of the
dual-cascade in 2D turbulence. The first direct numerical simulations of forced 2D
turbulence aimed at confirming the existence of the dual-cascade were performed
by Lilly (1969) in a periodic domain. In spite of the low resolution (642 grid points),
the results of these simulations indicated the presence of the two cascades.With the
increment of computing power, higher resolutions have been achieved allowing to
better observe the inverse energy cascade or the direct enstrophy cascade (see e.g.
Frisch & Sulem, 1984; Smith & Yakhot, 1993). Recently, Boffetta (2007) reported
on simulations of statistically steady 2D turbulence in a periodic domain with a
very high resolution (up to 16,3482 grid points) where the dual-cascade was clearly
visible over two decades.

1



2 Introduction

Figure 1.1 – Picture of hurricane Bonnie over the Atlantic Ocean taken from the En-
deavour in September 1992. NASA Photo ID: STS047-151-618.

Another distinctive characteristic property of 2D flows, which is closely linked
to the inverse energy cascade, is the process of self-organization, through which
the flow organizes itself into large coherent structures or vortices, as first reported
by Mattaeus & Montgomery (1980). The study of this process has led to theoreti-
cal predictions on the temporal evolution of vortex statistics in freely evolving 2D
turbulence, which were initially derived by Batchelor (1969) in spectral space, and
later reinterpreted in real space by Carnevale et al. (1991). These theories predict
the evolution of the number, size, and strength of vortices in a 2D turbulent flow.
Numerical simulations have also been set up to corroborate this theory, consis-
tently yielding power laws as predicted by theory (Carnevale et al., 1991; Weiss &
McWilliams, 1993; Dritschel, 1993; Clercx & Nielsen, 2000; Bracco et al., 2000).
However, the exponents for the power laws depend on different factors such as the
initial conditions (van Bokhoven et al., 2007).

Hurricanes are a notorious example of the large coherent structures formed in
the atmosphere. They reach an average diameter of 500 km, while the height of
the troposphere is merely in the order of 10 km. Figure 1.1 shows an image of
hurricane Bonnie (September 1992) over the Atlantic Ocean and clearly illustrates
the size and the shallowness of this type of flows.

Over the years, there has also been a large interest in the stability of 2D
spatially periodic flows due to their high degree of symmetry. As for the case of
2D turbulence, the first theoretical studies were based on the idealized assumption
of a perfectly 2D unbounded fluid and were independent of attempts to realize
these flows in the laboratory. These studies predicted the types and thresholds of
instabilities in Kolmogorov flows and arrays of vortices (Meshalkin & Sinai, 1961;
Gotoh & Yamada, 1984; Takaoka, 1989; Sivashinsky & Yakhot, 1985).

For a more comprehensive overview about the topics treated in this introduc-
tion, the reader is referred to: Danilov & Gurarie (2000), Tabeling (2002), and
Clercx & van Heijst (2009) for more details on 2D turbulence. Dolzhanskii et al.
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(1990) and Thess (1992) provide a comprehensive overview about the stability of
2D spatially periodic flows. For an extensive overview on experiments in shallow
layers, the reader is referred to Kellay & Goldburg (2002).

1.2 Laboratory experiments on two-dimensional

flows

As theories and numerical simulations on 2D flows increased in number, there
has been a growing interest on corroborating their results in the laboratory. In-
spired by geophysical flows, experimentalists have used stratification (e.g. Maassen
et al., 2003), background rotation (e.g Afanasyev & Wells, 2005), and shallow-layer
configurations (e.g. Tabeling et al., 1991) in attempts to obtain 2D flows in the
laboratory. Commonly, flows with only one of these characteristics are studied in
the laboratory. In the present work, the attention is focused on the use of both
shallowness and background rotation.

The two-dimensionality of shallow flows is usually attributed to vertical con-
finement. It is commonly thought that if the depth of the fluid is sufficiently small,
the vertical velocities are restrained and that they can be neglected as compared
to the horizontal velocities. Until recently, this argument, which rests in the con-
tinuity equation for incompressible fluids and dimensional analysis (see Pedlosky,
1987), was believed to ensure the 2D behavior of shallow flows.

The two-dimensionality of flows subjected to strong background rotation is
usually attributed to the Taylor–Proudman theorem, which states that strong
rotation reduces the velocity gradients in the direction parallel to the axis of ro-
tation. However, this theorem only applies strictly to quasi-stationary flows and
does not predict if a flow that is initially 3D will become 2D. Even though the
formation of columnar structures as predicted by the Taylor–Proudman theorem
was observed already more than 150 year ago (see Velasco Fuentes, 2009), the
mechanism through which flows subjected to background rotation become 2D still
attracts much interest (see e.g. Staplehurst et al., 2008).

Moreover, no perfect 2D flow for the study of 2D turbulence or the stability
of 2D periodic flows can be realized in the laboratory. This is due, for example,
to the presence of solid boundaries and free-surface deformations. For this reason,
the term quasi-two-dimensional (Q2D) has been introduced to describe a flow that
is not perfectly 2D but can still be approximately modeled by the 2D vorticity
equation where the vertical motions are parametrized. In general, the use of both
thin-layer configurations and background rotation to obtain Q2D flows in the
laboratory has shown promising results, but many critical questions about the
three-dimensionality of these flows remain unanswered.
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1.2.1 Shallow flows

The first experimental studies on shallow Q2D flows where aimed at studying
the stability of 2D periodic flows (Bodarenko et al., 1979; Tabeling et al., 1987).
In these experiments, a thin electrolytic layer was used as a working fluid. To
generate the desired flow, an array of magnets was positioned below the tank
containing the electrolyte, and an electric current was driven through the fluid. The
interaction between the magnetic field and the electric current generates a Lorentz
force that drives the flow. In spite of the shallow layer configuration, the results
of these experiments did not confirm the theoretical predictions for the stability
of 2D periodic flows. This disagreement is due to the effect of the boundaries
in the experiments, that where not taken into account in the theoretical models
(Bodarenko et al., 1979; Sommeria, 1986; Dolzhanskiy, 1987). Hence, a new theory
was derived, that incorporates the effects of these boundaries (specially friction at
the bottom), showing good agreement with experimental results (Thess, 1992).

In the study of the inverse energy cascade, the pioneering experimental work
by Sommeria (1986) in an electrically driven thin layer of mercury deserves special
mentioning. This work was the first attempt to observe the inverse energy cascade
in the laboratory, and probably, it also inspired later experimental work in shallow
layers of electrolytes. In these experiments, an inverse energy cascade was found
spanning for about half a decade, and in addition, the process of self-organization
was clearly observed. The setup consisted of a tank filled with a thin layer of
mercury and positioned in the gap of an electromagnet producing a homogeneous
vertical magnetic field. At the bottom of the tank, a squared network of electric
sources and sinks was placed. Due to the interaction of the magnetic field and
the electric current through the fluid, a Lorentz force sets the fluid into motion.
However, due to the properties of mercury, the two-dimensionality of the flow is
not only enforced by the small fluid depth, but more importantly, by the action of
the strong magnetic field on the fluid (Sommeria, 1982).

In the early 80’s, experiments on turbulence in soap films were performed
by Couder (1984). An extreme shallowness is achieved in soap films since their
thickness is in the order of micrometers while the horizontal length scales of the
flow are of the order of millimeters or centimeters, depending on the generation
mechanism. In the experiments, a large number of vortices were created by towing
a comb through the film. After the comb passed, a strong interaction between
the vortices was observed. In particular, the merging of like-sign vortices, which
is associated with the process of self-organization in 2D turbulence, was clearly
visible. In addition, different theoretical predictions for 2D turbulence have been
corroborated in recent experiments on soap films where the soap film is in motion
and passes through a comb. In fact, through this type of soap films experiments,
the exponent of the direct enstrophy cascade was first validated experimentally
for decaying turbulence (Kellay et al., 1995), and the dual-cascade scenario was
confirmed for forced turbulence (Rutgers, 1998).

Even though turbulent soap-film flows show good agreement with 2D turbu-
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lence theory, there are known shortcomings that generate concern about their
degree of two-dimensionality. Such shortcomings are, for example, variations in
the film thickness and the effects of air drag (Kellay & Goldburg, 2002).

In the 90’s, experiments on shallow layers of electrolytes were performed to test
the theoretical predictions for 2D turbulence. In these experiments, the predictions
on the scaling of vortex statistics presented by Carnevale et al. (1991) were first
tested by Tabeling et al. (1991). It was observed that bottom friction had an
important effect on the evolution of the flow, as it was previously observed for
experiments on the stability of periodic 2D flows. This observation resulted in
a growing interest in the role of boundaries on the evolution of 2D turbulence
(van Heijst & Clercx, 2009b; Clercx & van Heijst, 2009).

To minimize the effect of bottom friction, a stably stratified two-layer fluid has
been used. For example, Tabeling and co-workers used it in an attempt to validate
the scaling of the vortex statistics predicted by Carnevale et al. (1991) (Hansen
et al., 1998), and to measure the inverse energy cascade (Paret & Tabeling, 1997).
Since then, this two-layer setup has been regarded as the best setup to study
Q2D flows, and has been regularly used until now. For example, the formation
of a condensate was observed recently in a two-layer setup where the fluid was
continuously forced (Shats et al., 2005).

The two-dimensionality of shallow flows has been strongly tested recently. In a
two-layer configuration (an electrolytic layer at the bottom and a non-conductive
layer above), Paret et al. (1997) measured a negligible momentum exchange be-
tween the layers, and thus, they concluded that the flow can be regarded as
Q2D. However, the dependence of the two-dimensionality on the Reynolds number,
which was later suggested by Satijn et al. (2001), was not taken into account.

Thanks to the development of new experimental techniques, namely Stereo-
scopic Particle Image Velocimetry (SPIV), all three velocity components have been
measured at different planes inside shallow flows. This type of velocity measure-
ments inside dipolar vortices generated electromagnetically — as in the experi-
ments on Q2D turbulence mentioned above — have revealed larger than expected
vertical velocities and complicated 3D structures for very shallow layers (Akker-
mans et al., 2008a,b) and even in a two-layer configuration (Akkermans et al.,
2010). In addition, for decaying turbulence in a shallow fluid layer, it was found
that these flows are characterized by long-lived meandering currents, which are
associated with 3D motions (Cieslik et al., 2009). These recent studies question
the assumption of the two-dimensionality of shallow fluid layers.

1.2.2 Rotating flows

In flows subjected to background rotation, the formation of columnar structures
was observed more than 150 years ago by Lord Kelvin (see the historical note by
Velasco Fuentes, 2009) anticipating the analytical results of what is now known
as the Taylor–Proudman theorem. Even though this theorem is only strictly valid
for stationary flows, it has been observed that strong rotation tends to organize
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turbulent flows in columnar vortices (Hopfinger, 1982). In addition, it has been
shown that strong rotation suppresses the dissipation of the turbulent kinetic en-
ergy (Jacquin et al., 1990) and promotes the flux of kinetic energy towards large
scales (Morize et al., 2005).

Besides the experimental work on rotating turbulence, there is an ample body
of work, which is mainly motivated by geophysical applications, on the evolution
of vortices and other structures in flows subjected to background rotation. In this
work, the formation of columnar vortical structures has been clearly observed,
with these structures showing good agreement with 2D models (see e.g. the work
by Kloosterziel & van Heijst, 1992 or the review by van Heijst & Clercx, 2009a).

In spite of the agreement between rotating turbulence and 2D theories, and
the formation of columnar structures in rotating flows, background rotation has a
few limitations when used to produce Q2D flows in the laboratory. For example,
there are asymmetries between cyclonic and anticyclonic vortices (Zavala Sansón
& van Heijst, 2000; Morize et al., 2005), and there are secondary motions driven
by the Ekman boundary layers found next to the boundaries perpendicular to the
rotation axis (see Pedlosky, 1987). More importantly, the question why a 3D flow
becomes Q2D when subjected to background rotation remains. Although most re-
searchers agree that inertial oscillations play a crucial role in the formation of the
columnar structures, and although linear dynamics are predominant during this
process, the importance of non-linear dynamics is still unclear (Davidson et al.,
2006; Staplehurst et al., 2008). For a single vortex tube which is initially per-
turbed and subjected to strong background rotation, the vortex relaxes rapidly to
a columnar structure for small perturbation due to the inertial oscillations. When
the vortex perturbation is large, non-linear inertial oscillations tend to break the
tube before it becomes a columnar structure (Carnevale et al., 1997).

1.3 Aim and outline of this thesis

The present work furthers the understanding of the effects of shallowness and
background rotation on the two-dimensionality of flows. To achieve this goal, it
was necessary to find appropriate ways to determine when a flow can be considered
as Q2D. For these purposes, we study the evolution and dynamics of simple vortical
structures (monopolar and dipolar vortices), which are considered as the building
blocks of more complicated flows such as 2D turbulence.

In Chapter 2, some theoretical aspects, that are key to the understanding of
this study, are introduced before presenting the main results of this work. These
theoretical aspects are concerned with the definition of 2D flows, and the different
arguments commonly used to justify the two-dimensionality of both shallow flows
and flows subjected to background rotation.

In Chapter 3, we revise the usual argument used to justify the two-dimensiona-
lity of shallow flows by analytically studying a decaying axisymmetric swirl flow
(i.e. a monopolar vortex). In contrast with this argument based on scale analysis
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of the continuity equation, we show that the dynamics of the flow is crucial to
determine if a shallow flow can be considered as Q2D. In Chapter 4, the study of
axisymmetric swirl flows is continued with the inclusion of background rotation.
This chapter presents a systematic analysis of the effects of both shallowness and
rotation on the degree of two-dimensionality of decaying vortical structures.

Chapter 5 is concerned with the dynamics of inertial oscillations in confined
decaying axisymmetric vortices subjected to background rotation. Inertial oscilla-
tions are an important 3D component of flows studied in this thesis since they can
have a significant effect on the flow evolution.

The thesis continues with the study of a dipolar vortex. Chapter 6 is devoted to
the case of decaying dipolar vortices, while stationary dipolar structures without
background rotation are studied in Chapter 7 and with background rotation in
Chapter 8. The main objective in Chapter 6 is to generalize the results obtained
in Chapter 3 to more complicated vortical structures through the use of both
numerical simulations and laboratory experiments. On the other hand, Chapters 7
and 8 are aimed at determining the range of validity of the use of linear damping
to parametrize the vertical dependence of the flow, i.e. the validity of assuming
the flow as Q2D. In these chapters, the stationary dipolar structure is generated
using time-independent electromagnetic forcing in the laboratory.

Finally, the main conclusions are summarized in Chapter 9.





Chapter 2

Theoretical preliminaries

The current chapter presents some theoretical background relevant for the under-
standing of this thesis. This background is concerned with the relevant equations,
the definitions of two-dimensional (2D) flows and quasi-two-dimensional (Q2D)
flows as understood in this thesis, and a description of previous attempts to quan-
tify the degree of two-dimensionality in different flows.

2.1 Fundamental equations

In the present thesis, we consider the motion of an incompressible Newtonian fluid.
The equations governing this motion are those stating the conservation of momen-
tum (the Navier–Stokes equation) and mass (the continuity equation), which can
be written as

∂v

∂t
+ v ·∇v = −∇p

ρ
+ ν∇2v +

F

ρ
, (2.1)

∇ · v = 0, (2.2)

respectively, where v is the fluid velocity; t is time; ν is the kinematic viscosity of
the fluid; p is the pressure; ρ is the uniform density of the fluid; and F are external
body forces (per unit volume).

In (2.1), the material derivative of the velocity Dv/Dt = ∂v/∂t + v · ∇v

expresses the acceleration associated with a given fluid element, where v ·∇v is
known as the convective acceleration. On the right hand side of (2.1), the mass
per unit volume is given by the density ρ, while the different forces acting on a
fluid element are the pressure gradient force ∇p, the viscous forces arising from
viscous stresses ν∇2v, and the external body forces F , which result from the fluid
being placed in a certain force field.

9
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It is sometimes convenient to take the curl of (2.1) to rewrite this equation in
terms of the vorticity ω = ∇× v, which yields

Dω

Dt
= (ω ·∇)v + ν∇2ω +

1

ρ
∇× F . (2.3)

The first term on the right hand side, (ω ·∇)v, is known as the vortex stretching
term and represents the stretching and tilting of vortex lines.

To understand the physical mechanism of vortex stretching, consider a thin
vortex tube with vorticity ω; let v‖ be the velocity component parallel to the
vortex tube and s a coordinate measured along the tube. Then,

(ω ·∇)v‖ = |ω|dv‖
ds

. (2.4)

If dv‖/ds > 0, the vortex tube is stretched, and from (2.3), we see that |ω| in-
creases. This mechanism is responsible for the formation of small intense vorticity
filaments in 3D flows.

Now, let v⊥ be a velocity component perpendicular to the vortex tube, so that

(ω ·∇)v⊥ = |ω|dv⊥
ds

. (2.5)

This term describes the tilting of the vortex tube in the direction of v⊥ by the
velocity gradient dv⊥/ds. From (2.3), it is possible to see that the tilting of a
vortex tube in the direction of v⊥ will generate vorticity in this direction.

2.2 Two-dimensional flows

In this thesis, we define 2D flows as flows governed on a plane by the vorticity
equation

Dωn

Dt
= ν∇2ωn +

1

ρ
(∇× F ) · n̂, (2.6)

where n̂ is the unit vector perpendicular to the plane of motion, and ωn = ω · n̂
is the vorticity component perpendicular to that plane. Note that both vortex
stretching and tilting are now absent from (2.6). This is the hallmark of 2D flows.
In other words, this is at the base of the inverse energy cascade and the process of
self-organization in 2D turbulence. In 2D flows, ωn is point-wise conserved along
Lagrangian trajectories for an inviscid fluid (ν = 0) in the absence of nonconser-
vative body forces (∇× F = 0).

Consider now a flow in Cartesian coordinates (x, y, z) for which the velocity
is given by v = (vx, vy, vz) and the vorticity by ω = (ωx, ωy, ωz). If the velocity
is independent of the z-coordinate, so that v = v(x, y, t), the evolution of the
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vorticity component in the z-direction is governed by (2.6), where now ωn = ωz,
and by the continuity equation

∂vx
∂x

+
∂vy
∂y

= 0. (2.7)

In the literature about 2D turbulence, horizontal planar flows on the (x, y)-
plane, for which v = [vx(x, y, t), vy(x, y, t), 0] and ω = [0, 0, ωz(x, y, t)], are usually
considered (see e.g. the review by Clercx & van Heijst, 2009). Note, however, that
it is not necessary that vz = 0 for the evolution of ωz to be governed by (2.6) and
(2.7); instead, it is sufficient that ∂vz/∂z = 0.

A 2D flow could be defined in more general terms as a flow in which the velocity
depends only on two spatial coordinates. For illustration purposes, we consider
an arbitrary reference frame defined by the unit vectors {e1, e2, e3}, where the
position of a point is defined by the vector x = (x1, x2, x3), and the velocity by
the vector v = (v1, v2, v3). If v = v(x1, x2, t), there is no vortex stretching in the
x3-direction, i.e.

ω3
∂v3
∂x3

= 0. (2.8)

However, the evolution of ω3 can still be influenced by vortex tilting. This is the
case, for example, for azimuthally symmetric swirl flows in cylindrical coordinates
for which the velocity depends only on the vertical and radial coordinates. In the
current thesis, these flows will not be referred to as 2D flows.

2.3 The Coriolis force and the Taylor–Proudman

theorem

For flows subjected to background rotation, it is usually convenient to consider the
motion relative to the rotating frame of reference. If the frame rotates at a steady
angular velocity Ω, the fluid motion is governed by the Navier–Stokes equation in
the rotating frame

∂v

∂t
+ v ·∇v + 2Ω× v = −∇p

ρ
−Ω× (Ω× x) + ν∇2v +

F ∗

ρ
, (2.9)

and the continuity equation (2.2), with x the position vector and F ∗ other external
body forces. The effects of background rotation are represented by the Coriolis
acceleration (2Ω× v) and the centrifugal acceleration [−Ω× (Ω× x)]. The latter
term can be written as the gradient of a scalar

−Ω× (Ω× x) = −∇
(

1

2
|Ω× x|2

)

, (2.10)
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and therefore, can be incorporated in the pressure gradient ∇P = ∇(p − |Ω ×
x|2/2), where P is commonly referred to as the reduced pressure. Then, the mo-
mentum equation becomes

∂v

∂t
+ v ·∇v + 2Ω× v = −∇P

ρ
+ ν∇2v +

F ∗

ρ
. (2.11)

For sufficiently strong rotation so that the viscous forces, the convective accel-
eration, and the external body forces can be neglected with respect to the Coriolis
acceleration, (2.11) reduces to

ρ2Ω× v = −∇P (2.12)

for quasi-steady motions. In this case, the flow is governed by a balance of the
Coriolis force and the pressure gradient force, which is known as the geostrophic
balance. Taking the curl of (2.12) results in the so-called Taylor–Proudman theo-
rem

(Ω · ∇)v = 0, (2.13)

which states that the velocity is independent of the coordinate parallel to the
direction of the rotation axis.

To facilitate the physical understanding of the Taylor–Proudman theorem,
it is convenient to consider a Cartesian coordinate system rotating at a rate
Ω = (0, 0,Ω). In this case, each velocity component is independent of the ver-
tical coordinate

∂v

∂z
= 0, (2.14)

which is a sufficient condition for the absence of both vortex stretching and tilting
in the evolution of ωz, and hence, to consider the flow in the (x, y)-plane as a 2D
flow.

2.4 The two-dimensionality of shallow flows

Traditionally, the two-dimensionality of shallow flows is founded on a scale analysis
of the continuity equation for an incompressible fluid (2.2), which reads

∂vx
∂x

+
∂vy
∂y

= −∂vz
∂z

, (2.15)

in Cartesian coordinates, where z is the vertical coordinate and v = (vx, vy, vz) is
the fluid velocity. If L is a typical horizontal length scale of the flow, and H is a
typical vertical length scale (commonly the depth of the fluid), then (2.15) implies
that

[vx]

L
∼ [vy]

L
∼ [vz ]

H
, (2.16)
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where the brackets denote the order of magnitude of the enclosed quantity. Con-
sequently,

[vz] ∼
H

L
[vx] ∼

H

L
[vy ]. (2.17)

This suggests that for shallow flows (H/L ≪ 1) the vertical velocities are much
smaller than the horizontal velocities and that the ratio of vertical to horizontal
velocities scales with the aspect ratio δ ≡ H/L. This argument is used to neglect
the vertical velocities in shallow flows and consider such flows as 2D.

In contrast with the Taylor–Proudman theorem, the argument to consider shal-
low flows as 2D only implies something about the magnitude of the vertical velocity.
Meanwhile, its vertical gradient is assumed to be of the order of H−1. However, we
must remember that the hallmark of 2D flows is the absence of vortex stretching,
which in the z-direction is written as

ωz
∂vz
∂z

,

and unless vz = 0, the importance of this term is given by the vertical gradient of
the vertical velocity.

2.5 Quasi-two-dimensional flows

In reality, neither background rotation nor shallowness can create perfect 2D
flows in the laboratory. This is due, for example, to the presence of boundaries
(van Heijst & Clercx, 2009b).

For flows subjected to strong background rotation (with the rotation axis in
the vertical direction), the presence of horizontal no-slip boundaries is a clear
obstacle for the formation of perfect two-dimensional flows since a geostrophic flow,
which satisfies the Taylor–Proudman theorem, cannot satisfy the conditions at the
boundaries. Therefore, a thin boundary layer must exist between the geostrophic
flow and the solid boundary where ∂v/∂z 6= 0. Inside this type of boundary layers,
known as Ekman boundary layers, there is a balance between the Coriolis force and
viscous forces, resulting in a layer with a typical thickness (ν/Ω)1/2. Furthermore,
Ekman boundary layers have the particularity that they pump fluid from the
boundary layer into the geostrophic interior or vice versa. This process is described
by the Ekman suction condition that states that in the interior the vertical velocity
is

vz(x, y) =
1

2
Ek1/2ωz(x, y) (2.18)

with Ek ≡ ν/(ΩH2) the Ekman number. Other 3D phenomena found in rotating
flows are inertial oscillations (Thomson, 1880) and 3D vortex instabilities such as
the centrifugal instability (Kloosterziel & van Heijst, 1991).
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Shallow flows are not perfectly 2D simply because of their finite thickness
— which translates into a finite magnitude of the vertical velocities — and the
presence of horizontal boundaries — which play a crucial role in the flow evolution
(van Heijst & Clercx, 2009b). For example, if a flow is bounded by a solid boundary
at the bottom and a free surface, there will be a vertical gradient in the horizontal
velocity; by continuity there will also be a vertical gradient in the vertical velocity,
and hence, vortex stretching in the z-direction.

However, in some special cases it is possible to parametrize or neglect the three-
dimensional motions. For these cases, the term quasi-two-dimensional (Q2D) was
coined. Dolzhanskii et al. (1992) defined a Q2D flow as a flow which is governed
on a plane by the vorticity equation

Dωn

Dt
= −λωn +

1

ρ
(∇× F ) · n̂, (2.19)

where n̂ is the unit vector perpendicular to the plane of motion, and ωn = ω · n̂ is
the vorticity component perpendicular to that plane. In (2.19), the viscous terms
or the vortex stretching terms are replaced by a linear damping term −λωn where
λ is a constant, which depends on the underlying physics. For example, for a flow
confined by a no-slip bottom and subjected to strong background rotation (with
the rotation vector pointing in the same direction as n̂), λ = (Ων)1/2/H with
H the depth of the fluid. It has been observed that linear damping can play an
important role in flows governed by (2.19). For example, it modifies the energy
spectra of continuously forced 2D turbulence (Boffetta et al., 2005). However,
many flow features of freely evolving 2D turbulence are independent of the value
of λ (Clercx et al., 2003).

2.6 Quantifying the degree of two-dimensionality
of flows

Recently, the two-dimensionality of shallow flows, and hence, the validity of (2.19)
to describe such flows have been questioned. This has promoted many attempts
aimed to quantify the degree of two-dimensionality of shallow flows, in particular
shallow vortices.

For the shallow flows considered in the current thesis, the horizontal length
scales are much larger than the fluid depth, and the axis of rotation is along the
vertical direction. Hence, it can be expected a priori that the flow will behave as a
2D flow on a horizontal cross section. It is of interest then to quantify the degree
of two-dimensionality of the flow in a horizontal plane, i.e. to quantify how close
is the flow behavior on a horizontal plane to the behavior of a perfect 2D flow.

For shallow flows, it is natural to measure the relative magnitude of the vertical
velocities as compared to the horizontal velocities, since the usual argument used
to justify the two-dimensionality of these flows suggests that the vertical velocities
should be negligible as compared to the horizontal velocities. A quantity commonly
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found in the literature is the normalized kinetic energy associated with the vertical
velocity component. For an axisymmetric monopolar vortex, Satijn et al. (2001)
defined the ratio

Qz(t) =

∫

V

v2z(r, z, t)dV
∫

V

v2θ(r, z, t)dV

, (2.20)

where the kinetic energy associated with the vertical velocity components vz is
integrated over the volume V and normalized with the kinetic energy associated
with the azimuthal velocity component vθ.

In dipolar vortices, it has been found more convenient to consider the kinetic
energy associated with the vertical velocity component in a horizontal cross-section
z = z0 and normalize it with the kinetic energy associated with the horizontal
velocity components:

Qz(t; z0) =

∫

S

v2z(x, y, z = z0, t)dxdy
∫

S

[v2x(x, y, z = z0, t) + v2y(x, y, z = z0, t)]dxdy
, (2.21)

where S is the surface of integration (Akkermans et al., 2008a,b). Sous et al. (2005)
considered a similar quantity on a vertical cross-section.

Another popular quantity to characterize the two-dimensionality of flows is
the horizontal divergence. For example, Sous et al. (2005) and Akkermans et al.
(2008a,b) considered the normalized horizontal divergence integrated over a hori-
zontal plane. The advantage of considering the horizontal divergence instead of the
kinetic energy associated with the vertical velocity component is that the vortex
stretching in the vertical direction is directly proportional to the former.

The usual way to determine if a flow can be considered as Q2D is to calculate
the values of the previously mentioned quantities and to compare these values with
a certain threshold below which the flow is said to be Q2D. However, Akkermans
et al. (2008a) already realized that this approach has several shortcomings. For
example, the value of the different quantities depends on the size of the integration
domain and the position of the plane (i.e. the value of z0) where the quantities
are evaluated. Furthermore, it was noted that the horizontal divergence suggests
deviations from Q2D behavior in a different way as the normalized kinetic energy
associated with the vertical velocity. Finally, the information given by integral
quantities is limited to average values in the whole flow domain, and do not reveal
the local importance of 3D motions in different flow regions.

Satijn et al. (2001) considered another criterion, in which the deformation of
the radial profile of an axisymmetric monopolar vortex is compared to the initial
radial distribution. Since this deformation is directly due to vortex stretching,
it directly quantifies the effects of 3D motions on the evolution of the vortex.
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However, this quantity grows continuously in time rendering the definition of a
threshold not a trivial task.

Strangely, an approach similar to the one just mentioned to quantify the
two-dimensionality of vortices has not been used for vortices subjected to back-
ground rotation. However, 3D effects in this type of flows — e.g. 3D instabilities
(Kloosterziel & van Heijst, 1991), the non-linear effects due to Ekman pumping
(Zavala Sansón & van Heijst, 2000), and the effects of free-surface deformations
(Maas, 1993) — have been extensively studied.



Chapter 3

Decaying axisymmetric swirl
flowsi

3.1 Introduction

As doubts about the two-dimensionality of shallow flows emerge (Satijn et al.,
2001; Akkermans et al., 2008a,b; Cieslik et al., 2009), it is just natural to revise
the usual argument used to justify considering all shallow flows as Q2D. To test this
argument, which was presented in Section 2.4, we focus on shallow axisymmetric
swirl flows like monopolar vortices, which are considered as the building blocks
of Q2D turbulence. The flow, on top of a no-slip horizontal bottom, is initialized
with a specific azimuthal velocity distribution and is subsequently left to evolve
freely. It is well known that in such a swirling flow a secondary flow arises with
both radial and vertical velocity componentsii. Of particular interest is the scaling,
commonly used to quantify the degree of two-dimensionality of the flow, of both
the radial and vertical velocities with respect to the primary azimuthal motion.

The degree of two-dimensionality of a shallow axisymmetric monopolar vor-
tex has been previously quantified in numerical simulations using three criteria
based on: (i) the ratio of the kinetic energies associated with the radial and the
azimuthal velocity components, (ii) the ratio of the kinetic energies associated
with the vertical and the azimuthal velocity components, and (iii) the deforma-
tion of the vorticity profile as compared to the initial profile. It was found that
the degree of two-dimensionality depends not only on the aspect ratio but also on
the Reynolds number (Satijn et al., 2001). This explains partly why some shallow

iThe contents of this chapter have been adopted from Duran-Matute et al. (2010) with minor
modifications.

iiEinstein (1926) presented the solution of the tea leaves paradox (why do tea leaves at the
bottom of a tea cup migrate to the center of the cup after the water is stirred) and explained the
formation of meanders in the course of rivers (Baer’s law) by the presence of secondary motions
in those flows.

17
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flows behave in a Q2D way, while some others do not, and it is also a sign that
the scaling of the vertical velocity cannot be simply derived from geometrical ar-
guments based on the continuity equation. Clearly, it is still not well understood
why some shallow flows do not behave in a Q2D way.

In this chapter, the velocity components are expanded in powers of the aspect
ratio δ, and at lowest order a simplified version of the axisymmetric Navier–Stokes
equations is found for shallow swirl flows where advection and radial diffusion
are neglected. Then, these equations are solved analytically for a realistic initial
azimuthal velocity profile. The analytical results are then compared with numerical
simulations of the full axisymmetric Navier–Stokes equations. This allows us to
derive the proper scaling for shallow axisymmetric flows and to find the range of
validity for this scaling.

The chapter is organized as follows: Section 3.2 presents the governing equa-
tions and the geometry pertinent to the problem. In Section 3.3, we present a
perturbation approach leading in lowest order to a simplified Navier–Stokes equa-
tion that is solved analytically in Section 3.4. Section 3.5 is devoted to the results
from numerical simulations of a Lamb–Oseen monopolar vortex, which serve to
quantify the range of validity of the analytical results. Finally, the conclusions are
presented in Section 3.6.

3.2 Governing equations and geometry

We consider a freely evolving flow governed by the Navier–Stokes equations

Dv

Dt
= −1

ρ
∇p+ ν∇2v (3.1)

and the continuity equation for an incompressible fluid

∇ · v = 0, (3.2)

where D/Dt is the material derivative, v is the velocity, ν is the kinematic viscosity,
p is the pressure, and ρ is the density of the fluid.

Since we are interested in axisymmetric swirl flows, it is convenient to use
cylindrical coordinates (r, θ, z); the velocity is then written as v = (vr, vθ, vz), and
the vorticity as ω = ∇× v = (ωr, ωθ, ωz).

The fluid is vertically confined by a no-slip bottom (v = 0 at z = 0) and a
rigid, flat surface (at z = H) that is assumed to be stress-free; see figure 3.1.

The flow is initialized with a particular axisymmetric azimuthal velocity profile
vθ(r, z, t = 0) 6= 0 while vr(r, z, t = 0) = vz(r, z, t = 0) = 0; afterwards, the flow is
left to freely evolve.
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Figure 3.1 – Sketch of the problem’s geometry.

3.3 Shallow swirl-flow approximation

In order to non-dimensionalize the governing equations (3.1) and (3.2), we intro-
duce the following nondimensional variables denoted by primes:

t′ =
ν

H2
t, r′ =

r

L0
, z =

z

H
,

[v′θ, v
′
r, v

′
z] =

1

U
[vθ, vr, vz ], ω′

θ =
H

U
ωθ,

where U is a typical velocity scale of the flow, and L0 is a typical radial length
scale.

Since we consider a flow with azimuthal symmetry (∂/∂θ = 0), we can rewrite
(3.1) and (3.2) in terms of v′θ and ω′

θ, so that we obtain

∂v′θ
∂t′

+ δ2Re

(

v′r
∂v′θ
∂r′

+
v′θv

′
r

r′

)

+ δRe v′z
∂v′θ
∂z′

= δ2
[

∂2v′θ
∂r′2

+
∂

∂r′

(

v′θ
r′

)]

+
∂2v′θ
∂z′2

,

(3.3)

∂ω′
θ

∂t′
+ δ2Re

(

v′r
∂ω′

θ

∂r′
− ω′

θv
′
r

r′

)

+ δRe v′z
∂ω′

θ

∂z′
− δ2Re

1

r′
∂v′2θ
∂z′

= δ2
[

∂2ω′
θ

∂r′2
+

∂

∂r′

(

ω′
θ

r′

)]

+
∂2ω′

θ

∂z′2
,

(3.4)

δ
1

r′
∂

∂r′
(r′v′r) +

∂v′z
∂z′

= 0, (3.5)

ω′
θ =

∂v′r
∂z′

− δ
∂v′z
∂r′

, (3.6)
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with δ ≡ H/L0 the aspect ratio and Re ≡ UL0/ν the Reynolds number. To
simplify notation, the primes will be omitted from here on.

Note that the continuity equation (3.5) does not provide any relation between
the azimuthal velocity and the vertical velocity. Consequently, the scaling of the
ratio of the azimuthal velocity to the vertical velocity must be determined by the
flow dynamics.

In this context, the term

δ2Re

r

∂v2θ
∂z

=
2δ2Re

r
vθ
∂vθ
∂z

(3.7)

in (3.4) is of special interest since it couples the azimuthal velocity vθ to both the
radial velocity vr and the vertical velocity vz, implying that a vertical gradient in
vθ will drive a secondary flow in the (r, z)-plane.

To study the limit of shallow flows (δ ≪ 1), we propose an asymptotic expan-
sion of the variables in powers of δ:

ωθ =

∞
∑

n=0

δnωθ,n, vθ =

∞
∑

n=0

δnvθ,n, vr =

∞
∑

n=0

δnvr,n, vz =

∞
∑

n=0

δnvz,n. (3.8)

In the current chapter, we consider for simplicity that Re = O(1) for δ ↓ 0, while
a more general perturbation analysis is given in Chapter 4.

By substituting (3.8) into (3.5), we immediately obtain that vz,0 = 0. Substi-
tution of (3.8) into (3.4) yields

∂ωθ,0

∂t
− ∂2ωθ,0

∂z2
= 0 (3.9)

at zeroth order, ωθ,1 = 0 at first order, and

∂ωθ,2

∂t
+Re

(

vr,0
∂ωθ,0

∂r
+
vr,0ωθ,0

r
+ vz,1

∂ωθ,0

∂z

)

− Re
1

r

∂v2θ,0
∂z

=
∂2ωθ,0

∂r2
+

∂

∂r
r−1ωθ,0 +

∂2ωθ,2

∂z2

(3.10)

at second order.
Note, from (3.9), that ωθ,0 is not affected by the primary motion and only

depends on the initial condition for ωθ. In fact, if vr = vz = 0 at t = 0, then
ωθ,0 = ωθ,1 = 0 and vr,0 = vr,1 = vz,1 = vz,2 = 0. Substituting these results into
(3.10) yields

∂ωθ,2

∂t
− ∂2ωθ,2

∂z2
= Re

1

r

∂v2θ,0
∂z

. (3.11)

It can be seen from this equation that a vertical gradient in vθ will drive a secondary
flow that at lowest order (δ ↓ 0) scales as follows

ωθ = δ2ωθ,2, vr = δ2vr,2, vz = δ3vz,3, (3.12)
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provided that ωθ = 0 at t = 0. Therefore, it is convenient to define the new
variables

ω̃θ =
ωθ

δ2Re
, ṽr =

vr
δ2Re

, ṽz =
vz
δ3Re

, ṽθ = vθ, (3.13)

through which (3.3)–(3.4) simplify to

∂ṽθ
∂t

− ∂2ṽθ
∂z2

= 0, (3.14)

∂ω̃θ

∂t
− ∂2ω̃θ

∂z2
=

1

r

∂ṽ2θ
∂z

, (3.15)

where ω̃, ṽr, ṽz , ṽθ are all of O(1) for δ ↓ 0. This implies that the velocity
components scale to lowest order as

vr
vθ

= O(δ2Re), (3.16)

and

vz
vθ

= O(δ3Re). (3.17)

If we consider the azimuthal velocity as the typical horizontal velocity — a common
choice — the latter result contradicts the usual assumption that the ratio of vertical
to horizontal velocity should scale with δ. Not only does the vertical velocity scale
with δ3, but it also depends linearly on the Reynolds number of the primary
motion. The range of validity for the scaling proposed in (3.16) and (3.17) will be
studied using numerical simulations in Section 3.5.

3.4 Analytical solution for a shallow swirl-flow

Equation (3.14) is a diffusion equation, where both radial diffusion and advection
by the secondary motion have been neglected as compared to (3.3). Since at lowest
order the evolution of the main flow is independent of the secondary flow, flows
governed by (3.14) and (3.15) can be considered as Q2D.

To analyze the two-dimensionality and the evolution of shallow swirl-flows,
(3.14) and (3.15) are solved analytically. For this, we consider as initial condition
a swirl flow with a Poiseuille-like vertical structure and a radial dependence which
is, at this stage, arbitrary:

ṽθ(r, z, 0) = R(r) sin(πz/2), (3.18)

where R(r) is such that dR(r)/dr is of the same order of magnitude as R(r). This
is achieved by choosing the appropriate radial length scale L0. Furthermore, for
the secondary motion we consider

ω̃θ(r, z, 0) = 0. (3.19)
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The Poiseuille-like vertical profile was used as initial condition since the vertical
structure of shallow axisymmetric vortices dominated by bottom friction tends
quickly to such a profile (Satijn et al., 2001).

The solution of (3.14) that satisfies the no-slip boundary condition at the
bottom (ṽθ = 0 at z = 0), the stress-free boundary condition at the top (∂ṽθ/∂z =
0, at z = 1), and the initial condition (3.18) is given by

ṽθ(r, z, t) = R(r) sin
(π

2
z
)

exp

(

−π
2

4
t

)

. (3.20)

We note that the azimuthal velocity ṽθ decays exponentially at a rate λR =
π2/4 [equivalent to π2ν/(4H2) in dimensional form], which is in some studies
referred to as the external friction parameter. For shallow flows, it is also known
as the Rayleigh friction parameter, and it is commonly used to parametrize the
vertical dependence of shallow flows in 2D equations with a linear friction term
(Dolzhanskii et al., 1992; Satijn et al., 2001).

By substituting (3.20) into (3.15), we obtain an equation for the secondary flow
that is driven by the primary swirl:

∂ω̃θ

∂t
− ∂2ω̃θ

∂z2
=
π

2

R2(r)

r
sin(πz) exp

(

−π
2

2
t

)

. (3.21)

To solve (3.21) with the appropriate boundary conditions, it is useful to introduce
the streamfunction ψ̃ facilitated by (3.5) and defined by

ṽr = −1

r

∂ψ̃

∂z
, (3.22)

ṽz =
1

r

∂ψ̃

∂r
. (3.23)

From this and (3.6), ω̃θ is given by

ω̃θ = −1

r

∂2ψ̃

∂z2
− δ2

∂

∂r

(

1

r

∂ψ̃

∂r

)

, (3.24)

which at lowest order (δ ↓ 0) reduces to

ω̃θ = −1

r

∂2ψ̃

∂z2
. (3.25)

The evolution of the secondary flow is now governed by the following equation:

∂4Ψ

∂z4
− ∂

∂t

∂2Ψ

∂z2
= sin(πz) exp

(

−π
2

2
t

)

, (3.26)
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Figure 3.2 – Normalized streamfunction as a function of time.

where

Ψ(z, t) =
2

π

ψ̃(r, z, t)

R2(r)
, (3.27)

with the boundary conditions

Ψ(0, t) = 0, Ψ(1, t) = 0,
∂Ψ(z, t)

∂z

∣

∣

∣

∣

z=0

= 0,
∂2Ψ(z, t)

∂z2

∣

∣

∣

∣

z=1

= 0, (3.28)

and the initial condition

Ψ(z, 0) = 0. (3.29)

The detailed procedure to solve the initial-value problem (3.26)–(3.29) is given in
Appendix A, and the solution is

Ψ(z, t) =
2 sin(πz)

π4
e−π2t/2 +

2

π3
[

tan
(

π√
2

)

− π√
2

]

×
{

tan

(

π√
2

)[

1− z − cos

(

π√
2
z

)]

+ sin

(

π√
2
z

)}

e−π2t/2

−
∞
∑

n=0

4γn
π tan2(γn)(π2 − γ2n)(π

2 − 2γ2n)

×{tan(γn)[1− z − cos(γnz)] + sin(γnz)} e−γ2

nt,

(3.30)

where γn are solutions of the transcendental equation tan(γn) = γn.
Figure 3.2 shows the temporal evolution of the normalized stream function at

an arbitrary location in the (r, z)-plane and which is characteristic for the overall
behavior of ψ̃. Initially, the normalized streamfunction shows a rapid increase as
the secondary motion is set up by the primary flow. During this transient period,
the infinite series in (3.30) forms the dominant contribution to ψ̃. For longer times,



24 Decaying axisymmetric swirl flows

the behavior of the secondary motion is dominated by the first and second terms
on the right-hand side of (3.30) since π2/2 ≪ γ2n. Note that the second term is
present in the solution because the first term alone does not satisfy the boundary
condition at the no-slip bottom.

From the streamfunction ψ̃, we can calculate both the radial and vertical ve-
locity components:

vr = −δ
2Re

r

∂ψ̃

∂z
= −πδ

2Re

2

R2(r)

r

∂Ψ(z, t)

∂z
, (3.31)

vz =
δ3Re

r

∂ψ̃

∂r
=
πδ3Re

2r

∂R2(r)

∂r
Ψ(z, t), (3.32)

which will be compared in the next section to results from numerical simulations.

3.5 Numerical study

Numerical simulations were performed to determine the range of validity of the
analytical results presented in the preceding sections. A finite-element code, COM-
SOL, was used to solve the full Navier–Stokes equations (For more details see
COMSOL AB, 2008). The flow was assumed to be incompressible and azimuthally
symmetric (∂/∂θ = 0).

The initial azimuthal flow was taken to be

vθ(r, z, 0) = R(r) sin
(π

2
z
)

, (3.33)

where the radial dependence was specified as

R(r) =
1

2r

[

1− exp
(

−r2
)]

. (3.34)

Such vortex is known as a Lamb–Oseen vortex, and it was chosen because of
its similarity to some vortices created in the laboratory (see e.g. Hopfinger &
van Heijst, 1993). However, as shown in Section 3.3, the scaling of vr and vz is
independent of the radial profile for δ ↓ 0.

The computational domain extends in the (r, z)-plane for 0 ≤ r ≤ 12 and
0 ≤ z ≤ 1. The radial length of the container is approximately ten times the radius
of maximum velocity of the Lamb–Oseen vortex and large enough to neglect the
effects of this boundary on the secondary motion.

As boundary conditions, we considered relevant symmetry conditions for r = 0,
and we applied a stress-free condition at r = 12 to further reduce the influence of
this lateral boundary. In the vertical, a stress-free condition was applied at z = 1,
and a no-slip boundary condition at the bottom (z = 0). At the top boundary, a
rigid-lid approximation is implemented, so excluding free-surface deformations.

We performed simulations at Reynolds number Re = 100, 1000 and 2500 where
the typical velocity U is defined as U ≡ L0ω̂0, with ω̂0 the maximum of the vertical
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Figure 3.3 – (a) Kinetic energy ratio qr/δ

4Re2 as a function of time for Re = 1000, 2500
and δ2Re = 1, 2, 5. (b) Kinetic energy ratio qz/δ

6Re2 as a function of time for Re =
1000, 2500 and δ2Re = 1, 2, 5. Time is normalized with 1/λ.

vorticity component at t = 0. In addition, for each Re-value the aspect ratio δ was
varied within the range 1 ≤ δ2Re ≤ 160.

To study the scaling of the velocity components, we define the kinetic energy
for each velocity component vi (where i = r, θ, z) as

Ei = π

∫ 1

0

∫ 12

0

v2i rdrdz, (3.35)

and the kinetic energy ratio associated with each velocity component vi as

qi =
Ei

Eθ
. (3.36)

In addition, a typical decay rate λ for each numerical solution is obtained by fitting
the exponential function exp(−2λt) to Eθ.

Figure 3.3 shows (a) the value of qr/(δ
4Re2) and (b) the value of qz/(δ

6Re2) as
a function of time for Re = 1000, 2500 and δ2Re = 1, 2, 5. Clearly, the six curves
collapse to one curve in each graph. This means that the evolution of qr is self-
similar when scaling qr with (δ2Re)2 for δ2Re = 1, 2, 5, and that the evolution of
qz is self-similar when scaling qz with (δ3Re)2 for the same values δ2Re = 1, 2, 5.
This is consistent with the analytical solution obtained in the previous section [see
(3.31) and (3.32)] for δ ↓ 0.

To quantify the range of validity of the observed self-similarity, we now focus
on characteristic values of the quantities qr and qz, namely max(qr) and max(qz).

Figure 3.4 (a) shows the maximum value of the kinetic energy associated with
the radial velocity, i.e. max(qr), for simulations with Re = 100, 1000 and 2500

as a function of δRe1/2 together with the results obtained from the analytical
expressions (3.20), (3.31), and (3.32). As can be seen, for δRe1/2 . 3, the numerical
results coincide well with the analytical solution; hence, max(qr) scales like δ

4Re2.
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Figure 3.4 – Values of (a) max(qr) as a function of δRe1/2 and (b) max(qz) as a function
of δRe1/3 for Re = 100 (◦), Re = 1000 (×), and Re = 2500 (�). The dashed line represents
the analytical solution given by (3.31) and (3.32), and (3.20).

For larger values of δRe1/2, there is a change in the slope of the curve given by the
numerical results. For high Re-values (e.g. Re = 1000, 2500), this change in the
slope is due to the increasing importance of advection. However, for these large
Re-values the results tend to the same curve, suggesting that the radial velocity
only depends on δ2Re. On the other hand, for low Re-values (e.g. Re = 100), the
numerical results show a larger change in the slope. This can be explained since
the aspect ratio is not small, and hence, horizontal diffusion can not be neglected,
and the approximation (3.25) does not hold.

The results obtained so far are reminiscent of the flow in curved pipes studied
initially by Dean (1927). Such a flow is governed by two characteristic parameters:
a geometrical parameter δD = a/RD, where a is the radius of the pipe, and RD

is the radius of curvature of the pipe; and a dynamical quantity, the Reynolds
number ReD. Following this analogy, a straight pipe would be equivalent to an
axisymmetric flow in a plane where, in both cases, no secondary motion exists.
Furthermore, a loosely coiled pipe (δD ≪ 1) corresponds to a shallow flow δ ≪ 1.
Dean expanded the Navier–Stokes equation in powers of δD and found that for

δD ≪ 1 only one parameter κ = δ
1/2
D ReD — known now as the Dean number —

governs the flow. This gives rise to the so-called Dean number similarity. As found
in the present paper, the governing parameter for shallow axisymmetric flows is
δ2Re.

The graph in figure 3.4 (b) shows the maximum of the kinetic energy associated
with the vertical velocity, i.e. max(qz), for simulations with Re = 100, 1000 and

2500 as a function of δRe1/3 together with the analytical results given by (3.20),

(3.31), and (3.32). As can be seen, for small values of δRe1/3, the values of max(qz)
agree with the analytical results, indicating that the vertical velocity scales with
δ3Re. This contradicts the usual assumption that the vertical velocity scales with
δ. However, this scaling breaks down for δRe1/3 & 1 due to the effects of the
advection associated with the secondary motion in the (r, z)-plane.
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Figure 3.5 – (a) The typical decay time λR/λ as a function of δRe1/2 and (b) λR/λ as
a function of δRe1/3 for simulations with Re = 100 (◦), Re = 1000 (×), and Re = 2500
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Finally, we show how the change of regimes in the scaling of vr and vz relates to
the primary motion, and hence, to the two-dimensionality of the flow. Figure 3.5
presents the decay time λ−1 of the primary flow normalized by the inverse of the
Rayleigh parameter λ−1

R = 4/π2 as a function of (a) δRe1/2 and (b) δRe1/3. For

Re = 1000, 2500 and δRe1/2 ≤ 3, it is observed that λR/λ ≈ 1, suggesting that
(3.20) is valid in this regime. However, λR/λ starts to deviate strongly from unity

for δRe1/2 ≈ 3, which corresponds with the value of δRe1/2 where the scaling of
max(qr) starts to deviate from the analytically obtained results for the secondary

motion. For Re = 100, λR/λ deviates from unity for smaller values of δRe1/2

than for Re = 1000, 2500. This is due to the damping related to the horizontal
momentum diffusion, which becomes important for large δ-values.

The deviation of λ from λR is related to qualitative changes in the azimuthal
flow. For small values of δ2Re, the flow has a Poiseuille-like vertical structure.
However, for large values of δ2Re, the flow consists of a thin boundary layer at
the bottom and an inviscid interior. This is very similar in flows in curved pipes,
where for small Dean number the main flow through the pipe is of Poiseuille type,
while for large Dean number the flow is composed of a thin boundary layer and
an inviscid core (Berger et al., 1983).

As shown in figure 3.5 (b), for δRe1/3 . 1, λR/λ ≈ 1 for all Re-values. However,

for δRe1/3 & 1, it is observed that λR/λ deviates strongly from unity. Note that

δRe1/3 ≈ 1 is also the value of δRe1/3 for which max(qz) starts to strongly deviate

from the analytical results. This suggests that for δRe1/3 & 1 the secondary motion
strongly affects the primary azimuthal flow, and hence, that the secondary motion
can not be neglected.
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3.6 Discussion and conclusions

Using a formal perturbation approach in the aspect ratio δ, we obtained at lowest
order (δ ↓ 0) a set of simplified Navier–Stokes equations for the evolution of a
shallow axisymmetric swirl flow. Flows governed by these simplified equations can
be considered as Q2D since the secondary motion can be neglected in the evolution
of the primary azimuthal motion.

It was shown that for shallow axisymmetric swirl flows dominated by bottom
friction the magnitude of the radial velocity scales with δ2Re, while the magnitude
of the vertical velocity scales with δ3Re with respect to the primary motion. Con-
sequently, we conclude that the dynamics of the flow plays a crucial role in the
scaling of the vertical velocity, and that the argument based only on the continuity
equation is inadequate to explain this scaling. However, this argument seems to
become valid for large values of δ2Re and small values of δ, i.e. when the shear
flow is fully turbulent as considered by Jirka & Uijttewaal (2004). This can be seen
in figure 3.4, since the value of max(qr) tends towards being independent of δ for
such large values of δ2Re. Nevertheless, we wish not to expand this work towards
a fully-turbulent case since such regime should be treated differently.

Numerical simulations served to test the analytical results and to determine
their range of validity. We compared the results from fully three-dimensional nu-
merical simulations of a decaying Lamb–Oseen vortex to the analytical solution
of the simplified Navier–Stokes equations obtained for shallow swirl-flows where
advection due to the secondary flow has been neglected. Good agreement between
the numerical and analytical solutions was found for δRe1/2 . 3 and δRe1/3 . 1.
Consequently, for these values of δRe1/2 and δRe1/3 this flow can be considered
as Q2D.

To quantify the degree of two-dimensionality of shallow flows is a complicated
matter. One quantity commonly used is the ratio of kinetic energy of the vertical
velocity component to the kinetic energy of the horizontal velocity components.
For example, Satijn et al. (2001) considered this ratio together with two other
characteristic quantities and argued that the flow can be considered as Q2D if
these quantities are smaller than a certain threshold, which is rather arbitrary.
Another way to quantify the degree of two dimensionality of shallow flows is to
estimate the dynamical forces related to the vertical or secondary motions. In this
case, it is not a priori obvious whether these dynamical forces should be evaluated
at a certain location in the fluid or need to be averaged over a certain domain (see
e.g. Akkermans et al., 2008b). Hence, this approach also implies some degree of
arbitrariness, depending on the position where these forces are evaluated.

The regime where the primary flow can be considered as Q2D is rarely studied
in shallow layer experiments. For example, experiments of a shallow electromagnet-
ically driven dipolar vortex were performed for 4 . δRe1/3 . 7.7 and Re ∼ 4800
(Akkermans et al., 2008b). Clercx et al. (2003) performed experiments of Q2D tur-

bulence in a shallow layer with a lower bound for δRe1/3 ≈ 2.17 with Re ≈ 2500.
These experiments fall outside the range where vz/vθ = O(δ3Re). Therefore, we
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propose experiments to be performed in the parameter regime studied in this
chapter to confirm the scaling presented here.





Chapter 4

Decaying axisymmetric swirl
flows with background
rotation

4.1 Introduction

In the past 30 years, there has been a large interest in creating quasi-two-dimensio-
nal flows in the laboratory aimed to verify, for example, theories about the stability
of two-dimensional (2D) shear flows and 2D spatially periodic flows (Dolzhanskii
et al., 1990) and the properties of two-dimensional turbulence (Paret & Tabeling,
1997). Inspired by the large-scale flows in the oceans and the atmosphere that
seem to behave in a 2D way, experimentalists have used background rotation (e.g.
Afanasyev & Wells, 2005) and the thin-layer configuration (e.g. Tabeling et al.,
1991) to enforce the two-dimensionality of flows in the laboratory. However, it is
well known that both of these methods have drawbacks and limits (see Chapter 2).

Drawing again inspiration from atmospheric and oceanic flows, it might be
tempting to apply background rotation to a shallow flow (or to reduce the depth
of a fluid subjected to background rotation) in order to further enforce its two-
dimensionality. It is the goal of the present chapter to determine if this combination
of background rotation and shallowness can indeed be a useful tool to achieve
quasi-two-dimensional (Q2D) flows in the laboratory. If so, it is of interest to also
find its limitations. For this, it is first necessary to establish criteria to determine
which flows can be considered as Q2D.

To achieve these goals, the dynamics of a shallow axisymmetric monopolar
vortex subjected to background rotation is studied. A systematic analysis of the
two-dimensionality of the flow is conducted using numerical simulations and a
perturbation analysis. Through the perturbation analysis, at lowest order nine
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Figure 4.1 – Sketch of the problem’s geometry.

different flow regimes with different governing equations were found. In only five
of these regimes the flow can be considered as Q2D. The results from numerical
simulations are compared with the flow characteristics in each of the nine regimes
to determine their boundaries in the parameter space.

The chapter is organized as follows: Section 4.2 presents the governing equa-
tions and the geometry pertinent to the problem. In Section 4.3, we present the
numerical and analytical methods to study the flow. Section 4.4 is devoted to the
results of two limiting cases: the limit of weak background rotation and the limit
of strong background rotation. In Section 4.5, the rotation rate dependence of the
characteristics of the flow is discussed. Finally, in Section 4.6, a brief summary of
the main results is outlined, and some conclusions are given in Section 4.7.

4.2 Statement of the problem

We consider a freely evolving swirl flow governed by the Navier–Stokes equation
in a rotating reference frame

∂v

∂t
+ v ·∇v + 2Ω× v = −1

ρ
∇P + ν∇2v (4.1)

and the continuity equation for an incompressible fluid

∇ · v = 0, (4.2)

where v is the fluid velocity; Ω is the rotation vector of the system; ν is the
kinematic viscosity of the fluid; P is the reduced pressure; and ρ is the density of
the fluid.

The fluid is contained inside a cylinder, with depth H and radius Lc, rotating
at a rate Ω around its axis, as shown in figure 4.1. For simplicity, we consider that
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Ω > 0. The cylinder has a no-slip bottom, and the fluid upper surface is stress-free,
flat, and rigid.

Due to the geometry of the problem, it is convenient to use cylindrical coor-
dinates (r, θ, z) where the vertical axis is parallel to the rotation axis (Ω = Ωẑ);
the velocity is then written as v = (vr, vθ, vz), and the vorticity as ω = ∇ × v =
(ωr, ωθ, ωz).

As initial condition, we consider a Lamb–Oseen vortex with radius L0 and
which is uniform in the vertical:

vθ(r, z, 0) =
U L0

2r

{

1− exp[−(r/L0)
2]
}

, (4.3)

and no secondary flow in the (r, z)-plane

vz(r, z, 0) = vr(r, z, 0) = 0, (4.4)

where U is a typical velocity of the flow. The Lamb–Oseen vortex was chosen be-
cause it is known to be similar to some vortices created in the laboratory (Hopfin-
ger & van Heijst, 1993), and because of its stability properties. To minimize the
influence of the side wall of the cylinder on the evolution of the vortex, we take
L0 ≪ Lc.

To derive the relevant nondimensional parameters, we introduce the following
nondimensional variables denoted by primes:

t′ =
ν t

H2
, r′ =

r

L0
, z′ =

z

H
, v′ =

v

|U | , ω′
θ =

H

|U |ωθ. (4.5)

We consider the flow to have azimuthal symmetry (∂/∂θ = 0), so that (4.1)
and (4.2) can be rewritten as

∂v′θ
∂t′

+ δ2Re

(

v′r
∂v′θ
∂r′

+
v′θv

′
r

r′

)

+ δRev′z
∂v′θ
∂z′

= −δ
2Re

Ro
vr + δ2

[

∂2v′θ
∂r′2

+
∂

∂r

(

v′θ
r′

)]

+
∂2v′θ
∂z′2

,

(4.6)

∂ω′
θ

∂t′
+ δ2Re

(

v′r
∂ω′

θ

∂r′
− ω′

θv
′
r

r′

)

+ δRev′z
∂ω′

θ

∂z′

= δ2Re

(

1

r′
∂v′2θ
∂z′

+
1

Ro

∂v′θ
∂z

)

+ δ2
[

∂2ω′
θ

∂r′2
+

∂

∂r′

(

ω′
θ

r

)]

+
∂2ω′

θ

∂z′2
,

(4.7)

δ
1

r′
∂

∂r′
(r′v′r) +

∂v′z
∂z′

= 0, (4.8)

ω′
θ =

∂v′r
∂z′

− δ
∂v′z
∂r′

(4.9)

with Re ≡ |U |L0/ν the Reynolds number, δ ≡ H/L0 the aspect ratio, and Ro ≡
|U |/(2ΩL0) the Rossby number. Note that the Ekman number Ek, which is also
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commonly used to characterize rotating flows, is related to Ro and Re by Ek ≡
2Ro/(δ2Re) = ν/(ΩH2). In the following, we consider the typical scale U = ω̂0L0

with ω̂0 the maximum of the vertical vorticity component at time t = 0. To simplify
the notation, the primes will be omitted from here on.

The primary motion of the monopolar vortex is then governed by (4.6), while
(4.7) governs the secondary motion in the (r, z)-plane. Of special interest is the
term

δ2Re

(

1

r

∂v2θ
∂z

+
1

Ro

∂vθ
∂z

)

= δ2Re
1

r

∂v2θ
∂z

+
2

Ek

∂vθ
∂z

(4.10)

in (4.7), which couples the secondary motion to the primary motion and plays a
central role in the flow dynamics studied in the current chapter. It can be seen from
this term that a vertical gradient in vθ drives the secondary motion. The physical
mechanism by which the swirl generates azimuthal vorticity is clearly explained
by Davidson (1989).

4.3 Quantification of the two-dimensionality of
the flow

4.3.1 Quantifying the strength of the secondary motion

As previously mentioned, a vertical gradient of the azimuthal velocity drives a
secondary motion in the (r, z)-plane. In turn, this secondary motion could re-
distribute the azimuthal velocity vθ and thus modify the primary swirl through
vortex stretching. For this reason, it is of interest to measure the strength of the
secondary motion.

We define two quantities to measure the strength of the secondary flow in the
vortex core: the normalized kinetic energy Qr associated with the radial velocity
component and the normalized kinetic energy Qz associated with the vertical
velocity component, i.e.

Qr(t) =

∫ 1

0

∫ 1

0

v2r(r, z, t)rdrdz

∫ 1

0

∫ 1

0

v2θ(r, z, t)rdrdz

, Qz(t) =

∫ 1

0

∫ 1

0

v2z(r, z, t)rdrdz

∫ 1

0

∫ 1

0

v2θ(r, z, t)rdrdz

. (4.11)

Since it is difficult to measure Qr and Qz in experiments, we also introduce two
quantities that provide information about the strength of the secondary motion
as measured at the free-surface (as is commonly done in laboratory experiments).
These quantities are the normalized kinetic energy qr associated with the radial
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velocity component at the surface

qr(t) =

∫ 1

0

v2r(r, 1, t)rdr

∫ 1

0

v2θ(r, 1, 0)rdr

(4.12)

and the normalized horizontal divergence at the surface

∆(t) =

∫ 1

0

∂

∂r
[rvr(r, 1, t)]dr

∫ 1

0

ωz(r, 1, 0)rdr

. (4.13)

Note that the integration in the r-direction of all four quantities is limited to the
vortex core (r ≤ 1), where most of the energy of the secondary motion is expected
to be concentrated.

4.3.2 Perturbation analysis

Usually, the absolute values of (4.11)–(4.13) or similar quantities are used to de-
termine if a flow can be considered as Q2D (see e.g. Satijn et al., 2001). The
flow is then considered as Q2D if these absolute values are smaller than a certain
threshold. Besides the arbitrariness of setting the threshold, this method has the
drawback that the absolute values depend on the integration domain considered
or on the limited availability of experimental data in space (Akkermans et al.,
2008a,b).

For these reasons, in the current chapter we propose an alternative procedure
to determine if a flow can be considered as Q2D, following the approach used in the
previous chapter. First, a perturbation analysis for small δ-values is used to derive
simplified versions of the governing equations, which depend on the values of the
parameters of the problem. These simplified governing equations are analyzed to
determine if a flow governed by them can be considered as Q2D. On the other hand,
the full governing equations (4.6)–(4.8) are solved numerically for different values of
the problem parameters, and the quantities (4.11)–(4.13) are used to characterize
the flow obtained through these numerical simulations. Finally, to determine if
this flow is Q2D, its characteristics are compared with the characteristics of the
solutions to the simplified equations that were obtained through the perturbation
analysis.

In the limit of shallow flows (δ ≪ 1), we propose an asymptotic expansion of
the variables in terms of δ:

ωθ =

∞
∑

n=0

δnωθ,n, vθ =

∞
∑

n=0

δnvθ,n, vr =

∞
∑

n=0

δnvr,n, vz =

∞
∑

n=1

δnvz,n. (4.14)
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Note that for vz the expansion in terms of δ starts with n = 1, as can be verified
by substituting the expansion for vr into the continuity equation (4.2). Moreover,
substitution of (4.14) into (4.9) yields

ωθ,0 =
∂vr,0
∂z

(4.15)

at lowest order δ ↓ 0.
In addition, it is also necessary to compare the magnitudes of the Reynolds

and Rossby numbers to the magnitude of δ. For this reason, the Reynolds and
Rossby numbers are quantified in terms of powers of δ, according to

Re = Aδk, Ro = (Bδl)−1, (4.16)

where k and l are integers to be defined; and A and B are constants of order unity.
The Ekman number is then written as:

Ek =
2

AB
δ−m, (4.17)

where m = k + l + 2.
Equations (4.14) and (4.16) are then substituted into (4.6) and (4.7). Depend-

ing on the values of k and l (or equivalently Re and Ro), nine flow regimes can
be identified; each of them will be described next. The details can be found in
Appendix B.

4.3.3 Numerical simulations

To study the evolution of the flow for different values of the control parameters
(Ro, Re, and δ), a finite-element code (COMSOL) is used to solve the full Navier–
Stokes equations for an incompressible and azimuthally symmetric flow.

The equations were solved in the (r, z)-plane, where a no-slip condition was used
at z = 0 and a stress-free condition at z = 1. Furthermore, a stress-free condition
was also imposed at r = Lc/L0 = 12 (about ten times the radius of maximum
velocity of the Lamb–Oseen vortex) to reduce the influence of this boundary.

As can be seen, the initial condition (4.3) does not satisfy the no-slip condition
at the bottom. However, the code adjusts the initial flow instantaneously to satisfy
the bottom boundary condition. To further analyze the importance of the initial
vertical profile, some simulations were initialized with different vertical profiles,
e.g. a Poiseuille-like profile sin(πz/2) or a profile with a thin boundary layer at
the bottom and an interior that is uniform in z.

Both the time and spatial resolution were evaluated by performing several
numerical simulations with different resolutions, and verifying that the results
converged to the same solution.

All the simulations were performed for Re = 1000, which is typical in labora-
tory experiments. Furthermore, it has been previously shown that the dynamics
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Figure 4.2 – Evolution of the normalized energy of the radial velocity component Qr as
a function of time for simulations with Ro = ∞, Re = 1000 and δ2Re = 5, 10 and 20.

of shallow swirl flows without background rotation are governed only by the pa-
rameter δ2Re (Duran-Matute et al., 2010). The parameter space was explored by
varying either the aspect ratio δ or the Rossby number Ro, while keeping the other
control parameters fixed.

4.4 Limiting cases: Ro ≫ 1 and Ro ≪ 1

4.4.1 The limit of weak background rotation (Ro ≫ 1)

Figure 4.2 presents the evolution of the normalized kinetic energy Qr for three
numerical simulations with Re = 1000, Ro = ∞ and δ2Re = 5, 10, and 20.
Initially, the secondary flow is set up with its energy increasing until Qr reaches a
maximum. Later, the secondary motion decays faster than the primary motion. To
simplify our study, we only focus on the maximum in time of the quantities used
to quantify the strength of the secondary motion: max(Qr), max(Qz), max(qr),
and max(∆).

It is here convenient to define the parameter

hRe ≡
2

δRe1/2
(4.18)

to characterize the flow without background rotation. As it will be shown later from
an analogy with the rotating case, hRe can be considered as the nondimensional
thickness of the boundary layer at the bottom for the non-rotating case.

Figure 4.3 shows the maximum in time of Qr, Qz, qr, and ∆ as a function of
hRe. For all quantities, two scaling regimes are observed: one for hRe . 0.2 and
another for hRe & 0.6, with a smooth transition in between.
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Figure 4.3 – Strength of the secondary flow for the case without background rotation
(Ro = ∞) as a function of hRe. (a) Maximum of the kinetic energy associated with the
radial velocity component, (b) maximum of the kinetic energy associated to the vertical
velocity component, (c) maximum of the kinetic energy of the secondary motion at the
surface, and (d) maximum of the normalized horizontal divergence at the surface. The
bullets represent the numerical results.
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Regime AI: Ro ≫ 1, hRe & 0.6

As seen in figure 4.3, the importance of the secondary motion decreases with
increasing hRe-values for hRe & 0.6. In fact, the velocity components scale as

vr
vθ

= O(h−2
Re ) = O(δ2Re), (4.19)

vz
vθ

= O(δ h−2
Re ) = O(δ3Re). (4.20)

This is the characteristic scaling for the case of weak background rotation (Ro ≫ 1)
when the convective acceleration can be neglected and bottom friction dominates,
as described in the Appendix B.1.

In this regime, the governing equations to lowest order (δ ↓ 0) are

∂vθ
∂t

− ∂2vθ
∂z2

= 0, (4.21)

∂ωθ

∂t
− ∂2ωθ

∂z2
=
δ2Re

r

∂v2θ
∂z

, (4.22)

if vr = vz = 0 at t = 0.
The evolution of the azimuthal velocity component is governed by the diffusion

equation (4.21) since it is dominated by bottom friction. From this equation it can
be seen that the vertical profile of the azimuthal velocity tends to a Poiseuille-like
profile of the form sin(πz/2) and that vθ decays exponentially as vθ ∝ e−π2t/4.
Since, the evolution of the primary motion is independent of the secondary motion,
the flow is Q2D in this regime.

Regime AII: Ro ≫ 1, hRe . 0.2

As the value of hRe is decreased (the aspect ratio δ increased), bottom friction
becomes less dominant, and the azimuthal velocity vθ(r, z) is redistributed by
the secondary motion. This results in a qualitative change in the flow. While for
hRe & 0.6 the azimuthal velocity has a Poiseuille-like profile, for hRe . 0.2 the
azimuthal velocity is composed of two regions: a boundary layer at the bottom
and an inviscid interior. This change is reflected in the values of qr and Qr, which
are equal for hRe & 0.6 but different for hRe . 0.2(see figure 4.3).

Due to the qualitative change in the vertical profile of the azimuthal velocity,
the relative strength of the secondary motion at the surface (given by qr and ∆)
increases with increasing hRe values (decreasing values of the aspect ratio δ). This
observation contradicts, at least outside the boundary layer, the usual assumption
that the relative strength of the secondary motion should decrease with decreasing
δ-values.

In addition, the qualitative change in the flow is reflected as a change in the
scaling of the velocity components. However, it has been observed that the scaling
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of the velocity components for hRe . 0.2 depends on the vertical profile of the
initial condition, in contrast with the previous regime for which the scaling does
not depend on the precise form of the initial vertical structure of the swirl. This
dependence is due to the presence of strong non-linear inertial oscillations which
can be excited in the inviscid interior if the primary flow depends strongly on z
initially. The energy of these oscillations depends on the initial vertical profile and
adds up to the energy of the secondary motion. Hence, the scaling laws presented
in figure 4.3 for hRe . 0.2 are only characteristic for the case where the initial
condition is independent of z, i.e. for vθ(r, z, t = 0) = f(r).

Since the non-linear terms in (4.1) cannot be neglected, the scaling laws for
the velocity components in this regime could not be recovered using perturbation
analysis. However, it is clear that the secondary motion strongly modifies the
primary motion, and hence, the flow is not Q2D.

Transition AIII: Ro ≫ 1, 0.6 & hRe & 0.2

The transition between the two scaling regimes occurs for 0.6 & hRe & 0.2. In this
transition, bottom friction is of the same order as inertia forces (see Appendix B.3),
and the secondary motion starts to influence the evolution of the primary motion.

Figure 4.4 shows the typical decay time τ of the azimuthal velocity. This decay
time is obtained by fitting an exponential decay to the average value of the az-
imuthal velocity in the volume for r ≤ 1 as a function of time. For hRe & 0.6, the
typical decay time is the Rayleigh decay time τR = 4/π2 [equivalent to 4H2/(π2ν)
in dimensional units] which is typical for shallow flows dominated by bottom fric-
tion (Satijn et al., 2001). For hRe . 0.2, the velocity decay is mainly due to the
momentum diffusion in the boundary layer, and the decay time related to the
boundary layer thickness in the form τ = τRe = hRe. By equating the typical
decay times τR and τRe, the critical boundary layer thickness hRe,C = 4/π2 for the
transition between regimes AI and AII can be obtained.

4.4.2 The limit of strong background rotation (Ro ≪ 1)

In the limit of strong rotation, we performed simulations for Ro = 0.1, Re = 1000,
and different values of the aspect ratio δ, i.e. different values of the Ekman num-
ber Ek. This section is devoted exclusively to cyclonic vortices (U > 0). In Sec-
tion 4.5.2, we will discuss the difference between cyclonic and anticyclonic vortices.

Figure 4.5 shows the azimuthal velocity distribution in the (r, z)-plane for two
simulations with Ro = 0.1 and two different aspect ratios at a characteristic time. A
clear difference can be observed between the two simulations: for the shallower case
[figure 4.5 (a)] the vertical profile resembles a Poiseuille flow, while for the deeper
case [fig. 4.5 (b)] the flow is composed by a thin Ekman boundary layer at the
bottom and a geostrophic interior with small vertical gradients above the boundary
layer. In the case of flows subjected to strong rotation, the horizontal boundary
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Figure 4.5 – Azimuthal velocity distribution in the vortex core in the case of strong
rotation Ro = 0.1 at t = 0.2. (a) Re = 1000 and Ek = 0.4 (Ek−1/2 ≈ 1.58). (b) Re = 1000
and Ek = 0.005 (Ek−1/2 ≈ 14.14)
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layers are known as Ekman boundary layers, and their thickness is defined as

hEk ≡ Ek1/2 (4.23)

(see Pedlosky, 1987).
Figure 4.6 shows the maximum in time of Qr, Qz, qr, and ∆, the quanti-

ties used to characterize the flow’s two-dimensionality, as a function the Ekman
boundary layer thickness hEk. For all quantities, two scaling regimes are observed:
one for hEk . 0.2 and another for hEk & 0.6. Between these two regimes there is
a smooth transition.

Even though the maximum of the normalized energy associated with the verti-
cal velocity component Qz varies little for flows with small boundary layer thick-
ness hEk . 0.2, the maxima of Qr, qr, and ∆ increase with increasing Ek values
(i.e. with decreasing depth). This means that shallowness does not reduce the
magnitude of the vertical velocity. The decrease in the relative strength of the
secondary motion due to the vertical confinement occurs only if hEk & 0.6.

Regime BI: Ro ≪ 1, hEk & 0.6

The governing equations (4.6) and (4.7) simplify, at lowest order (δ ↓ 0), to

∂vθ
∂t

− ∂2vθ
∂z2

= 0, (4.24)

∂ωθ

∂t
− ∂2ωθ

∂z2
=

2

Ek

∂vθ
∂z

, (4.25)

when momentum diffusion due to bottom friction dominates over both the Coriolis
and the convective accelerations. Since all the terms in (4.24) and (4.25) are of the
same order, the velocity components scale as

vr
vθ

= O
(

1

Ek

)

,
vz
vθ

= O
(

δ

Ek

)

, (4.26)

in this regime. These scaling laws for the velocity components are equivalent to
the numerically obtained scalings of max(Qr), max(Qz), max(qr), and max(∆)
observed in figure 4.6 for hEk & 0.6.

In this regime, due to the importance of bottom friction, the evolution of vθ
is governed, at lowest order, by the diffusion equation (4.24). This results in a
Poiseuille-like vertical profile of vθ [see figure 4.5 (a)]. Furthermore, the secondary
motion does not affect the evolution of the primary motion, i.e. vortex stretching
is absent at lowest order, and the primary flow can be considered as Q2D.

Note that, for strong rotation (Ro ≪ 1), it is only in this regime that shallow-
ness reduces the strength of the secondary motion.
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Figure 4.6 – Strength of the secondary flow for the case of strong rotation as a function
of the Ekman boundary layer thickness hEk. (a) Maximum of the energy of the radial
velocity component integrated over the volume, (b) maximum of the energy of the ver-
tical velocity component integrated over the volume, (c) maximum of the energy of the
secondary flow at the surface, and (d) maximum of the normalized horizontal divergence
at the surface for simulations with Re = 1000 and Ro = 0.1.
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Regime BII: Ro ≪ 1, hEk . 0.2

For hEk . 0.2, bottom friction can be neglected except in a thin boundary layer
close to the bottom. In this way, the flow is divided into two regions: a geostrophic
interior and an Ekman boundary layer at the bottom, as shown in figure 4.5.

In the geostrophic interior, the evolution of the azimuthal velocity is governed
by

∂vθ
∂t

+ Ek1/2vθ = 0, (4.27)

∂vθ
∂z

= 0, (4.28)

as derived in Appendix B.5. These equations are in agreement with the equations
derived by Kloosterziel & van Heijst (1991) for any value of δ. As can be seen, the
primary flow in the geostrophic interior is independent of the vertical coordinate,
as stated by the Taylor–Proudman theorem (see Pedlosky, 1987), and its decay

time is given by the dimensionless Ekman decay time τEk = Ek1/2, in agreement
with linear Ekman theory. Furthermore, the radial profile of the primary flow is
not modified by the secondary flow. Hence, the primary flow can be considered as
Q2D for Ro ≪ 1 and hEk . 0.2.

In the geostrophic interior, the velocity components scale like

vr
vθ

= O(Ek1/2),
vz
vθ

= O(δEk1/2). (4.29)

These scaling laws are in agreement with the numerically obtained scaling:
max(qr) ∼ Ek and max(∆) ∼ Ek1/2 for hEk . 0.2, as observed in figure 4.6(c)
and (d). It can also be observed, by comparing figure 4.6(c) with figure 4.6(a),
that Qr does not scale as predicted by (4.29) since the integration over the volume
takes into account the Ekman boundary layer. In this way, the division of the flow
into two regions is clearly reflected in a difference in the scaling of max(qr) and
max(Qr) for hEk . 0.2.

It must be pointed out that, in this regime, the scaling and the general evolution
of the primary flow depends on the initial vertical profile of the azimuthal velocity.
In fact, note that the initial condition that ∂vθ/∂z = 0 is necessary for (4.27) and
(4.28) to hold. Carnevale et al. (1997) have shown through numerical simulations
that a rapid instability occurs for small Rossby numbers, and the vortex tubes can
break up if the initial columnar vortex is strongly perturbed. A similar problem
occurs here if the initial vertical profile varies greatly with z. Hence, the scaling
presented here is only valid for an initial vortex that is independent of the vertical
coordinate.

Transition BIII: Ro ≪ 1, 0.6 & hEk & 0.2

In the transition between regimes BI and BII, viscous forces and the Coriolis force
are in balance while they dominate over advection. In other words, the Ekman
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boundary layer thickness is of the same order as the fluid depth, and the governing
equations at lowest order for the whole fluid column are the same as for the Ekman
boundary layer:

∂vθ
∂t

− ∂2vθ
∂z2

= − 2

Ek
vr, (4.30)

∂ωθ

∂t
− ∂2ωθ

∂z2
=

2

Ek

∂vθ
∂z

. (4.31)

These equations also govern the flow in regimes BI and BII. However, in these
regimes, (4.30) and (4.31) can be further simplified: the Coriolis force in (4.30)
can be neglected in regime BI, and the flow can be divided into two regions in
regime BII.

In this transitional regime, the secondary motion modifies the primary motion
according to (4.30). However, by close inspection, it can be seen that the secondary
motion does not modify the radial distribution of the azimuthal velocity but only
its vertical distribution since (4.30) and (4.30) are independent of r. Hence, the
flow can be considered as Q2D in this regime.

In figure 4.7, the typical decay time of the primary flow is plotted as a function
of the Ekman boundary layer thickness hEk. The decay time is obtained by fitting
an exponential function to the average of the azimuthal velocity for r ≤ 1 as a
function of time. The typical decay time of the primary motion is given by the
Ekman time scale τEk = Ek1/2 [equivalent to H/(νω)1/2 in dimensional form] in
agreement with linear Ekman theory only for hEk . 0.2. However, for vortices
with large Ekman boundary layer thickness as compared to the total fluid depth
(hEk & 0.6), the typical decay time of the kinetic energy of the primary motion is
the Rayleigh decay time τR = 4/π2 [equivalent to 4H2/(π2ν) in dimensional form].
By equating the two different decay times τR and τEk, it is possible to obtain the
critical Ekman boundary layer hEk = 4/π2 for the transition between the two
regimes.

4.4.3 Comparison between the limiting cases Ro ≫ 1 and
Ro ≪ 1

In the limiting cases, the flow dynamics depends only on the value of hRe =
2/(δRe1/2) for Ro ≫ 1 and hEk = Ek1/2 for Ro ≪ 1. For each limiting case, two
scaling regimes where found: (i) a viscous regime where the vertical profile of the
azimuthal velocity tends to a Poiseuille-like vertical profile sin(πz/2), and (ii) a
regime where the flow is composed of a bottom boundary layer and an inviscid
interior. The two regimes are separated by a smooth transition.

From the previous sections, it can be seen that there is a strong analogy between
hEk and hRe, which is detailed further in table I. This analogy clearly implies that
hRe can be considered as the typical boundary layer thickness in the vortex core
(r ≤ 1) for Ro ≫ 1.
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Figure 4.7 – Typical decay time of the primary motion in the limit of strong rotation
Ro ≪ 1. The typical time τ is plotted as a function of the thickness of the Ekman
boundary layer hEk for simulations with Re = 1000, Ro = 0.1, and different values of
δ. The bullets represent results from numerical simulations. The dashed line represents
the Rayleigh decay time τ = τR, while the dotted line represents the Ekman decay time
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Limit Ro ≫ 1 Ro ≪ 1

Governing parameter hRe = 2/(δRe1/2) hEk = Ek1/2

Viscous regime limit hRe & 0.6 hEk & 0.6

Transitional regime 0.6 & hRe & 0.2 0.6 & hEk & 0.2

Typical decay time
τ = 4/π2 for hRe . 0.2
τ = hRe for hRe & 0.6

τ = 4/π2 for hEk . 0.2
τ = hEk for hEk & 0.6

Critical boundary
layer thickness

hRe = 4/π2 hEk = 4/π2

Table I – Similarities between the two limiting cases: Ro ≫ 1 and Ro ≪ 1.
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ωz/max(ωz) and the normalized vertical gradient of the vertical velocity ||∂vz/∂z|| =
(∂vz/∂z)/max(∂vz/∂z) for two simulations: (a) Ro = ∞, Re = 1000 and hRe = 0.11,
and (b) Ro = 0.1, Re = 1000 and hRe = 0.71 (hEk = 0.16) at time t = 0.1. The radial
profile for ωz at the surface and time t = 0 is shown as reference.

In spite of the strong analogy between both limits, there is also an impor-
tant difference regarding the two-dimensionality of the flow: for the case of no
background rotation, the flow is strictly Q2D only in the viscous regime, when
hRe & 0.6, while for the case of strong background rotation, the flow can be con-
sidered as Q2D independently of the Ekman boundary layer thickness hEk. This
difference not only lies in the distinct values for the strength of the secondary
motion, but also in important qualitative differences between both limits.

For example, figure 4.8 shows the normalized radial profiles for the azimuthal
velocity and the vertical gradient of the vertical velocity (which is equal to the
horizontal divergence) at the surface (z = 1) at time t = 0.1 for two simulations:
one with Ro = ∞, Re = 1000 and hRe = 0.11, and one with Ro = 0.1, Re = 1000
and hRe = 0.71 (hEk = 0.16). The radial profile of the azimuthal velocity at
time t = 0 is also shown as reference. These two simulations were chosen because
they have a similar maximum qr-values: max(qr) ≈ 0.026. For the case of no
background rotation, the radial distributions of the vertical vorticity and horizontal
divergence are different. This leads to the deformation of the radial profile of the
azimuthal velocity partially due to vortex stretching in the z-direction, which is
proportional to the horizontal divergence. On the other hand, for the case of strong
background rotation, the radial distribution of the azimuthal velocity component
remains unchanged although the decrease in the strength of the azimuthal velocity
is caused by vortex stretching exerted by the secondary motion. This is due to the
particular distribution of the secondary motion driven by the Ekman boundary
layer in which the radial distribution of the horizontal divergence coincides with
the radial distribution of the vertical vorticity.

Another important qualitative difference between the two limits resides in the
evolution of the boundary layer thickness. For the case Ro = ∞, the boundary layer
thickness depends on the azimuthal velocity in the inviscid interior. Furthermore,
since the azimuthal velocity in the interior is a function of r and t, the boundary
layer thickness also varies with r and t. Consequently, outside the viscous regime,
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Figure 4.9 – Strength of the secondary motion as a function of the rotation rate. Maxi-
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the local damping rate, which is related to the boundary layer thickness, is neither
homogeneous in the r-direction nor in time for Ro = ∞. On the other hand,
the thickness of the Ekman boundary layer and the associated damping rate is
homogeneous in the r-direction and constant in time for Ro ≪ 1.

Both the quantitative and qualitative differences in the two limiting cases are
related to the coupling between the primary and secondary motions. This coupling
is given by the term (4.10) in (4.7), the convective acceleration, v ·∇vθ, in (4.6),
and the Coriolis acceleration, −Ek−1vr, in (4.6). For the case of strong background
rotation (Ro ≪ 1), the coupling term (4.10) reduces to Ek−1∂vθ/∂z, and the con-
vective acceleration is negligible. On the other hand, for the case of weak back-
ground rotation (Ro ≫ 1), the coupling term (4.10) reduces to δ2Re r−1∂v2θ/∂z,
and the primary motion is modified exclusively through convective acceleration.
It can be clearly seen that for the case of strong background rotation, the cou-
pling between the primary and secondary motion is linear, while this coupling is
non-linear for the case of no background rotation.

4.5 Intermediate rotation rates

4.5.1 Cyclonic vortices

In this section, we present results from numerical simulations where the Rossby
number was varied while keeping the aspect ratio δ and the Reynolds number Re
fixed. In this way, the dependence of the flow dynamics on the rotation rate Ω is
studied.

Figure 4.9(a) shows the maximum of the normalized energy of the radial ve-
locity component integrated over the volume of the vortex core, max(Qr), as a
function of the Rossby number Ro for simulations of cyclonic vortices U > 0 with
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Re = 1000 and different values of the aspect ratio δ, i.e. different values of hRe.
Note that the maximum of Qr has been normalized with h4Re for presentation pur-
poses, and that the Rossby number is related to the boundary layer thickness of
the limiting cases:

Ro = 2

(

hEk

hRe

)2

. (4.32)

As can be seen, for large Ro-values (Ro & 100), the value of max(Qr) remains
almost constant as rotation is increased, implying that rotation has a negligible
effect on the secondary motion. As the value of the Rossby number reaches Ro ≈
100, the effect of rotation becomes noticeable. If hEk & hEk,C = 4/π2, the strength
of the secondary motion, given by Qr increases for decreasing Ro-values and Ro .
100 until a maximum is reached, and then it starts to decrease. If hEk . hEk,C =
4/π2, the energy of the secondary motion only decreases for decreasing Ro-values.

Figure 4.9(b) shows the maximum of Qr as a function of the Ekman boundary
layer thickness, hEk. It can be seen that Qr becomes independent of hRe for hEk .

hEk,C = 4/π2. Furthermore, Qr becomes proportional to hEk in this region of the
parameter space, indicating that the secondary motion is due to Ekman pumping.

For hRe & 0.6, vθ has a Poiseuille-like vertical profile in the non-rotating case.
As rotation is increased, this vertical profile remains unchanged since the azimuthal
flow is still governed by a diffusion equation, thus the flow is still Q2D. On the
other hand, the strength of the secondary motion increases due to the added
effect of rotation in the coupling term (4.10). This is the regime CI detailed in
Appendix B.7.

However, due to the increase in the strength of the secondary motion, the
advective acceleration due to the secondary motion can become important. In this
case, no term in (4.6) and (4.7) can be neglected. This is the regime CIII for
intermediate rotation rates.

Finally if hRe . 0.3, vθ is composed of an inviscid interior and a boundary layer
with a typical thickness hRe for Ro = ∞. As rotation is increased, the strength of
the secondary motion and its structure remain unchanged until the critical Ekman
boundary layer thickness hEk,C = 4/π2 is reached, and the inviscid flow becomes
geostrophic and the secondary motion is described by linear Ekman theory.

4.5.2 Cyclone–anticyclone asymmetry

The strength of the secondary motion can be increased or decreased depending
on the direction of the primary flow as compared to the rotation direction of the
system, i.e. depending on the relative sign of

δ2Re
1

r

∂v2θ
∂z
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Figure 4.10 – Comparison of the strength of the secondary motion between cyclonic
(◦) and anticyclonic vortices (�) for Re = 1000 and three different values of hRe: (a)
hRe = 2.83, (b) hRe = 0.45, and (c) hRe = 0.14

with respect to the sign of

2

Ek

∂vθ
∂z

in the term which couples (4.6) and (4.7), and which is expanded in (4.10). It is
well known that strong Lamb–Oseen anticyclonic vortices, for which Ro < −1,
are prone to the centrifugal instability which breaks the azimuthal symmetry of
the flow (Kloosterziel & van Heijst, 1991). However, this phenomenon will not be
taken into account here, and the azimuthal symmetry will be imposed even for
unstable anticyclones to isolate the effect of the coupling term on the strength of
the secondary motion.

Figure 4.10 shows the strength of the secondary motion, given by max(Qr)
as a function of the Rossby number Ro for both cyclones and anticyclones for
simulations with: (a) hRe = 2.83 , (b) hRe = 0.45 , and (c) hRe = 0.14 . It can
be seen that the strength of the secondary motion differs between cyclones and
anticyclones for 100 & Ro & 0.2. For example, for simulations with hRe = 2.83
and hRe = 0.45, the strength of the secondary motion for the anticyclonic vortices
decreases with decreasing Ro-values for 100 & Ro & 5, while in the same range of
Ro-values, it increases for cyclonic vortices.

However, this asymmetry is not relevant for the primary motion if the flow is
Q2D. Figure 4.11 shows the radial profile of the azimuthal velocity at time t = 0.5
for a cyclonic and an anticyclonic vortex for three pairs of numerical simulations
with (a) hRe = 2 and hEk = 3.16 ; (b) hRe = 0.31 and hEk = 0.49 ; and (c)
hRe = 0.1 and hEk = 0.15. All these simulations were performed with Ro = 5, for
which a strong asymmetry between the strength of the secondary motion exists.
In figure 4.11(a), it can be seen that the radial profile of the primary motion is
equal for the anticyclone and the cyclone: this is because the flow is Q2D, and the
secondary motion does not affect the primary motion. However, for the simulations
shown in figure 4.11(b) and (c), there is an important difference in the evolution
of the primary motion between cyclonic and anticyclonic vortices.

Note that for the simulation corresponding to figure 4.11(c), the thickness of
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Figure 4.11 – Radial profiles of the azimuthal velocity at the surface at t = 0.5 [vθ(r, z =
1, t = 0.5)] for cyclones (solid line) and anticyclones (crosses) obtained from simulations
with Re = 1000, Ro = 5 and three different values of hRe: (a) hRe = 2, (b) hRe = 0.31,
and (c) hRe = 0.1.

the Ekman boundary layer hEk is smaller than the critical thickness hEk,C = 4/π2.
This means that the secondary motion is mainly due to Ekman pumping. However,
the asymmetry in the evolution of the primary motion between cyclones and anti-
cyclones suggests that linear Ekman theory is not valid since the primary motion
is modified by the secondary motion through convective acceleration. Hence, this
simulation does not correspond to regime BII. Instead, these characteristics are
typical of regime CII, where the flow is composed of a thin boundary layer, and
an inviscid interior, but the rotation is not strong enough for linear Ekman theory
to govern the boundary layer dynamics. Due to their complex nature, vortices in
this regime are the subject of numerous studies, usually in deeper layers; see e.g.
Kloosterziel & van Heijst (1991) and Orlandi & Carnevale (1999).

In the regime CII for Ro < 1, it is still possible to parametrize small non-
linear effects — like the cyclone–anticyclone asymmetry due to Ekman pumping
— into a 2D equation for the vertical vorticity component (Zavala Sansón & van
Heijst, 2000). However, these flows cannot be strictly considered as Q2D since
the horizontal divergence cannot be neglected, and hence, the secondary motion
still affects the evolution of the primary motion. It is still unknown if the Q2D
turbulent flows governed by such an equation present the typical characteristics of
2D turbulence.

4.6 Discussion

Through a thorough exploration of the parameter space for shallow axisymmetric
swirl flows subjected to background rotation, it has been found that in the limit
δ ↓ 0, the flow is governed by only two non-dimensional parameters: hRe and hEk.

Figure 4.12, shows a diagram of the parameter space explored with the bound-
aries of the different flow regimes, while table II presents a summary of the prop-
erties of each regime. In the parameter space explored, nine different flow regimes
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Figure 4.12 – Diagram of the parameter space explored. The lines denote the limits
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with qualitative differences were found. These differences are reflected in the value
and the scaling of the relative strength of the secondary motion. The transitions
between the different regimes are smooth, and the numerical values for the bound-
aries between the regimes are only an estimation.

One of the characteristics analyzed for each regime is the two-dimensionality
of the flow, i.e. if the flow can or cannot be considered as Q2D. This property of
the flow can be determined through the effects of the secondary motion on the
primary motion. Not only the strength but also the spatial distribution of this
secondary motion has been shown to be critical for the two-dimensionality of the
flow.

It is commonly assumed that both rotation and a small aspect ratio δ enforce
the two-dimensionality of the flow. However, if δ ≪ 1, the only simplification that
can be made in all regimes is to neglect horizontal viscous diffusion. From the nine
regimes found, the flow can be considered as Q2D in only five of them.

The effect of the combination of background rotation and a small aspect ratio
on the two-dimensionality of flows depends on two parameters: hRe and hEk. For
example, consider a vortex with hRe = 0.89 and hEk = ∞, which falls into regime
AI and is then Q2D. For such a vortex, if rotation is added, hRe remains constant
and hEk decreases. For some value of hEk, the flow will enter regime CIII; it then
becomes 3D (see the data denoted by crosses in figure 4.12). Hence, it cannot be
said that the combination of background rotation and a small aspect ratio enforces
the two-dimensionality of flows.
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When considering a problem with a small parameter, perturbation analysis is
useful to simplify the equations and obtain the governing equations at lowest order.
In the current chapter, we have focused on shallow flows (δ ≪ 1), and hence, we
have performed perturbation analysis with δ as the small parameter. For strong
rotation, Ro ≪ 1 and Ek ≪ 1, such an analysis can also be performed to further
understand the importance of the convective acceleration in the evolution of the
flow taking either Ro or Ek as the small parameter of the problem. In this way, a
better insight into regimes CII and CIII can be reached; see e.g. Zavala Sansón &
van Heijst (2000), Ishida & Iwayama (2006), Hart (2000), and Brink (1997).

4.7 Conclusions

It is usually assumed that both shallowness and background rotation enforce the
two-dimensionality of flows. In the current chapter, we have shown that this is
not necessarily true. Instead, the two-dimensionality of the flow depends in a
complicated way on the problem parameters.

To determine if a flow is Q2D, a comparison was made between ideal Q2D flows
as obtained by perturbation analysis for a small aspect ratio δ ≪ 1 and results
from numerical simulations. Through this comparison, important insight has been
gained into the effects of shallowness and background rotation on the dynamics of
shallow flows.

Usually the reason why rotation is said to enforce the two-dimensionality of
flows is by the reduction of the vertical gradients as stated by the Taylor–Proudman
theory. When the thickness of the Ekman boundary layer is of the same order as
the fluid depth, the limited depth of the fluid does not allow for the formation
of columnar structures. However, we have shown that the flow can always be
considered as Q2D for sufficiently strong rotation (Ro . 0.2) independently of
the aspect ratio so even when no columnar structures can be formed. This can be
attributed to the linearity of the equations governing the flow at lowest order.

Furthermore, the flow can always be considered as Q2D if the fluid depth is
small compared to the typical boundary layer thickness. This condition replaces
the usual condition based on the continuity equation stating that merely a small
aspect ratio is sufficient to consider shallow flows as Q2D.



Chapter 5

Inertial oscillations in a
monopolar vortex subjected
to background rotationi

5.1 Introduction

It has been long known that vortices and flows in solid body rotation sustain in-
ertial oscillations also known as Kelvin waves (Thomson, 1880). However, such
oscillations continue to be a topic of interest due to their importance in the evolu-
tion of vortices. In geophysical fluid dynamics, the inertial oscillations in vortices
affected by background rotation are of particular interest since such flows are com-
mon in both the ocean and the atmosphere (e.g. hurricanes and oceanic eddies).

Following the paper by Lord Kelvin (Thomson, 1880), inertial oscillations have
been observed in, for example, experiments on vortices in a turbulent flow (Hopfin-
ger, 1982) and in rotating fluids (Fultz, 1959). Furthermore, several analytical and
numerical studies concerning inertial oscillations on vortices with different vor-
ticity structures, both with and without background rotation, have been carried
out.

The vortex analyzed by Lord Kelvin — now termed Rankine vortex — is com-
posed of a core of uniform vorticity and an exterior with zero vorticity. Due to
its shape the stability of a vortex with this profile is easily treated analytically. A
formal solution to the initial value problem for small perturbations in a Rankine
vortex has shown that any initial perturbation evolves exclusively as a collection
of Kelvin waves, and that the physical mechanism of the propagation of the per-
turbations does not depend on the vortex profile (Arendt et al., 1997).

iThe contents of this chapter have been adopted from the paper by Duran-Matute et al.
(2009) with minor modifications.
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56 Inertial oscillations in a monopolar vortex

Amongst other vortices studied, the Lamb–Oseen vortex has received special
attention due to its similarity to vortices generated in the laboratory, although its
profile does not allow for a complete analytical solution of the perturbed vortex.
However, an exhaustive overview of the modes present in a Lamb–Oseen vortex has
been obtained with the help of numerical simulations (Fabre et al., 2006). Some
of the modes turned out to be related to those existing in the Rankine vortex,
while others are singular, damped modes. Furthermore, a large axial-wave-number
approximation has provided the spatial structure and the dispersion relation of
the Kelvin modes, with good agreement with the numerical computation — even
for small wave numbers (Le Dizès & Lacaze, 2005).

The axisymmetric modes form a special case since they are regular modes in
a Lamb–Oseen vortex (Sipp & Jacquin, 2003; Fabre et al., 2006). Consequently,
their dynamics are similar in both the Rankine vortex and the Lamb–Oseen vortex.
The physical mechanism of these axisymmetric modes can be described as follows.
Initially, the perturbed vortex consists of regions of high and low vorticity. Because
of conservation of angular momentum, the vortex radius is smaller in the regions of
high vorticity and larger in the regions of low vorticity [hence the term sausaging
modes (Saffman, 1992)]. This shape is associated with alternating high and low
pressure perturbations. Therefore, a net axial pressure gradient exists within the
core and induces an axial flow. Finally the axial flow within the vortex affects
the axial vorticity through the stretching-compressing mechanism. Consequently,
the vortex column undergoes deformations with the varicose shape being reversed
repeatedly (Fabre et al., 2006). An alternative explanation, based on the twisting
of the vortex lines, was proposed by Melander & Hussain (1994).

Axisymmetric modes can affect the evolution of vortices. For instance, sausage
modes can travel along the vortex and cause it to break down if the vortex is
centrifugally unstable. These modes appear even if the vortex column is perturbed
in a non-axisymmetric way (Carnevale et al., 1997; Kloosterziel et al., 2007). How-
ever, the Lamb–Oseen vortex, for example, is known to be stable to centrifugal
instability, except in the case of strong anticyclones (Hopfinger & van Heijst, 1993).

The main aim of this chapter is to extend the study of the oscillations inside the
vortex by including the effects of both background rotation and confinement of the
fluid to a cylinder of finite dimensions. As mentioned earlier, background rotation
is relevant in the study of geophysical flows. On the other hand, confinement is
always necessary to contain the fluid.

We restrict our study to a monopolar vortex (swirl flow) and to the axisym-
metric inertial oscillations associated with it. We focus on the spatial structure
and the frequency of the different modes, as well as on the effect that these modes
have on the evolution of the vortex.

Le Dizès (2008) performed an extensive study on the inviscid waves on a Lamb–
Oseen vortex with background rotation, using a local Lagrangian description and a
global Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approach. He found that the
global modes exist in more restricted parameter regimes than the modes obtained
with a local approach. Nonetheless, we will show here that this finding is only valid
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in an infinite domain.
In order to characterize the waves sustained inside monopolar vortices in labo-

ratory experiments and other real settings, we first study the inviscid modes sus-
tained by a time-independent Rankine vortex confined to a cylinder with stress-free
boundaries and subjected to background rotation. Secondly, we study the inviscid
waves sustained by a more realistic vortex profile, namely the Lamb–Oseen vor-
tex. Later, the effects of viscosity are included, and finally, the effects of a no-slip
bottom are considered.

The chapter is organized as follows. In Section 5.2, we introduce the geometry
and the non-dimensional parameters relevant to the problem. Section 5.3 presents
the governing equations. In Section 5.4, we analyze the inviscid linear waves, while
in Section 5.5, we discuss the effects of viscosity including a study of the evolution
of the inertial waves in a cylinder with a no-slip bottom (Section 5.5.2). Finally,
in Section 5.6, the main results and conclusions are outlined.

5.2 Definition of the problem

We consider fluid motion relative to the system rotating at a constant rate Ω about
the vertical axis. The relative flow is governed by the Navier–Stokes equation:

Dv

Dt
= −1

ρ
∇P + ν∇2v − 2Ω× v, (5.1)

and the continuity equation for an incompressible fluid:

∇ · v = 0, (5.2)

whereD/Dt is the material derivative,Ω = Ωẑ is the rotation vector of the system,
v is the relative velocity, P is the generalized pressure, and ρ is the density of the
fluid. The motion of the fluid is described in terms of the radial, azimuthal and axial
coordinates (r, θ, z), with unit vectors r̂, θ̂, and ẑ in these directions. The velocity
and vorticity vectors can then be written as v = (vr, vθ, vz) and ω = (ωr, ωθ, ωz),
respectively.

The flow studied consists of a vortex with peak vertical vorticity ω̂ and radius
L confined to a cylindrical domain with height H and radius Lc, as in the previous
chapter and shown in figure 4.1. The cylinder rotates around the vertical axis
with angular frequency Ω. We consider all boundaries to be stress-free. (Later, in
section 5.5.2, we will consider the case of a no-slip bottom). In addition, both the
bottom (at z = 0) and the surface (at z = H) are flat and rigid.

Considering the parameters of the problem and performing dimensional anal-
ysis yields four nondimensional numbers that describe the problem:

Ro ≡ ω̂0

2Ω
, Re ≡ L2

0|ω̂0|
ν

, δ ≡ H

L0
, Rc ≡

Lc

L0
,
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where ν is the kinematic viscosity of the fluid, ω̂0 is the initial peak vorticity of
the vortex, L0 is the initial radius of the vortex, Ro is the Rossby number, Re is
the Reynolds number, δ is the aspect ratio of the vortex, and Rc is the radius of
the cylinder compared to the radius of the vortex.

5.3 The governing equations

To nondimensionalize (5.1) and (5.2) , the following set of dimensionless variables
is defined:

t′ = |2Ω + ω̂0|t, r′ =
r

L0
, z′ =

z

H
, v′r =

vr
ω̂0L0

, v′θ =
vθ
ω̂0L0

, v′z =
vz
ω̂0H

,

with the primes denoting nondimensional quantities. By assuming that the flow
has azimuthal symmetry, we can write the governing equations in terms of ω′

θ and
v′θ in the following form:

N
∂v′θ
∂t′

+

(

v′r
∂v′θ
∂r′

+ v′z
∂v′θ
∂z′

+
v′θv

′
r

r′

)

= − 1

Ro
v′r +

1

Re

(

∂2v′θ
∂r′2

+
1

r′
∂v′θ
∂r

− v′θ
r′2

)

+
1

δ2Re

∂2v′θ
∂z′2

,
(5.3)

N
∂ω′

θ

∂t′
+

(

v′r
∂ω′

θ

∂r′
+ v′z

∂ω′
θ

∂z′
− ω′

θv
′
r

r′
− 1

δr′
∂v′2θ
∂z′

)

=
1

δRo

∂v′θ
∂z′

+
1

Re

(

∂2ω′
θ

∂r′2
+

1

r′
∂ω′

θ

∂r′
− ω′

θ

r′2

)

+
1

δ2Re

∂2ω′
θ

∂z′2
,

(5.4)

1

r′
∂

∂r′
(r′v′r) +

∂v′z
∂z′

= 0 (5.5)

with the rotation number N ≡ |2Ω + ω̂0|/|ω̂0| = |1 + Ro|/|Ro|.
The typical time scale is taken as |2Ω + ω̂0|−1, since |2Ω + ω̂0| is the natural

rotation frequency at the center of the vortex. Due to this definition of the typ-
ical time scale, the correct form of the equations is recovered when Ro = ∞. In
this case, the three remaining nondimensional parameters are Re, δ, and Rc. In
addition, by multiplying (5.3) and (5.4) by Ro and making ω̂0 = 0, we recover the
equations for the limit of solid body rotation.

For convenience of notation, the primes will be omitted from here on. Further-
more, it is useful to define the new variables

Φ = ωθ/r, (5.6)

and

V = rvθ + r2/(2Ro), (5.7)
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where V is the absolute angular momentum nondimensionalized with ω̂0L
2
0. The

system of governing equations can now be written as

N
∂V

∂t
+

1

r
[V, ψ] =

1

Re
r
∂

∂r

(

1

r

∂V

∂r

)

+
1

δ2Re

∂2V

∂z2
, (5.8)

N
∂Φ

∂t
+

1

r
[Φ, ψ] =

1

δr4
∂V 2

∂z
+

1

Re

(

∂2Φ

∂r2
+

3

r

∂Φ

∂r

)

+
1

δ2Re

∂2Φ

∂z2
, (5.9)

Φ =
1

r2
∆̃ψ =

1

r2

(

δ
∂2ψ

∂r2
− δ

1

r

∂ψ

∂r
+

1

δ

∂2ψ

∂z2

)

, (5.10)

where

[f, g] =
∂f

∂r

∂g

∂z
− ∂f

∂z

∂g

∂r
, (5.11)

∆̃ is the dimensionless modified Laplacian operator, and ψ is the streamfunction
defined by

vr =
1

r

∂ψ

∂z
, vz = −1

r

∂ψ

∂r
. (5.12)

Equation (5.8) shows that for the inviscid case the angular momentum of
the fluid is locally modified exclusively by the meridional flow (vr , vz), while
(5.9) shows that the meridional flow is coupled to the swirl flow by the term
r−4δ−1∂V 2/∂z. The physical interpretation of this coupling term rests on the bal-
ance (to lowest order) between the radial pressure gradient and v2θ/r + vθ/Ro.
In other words, a vertical gradient of the angular momentum implies a vertical
pressure gradient that drives a meridional flow.

To study the interaction between the swirl flow and the meridional flow, we
follow the approach taken by Lord Kelvin (Thomson, 1880), assuming a small
perturbation V1 of the basic vortex with absolute angular momentum V0:

V = V0 + V1, (5.13)

where V1 ≪ V0 so that the conditions for linearization hold. In addition, the
meridional flow satisfies: Φ = Φ1 ≪ V0, ψ = ψ1 ≪ V0.

Substitution of (5.13) into (5.8)–(5.10), yields to lowest order an equation for
V0:

N
∂V0
∂t

=
1

Re

(

r
∂

∂r

1

r

∂V0
∂r

)

+
1

δ2Re

∂2V0
∂z2

, (5.14)

and hence, the basic state is only modified by diffusion. In addition, we obtain a
set of equations for V1, Φ1, and ψ1:

N
∂V1
∂t

+
1

r
[V0, ψ1] =

1

Re

(

r
∂

∂r

1

r

∂V1
∂r

)

+
1

δ2Re

∂2V1
∂z2

, (5.15)
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N
∂Φ1

∂t
=

2

δr4

(

V0
∂V1
∂z

+ V1
∂V0
∂z

)

+
1

Re

(

∂2Φ1

∂r2
+

3

r

∂Φ1

∂r

)

+
1

δ2Re

∂2Φ1

∂z2
, (5.16)

Φ1 =
1

r2
∆̃ψ1, (5.17)

where second order quantities have been neglected.

5.4 Inviscid linear theory

In this section, we study the inviscid limit (Re → ∞) of (5.14)–(5.17). If V0 is
z-independent, then V0 = V0(r), and the combination of (5.15)–(5.17) results in
the following equation for ψ1:

∂2

∂t2
∆̃ψ1 = −η(r)

δ

∂2ψ1

∂z2
(5.18)

with

η(r) =
1

N2r3
dV 2

0

dr
, (5.19)

where η denotes the extended Rayleigh discriminant (Hopfinger & van Heijst,
1993) normalized to 1 for r = 0.

Assume now a time-periodic perturbation ψ1 = ψ̃(r, z)eiξt, with ξ the frequency
of the oscillation. Substitution of this form into the previous equation yields

ξ2∆̃ψ̃ =
η(r)

δ

∂2ψ̃

∂z2
. (5.20)

Assuming a separable solution, ψ̃(r, t) = R(r)Z(z), leads to equations for R and
Z:

1

Z

d2Z

dz2
= −λ2, (5.21)

r
d

dr

(

1

r

dR

dr

)

− λ2

δ2
R = −λ

2

δ2

(

η(r)

ξ2

)

R, (5.22)

where λ is the separation constant.
At the bottom (z = 0) and at the rigid free surface (z = 1), an impermeability

condition is imposed (ψ̃ = 0). Together with these boundary conditions, (5.21)
constitutes an eigenvalue problem for the eigenvalue λ, and the quantized solution
is of the form

Z(z) = C2 sin(λnz), (5.23)
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where the vertical wave number is λn = π(n+ 1), and the integer n = 0, 1, 2, ... is
the vertical mode number.

Equation (5.22) is rewritten as

r
d

dr

(

1

r

dR

dr

)

− k2nR = −k2n
η(r)

ξ2n
R, (5.24)

where k2n = λ2n/δ
2. Solutions to (5.24) are required to satisfy the following bound-

ary conditions:

R(r = 0) = R(r = Rc ≤ ∞) = 0. (5.25)

With these homogeneous boundary conditions, (5.24) constitutes a Hermitian
eigenvalue problem of Sturm–Liouville type for the eigenvalue ξn provided that
η(r) > 0 for 0 < r < Rc, i.e. if the vortex is stable to centrifugal instability. This
implies that all eigenvalues ξm,n are discrete and real-valued.

5.4.1 The role of horizontal confinement in the frequency
range

The extended Rayleigh discriminant η can be rewritten as

η(r) =
1

(Ro + 1)2

(

1 + Ro
2vθ,0
r

)

(1 + Roωz,0) , (5.26)

with vθ,0 = vθ,0(r) the azimuthal velocity of basic vortex, and ωz,0 = ωz,0(r) =
(1/r)[d(rvθ,0)/dr] the vorticity.

For vortices with ωz,0 monotonically decreasing in r, such as the Rankine vortex
and the Lamb–Oseen vortex, ωz,0 = 1 + O(r2) and vθ,0 = r/2 + O(r3) as r ↓ 0,
and ωz,0 → 0 and vθ,0 → 0 for r → ∞ yielding

η(r) →







1, r ↓ 0,
1

(Ro + 1)2
, r → ∞.

(5.27)

The upper bound for the spectrum of ξm,n can be determined by multiplying (5.24)
by R/r and integrating over 0 < r < Rc. Then, through integration by parts and
using the boundary conditions, we obtain

0 ≤ ξ2m,n ≤
{

1, 0 ≤ Ro <∞
(Ro + 1)−2, −1 < Ro < 0

(5.28)

where we have assumed that η(r) monotonically decreases (increases) from η(0) =
1 to η(∞) = (Ro+1)−2 for 0 ≤ Ro <∞ (−1 < Ro < 0). Note that for anticyclonic
vortices, our study is restricted to −1 < Ro < 0 since the vortices are prone to
centrifugal instability and (5.24) is no longer an eigenvalue problem of the Sturm–
Liouville type for Ro < −1.
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To clarify the meaning of the upper bounds for the frequency range, it is
convenient to define the dimensional frequency ξ∗m,n = |ω̂0+2Ω|ξm,n. Then, ξ

2
m,n =

1 is equivalent to ξ∗2m,n = (ω̂0+2Ω)2 in dimensional units, while ξ2m,n = (Ro+1)−2

is equivalent to ξ∗2m,n = (2Ω)2 in dimensional units.
If Rc = ∞, it is useful to write (5.24) in normal form by taking R =

√
rF :

d2F

dr2
+

{

k2n

[

η(r)

ξ2m,n

− 1

]

− 3

4r2

}

F = 0. (5.29)

To satisfy the boundary condition for r → ∞, the term η(r)/ξ2m,n in (5.29) must
satisfy

η(∞)

ξ2m,n

< 1 (5.30)

which — using (5.27) — implies that

ξ2m,n > (Ro + 1)−2. (5.31)

Combining this with (5.28), we conclude that for Rc = ∞:

(Ro + 1)−2 < ξ2m,n ≤ 1 for 0 ≤ Ro <∞, (5.32)

and no modes are possible for −1 < Ro < 0.
Condition (5.32) implies that in an infinite domain no modes with frequencies

smaller than the rotation rate of the system [ξ2m,n < (Ro+1)−2] exist, while these
frequencies are sustained within a domain bounded in the r-direction (Rc <∞).

For Kelvin waves in a non-confined (Rc = ∞) Lamb–Oseen vortex with back-
ground rotation, (5.22) was studied recently by Le Dizès (2008), using a WKJB
approach based on the vertical wave number being large. Le Dizès found nontrivial
solutions to (5.22) that satisfy the homogeneous Dirichlet conditions R(r) = 0 at
r = 0 and r = Rc = ∞ for (Ro + 1)−2 < ξ2m,n < 1 (that is, the absolute value
of the dimensional frequency is between 2Ω and 2Ω + ω̂0). However, no solutions
were found for 0 < ξ2m,n < (Ro + 1)−2 in agreement with condition (5.32).

The physical difference between the two different boundary conditions can be
explained as follows. When Rc = ∞, the wave must be outgoing or exponen-
tially small at infinity; this condition is known as a radiative boundary condition.
However, reflexions are also allowed at the boundary when Rc <∞.

5.4.2 The Rankine vortex

To solve the eigenvalue problem (5.24) analytically, we focus on a relatively simple
vortex profile, namely the Rankine vortex confined to a rotating cylinder. The
structure of the Rankine vortex consists of a core of uniform vorticity and an
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Figure 5.1 – Streamlines of the inertial waves sustained by a Rankine vortex without
background rotation. Isolines of ψ̃ for Ro = ∞, Rc = 10, δ = 0.5, and mode numbers
n = 0 and m = 0, 1.

irrotational exterior, and is given, in terms of the absolute angular momentum, by

V0(r) =



















r2

2
+

r2

2Ro
, 0 ≤ r < 1

1

2
+

r2

2Ro
, 1 ≤ r ≤ Rc.

(5.33)

For this profile the solution to (5.24) is presented in detail in Appendix C.
An example of the streamlines in the (r, z)-plane for a Rankine vortex without

background rotation is shown in figure 5.1 for δ = 0.5 and modes numbers n = 0
and m = 0, 1. As can be seen, the secondary flow is composed of recirculation
cells, where n+1 gives the number of cells in the vertical direction, and m+1 gives
the number of cells in the radial direction. For Ro = ∞, ψ̃ outside the vortex core
(r > 1) is given in terms of evanescent, modified Bessel functions; the meridional
flow is irrotational (Φ = 0); and V1 = 0 as found by Lord Kelvin (Thomson, 1880).

Cyclonic vortices

For cyclonic vortices (0 < Ro <∞), the maximum frequency allowed is such that
ξ2m,n = 1, as shown in (5.28). Thus, the streamfunction ψ̃ inside the vortex core
(r < 1) is given in terms of J1, the Bessel function of the first kind and order one
[see (C.5)].

On the other hand, outside the vortex core (r > 1) there are three qualitatively
different regimes that depend on the value of the frequency ξm,n:

• Regime CI: 1 > ξ2m,n > (Ro + 1)−2 and ξ2m,n > k2n/(N
2Ro). In this regime,

the streamfunction in the outer region is given in terms of modified Bessel
functions of order γ ∈ R [see (C.8)]. Hence, the streamfunction has an ex-
ponentially decaying tail outside the vortex core as for Ro = ∞. See, for
example, the upper panels in figure 5.2

• Regime CII: 1 > ξ2m,n > (Ro + 1)−2 and ξ2m,n < k2n/(N
2Ro). In this

regime, the streamfunction ψ̃ in the outer region is given in terms of modified
Bessel functions of imaginary order (γ ∈ I). In this case, the streamfunction
can have an oscillatory behavior in r outside the vortex core, but still an
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Figure 5.2 – Three regimes for the streamlines of the inertial modes sustained by a
Rankine vortex with background rotation. Isolines of ψ̃ for Rc = 10, δ = 0.5, and mode
numbers n = 0 and m = 0, 1 for different values of Ro. Regime CI (top): Ro = 100,
(Ro + 1)−1 ≈ 0.01, and k2n/(N

2Ro) ≈ 0.39, while ξ0,0 ≈ 0.71 and ξ0,1 ≈ 0.55. Regime

CII (middle): Ro = 0.25, (Ro+ 1)−1 = 0.8 and k2n/(N
2Ro) ≈ 6.32, while ξ0,0 ≈ 0.87 and

ξ0,1 ≈ 0.81. Regime CIII (bottom): Ro = 0.02, (Ro + 1)−1 ≈ 0.980 and k2n/(N
2Ro) ≈

0.759, while ξ0,0 ≈ 0.979 and ξ0,1 ≈ 0.975 .

exponentially decaying tail exists next to the outer wall. See, for example,
the middle panels in figure 5.2.

• Regime CIII: (Ro + 1)−2 > ξ2m,n > 0. In this case, the streamfunction ψ̃
is given in terms of Bessel functions [see (C.17)], which have an oscillatory
behavior in r that extends radially across the whole cylinder, as shown in the
bottom panels of figure 5.2. In this regime, ψ̃ is similar to the streamfunction
obtained for inertial oscillations inside a rotating cylinder without a vortex in
the center (see Fultz, 1959). Note that this regime does not exist in the case
Rc = ∞. In fact, we show in Appendix C that, in this regime, the solution
to (5.24) for a Rankine vortex cannot satisfy the boundary condition ψ → 0
as r → ∞.

As has been seen in figures 5.1 and 5.2, the secondary flow is composed of
recirculation cells. These cells redistribute the angular momentum V , changing its
vertical distribution. Subsequently, the recirculation cells reverse their direction
due to the change in the vertical gradient of V , and this interaction repeats itself.

In fact, the evolution of the absolute angular momentum of the swirl flow,
following (5.15), is given by

V (r, z, t) = V0(r) + Ṽ1(r) cos(λnz)e
i(ξm,nt+π/2), (5.34)
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Figure 5.3 – Graphical representation of the frequency and the wavenumber of mode
(m,n) = (0, 0) as a function of Ro and δ. The grayscale denotes (a) the absolute value of
the frequency |ξ0,0| and (b) the normalized wave umber ᾱ0,0 for Rc = 10 as a function of
Ro and δ. The crosses in (b) mark solutions corresponding to regime CI, while the circles
mark solution corresponding with regime CIII.

where

Ṽ1(r) = ǫ
λn
ξm,n

{

R(r), 0 ≤ r < 1
1

Ro + 1
R(r), 1 ≤ r ≤ Rc

(5.35)

with ǫ ≪ ξm,n/λn, and R(r) is the r-dependence of the streamfunction ψ̃. Note
that the frequency of the oscillation in V is equal to the frequency of the oscillations
in the secondary motion but out of phase by a quarter period.

Furthermore, Ṽ1 has a discontinuity at r = 1 for Ro 6= 0. This discontinuity is
consistent with the fact that Ṽ1 = 0 outside the vortex core for Ro = ∞ (Thomson,
1880), whereas for Ro = 0, the discontinuity disappears, and the solution for a
rotating cylinder without a vortex is retrieved (see Fultz, 1959). Independently
of the frequency ξm,n, if Ro 6= 0, then V1 6= 0 outside the vortex core, and the
oscillations of the azimuthal motion are no longer confined to the inside of the
vortex core. However, the amplitude of V1 outside the vortex core can be negligible
for large Ro-values.

We have shown that the recirculation cells can differ qualitatively depending
on the value of the frequency ξm,n. Furthermore, the values of ξm,n depend on the
problem parameters: Ro, δ and Rc. Figure 5.3(a) shows the absolute value of the
frequency for mode (m,n) = (0, 0), |ξ0,0|, for Rc = 10 as a function Ro and δ. As
can be seen, the frequency of the zeroth mode tends to unity as δ → 0 and Ro → 0,
while the lowest frequencies are reached for slow rotation (large Ro-values) and
large aspect ratio δ, when keeping Rc fixed.

Figure 5.3(b) shows the normalized wave number inside the vortex core ᾱ0,0 =
α0,0/j1,0 [with j1,0 the first zero of J1 and α0,0 the wave number inside the vortex
core as define in (C.4)] for Rc = 10 as a function Ro and δ. As can be seen, the
wave number is smaller for fast rotation rates (small Ro-values) and large aspect
ratio δ. It is in this region of the parameter space that the zeroth mode occupies
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Figure 5.4 – Graphical representation of the frequency of mode (m,n) = (0, 0) for
a Rankine vortex as a function of Ro, δ, and Rc. (a) Grayscale denotes values of the
frequency ξ0,0 for for fixed δ = 1 as a function of Ro and Rc. (b) Values of the frequency
ξ0,0 for for fixed Ro = 1 as a function of δ and Rc.

the whole cylinder, as shown by the circles that denote regime CIII. Furthermore,
the wave number is larger for slow rotation rates (large Ro) and small aspect ratio.
It is in this region when the recirculation cell is smaller in the radial direction.
Surprisingly, this behavior does not correspond to the regime CI denoted by the
crosses. However, it is clear that a smaller aspect ratio δ tends to reduce the radial
extent of the oscillations, while strong rotation tends to increase it.

As the mode number m increases, the frequency ξm,n decreases for fixed mode
number n. Hence, the boundary between the different regimes depends on the mode
number. In other words, even if, for example, mode (m,n) = (0, 0) corresponds to
regime CII there can be a mode (m,n) with m > 0 in regime CIII for the same
values of the problem parameters.

After pointing out the difference between an infinite and a finite domain in
the frequency range in Section 5.4.1, we have restricted our study to the case of
Rc = 10. In figure 5.4(a), we present the value of the frequency ξ0,0 for fixed δ = 1
as a function of Ro and Rc, while in figure 5.4(b), we present the value of ξ0,0 for
fixed Ro = 1 as a function of δ and Rc. As can be clearly seen, the frequency does
not depend strongly on Rc for large values of this parameter.

Anticyclonic vortices

It was shown in (5.28) that for anticyclones (−1 < Ro < 0) the frequency is such
that ξ2m,n < (Ro + 1)−2. Hence, outside the vortex core, the solution to (5.24) is
given in terms of Bessel functions [see (C.17)] and the recirculation cells extend to
the outer wall.

On the other hand, there are two qualitatively different regimes inside the
vortex core:

• Regime AI: (Ro + 1)−2 > ξ2m,n > 1. In this regime, the solution to (5.24)
inside the vortex core is given in terms of I1(αr), the modified Bessel function
of the first kind and order one [see (C.5)]. Hence, the streamfunction ψ̃ cannot
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Figure 5.5 – (a) Isolines of ψ̃ for Ro = −0.5, Rc = 10, δ = 0.5, and (m,n) = (0, 0). In
this case ξ0,0 ≈ 1.983 > 1 corresponding to regime AI. (b) Isolines of ψ̃ for Ro = −0.001,
Rc = 10, δ = 0.5, and (m,n) = (0, 0). In this case ξ0,0 ≈ 0.991 < 1 corresponding to
regime AII.

have an oscillatory behavior in r inside the vortex core. An example of such
a flow is presented in figure 5.5(a), where the streamlines of the secondary
flow for (m,n) = (0, 0), Ro = −0.5, δ = 0.5, and Rc = 10 are plotted.

• Regime AII: 1 > ξ2m,n > 0. In this regime, the solution to (5.24) inside the
vortex core is given in terms of J1(αr), the Bessel function of the first kind
and order one [see (C.5)]. Hence, the recirculation can have an oscillatory
behavior in r across the whole cylinder. This can be seen in figure 5.5(b),
where the streamlines for (m,n) = (0, 0), Ro = −0.01, δ = 0.5, and Rc = 10
are plotted.

5.4.3 The Lamb-Oseen vortex

The Rankine vortex is a crude approximation for a real vortex, and it is by nature
an inviscid model. To later consider the effects of viscosity, we study the waves
sustained by the Lamb-Oseen vortex which is a good approximation to some real
vortices (see e.g. Hopfinger & van Heijst, 1993). In this section, we consider a
time-independent Lamb-Oseen vortex with a velocity profile given by

vθ,0(r) =
1

2r

[

1− exp(−r2)
]

. (5.36)

This vortex is characterized by a strong stability. For example, although it can
be unstable with respect to centrifugal instability, this is only the case for strong
anticyclonic vortices with Ro < −1 (Hopfinger & van Heijst, 1993) as for the
Rankine vortex. Furthermore, it is stable to shear instability (Saffman, 1992),
and as long as there is no elliptical perturbation also to elliptical instability. This
stability backs our assumption of azimuthal symmetry.
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The absolute angular momentum for the Lamb-Oseen vortex is given by

V0(r) =
1

2
[1− exp(−r2)] + r2

2Ro
. (5.37)

For this profile, (5.24) cannot be solved analytically; hence, the eigenvalue prob-
lem is solved numerically with the finite element code COMSOL — using the
one-dimensional general form PDE module with the UMFPACK solver and 120
elements (see COMSOL AB, 2008).

The dynamics of the axisymmetric inertial oscillations sustained by a Rankine
vortex are similar for a Lamb-Oseen vortex in the non-rotating case Fabre et al.
(2006), as in the case with background rotation. However, some differences in the
characteristics of such oscillations exist.

Figure 5.6(a) presents the ratio of ξ0,0 for Lamb–Oseen vortex to ξ0,0 for a
Rankine vortex as a function of Ro and δ for Rc = 10. As can be seen, this ratio
tends to unity as the rotation rate increases; already for Ro < 1, the frequency
ratio does not exceed 10%. For large Ro-values and large δ-values — in regime CI
— the difference in frequencies is most important. In contrast, specially in regime
CIII, the frequency ratio is close to unity. This can be easily explained, since
for small Ro-values the vortex motion is very weak compared to the background
rotation.

Figure 5.6(b) shows the ratio of α0,0 for a Lamb–Oseen vortex to α0,0 for
a Rankine vortex. As can be seen, for small Ro-values this ratio tends to unity
suggesting that the radial wave number does not depend on the velocity profile.
However, when rotation is decreased, the wave number α0,0 for the Lamb–Oseen
vortex becomes up to three times larger than the wave number for the Rankine
vortex for small aspect ratio δ. This can be explained as follows. For the Rankine
vortex, waves with frequencies close to unity can be sustained inside the whole
vortex core since the frequency is smaller than 2Ω + ω̂ for 0 < r < 1 with ω̂ the
peak vorticity. However, for the Lamb–Oseen vortex, the waves with frequencies
approaching unity can only be sustained in a smaller domain.

In figure 5.6(b) the crosses denote the parameter for which mode (m,n) =
(0, 0) is in regime CI, while the circles denote the parameters for which mode
(m,n) = (0, 0) is in regime CIII. As can be seen by comparison with figure 5.3(b),
the boundary between the different regimes agrees well for both vortex profiles.
Furthermore, the characteristics of the three different regimes for cyclonic Rankine
vortices are similar for a Lamb–Oseen vortex.

5.5 The effects of viscosity

5.5.1 In a cylinder with stress-free boundaries

When considering a time-independent Lamb–Oseen vortex, as in the previous sec-
tion, the effect of viscosity on axisymmetric inertial oscillations is rather trivial.
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Figure 5.6 – Graphical representation of the characteristics of mode (m,n) = (0, 0) for
the Lamb–Oseen vortex compared to the characteristics of mode (m,n) = (0, 0) for the
Rankine vortex. The grayscale denotes (a) the ratio of |ξ0,0| for the Lamb–Oseen vortex
and |ξ0,0| for the Rankine vortex and (b) the ratio of ᾱ0,0 for the Lamb–Oseen vortex
and for ᾱ0,0 for the Rankine vortex for Rc = 10 as a function of Ro and δ. The crosses in
(b) mark the points that correspond to regime CI, while the circles mark the point that
correspond to regime CI.

As found by Fabre et al. (2006) for the case of no background rotation, viscosity
only damps the oscillations.

Horizontal diffusion can be neglected in the case that αm ≪ kn, and vertical
diffusion does not modify the basic swirl flow if V0 does not depend on z. How-
ever, diffusion affects the evolution of the perturbation. This can be expressed by
including the vertical viscous terms in (5.18) for ψ1:

∂2∆̃ψ1

∂t2
= − 1

δr3N2

∂V 2
0

∂r

∂2ψ1

∂z2
+

2

ReNδ2
∂2

∂z2
∂∆̃ψ1

∂t
− 1

NRe2δ4
∂4∆̃ψ1

∂z4
. (5.38)

Stress-free boundary conditions are imposed at z = 0 and z = 1, and we
assume a harmonic dependence both in time and in z: ψ1 = R(r) sin(λnz)e

iφt.
Substitution of this solution into (5.38) yields

(

φ− i
k2n

NRe

)2

∆̃ψ1 = − 1

δr3N2

∂V 2
0

∂r

∂2ψ1

∂z2
, (5.39)

which can be transformed into (5.20) for the inviscid case by taking ξ = φ −
ik2n/NRe, where ξ is again the frequency for the inviscid case. Therefore, the fre-
quency for the viscous case is

φ = ξ + i
k2n

NRe
, (5.40)

where the imaginary part is a damping coefficient, which in dimensional units can
be written as νλ2n/H

2. This damping rate is the slowest damping rate possible,
since if radial diffusion is included, the damping rate would be higher and the
radial shape of the recirculation cells would be modified.
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However, viscosity also affects the main azimuthal motion. For the Lamb–Oseen
vortex, the time-dependent azimuthal-velocity profile is given by the self-similar
solution to (5.14):

vθ,0(r, t) =
1

2r

[

1− exp

(

− r2

1 + 4t/NRe

)]

, (5.41)

when taking (5.37) as the initial condition. The corresponding vertical vorticity
component is given by

ωz,0(r, t) =
1

1 + 4t/(NRe)
exp

(

− r2

1 + 4t/(NRe)

)

. (5.42)

As can be seen from (5.41) and (5.42), both the radius and the peak vorticity
of the vortex change over time. Hence, it is possible to define a time-dependent
Rossby number:

RoT (t) =
Ro

1 + 4t/(NRe)
, (5.43)

and a time dependent aspect ratio:

δT (t) =
δ

√

1 + 4t/(NRe)
, (5.44)

both decreasing in time. Combining (5.43) and (5.44) yields

δT = K
√

RoT, (5.45)

where K is constant.
As it was seen in section 5.4.2, if both Ro and δ decrease, then the frequency

tends to the maximum frequency allowed, which is now given by

ξmax(t) =
1 + RoT (t)

1 + Ro
(5.46)

for the time-dependent Lamb-Oseen vortex.
To understand how the wave number changes in time, we consider that ξ ≫

4/(NRe). In this case, we can assume that the vortex is frozen at every instant
since the time scales for the oscillations and for the vortex decay can be separated.
We also assume that Rc remains large as to not affect the value of the frequency
and the wave number.

Figure 5.7 shows the absolute value of the wave number |α0,0| for a Lamb–Oseen
vortex as a function of Ro and δ for Rc = 20. In addition, this figure also shows
curves given by (5.45) for different values of K. The evolution of the Lamb–Oseen
vortex follows these curves from right to left. As can be seen, for large Ro-values,
the wave number |α0,0| increases in time. However, when the initial values for Ro
and δ are close to the boundary between the regimes CII and CIII, then the wave
number remains almost constant. Hence, there is a value for K for which (5.45)
gives a boundary between the two regimes.
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Figure 5.7 – Evolution of the frequency of mode (m,n) = (0, 0) sustained by a time-
dependent Lamb–Oseen vortex. The grayscale denotes the normalized wave number ᾱ0,0

for the oscillations sustained by a Lamb–Oseen vortex with Rc = 20 as a function of Ro
and δ. The circles mark the points where |ξ0,0| < (Ro + 1)−1, while the dashed lines are
given by (5.45) for different values of K.

5.5.2 The effects of a no-slip bottom

We performed numerical simulations where (5.3)–(5.5) were solved inside a cylinder
with a no-slip bottom. The initial condition was taken to be a Lamb–Oseen vortex
with no vertical dependence and no perturbation, as given by (5.37). Although this
initial condition does not satisfy the no-slip boundary condition at the bottom,
the initial flow is adjusted instantaneously by the numerical code to satisfy the
boundary condition. Several simulations were performed with different initial z-
dependence to test if these profiles affected the results. We found that there were
no significant differences when a small boundary layer was added to the initial
vertical profile.

The simulations were performed using the finite element code COMSOL with
the 2D-axisymmetric incompressible Navier–Stokes module, approximately 140
000 degrees of freedom, and the PARDISO solver (see COMSOL AB, 2008). Both
the time and spatial resolution were evaluated by performing several numerical
simulations with different resolutions and verifying that the results converged to
the same solution.

No background rotation

First, we analyze a vortex without background rotation. In this case, when δ and
Re are small, the main flow has a Poiseuille-like vertical profile and is damped
at a rate π2/(4Re δ2N) since the evolution is dominated by bottom friction as it
was discussed in Chapters 3 and 4 . For these values of δ and Re, an analytical
solution for the evolution of the secondary motion can be obtained where no inertial
oscillations are sustained inside the vortex (Duran-Matute et al., 2010).

However, for larger values of δ and Re the vertical profile of the main flow
differs from Poiseuille-like. Figure 5.8 shows the vertical profile of the azimuthal
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Figure 5.8 – Lamb–Oseen vortex inside a cylinder with a no-slip bottom and no back-
ground rotation. Vertical profile of vθ at r = 5 (left), contours of the secondary flow and
azimuthal velocity (color) (right) at t = 5 for a simulation with Re = 2500, δ = 0.5,
Ro = ∞, and Rc = 12.

velocity vθ and streamlines in the (r, z)-plane at t = 5 for a simulation with
Re = 2500, δ = 0.5, Ro = ∞, and Rc = 12. From the vertical profile of vθ,
we can see that a boundary layer forms close to the bottom, and that on top of
it, the flow is more uniform in the vertical. The streamlines in the (r, z)-plane
show a large secondary motion that occupies the whole depth of the fluid. Unlike
the recirculation cells associated with the inertial oscillations shown in previous
sections, the recirculation cell shown in figure 5.8 is driven by the boundary layer.

Figure 5.9 presents snapshots of the azimuthal velocity and the streamlines
in the (r, z)-plane at three different times, and of the vertical profile of the pres-
sure P (z) in the vortex core (r = 0.01) at three different times for a simulation
with Ro = ∞, Re = 2500, δ = 0.5, and Rc = 12. As can be seen, the vertical
pressure gradient changes sign in time. This is due to the presence of inertial os-
cillations which are superimposed to the secondary motion. The physical process
driving these oscillations, as observed in figure 5.9, can be described as follows.
Initially on the vortex axis, a negative vertical pressure gradient exists, which
drives an upward motion in the vortex core, and hence, a meridional flow. This
flow redistributes the azimuthal velocity. Consequently, the vertical gradient of
the azimuthal velocity and the pressure are inverted. This new pressure gradient
forces a downward motion in the center of the vortex and the appearance of a cell
in the meridional flow with an opposite direction to the main secondary flow driven
by the boundary layer. This process repeats itself, always with the oscillation in
the pressure out of phase by a quarter period with respect to the oscillation in
the meridional flow. It can also be seen in the pressure profiles that at the top
of the boundary layer (z ≈ 0.1) the pressure gradient is always negative, thus
continuously driving the large recirculation cell.

The presence of a no-slip boundary condition at the bottom has two main
effects on the primary motion: (i) the main flow is damped faster due to bottom
friction; (ii) the main flow is modified by the secondary flow driven by the boundary
layer. However, since advection plays an important role for large values of Re and
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Figure 5.10 – Evolution of the normalized vertical velocity v̄z = vz/max(vz) in the
core of the vortex (r, z) = (0.01, 0.8) (solid line), and evolution of the normalized kinetic
energy of the azimuthal motion Ēkin = Ekin/max(Ekin) (dashed line) for a simulation
with Re = 2500, δ = 0.5, Ro = ∞, and Rc = 12.

δ, there is no analytical expression for the damping rate of the vortex or for its
deformation.

Figure 5.10 shows the evolution of the normalized vertical velocity vz/max(vz)
in the core of the vortex at (r, z) = (0.01, 0.8) and the evolution of the kinetic
energy of the main azimuthal flow for a simulation with Re = 2500, δ = 0.5 and
Ro = ∞. As can be seen, the vertical velocity inside the vortex oscillates. These
oscillations are damped, and their frequency decreases in time due to the damping
of the vortex and the growth of the vortex radius. By comparison with the decay
of the kinetic energy of the vortex, it can be seen that the characteristic decay
time of the main flow is a good estimate for the lifetime of the oscillations.

The type of flow discussed in this section and shown in figure 5.8 is similar to
the one described by Akkermans et al. (2008b), who studied an electromagnetically
generated dipolar vortex in a shallow layer. In that case Re ≈ 3500, and 201 ≤
Reδ2 ≤ 727. In such a flow, a boundary layer at the bottom and inertial oscillations
in the vortex cores on top of the boundary layer were observed.

Strong background rotation

For the case of strong rotation, the main flow consists of an Ekman boundary layer
at the bottom, and a geostrophic interior. This can be seen in figure 5.11, where
snapshots of the azimuthal velocity and the streamfunction in the (r, z)-plane at
three different times are shown for a simulation with Ro = 1, Re = 2500, δ = 0.5,
and Rc = 12.

As for the case of no background rotation, if bottom friction dominates, no
inertial oscillations are sustained by the flow. For strong background rotation
(Ro ≪ 1), this occurs when the nondimensional thickness of the Ekman boundary
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Figure 5.11 – Evolution of a Lamb–Oseen vortex inside a cylinder with a no-slip
bottom and background rotation. Upper row: meridional flow at three different times
(t = 12.5, 17.5, 20) for Ro = 1, Re = 2500, δ = 0.5, and Rc = 12. The color coding
denotes the azimuthal velocity and the black lines are streamlines of the secondary flow
in the (r, z)-plane.

layer

hEk ≡ Ek1/2 =
1

δ

(

2Ro

Re

)1/2

& 0.6 (5.47)

(see Chapter 4). Hence, we focus on flows with hEk ≪ 1.
In figure 5.11, it can be observed, by comparison with figure 5.9, that the flow

and the physical process driving the inertial oscillations is similar for flows with
and without background rotation. However, in the rotating case (Ro = 1), the
recirculation cell associated with the inertial oscillations extends farther towards
the exterior of the vortex, suggesting that the radial wavelength of the oscillations
is larger.

Figure 5.12 displays the evolution of the normalized vertical velocity vz/max(vz)
in the core of the vortex at (r, z) = (0.01, 0.8) and the kinetic energy of the az-
imuthal flow as a function of time for a simulation with Ro = 1, Re = 2500,
δ = 0.5, and Rc = 12. As can be seen, the vertical velocity in the vortex core
oscillates. Initially, the signal seems to be modulated, but this is due to the super-
position of different modes with similar frequencies. In addition for Ro = 1, the
oscillation is persistent throughout the simulation for a much longer time than in
the case Ro = ∞ (figure 5.10). As seen previously, for Ro = ∞, no oscillations can
be sustained once the vortex is damped. On the other hand, for Ro = 1, the system
still sustains oscillations even after the vortex as been damped. In this case, the
decay rate of the oscillations is closer to the damping rate given by (5.40).

It could be argued that the inertial oscillations in the simulations discussed in
this section arise because the flow must adjust itself since the initial condition has
no vertical dependence. To exclude this possibility, we performed also simulations
where the flow was forced for some time. For these simulations, v = 0 at t = 0,
and a forcing term

F =
F0

2
[1− exp(−r2)], (5.48)
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Figure 5.12 – Normalized vertical velocity v̄z = vz/max(vz) in the vortex core (r, z) =
(0.01, 0.8) (solid lines), normalized kinetic energy of the main azimuthal motion Ēkin =
Ekin/max(Ekin) (dashed line) for a simulation Ro = 1, Re = 2500, δ = 0.5, and Rc = 12.
The dotted lines represent the envelope curves with a decay rate as given by (5.40).

where F0 is the magnitude of the forcing, was included on the right hand side
of (5.8) for 0 < t < TF , where TF is the forcing time. Inertial oscillations were
also observed in these simulations, except when TF ≫ 1. Hence, we conclude that
the inertial oscillations observed in previous numerical simulations are indeed a
physical phenomenon.

The simulations discussed here were all performed under the assumption of
axisymmetric flow, hence restricting the emergence of other modes, and other
three-dimensional (3D) phenomena. To study this restriction, 3D simulations were
performed for a few points in the parameter space. These simulations are computa-
tionally more expensive, thus it was not possible to achieve the same resolution as
in the axisymmetric simulations. No qualitative differences were observed between
the two types of simulations, however only some small quantitative differences,
most likely caused by the lower spatial and temporal resolution of the 3D simula-
tions, were found.

5.6 Conclusions

We have studied the evolution of axisymmetric inertial oscillations in a confined
monopolar vortex with background rotation, and their effects on the evolution of
the vortex itself. Firstly, we presented an analytical result for the inviscid iner-
tial oscillations sustained by the Rankine vortex inside a rotating cylinder. Later,
numerical results for the inviscid waves sustained by a Lamb–Oseen vortex were
analyzed. Finally, we studied the effects of viscosity and of a no-slip bottom on
the evolution of the oscillations. In this way, a situation similar to the one found
in laboratory experiments was reached, while discussing different properties of the
oscillations at every step.

From the linear inviscid theory, we showed that the frequency range of the
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inertial oscillations in cyclonic vortices is such that 0 < ξ∗2m,n < (2Ω + ω̂)2 (in
dimensional units) where Ω is the rotation rate of the system and ω̂ is the peak
vorticity of the vortex. However, horizontal confinement is necessary for modes
with the absolute value of their frequency |ξ∗m,n| < 2Ω.

In the case with background rotation, the oscillations in the azimuthal flow can
extend outside the vortex, as opposed to the case without background rotation.
Furthermore, we found three qualitatively different regimes for the modes sustained
by cyclonic vortices. It is in the regime where ξ∗2m,n < (2Ω)2, which only exists for
horizontally confined vortices, that the streamfunction in the (r, z)-plane has an
oscillatory behavior in r across the whole cylinder. This behavior is characteristic
for strong rotation and large aspect ratio.

The effects of viscosity are twofold. On one hand, it acts directly on the oscilla-
tions by damping them. On the other hand, it acts on the main vortex by damping
it and changing its radius. In this way, the characteristics of the waves sustained
by the vortex change. For the cases when stress-free boundaries are considered,
the basic vortex is a Lamb–Oseen vortex, and the decay rate of the vortex is much
slower than the frequency of the oscillations, then the inviscid theory can be used
to obtained the results at any given time.

On the other hand, when a no-slip bottom is considered, there is a boundary
layer at the bottom which drives a meridional flow, and bottom friction damps the
vortex. The meridional flow affects the evolution of the basic vortex, for which there
is no analytical expression. In this case, the inertial oscillations are superimposed
to the main meridional flow driven by the boundary layer. For the case of no
background rotation, the oscillations cannot persist as the vortex is damped and
their life time is hence dictated by the lifetime of the vortex. However, when
background rotation is present the waves persists even if the vortex is damped
since the system can still sustain oscillations.

This study was restricted to axisymmetric dynamics. In this case, confinement
plays a crucial role in the frequency range of the oscillations sustained by a vortex
subjected to background rotation. It is to be expected that confinement will also
play an important role in non-axisymmetric dynamics, and possibly in the stability
of some vortices. This role is still to be determined.





Chapter 6

Decaying dipolar vortexi

6.1 Introduction

One of the characteristics of Q2D flows is the formation of large coherent struc-
tures. This phenomenon has been observed in a shallow layer of fluid by, for ex-
ample, Sous et al. (2004, 2005). In their studies, an impulsive turbulent jet was
introduced into a fluid initially at rest. For small fluid depths, it was observed that
the vertical motions are damped and that the turbulent jet evolves into a large
coherent dipolar vortex.

However, several recent studies have demonstrated that shallow dipolar vortices
present a complicated 3D structure with vertical velocities that do not scale linearly
with the aspect ratio. For instance, Lin et al. (2003) studied the 3D structure of
vortex dipoles generated by a piston-nozzle arrangement and observed a secondary
vortex, which is orthogonal and just ahead of the primary dipole. Sous et al. (2004,
2005) also observed the presence of a spanwise vortex at the front of the dipolar
vortex for certain regions of their parameter space. Akkermans et al. (2008a,b)
investigated numerically and experimentally the evolution of electromagnetically
forced vortex dipoles. Besides observing a spanwise vortex in front of the vortex
dipole, they also measured large non-negligible vertical velocities in the vortex
cores, which impairs the two-dimensionality of the flow.

The importance of vertical flows — and by continuity, radial flows — for the
evolution of shallow axisymmetric monopolar vortices has been previously studied
using numerical simulations. These previous studies have shown that indeed the
small aspect ratio promotes a decrease in the magnitude of vertical motions inside
the monopolar vortices. In addition, it was shown that this magnitude depends
also on the Reynolds number (Satijn et al., 2001; Duran-Matute et al., 2010).
Moreover, for shallow axisymmetric swirl flows, only the parameter δ2Re — where

iThe contents of this chapter, with minor modifications, have been submitted in the form of
a paper to Physics of Fluids.
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Re is the Reynolds number and δ is the flow aspect ratio — characterizes the flow
(Duran-Matute et al., 2010).

The work presented in the current chapter has been inspired by experimental
work by Albagnac et al. (2010), who continued with the work by Lacaze et al.
(2010) on laminar dipolar vortices generated by two closing flaps. Through a para-
metric study, Albagnac et al. (2010) investigated the dynamics of the spanwise
vortex as a function of Re and δ and found that δ2Re is a good parameter to
determine the appearance of the spanwise vortex.

In the present chapter, we study numerically and experimentally the two-
dimensionality of a decaying dipolar vortex as a function of both the Reynolds
number Re and the aspect ratio δ of the initial dipole. The aim of this chap-
ter is twofold: (i) to explain previous contradictory experimental results on the
two-dimensionality of shallow flows, in particular that of a dipolar vortex where
shallowness seems to promote the two-dimensionality of the flow (Sous et al.,
2004), but even very shallow dipolar vortices can present complicated 3D struc-
tures (Akkermans et al., 2008b), and (ii) to test in a somewhat more complicated
flow, namely the dipolar vortex structure, the scaling properties previously de-
scribed in Chapter 3 for an axisymmetric monopolar vortex.

High-resolution 3D numerical simulations, together with the use of the so-
called λ2 vortex detection criterion (Jeong & Hussain, 1995; Wu et al., 2006),
have revealed the full 3D structure of the dipole, providing new insight into the
dynamics of shallow flows. Of special interest is the effect that secondary motions
have on the 3D structure of the dipolar vortex as the parameter δ2Re is increased.
Furthermore, results from laboratory experiments show good agreement with the
numerical simulations and give confidence in the robust character of the numerical
results.

This chapter is organized as follows: in Section 6.2, the problem is formulated
and the non-dimensional parameters characterizing the flow are defined. Section
6.3 is devoted to the numerical study of an initially Q2D dipolar vortex, where first,
the numerical simulations are described. In Section 6.3.1, the strength of the 3D
motions is quantified. Then, Section 6.3.2 presents the three different flow regimes
observed for shallow dipoles. Finally, in Section 6.4 the laboratory experiments are
presented and qualitatively compared with the numerical results. A discussion of
the results and some conclusions are presented in Section 6.5.

6.2 Statement of the problem

We study a decaying symmetric dipolar vortex — a compact structure consisting of
two counter-rotating vortex cores with equal strength and size — in a shallow fluid
layer. Due to the strong interaction of the vortex cores, this structure propagates
along a straight line (see e.g. Lamb, 1932).
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The flow is considered to be governed by the Navier–Stokes equation

∂v

∂t
+ (v ·∇)v = −1

ρ
∇p+ ν∇2v (6.1)

and the continuity equation for an incompressible fluid

∇ · v = 0, (6.2)

with v the velocity of the fluid, t the time, ρ the density of the fluid, p the pressure,
and ν the kinematic viscosity of the fluid. The motion of the fluid is described in
Cartesian coordinates x = (x, y, z) with x the direction of propagation of the
dipole, y the spanwise direction, and z the vertical direction. The velocity and
vorticity vectors are then written as v = (u, v, w) and ω = ∇× v = (ωx, ωy, ωz),
respectively.

To nondimensionalize (6.1) and (6.2), the following nondimensional variables,
which are denoted by primes, are defined:

v′ =
v

U0
, ω′ =

R0

U0
ω, t′ =

U0

R0
t, p′ =

p

ρU2
0

x′ =
x

R0
, y′ =

y

R0
, z′ =

z

H
,

(6.3)

where U0 is the initial propagation speed of the dipole; R0 is the initial radius of
the dipole, and H is the depth of the fluid layer. Then, substituting (6.3) into (6.1)
and (6.2) yields

∂v′

∂t′
+ (v′ · ∇̃)v′ = −∇̃p′ +

1

Re
∇̃2v′, (6.4)

∇̃ · v = 0, (6.5)

where

∇̃ ≡
(

∂

∂x′
,
∂

∂y′
,
1

δ

∂

∂z′

)

(6.6)

is the nondimensional gradient operator, and where the Reynolds number

Re ≡ U0R0

ν
(6.7)

and the aspect ratio

δ ≡ H

R0
(6.8)

are the two nondimensional parameters characterizing the flow. To simplify no-
tation, the primes will be omitted from here on, and only the nondimensional
variables will be used.
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6.3 Numerical simulations

In the present study, the governing equations (6.1) and (6.2) are solved numeri-
cally using a finite-element code (for more details see COMSOL AB, 2008). The
numerical domain is −9 ≤ x ≤ 21, 0 ≤ y ≤ 15, 0 ≤ z ≤ 1. It has been previously
observed that this domain size is large enough as not to affect the results of the
simulations due to the effect of the lateral boundaries (Akkermans et al., 2008a).

As boundary conditions, a no-slip boundary condition is imposed at the bot-
tom, whereas the surface is stress-free, flat, and rigid so that free-surface deforma-
tions are excluded. A stress-free condition is implemented for all lateral boundaries
in order to further reduce the possible influence of these boundaries.

The flow is initialized in the horizontal plane with a Lamb–Chaplygin dipolar
vortex with unit radius and a Poiseuille-like vertical structure according to

ULC(x, y) =

(

∂ψ

∂y
,−∂ψ

∂x
, 0

)

sin
(πz

2

)

,

where the streamfunction ψ is defined as:

ψ(r, θ) =















− 2

µ1J0(µ1)
J1 (µ1r) sin θ, r ≤ 1

(

r − 1

r

)

sin θ, r > 1

(6.9)

with J0 and J1 the zeroth and first order Bessel functions of the first kind, and
µ1 the first zero of J1. Note that x = r cos θ and y = r sin θ so that r =

√

x2 + y2

and θ = tan−1(y/x).
The Lamb–Chaplygin vortex dipole was chosen because of its resemblance to

horizontal slices of experimentally created dipolar vortices (Flòr & Van Heijst,
1994; Billant & Chomaz, 2000; Sous et al., 2004, 2005; Sipp et al., 2000). The
vertical Poiseuille-like structure was chosen since it seems to be a realistic profile
for time-dependent shallow flows (Satijn et al., 2001).

Due to the symmetry with respect to the vertical plane y = 0, only the evolution
of half of the dipole (y > 0) is simulated. However, for visualization purposes, the
full dipolar vortex is reconstructed in the figures shown in this section.

The spatial resolution was checked by performing several simulations for two
points in the (Re, δ) parameter space with increasing resolution until no signif-
icant differences were observed. This check resulted in a computational domain
discretized with approximately 43000 unstructured mesh elements. A finer mesh
was used in regions where high velocity gradients were expected. In addition, mesh
elements in the vertical direction are between three and nine times smaller than
the ones in the horizontal direction to resolve vertical gradients with sufficient res-
olution. In this way, the equations were solved for approximately 955000 degrees
of freedom.

Time steps were determined by the numerical code using variable-order variable-
step-size backward differentiation formulas (COMSOL AB, 2008) with the time
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δ Re

0.1 200, 300, 400, 800
0.2 50, 70, 100, 150, 200, 260, 500, 1000
0.3 25, 40, 50, 89, 100, 200, 222, 260
0.7 4, 8, 16, 40, 70, 90, 145

Table I – Values of the Reynolds number Re and the aspect ratio δ used in the numerical
simulations.

resolution computed from the relative and absolute error tolerances. The values
for such error tolerances were deduced by performing several simulations with
decreasing tolerance until no significant difference between the simulations was
observed.

The parameter space was explored by performing several numerical simulations
for different values of the Reynolds number Re and the aspect ratio δ as shown in
table I.

6.3.1 Quantitative characterization of the flow

As the dipolar vortex is left to evolve freely, secondary motions arise in the form of
upwelling or downwelling in the vortex cores (Akkermans et al., 2008a) and in the
form of a spanwise vortex at the front of the dipole (Sous et al., 2004; Akkermans
et al., 2008a,b). To quantify the strength of these secondary motions, we consider
the following quantities: (i) the normalized horizontal divergence at the surface
(z = 1)

∆(t) =

∫

AH

|∇ · v(x, y, 1, t)| dxdy
∫

AH

∣

∣

∣
k̂ ·∇× v(x, y, 1, t)

∣

∣

∣
dxdy

, (6.10)

(as previously used by Akkermans et al., 2008a) and (ii) the normalized kinetic
energy of the vertical velocity component in the vertical symmetry plane y = 0

Qz(t) =

∫

AV

w2(x, 0, z, t)dxdz

∫

AV

u2(x, 0, z, t)dxdz

(6.11)

(as previously used by Sous et al., 2004), where AH is the horizontal area of the

numerical domain; AV is the area of the vertical symmetry plane, and k̂ is the
unit vector in the z direction. In particular, we focus on the maximum in time of
these two quantities: max(∆) and max(Qz).

The surface z = 1 was chosen to evaluate the horizontal divergence ∆ since w =
0 on this plane, and hence, the divergence is the only signature of the secondary
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Figure 6.1 – Relative strength of the secondary motions with respect to that of the
primary motion: (a) maximum of the horizontal divergence at the surface as a function of
δ2Re; (b) maximum of the kinetic energy of the vertical velocity component in the vertical
symmetry-plane as a function of δ3Re. The symbols denote simulations for different values
of Re and δ = 0.1 (◦), δ = 0.2 (×), δ = 0.3 (∗), and δ = 0.7 (�). The solid lines represent
the different scalings.

motions. Similarly, in the vertical symmetry plane (y = 0), the vertical velocity is
the only signature of the secondary motions.

To quantify the strength of the secondary motions in an axisymmetric mono-
polar vortex, the flow can be easily decomposed, using cylindrical coordinates, into
the primary motion in the azimuthal direction and secondary motions in the radial
and vertical directions (see e.g. Satijn et al., 2001; Duran-Matute et al., 2010). For
the case of the monopolar vortex, the horizontal divergence is related to the radial
velocity, and hence, it only depends on δ2Re for δ ≪ 1. On the other hand, the
magnitude of the vertical velocity only depends on δ3Re (see Duran-Matute et al.,
2010).

Figure 6.1(a) shows the maximum of the horizontal divergence, max(∆), as a
function of δ2Re. A collapse of the curves for δ = 0.1, δ = 0.2, and less clearly
for δ = 0.3 is observed. This collapse indicates — as for the monopolar vortex
(Duran-Matute et al., 2010) — that shallow dipoles are characterized by only
one nondimensional parameter: δ2Re, provided that δ ≪ 1. However, the results
given by simulations with δ = 0.7 do not collapse with the curves described by
the results for simulations with δ = 0.1, 0.2 since δ = 0.7 is not small enough
(i.e. the flow is not shallow enough) for the flow evolution to depend solely on the
parameter δ2Re. In addition, the graph clearly shows the existence of a scaling
regime for δ2Re . 6 where max(∆) ∝ δ2Re. In comparison with a monopolar
vortex, the scaling max(∆) ∝ δ2Re implies that the flow is dominated by viscosity
in this regime and that the secondary motions can be neglected. On the other
hand, inertia dominates over viscous forces outside this regime.

In figure 6.1(b), the maximum of the kinetic energy associated with the ver-
tical velocity max(Qz) is plotted as a function of δ3Re. Again, a good collapse is
observed for the results of the simulations with δ = 0.1, 0.2 and 0.3, indicating
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Figure 6.2 – Numerically obtained kinetic energy decay at the surface z = 1 for three
different simulations with δ = 0.2: Re = 50 (◦), Re = 200 (�), and Re = 500 (♦).

that the magnitude of the vertical velocity depends only on δ3Re. In contrast, the
results from the simulations with δ = 0.7 do not collapse to the same curve. As
for the monopolar vortex (Duran-Matute et al., 2010), a scaling regime is found
for δ3Re . 1 although the exponent is somewhat larger for the dipolar vortex.
Outside this scaling regime, the secondary motion cannot be neglected, and hence
the flow must be considered as 3D.

A few simulations with different initial vertical profiles, including a vertical
profile that is independent of the vertical coordinate, were performed. It was ob-
served that the scaling in the viscosity-dominated regime is independent of the
initial vertical velocity profile. In contrast, the trend in outside this regime does
depend on the initial vertical velocity profile. However, the viscous regime and
the inertia-dominated regime never show the same scaling, implying that the two
regimes are easily distinguishable.

To further characterize the flow, we calculate the typical decay time τD by
fitting an exponential decay to the normalized kinetic energy associated to the
horizontal velocity components at the surface z = 1

E(t)

E0
=

∫

AH

[u2(x, y, 1, t) + v2(x, y, 1, t)]dxdy

∫

AH

[u2(x, y, 1, 0) + v2(x, y, 1, 0)]dxdy

. (6.12)

The decay time τD is then compared with the Rayleigh decay time

τR =
4

π2
δ2Re, (6.13)

[equivalent to 4H2/(π2ν) in dimensional units] being the typical decay time for
shallow flows dominated by bottom friction (Satijn et al., 2001; Paret et al., 1997).

Figure 6.2 shows the normalized kinetic energy as a function of time (normal-
ized by the Rayleigh decay time τR) for δ = 0.2 and Re = 50, 200 and 500. By
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fitting an exponential curve to the evolution of the kinetic energy, it can be seen
that for small Reynolds numbers (e.g. Re = 50), the characteristic decay time
τD ∼ τR/1.2 is close to the Rayleigh decay time. However, as the Reynolds num-
ber increases and the flow becomes 3D, the decay time becomes much shorter:
τD ∼ τR/1.4 for Re = 200 and τD ∼ τR/2.2 for Re = 500. For Re = 50 the
difference between τD and τR is probably due to horizontal diffusion, which en-
hances the viscous decay. However, for larger values of Re, the difference between
τD and τR is due to the 3D dynamics of the flow: the advection of fluid by the
secondary motion towards a thin boundary layer at the bottom. This advection
increases the damping rate, like the Ekman boundary layers do for flows subjected
to background rotation; see, for example, Pedlosky (1987).

6.3.2 Flow regimes for shallow dipolar vortices

For the simulations of shallow dipoles (δ = 0.1, 0.2, 0.3), three qualitatively differ-
ent flow regimes were observed in the range of Re-values investigated. Since the
characteristics of shallow dipoles depend exclusively on the value of δ2Re, we base
the description of the different regimes on the simulations with δ = 0.2, which
are characteristic for simulations with other aspect ratios much smaller than unity
(e.g. δ = 0.1 and 0.3). As δ approaches unity (e.g. δ = 0.7), the characteristics of
the flow depend both on the values of δ and Re; it is not within the scope of the
current work to analyze such cases.

The description of the three regimes for shallow dipoles is mainly based on
their 3D structure. To determine this structure, we used the λ2 vortex detection
criterion proposed by Jeong & Hussain (1995) that allows to find the locations of
local pressure minima in the flow that correspond to the presence of vortices. This
detection criterion consists in calculating the real eigenvalues λ1 ≥ λ2 ≥ λ3 of the
symmetric tensor S2 +Ξ2, where S and Ξ are the symmetric and antisymmetric
components of∇v, respectively. Then, the sectional pressure minimum induced by
a vortex corresponds to regions where the second eigenvalue of S2+Ξ2 is negative:
λ2 < 0. Hence, the 3D boundary of a vortical structure is given by the isosurface
λ2 = 0. For more details see also Wu et al. (2006).

Quasi-two-dimensional (Q2D) flow regime (δ2Re . 6)

Figure 6.3 shows the evolution of the dipolar vortex for a simulation corresponding
to Re = 50 and δ = 0.2 (δ2Re = 2). In the top row of figure 6.3, colors denote the
magnitude of the vertical vorticity ωz and the black contour denotes the boundary
of the vortex dipole as given by λ2-criterion for t = 0.5, 1, and 2 at the surface
(z = 1). As can be seen from the vertical vorticity ωz distribution, the structure of
the vortex dipole remains coherent. This is also reflected by the boundary of each
vortex core, which describes approximately a circle throughout the flow evolution.
In fact, only a weak increment, due to diffusion, in the size of the structure can
be perceived.
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Figure 6.3 – Evolution of a dipolar vortex at the surface (z = 1) for a simulation with
Re = 50 and δ = 0.2 (δ2Re = 2) at times t = 0.5, 1, and 2. Top row: the color denotes
the vertical vorticity component ωz, and the black contour denotes the boundary of the
vortex cores given by the λ2 = 0 isoline. Lower row: the color denotes the horizontal
divergence and the black lines denote the flow lines tangential to the horizontal velocity
components in the reference frame co-moving with the vortex dipole.

In the lower row of figure 6.3, the colors denote the horizontal divergence
(∂u/∂x+ ∂v/∂y) and the black lines indicate the flow lines tangential to the hor-
izontal velocity components in the reference frame co-moving with the dipolar
vortex. By comparing the top and lower rows in figure 6.3, it can be observed
that, at the surface (z = 1), the positions of the primary vortex cores delineated
by the λ2 = 0 isoline correspond to areas of positive horizontal divergence. It is al-
ready known that a vortex with its rotation axis normal to a solid bottom induces
an upwelling from the Bödewadt boundary layer into the vortex core (Bödewadt,
1940). Then, this upwelling induces a radial diverging flux at the surface. Down-
welling areas are associated with converging fluxes, which are found close to the
saddle type stagnation points at the front and at the rear of the dipolar vortex on
its symmetry axis.

In the lower row of figure 6.3, the instantaneous flow lines tangential to the
horizontal velocity components define quasi-closed loops around a focal point cor-
responding to the vertical vorticity extrema. This suggests that the flow is mainly
horizontal and that the upwelling is negligible when compared to the primary
dipole. Thus, the flow at the surface suggests that the dipolar vortex with Re = 50
and δ = 0.2 remains Q2D during its lifetime.

Figure 6.4 shows the spanwise vorticity ωy in the vertical symmetry plane of
the dipolar vortex (y = 0) at times t = 0.5, 1, and 2 for the simulation with
Re = 50 and δ = 0.2 (δ2Re = 2). From the contours of ωy, it can be seen that
the flow structure in the vertical symmetry plane barely changes in time. Only at
early times (t ≈ 0.5), a small deviation from the initial shape is observed.

In figure 6.5, the 3D structure of half of the vortex dipole is illustrated by the
λ2 = 0 isosurface at time t = 1 for two simulations : one simulation with Re = 50
and δ = 0.2 (δ2Re = 2) and one with Re = 25 and δ = 0.3 (δ2Re = 2.25). In
this figure, it is clear that the vortex structure is 2D (independent of the vertical
coordinate) even though the velocity field itself is 3D. All along its evolution, the
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Figure 6.5 – 3D structure of half of the dipolar vortex (y > 0) for two simulations
at time t = 1. Left: Re = 50 and δ = 0.2 (δ2Re = 2). Right: Re = 25 and δ = 0.3
(δ2Re = 2.25). The structure is given by the isosurface λ2 = 0 following the λ2-criterion.
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Figure 6.6 – Same as in figure 6.3, except for a simulation with Re = 200 and δ = 0.2
(δ2Re = 8).

dipolar vortex maintains this 2D structure. The described characteristics can also
be observed for other small values of δ and similar values of δ2Re, as shown, for
example, in figure 6.5 for the simulation with δ = 0.3 and δ2Re = 2.25.

Transitional flow regime (6 . δ2Re . 15)

Figure 6.6 shows the evolution of the dipolar vortex obtained from a simulation
with Re = 200 and δ = 0.2 (δ2Re = 8). Color coding and black lines have the
same meaning as in figure 6.3. As can be observed, the vorticity extrema no longer
correspond with the primary vortex centroids. Instead, they are found at the front
of the dipolar vortex and close to its symmetry axis. In the frontal region, the
vertical vorticity extrema extend along the boundary of the dipolar vortex specially
at late times (e.g. t = 1 and t = 2). However, the area bounded by the λ2 = 0
isoline remains coherent.

In the lower row of figure 6.6, it can be seen that, as for the Q2D regime, there
exists a patch of positive divergence at each of the cores of the dipolar vortex.
The presence of this horizontal divergence can be observed in the form of the
flow lines spiraling out of the primary vortex centroids suggesting the existence
of a secondary flow that cannot be neglected. In addition, there exist two patches
of converging flow (negative horizontal divergence) corresponding to downwelling
areas. These areas are found along the axis of the dipolar vortex as well as in front
of the dipole. In the positive divergence areas, vertical vortex tubes just below
the surface are compressed, while in the negative divergence areas the vertical
vortex tubes are stretched by the secondary motion. This stretching/compression
mechanism is responsible for the local vorticity maxima in the negative divergence
area.

Figure 6.7 shows the distribution of spanwise vorticity ωy in the vertical sym-
metry plane of the vortex dipole (y = 0) at times t = 0.5, 1, and 2 for the
simulation with Re = 200 and δ = 0.2 (δ2Re = 8). In this flow regime, we observe
a viscous boundary layer, which is generated by the dipolar vortex propagating
above the solid bottom and which is characterized by high spanwise vorticity close
to the bottom. Then, fluid with high spanwise vorticity from the boundary layer
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Figure 6.8 – Same as in figure 6.5, except for the simulations with Re = 200 and δ = 0.2
(δ2Re = 8) (left) and with Re = 89 and δ = 0.3 (δ2Re = 8) (right).

is entrained towards the front of the dipole and forms a frontal circulation at
mid-depth. In the current regime, this region of spanwise vorticity exists during
most of the evolution, and at intermediate times (t ≈ 1), a spanwise vortex is
detected by the λ2-criterion. The formation of the spanwise vortex can be partly
attributed to vortex stretching in the spanwise direction, ωy∂v/∂y, which is of
particular importance at the front of the dipole along its separatrix. Shortly after
its appearance, the spanwise vortex vanishes as viscous effects start to dominate
over vortex stretching due to decay of the dipolar vortex. At t = 2, a patch of
spanwise vorticity remains at the front of the dipole, but this vorticity patch is no
longer a vortex.

Figure 6.8 shows the isosurface of the 3D λ2-criterion for two simulations with
δ2Re = 8 and two different values of δ (δ = 0.2 and 0.3) at time t = 1. Here, the
structure defined by the λ2-criterion contains both the primary vortex and the
spanwise vortex at the front of the dipole. In figure 6.8, the λ2 = 0 isosurface is
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Figure 6.9 – Same as in figure 6.3, except for a simulation with Re = 500 and δ = 0.2
(δ2Re = 20).

a coherent column as for the Q2D regime. However, the circular horizontal cross
section is distorted due to the presence of the spanwise vortex and other 3D effects.
In this figure, apparently, the flow structure is similar for different small values of
δ and the same value of δ2Re.

Three-dimensional (3D) flow regime (δ2Re & 15)

Figure 6.9 shows the evolution of the dipolar vortex for the simulation with Re =
500 and δ = 0.2 (δ2Re = 20). Color coding and black lines have the same meaning
as in figure 6.3. For this regime, as in the transitional one, the local vorticity
extrema are found close to the axis of the dipolar vortex and at its front where
they extends along its boundary. However, due to the stronger concentration of
vorticity at the edges of the dipole, the λ2 = 0 isoline at the surface loses its
circular shape. The boundary given by the λ2-criterion becomes first an annulus
and then an elongated structure that surrounds the cores of the dipolar vortex. In
this regime, the boundary of the vortices at the surface, given by the λ2 = 0 isoline,
indicates an important modification of the primary structure in comparison with
the previous regimes.

In the lower row of figure 6.9, it can be seen that the horizontal divergence field
is again composed of two patches of positive divergence in the cores of the dipolar
vortex and two patches of converging flow: one along the axis of the dipolar vortex
dipole and another at its front. As in the previous regime, the presence of this
horizontal divergence can be observed in the form of the flow lines spiraling out
of the primary vortex centroids suggesting the existence of a secondary flow that
cannot be neglected.

Figure 6.10 shows the distribution of spanwise vorticity ωy in the vertical sym-
metry plane (y = 0) of the vortex dipole at times t = 0.5, 1 and 2 for the simulation
with Re = 500 and δ = 0.2 (δ2Re = 20). The magnitude of the spanwise vorticity
in the vertical symmetry plane is much higher than the vertical vorticity of the
primary vortex. As in the transitional regime, there is a viscous boundary layer
close to the bottom below the primary vortex and a patch of spanwise vorticity ωy

at the front of the dipole at approximately mid-depth. The λ2-criterion detects the
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Figure 6.10 – Same as in figure 6.4, except for a simulation with Re = 500 and δ = 0.2
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Figure 6.11 – Same as in figure 6.5, except for the simulations with Re = 500 and
δ = 0.2 (δ2Re = 20) (left) and Re = 222 and δ = 0.2 (δ2Re = 20).

presence of a spanwise vortex, which develops after some time (see time t = 1 and
2 in figure 6.10). In comparison to the transitional regime, the spanwise vortex
is present for a longer time since viscous effects outside the boundary layer are
negligible as compared with inertia forces for a longer time.

Figure 6.11 shows the λ2 = 0 isosurface, outlining the boundary of the dipolar
vortex for y ≥ 0 at time t = 1 for two simulations with δ2Re = 20 and two different
values of δ (δ = 0.2, 0.3). Here again the volume defined by the λ2 = 0 isosurface
contains both the primary dipolar vortex and the spanwise vortex located at its
front. It can be seen that in this regime, the 3D structure of the vortex depends
strongly on the vertical direction: the shape is modified by the presence of the
spanwise vortex at mid-depth, and at the top, the vortex core is hollow.
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6.4 Laboratory experiments

6.4.1 Experimental setup

The experimental setup, shown schematically in figure 6.12, consists of a water
tank with a base of 50× 50 cm2 which is filled with a salt solution with a 178 g/l
concentration up to a depth of 0.5 cm. To force the flow, two titanium electrodes
are placed along two opposite sides of the tank, and one cylindrical magnet with
a 2.5 cm diameter is placed underneath the tank bottom. An electric current is
forced through the fluid using a power supply. Due to the interaction of this electric
current and the magnetic field of the magnet, a Lorentz force is generated

F = J ×B, (6.14)

with J the current density and B the magnetic field, by which the fluid is set
in motion. In the current study, the fluid is forced for 1 s, and then it is left to
evolve freely. The initial time t = 0 is taken to be at the end of the forcing period.
A similar forcing method has been previously used successfully to create dipolar
vortices in a shallow fluid layer (Akkermans et al., 2008a,b), which have an initial
radius similar to the diameter of the magnet: R0 ≈ 2.5 cm. In this way, the aspect
ratio of the dipoles is δ ≈ 0.2 for our experiments.

We consider the electric current to be homogeneous and running only in the
y-direction, while the main component of the magnetic field above the center of
the magnet is in the z-direction. Hence, the principal component of the Lorentz
force is in the x-direction, thus forcing a dipolar vortex that propagates in this
direction.

Particle Image Velocimetry (PIV) is used to measure the horizontal veloc-
ity field of the flow in a horizontal plane 3 mm above the bottom. The fluid is
seeded with 106–150 µm polymethylmethacrylate (PMMA) particles, which are
illuminated with a double pulsed Nd:YAG laser sheet. Images of a 12 × 9 cm2

area of the tank are taken using a Megaplus digital camera with a resolution of
1600×1200 pixels. Images at different time intervals are chosen, depending on the
maximum velocity of the flow. These are then cross-correlated using PIV software
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mm above the bottom) for three experiments at t = 1. The color denotes the vertical
vorticity ωz. The parameters for each experiment are shown above each panel.

from PIVTEC GmbH, Göttingen, Germany to calculate the horizontal velocity
field.

In the current chapter, results for three experiments are presented. These ex-
periments were performed with three different magnitudes of the electric current,
which resulted in three different values of the strength of the dipolar vortex. For
the experiment with the lowest electric current, a picture was taken every 200
ms. Then each picture was correlated with the following picture using the PIV
software. For the experiments with moderate and strong forcing, a pair of im-
ages was taken every 1/15 s, with a time interval between each picture of 10 ms
or 25 ms depending on the magnitude of the electric current. Then, each image
pair was correlated. The three experiments presented in this chapter correspond
to Re ≈ 50, 160, 390, and they are representative of each of the three regimes
described in the numerical study.

6.4.2 Experimental results

Figure 6.13 shows the vertical vorticity in the horizontal plane z = 0.6 at time
t = 1 for three experiments. In this figure, the vortex dipole can be easily dis-
tinguished. However, the primary vortex dipole is surrounded by weak vorticity
regions, which are typical of the forcing method employed and which are not found
in the results from the numerical simulations. Due also to the generation mech-
anism, the initial vertical profile of the horizontal velocity is not Poiseuille-like
as in the simulations. Instead, the horizontal velocities are stronger close to the
bottom than at the surface since the forcing is stronger at the bottom (i.e. closer
to the magnet)(Akkermans et al., 2008a). In spite of these differences, the re-
sulting evolution of the dipolar vortex in the laboratory experiments is in good
agreement with the evolution of the dipolar vortex in the numerical simulations.
This agreement indicates that the observed characteristics of the flow evolution
do not depend critically on the precise form of the initial condition. For example,
it can be observed that the dipolar vortex remains coherent for small values of
δ2Re (δ2Re ≈ 2.0), i.e. in the viscosity dominated regime. For intermediate values
of δ2Re (δ2Re ≈ 6.4), a slight elongation of the dipolar vortex can be observed
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with bands of vertical vorticity maxima close to the symmetry axis of the dipole.
Finally, for large values of δ2Re (δ2Re ≈ 15.6), the dipolar vortex is fully divided
into a band of high vorticity at the front and patches of high vorticity close to the
symmetry axis of the dipole.

Figure 6.14 shows the instantaneous flow lines tangential to the horizontal ve-
locity components in the reference frame co-moving with the dipole and the hori-
zontal divergence at t = 1 for the same three experiments as shown in figure 6.13.
For δ2Re ≈ 2.0, the horizontal divergence is very small and below the accuracy of
our measurements. Therefore, the horizontal divergence field is very noisy. On the
other hand, for intermediate values of δ2Re (δ2Re ≈ 6.4), two patches of positive
horizontal-divergence in the primary vortex cores indicate upwelling areas as in
the numerical simulations. Downwelling is clearly observed at the front and close
to the symmetry axis of the dipolar vortex. For large values of δ2Re (δ2Re ≈ 15.6),
the horizontal divergence distribution is the same as for intermediate values, ex-
cept in the frontal region of the dipolar vortex. In this region, two narrow bands of
horizontal divergence with opposite sign indicate the presence of a spanwise vor-
tex. In addition, the flow lines clearly spiral out from the primary vortex centroids
indicating the presence of non-negligible secondary motions.

The generation mechanism used in the experiments does not seem to have a
large effect on the overall characteristics of the flow evolution. For example, Lacaze
et al. (2010) performed one experiment where the dipole was generated using two
closing flaps with δ = 0.3 and δ2Re = 20 (this is the same value of δ2Re used in
the simulations presented for the 3D flow regime). In this experiment, the vorticity
extrema were found in bands at the front of the dipole and close to its symmetry
axis, and a strong spanwise vortex developed like also observed in our experiments
and numerical simulations.

We further characterize the flow by comparing the decay time τD of the vortex
dipole with the Rayleigh decay time τR in the same way as it was done for the
numerical simulations (see figure 6.15). The decay time for the Q2D flow (Re ≈ 50,
δ2Re ≈ 2.0) is close to the Rayleigh decay time: τD ∼ τR/1.2. However, as the
Reynolds number increases and the flow becomes 3D, the decay time becomes
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Figure 6.15 – Normalized kinetic energy as a function of time for the three experiments
in the horizontal plane z = 0.6 for three experiments with δ ≈ 0.2, and Re ≈ 50 (◦),
Re ≈ 160 (�), and Re ≈ 390 (♦). The solid lines are exponential fits.

much shorter: τD ∼ τR/1.6 for Re ≈ 160 and τD ∼ τR/2.2 for Re ≈ 390.

6.5 Discussion and conclusions

In the last decade, several studies have shown different results about the effects
of shallowness on the two-dimensionalization of flows. A good example is found in
the case of dipolar vortices (Sous et al., 2004, 2005; Akkermans et al., 2008b,a).
On one hand, shallowness seems to reduce vertical motions, but on the other hand,
complicated three-dimensional structures have been observed even for very shallow
flows.

In the present work, we explain the apparently contradictory results from pre-
vious studies by performing a detailed exploration of the parameter space (Re, δ)
both numerically and experimentally. It was found that the three-dimensionality
of shallow dipolar vortices strongly depends on both the Reynolds number Re and
the aspect ratio δ of the flow. However, for small values of δ (i.e. for shallow layers
of fluid), the relative strength of the secondary motion only depends on the prod-
uct δ2Re. This dependence on δ2Re and the existence of different flow regimes is
in agreement with previous results for the monopolar vortex (Duran-Matute et al.,
2010).

For shallow (δ ≪ 1) dipolar vortices and the range of Reynolds numbers inves-
tigated in this chapter, we observed three qualitatively different regimes:

1. Q2D flow regime. For low values of δ2Re (δ2Re . 6) the flow is dominated
by viscous effects and the secondary motions can be neglected. Note that,
even if the velocity field is z-dependent, the three-dimensional structure of
the dipolar vortex, given by the λ2-criterion, is clearly 2D in this regime (see
figure 6.5).

2. Transitional regime. For intermediate values of δ2Re (6 . δ2Re . 15),
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even if the vortex remains a coherent structure, secondary motions cannot
be neglected since they modify the primary dipolar vortex. In addition, a
spanwise vortex is observed at the front of the dipolar vortex. However, this
spanwise vortex is not strong enough to endure the viscous effects for a long
time.

3. 3D regime. For large values of δ2Re (δ2Re & 15) the distribution of the
vertical vorticity component is intrinsically modified. The initial coherent
horizontal distribution of vertical vorticity becomes ‘hollow’, with vorticity
extrema close to the axis of the dipole and at its front. The overall structure
of the dipole becomes three-dimensional due to strong secondary motions
(both in the primary vortex cores and in the spanwise vortex located at the
front of the dipole) that cannot be neglected.

The different initial conditions in both numerical and laboratory experiments
result in small quantitative differences in the position of the transition regime
in the parameter space. However, there is a strong qualitative similarity between
experimentally and numerically obtained shallow (δ ≪ 1) dipolar vortices. This
similarity suggests that the existence of the different flow regimes that depend only
on the value of δ2Re is a robust property of shallow dipolar vortices, irrespective
of the initial condition. A similar conclusion was reached for shallow monopolar
vortices (Duran-Matute et al., 2010). In this way, the three-dimensionalization of
shallow flows depending exclusively on the parameter δ2Re seems to be valid for
numerous kinds of shallow vortical flows.





Chapter 7

Stationary dipolar structurei

7.1 Introduction

Electromagnetic (EM) forcing of conducting fluids is non-intrusive, and for this
reason, it is an unparalleled tool for the study of a large variety of flows. In particu-
lar, EM forcing has been used in shallow layers of electrolytes to study, for example,
quasi-two-dimensional turbulence (Tabeling et al., 1991; Clercx et al., 2003), shal-
low vortices (Akkermans et al., 2008b), stability of shear flows (Dolzhanskii et al.,
1992), fully controllable multiscale flows (Rossi et al., 2006), and the principles of
stretching and folding in quasi-two-dimensional flows (Voth et al., 2002). In ad-
dition, research of this type of forcing has been motivated by its applications on
EM mixing and stirring in metallurgy (Davidson, 1999) and the enhancement of
turbulent heat transfer (Kenjereš, 2008).

Due to the many uses of EM forcing, it is of interest to characterize the re-
sponse of the flow to the forcing. In the case of a shallow layer of electrolyte,
Bodarenko et al. (1979) considered, in the first reported experiments of this kind,
that the induced fluid velocity is proportional to the magnitude of the EM forcing.
Tabeling et al. (1987) also observed a linear dependence but only up to a well-
defined forcing threshold. Above this threshold it was observed that the rate of
increase of the velocity with the forcing is smaller. Despite its limitations at rel-
atively strong forcing magnitudes, the linear relationship has been used in many
theoretical studies; see e.g. Dauxois et al. (1996) and Thess (1992).

In more recent experiments on a system of four vortices, the maximum velocity
was measured as a function of the forcing, and it was found that the deviations
from the linear dependence were small (Danilov & Dovzhensko, 1996). However,
the same experimental data were recently reanalyzed (Ponomarev et al., 2009), and
for relatively high forcing magnitudes, the maximum velocity seemed to scale with

iThe contents of this chapter, with minor modifications, have been submitted in the form of
a paper to Physical Review E.
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Figure 7.1 – Side view of the experimental setup. The hatched rectangles denote the
magnets below the tank.

the forcing than linearly but to the power 2/3; the latter behavior is in agreement
with theoretical results where secondary motions and different vertical velocity
profiles were taken into account. Figueroa et al. (2009) examined the structure of
a laminar dipolar vortex driven by a time-independent EM force in a shallow layer
of electrolyte. They observed that the maximum velocity in the flow as a function
of the forcing magnitude fits a second order polynomial. However, no physical
reason was given for such a fit.

It is the aim of the present paper to determine experimentally the scaling of
the magnitude of the flow velocity in a shallow layer of electrolyte forced elec-
tromagnetically as a function of the relevant parameters: the forcing magnitude
(which is characterized by the Chandrasekhar number Ch) and the aspect ratio
δ of the depth to the horizontal scale of the flow. In contrast with previous stud-
ies, we extend the parameter regime to strong forcing magnitudes and focus on
the underlying physical mechanisms associated with the different flow behaviors.
We quantify the response of the flow by measuring the horizontal velocity field
of a simple electromagnetically forced flow — a dipolar flow structure — while
exploring the parameter space. Two well-defined regimes were observed: the lin-
ear regime discussed previously and a regime where the velocity scales with the
magnitude of the forcing to the power 1/2. Furthermore, it is found that the flow
depends only on the parameter δ2Ch for the whole range of parameters studied.

The chapter is organized as follows. The experimental setup is described in
Section 7.2. Section 7.3 is devoted to the dimensional analysis of the problem. Sec-
tion 7.4 presents the experimental results. Then, in Section 7.5 the implications for
previous and future work are discussed, and finally, some conclusions are outlined
in Section 7.6.

7.2 Experimental setup

The experimental setup consists of a fluid tank with a base of 30×50 cm2, which is
filled with a salt solution with a concentration of 178 g l−1 to a depthH and covered
with a transparent perspex lid to avoid free-surface deformations (figure 7.1). To
force the flow, two titanium electrodes (coated with Ir-MMO) are placed along
two opposite sides of the tank, and three 28× 10× 1 cm3 rectangular permanent
magnets are placed 1.1 cm underneath the tank bottom. The electrodes are placed
in compartments which are connected to the measurement area of the tank by a
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Figure 7.2 – Top view of the experimental setup. The dashed lines represent the position
of the three magnets, and the dotted lines represent the limits of the measurement area.

system of thin horizontal slits through which the electric current easily passes. The
system of slits isolates the chemical reaction products generated at the electrodes
from the flow to be studied. As shown in figure 7.2, the magnet at the center has
its North Pole facing up, while the two side magnets have their North Pole facing
down. A constant electric current is applied through the fluid using a power supply
with a precision of 10−2 A. Due to the interaction of the electric current and the
magnetic field of the magnets, a Lorentz force,

F = J ×B, (7.1)

is generated (with J the current density and B the magnetic field), by which the
fluid is set in motion.

We define a Cartesian coordinate system x = (x, y, z) with the origin at the
center of the tank, x running parallel to the electrodes, y across the tank between
the electrodes, and z in the vertical direction. Furthermore, we define the flow
velocity v = (u, v, w).

We consider the electric current to be homogeneous and running only in the
y-direction, while the main component of the magnetic field is in the z-direction.
Hence, the principal component of the Lorentz force is in the x-direction.

To characterize the fluid, we consider two of its properties: the kinematic vis-
cosityii ν = 1.544 · 10−6 m2s−1 , and the density ρ = 1190 kg m−3, which are kept
constant for the experiments reported here.

We consider three characteristic length scales of the flow: the length of the tank
in the x direction, Lx = 30 cm, the distance between the centers of the two lateral
magnets, Ly = 30 cm, and the depth of the fluid H , which was varied for different
experiments, taking the values H = 1.2, 2.0 or 3.2 cm.

iiThe kinematic viscosity was measured for the solution used in the experiments at working
temperature 21◦C using a capillary viscometer 501 13 from Schott Instruments.
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The magnitude of the Lorentz force is characterized by [J ×B] = IB/(LxH),
where the brackets denote the order of magnitude, I is the magnitude of the electric
current through the fluid, and B = |B| is the magnitude of the magnetic field at
mid-depth above the center of each magnet.

Particle Image Velocimetry (PIV) was used to measure the horizontal velocity
field of the flow in a plane at mid-depth. The fluid was seeded with 106–150 µm
polymethylmethacrylate (PMMA) particles, which were illuminated at mid-depth
with a double pulsed Nd:YAG laser sheet. Images of the central 30 × 30 cm2

area of the tank (see figure 7.2) were taken, using a Megaplus ES 1.0 camera, at
different time intervals (ranging from 10 ms to 1.3 s) depending on the maximum
velocity in the flow. These images were then cross-correlated using PIV software
from PIVTEC GmbH, Göttingen, Germany to calculate the horizontal velocity
field.

To characterize the response of the flow, we focus on the velocity in the x-
direction — in the direction of the principal component of the forcing — at y = 0.
From now on, we refer to this velocity distribution as ũ(x) which, as we shall see,
corresponds to the velocity distribution along the symmetry axis of the dipolar
structure at y = 0. Furthermore, we consider the mean value of this distribution

〈ũ(x)〉 ≡ 1

Lx

∫ Lx/2

−Lx/2

ũ(x)dx (7.2)

as the characteristic velocity scale.

7.3 Dimensional analysis

Dimensional analysis shows that four independent dimensionless parameters can
be defined for this flow problem. The geometry of the tank is represented by two
aspect ratios:

δ ≡ H

Lx
and δL ≡ Lx

Ly
, (7.3)

whereas the Chandrasekhar number

Ch ≡ IBH

ρν2
(7.4)

characterizes the forcing and represents the ratio of the Lorentz force to the viscous
force. Note that the definition of Ch introduced here is different from the one
originally used by Chandrasekhar (1961). In the original definition, the current
density J is considered to be primarily driven by v × B in Ohm’s law, but in
the present work, J is given by J = I/(LxH)̂ (with ̂ the unit vector in the
y-direction) since the induced effects can be neglected and the imposed Lorentz
force dominates in electrolytes (Figueroa et al., 2009). This is not the case for
other conductive fluids such as liquid metals (see e.g. Klein et al., 2009).
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A similar definition for the ratio of Lorentz to viscous forces (7.4) is commonly
referred to as the Reynolds number based on the external force (see e.g. Batchaev,
1990). However, in this study the term Reynolds number is reserved for the pa-
rameter characterizing the response of the flow, which is here defined as

Re ≡ 〈ũ〉Lx

ν
, (7.5)

with 〈ũ〉 the mean velocity, and which represents the ratio of inertia forces to
viscous forces.

In the experiments, the aspect ratio δ was set by the depth of the fluid, yielding
the values δ = 0.040, 0.067 and 0.107. For each value of δ, the Chandrasekhar
number Ch was varied by changing the magnitude of the electric current. The
magnitude of the magnetic field at mid-depth above the center of each magnet B
then takes the values B = 0.018, 0.017 and 0.015 T for the different values of δ,
respectively. In the experiments described here, the horizontal aspect ratio δL = 1
is kept constant.

We consider the flow to be governed by the Navier–Stokes equation including
the Lorentz force

ρ
∂v

∂t
+ ρ(v ·∇)v = −∇p+ ρν∇2v + J ×B, (7.6)

where p is the pressure. From here on, the first term will be neglected since the
flow attains a stationary state in the range of parameters studied.

To analyze the possible balances of forces in the flow, we consider the order of
magnitude of each term in (7.6), where the pressure term is considered to be of the
same order as the largest term in the equation. From this analysis, two different
regimes are obtained.

7.3.1 Viscous regime

Due to the small depth, and hence, the predominance of friction at the bottom
and the lid, we assume initially a Poiseuille-like vertical profile for the horizontal
velocity field, i.e.

u(x, y, z) = u∗(x, y) sin
(πz

H

)

, (7.7)

where sin(πz/H) is the first term of the Fourier expansion of a Poiseuille profile.
In this way, the order of magnitude of the viscous force is given by

[ρν∇2v] ≈
[

ρν
∂2v

∂z2

]

∼ π2ρν〈ũ〉
H2

, (7.8)

considering that ∂/∂z ≫ ∂/∂x.
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The magnitude of the Lorentz force is given by

[J ×B] =
IB

LxH
, (7.9)

as mentioned before.
For relatively weak forcing and correspondingly small Reynolds numbers, in-

ertia can be neglected, and the dominant balance is between the Lorentz and the
viscous forces, i.e.

IB

LxH
∼ π2ρν〈ũ〉

H2
, (7.10)

which is equivalent to

Re ∼ Ch

π2
. (7.11)

7.3.2 Advective regime

The order of magnitude of the advective term is given by

[ρ(v ·∇)v] ∼ ρ〈ũ〉2
Lx

, (7.12)

where the velocity is considered to be of order 〈ũ〉, and Lx is taken as the charac-
teristic length scale since advection takes place mainly in the horizontal plane.

For relatively strong forcing and correspondingly large Reynolds numbers, we
may assume that the Lorentz force is of the same order as the inertia forces, so
that

IB

LxH
∼ ρ〈ũ〉2

Lx
, (7.13)

which is equivalent to

Re ∼ Ch1/2

δ
. (7.14)

In addition, we should recall that the flow is stationary, and hence, the input of
energy due to the forcing has to be balanced by viscous dissipation. This means
that the viscous forces in (7.6) must be also of the same order as the Lorentz forces,
which cannot be achieved if the velocity has a Poiseuille-like vertical profile. That
is, the presumption of (7.7) that the vertical gradient of the velocity is proportional
to 〈ũ〉/H is not valid in the advective regime. Hence, we assume that the velocity
varies on a scale h such that

[ρν∇2v] ≈
[

ρν

h2
∂2v

∂z′2

]

∼ ρν〈ũ〉
h2

, (7.15)
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where h < H/π. Finally, the balance of inertia and viscous forces yields the typical
value

h ∼ H

δRe1/2
(7.16)

for the vertical length scale h.

7.3.3 Transition between the viscous and advective regimes

The transition between the viscous regime and the advective regime is character-
ized by a change in the scaling of the Reynolds number as a function of the forcing.
In this transition,

Re ∼ Ch1/2

δ
∼ Ch

π2
, (7.17)

which implies that the transition occurs when

δ2Re ∼ δCh1/2 ∼ π2. (7.18)

Note that, at this point, the critical value for the length scale h′,

h ∼ H

π
, (7.19)

can be obtained by comparing the magnitudes of the viscous forces in the advective
and viscous regimes.

It is then convenient to define the normalized length scale

h∗ =
πh

2
, (7.20)

which can be regarded as the thickness of the boundary layers that form next
to the bottom and the lid in the advective regime. This would imply that the
transition occurs when the thickness of the boundary layer h̄ is of the same order
of half the total depth H , i.e. when

h∗

H
∼ π

2Re1/2δ
∼ 1

2
, (7.21)

and that in the advective regime, the thickness of the boundary layer h∗ is smaller
than half the total fluid depth.

7.4 Experimental results

Figure 7.3(a) shows characteristic flow lines tangential to the instantaneous hor-
izontal velocity components in the measurement plane for Ch = 1.3 · 103 and
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Figure 7.3 – Flow lines tangential to the horizontal velocity components at mid-depth
in the central 30 × 30 cm2 region of the tank for (a) Ch = 1.3 · 103, (b) Ch = 8.8 · 105,
and δ = 0.067. The dashed line represents the line x = 0.

δ = 0.067. As can be seen, the forcing generates a dipolar structure with a symme-
try axis y = 0. Apparently, for this value of Ch, the dipole is also nearly symmetric
with respect to the line x = 0.

Figure 7.3(b) shows the flow lines for Ch = 8.8 ·105, with the other parameters
unchanged. A clear difference is observed between the flow lines in Fig. 7.3 (a) and
figure 7.3(b). In particular, the flow lines for strong forcing spiral out of the vortex
cores, in contrast with the quasi-closed flow lines for weak forcing. This suggests
that there is a strong horizontal divergence for large Ch values. This divergence is
due to pumping of fluid from the Bödewadt boundary layers at the bottom and
at the lid to the inside of the vortex cores (Bödewadt, 1940). In addition, there
is a strong asymmetry with respect to the line x = 0 for Ch = 8.8 · 105. This
asymmetry can be seen, for example, in the positions of the centers of the two
cells which are no longer close to x = 0, but displaced in the positive x-direction.

To quantify some of the differences in the flow at different values of the forcing,
we focus on ũ(x), the velocity distribution along the symmetry axis of the dipolar
structure at y = 0. Figure 7.4 shows the velocity distributions ũ(x) for different
values of Ch and δ = 0.04. It can be seen that the magnitude of ũ increases with
increasing Ch-value, and that the asymmetry in this velocity distribution with
respect to x = 0 becomes more pronounced for large Ch-values.

Measured values of the Reynolds number Re, based on (7.5), are plotted in
figure 7.5 as a function of the Chandrasekhar number Ch for three different values
of the aspect ratio δ. The axes have been rescaled with δ2, and as can be seen, the
curves for the different values of δ collapse. Furthermore, the experimental results
are compared with the theoretical predictions Re ∼ Ch/π2 and Re ∼ δ−1Ch1/2.
The graph clearly shows the existence of the two characteristic scaling regimes:
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Figure 7.4 – Measured velocity distributions ũ(x/Lx) at y = 0 for different Ch-values,
and δ = 0.04.
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Figure 7.5 – Magnitude of the response of the flow as a function of the forcing. Measured
values of δ2Re as a function of the parameter δ2Ch for various values of Ch, and δ = 0.040
(◦), δ = 0.067 (�), δ = 0.107 (♦). The dashed line represents Re = Ch/π2 (viscous
regime) and the dotted line represents Re = δ−1Ch1/2 (advective regime). The intersec-
tion of the dashed and dotted lines represents the transition point δ2Re = δCh1/2 = π2.
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Figure 7.6 – Measured asymmetry parameter q as a function of the input parameter
δ2Ch, for δ = 0.04 (◦), δ = 0.067 (�), δ = 0.107 (♦). The dashed line represents the
transition value Chδ2 = π4.

(i) Re ∼ Ch/π2 for δCh1/2 < π2 and δ2Re < π2, where the inertia forces can be
neglected, and (ii) Re ∼ δ−1Ch1/2 for δCh1/2 = δ2Re > π2, where the Lorentz and
the inertia forces are of the same order. Furthermore, a rather sharp transition is
observed at δ2Re ∼ δCh1/2 ∼ π2.

The collapse of the curves in figure 7.5 for different δ values indicates that the
only two relevant parameters of the problem are: δ2Ch, as the input parameter,
and δ2Re, as the response parameter. Note that δ2Re is inversely proportional to
the square of the boundary layer thickness h∗ defined in (7.20). This suggests that
the dynamics of the flow are governed by the boundary layer dynamics. In a recent
study of decaying shallow swirl flows (Duran-Matute et al., 2010), it was shown
that such flows are also characterized by the nondimensional parameter δ2Re.

It can also be observed in figure 7.5 that for the deepest layer (δ = 0.107), there
is a larger deviation with respect to the curve Re = Ch/π2 as compared to the
results from experiments with shallower layers. This deviation can be explained
by the larger importance of horizontal viscous diffusion compared to the vertical
viscous diffusion as the depth of the layer is increased.

The existence of the two scaling regimes is a very robust characteristic of the
flow studied in the present chapter: the same scaling was found when considering
additional velocity data at other locations instead of only the velocity along the
symmetry axis of the dipole at y = 0.

To quantify the asymmetry in the flow, we define the ratio of the Reynolds
number Re+ characterizing the flow at x > 0 and the Reynolds number Re− for
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x < 0:

q ≡ Re+

Re−
=

∫ Lx/2

0

ũ(x)dx

∫ 0

−Lx/2

ũ(x)dx

, (7.22)

which is plotted in figure 7.6 as a function of δ2Ch for δ = 0.04, 0.067, and 0.0107.
A reasonably good collapse of the experimental data for the three values of δ is
observed, supporting the previous result that the flow only depends on the values
of δ2Ch. For δ2Ch . 30, the asymmetry parameter q ≈ 1. This suggests that the
flow is almost symmetric with respect to x = 0. As the value of Ch increases, q
sharply increases until Ch ≈ 103. For Ch & 103, the asymmetry in the flow remains
almost constant with q ≈ 1.7. This saturation of q is probably due to the presence
of the lateral boundary at x = Lx/2 since ũ(Lx/2) = 0, and hence, the maximum
of ũ(x) must remain at a finite distance away from this boundary.

Note that the transition between q ≈ 1 and q ≈ 1.7 corresponds to the change
in scaling between the viscous and the advective regimes shown in figure 7.5. Hence,
it can be concluded that the increase in asymmetry is due to advection.

7.5 Implications for previous and future work

Shallow flows are generally modeled with the quasi-two-dimensional (Q2D) Navier–
Stokes equation (Dolzhanskii et al., 1992):

∂vH

∂t
+ (vH ·∇H)vH = −1

ρ
∇Hp+ λvH +

F

ρ
, (7.23)

and the continuity equation

∇H · vH = 0 (7.24)

where

∇H ≡
(

∂

∂x
,
∂

∂y

)

;

vH = (u, v) is the horizontal velocity; F is an external body force, and λ is a con-
stant known as the external friction parameter or the Rayleigh friction parameter.
Over the years, many different expressions have been suggested for the friction
parameter: λ = 2ν/H2 (Dolzhanskii et al., 1990), λ = π2ν/(4H2)(Hansen et al.,
1998; Duran-Matute et al., 2010), or λ = 2κν/H2 where κ is a fitting parame-
ter that depends on the velocity field (Bodarenko et al., 1979; Dolzhanskii et al.,
1992; Danilov & Dovzhensko, 1996). In these cases, H is the total depth of the
fluid between a solid bottom and a free surface, instead of between a solid bottom
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and a solid lid, as considered in the current paper. In general, a good agreement
has been found between theory and experiments. These observations have lead to
believe that the use of a linear damping term to parametrize the effect of bottom
friction in shallow flows is well supported.

However, in the current chapter, we have found the well-defined limit δ2Ch =
π4 for the use of (7.23) and (7.24) to model electromagnetically forced shallow
flows. Above this limit, the damping rate due to bottom friction depends on the
thickness of the boundary layer which, in turn, depends on the magnitude and
distribution of the horizontal flow velocity.

In previous experiments on electromagnetically shallow flows, only the linear
relationship between the forcing and the velocity has been reported, even though
small deviations for strong forcing were also observed (see e.g. Tabeling et al.,
1987). This implies that these experiments where performed mostly within the
viscous regime, thus supporting previous experimental results.

Due to the success of (7.23) and (7.24) in describing shallow flows, this system
of equations has been solved numerically to model an electromagnetically forced
array of vortices in a shallow layer of electrolyte (Nakamura, 1996). In these sim-
ulations, the magnitude of the forcing was varied while λ was kept constant. For
small forcing magnitudes, a good agreement with laboratory experiments was ob-
tained, and a threshold equivalent to δ2Ch = π4 at which the vortices changed
shape was observed. However, for stronger forcing magnitudes the numerical simu-
lations started to differ significantly from the experimental data. This discrepancy
can be easily explained since above the threshold δ2Ch = π4 the damping rate
depends on the forcing, and λ is no longer a constant.

In addition, for δ2Ch > π4, the flow lines tangential to the horizontal velocity
describe spirals originating at the vortex cores. This shape suggests a strong hor-
izontal divergence, in disagreement with (7.24). In fact, it is for this type of flows
with curvilinear flow lines tangential to the horizontal velocity vectors and an addi-
tional secondary motion that Ponomarev et al. (2009) proposed that Re ∝ Ch2/3.
However, in our experiments, a clear regime with this scaling was not observed.

7.6 Conclusions

We studied experimentally the response of a generic electromagnetically forced
flow. This response was quantified by measuring the Reynolds number Re as a
function of the Chandrasekhar number Ch (the ratio of Lorentz forces to viscous
forces). We found two scaling regimes: Re ∼ Ch/π2 (viscous regime) and Re ∼
δ−1Ch1/2 (advective regime), with a transition at δ2Re ∼ δCh1/2δ ∼ π2. This
scaling is in good agreement with our theoretical predictions.

The transition between the two regimes is related to a qualitative change of
the vertical velocity profile: from a Poiseuille-like profile in the viscous regime
to a profile composed, in the advective regime, of an inviscid interior and two
boundary layers, one at the bottom and one at the lid, each with a thickness
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h∗ = πH/(2δRe1/2). This transition marks the upper limit for the magnitudes of
the forcing and the velocity where the Q2D Navier–Stokes equation (7.23) and the
2D continuity equation (7.24) can be used to model shallow flows.

Furthermore, it was found that the flow evolution is characterized by a single
parameter, δ2Re. Such a conclusion had already been reached by Dolzhanskiy
(1987) for the viscous regime where the flow is described by (7.23) and (7.24).
However, it has been shown in the current chapter that this dependence extends
to the advective regime.

In the particular case of the dipolar structure studied here, nonlinear effects
are reflected in the form of an asymmetry due to the self-advection of the two
vortices composing the dipole, as it had been previously observed (Figueroa et al.,
2009; Danilov & Dovzhensko, 1996). These nonlinear effects, in the form of vortex-
vortex interactions, can be already observed for δ2Ch & 30 as inertia forces become
increasingly important, and are predominant in the advective regime when Re ∼
δ−1Ch1/2, i.e. for δ2Ch > π4.

The current chapter presents new insight into the structure and dynamics of
electromagnetically forced shallow flows in a shallow layer of electrolyte. The re-
sults presented can serve as a guideline for future experimental and numerical
work on, for example, shallow flows, quasi-two-dimensional turbulence, or the sta-
bility of quasi-two-dimensional spatially periodic flows. Another interesting line
for future research is the study of the response of the flow to the electromagnetic
forcing in other conductive fluids such as liquid metals, which are of interest in
metallurgical processing applications.





Chapter 8

Stationary dipolar structure
with background rotation

8.1 Introduction

In attempts to obtain quasi-two-dimensional (Q2D) flows in the laboratory in
order to study two-dimensional (2D) turbulence, experimentalists have recurred to
background rotation (Afanasyev & Wells, 2005; Tenreiro et al., 2010) although less
frequently than to shallow fluid layers. Strong enough background rotation tends
to reduce the vertical gradients in the direction of the axis of rotation and the flow
organizes in columnar structures (Hopfinger, 1982). However, Ekman boundary
layers, which form next to the boundaries perpendicular to the axis of rotation,
drive a vertical motion through what is called Ekman pumping (see Pedlosky,
1987). If linear Ekman theory holds, the vertical motion can be parametrized with
a linear damping term in the 2D vorticity equation, so that the evolution of a
freely evolving flow on a cross-section perpendicular to the axis of rotation can be
modeled by

Dωn

Dt
= −λEkωn, (8.1)

where ωn is the vorticity component parallel to the axis of rotation of the system,
and λEk = (Ων)1/2/H is known as Ekman friction with Ω the rotation rate of the
system, ν the kinematic viscosity, and H the depth of the fluid.

It is commonly assumed that (8.1) holds if the Rossby number Ro — which
represents a ratio of the convective acceleration to the Coriolis acceleration — is
small compared to unity.

Ekman boundary layer theory rests on the balance of viscous forces and the
Coriolis force within the boundary layer. This theory is only valid a priori for
flows that are not subjected to an additional non-conservative external body force,

113



114 Stationary dipolar structure with background rotation

such as (EM) electromagnetic forces, since this could disrupt the balance of forces
necessary for Ekman theory to hold. Although time-independent electromagnetic
forcing has been recently used to drive flows subjected to background rotation in
hopes of obtaining Q2D flows (Afanasyev & Jewtoukoff, 2009), it has not yet been
determined under which conditions it is possible to use a linear damping term as
in (8.1), and hence, if such a flow can indeed be considered as Q2D.

It is the goal of this chapter to characterize the response of a flow with back-
ground rotation to the strength of an external body force perpendicular to the axis
of rotation. In particular, we aim to determine if Ekman theory holds for such a
flow, and if so, to obtain the limits of applicability.

To achieve these goals, we study experimentally and numerically a confined
dipolar flow structure driven by time-independent electromagnetic forcing in a
shallow layer of salt solution subjected to background rotation. In particular, we
characterize the response of the flow by measuring the Reynolds number Re as
a function of the Chandrasekhar number Ch (quantifying the ratio of Lorentz to
viscous forces) and the Ekman number Ek (quantifying the ratio of viscous forces
to the Coriolis force).

This chapter is organized as follows: Section 8.2 presents the experimental
and numerical methods. In Section 8.3, we define the nondimensional parameters
pertinent to the problem. Section 8.4 is devoted to the main results of this chapter,
and finally, a discussion of the results and some conclusions are given in Section
8.5.

8.2 Methods

8.2.1 Experimental setup

The experimental setup is similar to the one described in the previous chapter and
consists of a water tank with a base of 34× 30 cm2 which, in this case, is placed
on top of a rotating table, which rotates at a frequency Ω. The tank is filled
with a salt solution with a concentration of 178 g l−1 with a kinematic viscosity i

ν = 1.50 · 10−6 m2s−1 and a density ρ = 1190 kg m−3 to a depth H and covered
with a transparent perspex lid to avoid free-surface deformations [figure 7.1(a)].
To force the flow, two titanium electrodes are placed along two opposite sides of
the tank, and three 30×10 cm2 rectangular magnets are placed 1.1 cm underneath
the tank bottom. The magnitude of the magnetic field of each these magnets is
0.018 T measured just above their center. As shown in figure 7.2, the magnet at
the center has its North Pole facing up, while the two side magnets have their
North Pole facing down. A constant electric current I is applied through the fluid
using a power supply with a precision of 10−2 A.

We define a Cartesian coordinate system x = (x, y, z) with the origin at the

iThe kinematic viscosity was measured for the solution used in the experiments at the tem-
perature of the experiments 21◦C using a capillary viscometer 501 13 from Schott Instruments.
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Figure 8.1 – Schematic representation of the experimental setup. (a) Vertical cross-
section of the experimental setup. (b) Upper view of the experimental setup.

center of the tank, x running parallel to the electrodes, y across the tank between
the electrodes, and z in the vertical direction. Furthermore, we define the flow
velocity v = (u, v, w).

We consider the electric current to be homogeneous and running only in the
y-direction, while the main component of the magnetic field is in the z-direction.
Hence, the principal component of the Lorentz force is in the x-direction.

We consider three characteristic length scales of the flow: the length of the
tank in the x-direction, Lx = 34 cm, and in the y-direction, Ly = 30 cm, and the
depth of the fluid H , which was varied for different experiments taking the values
H = 1.2 cm and 2.0 cm.

Particle Image Velocimetry (PIV) is used to measure the horizontal velocity
field of the flow in a plane at mid-depth. The fluid is seeded with 106–150 µm
polymethylmethacrylate (PMMA) particles, which are illuminated at mid-depth
with a laser sheet produced by a double pulsed Nd:YAG laser. Both the laser and a
Megaplus ES 1.0 camera are mounted on the rotating table. Images of the central
34×28 cm2 area of the tank are taken, using the camera, at different time intervals
(ranging from 10 ms to 1.3 s) depending on the maximum velocity in the flow.
These images are then cross-correlated using PIV software from PIVTEC GmbH,
Göttingen, Germany to calculate the horizontal velocity field.
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Figure 8.2 – Analytically obtained distribution of the vertical component of the mag-
netic field Bz. The grayscale denotes the magnitude of Bz (in Tesla) 0.6 cm above the
bottom.

8.2.2 Numerical simulations

Numerical simulations of the flow were performed to obtain the three-dimensional
(3D) velocity field and results for parameters outside the possible range of param-
eters achievable in the laboratory.

We consider the flow to be governed by the Navier–Stokes equations that in-
clude both the Coriolis force and the Lorentz force:

∂v

∂t
+ v ·∇v + 2Ω× v =

1

ρ
∇P + ν∇2v +

1

ρ
J ×B, (8.2)

and the continuity equation for an incompressible fluid:

∇ · v = 0, (8.3)

where Ω = Ωk̂ is the rotation vector of the system; P is the reduced pressure;
B = (Bx, By, Bz) is the magnetic field; and J = I/(LxH)̂ is the current density,
where ̂ is the unit vector in the y-direction.

Equations (8.2) and (8.3) were solved using a finite element code COMSOL
(COMSOL AB, 2008), where the electromagnetic forcing was introduced using an
analytical model for the vertical magnetic field, as described in Appendix D. Figure
8.2, shows the calculated distribution of the vertical component of the magnetic
field 0.6 cm above the bottom of the tank. In this figure, the three magnets are
clearly distinguishable.

The numerical domain simulates the experimental tank and is discretized using
an unstructured mesh with triangular elements in the horizontal and a structured
mesh with ten layers in the vertical direction. The equations were solved for ap-
proximately 350 000 degrees of freedom. Both the spatial and temporal resolution
were checked by increasing them until the solution converged.
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8.3 Nondimensional parameters

Dimensional analysis yields three independent dimensionless parameters as the
control parameters of the problem. Here we consider the Chandrasekhar number

Ch ≡ IBH

ρν2
, (8.4)

which characterizes the EM forcing and represents the ratio of the Lorentz force
to the viscous force; the Ekman number

Ek ≡ ν

ΩH2
, (8.5)

which characterizes the system’s rotation rate and represents the ratio of viscous
forces to the Coriolis force; and the aspect ratio

δ ≡ H

Lx
, (8.6)

which characterizes the geometry of the container. The horizontal dimensions of
the container remain unchanged for all experiments.

In addition, as the response parameter of the problem, we define the Reynolds
number

Re ≡ ULx

ν
, (8.7)

which represents the ratio of inertia forces to viscous forces, with U a typical
velocity scale of the flow. In other words,

Re = Re(Ch,Ek, δ). (8.8)

To characterize the velocity of the flow, we measured the horizontal velocity
components vH = (u, v) at mid-depth z = H/2. Furthermore, we consider the
time averaged value for the velocity (denoted v̄H) after a steady state is reached.
The time average was computed with 100 < N < 1000 image pairs, depending on
the experiment. It was checked that the number of image pairs was large enough
so that the value of Re did not vary anymore if the number of image pairs was
further increased.

We consider the typical velocity scale U to be the spatial average of the hori-
zontal velocity at mid-depth:

U = 〈|v̄H(x, y,H/2)|〉 =
1

LxLy

∫ Ly/2

−Ly/2

∫ Lx/2

−Lx/2

|v̄H(x, y, z = H/2)|dxdy, (8.9)

where |...| denotes the magnitude of the vector. The average value of the velocity is
not based solely on the magnitude of the velocity along the symmetry axis y = 0,
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Figure 8.3 – Response of the flow as a function of the forcing magnitude. Values of
the Reynolds number Re as a function of the Chandrasekhar number Ch (the axes have
been scaled with δ2). Experimental results for Ek = ∞ and δ = 0.035 (◦), Ek = ∞ and
δ = 0.059 (⊳), and for Ek = 3.5 · 10−3 and δ = 0.035 (�). The filled symbols denote
corresponding numerical results. The dashed lines denote the analytical estimation for the
value of Re for Ek = ∞ according to (8.11) or (8.12). The dashed-dotted line represents
the analytical estimation for the case of Ek = 3.5 · 10−3 according to (8.16).

as in the previous chapter, since the symmetry with respect to such axis is broken
for flows subjected to background rotation.

Since in the current chapter we consider the average magnitude of the horizon-
tal velocity to compute the Reynolds number, it is then appropriate to consider
the characteristic magnitude of the magnetic field B as the spatial average of the
absolute value of Bz at mid-depth.

Note that the Rossby number Ro, commonly used to characterize flows sub-
jected to background rotation, can be recovered from the nondimensional param-
eters previously defined:

Ro ≡ 1

2
δ2EkRe =

U

ΩL
. (8.10)

8.4 Results

Figure 8.3 shows the measured values of the parameter δ2Re as a function of the
control parameter δ2Ch for the case of no rotation (Ek = ∞) and two values of
the aspect ratio: δ = 0.035 and δ = 0.059. In agreement with the results from the
previous chapter, we observe two scaling regimes:

Re ∼ Ch

π2
(8.11)
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for δ2Ch . π4, and

Re ∼ Ch1/2

δ
(8.12)

for δ2Ch & π4. The transition between the two regimes at

δ2Re ∼ δCh1/2 ∼ π2 (8.13)

is easily distinguishable by the intersection of (8.11) and (8.12). As in the previ-
ous chapter, it can be clearly seen that the response of the flow is given only by
the product δ2Re, which depends exclusively on the control parameter δ2Ch for
the case of no background rotation. Furthermore, a good agreement is observed
between the numerical results, the experimental results, and the theoretical pre-
dictions.

Figure 8.3 also shows the measured values of δ2Re as a function of δ2Ch for
simulations and experiments with Ek = 3.5 · 10−3 (strong background rotation)
and δ = 0.035. For the case of small Ek-values, it is usually assumed that the
damping of the system is due to Ekman friction (Dolzhanskii et al., 1992). This
implies that the order of magnitude of the viscous terms is

[ν∇2v] ∼ 2Ek1/2Ωv (8.14)

when considering two Ekman boundary layers: one at the bottom and one at the
lid.

If the convective acceleration is neglected, a balance between the Lorentz force
and Ekman friction yields

IB

ρHL
∼ 2Ek1/2Ω〈|v̄H(x, y,H/2)|〉, (8.15)

which is equivalent to

Re ∼ 1

2
Ek1/2Ch. (8.16)

In this case, the Reynolds number increases linearly with the magnitude of the
forcing, as for small Ch-values in the case of no background rotation. Within this
linear dependence of the forcing, the damping rate increases by adding rotation,
i.e. the value of the Reynolds number is smaller for the same Ch-value when the
flow is subjected to strong background rotation.

From a comparison with the non-rotating case, it would be expected that as
the convective acceleration becomes dominant over the Coriolis force, the response
of the flow will again obey (8.12), yielding a transition at

δ2Re ∼ δCh1/2 ∼ 2

Ek1/2
. (8.17)
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Figure 8.4 – Measured values of the Reynolds number Re as a function of the Ekman
number Ek for experiments with δ = 0.35 and Ch = 2 · 105. The dashed lines represent
Re = Ek1/2Ch/2 and Re = δ−1Ch1/2.

This transition suggests that the linear behavior will hold for larger Ch-values
when the flow is subjected to background rotation, and hence, that higher Reynolds
number can be reached where the linear dependence Re ∝ Ch still holds.

The results from numerical simulations support the existence of the transition
when δCh1/2 ∼ 2Ek−1/2, as seen in figure 8.3 where the data points for δ2Ch =
2300 and δ2Ch = 4600 lie on the line given by (8.12). However, it was not possible
to perform experiments with Ek = 3.5 · 10−3 for δ2Ch & 450 due to practical
limitations. Instead, experiments with strong forcing (Ch = 2 · 105, δ2Ch = 245)
were performed at different rotation rates to experimentally validate the existence
of the transition (8.17).

Figure 8.4 shows the measured values of the Reynolds number Re as a function
of the Ekman number Ek for experiments with Ch = 2 · 105 and δ = 0.035. As
can be seen, for Ek & 4δ−2Ch−1 = 0.016 the Reynolds number varies little with
the Ekman number and Re ∼ δ−1Ch1/2. On the other hand, Re ∼ Ek1/2Ch/2 for
Ek . 4δ−2Ch−1 = 0.016, indicating that the damping is due to Ekman friction in
this region of the parameter space.

The transition from the advection dominated regime towards the Ekman damp-
ing dominated regime, as given by (8.17), is clearly visible in figure 8.4. Writing
(8.17) in terms of the control parameters of the problem yields

δ2 ChEk

4
∼ 1. (8.18)

Writing (8.17) in terms of the Rossby number yields

Ro

Ek1/2
∼ 1, (8.19)

indicating that this transition does not depend exclusively on the Rossby number.
Instead, the product ChEk represents the ratio of the Lorentz force to the Coriolis
force. This suggests that the transition depends on the ratio of these forces.
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To understand further the physical mechanism behind the transition, it is con-
venient to study the vertical profile of the horizontal velocity for different values
of the problem parameters. Figure 8.5 shows the numerically obtained vertical
velocity profiles for four characteristic simulations with δ = 0.035: (a) Ek = ∞
and Ch = 2.14 · 104; (b) Ek = ∞ and Ch = 1.14 · 106 (within the large Ch-value
regime); (c) Ek = 3.5 · 10−3 and Ch = 2.14 · 104; and (d) Ek = 3.5 · 10−3 and
Ch = 1.14 · 106. It can be observed that for no background rotation and small Ch-
values, the flow has a Poiseuille-like vertical profile [figure 8.5(a)]. On the other
hand, the vertical profile consists of an inviscid interior and two boundary layers
— one at the bottom and one at the lid — for large Ch-values and no background
rotation [figure 8.5(b)]. As in the previous chapter, the dimensionless thickness of
these boundary layers is defined as

h∗Re =
π

2δRe1/2
. (8.20)

In this way, the transition between the viscosity dominated regime and the advec-
tive regime occurs when h∗Re ∼ 1/2. In figure 8.5(b), it can be observed that h∗Re

is a good estimate for the actual boundary layer thickness.
For weak forcing and strong background rotation, the vertical profile tends

towards a profile with an inviscid geostrophic interior, where the velocity is inde-
pendent of the vertical coordinate, and two Ekman boundary layers [figure 8.5(c)].
Similarly to the case of no background rotation, a characteristic dimensionless
boundary layer thickness can be defined as

h∗Ek =
π2

4
hEk =

π2

4
Ek1/2 (8.21)

where hEk = Ek1/2 is usually referred to as the (nondimensional) Ekman boundary
layer thickness. Here, h∗Ek ∼ 1/2 marks the transition between a viscosity dom-
inated flow with a Poiseuille-like vertical profile to the Coriolis dominated flow,
i.e. if h∗Ek > 1/2 and δ2Ch < π4, the flow will have a Poiseuille-like profile as in
figure 8.5(a). In figure, 8.5(c) it can be seen that h∗Ek gives a good estimate for
the thickness of the boundary layers. Moreover, note two local maxima for the
horizontal velocity at z/H ≈ h∗Ek, which are characteristic of Ekman boundary
layers and are related to the Ekman spiral.

As the magnitude of the forcing is increased in the case of strong rotation, the
vertical profile is again deformed for values of δ2Ch & 4Ek−1. In particular, note
in figure 8.5(d) that the characteristic shape of the Ekman boundary layers is lost;
that h∗Ek is no longer a good estimate for the boundary layer thickness; and that
the vertical profile starts to resemble more the profile in the advective dominated
regime [figure 8.5(b)].
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8.5 Discussion and conclusions

In the current chapter, we studied the effect of background rotation on the response
of a generic shallow flow to electromagnetic forcing. The response was quantified
by measuring the Reynolds number Re as a function of both the Chandrasekhar
number Ch (which characterizes the strength of the electromagnetic forcing) and
the Ekman number Ek (which characterizes the strength of the Coriolis force).
It was found that for small Ekman numbers and weak forcing, the flow responds
in agreement with linear Ekman theory, so that Re ∼ Ek1/2Ch/2. As the forcing
strength is increased, while keeping the other parameters fixed, the response of the
flow becomes nonlinear, so that Re ∼ δ−1Ch1/2. The transition between the two
regimes is found at δ2EkCh/4 ∼ 1. It is of particular interest that this transition
is not given solely in terms of the Rossby number, as in the case of a decaying
vortex like the one studied in Chapter 4.

In the regime dominated by Ekman boundary layer friction, the flow can be
considered as Q2D since 3D motions can be parametrized by a linear damping
term. When δ2EkCh/4 > 1 the flow is similar to the case of no background
rotation with non-negligible non-linear effects and the a damping rate that cannot
be considered as a constant.

It has been shown that the different scaling regimes are associated with typical
vertical profiles of the horizontal velocity. A particular feature for both shallow
flows and flows subjected to background rotation is that, when the forcing is
larger than a certain threshold, the vertical profile changes in such a way that
the damping rate increases. This property is obviously absent in perfectly 2D
flows. Consequently, certain phenomena characteristic of perfectly 2D flows at
high Reynolds numbers cannot be observed neither in shallow flows nor in flows
subjected to background rotation.





Chapter 9

Conclusions

The work described in this thesis was mainly motivated by the interest in gener-
ating quasi-two-dimensional (Q2D) flows in the laboratory to validate theoretical
and numerical results on two-dimensional (2D) flows, specially 2D turbulence and
2D spatially periodic flows. Perfectly 2D flows are characterized by the absence of
vortex stretching. This property is responsible for the occurrence of phenomena
such as the inverse energy cascade and the process of self-organization.

In this thesis, we have investigated two of the common methods used to enforce
the two-dimensionality of flows: (i) reducing the fluid depth or (ii) subjecting the
flow to background rotation. The goal of this work is to deepen the understand-
ing of the dynamics of shallow flows with and without background rotation in
order to gain more insight about their two-dimensional character. To achieve this
goal, we study the dynamics of generic vortical structures (monopolar and dipolar
structures), which are the building blocks of more complicated flows, such as Q2D
turbulence. The thesis can be divided in two main parts. Firstly, the study focuses
on the evolution of flow structures that are decaying in time (Chapters 3 to 6),
and secondly, on flow structures that are continuously driven by time-independent
forcing (Chapters 7 and 8).

Shallow flows are commonly considered to be Q2D due to their limited depth,
which is thought to restrain the magnitude of the vertical velocities, as derived from
dimensional analysis of the continuity equation for incompressible flows. Inspired
by recent doubts that have risen about the two-dimensionality of shallow flows
(Satijn et al., 2001; Akkermans et al., 2008b,a; Cieslik et al., 2009), we revised this
argument by studying the dynamics of decaying shallow axisymmetric swirl flows.
It was found that a small aspect ratio δ (of the vertical to horizontal length scales
of the flow) is not sufficient for a flow to be Q2D. Instead, the two-dimensionality
of a shallow flow depends — as its dynamics — on the parameter δ2Re, with Re
the Reynolds number. It can be concluded that the usual argument to consider
shallow flows as Q2D is not valid in general.

To understand the reasons why some shallow swirl flows with and without
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background rotation behave in a 2D way and to find the limits for such behavior,
a thorough parametric study of the flow dynamics was performed using numerical
simulations and a perturbation analysis with δ ≪ 1 as the perturbation parame-
ter. It was found that decaying shallow swirl flows over a no-slip bottom can be
considered as Q2D when the flow is dominated by bottom friction over the whole
depth and the primary flow has a Poiseuille-like vertical profile. In such a case,
the effects of vortex stretching are negligible as compared to viscous effects. This
was later supported by the study of a dipolar vortex propagating over a no-slip
bottom. For small values of δ2Re, it was observed that each of the vortex cores
has a columnar structure (as determined by the λ2 vortex detection criterion) that
is independent of the vertical direction during the whole flow evolution. In con-
trast, for larger values of δ2Re, bottom friction becomes less dominant, and the
flow consists of a boundary layer at the bottom and an inviscid interior. In this
case, the columnar structure is deformed due to vortex stretching and looses its
2D character. These conclusions contradict the general belief that the presence of
a solid bottom is one of the main features responsible for the three-dimensionality
of shallow flows. Instead, the solid bottom stabilizes the flow and enforces its
two-dimensional character.

On the other hand, decaying shallow swirl flows subjected to background ro-
tation can be considered as Q2D for strong enough rotation (i.e. for small Rossby
numbers Ro) irrespective of the aspect ratio. This is due to the linear coupling
between the primary swirling motion and the secondary motions, which exists
both when the primary flow has a Poiseuille-like vertical profile and when the
flow is composed of a thin Ekman boundary layer at the bottom and an inviscid
geostrophic interior.

When the evolution of decaying shallow vortices is not dominated by bottom
friction, inertial oscillations are superimposed on the secondary motion driven by
the bottom boundary layer. For shallow flows without background rotation, these
oscillations are confined to the vortex core, and they decay on a similar time scale
as the primary swirl motion. In contrast, these oscillations extend throughout the
flow domain and persist even after the vortex has been damped when the system
is subjected to background rotation.

The results for decaying shallow flows suggest that it is possible to obtain Q2D
flows in the laboratory. However, it is difficult to generate flows with high enough
Reynolds number for the study of Q2D turbulence in the laboratory. For shallow
flows without background rotation, the value of the parameter δ2Re must be small,
and hence, the aspect ratio must be very small for large Re-values. In addition,
Q2D shallow flows tend to decay very fast due to the strong interaction with the
bottom, so that the value of the Reynolds number decreases very quickly. To ad-
dress this latter issue, bottom friction can be reduced in a two-layer configuration
as previously done by e.g. Paret & Tabeling (1997); Shats et al. (2005) and Akker-
mans et al. (2010), but even in this configuration, the value of the parameter δ2Re
must be small.

For background rotation to render a decaying shallow flow to be Q2D, it is
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required that the Rossby number is small: Ro ≪ 1. This means that the convective
acceleration must be small compared to the Coriolis acceleration. In the laboratory,
this can be achieved in two ways: (i) by increasing the rotation rate of the system
or (ii) by increasing the size of the setup. Both of these two possibilities pose
technical difficulties for the construction of suitable experimental setups.

For steadily forced shallow flows with and without background rotation, we
found two scaling regimes for the Reynolds number Re as a function of the mag-
nitude of the forcing (quantified in Chapters 7 and 8 by the Chandrasekhar num-
ber Ch): (i) a linear regime where Re ∝ Ch and (ii) a nonlinear regime where
Re ∝ Ch1/2. In the linear regime, the flow can be considered as Q2D and the
damping of the flow can be parametrized by a linear damping term, while in the
nonlinear regime the flow is 3D. Well-defined limits for the Q2D behavior of such
flows are given by the transition between the linear and the nonlinear regimes. The
change in the scaling is related to a change in the vertical profile of the horizontal
velocity. It is obvious that such changes cannot be observed in perfectly 2D flows.

The present work has been inspired by recent observations of the complex 3D
behavior of some shallow flows (Akkermans et al., 2008a,b; Cieslik et al., 2009).
In this thesis, we have studied in detail the dependence of the two-dimensional
character of laminar shallow flows on the various flow parameters. By exploring
the parameter space, clear boundaries for the two-dimensional behavior of such
flows were found. Of particular interest is the fact that these boundaries do not
depend solely on the aspect ratio of the flow domain, but on the thickness of the
boundary layer above the no-slip bottom.

Furthermore, we have studied the effect of background rotation on shallow flows
in order to analyze if rotation can actually enforce the two-dimensional character
of such flows. It was found that the degree of two-dimensionality depends in a
complex way on the length scales of the flow, its typical velocity scales, and the
magnitude of the Coriolis force. As a matter of fact, it was found that under
certain conditions background rotation may even increase the degree of three-
dimensionality of a shallow flow.

Since many environmental flows (e.g. flows in the oceans, atmosphere, lakes,
and rivers) are shallow and/or strongly affected by the Earth’s rotation, it is
tempting to extrapolate the results and conclusions from this thesis to such flows.
However, this must be done with great caution. Two critical differences between
environmental flows and the flows studied here can be immediately recognized:
firstly, many environmental flows are density-stratified due to variations in tem-
perature or salinity; secondly, most (if not all) environmental flows are highly
turbulent. In spite of such complications, it is believed that the work presented
in this thesis is an important step towards a better understanding of quasi-two-
dimensional environmental flows.





Appendix A

Detailed analytical solution
for a shallow swirl flow

To solve (3.26), we perform a Laplace transform according to

Ψ̂(z, s) = L[Ψ(z, t)] =

∫ ∞

0

Ψ(z, t)e−stdt, (A.1)

where s is complex, and the real part of s is positive and sufficiently large for the
integral to exist. Applying (A.1) into (3.26) yields

∂4Ψ̂

∂z4
− s

∂2Ψ̂

∂z2
=

2 sin(πz)

2s+ π2
. (A.2)

The solution of this equation is of the form Ψ̂ = Ψ̂h + Ψ̂p, where

Ψ̂h(z, s) = A+Bπz + C sinh(
√
sz) +D cosh(

√
sz) (A.3)

is the general solution of the homogeneous equation with A, B, C, and D integra-
tion constants; and

Ψ̂p(z, s) =
2 sin(πz)

π2(s+ π2)(2s+ π2)
(A.4)

is a particular solution of (A.2). The integration constants A, B, C, and D need
to be chosen such that the solution Ψ̂ = Ψ̂h + Ψ̂p satisfies the four (Laplace
transformed) boundary conditions (3.28). Hence,

Ψ̂(0, s) = A+D = 0, (A.5)

Ψ̂(1, s) = A+Bπ + C sinh(
√
s) +D cosh(

√
s) = 0, (A.6)
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∂Ψ̂(z, s)

∂z

∣

∣

∣

∣

∣

z=0

= Bπ + C
√
s+

2

π(s+ π2)(2s+ π2)
= 0, (A.7)

and

∂2Ψ̂(z, s)

∂z2

∣

∣

∣

∣

∣

z=1

= sC sinh(
√
s) + sD cosh(

√
s) = 0. (A.8)

Solving (A.5)–(A.8) for the unknown integration constants, yields

A = −D =
2

π(s+ π2)(2s+ π2)

tanh(
√
s)

tanh(
√
s)−√

s
. (A.9)

B = − 2

π2(s+ π2)(2s+ π2)

tanh(
√
s)

tanh(
√
s)−√

s
, (A.10)

and

C =
2

π(s+ π2)(2s+ π2)

1

tanh(
√
s)−√

s
. (A.11)

Thus, the solution of (A.2) is

Ψ̂(z, s) =
2

π(s+ π2)(2s+ π2)

×
(

1

tanh(
√
s)−√

s
{tanh(√s)[1− z − cosh(

√
sz)] + sinh(

√
sz)}+ sin(πz)

π

)

.

(A.12)

In order to obtain the solution of (3.26), we now must invert the Laplace transform
(A.1) using the so-called Bromwich integral that is given by

Ψ(z, t) =
1

2πi

∫ c+i∞

c−i∞
Ψ̂(z, s)estds, c > 0, (A.13)

where s is treated as a complex variable and the integration is upward along a
straight line. The position of this line, i.e. the value of the real constant c is dictated
by the requirement that c is positive and that all the singularities of Ψ̂(z, s) lie
to the left of this line in the complex s-plane. The singularities of Ψ̂(z, s) are at
s = −π2/2 and s = −γ2n, where γn are solutions of the transcendental equation
tan(γn) = γn with γn 6= 0. Note that all these singularities are simple poles, and
that s = 0 and s = −π2 are removable singularities. Also note that despite terms
like

√
s, the integrand of (A.13) is single valued and a branch cut is not needed.

Equation (A.13) may now be conveniently evaluated using contour integration
and the residue theorem. For that, the integration path in (A.13) is made part
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I(s)

R(s)

R

Figure A.1 – The complex s-plane with the contour used for evaluating the Laplace
inversion integral (A.13). The crosses on the real s-axis denote the simple poles of the
integrand in (A.13).

of a sequence of circular-arc completions of radius R that pass between the poles
on the negative real s-axis; see figure A.1. It can be shown that the contribution
of the circular-arc completions goes to zero if their radii R → ∞. Therefore, the
solution to (3.26), as determined by (A.13), is given by the sum of all the residues
of Ψ̂(z, s)est at all the simple poles identified above. The final results is given by
(3.30).





Appendix B

Perturbation analysis for a
shallow monopolar vortex

Substitution of (4.16) into (4.6) and (4.7) yields

∂vθ
∂t

+Aδk+2

(

vr
∂vθ
∂r

+
vθvr
r

)

+Aδk+1vz
∂vθ
∂z

= −ABδmvr + δ2
[

∂2vθ
∂r2

+
∂

∂r

(vθ
r

)

]

+
∂2vθ
∂z2

,

(B.1)

∂ωθ

∂t
+Aδk+2

(

vr
∂ωθ

∂r
− ωθvr

r

)

+Aδk+1vz
∂ωθ

∂z

= Aδk+2

(

1

r

∂v2θ
∂z

+Bδl
∂vθ
∂z

)

+ δ2
[

∂2ωθ

∂r2
+

∂

∂r

(ωθ

r

)

]

+
∂2ωθ

∂z2
,

(B.2)

where the expansions (4.14) of the velocity as a function of δ were also substituted.

B.1 Regime AI: l > 0, k > −2

We first consider the case where l > 0, k > −2, and hence, m > 2. In this case,
k + 2 > 0 and (B.1) simplifies, at lowest order (δ ↓ 0), to

∂vθ,0
∂t

− ∂2vθ,0
∂z2

= 0, (B.3)

by neglecting all the terms of order δγ with γ > 1. Then, since vθ = vθ,0 at lowest
order, (B.3) yields

∂vθ
∂t

− ∂2vθ
∂z2

= 0. (B.4)
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For the secondary motion, the perturbation analysis yields

∂ωθ,0

∂t
− ∂2ωθ,0

∂z2
= 0 (B.5)

at lowest order. Then ωθ,n = 0 for n = 1, ..., k + 1, and

∂ωθ,k+2

∂t
− ∂2ωθ,k+2

∂z2
= A

1

r

∂v2θ,0
∂z

(B.6)

at order k. However, ωθ,0 = 0 since vr,0 = vz,0 at t = 0, and finally,

∂ωθ

∂t
− ∂2ωθ

∂z2
= δ2Re

1

r

∂v2θ
∂z

(B.7)

with

ωθ = δk+2ωθ,k+2 (B.8)

at lowest order.
Since all the terms in (B.7) are of the same order, the velocity components

must scale as

vr
vθ

= O
(

δ2Re
)

,
vz
vθ

= O
(

δ3Re
)

. (B.9)

B.2 Regime AII: l > 0, k < −2

If k < −2 and l > 0, (B.1) and (B.2) simplify into

∂vθ,0
∂t

+Aδk+2

(

vr,0
∂vθ,0
∂r

+
vθ,0vr,0
r

+ vz,1
∂vθ,0
∂z

)

=
∂2vθ,0
∂z2

, (B.10)

∂ωθ,0

∂t
+Aδk+2

(

vr,0
∂ωθ,0

∂r
− ωθ,0vr,0

r
+ vz,1

∂ωθ,0

∂z

)

= Aδk+2 1

r

∂v2θ,0
∂z

+
∂2ωθ,0

∂z2

(B.11)

with vθ = vθ,0 and ωθ = ωθ,0 by considering only the terms of order δγ with γ ≤ 0.
If only the terms of order δk+2 with k + 2 < 0 are considered in (B.10) and

(B.11), bottom friction and the time dependence would be neglected. However,
viscous effects must be important at least close to the bottom, where a boundary
layer develops. To study the dynamics in the boundary layer, it is then convenient
to stretch the vertical coordinate by defining the new variable z̃ = Re1/2δz =
A1/2δk/2+1z. Equations (B.10) and (B.11) simplify to

vr,0
∂vθ,0
∂r

+
vθ,0vr,0
r

+ vz,1
∂vθ,0
∂z

=
∂2vθ,0
∂z2

, (B.12)
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vr,0
∂ωθ,0

∂r
− ωθ,0vr,0

r
+ vz,1

∂ωθ,0

∂z
=

1

r

∂v2θ,0
∂z

+
∂2ωθ,0

∂z2
, (B.13)

inside the boundary layer, where the convective acceleration and the viscous dis-
sipation due to the bottom friction are of the same order.

However, if the full dynamics of the flow want to be solved in this regime,

∂vθ
∂t

+ δ2Re

(

vr
∂vθ
∂r

+
vθvr
r

+ vz
∂vθ
∂z

)

=
∂2vθ
∂z2

, (B.14)

∂ωθ

∂t
+ δ2Re

(

vr
∂ωθ

∂r
− ωθvr

r
+ vz

∂ωθ

∂z

)

= δ2Re
1

r

∂v2θ
∂z

+
∂2ωθ

∂z2
, (B.15)

have to be solved.
Due to the non-linear nature of the governing equations in this regime, it has

not been possible to analytically obtain a scaling law for the velocity components.

B.3 Regime AIII: l > 0, k = −2

In this regime, (B.1) and (B.2) simplify to (B.10) and (B.11) with k+2 = 0, which
finally yields for this profile the governing equations:

∂vθ
∂t

+ δ2Re

(

vr
∂vθ
∂r

+
vθvr
r

+ vz
∂vθ
∂z

)

=
∂2vθ
∂z2

, (B.16)

∂ωθ

∂t
+ δ2Re

(

vr
∂ωθ

∂r
− ωθvr

r
+ vz

∂ωθ

∂z

)

= δ2Re
1

r

∂v2θ
∂z

+
∂2ωθ

∂z2
, (B.17)

where only the Coriolis acceleration and horizontal viscous diffusion have been
neglected at lowest order.

As in regime AII, it has not been possible to analytically obtain a scaling law for
the velocity components due to the non-linear nature of the governing equations.

B.4 Regime BI: l < 0, m > 0

We now consider a regime where l < 0 and m > 0. Then k + 2 > 1, and the
governing equation for vθ at lowest order is

∂vθ,0
∂t

− ∂2vθ,0
∂z2

= 0, (B.18)

by neglecting all the terms of order δγ with γ > 1. Then, since vθ = vθ,0 at lowest
order, (B.18) yields

∂vθ
∂t

− ∂2vθ
∂z2

= 0 (B.19)
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as in regime AI.
For the secondary motion, the perturbation analysis yields

∂ωθ,0

∂t
− ∂2ωθ,0

∂z2
= 0, (B.20)

and ωθ,1 = ... = ωθ,m−1 = 0. However, since vr,0 = vz,0 at t = 0, then ωθ,0 = 0.
Finally,

∂ωθ,m

∂t
− ∂2ωθ,m

∂z2
= AB

∂vθ,0
∂z

(B.21)

at order m, so that at lowest order (δ ↓ 0)

ωθ = δmωθ,m. (B.22)

Then (B.21) can be rewritten as

∂ωθ

∂t
− ∂2ωθ

∂z2
=

2

Ek

∂vθ
∂z

(B.23)

since Ek = 2/(ABδm). The previous equation implies that the velocity components
scale as

vr
vθ

= O
(

1

Ek

)

,
vz
vθ

= O
(

δ

Ek

)

, (B.24)

since all the terms must be of the same order.

B.5 Regime BII: l < 0, m < 0

If l < 0 and m < 0, k + 2 < m and (B.2) yields

∂vθ,0
∂z

= 0, (B.25)

at lowest order. This equation would result in the trivial solution vθ,0 = 0 due to the
no-slip boundary condition at the bottom. However, from physical considerations,
there must be a region close to the bottom where bottom friction is important.
To examine this boundary layer region, the new vertical coordinate z̃ = Ek−1/2z
is defined. This definition implies that the relevant vertical scale is hEk = Ek1/2,
the Ekman boundary layer thickness.

B.5.1 The boundary layer

We define the new set of dimensionless variables, denoted by tildes, inside the
boundary layer

t̃ = Ek−1/2t, ω̃θ = Ek1/2ωθ,

ṽr = vr, ṽθ = vθ, ṽz = Ek−1/2vz
(B.26)
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where the time scale is the Ekman time scale.
In this way, we obtain at lowest order the following equations:

∂2ṽθ
∂z̃2

− 2ṽr = 0, (B.27)

∂2ω̃θ

∂z̃2
+ 2

∂ṽθ
∂z̃

= 0, (B.28)

ω̃θ =
∂ṽr
∂z̃

, (B.29)

δ

r

∂

∂r
(rṽr) +

∂ṽz
∂z̃

= 0, (B.30)

where all the terms are of order unity. Hence, the velocity components scale like

vr
vθ

= O(1), (B.31)

while the continuity equation (4.8) yields

vz
vθ

= O(Ek1/2δ), (B.32)

in agreement with linear Ekman theory (see Pedlosky, 1987).
Combining (B.27)–(B.29) yields

∂2Φ

∂z̃2
− 2iΦ = iF (r, t̃), (B.33)

where Φ = ṽθ + iṽr, and F (r, t) is an arbitrary integration function.
The general solution for equation (B.33) is

Φ = −F (r, t̃)
2

+ C1 exp [(1 + i)z̃] + C2 exp [−(1 + i)z̃] , (B.34)

where C1 and C2 are integration constants. Since Φ must be finite at z̃ → ∞, and
Φ(z̃ = 0) = 0, then

C1 = 0, C2 = F (r, t̃)/2, (B.35)

and

Φ(r, z̃, t̃) =
F (r, t̃)

2
[−1 + exp(−z̃) cos(z̃)− i exp(−z̃) sin(z̃)] . (B.36)
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The vertical velocity component ṽz can be obtained by substituting (B.36) into
(B.30) and integrating with respect to z:

ṽz = δ

∫ z̃

0

1

r

∂

∂r
{rI[Φ(t̃, r, s)]}ds

=
δ

2r

∂

∂r
[rI(F )]

∫ z̃

0

[−1 + exp(−z̃) cos(z̃)]ds

− δ

2r

∂

∂r
[rR(F )]

∫ z̃

0

[exp(−z̃) sin(z̃)]ds

(B.37)

where I denotes the imaginary part and R the real part of the number.

B.5.2 The geostrophic interior

Equation (B.37) implies that there is a vertical velocity of order δEk1/2 which is
pumped towards the interior flow above the boundary layer. It is then convenient to
define Vz = δ−1Ek−1/2vz in the interior flow. Substituting this into the continuity
equation (4.8) yields

δ

r

∂

∂r
(rvr) + δ Ek1/2

∂Vz
∂z

= 0. (B.38)

Then, by defining Vr = Ek−1/2vr, (B.38) can be rewritten as

1

r

∂

∂r
(rVr) +

∂Vz
∂z

== 0, (B.39)

where Vr and Vz are of the same order. Substituting the definitions of Vr and Vz
into equations (B.27) and (B.28) yields

∂Vθ
∂t

= −2Vr, (B.40)

∂Vθ
∂z

= 0, (B.41)

Wθ =
∂Vr
∂z

= 0, (B.42)

1

r

∂

∂r
(rVr) +

∂Vz
∂z

= 0 (B.43)

with Vθ = vθ, and where all the variables denoted with a capital letter are of O(1).
Therefore, the velocity components scale like

vr
vθ

= O(Ek1/2), (B.44)

vz
vθ

= O(δEk1/2), (B.45)

in the interior flow.
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Matching of the geostrophic interior and the boundary layer

From (B.41) and (B.42), it can be seen that Vr = Vr(r, t) and Vθ = Vθ(r, t). Now,

it is possible to match the interior flow with the boundary layer (ṽr = Ek1/2Vr
and ṽθ = Vθ as z̃ → ∞) yielding F (r, t) = Vθ+ iEk

1/2Vr. At lowest order δ ↓ 0 (i.e.

Ek1/2 ↓ 0), F (r, t) = −2Vθ and integration of (B.37) for z̄ → ∞ gives the Ekman
pumping condition:

vz(r, z̃ → 0, t) =
δ Ek1/2

4r

∂

∂r
(rVθ) =

δ Ek1/2

2
ωz, (B.46)

Vz(r, z → 0, t) = −1

2
ωz. (B.47)

Integration of the continuity equation (B.43) yields

Vz = −z
r

∂

∂r
(rVr) +G(r, t) (B.48)

where G(r, t) is an unknown integration function. Applying the boundary condi-
tions

G(r, t) =
1

2
Wz for z = 0, (B.49)

G(r, t)− 1

r

∂

∂r
(rVr) = 0 for z = 1, (B.50)

yields, after elimination of G,

1

r

∂

∂r
(rVr) =

1√
2
Wz, (B.51)

and

Vr =
1

2
Vθ. (B.52)

Substituting (B.52) into (B.40) yields

∂Vθ
∂t

+ Vθ = 0. (B.53)

This equation is solved using the initial condition Vθ(t = 0) = R(r) yielding

Vθ = R(r)e−t/
√
2, (B.54)

which can be use to obtain expression for the other two velocity components:

Vr =
1√
2
R(r)e−t/

√
2, (B.55)

Vz =
1√
2
(1− z)

1

r

∂

∂r
[rR(r)]e−t/

√
2. (B.56)
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B.6 Regime BIII: l < 0, m = 0

For l < 0 and m = 0 (k + 2 > 1), (B.1) and (B.2) simplify at lowest order into

∂vθ,0
∂t

− ∂2vθ,0
∂z2

= − 2

Ek
vr,0, (B.57)

∂ωθ,0

∂t
− ∂2ωθ,0

∂z2
=

2

Ek

∂vθ,0
∂z

. (B.58)

Since m = 0, from (4.17), Ek = O(1) and hEk = Ek1/2 = (AB)−1/2. In other
words, in this regime the thickness of the Ekman boundary layer is of the order of
the fluid depth.

B.7 Regime CI: m > 0, k > −2, l = 0

For intermediate rotation rates l = 0, which means that the Coriolis acceleration
is of the same order as the convective acceleration. If m > 0 and k > −2, viscous
forces govern the evolution of the primary flow. Hence, the governing equation for
vθ is again

∂vθ,0
∂t

− ∂2vθ,0
∂z2

= 0, (B.59)

and ωθ,0 = ... = ωθ,k+1 = 0. On the other hand, at order δk+2 the governing
equation for ωθ is

∂ωθ

∂t
− ∂2ωθ

∂z2
= δ2Re

(

∂v2θ,0
∂z

+
1

Ro

∂vθ,0
∂z

)

. (B.60)

with ωθ = δk+2ωθ,k+2. Note that the solution for ωθ is simply the linear combina-
tion of the solutions for regimes AI and BI.

B.8 Regime CII: m < 0, k < −2, l = 0

In this regime, the viscous terms can be neglected at lowest order, except next to
the bottom where viscous effects must be important to satisfy the no-slip boundary
condition. Hence, there must be a boundary layer close to the bottom under the
inviscid interior, as in regimes AII and BII. However, in this case, the thickness
of the boundary layer is neither hRe nor hEk. Due to the non-linear nature of this
regime and the boundary layer, no simplifications can be made to the equations
and the flow is governed by the full equations (4.6) and (4.7).
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B.9 Regime CIII: m = 0, k = −2

This last regime is straight forward. No single simplification can be made, and all
the terms are of the same order. Hence, at lowest order the flow is governed by
the full equations (4.6) and (4.7).





Appendix C

Radial dependence of
inertial oscillations in a
Rankine Vortex

This appendix presents the detailed solution of (5.24)

r
d

dr

(

1

r

dR

dr

)

− k2nR = −k2n
η(r)

ξ2
R, (C.1)

for the Rankine vortex given in (5.33).

Interior (r < 1)

In the interior of the vortex, (C.1) can be rewritten as

d2R∗

dr2
+

1

r

dR∗

dr
+

[

k2n

(

1

ξ2
− 1

)

− 1

r2

]

R∗ = 0, (C.2)

where R∗ = R/r. This equation is known as a Bessel equation, and the solution is
of the form

R∗(r) = C1J1(αr) + C2Y1(αr), (C.3)

where

α =























√

k2n

(

1

ξ2
− 1

)

for ξ2 < 1,

i

√

k2n

(

1− 1

ξ2

)

for ξ2 > 1,

(C.4)
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is the wave number inside the vortex core; J1 is the first-order Bessel function of
the first kind, while Y1 is the first-order Bessel function of the second kind. Since
ψ1 must be finite at r = 0, while Y1(0) = ∞, we require C2 = 0. The solution thus
becomes:

R(r) =

{

C1rJ1(αr) for ξ2 < 1
C1rI1(αr) for ξ2 > 1

(C.5)

Exterior (r > 1)

In the exterior of the vortex, the equation for R∗(r) is

r2
d2R∗

dr2
+ r

dR∗

dr
−
[

1− k2n
ξ2N2Ro

+ k2n

(

1− 1

ξ2N2Ro2

)

r2
]

R∗ = 0, (C.6)

which can be rewritten as

r2
d2R∗

dr2
+ r

dR∗

dr
−
[

γ2 +
β2

R2
c

r2
]

R∗ = 0, (C.7)

where Rc is the radius of the cylinder, γ
2 = 1−k2n/(ξ2N2Ro), and β2 = k2nRc

2{1−
[ξ(Ro + 1)]−2}. Note that both γ and β can be either real or imaginary.

If ξ2 > (Ro + 1)−2, then we take β = knRc

√

1− [ξ(Ro + 1)]−2 ∈ R
+, and

(C.7) can be solved in terms of the modified Bessel functions of order γ. For com-
putational convenience, we wish to construct two linearly independent solutions
of (C.7) that are real-valued irrespective of γ ∈ R or γ ∈ I. It is thus found that

R(r) = C3rKγ(βr/Rc) + C4rLγ(βr/Rc), (C.8)

where

Lγ(x) =
1

2
[Iγ(x) + I−γ(x)] . (C.9)

Iγ and Kγ are the modified Bessel functions of order γ of the first and second
kind, respectively.

The boundary condition at the external wall requires ψ(r = Rc) = 0, and hence

C3Kγ(β) + C4Lγ(β) = 0. (C.10)

For large values of β, Kγ(β) → 0 while Lγ(β) → ∞. In this case C4 must be
very small, and the solution can be largely simplified. Nonetheless, the complete
solution will be presented here.

The solutions in the interior and the exterior have to be matched. Since the
frequency in the interior and the exterior are assumed to be the same, α must be
related to β according to

α2 = N2Ro2
(

k2n − β2

R2
c

)

− k2n. (C.11)
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In addition, continuity in ψ and ∂ψ/∂r should be imposed at r = 1, which yields

C1 =
C3

J1(α)

[

Kγ(β/Rc)−
Kγ(β)

Lγ(β)
Lγ(β/Rc)

]

(C.12)

and

αJ0(α)

J1(α)
=

∂

∂r
[rKγ(βr/Rc)]

∣

∣

∣

∣

r=1

− Kγ(β)

Lγ(β)

∂

∂r
[rLγ(βr/Rc)]

∣

∣

∣

∣

r=1

Kγ(β/Rc)−
Kγ(β)

Lγ(β)
Lγ(β/Rc)

. (C.13)

The latter equation is a transcendental equation for α, which can have several
solutions, each of them corresponding to a different frequency ξ. For ξ > 1, the left-
hand side of this transcendental equation has to be replaced by |α|I0(|α|)/I1(|α|).

If ξ < (Ro + 1)−2, β = iβ∗ with β∗ = knRc

√

[ξ(Ro + 1)]−2 − 1 ∈ R
+, and

(C.7) can be written as

r2
d2R∗

dr2
+ r

dR∗

dr
+

[

β∗2

R2
c

r2 − γ2
]

R∗ = 0. (C.14)

The solution to (C.14) can be written in terms of Bessel functions of the first and
second kind. Again, for computational convenience, we introduce the following two
real-valued, linearly independent solutions:

Bγ(x) =
1

2
[Jγ(x) + J−γ(x)] (C.15)

and

Dγ(x) =
1

2
[Yγ(x) + Y−γ(x)]. (C.16)

A solution of (C.14) can then be written as

R(r) = C3rBγ(β
∗r/Rc) + C4rDγ(β

∗r/Rc). (C.17)

Applying the boundary condition at the external wall yields

C4 = −C3
Bγ(β

∗)

Dγ(β∗)
, (C.18)

while continuity of ψ and ∂ψ/∂r at r = 1 yields

C1 =
C4

J1(α)

[

Bγ(β
∗/Rc)−

Bγ(β
∗)

Dγ(β∗)
Dγ(β

∗/Rc)

]

, (C.19)
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and

αJ0(α)

J1(α)
=

∂

∂r
[rBγ(β

∗r/Rc)]

∣

∣

∣

∣

r=1

− Bγ(β
∗)

Dγ(β∗)

∂

∂r
[rDγ(β

∗r/Rc)]

∣

∣

∣

∣

r=1

Bγ(β∗/Rc)−
Bγ(β

∗)

Dγ(β∗)
Dγ(β∗/Rc)

, (C.20)

which is again a transcendental equation for α. Here too, if ξ > 1, the left hand
side of this expression has to be replaced by |α|I0(|α|)/I1(|α|).

On the other hand, it can be seen that the expression cannot satisfy the bound-
ary condition R(r) → 0 as r → ∞ because the Bessel functions decay like r−1/2

as r → ∞, and hence, R(r) grows like r1/2 as r → ∞.



Appendix D

The magnetic field of a
rectangular magnet

The relevant equations to compute the magnetic field of the permanent magnet
configuration used in Chapter 8 are

∇ ·B = 0, (D.1)

∇×H = Jfree = 0 → H = −∇Φ, (D.2)

H =
B

µ0
−M , (D.3)

where B is the magnetic field; Jfree is the free current density; Φ is the magnetic
potential; µ0 is the magnetic permeability; and M is the magnetization.

We consider a rectangular magnet with thickness d and sides 2Lm and 6Lm

which is homogeneously magnetized in the z-direction, so that

M =M0k̂ for |x| < 3Lm, |y| < Lm, and − d < z < 0 (D.4)

with M0 the magnitude of the magnetization.
It is convenient to define the following dimensionless variables denoted by tildes

(x̃, ỹ, z̃) =
1

Lm
(x, y, z), Φ̃ =

Φ

LmM0
, M̃ =

M

M0
,

B̃ =
B

µ0M0
=

B

B0
, η̃ =

d

Lm

(D.5)

with B0 = µ0M0 the typical magnitude of the magnetic field. From now on, the
tildes will be omitted to simplify the notation.
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Combining (D.1)–(D.3) results in a Poisson equation for the magnetic potential

∇2Φ = ∇ ·M

=

{

δD(z + η)− δD(z) for |x| < 3 ∩ |y| < 1,
0 for |x| > 3 ∪ |y| > 1,

(D.6)

where δD is the Dirac delta function, and M = k̂, for |x| < 3, |y| < 1, and
−η < z < 0. The solution to (D.6) is then

Φ(x, y, z) = F (x, y, z)− F (x, y, z + η) (D.7)

with

F (x, y, z) =
1

4π

∫ x+3

x−3

dκ

∫ y+1

y−1

dξ
1

√

κ2 + ξ2 + z2
, (D.8)

from which the solution for the magnetic field in the x and y directions easily
follows. However, here we shall not develop the solution for By, the magnetic field
in the y-direction, since it is parallel to the electric current and has no effect on the
forcing. To calculate Bx, the magnetic field in the x-direction, we first integrate
(D.8) with respect to ξ, so that

F (x, y, z) =
1

4π

∫ x+3

x−3

dκ
{

ln
[

y + 1 +
√

κ2 + (y + 1)2 + z2
]

− ln
[

y − 1 +
√

κ2 + (y − 1)2 + z2)
]}

(D.9)

and

Bx = −∂Φ
∂x

=P (x+ 3, y + 1, z + η)− P (x+ 3, y − 1, z + η)

+ P (x− 3, y − 1, z + η)− P (x− 3, y + 1, z + η)

− P (x+ 3, y + 1, z) + P (x + 3, y − 1, z)

− P (x− 3, y − 1, z) + P (x − 3, y + 1, z)

(D.10)

with

P (x, y, z) =
1

4π
ln(y +

√

x2 + y2 + z2). (D.11)

To calculate the magnitude of the magnetic field in the z-direction Bz , we calculate
the derivative of F in the z-direction

∂F

∂z
=

1

4π

∫ x+3

x−3

dκ

[

1

y + 1 +
√

κ2 + (y + 1)2 + z2
z

√

κ2 + (y + 1)2 + z2

− 1

y − 1 +
√

κ2 + (y − 1)2 + z2
z

√

κ2 + (y − 1)2 + z2

]

,

(D.12)
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which yields after integration

∂F

∂z
=W (x+ 1, y + 1, z)−W (x− 1, y + 1, z) (D.13)

with

W (x, y, z) =
1

2π
arctan

(

√

y2 + z2 − y

z

√

x2 + y2 + z2 −
√

y2 + z2

x

)

. (D.14)

Finally, the magnitude of the magnetic field in the z-direction for the rectan-
gular magnet considered is given by

Bz =W (x + 3, y + 1, z + η)−W (x− 3, y + 1, z + η)

−W (x+ 3, y − 1, z + η) +W (x− 3, y − 1, z + η)

−W (x+ 3, y + 1, z) +W (x− 3, y + 1, z)

+W (x+ 3, y − 1, z) +W (x− 3, y − 1, z).

(D.15)
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Summary

Dynamics of shallow flows
with and without background rotation

Large-scale oceanic and atmospheric flows tend to behave in a two-dimensional
way. To further understand such flows, a large scientific effort has been devoted
to the study of perfect two-dimensional flows. For the last 30 years, there has
been a large interest in experimentally validating the results from numerical and
theoretical studies concerning two-dimensional flows, particularly two-dimensional
turbulence and spatially periodic two-dimensional flows. Inspired by geophysical
flows, experimentalists have used stratification, shallow fluid layer configurations,
and background rotation to enforce the two-dimensionality of flows in the labora-
tory. However, as all these methods have shortcomings, it is difficult to achieve a
perfectly two-dimensional flow in the laboratory.

The work presented in this thesis focuses on two of the common methods
used to enforce the two-dimensionality of flows: the shallow layer configuration
and background rotation. To further understand the effect of these methods on
the two-dimensionality of flows, we studied the dynamics of generic elementary
vortical structures in a shallow fluid layer with and without background rotation.

Through the analytical and numerical study of a decaying axisymmetric mo-
nopolar vortex, we revised the usual argument for considering shallow flows as
two-dimensional. This argument is based on the continuity equation, and it states
that the vertical velocity can be neglected if the ratio of vertical to horizontal
length scales of the flow is small. By performing numerical simulations and a per-
turbation analysis for shallow flows, it was shown that this argument is not valid in
general, and that the two-dimensionality of the flow does not depend exclusively on
the aspect ratio. Instead, it also depends on the dynamics of the flow; particularly,
a shallow flow behaves in a two-dimensional way if the flow evolution is dominated
by bottom friction over the whole fluid depth. These results were supported by
the numerical and experimental study of a more complex flow structure, namely
a dipolar vortex, in a shallow fluid layer.

For the study of decaying dipolar vortices, numerical simulations were per-
formed using a finite element code. The flow was initialized with a Lamb–Chaplygin
dipolar vortex with a Poiseuille-like vertical profile, after which it was left to evolve
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freely. The 3D structure of the vortex was obtained using the λ2 vortex detection
criterion. Using this tool, it was observed how the vortex is gradually distorted
due to the secondary 3D motions. An experimental investigation of an electromag-
netically forced dipolar vortex, where Particle Image Velocimetry (PIV) was used
to calculate the velocity field in a horizontal cross-section of the flow, supports the
numerically obtained results.

It is assumed that flows subjected to strong background rotation behave like
two-dimensional flows due to the reduction of gradients in the direction parallel to
the rotation axis, as stated by the Taylor–Proudman theorem. This phenomenon
results in the formation of columnar structures. In the current work, it was found
that the flow can behave in a two-dimensional way as long as the rotation rate is
fast enough, irrespective of the aspect ratio. In other words, this is true even if
the fluid depth is of the same order as the thickness of the Ekman boundary layer,
for which case no columnar structures are formed. This is attributed to the linear
coupling between primary and secondary motions.

From the study of decaying vortical structures, it was concluded that neither
adding background rotation to a shallow flow nor decreasing the depth of a rotating
flow necessarily increases the degree of two-dimensionality of the flow.

The last two chapters of this thesis are dedicated to the study of a shallow
dipolar structure that is continuously driven by time-independent electromagnetic
forcing. For a shallow structure without background rotation, it was observed that
for weak forcing the flow can be considered indeed as two-dimensional. However,
every shallow flow, even for very small fluid depths, becomes three-dimensional
for a sufficiently high forcing magnitude. An equivalent result was obtained for a
similar flow subjected to background rotation. The change in behavior is associated
with a change in the vertical profile of the horizontal velocity, which is clearly
absent in perfectly two-dimensional flow.

The results presented in this thesis confirm that under certain conditions
shallow flows and flows subjected to background rotation can behave as a two-
dimensional flow. However, more importantly, it is shown that there are clear
limits to this behavior. This work presents a better understanding of the basic dy-
namics of shallow flows with and without background rotation and of the extent
to which these flows can be considered as quasi-two-dimensional.
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