

Analyzing control-flow and data-flow in workflow processes in
a unified way
Citation for published version (APA):
Trcka, N., Aalst, van der, W. M. P., & Sidorova, N. (2008). Analyzing control-flow and data-flow in workflow
processes in a unified way. (Computer science reports; Vol. 0831). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/9d2be7cf-d8b9-4d7a-9771-b0a1b1d92dfb

Analyzing Control-Flow and Data-Flow in
Workflow Processes in a Unified Way

Nikola Trčka, Wil van der Aalst, and Natalia Sidorova

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{n.trcka, w.m.p.v.d.aalst, n.sidorova}@tue.nl

Abstract. Workflow correctness properties are usually defined based
on one workflow perspective only, e.g. the control-flow or the data-flow.
In this paper we consider workflow correctness criteria looking at the
control flow extended with the read/write/destroy information for data
items. We formalize some common control-flow errors, and we introduce
behavioral anti-patterns related to the handling of data. In addition to
extending, refining, and classifying existing methods, our paper provides
a unifying framework for complete workflow verification, using the well-
known, stable, adaptable, and effective model-checking approach.

1 Introduction

The workflow concept has defacto become the standard paradigm for
process modeling in business process management (BPM) systems. Work-
flows are typically looked from three perspectives: 1) the control per-
spective, describing the logical order of tasks; 2) the data perspective,
describing the information exchange between tasks; and 3) the resource
perspective, describing the originators of tasks.

The topic of workflow verification, i.e. on checking workflows for logi-
cal correctness, has been studied since the mid-nineties. Today, even the
commercial BPM vendors tend to provide more support for various form
of workflow analysis. Several methods and tools exists to capture errors
in the control-flow (finding, e.g., deadlocks and livelocks) [2], errors in
the flow of data [15] (e.g., reading from an uninitialized element type of
errors), and resource-deficiency type of problems. However, all of these
works suffer at least one of the following problems: 1) they look at only
one perspective in isolation; 2) the exact details of the erroneous scenarios
are not always clear, being hidden in the verification algorithms; 3) every
method has its own set of properties to verify, as there is no common
agreement on the desired set of correctness requirements; 4) the meth-
ods are not adaptive enough as properties cannot be easily modified or

added; 5) tool support is lacking; 6) it is not always clear what is (or
could be) the content and the quality of the diagnostics report; and 7)
the underlying workflow model has limited expressivity.

Although it makes sense to abstract from the resource information
during verification, as resources are external and dynamic in nature, the
same does not hold for the other two perspectives. On the one side, ignor-
ing the data aspect while checking for the control-flow correctness could
cause some errors to pass undetected or to be falsely reported. This is
because the routing decisions in a workflow are typically based on data,
while in the absence of data information they can only be considered as
non-deterministic and fair. On the other side, checking data correctness
without looking at the control-flow is also incomplete. To capture, e.g.,
errors related to data-inconsistency, we clearly must know which tasks are
possible to happen in parallel. Therefore, the control-flow and data-flow
must be verified in a combined fashion.

In this paper we identify, and systematically classify, several generic
control- and data-flow errors. We use the very expressive temporal logic
CTL∗ [4] (and its subsets CTL and LTL) for this purpose, thus removing
all ambiguities inherent to formulations in a natural language. In this way
we not only establish a unifying formal framework for detecting these
errors, but also build a highly adaptive (new properties are easily added)
and stable (model-checking has been successfully used for years) setting
with excellent diagnostic features (model-checking provides error-traces).
We, moreover, do need not to build our own tool, nor use a particular
incomplete one, but are able to choose from several verification tools
available on the market.

The flow-oriented nature of workflow processes makes the Petri net
formalism an obvious candidate for the modeling of workflows. The lan-
guage is very generic, well-studied, and supports (almost) all the workflow
patterns recognized in [3]. Here we use the (syntactically) restricted form
of Petri nets, called workflow nets [1] (WF-nets), that more directly cap-
ture the concept of a workflow. Most workflow management systems pro-
vide a graphical language that is close to WF-nets. Moreover, even when
the routing elements are different from WF-nets, the informal semantics
of the language is typically token-based and hence a (partial) mapping is
relatively straightforward. The data information is incorporated into the
standard WF-net model by allowing tasks to perform reading, writing,
and destroying operations on data, and by guarding (i.e. blocking) tasks
solely on the basis of data. By categorizing data operations into this sim-
ple set of primitives, and using the guard concept, we make our model

generic enough to support specifications from many existing (commer-
cial) tools, (such as Protos [12], e.g.), and to capture the elements of the
CRUD (create, read, update, delete) lifecycle known from the database
world.

The structure of the rest of this paper is as follows. Section 2 gives
some preliminaries and introduces our workflow nets with data model.
Section 3 is the main section of the paper. There we define correctness
properties, both control-flow and data-flow related, and show how they
can be verified by model checking. In the last section we conclude the
paper, discuss related work, and provide directions for future work.

2 Preliminaries

We first recall the basics of Petri nets and WF-nets. Then we define our
workflow model, called “workflow nets with data”. At the end, we intro-
duce the temporal logic CTL∗ that is used to describe desirable correctness
properties.

2.1 Workflow nets with data

Workflow nets with data are based on Petri nets and workflow nets, so
we define these two models first.

Petri nets The language of Petri nets is a well established formalism, able
to model sequential and concurrent behavior, choices, and different types
of communication. We now give a formal definition of a Petri net.

Definition 1. A Petri net is a tuple N = 〈P, T, F 〉, where:

– P and T are two disjoint non-empty finite sets of places and transi-
tions respectively;

– F ⊆ (P ×T)∪ (T ×P) is a set of arcs (from transitions to places and
from places to transitions), called the flow relation. ut
Fig. 1a shows a Petri net with places p1, . . . , p7 and transitions t1,

. . . , t5. The directed arcs determine the flow relation.
For t ∈ T , we define the preset of t as •t = {p | (p, t) ∈ F}, and the

postset of t as t• = {p | (t, p) ∈ F}. Analogously we define •p and p• for
pre- and postsets of places. For the Petri net from Fig. 1a we have, e.g.,
•t2 = •t4 = {p2}, •t5 = {p4, p5}, p•2 = {t2, t3} and t•1 = {p2, p3}.

At any time a place contains zero or more tokens, drawn as black
dots. The state of the Petri net, called a marking, is the distribution

of tokens over its places. Formally, a marking is defined as a mapping
m : P → N, i.e., as a multiset over P . We use standard notation for
multisets and write, e.g., m = [2p + q] for a marking m with m(p) = 2,
m(q) = 1, and m(x) = 0 for x ∈ P \ {p, q}. We define + and − for the
sum and the difference of two markings, and =, <,>,≤,≥ for comparison
of markings in the standard way. For the above marking m we have, e.g.,
m ≤ [3p + 2q + r] and m + [q + 3r] = [2p + 3q + 3r]. A pair (N, m), where
N is a Petri net and m is a marking, is called a marked Petri net.

A transition t ∈ T is enabled in a marking m if •t ≤ m. An enabled
transition t may fire, which results in a new marking m′ defined by m′ def=
m− •t + t•. This firing is denoted as m[t〉m′. In Figure 1a, t1 is enabled
and its firing will result in the state that marks places p2 and p3 with
one token. In this state, t2, t3, and t4 are enabled. If, e.g., t2 fires now, t3
becomes disabled, but t4 remains enabled. Similarly, if t4 fires, t3 becomes
disabled, but t2 remains enabled, etc.

The reachability graph of a marked Petri net shows its dynamic be-
havior. Every node in this graph represents a reachable marking, and
every labeled arc indicates the firing of a transition. For the marked net
(N,m0), the reachability graph is formally defined as the tuple 〈S,→〉
where S and → are the smallest sets satisfying the following: 1) m0 ∈ S,
and 2) if m ∈ S and m[t〉m′, then m′ ∈ S and (m, t,m′) ∈→. In this pa-
per we assume that the reachability graph of a Petri net is always finite.
This property can be checked prior to any analysis (and, in most cases,
already on the structure of the net). Fig. 1b shows the reachability graph
of the Petri net from Fig. 1a.

a)

��

��
��

�� ��

��

�� ��

�� ��

�	

��

b) [p1]

t1
²²

[p2+p3]
t2

||yy
yy

yy

t3

²²

t4

""EE
EE

EE

[p3+p4]

t4 ""EE
EE

EE
[p2+p5]

t2||yy
yy

yy

[p4+p5]

t5
²²

[p6+p7]

Fig. 1. a) A Petri net and b) its reachability graph

Workflow nets Workflow nets [1] impose syntactic restrictions on Petri
nets to comply to the workflow concept. The notion was triggered by the
assumption that a typical workflow has a well-defined starting point and
a well-defined ending point.

Definition 2. A Petri net N = 〈P, T, F 〉 is a Workflow net (WF-net)
iff:

1. there is a single source place start, i.e., {p ∈ P | •p = ∅} = {start};
2. there is a single sink place end, i.e., {p ∈ P | p• = ∅} = {end};
3. every node is on a path from start to end, i.e., for all n ∈ N ∪ T ,

(start, n) ∈ F ∗ and (n, end) ∈ F ∗, for F ∗ being the reflexive-transitive
closure of F . ut
The Petri net from Fig. 1a is not a workflow net because it has two

sink places, p6 and p7. If these two places (and their corresponding arcs)
are merged into one place p67, the net becomes a workflow net, with one
source place p1 and one sink place p67.

Transitions in a WF-net are also called tasks. A case is a workflow
instance, i.e., a marked WF-net in which the start place is marked with
one token and all other places are empty. In this paper we study workflow
properties related to one single case in isolation, assuming that different
cases are completely independent from each other. Therefore, when we
talk of the dynamic properties of a WF-net, we actually mean the prop-
erties of its cases. The final state of a case (and of the workflow net) is
the marking in which the end place is marked with one token and all the
other places are empty.

Workflow nets with data A workflow net with data elements is a workflow
net in which transitions can read, write and/or destroy some data. Every
transition has, in addition, a data dependent guard that can influence the
enableness of this transition. We formalize the concept of a guard first.

Definition 3. Let D be a set of data elements. A predicate pred (on
d1, . . . , dn ∈ D) is an expression pred(d1, . . . , dn) that evaluates to true
or false. A guard is either a predicate, the negation of a predicate, or the
value true. The set of all guards over D is denoted GD. The set of data
elements used in a guard g is denoted data(g). ut

We can now define workflow nets with data.

Definition 4 (WFD-net). A tuple 〈P, T, F,D, r,w,d,grd〉 is a Work-
flow net with data (a WFD-net) iff:

– 〈P, T, F 〉 is a WF-net;
– D is a set of data elements;
– r : T → 2D is the reading data labeling function;
– w : T → 2D is the writing data labeling function;
– d : T → 2D is the destroying data labeling function; and
– grd : T → GD is the guarding function, assigning guards to transi-

tions. ut
���

�����������

�

��

�	

�
����

�� �����

�� �������
� �

�

Fig. 2. A transition in a workflow net with data

Fig. 2 shows (the visualization of) a typical task in a workflow net
with data. This task takes the data elements a and b as input, and stores
its output in b, c and d. We implicitly assume that inside a task reading
always precedes writing, so when t is completed the old version of b is
overwritten and thus lost. If c and d existed before the occurrence of t,
their old values are lost as well. If they did not exists, they were created
by t. After producing its output, t destroys a, e, and the just created c.
Task t is only enabled, and thus can fire, if the input places p1, . . . , pn are
marked, and the guard pred, that depends on the data elements a and
e, evaluates to true.

Categorizing data operations into read, write and destroy operations,
increases flexibility and allows us to express many other standard oper-
ations on data easily. For example, the elements of the CRUD (create,
read, update, delete) lifecycle from the database literature can simply be
represented as follows: creating data is writing to a data element with-
out reading from the same element, reading corresponds to reading an
element without writing to the same element, updating is reading and
writing to the same data element, and finally, deleting corresponds to
destroying.

Guards on transitions allow us to model decision points in which the
choice is made based on some data elements. For example, Fig. 3 shows
how a standard XOR-split construct can be specified. Any other, less

basic, choice constructs can be represented as combinations of these XORs
and regular Petri net transitions (AND-splits).

�

��

��

�����������	�

��

�����������	�
����

�

������������

�

�

���
 �����������

��

��

Fig. 3. Representing an XOR-split where the choice depends on data

2.2 Temporal logic CTL∗

The (state-based) temporal logic CTL∗ [4] is a powerful temporal logic
combining linear time and branching time modalities. CTL* is typically
defined on Kripke structures, so we introduce this model first.

Definition 5. A Kripke structure is a tuple (S, A,L,→) where S is a
set of states, A is a non-empty set of atomic propositions, L : S → 2A is
a (state) labeling function, and → ⊆ S × S is a transition relation. ut
If (s, s′) ∈ →, then there is a step from s to s′, also then written as s → s′.
For a state s, L(s) is the set of atomic propositions that hold in s. For
the remainder of the section we fix a Kripke structure (S, A,L,→).

A path from s is an infinite sequence of states s0, s1, s2, . . . such that
s = s0, and either sk → sk+1 for all k ∈ N, or there exists an n ≥ 0,
such that sk → sk+1 for all 0 ≤ k < n, sn 6→ , and sk = sk+1 for all
k ≥ n. For a path π = s0, s1, s2, . . . and some k ≥ 0, πk denotes the path
sk, sk+1, sk+2,

We now define the syntax of CTL∗ [4].

Definition 6. The classes Φ of CTL∗ state formulas and Ψ of CTL∗

path formulas are generated by the following grammar:

φ ::= a | ¬φ | φ ∧ φ | Eψ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψ U ψ

with a ∈A, φ ∈ Φ, and ψ ∈ Ψ . ut
Validity of CTL∗ formulas is defined as follows.

Definition 7. We define when a CTL∗ state formula φ is valid in a state
s (notation: s |= φ) and when a CTL∗path formula ψ is valid on a path
π (notation: π |= ψ) by simultaneous induction as follows:

– s |= a iff a ∈ L(s);

– s |= ¬φ iff s 6|= φ;

– s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2;

– s |= Eψ iff there exists a path π from s such that π |= ψ;

– π |= φ iff s is the first state of π and s |= φ;

– π |= ¬ψ iff π 6|= ψ;

– π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2;

– π |= Xψ iff π1 |= ψ; and

– π |= ψ U ψ′ iff there exists a j ≥ 0 such that πj |= ψ′, and πk |= ψ for
all 0 ≤ k < j. ut

A formula Xψ says that ψ holds next, i.e., in the second state of a
considered path. A formula ψ U ψ′ says that, along a given path, ψ holds
until ψ′ holds. As standard, as a shorthand we write Fψ for > U ψ (“In
the future ψ” or “ψ will hold eventually”), Gψ for ¬F¬ψ (“Globally ψ”
or “ψ holds always along a path”), and Aψ for ¬E¬ψ (“ψ holds along all
paths”). The combinators AG and EF can then be interpreted as “in all
states” and ”in some state” respectively.

The complexity of checking CTL∗ formulas is linear in the size of the
model but exponential in the size of the formula. We define two most
popular (syntactic) restrictions of CTL∗ that allow for more efficient ver-
ification techniques [4]. A CTL∗ state formula of the form Aψ, where ψ
is a path formula containing no state formulas, is a linear temporal logic
(LTL) formula. A CTL∗ state formula in which every sub-formula of the
type ψ U ψ′ is prefixed by an A or E quantifier, is a computational tree
logic (CTL) formula. The complexity of LTL model checking is the same
as of CTL∗, but the advantage of LTL is that formulas can be checked
on-the-fly. The complexity of CTL model checking is linear in both the
size of the model and the size of the formula, and thus lower than for
CTL∗. As we will see later, all our correctness properties belong to either
the LTL or the CTL subset (or both). The reason we work with CTL∗ is
to have a common framework, and to be allowed to (temporarily) jump
outside of the restricted domain when rewriting one formula to another.

3 Correctness Properties

In this section we define correctness properties related to the control-
flow and the data-flow, using CTL∗. As this logic is defined on Kripke
structure, we must first obtain one from a WFD-net.

3.1 From WFD-net to a Kripke structure

In order to generate a Kripke structure representing the behavior of a
WFD-net, the most natural thing to do is to see this net as a regular
WF-net (i.e. abstract from data) and build its reachability graph. The
transition labels on this graph can be ignored, and a suitable state la-
bel can be generated for every marking representing this state using the
read/write/destroy information. This direct and simple approach, how-
ever, leads to two problems.

The first problem is that, in a WFD-net, data elements can be used
in guards, and can thus affect the reachability of a certain marking. Ab-
stracting from data adds behavior, which could cause some errors to pass
undetected or to be falsely reported. Consider, for example, the simple
WFD-net from Fig. 4. After t1 has performed and created the data el-
ement d, the predicate pred is evaluated. If it evaluates to true, the
workflow executes t4 and completes. If, however, pred evaluates to false,
t2 is executed. After t2, pred is evaluated again for t3. Since, t2 does
not update d, pred remains false, and so the workflow deadlocks (here a
deadlock is assumed to an undesired situation). Checking this workflow
without the data information would clearly not indicate this problem.

�����

��

��

��

���� �

	
�

���������
�� �������

��

�� ����������

Fig. 4. Data can influence reachability

The second problem of the direct approach is that in the obtained
reachability graph the markings do not hold enough information. We can,
e.g., deduce whether two transitions are enabled at the same time, but
not whether they are being executed at the same time. The latter info is

crucial in the verification process, as we want to make sure that, e.g., two
concurrent transitions do not write to the same data.

To solve these problems we propose a preprocessing step that converts
a WFD-net into a WF-net, in a more complex way comparing to the direct
method, but still keeping the original structure intact. This step consists
of the following smaller steps:

1. To be able to capture the situation where two transitions are executing
in parallel, we split every transition t into its start ts and its end te,
connected by a place pt. A token on pt means that transition t is being
executed.

2. To capture the restrictions on the behavior due to guards, we add a
“guard layer” to our net: For every predicate pred appearing in some
guard we introduce places predtrue and predfalse. A token on predtrue

indicates that the predicate is evaluated to true for the current set of
data values. A token on predfalse means that pred evaluates to false.
We make an arbitrary choice assuming that all predtrue places initially
have a token and predfalse places do not. We can afford making an
arbitrary choice as the errors related to the use of undefined data will
be signaled as an error (see next section).

3. For every transition t with a guard pred in the WFD-net, we add an
arc from predtrue to ts, and an arc back from ts to predtrue, to our
preprocessed net. This self-loop makes sure that t is only executed
only when its guard is evaluated to true. In case of guard ¬pred we
add the arcs to the place predfalse instead.

4. A change of the value of a data element d that appears in a predicate
pred may potentially change the evaluation of pred. We reflect that by
assuming that every transition t writing to d might change the value of
pred (or not). Therefore, we further split te into three transitions: two
to represent possible changes of the predicate value (from true to false
and from false to true), and one leaving the predicate value unchanged.
In this paper we assume that predicates do not depend on each other;
our method, however, can be easily extended to support dependencies.
Please note that in case the transition changes data items related to
k predicates, it will be in general split into 3k transitions.

Fig. 5 illustrates the preprocessing for transition t with a guard pred1(c)
writing to data element b. We assume that b is used in some predicate
pred2(b), guarding some other transition of the workflow.

After the preprocessing step the reachability graph of the new net
can be built. To obtain a Kripke structure we must then also define

the set of atomic propositions and assign labels to states. We define
A= {p ≥ i | p ∈ P, i ∈ N} for the set of atomic propositions, as this
very generic set allows us to express all state properties. The labels of a
state (=marking) m are assigned as follows: for some p ∈ P and i ∈ N,
we have p ≥ i ∈ L(m) iff m(p) ≥ i. To state the formulas in a more con-
cise and clear way, we introduce some abbreviations. First, p = i denotes
p ≥ i ∧ ¬(p ≥ i + 1). To more directly represent the fact that some tran-
sition t is executing, we write exec(t) instead of pt ≥ 1. The final state
of the workflow, denoted final, is defined as end = 1 ∧∧

p∈P\{end}(p = 0).
To represent the fact that a data element d ∈ D is being read, either as
input or for evaluating a guard of some transition, we write r(d), abbrevi-
ating thus

∨
t:d∈r(t)∪data(grd(t)) exec(t). The constructs w(d) and d(d) are

defined similarly.

...

[pred1(c)]

t

q1

qm

r: a

w: b

d: c

..
. p1

pn

..
. p1

pn

pt

... q1

qm

ts

te-true-false

te

pred1(c)true pred2(b)falsepred2(b)true

te-false-true

Fig. 5. Decomposition of a transition in a WFD-net

Having the Kripke structure formed, we can proceed with defining the
desired correctness properties; we treat the control-flow aspect first.

3.2 Control-flow correctness

Control-flow analysis deals with questions like: “Does the workflow termi-
nate?”, “Is there a deadlock?”, ”Does task A ever happen?”, etc. These
and similar questions can be categorized into the following two correct-
ness requirements: no-dead-transitions (every task can potentially hap-
pen), and proper-completion (the workflow reaches its final state without
leaving “garbage” behind).

The no-dead-transitions requirement imposes that from the initial
state every task in a workflow can potentially be performed. This is

natural and desired, as redundant tasks should not be present in the
definition of a workflow. The property is expressed in CTL∗ terms as

∧

t∈T

EF exec(t).

Fig. 6a shows a workflow net in which transition t2 is dead. This
transition can never be performed (the only possible execution sequence
is t1, t3) and can thus be removed. The obtained workflow, depicted in
Fig. 6b, has exactly the same behavior.

a)

�����

��

�� ��	

�

�� b)
�����

��

�� ��	

�

Fig. 6. a) A WF-net with a dead transition t2, and b) a WF-net with the same behavior

The proper-completion property requires that the workflow eventually
reaches its final state. Here the word eventually is not used in the strict,
temporal logic, sense and is, thus, subject to different interpretations. We
list some possibilities for the completion property inspired by or extracted
from different correctness notions proposed in the literature.

Strict completion Strict completion requires that, starting from the initial
state, every possible path of the workflow (properly) completes. A CTL∗

formula expressing this is
AF final.

Fig. 7a shows a WF-net that strictly completes (note that data infor-
mation is not needed to illustrate the differences between the proposed
control-flow properties). No matter whether t1 or t2 fires, there will be a
token in p1 and a token in p2. These two tokens are then consumed by t3
which then puts a token in place end, completing the workflow.

Strict completion with fairness Strict completion is too strong, as comple-
tion is required for all paths. The notion, e.g., does not allow for loops in
the workflow. To eliminate this problem a weaker requirement is proposed
that only takes “fair” paths into consideration. The fairness assumption
is captured by some (path) formula ψ. In CTL∗ terms, we require:

A (ψ ⇒ F final).

Note that, for ψ=false, strict completion with fairness degrades to (ordi-
nary) strict completion.

The WF-net from Fig. 7b does not complete strictly as the loop
t2, t4, t2, . . . might never be exited. This net, however, does complete
strictly if we impose the (standard and commonly used) strong fairness
assumption [4], i.e., let ψ = ∨t∈T [GF (

∧
p∈•t p ≥ 1) ⇒ GF exec(t)]. With

this assumption we include only those sequences in which an infinitely
often enabled transition is infinitely often executed.

Optional completion Optional completion does not require that every
path must complete, but that no matter in which state the workflow is
know, it can always be completed eventually. The notion is weaker than
strict completion but it still captures all the important properties, like
livelocks and deadlocks. Stated in CTL∗ terms we have

AGEF final.

Fig. 7c shows a WF-net that completes optionally but not strictly.
Note that the strong fairness assumption (or any other standard one)
does not help here as t6 is never enabled in the infinite sequence
t2, t3, t4, t5, t2,

Eventual completion with φ This property requires that there exists a
state in which φ holds and from which there is a path to completion. The
intuition is that “bad” paths can be avoided if there are enough “good”
paths. Typical examples for φ are the requirements that some transition
is executed or that some data element is being used. Written in CTL∗

language we have:
EF (φ ∧ EFfinal).

The workflow from Fig. 7d does not optionally complete as the execu-
tion sequence t1, t4 leads to a deadlock. It, however, eventually completes
with φ = exec(t4) as the sequence t2, t4 leads to proper completion.

Eventual completion Eventually completion is the weakest property we
study. Its only requirement is that, starting from the initial state the
workflow can (i.e., along some path) reach the final state. In CTL∗ terms
we write this property as

EFfinal.

Note that eventual completion is actually eventual completion with φ for
φ = true.

The workflow in Fig. 7e eventually completes by executing the se-
quence t1, t3. It does, however, not eventually complete with exec(t2), as
the (only) execution of t2 leads to a deadlock.

Some of the above requirements, with or without the no-dead-
transition requirement, have been investigated in literature under the
notion of workflow soundness (see [2] for an overview). Classical sound-
ness [1], e.g., is the conjunction of the no-dead-task requirement and
optional completion. The notion of weak soundness [10] imposes only the
optional completion requirement. It does not consider whether some tran-
sition is dead or not. Easy soundness [19, 2] is even weaker, corresponding
to eventual completion only. Relaxed soundness [6] requires that for each
transition there should be at least one execution towards completion.
This amounts to checking the eventual completion with exec(t) property,
for each transition t. Finally, the completion requirement of [7] is strict
completion with strong fairness.

In this paper we focus only on proper completion, i.e. we consider a
workflow completed only when there is one token in the end place and
there are no other tokens. Some notions of soundness from the literature
weaken this requirement. For example, in lazy soundness [13] tokens may
be left behind as long as the place end is marked precisely once. Although,
this property does not fit into any category from above, it can be easily
expressed in CTL∗, e.g. as AG [end ≤ 1 ∧ EF end = 1].

3.3 Data correctness properties

In this section we list several properties related to the verification of the
flow of data through the workflow. In contrast to the control-flow prop-
erties that we stated in the form of correctness requirements, here we
define data anti-patterns that represent undesirable (data-flow) behav-
iors. Some of these anti-patterns are serious flaws (like, e.g., the missing
data error), while some only capture an undesired and non-optimal, but
not necessarily erroneous, behavior (like, e.g., the redundant data error).

Missing data The missing data error describes the situation where some
data element needs to be accessed, i.e. read or destroyed, but either it has
never been created or it has been deleted without being created again. A
data element d is thus missing if there is an execution path along which
no writing to d happens before a reading or destroying of d takes place. In
CTL∗ this can be expressed as E [¬w(d)U(r(d)∨d(d))]. A data element d is
also missing if it is destroyed and then no writing takes place until d is read
or destroyed. This can be captured by EF [d(d)∧ (¬w(d) U (r(d)∨ d(d)))].

��
�����

��

��

��

�	

��

a) Strict completion

����� �� ��

�� ��

�	

��

��

b) Strict completion using strong fairness

���

��

��

��

���	

�

��

�
��

�	
����

c) Optional completion

��
�����

��

��

��

�	

��

��

d) Eventual completion with exec(ti), i = 1, . . . , 4

��
�����

��

��

��

�	

��

e) Eventual completion

Fig. 7. Different variants of the proper completion requirement

�����

�����
�����������
����

��
�����
�������
�����

��
�� �	

������	
����

����	����

�

��

��

�������
����	����
�������

��

�������
�������
�����

��

�

������
�����
��
��������

��

�����
������
�����

��
�� ��

����
��
������
����

�	
��

�����������

����
����
����

��
��

���������������

Fig. 8. WFD-net with data-flow errors

The disjunction of these two expressions results in the following CTL∗

formula:

E [(¬w(d) U (r(d) ∨ d(d))) ∨ F [d(d) ∧ (¬w(d) U (r(d) ∨ d(d)))]]

In the example from Fig. 8, the elements a, b, c, d, e and u are all
missing. The element a needs to be read immediately by the first task; b
is created by t3, but it can be destroyed t5 before it reaches t8 that reads
it; c is an input of t8, but it is only created if the choice was made to do
t5 and not p6; if t8 does not execute before t4, then d is missing in t4; e
is created in t2 that might not be finished before e is needed to evaluate
the guard in t5 and t6; and finally, u is missing as it is needed for removal
in t8 but could have been destroyed already by t2.

Strongly redundant data Strongly redundant data element is an element
that is produced (written), but never read afterwards, i.e., before the
workflow is complete or the element is destroyed. In CTL∗ terms we ex-
press this as

EF [w(d) ∧ X [¬(r(d) ∨ d(d)) U (w(d) ∧ ¬r(d))]].

Note that the use of the operator X is essential, as we do not want to
capture the situation where the same task that writes to d is also reading
d, as this reading is, according to our convention, assumed to always
happen before the writing. Similarly, we must put d(d) ∧ ¬r(d) and not
just d(d), as destroying data is the last operation performed by a task.

In Fig. 8, the elements m and n are redundant. Task t5 creates m,
which t8 immediately destroys without reading (from) it. Similarly, n is
created in t1 but only read in t6, which need not ever execute.

Weakly redundant data Weakly redundant data strengthens weakens the
condition for the strongly redundant data error. The bad scenario is when
some data is produced, and then not read in all possible continuations.
The formalization of this error differs from its strong counterpart by one
letter only: the A requirement is added, since it is now required for all
subsequent paths to have the undesired behavior. We thus have

EF [w(d) ∧ A X [¬(r(d) ∨ d(d)) U (w(d) ∧ ¬r(d))]].

The element m from Fig. 8 is weakly redundant. No path after t5 can
contain a transition that reads m. The other strongly redundant element
from the figure, n, is not weakly redundant; there is still one path after
t1 in which n is read, namely the path in which t6 is taken.

Strongly Lost data Data is strongly lost if it is created, and then rewritten
without being read in between. The principle behind this error is the same
as for the strongly redundant data. The CTL∗ formula capturing the error
is

EF [w(d) ∧ X [¬(r(d) ∨ d(d)) U (w(d) ∧ ¬r(d))]].

Here we need to take w(d) ∧ ¬r(d) instead of just w(d), as we assume
that in a task reading always precedes writing. We take ¬(r(d) ∨ d(d))
instead of just ¬r(d) to make sure that the data is indeed rewritten and
not created again. The modality X is needed as without it any task that
writes to d but does not read d would cause an error.

In Fig. 8, the elements x, y and z are strongly lost. The element x is
written in t2 and immediately rewritten by the next task, t4. The element

y is lost if after t3, where it is created, task t5 is chosen. Finally, z is lost
if after t6, the parallel task t4 is executed.

Weakly Lost data Data is lost in the weak sense if it is created and then, in
all following executions, overwritten without being read first. Therefore
weakly lost data weakens the condition for the strongly lost data error.
The CTL∗ formula is the same as for the strongly lost data, but the
operator X is replaced by AX:

EF [w(d) ∧ A X [¬(r(d) ∨ d(d)) U (w(d) ∧ ¬r(d))]].

Among the three strongly lost data elements, only y is also weakly lost.
There is one path after t3 in which y is not written again, namely the
path in which t6 is taken.

Inconsistent data Data is inconsistent if a task is using this data while
some other task (or another instance of the same task) in parallel is
writing to this data or is destroying it. In CTL∗ terms, we have:

∨
t ∈ T :

d ∈ r(t) ∪ data(grd(t))
∪w(t) ∪ d(t)

EF [(exec(t) ∧
∨

t′ 6= t :
d ∈ w(t′) ∪ d(t′)

exec(t′)) ∨ pt ≥ 2].

The last part of the formula captures the situation where the same task
that writes to or deletes some data element is instantiated twice, in a
different thread. In Fig. 8, the elements z and r are inconsistent. The
element z can be written by both t4 and t6 in parallel. Task t4 can be
reading r, while task t6 is changing it in parallel.

The following correctness properties are related to data removal. They
should be seen more as optimization objectives rather than strict correct-
ness criteria. The properties become of high importance in environments
that operate on large data like, e.g., in grids.

Never destroyed A data element is never destroyed if it is created but
not destroyed afterwards. The principle of formulating this scenario is
essentially the same as for the strongly lost data. We have:

EF [w(d) ∧ X [¬(d(d) ∨ w(d)) U final]].

The reason for writing ¬(d(d)∨w(d)) and not just ¬d(d) is because rewrit-
ing is also destroying in some sense; the use of X is then necessary because
w(d) and ¬w(d) can not both hold.

In our example from Fig. 8, the elements b, z, r and p are all never
destroyed. There exists no task that destroys z, nor a task that destroys
r. The element b is only destroyed if t5 executes instead of t6. Finally, p
is created by the last task, t9, that does not also destroy it.

Twice destroyed This error is similar to the strongly lost data error but
concerns data deletion. A data element is twice destroyed if it is destroyed
twice in a row without being created in between:

EF [d(d) ∧ X [¬w(d) U (d(d) ∧ ¬w(d))]].

Here again we use the assumption that, inside a task, data removal always
takes place after data writing.

In Fig. 8, u and v are destroyed twice. The element u can be destroyed
first by t2 and then again by t8, or vice versa. If pred is false, then v is
destroyed in t5 and then again in t9.

Not destroyed on time This is an error when a task that is always the
last to read some data is not also destroying this data. For a t ∈ T that
reads d without destroying it this means that d is never read again after
t. An additional explanation needed here is related to the fact that there
can be several consecutive states for which exec(t) is true, which means
that there are events happening in parallel branches while t continues its
execution. The CTL∗ formula that captures this:

∨

t∈T :d∈r(t)\d(t)

AG [exec(t) ⇒ exec(t) U G (¬r(d))].

In Fig. 8, only the elements c and x are destroyed on time.
Note that in some cases the error scenarios overlap. For example, if an

element is twice destroyed, then it is also missing (cf. u from Fig. 8), and
an inconsistent data that is being written simultaneously by two tasks is
also lost data (cf. z from Fig. 8). To have this duality in some cases is
intentional, as one might not always want to check a workflow for all the
errors.

3.4 Verifying the properties

As explained before, CTL∗ model checking is, in general, inefficient, and
working in one of its subclasses is preferable. Moreover, tools supporting
CTL∗ are rare, while there is a plethora of LTL and CTL model-checkers
accepting Petri nets as input [11, 9, 5]. In this section we show that all

the properties we introduced can, in fact, be checked with either an LTL
or a CTL model-checker (or both). To achieve this we rely on, but do not
show, the standard rewriting rules for CTL∗ [4].

The CTL∗ formula describing the no-dead-transitions property can
also be seen as a set of CTL formulas, one for each transition t. As ¬EF
rewrites to AG¬, the negation of every such formula is an LTL formula.
Therefore, the no-dead-transitions property can be checked with both an
LTL and a CTL model-checker. Despite this fact, however, the property
is hardly ever going to be proved by model checking; it can be more
optimally checked while the underlying Kripke structure is generated.

The requirement for strict completion is both an LTL and a CTL for-
mula. Strict completion with fairness is an LTL property when ψ contains
no state formulas. In addition, replacing F final by EFfinal we get an equiv-
alent formula, that is CTL when ψ is CTL. The CTL∗ formula for optional
completion is a CTL formula for which there exists no equivalent LTL for-
mula. The formula capturing eventual completion with ψ is CTL when φ
is CTL. If φ is a path formula containing no state formulas, the negation
of the property is also LTL. Consequently, (ordinary) eventual completion
is both a CTL and an LTL property.

In the CTL∗ formula for missing data error we can replace the second
occurrence of ¬w(d) U (r(d) ∨ d(d)) by E(¬w(d) U (r(d) ∨ d(d))) to obtain
an equivalent CTL formula. Moreover, the negation of the original CTL∗

formula is LTL. In the strongly redundant data error we can replace X
by EX to obtain an equivalent CTL formula; the negation of the original
CTL∗ formula is also LTL. Replacing X by XA in the CTL∗ formula for
the weakly redundant data error, the formula becomes CTL. There is no
LTL formula expressing (the negation of) this property. In the strongly
lost data error we can replace X by EX which leads to an equivalent CTL
formula, while the negation of the original formula is LTL. The weakly
lost data, on the other side, is a CTL property not expressible in LTL. The
CTL∗ formula for the inconsistent data error can be seen as a set of CTL
formulas. The negation of any formula from this set is an LTL formula.
Note, however, that a check for inconsistent data only needs to identify
the “bad” states. Therefore, this check be done while the Kripke structure
is generated. The negation of the CTL∗ formula for the never destroyed
property is LTL; replacing X by FX we obtain an equivalent CTL formula.
Similarly to the strongly lost data, twice destroyed data error is both
a CTL and an LTL property. The formula expressing the not destroyed
on time error for a single transition is LTL. The above observations are
summarized in Table 1.

Table 1. Model checking the correctness properties - summary

CONTROL-FLOW REQUIREMENTS

No-dead-transitions LTL/CTL

Strong completion LTL/CTL

Strong completion with fairness
LTL (when ψ has no state formulas)

/ CTL (when ψ is CTL)

Optional completion CTL

Eventual completion with φ
LTL (when φ has no state formulas)

/ CTL (when φ is CTL)

Eventual completion LTL/CTL

DATA-FLOW ERRORS

Missing LTL/CTL

Strongly redundant LTL/CTL

Weakly redundant CTL

Strongly lost LTL/CTL

Weakly lost CTL

Inconsistent LTL/CTL

Never destroyed LTL/CTL

Twice destroyed LTL/CTL

Not destroyed on time LTL

4 Conclusions

Motivated by the fact that data-flow and control-flow in business work-
flows are not independent, we provided a framework for combined verifi-
cation of these aspects. We identified several possible flaws and formalized
them in terms of the temporal logics CTL∗. In addition to extending, re-
fining, and classifying the existing works that deal with similar issues,
our paper provides a unifying framework for complete workflow analy-
sis, using the well-known, stable, adaptable, and effective model-checking
approach.

Related work As mentioned before, many researchers have been working
on the topic of workflow verification already for years. It is impossible to
give a complete overview of the related work here (see [2] for a survey of
verification approaches focusing on the control-flow). Therefore, we only
mention the approaches directly relevant to this paper, namely those in
which control- and data-flow are both taken into account for verification.

The importance of data-flow verification in workflow processes was
first mentioned in [15]. There several possible errors in the data-flow are
identified, like, e.g., the missing and redundant data error, but no means
for checking these errors is provided. Later, [17] conceptualized the errors

from [15] using UML diagrams, and gave supporting verification algo-
rithms. This work was further extended and generalized in [18]. None of
these approaches consider control-flow properties.

In [8], a model called dual workflow nets is proposed, that can describe
both the data-flow and the control-flow. The notion of classical soundness
from [1] is extended to support the case when data-flow can influence
control-flow. No explicit data correctness properties are considered.

The ADEPTflex tool [14] supports a limited set of checks for control-
flow and data-flow correctness. However, the focus is mainly on dynamic
changes in workflow models.

The work closest to ours is [7]. There also model checking is used
to verify business workflows, from both control- and data-flow perspec-
tive. The underlying workflow language is UML diagrams as opposed to
the Petri net approach taken in this paper. Only a few data data correct-
ness properties are identified and no systematic classification is presented.
Data can only be read or written, not destroyed. Control-flow errors are
captured by means of strict completion with strong fairness, meaning that
the workflow from Fig. 8c is not correct in their setting. Finally, [7] only
considers LTL, so many of our correctness properties are not expressible
there.

In the field of software verification, model checking have been success-
fully used to discover program bugs that are caused by, e.g., non-initialized
or dead variables [16]. In this, totally different, application domain, con-
currency issues are rarely treated and a systematic classification of errors
is missing.

Future work In the future we will try to identify more errors. We will also
build an integrated tool-chain that starts with the check for boundedness,
then performs the preprocessing transformations and Kripke structure
generation, proceeds by using an existing model-checker, e.g. [11], and
finally generating a verification report for the workflow designer.

We also plan to investigate how structural techniques on Petri nets
can be applied in our case and how to extend the correctness properties
for the case when data elements are not only case-related, but could be
shared among different cases.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H.M.W.
Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of Workflow Nets: Classifica-
tion, Decidability, and Analysis. BPM Center Report BPM-08-02, BPMcenter.org,
2008.

3. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

4. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts and London, UK, 1999.

5. CPN Group, University of Aarhus, Denmark. CPN Tools Home Page.
http://wiki.daimi.au.dk/cpntools/.

6. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R.
Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’01), vol-
ume 2068 of Lecture Notes in Computer Science, pages 157–170. Springer-Verlag,
Berlin, 2001.

7. R. Eshuis. Symbolic Model Checking of UML Activity Diagrams. ACM Transac-
tions on Software Engineering Methodology, 15(1):1–38, 2006.

8. S. Fan, W.C. Dou, and J. Chen. Dual Workflow Nets: Mixed Control/Data-Flow
Representation for Workflow Modeling and Verification. In Advances in Web
and Network Technologies, and Information Management (APWeb/WAIM 2007
Workshops), volume 4537 of Lecture Notes in Computer Science, pages 433–444.
Springer-Verlag, Berlin, 2007.

9. M. Mäkelä. Maria: Modular Reachability Analyser for Algebraic System Nets.
In Applications and Theory of Petri Nets 2002 (ICATPN’2002), volume 2360 of
LNCS, pages 434–444. Springer, 2002.

10. A. Martens. On Compatibility of Web Services. Petri Net Newsletter, 65:12–20,
2003.

11. Model-Checking Kit Home Page. http://www.informatik.uni-
stuttgart.de/fmi/szs/tools/mckit/.

12. Pallas Athena. Protos User Manual. Pallas Athena BV, Plasmolen, The Nether-
lands, 2004.

13. F. Puhlmann and M. Weske. Interaction Soundness for Service Orchestrations. In
A. Dan and W. Lamersdorf, editors, Proceedings of Service-Oriented Computing
(ICSOC 2006), volume 4294 of Lecture Notes in Computer Science, pages 302–313.
Springer-Verlag, Berlin, 2006.

14. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of
Workflows without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

15. S.W. Sadiq, M.E. Orlowska, W.Sadiq, and C. Foulger. Data Flow and Validation
in Workflow Modelling. In Fifteenth Australasian Database Conference (ADC),
Dunedin, New Zealand, volume 27 of CRPIT, pages 207–214. Australian Computer
Society, 2004.

16. D.A. Schmidt. Data Flow Analysis is Model Checking of Abstract Interpretations.
In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL’98), pages 38–48. ACM, 1998.

17. S.X. Sun, J.L. Zhao, J.F. Nunamaker, and O.R. Liu Sheng. Formulating the
Data Flow Perspective for Business Process Management. Information Systems
Research, 17(4):374–391, 2006.

18. M.H. Sundari, A.K. Sen, and A. Bagchi. Detecting Data Flow Errors in Work-
flows: A Systematic Graph Traversal Approach. In 17th Workshop on Information
Technology & Systems (WITS-2007), Montreal, 2007.

19. R. van der Toorn. Component-Based Software Design with Petri nets: An Approach
Based on Inheritance of Behavior. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 2004.

