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Abstract. For large security systems a clear separation of concerns is
achieved through architecting. Particularly the dynamic consistency be-
tween the architectural components should be addressed, in addition to
individual component behaviour. In this paper, relevant dynamic consis-
tency is specified through Paradigm, a coordination modeling language
based on dynamic constraints. As it is argued, this fits well with security
issues. A smaller example introduces the architectural approach towards
implementing security policies. A larger casestudy illustrates the use of
Paradigm in analyzing the FOO voting scheme. In addition, translating
the Paradigm models into process algebra brings model checking within
reach. Security properties of the examples discussed, are formally verified
with the model checker mCRL2.

1 Introduction

Characteristic for software security problems is, all details matter [2]. Such de-
tails fall into several categories centered round the software that must be secure.
First: computational details, purely internal to a single component of the soft-
ware. Second: interaction details between the various components of the software.
Third: interaction details between the software and relevant other application
software. Fourth: interaction details between the software and the lower level in-
ner world of machine software and hardware. Fifth: interaction details between
the software and the outer world of its human stakeholders. Finally, in a recur-
rent manner: sets of these categories can be found again, centered round relevant
other pieces of software, hardware or stakeholders.

In general software development, it has become standard to integrate such
diverse categories of computation and interaction coherently within one model,
at least at a global level. To that aim, architecture description languages and ar-
chitectural frameworks are used, cf. [16,24,28], comprising not only the software
application level and technical infrastructure level, but also the organization level
constituting the habitat of the software. An architectural model in such a lan-
guage succeeds in giving a clear and coherent overview of the problem situation
at hand, but its interaction details remain declarative mainly, as e.g. service-
oriented architectures do not usually go into the details of an orchestration or
choreography of a service.

R. de Lemos et al. (Eds.): Architecting Dependable Systems VI, LNCS 5835, pp. 255–283, 2009.
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In the context of security, where all details matter, an architectural approach
might be seriously hampering insight into the quality of the solution. By its
global nature, an architectural description does not readily express every detail
of the security problem situation. And even worse, architectures are weak in clar-
ifying operationally how interaction occurs and what behavioural consequences
may arise. This is not amazing as even in detailed UML models for software
design, dynamic consistency is a problem far from being solved within the UML
language [27]. However, interaction categories dominate the listing given above.
So, behavioural interaction details are of the greatest importance.

Very often, coordination languages are successfully used for interaction issues,
also in relation to architectures. In the context of security it is argued however,
coordination solutions are not so easy to apply. Where security is generally
oriented towards restriction of dynamics by effectively prohibiting and prevent-
ing unwelcome behaviour of participants and intruders, coordination is rather
more oriented towards broadening dynamics by efficiently establishing a larger
behavioural scope through collaboration, see [44].

For security problems of a larger size, the above disadvantages of architectures
or coordination languages, are even more prominent: more details that mat-
ter, more coordination directed to even more restrictive dynamics. Nevertheless,
we propose the coordination modeling language Paradigm (see e.g. [19,18,4])
both for architecting and for coordinating solutions to larger security problems.
Paradigm’s architecting is done by splitting the problem situation into well-
chosen collaborations, characterized each through a separate protocol. Protocol
dynamics, although global, are kept dynamically consistent with detailed dynam-
ics of collaborating participants, through well-defined roles. Paradigm’s specifica-
tion of coordination solutions is in terms of consistency rules forming protocols,
typically formulated as constraint orchestration or as constraint choreography.
Thus, additional effective restriction-on-purpose of collaboration protocol dy-
namics towards a solution for security issues, fits well with Paradigm’s usual
orchestration or choreography of constraints.

To underpin the above claims, the sequel is organized as follows. In Section 2
we introduce Paradigm by means of a small secure email example, with a light
architectural flavor already present. Section 3 presents Paradigm’s constraint
architecting by using a larger e-voting example, the FOO voting scheme. Here
it is not only specified how one individual voter is to be handled, but also how
potential voters are to be hoarded as an ensemble. Section 4 addresses formal
verification of the Paradigm models, through model checking on the basis of a
process algebraic translation. Related work is discussed in Section 5. Section 6
gives conclusions.

2 An Email Example: Paradigm Explained

In this section we briefly explain the key notions of the coordination modeling
language Paradigm. A simple case dealing with security policies for encryption
of email messages is used as a running example. The exposition should provide
sufficient understanding of Paradigm for the subsequent sections, in particular
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for Section 3, where we discuss a more extensive voting scheme. For more detailed
introductions to Paradigm we refer to [17,19,43].

Let us consider the following situation. In the R&D laboratory of a com-
pany, confidential research is taking place. A document security policy applies
to email communication. It states that email addressed to colleague researchers
may be signed and encrypted, dependent on the security label of the email con-
tent or attachments. Additionally, mail directed to recipients outside the lab are
mandatorily encrypted. To support the cryptographic algorithms used, a public
key infrastructure has been set up.

Some workers use a PDA for email communication. For this, a location-
dependent security policy is in place, demanding all email traffic to be encrypted,
when sent using the PDA outside of the premises of the laboratory. Antennas at
the exits of the lab send a signal to the PDA, caught by the security module on
the PDA, upon entering or leaving the grounds. The email client of the PDA will
automatically encrypt all messages when being outside, and provides optional
encryption when being inside. However, encryption in particular, substantially
consumes battery power. Therefore, as an exception to the rule, for email of a
low security label, the PDA owner may override the obligation to encrypt when
being outside. Upon completion of sending an email, the PDA switches back to
the default mode of encryption, optional or mandatory encryption when inside,
mandatory when outside, whichever applies.

In view of modeling coordination solutions in terms of behavior influencing,
Paradigm has five key notions: STD, phase, (connecting) trap, role and consis-
tency rule. We shall introduce them guided by the R&D lab example.

Every Paradigm model is built from STDs, purely sequential behavioral units.

• A state-transition diagram (STD) is a triple 〈ST, AC, TS〉 with ST the set of
states, AC the set of actions and TS ⊆ ST × AC × ST the set of transitions
or steps. A step (x, a, x′) ∈ TS is said to be a step from x to x′, notation
x

a→ x′.

Thus, an STD is just a labeled transition system (LTS), rather like a very simple,
purely sequential state machine in UML.

pmsg
OutPeriInPeri

leave

enter

Encrypt

Plain

Idle

PMode

EMode

DoneIdle

esend

psend

pfooterpheader

eheader efooter

writeLog

(b) (c)(a)

emsg

ready

ready

Fig. 1. Basic STDs: (a) PDA, (b) email client EMC, (c) security module SM

Modeling the above R&D lab encryption aspects with Paradigm entails, three
components are being distinguished. Their dynamics are modeled through one
STD each: a PDA, an email client on the PDA, a security module on the PDA.
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See Figure 1abc visualizing the three respective STDs in UML-style: rounded
rectangles as states and a black-dot-and-arrow pointing to a starting state. The
user of the PDA can send a message either in plain mode by moving to state
Plain or in encryption mode by moving to state Encrypt. After the message has
been sent, PDA returns to the starting state Idle. (Below we will refine this.) The
email client EMC, when asked to send a message, splits the message into blocks
and transmits them with additional header and footer. It does so, either in plain
mode, state PMode, or in encryption mode, state EMode. After arrival in state
Done, the email client returns to its state Idle. The security module SM shuttles
between the two states InPeri and OutPeri, registering whether the PDA is inside
or outside the security perimeter.

The main coordination modeling issue is, to organize the mutual influencing of
the components such that the security policies are respected. For example, while
PDA resides in state Encrypt, the email client EMC should remain restricted to
taking steps where sending of the header, of the separate blocks and of the footer
occurs in encrypted mode only. To that aim, Paradigm provides the notions of
a phase of an STD and of a trap of a phase, both notions serving as temporary
constraint on the STD’s dynamics, i.e. on the choice there is for taking steps.

• A phase of STD 〈ST, AC, TS〉 is an STD S = 〈st, ac, ts〉 such that st ⊆ ST,
ac ⊆ AC and ts ⊆ { (x, a, x′) ∈ TS | x, x′ ∈ st, a ∈ ac }.

A phase of an STD is itself an STD, actually a subSTD of the STD it is a phase
of. As such, a phase of an STD is meant to express a temporarily valid dynamic
constraint imposed on the STD it is a phase of. Visualized, a phase is an STD-
like fragment of the original, larger STD preserving the form of the original in
the fragment. See Figure 2abc. Apart from the extra rectangles to be discussed
below, each figure part represents one phase of the full EMC in Figure 1b, viz.
PSend, ESend and Finished. PSend gives the behavior needed for plain sending;
ESend singles out the behavior needed for encrypted sending; Finished represent
the behavior needed for getting prepared for whatever next sending after having
closed the last sending properly.

Traps, the other dynamic constraint notion of Paradigm, are stepping stones
for switching from one phase to another.

Idle Done
writeLog

free

Idle Done

EMode efootereheader

esend

eDone

Idle Done

PModepheader pfooter

psend

pDone

Finished ESendPSend
free free

pDone eDone

(d)(c) Finished

(b) ESend(a) PSend

Fig. 2. (a–c) phases PSend, ESend and Finished, (d) role EMC(DoPo)
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• A trap t of phase S = 〈st, ac, ts〉 is a non-empty set of states t ⊆ st such
that x ∈ t and x

a→ x′ ∈ ts imply x′ ∈ t. The trap t of S connects phase S

to another phase S′ = 〈st′, ac′, ts′〉, notation S
t→ S′, if t ⊆ st′. This is

called a phase transfer. If t = st, t is called the trivial trap of S.

A trap of a phase is a subset of the states of the phase, such that once entered,
the subset cannot be left as long as the phase remains imposed. A trap represents
a second type of dynamic constraints, committed to by a phase, through its own
dynamics: within a phase, the entering of a trap is irrevocable, thus marking
the beginning of a final stage of the phase. A trap often serves as a guard for
a phase change of the basic STD, i.e. as a guard for changing the constraint
currently imposed into a constraint imposed next. In such a case, the trap has
to be connecting to the phase aimed at next.

A trap is visualized as a polygon surrounding the states belonging to the trap.
More concretely, the three small rectangles in each of the diagrams in Figure 2a–c
represent a trap of the particular phase, named pDone, eDone and free, respec-
tively. Below we shall see examples of larger (connecting) traps. Normally, as is
the case here, trivial traps are not drawn, unless serving as connecting trap. Note,
trap pDone is connecting from PSend to Finished, trap eDone is connecting from
ESend to again Finished and trap free is connecting from Finished to PSend as well
as to ESend. Hence, phase transfers PSend

pDone−→ Finished, ESend
eDone−→ Finished,

Finished
free−→ PSend and Finished

free−→ ESend are well-defined.
From phase transfers a concrete role STD can be constructed. Roles are gen-

erally defined in terms of phases and of traps thereof, belonging each to a well-
chosen set, referred to as a partition.

• A partition π = { (Si, Ti) | i ∈ I } of an STD Z is a set of phases Si of Z
and a set Ti of traps of Si. The role or global STD at the level of partition
π is an STD Z(π) = 〈GST, GAC, GTS〉 with GST ⊆ { Si | i ∈ I }, GAC ⊆ ⋃

i∈I Ti

and GTS ⊆ { Si
t→ Sj | i, j ∈ I, t ∈ GAC } a set of phase transfers. Z is called

the detailed STD underlying global STD Z(π), the π-role of Z.

Thus, a role of an STD is based on a partition, a particular set of phases of the
STD and of connecting traps between them. Here, a connecting trap marks the
readiness of a phase to be changed into another phase within the role. The role is
to provide a consistent and global view on the ongoing detailed dynamics of the
underlying STD. If phases and traps have been chosen well, such a global view
expresses precisely the dynamics essential for coordinating the underlying STD
via its role. On the one hand, the current state of the role STD, being a phase,
imposes the constraint being relevant for the coordination at that moment, on
the underlying detailed dynamics. On the other hand, the current detailed state
belonging to a trap, is a commit towards the ongoing coordination: the detailed
STD shall stay within the trap until a next phase is imposed. In this manner, a
role remains dynamically consistent with the underlying detailed STD.

More concretely, Figure 2d presents the role EMC(DoPo) for implementing the
coordination consequences of the document security policy for the email client
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EMC. The role in Figure 2d has the three phases PSend, ESend and Finished
as its states and it has the three connecting traps pDone, eDone and free as its
actions. Thus, partition DoPo consists of the phases and traps from Figure 2a–c,
together with the three trivial traps (not drawn).

The key idea is, at each point in time a component not only is in one of the
states of its detailed STD, but for every role the component has, at each point
in time the component is also in one of the phases of that role. Therefore, to
maintain consistency, in Paradigm a detailed transition can only be made, if al-
lowed by every current phase of its roles, compliant with the current constraints
imposed. In addition, in Paradigm a global transition can only be made, if the
component’s current detailed state belongs to the trap labeling the global transi-
tion, currently entered and hence committed to. For example, if the email client
is in detailed state Idle as well as in global state ESend, the detailed STD cannot
take the transition from Idle to PMode. Hence, from Idle, sooner or later it is to
take the step to EMode, if any, and possibly much later the step from EMode
to Done. Only then a connecting trap is entered, viz. trap eDone connecting
from ESend to Finished, whereupon at the role level sooner or later the global
transition labeled eDone is to be taken from phase ESend to phase Finished.

The control of actually taking a role step, is governed by the consistency rules.
Via a consistency rule other roles are taken into account, relating the behavior of
individual components depending on the coordination one wants to achieve. A
consistency rule synchronizes single steps of detailed and global STDs as follows:
per consistency rule at most one detailed step and arbitrarily many global steps
from different roles. As general consistency rule format we use:

detailed transition ∗ global transition , . . . , global transition

Relating to a consistency rule format we use the following terminology (cf. [43]).

– protocol step: consistency rule with at least one global transition

– orchestration step: protocol step with a detailed transition

– choreography step: protocol step without a detailed transition

– protocol : a set of protocol steps

– choreography: a protocol with choreography steps only

– orchestration: a protocol with at least one orchestration step

– protocol conductor : detailed STD with a transition occurring in the protocol

– protocol participant : detailed STD having a role in the protocol.
We have four consistency rules, together called the PlainOrEncrypt protocol,

that define the DoPo role of the email client EMC. (Below we shall refine it).

PDA : Idle
pmsg−→ Plain ∗ EMC(DoPo) : Finished

free−→ PSend

PDA : Plain
ready−→ Idle ∗ EMC(DoPo) : PSend

pDone−→ Finished

PDA : Idle
emsg−→ Encrypt ∗ EMC(DoPo) : Finished

free−→ ESend

PDA : Encrypt
ready−→ Idle ∗ EMC(DoPo) : ESend

eDone−→ Finished
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This protocol certainly is an orchestration. PDA is present as conductor in every
consistency rule of it. The first rule, for example, is operationally interpreted as
follows: PDA, when in state Idle and if allowed to do so by every role of it, can
make a pmsg transition to state Plain, if also EMC, residing in phase Finished of
role DoPo, has reached trap free and thus can make a transfer to phase PSend.
This way, the detailed step of conductor PDA is coupled to the phase transfer or
global step of participant EMC in role DoPo. The four consistency rules specify:
PDA is conducting EMC in sending either in plain or encrypted as well as in
preparing for sending again; EMC is notifying PDA when such conducting has
led to the result aimed at.

We want the security module to conduct PDA. The alternative of the security
module conducting the email client directly is possible too, but not done here.
Thus, we have the following two consistency rules, collectively referred to as the
InOrOut protocol. (A refined version of the protocol is given below.)

SM : InPeri
leave−→ OutPeri ∗ PDA(LoPo) : EncryptSome

triv−→ EncryptAll

SM : OutPeri
enter−→ InPeri ∗ PDA(LoPo) : EncryptAll

triv−→ EncryptSome

The PDA is supposed to have a role LoPo, to deal with the location security
policy. Within this role there are two phases, EncryptSome and EncryptAll, each
with the trivial trap comprising all states of the phase; furthermore, both traps
triv are connecting to the other phase. Partition LoPo and role PDA(LoPo) at its
level are depicted in Figure 3.

EncryptSome

EncryptAll
Idle Encrypt

Plain

Idle Encrypt

Plain

triv triv

(c)

ready

ready

emsg

triv

EncryptAll(b)

pmsg

ready

ready

emsg

triv

EncryptSome(a)

Fig. 3. (a–b) Phases and traps, (c) corresponding role PDA(LoPo)

To complete the picture, the overall collaboration involving the two protocols
InOrOut and PlainOrEncrypt of PDA, email client and security module, is drawn
in Figure 4. In InOrOut, the security module conducts PDA in its role PDA(LoPo);
in the PlainOrEncrypt protocol, PDA conducts the email client in its role
EMC(DoPo). In the figure conducting is indicated by thin boxes.

Clearly, the above InOrOut protocol does not model the possibility for the PDA
user to override the location security policy. As depicted in Figure 5, we extend
the detailed STD of PDA with a new state Override and two transitions (a), and
we add a new phase (d) to PDA’s role LoPo (e). Furthermore, we redefine the
original two phases, in view of the addition of state Override (b,c). The protocol
InOrOut is extended with two consistency rules as choreography steps. Also, a
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consistency rule as orchestration step is added, dealing with the mobility of PDA
conducted by security module SM.

∗ PDA(LoPo) : EncryptAll
escape−→ EscEncrypt

∗ PDA(LoPo) : EscEncrypt
escdone−→ EncryptAll

SM : OutPeri
enter−→ InPeri ∗ PDA(LoPo) : EscEncrypt

triv−→ EncryptSome

InOrOut PlainOrEncrypt

PDA(LoPo) EMC(DoPo)

PDA Email ClientSec Module

Fig. 4. Collaboration: protocols InOrOut and PlainOrEncrypt

In the first choreography step, the PDA, once in the trap escape, can transfer
unconductedly to phase EscEncrypt in which a pmsg-transition to the state Plain
is available. The second choreography step transfers the PDA unconductedly
to phase EncryptAll once trap escDone has been entered. However, to assure no
restrictions apply any longer in case the PDA has returned into the security
perimeter while sending the message, the consistency rule conducted by SM is
added.

As can be seen from Figure 5c for phase EncryptAll, the inner trap escape
contains the new state Override. The trap escape is used to catch the PDA
user’s wish to override the standard encryption regulation. The outer trap triv
is still needed, viz. for the former consistency rule transferring the PDA to
phase EncryptSome. The new phase EscEncrypt in the role LoPo of the PDA,
Figure 5d, has a transition labelled pmsg to the state Plain. Note, neither phase
EncryptAll nor EscEncrypt have a pmsg-transition leaving from state Idle. Only in
the special case of overriding, the sending of plain messages is allowed. In order
for the email client to stay consistent with this transition, the consistency rule

PDA : Override
pmsg−→ Plain ∗ EMC(DoPo) : Finished

free−→ PSend

is to be added to the PlainOrEncrypt protocol. Note, the STD of the email client
itself is not changed. The overriding of the location security policy ends once
trap escDone of phase EscEncrypt is reached, a signal caught by the second
choreography rule above.

Using the example of security policies regulating plain or encrypted sending
of email, we have illustrated Paradigm’s key notions of STD, phase, (connecting)
trap, role and consistency rule as well as the terminology of protocol, orchestra-
tion and choreography. In the next section, we shall exploit Paradigm notions
and terminology in describing the well-known FOO voting scheme.
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Idle Encrypt
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EncryptSome
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pmsg
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(a)
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noEnc

triv

escDone

escape

Fig. 5. Overriding: (a) adapted STD for PDA, (b–d) phases, (e) role PDA(LoPo)

3 A Voting Example: Architecting Interaction

In this section we address a substantially larger security protocol, the so-called
FOO voting scheme proposed by Fujioka, Okamoto and Ohta [14]. The example
is small enough for the size of this chapter, but also large enough to underpin
our architectural ideas concerning security systems. It comes down to the fol-
lowing. We take a security problem as an interaction situation, where specific
interactions are controlled via dynamic constraint regulations. This is modeled
within Paradigm via suitable groupings of collaborating components into UML-
like collaborations, each responsible for a certain aspect of the overall interaction.
Each collaboration then can be taken as a separate architectural unit of a secu-
rity concern, to be analyzed and understood in relative isolation, resulting in a
dedicated specification of a solution for that concern. Via the consistency inher-
ently provided by Paradigm, well-separated concern solutions can be re-united
and integrated into a complete solution for the security situation. Based on the
architectural organization into separate concerns, the complete solution can be
overseen and remains manageable in terms of partial solutions.

For the purpose of this paper, an abstract description of the FOO voting
scheme suffices. See [25,34] for more details. The scheme distinguishes between
three main stages. As a first step, the Organizer of the election makes public that
an election will take place. During the first stage of the election process, Humans
register with the so-called Administrator. During this stage, the Human contacts
the Administrator, identifies himself and sends a blinded message containing his
encrypted vote to the Administrator. Due to the blinding, the Administrator can-
not determine the message of the Human. In case the Human is entitled to vote,
the Administrator will sign the Human’s blinded message and return it. At a
certain moment the first stage will end, meaning that Humans entitled cannot
obtain the possibility to vote any more.

During the second stage a Human can send his encrypted vote signed by the
Administrator to a so-called anonymous channel. This Channel collects all received
encrypted votes and signatures and sends these to the Counter in an arbitrary
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order. For simplicity, we assume that Channel first collects all encrypted votes
and then forwards them in bulk. Thus, the output message of the Channel cannot
be related to a specific Human, providing anonymity of votes. The Channel does
not check the correctness of the messages it obtains from the Humans, it only
reorders messages. The second stage, encrypted voting, needs to take place within
a certain period specified in advance: Humans wanting to cast their votes, need
to send their encrypted votes to the Channel in time.

During the third stage, each voter uncovers his vote anonymously. To that
aim, each voter sends his uncovering, i.e. the key he used for encrypting his
vote, to the Counter via the Channel. As the output of the Channel hides the
sender of the output message, the privacy is protected. Each voter in the scheme
makes use of the Channel twice. First, the Channel collects all encrypted votes.
After this, the Channel outputs them in an arbitrary order. Analogously, the
anonymous channel first collects all keys for uncovering and after that outputs
these to the Counter in arbitrary order. The set-up, according to the voting
scheme, guarantees full anonymity by strict separation of subsequent stages:
(i) administering and encrypted voting, (ii) first bulk output, (iii) uncovering,
(iv) second bulk output and counting.

As we see from the description, the FOO voting scheme has five different types of
components: Human, Organizer, Administrator, Channel and Counter. The number
of the Human components is undetermined, n ∈ N say. Of the remaining four
types there is exactly one of each. Given the above, we differentiate between
two major activities: ElectionOrganizing covering the overall voting procedure;
VoteHandling covering the individual handling of voters and votes.

VoteHandling

ElectionOrganizing

Administrator Channel Counter

Chan(AsSer)Adm(AsSer) Cnt(AsSer)

Chan(AsReg)Adm(AsReg) Cnt(AsReg)

. . .. . .Organizer Humani

Humi(InElec)

Humi(AsVoter)

Fig. 6. Collaborations ElectionOrganizing and VoteHandling

Figure 6 presents the roles of each component grouped into two separate
collaborations. No role is given for Organizer, as he only conducts the proto-
col of collaboration ElectionOrganizing, as indicated by the thin unlabeled box.
Indeed, ElectionOrganizing will be coordinated by orchestration. Each Humani,
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1 ≤ i ≤ n, participates in ElectionOrganizing and in VoteHandling in its two roles
Humani(InElection) and Humani(AsVoter), for brevity written as Humi(InElec)
and Humi(AsVoter), respectively. Using the shorter names Adm, Chan and Cnt
for the Administrator, Channel and Counter, their cooperation within the collab-
orations is via their roles AsRegulator and AsServer, written as AsReg and AsSer
in the figure. Note, the protocol of collaboration VoteHandling has no conductor;
no thin unlabeled box is present. The protocol will be coordinated choreograph-
ically. Except for Organizer, all components are contributing to both protocols,
but via two different roles, one for each protocol exclusively. Components do
not belong themselves to a collaboration, but their roles do so instead. In view
thereof the components are visualized in dotted form.

We proceed by explaining the dynamics of the orchestration of the collabo-
ration ElectionOrganizing. Because of its overall guiding character, it is easier to
explain than the choreographic VoteHandling. The dynamics of the latter will be
addressed thereafter.
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Fig. 7. Detailed STDs: Organizer, Human Administrator, Channel, Counter

In its five parts, Figure 7 visualizes the detailed STDs of the five compo-
nents. Organizer clearly takes four fixed consecutive actions. The first action
announce allows all Human components to perform their first two main voting
activities of administering and encrypted voting. The second action start al-
lows the Administrator to become active. From then, Humans can be handled by
Administrator and subsequently by Channel. The third action proceed is done only
after the encrypted votes have been received by the Counter. The fourth action
declare is done after all vote uncoverings have been processed and counted. Only
then the result of the election is made known.
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Any Human can try to behave as a voter by doing the eight actions leading
from starting state Idle to state Voted. In state Idle, after having heard he may or
may not vote, such a Human can choose to do action hear or no-Hear. Similarly,
in state Invited, he may choose to do action askForm or no-Ask. In state ToForm
he does action getForm if and only if Administrator allows so. In state WithForm
he can choose action complete or no-Complete. In state Filled, while being served
by Channel, he does action sendEnc. In state EncSent he chooses to do action
waitUncover or no-Wait. In state Waiting, he can choose to wait until it is allowed
to uncover by doing action finish, or he can quit earlier by doing action no-Finish.
In state ToUncover, while again being served by Channel, he does action uncover.
In state Voted, he waits until the election outcome is made known, upon which
he does action getResult. Similarly, in state LockedOut, he waits until the election
outcome is made known, upon which he does action hearResult.

Figure 7c presents Administrator. Starting from state Idle, any Human asking
for a form, can be handled individually by Administrator as follows. First he does
action address, then action lookUp for a particular Human. Depending on the re-
sult thereof, he either continues by doing action accept followed by giveSignature,
or he continues by doing refuse followed by dismiss. After both continuations,
Administrator is back in state Idle, ready to handle another Human. In addition,
Administrator has another possibility in Idle as a kind of closing-time policy: first
doing action interrupt followed by doing action proceed, thus returning to Idle
once more. This action pair is done exactly once, as we shall see. Upon return-
ing to Idle each Human not yet having asked for a form, cannot do so any longer,
but all those that already did, will be handled, one after another indeed.

Channel takes over individual Human handling from Administrator. Moreover, it
actually does so two times, first for the encrypted votes they cast. Channel explic-
itly closes encrypted vote handling, for every Human involved, by going to state
Done for the first time. After that, it continues Human handling for their uncover-
ings. Again, it explicitly closes this handling by going to state Done for the second
time. Starting from state Idle, each time a Human turns up, Channel does action
address, thus receiving the encrypted vote. Then it does action mix, scheduling the
encrypted vote to be delivered later. Finally it does action abandon, thus ending
service to the particular Human and returning to state Idle.

Like Administrator in state Idle, Channel has, as closing-time policy, the pos-
sibility of doing action interrupt followed by proceed, thus returning to Idle once
more. Upon returning to Idle each Human not yet having turned up, cannot do
so any longer, but all those that already did, will be served, one after another
indeed. To that aim, action seeWork leading to state Spotting is chosen to ad-
dress any such waiting Human individually, whereupon actions address, mix and
abandon lead back to Idle. As soon as no other Human is waiting to be served,
it takes action dumpBulk, thereby forwarding all encrypted votes together to
Counter for further handling. The action stop leads to state Done. By taking
action switchOver returning to state Idle occurs. Subsequently, Channel displays
highly similar behaviour once more, now for handling any Human’s uncovering
in the same manner as it handled his encrypted vote.
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Fig. 8. (a) Partition InElection of Humani, (b) corresponding role Humani(InElection)

Like Channel, Counter as given in Figure 7e is involved twice in vote han-
dling: first, receiving all encrypted votes together and publishing them, be it
still encrypted, and, second, receiving all uncoverings together and applying
these, thereby doing vote counting too. Starting from state Idle, Counter takes
action receive, thus receiving all encrypted votes as one bulk. Then, by taking
action startUnravel, it goes to state Waiting, where all encrypted votes are being
published. To finish encrypted vote handling, Counter takes action stop towards
state Done. By taking step switchOver it returns to Idle from where it repeats
the three actions receive, startUnravel and stop returning to state Done again,
but in this case via state Counting. By doing so, it first receives the uncoverings,
it then processes all uncoverings received, thereby counting the votes too. After
all uncoverings have been applied and the votes have been counted, it stops in
Done at last.

The STDs discussed above are detailed STDs. Only one of these, Organizer,
participates as such in collaboration ElectionOrganizing. The other four STDs do
participate, but more indirectly, via their respective roles InElection and
AsRegulator, see Figure 6. Each such role is a global STD, whose states and
actions are phases and connecting traps, respectively, from a particular parti-
tion. These partitions as well as the roles built from them, are visualized in
Figure 8 for Human and in Figure 9 for Administrator, Channel and Counter.
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Note how the four phases of partition InElection of the role Human(InElection),
subsequently allow a Human more freedom: first it can do nothing in phase
PreElection, second it can go as far as sending its encrypted vote in phase
HalfWayVoting, third it can even do the uncovering in phase FinalVoting, and
last it can hear the outcome of the voting in phase Outcome. Trivial traps here
facilitate phase transfers independently from Human behaviour within a phase.

Figure 9a depicts how Administrator first can do nothing in phase Passive
and, second, can do things unrestrictedly in phase Active. Slightly less simple,
Figure 9b expresses how Channel, in phases Active1 and Active2, can do things
unrestrictedly between state Idle and state Done. Phase Active1 covers all en-
crypted vote handling by Channel, phase Active2 covers all uncovering handling
by Channel. Their difference is, in phase Active2 component Channel can no longer
resume its activities after having arrived in state Done.

Figure 9c expresses similar phases for Counter, where phase ShowingEncs is the
analogue of Active1 above, precisely during phase HalfWayVoting of all Humans
together. Similarly, phase ShowingVotes is the analogue of Active2 above too,
but in this case during phase FinalVoting of all Human together, where vote
uncoverings are being published and counted accordingly. The phase Resumption
bridges the behavioral gap between the two.

It is via these coarse-grained constraints, Organizer conducts the election pro-
cedure. By action announce he unleashes all Humans into phase HalfWayVoting
while still keeping Administrator in phase Passive. It is only by Organizer’s second
action start, he puts Administrator into phase Active. By his third action proceed,
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on the basis of Counter having closed encrypted vote handling, Organizer con-
ducts all Humans into the third phase FinalVoting. In addition, both Channel and
Counter are conducted to their next phases, Active2 and Resumption, respectively.
Note, this is to happen only, if both Counter in its role AsRegulator and Channel
in its other role AsServer have made enough progress. The combined condition
for such progress is: trap ready of phase ShowingEncs (for Counter) as well as
trap ready of phase Finishing (for Channel) are the two relevant, nontrivial traps
currently entered. In the case of the latter trap ready, its having been entered
should be observed only, since phase Finishing is not to be transferred –such dy-
namics belong to Channel’s role AsServer in other protocol VoteHandling. Finally,
on the basis of Counter having closed vote uncovering, Organizer takes his last
action declare, conducting all Humans into the last phase Outcome. The consis-
tency rules specify this precisely. From their format one can directly recognize
the orchestration character of the protocol of collaboration ElectionOrganizing.
Note, the use of the universal quantifier to abbreviate the notation in three of
the rules, thus establishing a broadcast to each Humani via his InElection role:
one synchronized role step for all n Humans together.

Organizer : Planning
announce−→ Waiting ∗

∀i ∈ I [ Humani(InElection) : PreElection
triv−→ HalfWayVoting ]

Organizer : Waiting
start−→ Phases1And2 ∗

Administrator(AsRegulator) : Passive
triv−→ Active

Organizer : Phases1And2
proceed−→ Phase3 ∗

∀i ∈ I [ Humani(InElection) : HalfWayVoting
triv−→ FinalVoting ] ,

Channel(AsRegulator) : Active1
triv−→ Active2 ,

Channel(AsServer) : Finishing
ready−→ Finishing ,

Counter(AsRegulator) : ShowingEncs
ready−→ Resumption

Organizer : Phase3
declare−→ Ready ∗

∀i ∈ I [ Humani(InElection) : FinalVoting
triv−→ Outcome ] ,

Counter(AsRegulator) : ShowingVotes
ready−→ ShowingVotes

∗ Counter(AsRegulator) : Resumption
started−→ ShowingVotes

The last consistency rule is a choreography step assuring, Counter swaps from
phase Resumption to phase ShowingVotes after trap started has been entered.
This concludes the coordination of collaboration ElectionOrganizing addressing
the overall conducting.

For the remainder of this section we direct our attention towards the collab-
oration VoteHandling. Figure 10a gives partition AsVoter of Human, Figure 10b
gives the corresponding role. We briefly discuss phases, traps and role, first
by concentrating on successful, normal voting. Four phases have been defined:
PreAdmin, Administering, EncVoting and Uncovering. First, phase PreAdmin where
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the role starts by allowing any Human to ask for the signature providing service
of Administrator; second, phase Administering where the signed form is given to
the voter; third, phase EncVoting where encrypted voting is done and a voter
can ask to uncover his vote; fourth and last, phase Uncovering where uncovering
of a voter’s encrypted vote is done.

Note, within phase PreAdmin any human indeed has the choice between try-
ing to get a signed voting form and not trying to, independent from having
the right to vote. So, a prohibiting outcome, different from getting the normal
next phase Administering imposed, should be possible, even if trap ready within
phase PreAdmin has been entered. The prohibiting outcome is represented by
phase Finished. As we shall specify below, this is handled by Administrator via
its role AsRegulator. Thus, Administrator is involved in any Human’s phase trans-
fer from PreAdmin either to Administering or to Finished, both via connecting
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trap ready. In relation to the other normal phase transfers, we have omitted the
prohibiting outcome as a possibility, for space reasons only. Thus, similar but
simpler, Channel is involved in any Human’s phase transfer from Administering
to EncVoting and, again, Channel is involved in any Human’s phase transfer from
EncVoting to Uncovering. So, two components are pipeline-wise involved in the
three subsequent, successful, normal phase transfers of any Human.

However, there is some time pressure too. So, on the basis of trap triv of
phase PreAdmin, or of Administering or on the basis of trap encDone having been
entered of phase EncVoting, the particular phase can be interrupted. In case
a Human turns out to have entered trap droppedOff instead of trap ready, the
responsible component is not going to serve that Human and the Human transfers
to Finished, as he was too late in asking for the next service needed.

According to the above explanation, the non-Human component Counter is not
responsible for any Human’s phase transfers. The reason is, Counter cooperates
with Channel exclusively and only twice. The first time is, the sending of all
encrypted votes together; the second time is, the sending of all uncoverings
together. We shall clarify this point later, after first having explained the phases
of both Administrator and Channel relevant for the pipeline-wise guiding of each
Human component through his role AsVoter. To that aim we refer to Figures 11
and 12. They visualize the phases from partition AsServer of the two components
Administrator and Channel, together with the corresponding roles.

In Figure 11, we depict how Administrator starts in phase Finishing, where it
finishes the signature providing service to a Human by entering trap ready and
where it cannot start a next service. In phase Handlingi, 1 ≤ i ≤ n, it can start
doing so for Human i only, as follows from the consistency rules below. Serving
proceeds up to either giving the signature or refusing to give it: by entering trap
signature or trap noSignature respectively. Via these traps it returns to phase
Finishing, where it will get ready for handling another Human asking for the
signature. In all n + 1 phases discussed so-far it has the additional possibility
to enter trap stop, which it does at closing time. From stop in Finishing, it con-
tinues in LastFinishing and from stop in Handlingi it continues in LastHandlingi.
Phase transfers between LastFinishing and LastHandlingi are exactly similar as
discussed above between Finishing and Handlingi. The difference is in the Human
components, however. From now on no new Human components can start asking
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for the signature providing service. This means, only those who were already
asking for it before trap stop was entered by Administrator, have to be served.
Below, consistency rules specify this, serving Humans one by one.

Figure 12 visualizes similar phases and role of Channel in view of providing to
a Human the service of anonymously sending his encrypted vote or his uncovering
thereof. The role starts in phase Finishing, where it waits inside trap ready to
start a new service turn. Until further notice, this service is the anonymous bulk
sending of encrypted votes only. After having been asked by Humani, it provides
a fresh service turn, exclusively to Humani, by going to phase Handlingi where
it enters trap next, via which it returns to phase Finishing. Similar as above, the
additional trap stop is used in view of the closing time policy. Via trap stop a
swap is made to phase LastFinishing or to phase LastHandlingi. Via these two
phases, any Human that had asked for the anonymous encrypted vote sending
service in time, is being served. Only then, all encrypted votes together are
being sent to Counter. It is via trap bulkSent of LastFinishing the role returns
to Finishing, where it restarts providing the anonymous sending service to any
Human asking for it, this time with respect to vote uncoverings. So it returns to
phase Finishing where it can reenter trap ready soon enough. This is particularly
relevant for the last consistency rule of the ElectionOrganizing protocol starting
on page 269.

The roles given in Figures 10, 11, 12, are synchronized through the following
consistency rules. Their synchronization constitutes the main part of the protocol
for collaboration VoteHandling; the remaining part will be discussed separately,
through the additional AsServer role of Counter. Note, none of the protocol steps,
being the consistency rules, has a conductor, in line with the choreographic
character of the protocol. To facilitate the discussion, we split the presentation
of the rules into three groups.

The first group of eight rules specifies how Administrator serves a single Humani

in his role AsVoter, thereby transferring him from phase PreAdmin either to
Administering or to Finishing, possibly via LastPreAdmin in view of the closing
time policy. The first three rules of the group address how a Humani in two
steps is being transferred from PreAdmin to Administering or to Finished. The
last three rules address a similar transfer from LastPreAdmin. The two middle
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rules address phase transfers needed for the closing time policy, transferring all
relevant Humans together from PreAdmin to LastPreAdmin. Note, the universal
quantifier ranges over those Humans still being in PreAdmin.

∗ Humani(AsVoter) : PreAdmin
ready−→ PreAdmin ,

Administrator(AsServer) : Finishing
ready−→ Handlingi

∗ Humani(AsVoter) : PreAdmin
ready−→ Administering ,

Administrator(AsServer) : Handlingi

signature−→ Finishing

∗ Humani(AsVoter) : PreAdmin
ready−→ Finished ,

Administrator(AsServer) : Handlingi

noSignature−→ Finishing

∗ ∀i ∈ I [ Humani(AsVoter) : PreAdmin
triv−→ LastPreAdmin ],

Administrator(AsServer) : Finishing
stop−→ LastFinishing

∗ ∀i ∈ I [ Humani(AsVoter) : PreAdmin
triv−→ LastPreAdmin ],

Administrator(AsServer) : Handlingi

stop−→ LastHandlingi

∗ Humani(AsVoter) : LastPreAdmin
ready−→ LastPreAdmin ,

Administrator(AsServer) : LastFinishing
ready−→ LastHandlingi

∗ Humani(AsVoter) : LastPreAdmin
ready−→ Administering ,

Administrator(AsServer) : LastHandlingi

signature−→ LastFinishing

∗ Humani(AsVoter) : LastPreAdmin
ready−→ Finished ,

Administrator(AsServer) : LastHandlingi

noSignature−→ LastFinishing

The above rules do not express, what happens to a Human trapped in droppedOff
of phase LastPreAdmin. This is covered by the second group of three consistency
rules, additionally expressing what happens to a Human similarly trapped in
droppedOff of phase LastAdministering or of phase LastEncVoting. Note, in these
three cases the particular Humani only is mentioned. Administrator and Channel
are not involved.

∗ Humani(AsVoter) : LastPreAdmin
droppedOff→ Finished

∗ Humani(AsVoter) : LastAdministering
droppedOff→ Finished

∗ Humani(AsVoter) : LastEncVoting
droppedOff→ Finished

The third group of rules is resembling the first group, specifying how Channel
serves a particular Humani in his role AsVoter. Thereby, Channel firstly trans-
fers him from phase Administering to EncVoting and secondly transfers him,
much later, from EncVoting to Uncovering. In view of closing time policy, the
first transfer may take place via LastAdministering and the second transfer via
LastEncVoting. As we did not take into account the possibility of a refusal, the
rules are more simple in that respect than those from the first group. A slightly
less simple detail, however, arises in the service offering by Channel when in trap
next. Channel has to remain inside phase Handlingi until it indeed has received
the encrypted vote from Humani, before it can schedule the vote for output. The
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same detail is observable in other rules as well. Again, the closing time policy is
addressed. Here, we need an additional detail concerning discriminating between
handling encrypted votes and handling uncoverings. So, an inspection of its own
current phase in the other role AsRegulator has been added to the rules, about
being in trap triv either of phase Active1 or of phase Active2.

∗ Humani(AsVoter) : Administering
ready−→ Administering ,

Channel(AsServer) : Finishing
ready−→ Handlingi

∗ Humani(AsVoter) : Administering
ready−→ EncVoting ,

Channel(AsServer) : Handlingi
next−→ Handlingi

∗ Humani(AsVoter) : EncVoting
encDone→ EncVoting ,

Channel(AsServer) : Handlingi
next−→ Finishing

∗ ∀i ∈ I [ Humani(AsVoter) : Administering
triv−→ LastAdministering ],

Channel(AsServer) : Finishing
stop−→ LastFinishing ,

Channel(AsRegulator) : Active1
triv−→ Active1

∗ ∀i ∈ I [ Humani(AsVoter) : Administering
triv−→ LastAdministering ],

Channel(AsServer) : Handlingi

stop−→ LastHandlingi ,

Channel(AsRegulator) : Active1
triv−→ Active1

∗ Humani(AsVoter) : LastAdministering
ready−→ LastAdministering ,

Channel(AsServer) : LastFinishing
ready−→ LastHandlingi

∗ Humani(AsVoter) : LastAdministering
ready−→ EncVoting ,

Channel(AsServer) : LastHandlingi
next−→ LastHandlingi

∗ Humani(AsVoter) : EncVoting
encDone→ EncVoting ,

Channel(AsServer) : LastHandlingi
next−→ LastFinishing

∗ Humani(AsVoter) : EncVoting
ready−→ EncVoting ,

Channel(AsServer) : Finishing
ready−→ Handlingi

∗ Humani(AsVoter) : EncVoting
ready−→ Uncovering ,

Channel(AsServer) : Handlingi
next−→ Handlingi

∗ Humani(AsVoter) : Uncovering
uncoverDone−→ Uncovering ,

Channel(AsServer) : Handlingi
next−→ Finishing

∗ ∀i ∈ I [ Humani(AsVoter) : EncVoting
encDone→ LastEncVoting ],

Channel(AsServer) : Finishing
stop−→ LastFinishing ,

Channel(AsRegulator) : Active2
triv−→ Active2

∗ ∀i ∈ I [ Humani(AsVoter) : EncVoting
encDone→ LastEncVoting ],

Channel(AsServer) : Handlingi

stop−→ LastHandlingi ,

Channel(AsRegulator) : Active2
triv−→ Active2
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∗ Humani(AsVoter) : LastEncVoting
ready−→ LastEncVoting ,

Channel(AsServer) : LastFinishing
ready−→ LastHandlingi

∗ Humani(AsVoter) : LastEncVoting
ready−→ Uncovering ,

Channel(AsServer) : LastHandlingi
next−→ LastHandlingi

∗ Humani(AsVoter) : Uncovering
uncoverDone−→ Uncovering ,

Channel(AsServer) : LastHandlingi
next−→ LastFinishing

So far we have discussed the consistency rules coupling the AsVoter role of Human
and AsServer roles of Administrator and of Channel. In the remainder of this
section we explain the AsServer role of Counter and how it is coupled to the
AsServer role of Channel. Figure 13 presents partition AsServer of Counter and
the corresponding role. The role starts in phase Finishing, where in trap ready it is
waiting for the first bulk to arrive. Such a bulk gets handled in phase Beginning,
where via the large trap started the role returns to phase Finishing, but the actual
handling newly started just continues within Finishing to its regular end.

Beginning

Finishing
ready

Finishing (a) (b)

ready started

started

Beginning

Fig. 13. (a) Partition AsServer of Counter, (b) role Counter(AsServer)

The consistency rules coupling the AsServer role of Counter from Figure 13b
and the AsServer role of Channel from Figure 12d are the fourth and last group
of rules specifying the protocol for collaboration VoteHandling. It has two rules
only. The first rule couples trap bulkSent of Channel having been entered in
its phase LastFinishing, to a transfer to phase Beginning of Counter. Thus the
end of Channel’s service providing during either all Humans’ simultaneous phase
HalfWayVoting or their simultaneous phase FinalVoting has been reached. Hence,
encrypted vote publishing or uncovering results are to be initiated by Counter,
uncovering combined with the counting the votes. Recall, the actual restart of
Counter is done by Organizer in protocol ElectionOrganizing.

∗ Channel(AsServer) : LastFinishing
bulkSent→ Finishing ,

Counter(AsServer) : Finishing
ready−→ Beginning

∗ Counter(AsServer) : Beginning
started−→ Finishing

As a final remark we like to observe, it is the clear separation of two concerns,
achieved through the two collaborations chosen, which has been instrumental in
constructing the Paradigm model and in subsequently explaining it. One concern
is the overall voting procedure for all Human components together, the other
concern is the individual handling of each Humani separately, but sufficiently well
in line with the overall procedure. Additional features then turned up, like closing
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time, which we incorporated completely, and like malicious behaviour, which
we addressed superficially only, via the two possible outcomes of the service
provided on an individual basis by Administrator. How to handle truly malicious
and unintended behavior is a topic of ongoing research however. This is also
relevant outside the field of security; e.g. in business process modeling and in
computer supported collaborative work.

4 Model Checking Safety and Security Properties

General Paradigm models, in particular security architecture models as above,
can be translated into the process language of the model checker mCRL2 [22,21].
This way one can formally verify whether an architectural description satisfies
certain requirements or whether it exhibits specific undesired behaviour.

Characteristic for mCRL2 are the support for abstract data types and the use
of parametrized boolean equation systems for symbolic model checking [23]. A
process description P and the property ϕ to be checked together yield such
an equation system. Solving the equation system provides the answer whether
system P satisfies property ϕ. In addition, mCRL2 provides extensive support,
e.g. for the generation and visualization of LTSs.1

In outline, the translation of Paradigm into mCRL2 is as follows. A component
is represented by the parallel composition of its detailed STD and all its roles.
It expresses the component’s current local state as well as the current phases for
all its roles. Within the parallel construct, state information is communicated
from the detailed STD to the global ones, allowing them to update their trap
information. Vice versa, according to the Paradigm semantics, a transition to
be taken at the detailed level requires the transition to be allowed by all the
phases the component is currently in. By a proper synchronization of the actions
involved in state updates and transition requests, consistency between detailed
STD and global roles is dynamically guaranteed.

We have specified the Paradigm models of both variants of the email example
from Section 2 in mCRL2 and verified a number of properties using the mCRL2
toolset. Here, we list some of them. Note, the translation requires the double
occurrence of label pmsg in the adapted STD for PDA to be distinguished. We
use pmsg1 from Idle to Plain, and pmsg2 from Override to Plain.

(a) It is not possible to send a plain message while being outside the security
perimeter. This property is expressed as

[ true*. sync(leave,triv). ( !sync(enter,triv) )* . sync(pmsg1,free) ] false

Here, sync(pmsg1,free) denotes an initiation of sending a message in plain
mode, not triggered by overriding. sync(leave,triv) and sync(enter,triv) represent
synchronization of the security module and the PDA in its role PDA(LoPo) cap-
tured by the consistency rules on page 261. The above formula states that a
sequence of actions in which sync(leave,triv) is followed by sync(pmsg1,free) is im-
possible if no action sync(enter,triv) is in between. The term (!sync(enter,triv))*

1 See www.mcrl2.org
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expresses a sequence of actions different from sync(pmsg1,free). The tool reported
this formula to be valid for both versions of the email example.

(b) For the second version of the email example, we have checked that a
message in plain mode can be issued while the PDA is outside the security
perimeter only if overriding has been requested. We use the synchronization
action sync(pmsg2,free) to denote the request to override, and the local EMC
action psend to denote the sending of a message in plain mode:

[ true*.sync1(leave,triv).
( !( sync(pmsg2,free) || psend || sync(enter,triv) ) )* . sync(pmsg1,free) .
( !( sync(pmsg2,free) || psend || sync(enter,triv) ) )* . psend ] false

A sequence of actions in which sync(leave,triv) is followed by psend, and in be-
tween sync(pmsg1,free) occurs, but neither sync(pmsg2,free), nor sync(enter,triv)
nor psend occur, is impossible. In mCRL2, ‖ denotes disjunction.

(c) If a sending of a message in a certain mode is initiated, assuming fairness,
the sending event is executed eventually. For instance, an initiation of sending
a message in plain mode, denoted by sync(pmsg1,free), will be followed by a
sending event in plain mode, psend, i.e.

[ true* . sync(pmsg2,free) . ( !psend )* ] 〈 psend 〉 true

Similar formulas are checked for the other modes. Note, the 1-1-correspondence
of initiation and actual sending, is guaranteed by the previous property.

We have translated the Paradigm model of the voting scheme of Section 3 into
mCRL2 as well.2 For the base case of a single voter the generated LTS has about
130.000 states and 565.000 transitions. Specific tuning of the BES-solver was
needed to cope with state space explosion in the case of multiple voters. However,
the overall architecture, as represented in Paradigm, with its clear separation of
phases and roles per component in each voting phase, allowed us to investigate
certain properties of the protocol as a whole, by localizing them on the relevant
components. Thus, we have been able to verify, by modularization, a number of
security properties, as discussed below.

(a) A voter without a signature from the administrator is not allowed to vote.
And, if a voter has not been registered or has not voted, he cannot uncover.
Partition AsVoter captures the behaviour of a voter and using the relevant trap
information we express these properties as

[ true* . ( !ready complete )* . encDone ] false &&
[ true* . ( !(ready complete || encDone ) )* . uncoverDone ] false

(b) If the voter for any reason is locked out, he cannot cast his vote. Us-
ing the synchronization between Human(AsVoter) and Administrator(AsServer),
sync(ready,nosignature) and the voter action droppedOff, we can express
this by the property

2 See www.win.tue.nl/∼andova/research/mcrl2-experiments/VotingExample/
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[ true* . sync(ready,nosignature) . (!encDone)* . encDone ] false &&
[ true* . droppedOff . (!encDone)* . encDone ] false

(c) The next property reflects the coordination of the components of the
scheme in the election phase, driven by the organizer. It states that: as soon as the
first two phases are closed, i.e. no voter can be registered by the administrator,
no voting is allowed anymore, neither he can cast his vote. As the closing of the
voting phases is orchestrated by the organizer performing action proceed, we can
express the property as

[ true* . sync(proceed,triv,triv,ready) . (!encDone)* . encDone] false

(d) The last property we consider is that no voter will be allowed to vote more
than once. The property [ true*. sendEnc i . (sendEnci)*. sendEnc i ] false

is confirmed by the model checker. This means that a sequence of actions in
which there are at least two occurrences of action sendEnci is not possible.

We briefly discuss malicious voter behavior in the FOO voting scheme. Any
malicious activity a voter wants to perform, can be modeled as a local action
in the detailed STD of Human, Figure 7. For instance, an additional outgoing
transition from state WithForm or Filled back to state Invited means that the
voter has an option to ask for a form more than once. Or, a transition from
LockedOut back to Idle would mean that the voter may attempt to start the
voting process again after he has been dismissed and put in state LockedOut.
However, in the Paradigm model, the phases and traps chosen constrain the
voter’s global behaviour and prevent a dishonest voter to proceed from one to
another voting phase as soon as he does not follow the voting policy and timely
executes the steps required. For instance, take transition askFormAgain from
state ToForm to state Invited. In the partition Human(AsVoter), we find that this
transition may be possibly permitted in three phases. However, in the phases
PreAdmin and LastPreAdmin the state ToForm forms a trap, thus missing any
outgoing transitions. Furthermore, in phase Finished, the transition added does
not play any role as the phase itself does not have any outgoing transitions. Thus,
the transition askFormAgain does not add any behaviour to the voting scheme.
Similarly, an additional transition from LockedOut to Invited at the detailed level
does not add any global behaviour either.

Intuitively this means that as long as the voter executes these actions accord-
ing to the voting policy, dishonest activities of the voter are irrelevant and are
not a threat to the voting scheme. More precisely, by being in accordance to the
voting policy, we actually mean to be branching bisimilar to the behaviour of
the honest voter. In other words, if the relevant actions listed above are observed
and all other local actions are hidden, both from the original model and from an
extended or adapted model of a dishonest voter, then branching bisimilarity of
the two detailed voter behaviours implies that both voters will show the same
overall behaviour in the voting process. This, in fact, provides a security proof
of the dishonest voter model with respect to the honest voter model, based on
equivalence checking.
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5 Related Work

Since the seminal paper [31], tool-supported security protocol analysis has been
flourishing. The tool Casper provides a high-level language for describing secu-
rity protocols and secrecy or authentication properties together with a front-end
for the CSP-based model checker FDR. For strand spaces, a framework of rec-
onciling complete and partial protocol runs, the Athena tool [42] as well as the
constraint solving approach of [36] are available for computer assistance. An-
other tool for the verification of security protocols is ProVerif [9]. More recent
high-performance security checkers include the on-the-fly model checker [7] and
the Scyther tool [12]. Main focus of these approaches is not so much the overall
architecture, but rather secrecy and authentication in the small, the verification
of secrecy and authentication properties of specific security protocols.

In the setting of formal description and analysis methods, anonymity of se-
curity protocols goes back to [38] dealing with the Chaum’s famous Dining
Cryptographers problem and proposing a notion of anonymity based on trace-
equivalence and invariance of permutation of agent names. The use of modal
logics, to keep track dynamically of knowledge of principals underlies the ap-
proach of [35,29,13], for example, for automated anonymity checking. Network
anonymity, with the Crowds network as leading example, has been addressed
in [15,33,40]. For the later case study, the Prism probabilistic model checker has
been used. Anonymity for π-calculi has been proposed in [8], in combination
with information hiding in [39]. In the present paper, following [33], anonymity
is implied by a behavioral property, viz. strict separation of the stages of admin-
istering and encrypting from the stage of uncovering.

Access control policies can be integrated in UML models in the approach
of [6], called Model Driven Security. The SecureUML proposed, supports various
modeling techniques and transformation functions for the construction of access
control structures. In [1], a framework is presented for programming distributed
computer-supported cooperative work with regulation of role-based access con-
trol. In the RW framework [45] for generation and evaluation of access control
policies a dedicated model checker can be used to assess policy compliance.
Access control and security policies, as illustrated by the email example, can be
modeled easily in Paradigm, but is not supported directly. Generic formalisms for
architectural modeling, such as the higher-order architectural connectors of [30],
can be instantiated to deal with security issues.

Coordination languages can be divided into three main categories: data-based,
flow-based and transition-based. Some security issues, in particular role-based
access control and trust management, have been addressed in the context of
data-based and transition-based coordination languages. Confidentiality in data-
based, Linda-like coordination languages is mainly achieved via encryption of
tuples and access control on the tuple space. In the context of agent systems,
[37] proposes a framework for dynamically establishing security policies. Other
approaches to tuple space security include SecOS [44] and SecSpace [11], which
also come equipped with a process algebraic semantics. Role-based access control
can be statically achieved in transition-based coordination settings via dedicated
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components. Dynamicity is much more subtle, cf. [10] for a π-calculus dialect.
A calculus for ubiquitous computing dealing with trust is proposed in [26], a
framework allowing LTL model checking. An instance of a formal approach based
on the actor model dealing with trust management is [41]. Paradigm, also a
transition-based coordination language, provides an architectural view on secure
coordination, unlike the other example formalisms mentioned.

The separation of computation and coordination has been seen as a valu-
able concept. Flow-based coordination languages strictly follow this distinction:
components comprise computation, streams and manipulations thereof through
channels comprise coordination. Perhaps, such strong separation causes a gap
difficult to bridge. For security problems at least, it is not so clear how honest or
malicious dynamics within one component, via the flows the component brings
about, must lead to or cannot lead to certain dynamics within another compo-
nent. The problem then becomes, how to guarantee that component dynamics
and the flows between them are coupled right and secure indeed.

6 Concluding Remarks

In brief, the approach outlined above constitutes a modeling suite for design
and architecture of security solutions. The suite comprises Paradigm, process
algebra and model checking. Paradigm provides the means to factorize security
issues and other aspects into focused collaborations and protocols. In process
algebra the reformulation of Paradigm models can be further molded using hid-
ing and abstraction, relying on appropriate notions of process equivalence. The
state-of-art mCRL2 toolset supports the analysis and formal verification of secu-
rity properties and system requirements. The following observations particularly
highlight the relevance of the modeling suite.

Separation of concerns helps greatly. As we have demonstrated, not only in
the larger voting example, but also in the small email example, it worked out
well to split the interaction into different protocols, yet remaining sufficiently
consistent. This is complementary to the usual all-detail-matters attitude seen
in security protocol analysis.

In the Paradigm visualizations above we did not try to follow UML 2.0 closely.
We could have done much better in this respect, however, if not space restrictions
had prevented us to do so. E.g. collaboration diagrams and activity diagrams
could have been used. For instance, for each of the four protocols in Figures 4
and 6, we could have used a collaboration diagram. Also, for the consistency
rules constituting one protocol, we could have used an activity diagram with
swimlanes per role and per conductor. Although nicely clarifying, particularly
the latter are not so small. See [3,20] for such a stronger UML flavor. Additional
sequence diagrams illustrating protocol interaction in greater detail, would have
underlined similarities between our solution and the one in [32] visually too.

Translation of Paradigm models into process algebra [4] preserves the dynamic
constraint compositions. Thus, phase and trap constraints as well as consistency
rules remain embedded in the synchronization accordingly. By model checking



Architecting Security with Paradigm 281

with the mCRL2 tool set, we have succeeded in formally analyzing and verifying
properties of an email security system as well as of the FOO e-voting scheme. In
this manner, we have established validity of the original Paradigm models and
their quality for security systems.

Future work includes the analysis of malicious behaviour. If in a setting the
relevant interaction of a malicious agent is essentially the same as that of a honest
one, i.e. if after hiding of internal actions their observed behaviour is branching
bisimilar, the system is secure regarding dishonest principals. It is noted, such
an approach can very well be combined with appropriate modularization guided
by the Paradigm architecture, resulting in smaller state spaces to explore.

In a more general setting than security and architecture, other future work will
be directed towards developing a tool suite supporting these ideas, amongst oth-
ers. The tool suite aims at providing an integrated environment for editing and
animating/running Paradigm models (cf. [43]), for reproducing and animating
their dynamics in UML (cf. [20]), for translating them into PA and subsequently
analyzing and model checking the resulting processes. As already touched upon
in [4,5], we particularly aim at feeding unwanted verification results back into
the editing and animating parts of the tool suite.
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