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1 Introduction

DHI are interested in understanding a rather unusual water extraction system that is
operated by a water supply company. Typically when water is extracted from the ground
a well is dug and a pump is installed in the well to push the water to the surface where it
enters a distribution system of pipes. Such a system may consist of a dozen or so wells each
connected to a single collection pipe. The system that DHI wish to more fully understand
consists of a series of ten wells connected to a single collection pipe. The difference in the
mode of operation is that the system contains no pumps in the wells. The force to collect
the water comes from placing the end of the collection pipe in a tank that is continuously
pumped to keep it at approximately 0.5 bar below atmospheric pressure. In this way the
water is drawn out of the wells by a siphon mechanism. Such a system appears cheaper to
install with fewer pumps and water supplied in this manner costs roughly half the price of
water from a standard pump system. How this multiple siphon system works and how it
might be controlled were the general problems of interest to the study group.

A plan view of the the well system is shown in figure 1 where the wells to the north
and west are conventional pumped wells and the ten wells to the south-east are the siphon
system. The ten siphon wells are approximately 50 meters apart horizontally and sunk to
a depth of around eighty meters into a limestone aquifer that is confined by an overlying
clay layer.

The siphon system has been operated for about twenty years but there is very little
data to indicate how it is operating. There has been one set of measurements taken of
the pressure at the top of ten wells along with the flow up each well. From this one set
of data, given in table 1, measurements on the collection tank indicate it was operating
at about 5.20 meters of head below atmospheric with a total flow rate of 340 m3/hr. The
data show that the drop in pressure from the first well is 3.20 m (which is around 60% of
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Figure 1: Plan view of pumped and siphoned wells

the total) and that the first five of the ten wells contributed about 90% of the flow into the
collection system. The remaining wells were operating at pressures up to 1 meter of head
below atmospheric and contributed significantly less to the overall flow from the system.
There is no other data from the siphon system but this demonstrates that the amount
of water flowing from each well seems to be strongly influenced by its distance from the
collection tank. Given these observations and the desire to understand how the system
might be controlled the following questions were asked of the study group:

1. What parameters in the system will determine the flow distribution from the wells?

2. How will the water table in the wells influence the flow?

3. How will the pipe dimensions determine the flow?

4. Can water go from one well to another?

5. Where in the system is the greatest risk of cavitation?
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Well 7a 8a 9a 10a 11 12a 14a 15a 16a 17a
Diameter d (mm) 203.4 203.3 203.5 202.8 203.3 202.6 203.1 203.2 200.9 194.9
Velocity v (m/s) 0.67 0.47 0.50 0.48 0.43 0.06 0.06 0.22 0.20 0.18
Pressure head P (m) 2.00 2.10 2.12 1.84 1.73 1.53 1.40 1.44 1.07 1.23
Flow Q (m3/h) 69.38 46.41 49.26 46.88 41.87 4.57 4.08 19.04 17.07 14.00
fraction of total flow 22% 15% 16% 15% 13% 1% 1% 6% 5% 4%

2 Basic flow model

We consider a model for a system of circular pipes each of uniform crossection connected
at various junction points. At each point along the pipe we have pressure p, velocity v and
height above a reference vertical position, h. As the flows typically have large Reynolds
number we shall consider the total stagnation pressure

P = p + (1/2)ρv2 + ρgh (1)

For a single pipe in the system a feasible model is to consider fully developed flow in
each pipe and hence to use a relationship between the flow down the pipe and the total
stagnation pressure drop along the pipe. Such flow laws are well known in the literature
and are summarized in a Moody Diagram [4] and are typically written as

∆P =
fL

2D
ρv|v| (2)

where ∆P is the difference in the stagnation pressure from one end of the pipe to the other,
v is the average flow velocity, D is the diameter of the pipe, L is the pipe length and f is
a friction factor determined by the Reynolds number of the flow and the roughness of the
pipe surface. For the pipe flows here we can determine that a typical Reynolds number in
the system is

Re =
ρvD

ν
≈ 106 (3)

and the plastic pipes are very smooth.

To simulate the flow in the system we consider the situation set out in figure 2. Here
the variables P0,i indicate the total stagnation pressure of water down in well i (all heights
are measured relative to the same reference such as the top of the water in the tank to
simplify the analysis) while Pi is the total stagnation pressure head at the point where the
well pipe enters the collection pipe. We use vi as the average velocity of water up well i
and ui is the average velocity in the collection pipe between well i and i + 1. We adopt a
convention where i = 1 is the well furthest from the tank, i = N the well closest to the
tank and PN+1 is the tank. Conservation of mass in the system then requires

Ai+1ui+1 = Aiui + aivi 1 ≤ i ≤ N − 1 (4)
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Figure 2: Nomenclature used for several wells

and u1 = v1. Here Ai = πD2
i /2 is the crossectional area of each collection pipe and

ai = πd2
i /2 is the crossectional area of the pipes in the wells. The difference in pressure

head along each pipe then gives, for the collection pipes

Pi − Pi+1 =
fLi

2Di

ρ|ui|ui 1 ≤ i ≤ N (5)

and for the well pipes

P0,i − Pi =
fℓi

2di

ρ|vi|vi 1 ≤ i ≤ N (6)

where we know that PN+1 = −H where H is the vacuum pressure exerted within the
tank. (We have used Ai for the crossectional area of the collection pipes and ai for the
crossectional area of the well bores pipes. With Li being the distance between pipes and
ℓi being the riser pipe length.)

The model given above is that currently used by DHI to consider flow within the system.
We now use this to look at two different situations with the intention of demonstrating
behavior of the equations in different ways. We shall first consider the case where there
are many wells and so a continuum model can be exploited while subsequently we consider
just two wells, which is the smallest number of wells that gives nontrivial behavior.

2.1 Continuous model

We consider a distributed system of wells with x measuring the distance along the collection
pipe from the tank x = 0 to the furthest well x = L. Taking the limit N → ∞ of the
previous discrete model (4) we get

d(A(x)u)

dx
= B(x)v for 0 ≤ x ≤ L . (7)

where A(x) is the crossectional area of the collection pipe along its length and B(x) is the
crossectional area of well pipe per length of the collection pipe (ie. a continuous version
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of ai/Li). To this equation we add the boundary condition u(0) = 0, to indicate there is
no external flow into the collection pipe before the well furthest from the tank, and the
difference in pressure head along each pipe then gives, for the collection pipes

dP

dx
= − f

2D(x)
ρ|u|u (8)

and for the well pipes

P0(x) − P =
f l(x)

2d(x)
ρ|v|v (9)

and finally we know that P (L) = −H with H the vacuum pressure exerted within the
tank. Here we have used the notation that in the continuum limit A(x) = πD(x)2/4 and
l(x) = (riser pipe length/Li).

This problem can be solved by taking (9) to give

v = (P0(x) − P )

√

√

√

√

2d(x)

fl(x)ρ|P0(x) − P | (10)

and using this to give the system for u and P

d(A(x)u)

dx
= B(x)(P0(x) − P )

√

√

√

√

2d(x)

fl(x)ρ|P0(x) − P | (11)

dP

dx
= − f

2D(x)
ρ|u|u (12)

with the boundary conditions

u(0) = 0, P (L) = −H . (13)

This problem was solved numerically for the case where all the pipes are identical D(x) =
d(x) = 1 and all the physical parameters are unity. The pressure head in the wells, P0(x)
was taken to be linear (P0(x) = x). The results for the total stagnation head and the
velocity in the collection pipe are given in figure 3 and 4. These show that the pressure
drops steeply near the tank, due primarily to the square law dependence of the turbulent
friction, and that this caused the wells nearest the tank to contribute a large proportion
of the water to the system as shown by the solution for v as given in figure 5.

This continuous model gives the possibility of considering how to design A(x) and B(x)
so that all wells contribute the same flow to the system. This could be done by imposing
the fact that v is known and then finding the conditions needed for A(x) and B(x). One
case that is easily considered is where all the risers are the same length and diameter and
the head in the well increases linearly with distance so that P0 = b(L − x). If we take the
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Figure 3: The total stagnation pressure, P , predicted from the continuous model

Figure 4: The velocity along the collection pipe, u, predicted from the continuous model

outflow from each well to be the same so that v is a constant, from equation (9) we find
that P = bx − B (where B is a constant). Furthermore, from equation (8)

b ∝ − 1√
A

u2. (14)

We can also integrate equation (7) to give

A(x)u = Bv(x − L) (15)

and so combining these results, we find that

A ∝ (L − x)
4

5 . (16)

Hence we conclude that the pipe network must be constructed so that the area increases
significantly as we get near to the reservoir tank.

One other interesting case where analytical progress can be made is to consider the case
where all the wells are at the same height with identical risers (P0(x), ℓ(x), d(x) constant).
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Figure 5: The velocity up the wells, v, predicted from the continuous model

In this case it is not possible to make all wells contribute equally and we find the more
distance well contributing a small fraction of the flow. We do not present the details here.
We note that the continuous model may allow methods to be applied to understand the
stability of the solution with respect to the small variations in the pressure changes in
individual wells. A formal derivation of the continuous model from the discrete equations
remains to be performed.

2.2 Two well model

In order to make analytical progress and to understand some of the properties of the model
it is worth considering the case of two wells, which is the least number that is not the trivial
case usually considered in a simple siphon. As the aim of this simple model is to gain insight
a highly simplified situation is considered as shown in figure 6 where we just consider three
wells and no reservoir tank, we take simple pipes from each well (no distinction of riser
and connection pipes), the pipes to the first and last are assumed identical and L is the
ratio of the length of the middle pipe to the others. The equations governing this system
are

P2 = v1|v1| , (17)

h − P2 = Lv2|v2| , (18)

1 − P2 = v3|v3| , (19)

v1 + v2 + v3 = 0 . (20)

The pressures have been scaled so that the pressure in the reservoir is zero (P1 = 0), the
pressure in the furthest well is unity (P3 = 1) and the pressure in the middle well is h.

Figure 7 shows the total contribution from each well to the flow arriving at the reservoir
as a function of the height h of well 1. This is shown for three different cases: L = 0.01
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Figure 6: Notation adopted for the simple two-wells problem

(a short riser pipe relative to the inter-well spacing), L = 0.5 and L = 1 (the riser pipe
and inter-well spacing are the same). The light line shows the contribution from the well
2 while the dark line shows the contribution from well 1. It can be seen that for all three
cases, when h < 0.5 there is no flow contribution from well 1. In fact here water enters
well 1 from well 2.

The most interesting difference comes when h → 1. For L = 1, the contribution from
both wells is equal when they are both at the same height. This is because both wells
are the same distance away from the reservoir and so the system is symmetrical. However
when L < 1, well 2 is further away from the reservoir than well 1. This means that there
is more pipe friction between well 2 and the reservoir than there is between well 1 and
the reservoir and so there is a greater headloss from well 2. Thus the flow from well 1
can contribute a significantly larger proportion of the total flow than well 2, even when
h < 1. In the DHI system, the inter-well spacing is approximately 50m, while the riser
pipes are around 10m in length. Thus L ≈ 0.2, and so it is to be expected that there will
be a significantly larger proportion from a closer wells than a farther away wells when the
water tables in the wells are at similar heights.

This simple example nicely illustrates why the majority of flow in DHI’s data comes from
the nearest wells to the reservoir. This is because pipe friction causes significant stagnation
pressure head loss from more distant wells, so flow will be reduced relative to the closer
wells.
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Figure 7: Flow from the wells as the relative height of the wells is changed in the two-well
problem

3 Electrical analogies

One approach to studying the flow problem is to draw on the extensive ideas available from
the area of electrical circuit behavior. For example the two-well problem can be replaced
by three resistors and three batteries as shown in figure 8 Here the volume flow rate Q is

Figure 8: Notation for the two-well problem as an electrical circuit

replaced by the current I and the head loss P by the voltage V with the unit for current is
m3/s and for voltage m3/s2 so that the unit for resistance is m−1s−1. Also the current for
a crossectional area we have I = Q = Av and the applied voltages due to batteries are Ei.

For the two well problems the electrical equivalent is:

V4 = R1 (21)

V2 − V4 = R2Q2 + E2 (22)

9



V3 − V4 = R3Q3 + E3 (23)

Q1 = Q2 + Q3 . (24)

An interesting result is that it is possible to analyze this problem to find when there is no
flow from well 1 while well 2 is working, by taking Q2 = 0. This shows that this occurs
when

P2 =
L1

A1d1

L1

A1d1

+ L3

A3d3

P3 . (25)

Similarly it can be found that well 2 stops flowing when

P3 =
L1

A1d1

L1

A1d1

+ L2

A2d2

P2 . (26)

4 Including junction effects

Experiments show that the basic model outlined above does not predict the observations
made on a simple two-well problem examined by taking three buckets of water at different
heights and connecting them with piping and a T-junction connector. In particular it was
observed that the junction seemed to have a significant effect on the behavior. A model of
junction behavior was found in [3] which considers the pressure head loss across different
shapes of junction.

Note in extending the basic model we are relaxing the very strong condition imposed
in the previous model that the pressure at the junction was the same in all pipes at the
junction. This condition does not account for the boundary layer effects near and in the
junction. For very low Reynolds number flow the pressure will be almost uniform within
the junction. However as the Reynolds number grows boundary layer effects will be become
important. There will be significant entry regions before the flow becomes fully developed
and there will be growing shear layers separating one flow from another We have not
studied these effects in detail but observe, for example, that at high Reynolds number fully
developed flow may require 20 pipe diameters to become valid.

The extension of the model is to consider the pressures in the pipes entering a junction
to be different and to use approximations and empirical laws in order to understand how
these pressures are related. Noe that all this analysis is done in the high Reynolds number
limit and hence we are looking at jumps in the stagnation pressure of the fluid namely
p + (1/2)ρv2

In the paper by Bassett et.al. [3] six different possible flow configurations are considered
for each junction. These are shown in figure 9. The expressions for the various pressure
drops are rather complicated but we note that they do significantly simplify in the case of
a T-junction.
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Figure 9: Flow configuration for determining pressure losses (reproduced from [3])

The two-well problem described earlier was extended to account for a single T-junction
where the pipes connect. To accommodate this the single pressure P4 at the junction is
replaced by three pressures being the pressure on the legs of the junction. See figure 10 for
the notation used and note that again we scale pressure so that P1 = 0 and P3 = 1. The

Figure 10: Pressure notation used in the legs of the T-junction

model equations are therefore:
P4 = v1|v1| , (27)

P2 − P5 = Lv2|v2| , (28)

1 − P6 = v3|v3| , (29)

v1 + v2 + v3 = 0 , (30)

P5 − P4 = F1(v1, v2) , (31)

P6 − P4 = F1(v1, v3) (32)

where the functions F1 and F2 are given in [3]. we note that these functions are not
continuous functions of the two velocities particularly because of the jump in behavior
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when the flows reverse. To this problem a simple model of the behaviors of each of the
wells was added. This model represents the wells as buckets so that the pressure in each
well depends on the flow of water into the bucket. Hence the model is

dP1

dt
= −v1,

dP2

dt
= −v2,

dP3

dt
= −v3 . (33)

where the initial values of P1 P2 and P3 are given. This model was then solved numerically
in order to determine the possible behavior that can occur. One difficulty in finding such a
solution is the solution of the nonlinear equations representing the junction. It was found
that there may be multiple solutions to the system and hence the current numerical method
simply finds one of these and then attempts to follow the resulting behavior assuming that
the pressure remains continuous.

In figure 11 the behavior of the three different wells is shown for the case when the
junction is not considered to be special but has a single pressure, as in the earlier section.
Here there are no issues of non-uniqueness of problems with numerical solution and the
behavior is smooth and monotone.

Figure 11: The flow and pressure in each of the three legs of the two-well problem and the
pressure at the junction (no special junction behavior accounted for)

In figure 12 the behavior of the three different wells is shown for the case when the
junction is not considered to be at a single pressure. Here the flow and pressure behavior
shows some rather unexpected behavior. In particular the problem initially starts with
the main flow from the first bucket to the last. This continues well past the time when
the pressure of the middle bucket gets higher than both the others and might therefore be
expected to contribute significantly to the flow. This is caused because the flow across the
horizontal legs of the T-junction prevent the vertical leg from contributing until the flow
across slows to a halt.
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Figure 12: The flow and pressure in each of the three legs of the two-well problem with
junction behavior as given by [3]

Thus, when junction effects are included the solution can become non-unique. This
means that the flow from a well may be augmented or retarded depending on the initial
conditions and time-course of the problem. For example, in the case described above the
flow from the middle well cannot force its way into the the collection pipe because of the
force generated by the strong flow between the other two wells.

5 Including groundwater effects

There is data from the pumped wells close to the siphon system that indicates that there
are significant interactions between pumped wells through the groundwater flow. DHI
use a complex computational groundwater model to understand this behavior but it was
deemed as appropriate to see how these effects might be incorporated into the model of the
siphon. DHI have connected a computational model of the siphon system (similar to the
basic model above) to the computational model of the groundwater and found interesting
behavior and some computational difficulties. The study group therefore briefly examined
how such integration might make numerical implementation difficult.

For flow in a confined aquifer with a horizontal top confining layer and of thickness d
the pressure head in the system can be modelled using a simple equation

∂(SP )

∂t
= ∇ (T∇P ) (34)

where S is the specific storativity, T is the transmissivity of the limestone and the spatial
derivatives are in the horizontal plane only. To this model we would like to include the ten
wells and these can be represented by ten point sources. As the system is linear we can
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add the sources together and so it is simple to consider a single source and seek the radially
symmetric solution around it. The radially symmetric solution is outlined in [2](page 216)
or [1] and for the problem

∂(SP )

∂t
=

1

r

∂

∂r

(

rT
∂P

∂r

)

(35)

with and initial pressure of P = 0 and a sink such that

2πrT
∂P

∂r
→ −Q as r → 0 (36)

is given as

P =
−QS

4π

∫

∞

(r2S/4Tt)

exp−η

η
dη . (37)

The important part of this behavior is that the response at a distance of r ∼ l occurs of a
time scale of order t ∼ l2S/T . If the data from the submerged pumps is accurate then it
is noted that this response appears to be within an hour. This requires very small value of
S and large values of T . The change in the pressure at the different wells when all pumps
have been off for some time and the first pump is turned on is shown in figure 13.

Figure 13: The pressure in the groundwater at eight different equally spaced wells when
the first pump is suddenly started.

One of the consequences of having such small S and high T values is that this connects
the groundwater levels between wells on a very short time scale, as expected to fit with
data. However, this implies that the numerical procedure of coupling the groundwater to
the pipe system must account for this. Currently the connection is made by assuming that
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at each timestep the water levels in the groundwater model are constant and to introduce a
small model to connect these given levels to the flow in the well accounting for local coning
and losses in the screen on a single well. To get better convergence it may be necessary
to ensure such local interaction is done at all wells simultaneously and even this may be
inadequate.

6 Conclusions

In this report we have considered the flow of water from a number of interconnected wells
into a single reservoir under the action of a siphon. We have found that the following
behavior can occur.

• Wells further away tend to contribute less to the total due to pipe friction causing a
loss in stagnation pressure head.

• Depending on the height of the water in the wells, and assuming it increases away
from the reservoir the collector pipe can be made to make the flow uniform from all
wells and this requires the collector pipe to increase in area significantly near to the
reservoir tank.

• The existing model does not include the effects due to flow at the junctions. These
make a significant difference to the flow in the pipes. In particular the behavior can
be non-unique with the flow depending on the initial conditions and the history of the
well heights. A well that is not producing but whose head is increasing may remain
a small contributer if the junction is such that the cross-flow through the junction
due to the other wells makes it hard to break into the stream.

• Careful design of the junctions may allow more uniform flows from the wells to occur.

• An electrical analogue has identified conditions in a small system where a well may
cease to contribute to the flow (and hence might actually reverse its flow).

• The dependency of the flow in the collection pipe to the ground water heights is
such that all the wells interact strongly through the groundwater. Hence numerical
methods that link models of each part must account from this strong linking.
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