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Modelling Additive Transport in Metal Halide Lamps

Summary

In 1912 Charles Steinmetz was granted a patent for a new light source. By
adding small amounts of sodium, lithium, rubidium and potassium to a mercury
lamp he was able to modify the light output from “an extremely disagreeable
colour” to “a soft, brilliant, white light”. Much later, at the New York world
trade fair in 1964 General Electric was the first to introduced a commercial
lamp based on the same principle. The light emitting metallic elements are
introduced as components of halide salts. Hence, they are called metal halide
lamps.

The physics behind discharge lamps of this type, however, is still a matter
of active investigation. One well-known phenomenon is that, when operated
vertically, the metal halides in the lamp tend to demix; the concentration of
metal halides in the gas phase is much greater at the bottom of the lamp.

Demixing, or segregation as it is also called, has a negative impact on the
lamp’s efficacy. It is currently avoided by using lamp designs with very small
or very large aspect ratios. Gaining more insight into the process of demixing
would allow a broader range of lamp designs with still better luminous efficacies.

The demixing is caused by a competition between convection and diffusion.
The centre of the lamp must be hot to produce as much light as possible.
The walls must stay relatively cool to avoid them weakening and releasing the
mercury vapour. Thus, large temperature gradients are present in the lamp,
driving convective flows. In the hot centre the molecules are dissociated into
atoms. The atoms are smaller and more mobile than the molecules. The atoms
are dragged up by the convective currents while diffusing outward. Because of
their larger mobility, however, the atoms do not reach the top of the lamp. The
result is a larger concentration of metal additives at the walls and at the bottom
of the lamp than at the centre and the top of the lamp.

This thesis describes the process of demixing in a self consistent and quanti-
tative manner using state-of-the-art computational methods. The competition
between convection and diffusion is studied using a variety of models built with
the plasma modelling toolkit Plasimo. Using Plasimo allows for the construction
of models in a modular fashion. Partial models are used to study the convec-
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tive flow as a result of the temperature gradients, the chemical composition
as a function of temperature and pressure, and the radiation transport on the
lamp. A grand model is formed by combining modules for ray tracing, elemen-
tal diffusion, convective flow and the temperature equation. The model result
is validated against experiments done by colleagues: Experiments which have
been carried out in Eindhoven, at the Argonne National Laboratories in the
USA, and in the International Space Station. Cross validation with theoretical
work has also been performed.

Axial demixing is shown to be the result of the competition between axial
convection and radial diffusion. This competition is best expressed by the di-
mensionless Peclet number. When the Peclet number is approximately equal
to unity, axial segregation is strongest. The degree of axial segregation is best
expressed by the dimensionless segregation depth τ . The largest value of τ de-
pends on the element under study and on the position in the discharge where
the molecules dissociate to form ions.
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Chapter 1

Introduction

High Intensity Discharge (HID) lamps are very efficient light sources in widespread
use today. They are used when a high luminous flux is required from a compact,
point-like, source. Examples are street lighting, greenhouse lighting, automo-
tive headlights and light sources for projection systems. The first HID lamp was
created in 1860 by J. T. Way. He enclosed a carbon arc lamp in an atmosphere
containing mercury vapour [1]. Many modern HID lamps still contain small
amounts of mercury, with the exception of high pressure sodium and xenon
lamps.

Lamps with a mercury pressure of several bars are used in street lighting.
The high pressure causes self absorption of the resonance radiation. This will
suppress the UV radiation of the famous 253.7 nm line corresponding to the
63P1 → 61S0 transition resulting in more radiation in the visible range. At very
high pressures bremsstrahlung and molecular radiation from Hg2 molecules give
radiation across a broad spectrum. High pressure mercury lamps containing
saturated mercury vapour at a pressure of 200 bar are used in data projection
systems, for example [2, page 37-41].

HID mercury lamps operated at lower pressures than the aforementioned
200 bar emit light with a bluish tint. In 1912 Charles Steinmetz was granted
a patent [3] for a new light source base. By adding small amounts of sodium,
lithium, rubidium and potassium he was able to modify the light output from
“an extremely disagreeable colour” to “a soft, brilliant, white light”. It was
not until much later that a commercially viable lamp was produced along the
same principles. General Electric first introduced a commercial Metal Halide
(MH) lamp at the New York trade fair in 1964. Modern lamps of this type are
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still produced today. The light emitting metallic elements are introduced as
components of halide salts. Hence, they are called metal halide lamps. These
salts have a higher vapour pressure than the pure metal form. At the wall
the metal-halides molecules are present in bound form, limiting corrosion of
the walls. The pure metal would attack the quartz or ceramic walls, thereby
reducing the lifetime of the lamps. In the centre of the plasma the molecules
are dissociated. The atoms are partially ionised. Collisions of free electrons and
atoms excite the atoms to higher levels. The subsequent decay gives the desired
radiation.

Modern metal halide lamps contain a rich cocktail of metals to produce
the desired colour output. The MasterColor R© ceramic metal halide lamp pro-
duced by Philips, for example, contains sodium, thallium, calcium, dysprosium,
holmium, and thulium iodides [4] The CHM-T R© lamps produced by GE, con-
tain a similar mixture.

The physics behind discharge lamps of this type is still a matter of active
investigation. One well known phenomenon [5, 6, 7] is that, when operated
vertically, the metal halides in the lamp tend to demix; the concentration of
metal halides in the gas phase is much greater at the bottom of the lamp.
This effect is not present under all conditions, and some lamp designs are more
severely affected than others. The demixing can be observed directly from the
light output; a demixed lamp shows a blue white mercury discharge at the top
of the lamp and a much brighter and whiter discharge from the additives at the
bottom of the lamp [8]. An example of this is shown in figure 1.1c. Demixing, or
segregation as it is also called, has a negative impact on the lamp’s efficacy and
beam uniformity. It is currently avoided by using lamp designs with very small
or very large aspect ratios. Gaining more insight into the process of demixing
could possibly allow a broader range of lamp designs with still better luminous
efficacies.

1.1 The Cost 529 reference lamp

Commercial MH lamps come in a wide variety of shapes and sizes. To better
facilitate the comparison of experiments and models from different researchers a
reference lamp has been defined [9]. This lamp is called the cost 529 reference
lamp, after the European Union project which led to its development. It has a
relatively simple geometry. The inner burner is a straight cylinder 21 mm high
and 8 mm in diameter. The electrodes are 18 mm apart. The models in this
thesis are all based on the cost lamp. Experiments on lamps of this type have
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been performed by Käning et al to study molecular continuum radiation [10].
The atomic line radiation and the atomic state distribution structure has been
studied by Nimalasuriya et al [11]. Lamps of this type have also been studied
under microgravity conditions in the international space station [12] and under
simulated hypergravity in a centrifuge [13] by Nimalasuriya and Flikweert et al.
A photograph and a schematic drawing are shown in figure 1.1.

getter

burner

electrode

leads

Outer balloon

tips

electrode

(a)                                                                             (b)                                                               (c)

1
0
0
 m

m

1
2
4
 m

m

2
0
 m

m

Figure 1.1: a. Reference lamp schematic drawing from the design paper specifi-
cations [9]. b. Photo of the lamp turned off. c. Photo of the inner burner with
the lamp turned on. Segregation is clearly visible as discharge is fainter and
tinted bluish towards the top of the burner. Photos by L. Baede. The purpose
of the getter is to remove impurities.

1.2 Segregation

The additives in metal halide lamps are dosed in the form of iodide salts. Under
operating conditions these salts melt and form a salt pool in the bottom corner
of the lamp. Above the salt pool the additives form a saturated molecular
vapour. The molecules spread throughout the lamp from the vapour near the
salt pool by diffusion and convection. As they move away from the walls toward
the hotter inner regions of the discharge they dissociate to form atoms. These
atoms are the prime radiating species and responsible for most of the light
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output. As will be shown in this thesis, the uneven distribution of additives in
the lamp is determined by the competition between the processes of convection
and diffusion. It is useful to differentiate between axial and radial segregation
as the former is present only in conjunction with convection, whereas the latter
is enhanced in the absence of convection.

1.2.1 Radial segregation

Radial segregation occurs under the influence of diffusion. It is most pronounced
in the absence of convection, as shown by experiments in the international space
station [12, 14]. In the absence of convection, the flux of molecules towards the
centre of the discharge must be equal to the flux of atoms in the opposite direc-
tion. The atoms, however, diffuse much more readily through the background
gas of mercury atoms than the molecules. In order to maintain the same flux
in both directions the gradient in the partial pressure of the molecules must be
larger than that of the atoms. The result is that the partial pressure of the
atoms at the walls is lower than that of the molecules. The partial pressure of
the ions in the very centre of the discharge is even lower than that of the atoms,
due to the effect of ambipolar diffusion.

1.2.2 Axial segregation

Axial segregation only occurs in the presence of convection. Convection occurs
due to the large temperature gradients in the lamp. These large temperature
gradients are present because of design restrictions. The walls must stay cool
enough to avoid damage to the walls whilst the centre must be hot enough
to partially ionise the additives and excite the radiative species. In practice,
this means temperatures of 1200 K to 1500 K for the walls, and 5000 K to
7000 K in the centre. The applications often require small lamps, the Philips
CDMR-i 25W R© lamp, for example, has an inner diameter of only 4 mm. The
large temperature gradients result in large density gradients. By virtue of the
law of Archimedes, the heavy cooler plasma near the walls pushes up the hotter
lighter plasma in the centre. By taking the lamps to the international space
station the convective flow is stopped and the axial segregation disappears [12,
14]. By placing the lamps in a centrifuge the convective flows are enhanced
[13]. Enhancing the convective flows does not necessarily increase the amount
of axial segregation. If the convective flows are high enough the lamps become
homogeneously mixed. High convective flows reduce both the axial and radial
convection.
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There is an optimum degree of convection at which axial segregation is most
pronounced [5]. Axial segregation also occurs because of the difference in diffu-
sion coefficients between the atoms and molecules. The atoms diffuse outward
towards the walls while being dragged up by the background mercury gas. The
molecules diffuse towards the centre while being dragged down. The molecules
diffuse inward at a slower rate than the atoms diffuse outward. The net result is
that the additives are concentrated at the bottom of the lamp and never reach
the top of the lamp. If the convective fluxes are of the same magnitude as the
diffusive fluxes axial segregation is most pronounced. If the convective fluxes
are much smaller in magnitude than the diffusive fluxes only radial segregation
is observed. If they are much faster the atoms will not have enough time to
diffuse outward while dragged up by the hot mercury atoms in the centre of the
discharge and thus the atoms will reach the top of the lamp.

In this thesis it will be shown that the conditions under which axial segrega-
tion is most pronounced can be predicted by a simple scaling law. In particular,
the Peclet number, when defined as the ratio between axial convection and
radial diffusion, is shown to give a accurate prediction of the degree of axial
segregation.

In the field of fluid dynamics the ratio of the rate of convection to the rate of
diffusion of a quantity is described by the dimensionless Peclet number[15, page
85]. In the case of axial segregation of additives the defining rates are the rates
of axial convection and radial diffusion. Typical time scales for convection are
L/Vz, with L the length of the inner burner and Vz the axial bulk velocity on
the axis halfway between the two electrodes. The typical time scale for radial
diffusion is given by R2/D, with R the inside radius of the inner burner, D
the effective diffusion coefficient of the additive. Taking the inverse of the time
scales to obtain typical rates and dividing the two yields a Peclet number:

Pe =
VzR

2

DL
. (1.1)

It is this Peclet number that is indicative of the conditions for axial segregation.
In the context of this thesis it is referred to as ”the” Peclet number.

1.3 Numerical models

The distribution of additives is studied by the use of numerical models built with
the modelling platform plasimo [16]. The primary objective of these models is
to gain understanding of the processes leading to axial and radial segregation.



6 Introduction

The focus on the distribution of additives differentiates this work from the work
of, for example Flesch[2, chapter 4] or Benilov [17, 18] where the focus lies on
plasma electrode interaction.

The additives are spread over the lamp by convection and diffusion. The
diffusion coefficients in turn depend on the temperature and on the density of
other species. The convection flow depends on the density gradients and the
volume forces acting on these density gradients. To calculate the distribution of
additives over the lamp one needs to calculate the temperature distribution and
the chemical composition of the lamp. To calculate the chemical composition
it is assumed that the species present are in local chemical equilibrium. This,
together with the assumption that all species may be described with a single
temperature, forms the assumption of local thermal equilibrium. The temper-
ature follows from a simple energy balance equation, with electrical power put
into the lamp through ohmic dissipation and lost through radiation and the
conduction of heat.

The models are formed by a set of coupled differential equations; one for
the temperature, one for each element other than mercury, one for the potential
distribution and, except in the microgravity simulations, a partial differential
equation for each velocity component and the pressure. Additionally, the chem-
ical composition is calculated by a non-linear set of equations and the radiation
source term is calculated by the method of ray tracing. The differential equa-
tions are discretized using the finite volume method. This method is well suited
to conservation equations, and all differential equations in the model are cast in
this form. The resulting coupled set of equations are solved with the method of
successive substitution starting with an educated guess for the initial conditions.
The model is said to have converged if the maximum of the relative difference
between two successive solutions for each equation and for each position on the
grid is below a threshold value, usually 1 × 10−8.

The numerical models are used to answer one central question: Under which
circumstances and to what extent do the additives in a model-lamp segregate?
To this end calculations are done for many different conditions. By varying the
acceleration, the pressure, the composition and the cold spot vapour pressure
the influence of different aspects of the plasma in creating the right conditions
for segregation are studied. The results are classified by examining the out-
put. Besides the distribution of additives, this also includes the temperature,
the velocity and the density of the radiative species. The following processes
will be studied to examine their role in creating the conditions for segregation:
convection, diffusion, chemical composition and radiation.
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1.4 Thesis outline

In this thesis the process of demixing is studied through numerical modelling.
Starting as much as possible from first principles a basic set of equations is
derived in chapter 2 to describe the lamp. These equations are discretized on a
control volume grid and solved with the plasma modelling toolkit plasimo.

Some early results of this model, describing the pressure dependent additive
distribution in a lamp containing sodium iodide and mercury are also given
in this chapter. In chapter 3 the model is extended to cover the effect of the
electrodes protruding into the plasma. In chapters 4 and 5 the model is mod-
ified to allow for the modelling of a lamp with dysprosium tri-iodide additive
instead of sodium additive. Chapter 4 discusses the changes made to cover the
more complex chemistry of the dysprosium tri-iodide containing lamp and also
compares results with the earlier sodium containing lamp and a pure mercury
lamp. In so doing, the effect of the lamp chemistry on the segregation of ad-
ditives is studied. This chapter also introduces the Peclet number to compare
results with different additives. Chapter 5 discusses the changes made to cover
the spectral ”grass-fields” of dysprosium atoms and ions and discusses the effect
of the choice of data set on the degree of contraction predicted by the model.
These changes were necessary to compare with experiments carried out by T.
Nimalasuriya [19, 11, 12, 20, 21] and A. J. Flikweert [22, 13]. This chapter
also focuses on the effect of radiation on the other properties of the discharge.
Chapters 6 and 7, compare the results of the model with dysprosium additives
with experiments carried out in the international space station (chapter 6) and
in a centrifuge (chapter 7). Finally, in chapter 8 simple analytical expressions
are derived to allow predictions to be made without the complicated numerical
models which predominate in most of this thesis. In the final chapter general
conclusions are drawn based on the conclusions at the end of each chapter.
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Chapter 2

Theoretical framework

Abstract. Convection and diffusion in the discharge region of a metal halide
lamp are studied using a computer model built with the plasma modelling
package Plasimo. A model-lamp containing mercury and sodium iodide is
studied. The effect of the total lamp pressure on the degree of segregation of
the light emitting species is examined and compared to a simpler model with
a fixed temperature profile. Significant differences are observed, justifying the
use of the more complete approach.

This chapter is based on the publication: ”Demixing in a metal halide
lamp, results from modelling”, M L Beks, A Hartgers and J J A M van der
Mullen in J. Phys. D: Appl. Phys. 39 4407-4416. This publication’s primary
focus is on the underlying theory. Additionally, results are also given for a
lamp filled with a mixture of sodium iodide and mercury. An appendix has
been added to discuss underlying assumptions in the model which were left
under-examined in the original publication.
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2.1 Introduction

Metal Halide (MH) lamps are small high pressure discharge devices providing
high luminous output across a broad spectrum of the visible range. They typ-
ically consist of an inner burner the size of a cigarette filter, surrounded by a
larger protective outer wall. The inner burner is made from polycrystalline alu-
mina or quartz and is filled with noble gasses, mercury (about 10 mg) and salt
additives (several mg). Under operating conditions the mercury in the inner
burner evaporates raising the pressure to several tens of bars. The salt addi-
tives, such as sodium, scandium and dysprosium iodide, are present in very low
concentrations in the gas phase, yet it is these minority species that provide
most of the light output. To gain a better understanding of the physics of these
lamps one needs, therefore, to consider the lamp chemistry and the transport
of the minority species throughout the discharge.

Commercially viable MH lamps were first demonstrated in 1963 [23]. A
drawing of a lamp from the patent GE filed in 1961 is given in figure 2.1. A
review on metal halide development is given by Sugiara [24]. The physics of
discharge lamps is discussed in a more recent review by Lister et al [25].

A well known [5, 6, 7] phenomenon in MH lamps is that, when operated
vertically, the metal halides in the lamp tend to demix; the concentration of
metal halides in the gas phase is much greater at the bottom of the lamp.
This effect is not present under all conditions, and some lamp designs are more
severely affected than others. The demixing can be observed directly from the
light output; a demixed lamp shows a blue white mercury discharge at the top
of the lamp and a much brighter and whiter discharge from the additives at the
bottom of the lamp [8]. Demixing, or axial segregation as it is also called, has
a negative impact on the lamp’s efficacy.

Demixing is the result of a competition between convection and diffusion [5].
One may manipulate the convection by means of controlling the lamp pressure,
lamp geometry, or the gravity conditions under which the lamp is operated.
The operating pressure may be increased by increasing the amount of mercury
in the lamp, changing the gravity conditions was done by taking the lamp on
parabolic flights [22], and in the international space station [12].

We seek to examine demixing in the lamp through the use of a computer
model of the discharge in the inner burner of an MH lamp. In particular, we wish
to examine the competition between convection and diffusion by adjusting the
total lamp pressure. Increasing the lamp pressure will increase the convection
speed and effect the convection pattern, as will be shown by our model.
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Figure 2.1: 1966 patent on the Metal Halide lamp
.

2.2 The segregation curve

In 1975 Fischer [5] proposed a model based on the interaction between diffusive
and convective fluxes to give a quantitative description of the axial segregation
in the lamp. Fischer examined the limiting cases of zero and infinite convection
velocity and came to the conclusion that, in both cases, the segregation vanishes.
The segregation is at a maximum when radial diffusive fluxes are equal to the
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axial convective fluxes. The segregation parameter λ̄ 1

λ̄ =
1

p0

dp

dz
(2.1)

as a function of the total lamp pressure is minimal at low pressures, highest at
intermediate pressures and decreases again at high pressures. A simple model
based on an assumed parabolic temperature profile and long aspect ratios was
published in [5]. More advanced models have since been made [7, 26].

We seek to build a numerical model that uses less assumptions on the nature
of the discharge, calculating more of the lamp properties from first principals
than earlier models. This model should calculate all essential properties self
consistently. This involves, amongst others, calculating the convection and dif-
fusion of species throughout the discharge region, calculating the emission and
absorption of light, and accurately describing the energy balance in the lamp. To
build this model we have at our disposal the plasma simulation package Plasimo
[27, 28] developed at the Eindhoven University of Technology by a succession of
graduate students and researchers over the past 15 years.

2.3 Theory

The question of demixing is basically one of particle transport. What is the
concentration of each species at each position in the lamp? MH lamps contain a
complex mixture of ions, atoms and molecules. The discharge can be regarded
as a multi-fluid mixture. Each fluid of this multi-fluid mixture is described by
the well known Boltzmann Transport Equation (BTE).

∂fi(~x,~v)

∂t
+ ~vi · ∇fi(~x,~v) + ~Fi/mi · ∇vfi(~x,~v) =

(

∂fi(~x,~v)

∂t

)

coll

, (2.2)

with fi(~x,~v) the density of species i with velocity ~v at position ~x. The density is
defined such that the number of particles of type i in a volume element d3xd3v in
phase space centred around the point (~x,~v) is given by fi(~x,~v)d3xd3v. The right

hand term
(

∂fi(~x,~v)
∂t

)

coll
is a source term for interactions with all other species.

In this context a species is an electron, or a particular state of a molecule, atom

1In later chapters, the dimensionless quantity τ is introduced to characterise the degree of
segregation.
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Figure 2.2: The segregation curve from Fischer’s 1975 article [5] showing the seg-
regation parameter as defined by (2.1) as a function of the total lamp pressure.
Note that Fischer uses λ for the segregation parameter.

or ion. In principle, each excited state of each molecule needs to be treated as
a separate species.

The notation ∇v is used for the derivatives of f with respect to the velocity.
Volumetric external forces are represented by ~F . In principle, (2.2) together
with Maxwell’s equations for the elector-magnetic fields and a modified form of
(2.2) for photons, forms a complete description of the plasma. In practice, a
great number of simplifications are possible.

In the collision term in equation (2.2) great complexity is hidden. Collisions
are assumed to be instantaneous, hence collisions cause particles to be instan-
taneously transported to remote parts of phase space. One usually separates
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collisions into elastic and inelastic processes. See the classical texts [29] for a
discussion on the elastic collision term and [30] for the general formulation of
the inelastic collision term.

For the purpose of examining transport processes in MH lamps a description
in terms of quantities averaged over velocity space suffices. Additionally, we do
not need to treat all species independently. Many species are short lived. It will
be shown that we may infer the local density of species from the local elemental
composition and temperature.

We examine the first three velocity moments of the distribution function:
The particle density

ni(~r, t) =

∫

fid~v,

particle flux

~Γi(~r, t) = ni~ui =

∫

fi~vd~v

and the internal energy density

3

2
kBniTi(~r, t) =

1

2
mi

∫

(~v − ~ui)
2
fid~v.

Integrating (2.2) over velocity space one obtains the continuity equation:

∂ni

∂t
+ ∇ · ~Γi = Si, (2.3)

with Si a source term from all inelastic collisions.
Integrating (2.2) multiplied with the velocity results in the force balance:

∂

∂t
(ρi~ui) + ∇ · (ρi~ui~ui) = −∇ · Pi + ni

~Fi +
∑

j

~Rij + Sm
i , (2.4)

with ρi the mass density mini, Sm
i a momentum source term from inelastic

collisions, ~Rij the friction force from other particle fluxes:

~Rij =

∫

mi~ui

(

∂fi

∂t

)j

coll

d~vi

and Pi the pressure tensor

Pi = ρi 〈(~v − ~ui)(~v − ~ui)〉 .
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Likewise, multiplication with the square of the velocity and integration yields
the energy balance equation:

∂ρiei

∂t
+

1

2

∂ρiu
2
i

∂t
+∇·(ρiei~ui)+

1

2
∇·
(

ρiu
2
i ~ui

)

+(∇~ui) : Pi+∇·~qi−ni
~Fi ·~ui = SE ,

(2.5)
with ei the thermal energy per unit mass, ~q the heat flux and SE the source term
from of all inelastic collisions. This source term contains ionisation, excitation
and, in the case of charged particles, Ohmic dissipation.

The resulting equations from the expansion in terms of the velocity moments
cannot be solved because the equations are coupled and each equation depends
on the next moment. In order to solve the system we truncate it with the energy
equation and assume a Maxwellian energy distribution function. Equations
(2.3), (2.4) and (2.5) can be further developed by looking at particle transport
in MH lamps on three different levels:

1. plasma component species,

2. elemental fluxes and

3. bulk flow.

We will use the moments of the BTE as building blocks to describe transport
on each of these levels. As will be shown shortly, different approximations and
approaches may be used for each level. We will follow the approach in [31] and
[32]. An overview is given in table 2.1.

2.3.1 Particle Balance

On the species level, the continuity equation is given by (2.3). Elements are
neither created nor destroyed in a low temperature plasma. We introduce the
concept of elemental densities nα to make use of this property. The elemental
density is defined as the abundance of a particular element regardless of its
state. Thus the density of a particular element is given by the density of the
species multiplied with the number of atoms of the element in each species.

In general, we will use Greek subscripts for elements and Latin subscripts
for species. To distinguish the elemental density of a specific element from the
density of free atoms we will use braces. The elemental density of hydrogen in
water, for example, is given by:

n{H} = 2nH2O + nOH− + 2nH2
+ nH + 2nH2O2

+ · · ·
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In general the elemental density is given by:

nα = Riαni,

with Riα the stoichiometric coefficient of element α and species i.
The elemental fluxes Γα, are similarly defined in terms of the species fluxes:

~Γα =
∑

i

Riαni~ui. (2.6)

Since elements are neither created nor destroyed, the continuity equation for
elements is sourceless:

∇ · Γα = 0.

Similarly, for the bulk density ρ =
∑

i ρi we have,

∇ · ρ~u = 0,

where the bulk velocity has been defined as

~u = ρ−1
∑

i

ρi~ui,

and the average density ρ as ρ =
∑

i ρi.

2.3.2 Force Balance

The large temperature gradients in the plasma give rise to large density gra-
dients. Together with gravitational forces, these density gradients result in
convection on the bulk level. Additionally, dissociation and ionisation result in
strong gradients on the species level. Separate force balances will be derived for
each level, starting with the species level, then proceeding to the element level,
and finally returning to the bulk flow. As we seek a quasi steady state solution
the time derivative will be ignored.

Species

We now return to equation (2.4). On the species level the dominating force is
the friction with other species, and, in the case of charged particles, the force
exerted by the electric field. These forces are balanced by the partial pressure
gradient. Viscous and gravitational forces may be disregarded. This in contrast
to the bulk flow, where the electric and friction forces cancel out. The electric
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force due to quasi-neutrality and the friction forces due to Newton’s Third Law.
This leaves gravitational and viscous forces as dominating forces.

We further approximate the friction forces by disregarding thermophoretic
forces and assuming a dominant background species, so that

∑

j

~Rij ≈
pi

Di
(~u − ~ui) ,

with Di an effective diffusion coefficient.

We define the deviation from the bulk velocity as

~u′
i = ~ui − ~u (2.7)

.

With use of the continuity equation, and some rearranging we obtain:

(ρi~ui · ∇) ~ui = −∇pi +
ρi

Mi

~Fi +
pi

Di
(~u − ~ui) .

We use the ideal gas law and neglect the inertial term to obtain:

~u − ~ui = −Di
∇pi

pi
+

Diqi

kT
~E. (2.8)

The electric field in the lamp is the result of an externally applied field and the
ambipolar field generated by charged species in the plasma. Using the current
density ~j =

∑

i niqi~ui and equation (2.8)

~j = −
∑

i

µi∇pi + σ ~E,

with µi = Diqi

kT the mobility, and σ the electrical conductivity σ =
∑

i µiniqi.
To describe the electric field generated by the charged particles in the plasma
we introduce the ambipolar field σ ~Eamb =

∑

i µi∇pi. Under the assumption
that the conductivity is determined by the electrons. Substitution into (2.8)
results in

~ui − ~u = Di

(

−∇pi

pi
+

qi∇pe

qepe
+

qi
~j

σkT

)

. (2.9)
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2.3.3 Elemental Diffusion

If local thermal equilibrium (LTE) in the discharge may be assumed, the prob-
lem of particle diffusion may be greatly simplified. The assumption of LTE in
the plasma yields a particle density which is dependent only on the local tem-
perature, pressure and elemental composition. Therefore, one need only solve
transport equations for the elemental composition, instead of solving the trans-
port for each component species. This greatly reduces the number of differential
equations that need to be solved.

Essentially, we will treat the transport of elements by examining the flux of
components species in each cell and their contribution to the net flux of elements.
We then retrieve information on the local concentrations of component species
by calculating the local equilibrium composition. We define the elemental partial
pressure pα as

pα = nαkT

Substitution of equation (2.9) and rearranging the terms results in:

~Γα =
pα

kT
~u −

∑

i

Riα
Di

kT

(

pi

pα
∇pα + pα∇

(

pi

pα

))

+
∑

i

Riα
µi

σ

pi

kT
·
∑

j

µj

(

pj

pα
∇pα + pα∇

(

pj

pα

))

. (2.10)

A complete derivation may be found in [32].
We introduce the elemental mobility

µα =

∑

i Riαµipi

pα
, (2.11)

and define an elemental pseudo diffusion coefficient

Dα =

∑

i RiαDipi

pα
− µα

∑

i µipi

σ
(2.12)

and a pseudo convective velocity

~cα = ~u +
µαpα

σ

∑

i

µi∇

(

pi

pα

)

−
∑

i

RiαDi∇

(

pi

pα

)

. (2.13)

Using these definitions, it is possible to express the elemental flux as given by
equation ((2.6)) as a conservation equation equation for the elemental pressure:

∇ · ~Γα = ∇ ·

(

Dα

kT
∇pα +

pα

kT
~cα

)

= 0. (2.14)
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Bulk flow

The bulk flow follows from substituting (2.4) into the definition of the bulk flow
in equation (2.7). The result is:

∂

∂t
(ρ~u) +

∑

i

∇ · ρi (~u′
i~u

′
i + 2~u′

i~u + ~u~u) =
∑

i

(

−∇ · Pi +
ρi

mi

~Fi

)

After some rearranging one may obtain the Navier Stokes equation:

∂

∂t
(ρ~u) + ∇ · (ρ~u~u) = −∇ · P +

∑

i

ρi

mi

~Fi, (2.15)

with P the pressure tensor
∑

i (Pi + ρi~u
′
i~u

′
i). As stated before, all forces other

than gravity on the right hand side of (2.15) cancel out.

The pressure tensor may be split into a scalar pressure multiplied with the
unity tensor and a viscosity tensor. We follow the approach found in numerous
textbooks, see for example [33, p. 183]. The pressure p is defined as

p =
1

3

∑

i

ρi

〈

(~vi − ~ui)
2
〉

. (2.16)

The viscosity tensor Π follows from the relation

Π = P − pI, (2.17)

with I the unity tensor. In the case of a Newtonian fluid Π is related to the
dynamic viscosity µ by :

Πjk = µ(Γjk −
2

3
(∇ · ~u)δjk) (2.18)

Γkj = (
∂uj

∂xk
+

∂uk

∂xj
), (2.19)

with the subscripts j and k denoting the tensor and vector components. In the
case of an incompressible flow (2.15) can be further simplified to

∂

∂t
(ρ~u) + ∇ · (ρ~u~u) = −∇p + ∇ · (µ∇~u) +

∑

i

ρi

mi

~Fi. (2.20)
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2.3.4 Energy Balance

In principle, one could derive energy balances for species, elements and the bulk
separately as in the previous sections. However, frequent collisions between
particles in a high pressure plasma ensure that all heavy species have the same
temperature. The only species that could possibly need to be described by a sep-
arate temperature are the electrons. We now give a simple order-of-magnitude
estimation of the possible deviation between the electron and heavy particle
temperature.

Local Thermal Equilibrium

Metal halide lamps are typically operated at high pressure. Under operating
conditions the atomic mercury density is on the order of 1025m−3 and the elec-
tron electron density reaches 1022m−3 in the centre of the discharge. The cross
section for elastic momentum transfer between electrons and mercury is on the
order of 10−19m2. The resulting collision frequency νeh is 1012s−1. From Mitch-
ner and Kruger[33]. The power density required to sustain a difference between
the electron and heavy particle temperature of ∆T is given by:

P = 2ne(me/mh)νeh(3/2)k∆T. (2.21)

Estimating the power density to be 108W m−3 one arrives at an estimate
∆T ≈ 100 K. Additional processes serve only to further limit the maximum
sustainable temperature difference. Thus, we may conclude that an LTE ap-
proach is justified and we need only consider one temperature balance for all
species.

2.3.5 Temperature Balance

In the LTE approach all species have the same temperature. Summation of
(2.5) and subtraction of the force balance results in [33]

∂ρe

∂t
+ ~u∇ (ρe~u) (ρe + p)∇ · ~u = −∇ · ~q + P : ∇~u + ~J · ~E − Qrad, (2.22)

with Qrad the net radiated power and ~q the total heat flux. The summation
is over all species in the plasma. This includes excited states of atoms and
ro-vibrationally excited states of molecules.

Equation (2.22) may be rewritten in terms of the temperature by subtracting
the mass conservation equation multiplied by 1

2ρv2 and using the ideal gas law.
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Table 2.1: Overview of the conservation equations on the three different levels
of species, elements and bulk.
balance species element bulk

density
chemical
equilibrium

∇ · Γ = 0 (2.14) ∇ · ρv = 0

momentum -
drift diffusion
equation

Navier Stokes (2.15)

energy - - temperature balance (2.23)

The result is:

∇ · (cV ~u∇T ) + P : ∇~u + ∇ · ~q + p · ∇~u = σE2 − Qrad, (2.23)

with cV the volumetric heat capacity. The heat capacity is given by summation
of the internal energy per species over all species in the plasma cV =

∑

i niEi/T .
Obtaining the equation for the heat flux from the BTE would require an

additional moment. Instead, we close the system of equations by describing the
heat flux as

~q = −λi∇T +
∑

i

ρi~uihi,

with hi the enthalpy of species i.
To summarise, we may now form a complete description of the discharge

region by solving force balance equations (2.14) and (2.15) on, respectively the
elemental and bulk levels, together with the energy balance (2.23). From the
resulting temperature and elemental pressures the species densities may be ob-
tained by assuming local chemical equilibrium. Thus, the number of coupled
differential equations is greatly reduced. An overview of the equations that need
to be solved in our model is also given in table 2.1.

2.4 Model Description

We build our model using the plasma simulation platform Plasimo. Plasimo
uses a finite volume method to discretise partial differential equations. Such
methods are well suited to conservation equations. One of the basic building
blocks in Plasimo is the generalised conservation equation or Φ equation in the
form

∇ · (fφρ~uφ) −∇ · (λφ∇φ) = Sφ, (2.24)
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with fφ a convection coefficient, λφ a diffusion coefficient and Sφ the source
term for the conserved quantity φ.

We solve the conservation equations (2.14) , (2.15) and (2.23) cast into the
form of (2.24) on a two dimensional cylindrical grid. Plasimo allows one to
build many different models depending on the modules selected. We describe
the choices made for the transport coefficients and energy source terms.

2.4.1 Transport coefficients

For the electrical conductivity we use [33]

σe =
nee

2

meν̄eh
,

with ν̄eh the average momentum transfer collision frequency for electrons col-
liding with heavy particles.

The diffusion coefficient is calculated from the binary diffusion coefficients
Dij

Di =





∑

j 6=i

(pi/p) /Dij





−1

. (2.25)

The binary diffusion coefficients, in turn, are given by [30] (page 486)

Dij =
3

16

(kT )
2

pmijΩ
(1,1)
ij

, (2.26)

with mij the reduced mass of the system of the two interacting particles (i, j)

and Ω
(1,1)
ij the corresponding binary collision integral. The definition of the colli-

sion integrals is also given in [30] on page 482. We use the Langevin polarisability
model for collisions between charged and neutral species, shielded Coulomb in-
teractions for collisions between charged particles and the hard sphere model for
collisions between neutral particles. See also [34, chapter 9] for the description
of the use of collision integrals in Plasimo.

The thermal conductivity is the result of energy transport by the particles
and enthalpy transport by reactions in the plasma. These are commonly referred
to as, respectively the frozen and reactive contributions.

λ = λf + λr. (2.27)
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The frozen contribution is given by [33]

λf =
∑

i

(

ns
∑

j njMij

)

λi, (2.28)

where Mij is related to the reduced mass of the species mij and their energy
averaged cross sections σij by:

Mij =

(

2mij

mi

)

σij

σii
.

The term λi represents the thermal conductivity for the pure gas. The reactive
contribution is given by the approach of Butler and Brokaw[35].

2.4.2 Lamp Chemistry

We calculate local species densities by assuming local chemical equilibrium.
This is done by solving a system of particle balances and constraints. A full
description is found in [31, chapter 2].

2.4.3 Temperature source terms

The Ohmic dissipation in the plasma is calculated by assuming that the electric
field has a component in the axial direction only. The current through the
plasma is fixed at 0.8 Ampere.

Ray tracing is used to calculate the energy emitted and absorbed by radiation
at a number of discrete points in the plasma. For a complete description see
[31]. We make use of the cylindrical symmetry to reduce the complexity of the
problem.

2.4.4 Solution procedure

The non-linear equations are solved by successive substitution using under-
relaxation. The order of the solution procedure is as follows:

1. Calculate the Ohmic dissipation,

2. Update bulk flow using the SIMPLER algorithm,

3. Calculate elemental diffusion coefficients and pseudo-convection vectors,
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4. Update the elemental density.

5. Calculate the species densities,

6. Calculate the net radiated power Qrad in equation (2.23),

7. Calculate other source terms and coefficients in (2.23),

8. Update the temperature.

The solution is considered converged if the residue is below 10−8, where the
residue ξ is defined as

ξ = maxi,j,N

∣

∣

∣

∣

∣

∆ΦN
i,j

ΦN
i,j

∣

∣

∣

∣

∣

, (2.29)

with ΦN
i,j the solution of equation N at grid point (i, j).

2.4.5 Geometry and grid

We construct a model of a lamp using a straight cylinder with flat ends measur-
ing 20 mm in length and 8 mm in diameter. The diameter is identical to that
of the COST-529 reference lamp [9]. The length is chosen to be the distance
between the electrodes of that same lamp. We use a structured two dimensional
cylindrically symmetric grid and the finite volume method to discretise all equa-
tions. The grid has 34 grid lines in the axial direction and 18 lines in the radial
direction. The grid cells are more closely spaced near the walls to accommodate
the high temperature gradients there. A cold spot is defined to be on the lower
4 mm of the cylinder wall. Electrode regions 2 mm in diameter are defined on
the cylinder ends (see figure (2.3)).

2.4.6 Boundary conditions

The temperature equation 2.23 is solved with homogeneous Neumann conditions
on the axis and Dirichlet conditions on the wall. The wall is held to 1500 K
everywhere except for the cold spot where it is held at 1200 K and the electrode
regions, where a temperature of 2900 K is imposed. For the elemental pressure
we impose the condition that the flux through the wall is zero, with the exception
of the cold spot where the pressure is fixed at 1016 Pa. For the velocity we
impose no-slip conditions on the walls. The radial velocity through the axis is
zero for reasons of symmetry. Similarly, a homogeneous Neumann condition is
imposed on the axis for the axial velocity.
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Figure 2.3: Schematic view of the grid and geometry used in the model. The
actual model is not as coarse as the depicted grid with 34 axial and 18 radial
positions.

2.5 Results

We ran the model with a number of pressures ranging from 9 to 40 bar. The
model output consists among others, of the elemental pressures, the temperature
and the bulk velocity. An example of the elemental pressure distribution is
shown in figure 2.4.

As a measure for segregation we looked at the elemental pressure along the
axis. This was fitted to an exponential decay with a least squares approach.
The fit function is

pα(z) = p0e
−λ̄z. (2.30)

The fit parameter λ̄ is the average segregation along the axis and is taken to
represent the segregation in the entire lamp. The model results do not, of
course, fit equation (2.30) exactly. It is used to quantitatively compare results
for different pressures. An example illustrating this procedure is shown in figure
2.5.

We compared the results thus obtained with a model based on the model
by Fischer [5]. That is, we constructed a model with the same underlying
assumptions as [5], with the geometry of the more advanced model. For the
temperature a parabolic profile is used with a maximum of 5800 K and a wall
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Figure 2.4: The elemental pressure of sodium at a total lamp pressure of 14
bar. The pressure is greatest at the cold spot, where a pressure of 1016 Pa is
imposed, and falls of rapidly in radial and axial directions. Note that the axial
direction is along the abscissa.

temperature of 1000 K. Furthermore, equation (2.14) is also solved, with the
same boundary conditions as the more advanced model. The result of this
comparison is shown in figure 2.6.

The results from the more advanced model are strikingly similar to the
model with the fixed temperature profile, considering the differences between
them. The maximum segregation is reached at a slightly larger pressure with
the advanced model and the segregation recedes less quickly in the advanced
model though. These difference are significant, however, justifying the addi-
tional computational expense of the more advanced model.

2.5.1 Axial velocity

We now return to the results of the more advanced model to study the convective
flow. One of the driving forces behind the segregation is the bulk flow. The bulk
flow exhibits a typical convective cell as show in figure 2.7. To get a picture
of the magnitude of the velocity we present the axial velocity along the axis
for several pressures in figure 2.8. From these results it is clear that while the
velocity continues to increase with increasing pressures the relationship is not
linear, the increase saturates at higher pressures.

The location where the convection speeds are greatest also moves from the
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Figure 2.5: The elemental pressure at 14 bar along the axis of the discharge.
Also shown is a fit to a constant segregation parameter as defined by (2.30), in
the axial direction, used to calculate the average segregation.
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Figure 2.7: Convective flow in the lamp at a total pressure of 20 bar. Note
that the axial direction is along the abscissa, with gravity toward the left of the
figure.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.005  0.01  0.015  0.02

S
p

e
e

d
 [

m
/s

]

Axial position[m]

Axial speed on the axis

10 bar
20 bar
30 bar
40 bar
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top of the lamp at low pressures to the bottom of the lamp at high pressures.
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2.5.2 Temperature

The bulk flow is driven by the temperature gradients in the lamp. This is to be
expected as the denser plasma descents, pushing hotter plasma along the axis up
against the top of the lamp. Figure 2.9 shows the temperature for three different
pressures. In general, the top of the lamp is hotter than the bottom, as can be
expected as a result of convection in the lamp. Additionally, the centre of the
arc is somewhat cooler lower down in the arc, while the maximum temperature
is constant. The arc is also more constricted near the top electrode, as is show in
figure 2.10. At higher pressures this difference is more pronounced. Increasing
the lamp pressure decreases the arc constriction, as can be seen in figure 2.11.
This may be expected as increasing the pressure increases the heat transported
to the walls by convection, thus flattening the temperature profiles.

2.5.3 Diffusion

Segregation in the lamp is also driven by radial diffusion. Figure 2.12 shows
the total elemental diffusive flux for sodium near the wall in the direction of the
wall for different pressures. From this figure it becomes clear that the diffusive
flux decreases for increasing pressure, thereby also contributing to decreased
segregation at higher pressures.

2.6 Conclusion

A model has been built of the arc discharge in a vertically burning metal halide
lamp. The model can be used for parameter studies to study discharge char-
acteristics such as the temperature, convection speed and transport of light
producing species in the lamp. A study has been made on the influence of the
total lamp pressure on the degree of segregation of sodium. Results from this
numerical experiment are along the lines of earlier work [5].

Comparison of model results with experimental results is needed to further
verify the model. To this end, a model using Dysprosium Iodide (DyI3) is
needed. Additionally, metal halide lamps typically have electrodes protruding
into the discharge region. The model will be expanded to include the effects of
these protruding electrodes on the discharge region.
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Figure 2.9: The temperature at different total lamp pressures. Note that the
areas with the highest temperatures are near the top and bottom of the lamp.
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2.A Addendum

In constructing the model a number of assumptions have been made that require
closer examination. This addendum to the original publication will discuss these
assumptions. In addition to the assumption of LTE, discussed in section 2.3.4
the following assumptions are made in the model:

1. the flow is laminar,

2. a steady state solution exists and

3. the solution is rotationally symmetric.

2.A.1 Laminar flow

The flow in the model lamp remains laminar due to its small dimensions and the
high viscosity of the plasma. To study the laminarity of the flow a full fledged
stability analysis is required to look for instabilities and possible bifurcations
in the convection pattern. As the flow is strongly non-Boussinesq such a study
is non-trivial and beyond the scope of this work. A rough estimate of the
laminarity of the flow can be obtained by looking at the dimensionless Reynolds
and Grashof numbers and compare these with studies on differentially heated
convective cells.

The well-known Reynolds number Re = ρV L/µ gives the ratio of inertial
to viscous forces. If the Reynolds number is large the flow becomes turbulent.
Typical values for the dynamic viscosity, as calculated by the Wilke [36] formula,
vary from 5 × 10−4Pa s in the centre to 2 × 10−4Pa s near the walls. The lamp
has a radius of 4 mm and a height of 20 mm. The density depends on the
pressure and the temperature. In a lamp with a pressure of 40 bar the density
is between 16 kg/m3 and 20 kg/m3 along the centre. The velocity is greatest
along the centre, with the velocity reaching 0.2 m/s. Taking 1 cm as a typical
length scale, a viscosity of 5× 10−4Pa s, a density of 20 kg/m3 and a velocity of
0.2 m/s one obtains Re = 80. This value is well below the values required for a
transition to turbulence. For turbulent flow a Reynolds number in the order of
103 would be required.

For comparison with results from literature, the Grashof number Gr =
ρag∆T

µ2T is more useful. The Grashof number gives the ratio of buoyancy to vis-

cous forces. With the previous estimates for the density and using ∆T/T = 0.8
one arrives at Gr = 600. Comparing this with studies on differentially heated
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cavities by Paolucci [37] suggests that the Grashof number is at least an order
of magnitude too low for turbulent and unsteady convective flow.

2.A.2 Time dependent behaviour

Turbulence is not the only possible reason that the solution may not be steady-
state. The model-lamp is operated by providing a square wave voltage across
the electrodes at 400 Hz. The amplitude is adjusted to provide a constant
power input. The frequency of 400 Hz has been chosen precisely to provide a
stable light output[9]. Helical instabilities can be induced in MH lamps however
[38, 39]. The subject of helical stabilities is also beyond the scope of this work.
When comparing with experiments care should be taken not to compare with
lamps which show helical instabilities.

2.A.3 Arc bending

The subject of helical instabilities is closely related to arc bending. Both of these
lead to deviations from rotational symmetry. X-ray fluorescence measurements
on cost lamps do not show significant arc bending or deviations from rotational
symmetry [21]. Experiments under hypergravity conditions discussed in chapter
7 do show deviations from rotational symmetry when the centrifuge is operated
at high speeds. Consequently, the model has not been compared with results
which show deviations from rotational symmetry.

2.A.4 The choice of grid

To solve the differential equations a coarse two dimensional grid is used. The
grid has 34 axial and 18 radial positions. The use of such a coarse grid is
possible because the flow is laminar and the size of the features studied are
large in comparison with the size of the lamp. Grid stretching is used to reduce
the size of the cells near the walls where the gradients in the temperature and
the elemental pressure are larger. Plasimo uses a hybrid scheme as described by
Patankar [15, page 88]. Using this scheme allows reasonable results even with
coarse grids. Chapter 7 further examines the discretisation errors in the model.



Chapter 3

Protruding electrodes

Abstract. Convection and diffusion in the discharge region of a metal halide
lamp are studied using a computer model built with the plasma modelling
package Plasimo. A model lamp containing mercury and sodium iodide is
studied. Recently, the underlying program architecture in Plasimo has been
overhauled to allow non-rectangular computational domains. We used this
new feature to model the effects of the electrodes protruding into the plasma.
The effects of the total lamp pressure on the degree of segregation of the light
emitting species are examined and compared to the earlier model with flat
electrodes. Significant differences are observed, justifying the use of the more
complete approach.

This chapter has been previously published as ”A study on the effects of
geometry on demixing in metal halide lamps” M L Beks, J van Dijk, A Hart-
gers and J J A M van der Mullen IEEE Transactions on Plasma Science
Volume 35, Issue 5, Oct. 2007 Page(s):1335 - 1340
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3.1 Introduction

In 1912 Charles Steinmetz was granted a patent [3] for a new light source. By
adding small amounts of sodium, lithium, rubidium and potassium he was able
to modify the light output from “an extremely disagreeable colour” to “a soft,
brilliant, white light”. It was not until much later, however, that a commercially
viable lamp was produced along the same principles. In 1964 General Electric
introduced a metal halide lamp at the world trade fair in New York.

Modern Metal Halide (MH) lamps today operate under the same principles.
They typically consist of a small inner burner about a centimetre in diameter
and a centimetre or more in length surrounded by a larger protective outer wall.
The inner burner is made from polycrystalline alumina or quartz and is filled
with noble gasses, mercury (about 10 mg) and salt additives (a few mg). Under
operating conditions the mercury in the inner burner evaporates raising the
pressure to several tens of bar. The advantages of metal halide lamps remain
much the same as in Steinmetz’ original patent; they combine high luminous
output across a broad spectrum of the visible range with good efficacies as
compared with other light sources.

The physics behind discharge lamps of this type, however, is still a matter
of active investigation. One well known [5, 6, 7, 26] phenomenon still under
investigation is that, when operated vertically, the metal halides in the lamp
tend to demix; the concentration of metal halides in the gas phase is much
greater at the bottom of the lamp. This effect is not present under all conditions,
and some lamp designs are more severely affected than others. The demixing
can be observed directly from the light output; a demixed lamp shows a blue
white mercury discharge at the top of the lamp and a much brighter and whiter
discharge from the additives at the bottom of the lamp [8]. Demixing, or axial
segregation as it is also called, has a negative impact on the lamp’s efficacy.

Previously [40] we published a description of a model to examine demixing
as a function of lamp pressure. In this model the lamp geometry was simplified
to a straight cylinder with flat ends. Recently, the simulation platform used
to construct this model, Plasimo, has been modified to allow computation on
polygonal domains with orthogonal sides. This architecture change allows for
the simulation of more complicated geometries, such that the effects of the
electrodes protruding into the plasma can be included in the model. Using a
more advanced model, we re-examine the results from the previous model, in
particular the effect of the total lamp pressure on segregation. For the sake of
simplicity this study is limited to a lamp containing mercury and sodium iodide.
Input data for these species is readily available from public sources. Adding
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more elements, such as scandium or dysprosium would add to the complexity
of the model without adding much to our understanding of the basic processes
involved. Ultimately, though the authors believe it will be possible to use the
same approach for commercial lamps such as a NaI-ScI-Hg lamp.

3.2 Demixing

By design, metal halide lamps have high temperature gradients. The get suffi-
cient ionisation, the central axis temperature must be high (at least 5000 K),
and the material of which the walls are made cannot sustain temperatures higher
than 1500 K, (about 1200 K for quartz lamps). These high temperature gradi-
ents give rise to natural convection. Also by design, the metals in the discharge
are bound by iodide atoms into molecules near the walls. This protects the walls
from excessive corrosion [3]. Towards the centre of the lamp these molecules dis-
sociate. Thus, strong density gradients are found in both molecules and atoms.
The density gradients give rise to diffusion. The molecules, however, have larger
collisional cross sections with the background mercury vapour than the atoms.
Thereby, diffusion results in a greater concentration of additives near the wall.
The convection of the background gas redistributes the additives in vertical
direction. At moderate convection speeds the effect is axial segregation; the
additives are trapped in a convection cell at the bottom of the lamp. At higher
convection speeds the additives are more uniformly distributed throughout the
lamp. Therefore, there is an optimum convection speed at which the axial seg-
regation is greatest [5]. The convection speeds can be influenced by the total
lamp pressure. Higher lamp pressures result in higher convection speeds. The
geometry also effects convection patterns. This article will look further into
these effects.

3.3 Geometry of the problem

Metal Halide lamps come in various shapes and sizes. To be able to compare
results of experiments done on metal halide lamps and to compare the results
from models to the experiments a reference lamp has been defined within the
framework of the European project cost-529[9]. We base our models on this
lamp geometry.

The model has a distance between the electrodes of 2 cm. The length of the
inner burner is 3 cm. The diameter is 0.8 cm. We assume that the discharge is
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axially symmetric. The models thus use a two dimensional rotationally symmet-
ric grid. In the previous publication [40] we modelled the area of the discharge
between the electrodes, along the full radius of the lamp. New improvements
to the code allows us to model the influence of the electrodes protruding into
the plasma. Figure 3.1 gives a schematic view of the relation between the grids
and the discharge.

Electrodes

4 mm

3
2

 m
m

2
0

 m
m

Figure 3.1: Schematic of the grid with respect to the inner burner.

3.4 Structured Meshes

Structured finite volume meshes have the advantage of allowing one to solve
partial differential equations on relatively coarse grids, as compared with finite
difference or finite element methods. Additionally, they are well suited to the
solving of equations representing conserved quantities as the discretisation does
not violate the conservation of these conserved quantities. Plasimo [28] uses
structured finite volume methods to discretise equations, which are usually for-
mulated as a conservation equation. More complicated geometries are handled
by using ortho-curvilinear grids. The ortho-curvilinear grid generation cannot,
however, handle sharp corners. Using slightly blunt corners is also not an option
as the grid generated will be detriment to the numerical stability of the solution.
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For the sake of a stable solution adjacent finite volume cells may not vary greatly
in size and aspect ratio. For this reason, the underlying program architecture
of the grid has been modified to allow computation on polygonal domains with
orthogonal sides. Additionally, the new program architecture makes calculation
on one and three dimensional grids possible in the future. This is done by using
modern programming techniques to abstract out such concepts as the compu-
tational domain. In this article we will focus on the underlying physics and the
results of the model.

3.5 Basic equations

Besides the geometry little has been changed with respect to the model pre-
sented in [40]. We still assume local thermal equilibrium (LTE). The lamp is
operated at a DC power of 100 W using a mixture of mercury and sodium io-
dide. Contrary to the previous model, the lamp is controlled by adjusting the
voltage to achieve a power input of 100W, whereas the previous model imposed
a current. The sodium iodide content is controlled by a cold spot temperature
of 1200 K. The mercury content is varied to achieve total pressures ranging from
8 to 22 bar. In this section a short overview of the basic equations is given.

3.5.1 Energy balance

All modules come together in the energy balance to calculate the plasma temper-
ature. The temperature, in turn, strongly influences the transport coefficients,
composition, flow and radiation. The temperature is given by

∇ · (Cp~u∇T ) −∇ · (λc∇T ) = P − Qrad, (3.1)

where Cp is the heat capacity at constant pressure, ~v the bulk velocity, λc the
thermal conductivity, Qrad the net radiated power and P the Ohmic dissipation.
Viscous source terms are neglected.

To obtain boundary conditions, a cold spot temperature of 1200 K is as-
sumed, with the cold spot located in the bottom corner of the lamp. The
electrodes are assumed to have a surface temperature of 2900 K and the rest of
the wall a temperature of 1500 K.

The term Qrad is the result of 2D ray-tracing. We solve the equation for the
radiation intensity [41]

dIν

ds
= jν − κIν , (3.2)
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with jν the local emission coefficient and κ the local coefficient for absorption
along rays passing through the discharge as depicted in figure 3.2.

The net radiated power is given by [41]:

Qrad =

∫

ν

(

4πjν −

∫

4π

κIνdΩ

)

dν, (3.3)

with ν the frequency. We discretise 3.3 by regarding the difference between the
radiative flux at the surfaces of each finite volume cell along the path of each
probe line. The radiative flux Φε

ν per frequency point through a surface with
area A and normal direction n is given by

Φε
ν = AIν~n · d~Ω, (3.4)

where d~Ω is the solid angle around the ray. The net radiated power per frequency
point Qrad,ν for a grid cell where the ray enters at position s and leaves at
position s + ds is given by [41]:

Qrad,ν =
1

V
(Φε

ν(s + ds) − Φε
ν(s)) , (3.5)

where V is the volume of the cell. The net radiated power is given by summation
of Qrad,ν over all rays and frequency points in each cell.

3.5.2 Particle transport

Since we assume LTE, the particle densities may be described by the local
temperature, pressure and elemental composition.

To describe the local elemental composition we introduce the elemental pres-
sure pα for the element α:

pα =
∑

i

Riαpi, (3.6)

with pi the partial pressure of the species i, and Riα the stoichiometric coefficient
[40].

We solve a conservation equation for the elemental pressure

∇ ·

(

Dα

kT
∇pα +

pα

kT
~cα

)

= 0,

with an effective diffusion coefficient

Dα = p−1
α

∑

i

RiαDipi
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Figure 3.2: Ray tracing through a cylinder making use of radial symmetry. Rays
intersect the cylinders at different angles with the horizontal plane. Seen from
the top the symmetry can be used to arrange the rays in a set of parallel lines,
but seen from the side rays with different angles to the horizontal plane are
required.

and a pseudo convective velocity

~cα = ~u +
∑

i

RiαDi
qi

qe

∇pe

pe
−
∑

i

RiαDi∇

(

pi

pα

)

. (3.7)

The diffusion coefficient of species i through the dominant background mer-
cury vapour is denoted as Di. The ion charge is given by qi and the charge of
the electrons by qe = −e.

To fix the boundary conditions we assume the existence of a cold spot at
the bottom corner of the lamp, where the elemental pressure is given to be 1016
Pa. Everywhere else the flux through the wall is zero.
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3.5.3 Ohmic heating

The power to the plasma is supplied by Ohmic heating. In the model with the
old grid using flat electrodes ohmic heating was simulated by assuming an axial
electric field E(z) and a negligible radial field. The electric field in the axial
direction E(z) is related to the current by:

I = 2π

∫ R

0

σ(z, r)E(z)rdr, (3.8)

with σ(z, r) the electrical conductivity. The electric field is thus given by

E(z) = I

(

2π

∫ R

0

σ(z, r)rdr

)−1

.

The position dependent volumetric power dissipated by Ohmic heating is given
by σ(z, r)E2.

In the current model we solve the Poisson equation in the form:

∇ · (σ∇Φ) = 0, (3.9)

with Φ the potential. The boundary conditions are formed by constant Dirichlet
conditions on the electrodes and homogeneous Neumann conditions on the walls.
An initial guess of 100 V is used for the potential difference across the electrodes.
This potential difference is adjusted to obtain a net input power of 100 W.

In an area of 0.5 mm around the electrodes the conductivity is adjusted to
compensate for non-LTE effects. This is necessary since the electron density near
the electrodes will deviate significantly from the values expected from chemical
equilibrium. Not correcting for these effects would effectively couple all the
electrical energy in the first layer of cells near the electrodes, overestimating the
temperature in these cells, while underestimating temperature elsewhere.

3.5.4 Transport properties

The transport properties are calculated from collision integrals and using the
concentration of the relevant species and the temperature. For more details see
[42] and chapter 6.
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3.5.5 Bulk flow

The bulk flow follows from the Navier Stokes equation:

∇ · (ρ~u~u) = −∇p + ∇ · (µ∇u) + ρ~ag, (3.10)

with p the pressure, ~u the velocity, ~ag the acceleration due to gravity, µ the
dynamic viscosity and ρ the density of the plasma.

3.6 Results

To compare the results with the previous model with flat electrodes the new
model with protruding electrodes was tried with a number of different lamp
pressures. The calculated temperatures and temperature gradients do not differ
much in magnitude between the old and the new grids. The profiles, however
do differ. This influences the convection patterns in the lamp and, thereby,
influences axial segregation.

The convection speed also depends on the lamp pressure. We ran the model
for a variety of lamp pressures ranging from 9 to 22 bar. We will now discuss the
outcome of the model in terms of the temperature, flow patterns and sodium
demixing.

3.6.1 Temperature

Two examples of the resulting temperature from a calculation are given in figure
3.3. As expected, the temperature is much higher at the axis (6000 K) than
along the wall. The temperature is highest near the top and bottom electrodes
where the ohmic dissipation is greatest. Additionally, the temperature is higher
at the top of the lamp, due to the transport of heat by natural convection.
This is more clearly evident in figure 3.4 showing the temperature along the
axis between the electrodes. Increasing the lamp pressure increases convection,
thereby increasing the asymmetry between the top and the bottom of the lamp.
This also becomes apparent by comparing results at 22 bar (also shown in
figure 3.3) with results at 9 bar. Comparing the result with the model with
flat electrodes shows that the new model produces more realistic results near
the electrodes. The model with the older grid showed artifacts near the bottom
electrode, and to a lesser degree near the top electrode.
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Figure 3.3: Temperature distribution at 9 bar and 22 bar lamp pressure. The
axis temperature is much greater than the wall temperature. The area near
the electrodes is hottest. Comparison the two figures shows that increasing the
pressure makes the discharge more asymmetric in the axial direction.

3.6.2 Bulk Flow

The protruding electrodes also effect the flow pattern. This is shown in figure
3.6. In particular, the flow velocity towards the top of the lamp is lower in the
model with protruding electrodes. Possibly, the electrodes hinder convection in
the lamp.
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Figure 3.4: Temperature along the axis, for different pressures.

3.6.3 Demixing

Given the results shown previously, it is not surprising that the demixing of
sodium is also effected by the protruding electrodes. The axial segregation tends
to be greater in the model with protruding electrodes. This can be deduced from
figure 3.7.

Aside from a small area around the electrodes, the elemental pressure along
the axis decays exponentially as a function of the axial position. This is also
shown in figure 3.7.

Fitting an exponential curve through the results results in a measure for
the degree of axial segregation. Plotting this decay constant, or segregation
parameter, as a function of the lamp pressure results in figure 3.8. As lamp
pressure is also related to convection, this curve shows the effect of convection
on the degree of segregation. As is evident from this curve, increasing the
convection beyond a certain point leads to better mixing, as does decreasing
it. The optimal middle is what lamp designers should avoid. The flat electrode
models shows a small but significant shift in the pressure for which segregation
is greatest. Additionally, the degree of segregation is larger in the model with
the protruding electrodes than in the model with the flat electrodes.
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Figure 3.5: Temperature along the axis compared to the model with flat elec-
trodes previously published in [40] at 15 bar lamp pressure.

3.6.4 Iodine

The demixing of iodine is much less pronounced than that of sodium. Figure
3.9 shows how iodine is spread throughout the lamp. Iodine ionises less easily
than sodium. Additionally, the iodine atoms are larger, leading to larger elastic
cross sections.

3.7 Discussion

The model presented in chapter 2 has been extended to model protruding elec-
trodes. Having the electrodes protrude into the plasma creates a ”dead zone”
outside of the discharge with relatively low temperatures. The hottest zones
are to be found close to the electrodes and on the axis between the electrodes.
For this first study with protruding electrodes, fairly thick electrodes were used
which extend far (3 mm) into the plasma. The actual geometry described in [9]
calls for electrodes extending only 1 mm into the lamp. This geometry is used
in the later chapters of this thesis. Measurements by Baede [43] on a sample of
29 reference lamps, however, indicate that the actual electrode distance varies
from 14.7 mm to 16.5 mm. The average of the sample was 15.7 mm with a
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Figure 3.6: Axial velocity along the axis at 15 bar total lamp pressure with the
flat electrode model [40] and the model with protruding electrodes compared.
The model with protruding electrodes shows a much flatter profile. The con-
vection velocities near the electrodes are higher, and the axial velocity at the
centre is lower.

variance of 0.2 mm.
The additive distributions do not differ greatly from those calculated in

chapter 2, but the difference is significant enough to justify the extra effort.
The electric field calculation was also improved in this chapter. In chapter
2 the electric field was assumed to be axially directed. This one-dimensional
electric field was then calculated by imposing the current that flows between the
electrodes. This publication calculated the potential distribution from Poisson’s
equation. As with the ballasts used in experiments, a certain power dissipation
is imposed. In this publication a value of 100 W was used. The voltage across
the electrodes is iteratively adjusted to match this power dissipation. This
change in the model also facilitates comparison with experiments.
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Chapter 4

Extending the model, DyI3
chemistry

Abstract.

The distribution of additives in a metal halide lamp is examined through
numerical modelling. A model for a lamp containing sodium iodide additives
has been modified to study a discharge containing dysprosium tri-iodide salts.
To study the complex chemistry the method of Gibbs minimisation is used
to decide which species have to be taken into account. The results from the
model with dysprosium additives are compared with earlier results from the
lamp containing sodium additives and a simulation of a pure mercury lamp.
Under the right conditions convection currents in the lamp can cause axial
demixing. These conditions depend on the ratio of axial convection and radial
diffusion as expressed by the Peclet number. At a Peclet number of unity axial
segregation is most pronounced. At low Peclet numbers radial segregation is
at its strongest, while axial segregation is not present. At large Peclet numbers
the discharge becomes homogeneously mixed. The degree of axial segregation
at a Peclet number of unity depends on the temperature at which the additive
under consideration fully dissociates. If the molecules dissociate very close to
the walls no molecules are transported by the convective currents in the lamp,
and hence axial segregation is limited. If they dissociate further away from
the walls, in the area where the downward convective currents are strongest,
more axial segregation is observed.

This chapter has been submitted to J. Phys D. as ”A model for additive
transport in metal halide lamps containing mercury and dysprosium tri-iodide”
with the co-authors M. Haverlag and J. J. A. M. van der Mullen
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4.1 Introduction

In chapter 2 we presented a study that describes how segregation results from
the competition between convection and diffusion. For this we used a model
that was constructed by means of the modelling platform Plasimo[16]. This
model gives a self-consistent calculation of the competition between convection,
diffusion, the LTE chemistry, the electric field and the radiation transport. It
was found in chapter 2 that increasing the pressure increases convective flows
in the lamp. With high enough pressure, segregation disappears since the high
convective flows lead to better mixing of the species over the discharge. At
low pressures axial segregation is not present, though radial segregation will
still be present, since this is driven by diffusion. The model can be used to
predict the range of pressures that should be avoided when designing a lamp. A
disadvantage of this model was that the electrodes were approximated by two
flat planes.

In chapter 3 we improved the model by taking the shape of the electrodes
into account. This model with electrodes protruding into the lamp was run
for a series of conditions and it was found that the electrodes influence convec-
tion patterns in the lamp. The changes in the convection also has effects on
the distribution of additives and the pressure at which the demixing is most
pronounced.

Both chapters 2 and 3 were based on MH lamps consisting of a mixture of
Hg and NaI. To compare the model results with experiments the authors have
extended the model to work with dysprosium iodide. The primary reason for
this is that we wish to compare results with the measurements in [21], which uses
the technique of X-Ray Fluorescence (XRF) to measure the elemental densities.
This technique works with heavy elements such as mercury and dysprosium but
not with sodium.

The chemical composition of a plasma containing DyI3 is more complex
than a similar discharge containing NaI. The reason is that more intermediate
species such as DyI2 and DyI are present in the former. Although it would
be possible to expand the approach used in chapters 2 and 3, adding more
species, and thus more relations, would drastically slow down the calculation.
Additionally, the molecules are more complex, resulting in increased complexity
when calculating the partition functions. The method used in chapters 2 and
3 is based on the equations of Guldberg-Waage and Saha, as outlined in [31,
chapter 2]. Applying this method for more complex molecular mixtures leads
to the demand to calculate complicated partition functions. To circumvent this
demand we applied the Gibbs Minimisation (GM) method, which allows for
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the use of databases of thermodynamical properties of species to calculate the
chemical composition of the plasma. We used an external commercial program
to generate lookup tables filled with species densities for different combinations
of the total pressure, elemental abundancy and temperature. Fortunately, it
was found that the number of species that have to be dealt with is limited.
Besides the electrons, whose density is calculated from charge neutrality, only
eight species are present in significant concentrations in the discharge.

Another difference between an MH lamp with dysprosium iodide additives
with an MH lamp with sodium iodide as additive is that the spectrum of dys-
prosium is much more complex. The spectra of dysprosium contains a ”grass
field” of lines, with [44] listing 900 lines. In the case of sodium a mere 19 lines
are sufficiently prominent. This issue is discussed in chapter 5.

This chapter will focus on the differences in the lamp chemistry and present
results comparing a lamp containing sodium with the same lamp containing
dysprosium.

4.2 Chemistry

Assuming local chemical equilibrium means that the plasma composition is de-
termined by the local temperature, pressure and relative abundance of elements.
In the case of a vapour consisting of dysprosium, iodide and mercury a number
of molecules can be formed. Additionally, the neutral atoms may ionise. In
contrast to the previous studies in chapters 2 and 3 the LTE chemistry in the
present study is described by Gibbs Minimisation (GM) rather than by the pre-
vious method using the Guldberg-Waage law of mass action and Saha balances
(GWS). For an ideal gas mixture the two approaches are equivalent [45, chapter
3,4] as the former may be derived from the latter. The GM approach is more
general as it can also be used for non-ideal gases, liquids and multi-phase mix-
tures. More importantly, for the GM approach one does not need to calculate
partition functions but one may use derived thermodynamic properties. Tab-
ulated data for the thermodynamic properties of species are widely available,
along with software (both commercial and open source) to use such data with
the GM approach. Using such (semi-) empirical data rather than calculating the
partition function for each species reduces the complexity of the problem. This
is of special interest since the dysprosium containing species have a large num-
ber of possible states, which makes calculating the partition function complex
and time consuming.

Tabulated data for the relevant thermochemical properties of particular
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species can come from a wide variety of sources. For example, the heat capacity
at constant pressure can be used to determine the chemical potential [46]. This
is because the heat capacity at constant pressure Cp is given by Cp =

(

∂H
∂T

)

p
.

The entropy is also related to the heat capacity as Cp=T
(

∂S
∂T

)

p
. Hence, the

Gibbs energy G can be found by integrating Cp and adding a reference value at
a given reference temperature. We will give a short sketch of the GM approach
without going into great detail. More details on specific algorithms and sources
of data are given in [47].

The principle of GM follows from the principle of maximum entropy dS ≥ 0
under the constraint of constant pressure and temperature. For the transfer of
heat at constant pressure the inequality :

dH − TdS ≤ 0,

holds, with H the enthalpy and S the entropy of the system. It is convenient
to introduce the Gibbs energy G such that

G = H − TS. (4.1)

The criteria for spontaneous reactions at constant pressure and temperature is
given by

dGT,p ≤ 0. (4.2)

The local species densities can be found by determining the minimum value for
G under the constraints

ni ≥ 0 ∀i, (4.3)
∑

i

RiαkTni = pα ∀α (elemental abundance), (4.4)

∑

i

kTni = p (Daltons′ law), (4.5)

∑

i

niqi = 0 (charge neutrality). (4.6)

The total Gibbs function of the system is calculated from the individual
species as

G(T, p, n) =
∑

i

niµi, (4.7)

with µi the chemical potential. By solving equation (4.2) under the constraints
of (4.3) to (4.6) we find the local densities of all species in the plasma.
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The chemical potential could be calculated from the partition function of
the species but the usual approach is to parametrise the chemical potential
as a function of temperature. We use ChemappTM to solve (4.7) under the
given constraints to generate a lookup-table of densities for different combina-
tions of the temperature, pressures and elemental compositions. ChemappTM

parametrises the chemical potential using the fit function [48, 49]

µ(T ) =

3
∑

i=−1

ciT
i + aT log T +

6
∑

i=1

biT
di (4.8)

with a, bi, ci and di species dependent and range dependent parameters.

An example of the result for an elemental Dysprosium pressure of 100 Pa, an
elemental Iodine Pressure of 300 Pa and a total pressure of 2 MPa is shown in
figures 4.1, 4.2 and 4.3 respectively showing the species containing dysprosium,
mercury and iodine. Based on this data the choice was made to limit the model
to the following species: Hg, Hg+, Hg2, Dy, Dy+, DyI2, DyI3, I2 and electrons.

4.3 Particle transport

Since we assume the presence of LTE, the particle densities may be described by
the local temperature, pressure and local elemental composition with the GM
method described in the previous section. The local elemental composition is
determined by the vapour pressure at the cold spot and the competing processes
of convection and diffusion which distribute the salt components throughout the
lamp.

4.3.1 Radial segregation

To understand the process driving axial segregation one first needs to examine
radial segregation. The additive molecules in the plasma diffuse from the wall
into the centre of the plasma where they dissociate to form free atoms. These
are partially ionised. The lighter and smaller atoms diffuse back toward the wall
more readily through the background mercury gas than the molecules diffuse in
the opposite direction.

We assume, for the purpose of this discussion, that the diffusion is given by
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Figure 4.1: Selected species densities containing dysprosium calculated for a
mixture containing mercury, dysprosium and iodine elements. Species densities
for species containing mercury and iodine are shown in figures 4.2 and 4.3 re-
spectively to avoid clutter. The elemental dysprosium pressure is 100 Pa, the
elemental iodine pressure 300 Pa and the total pressure 2 MPa. The temperature
is between 1000 K and 7000 K. The density of DyI is very low compared to other
dysprosium containing species, so this species is not taken into consideration in
the model.

Fick’s law1 Thus the flux of species i ~Γi is given by

~Γi = −Di∇pi, (4.9)

with Di the diffusion coefficient and pi the partial pressure of species i. In the
absence of convection, the flux of atoms towards the walls must equal the flux

1Note that, in general, the diffusion of species in the plasma does not obey Fick’s law and
the numerical model does not assume this as discussed in chapter 2.
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Figure 4.2: Selected species densities containing mercury, calculated for a mix-
ture containing mercury, dysprosium and iodine elements. Species densities
for species containing dysprosium and iodine are shown in figures 4.1 and 4.3
respectively to avoid clutter. Just as in figure 4.1 the elemental dysprosium
pressure is 100 Pa, the elemental iodine pressure 300 Pa and the total pressure
2 MPa. The temperature is between 1000 K and 7000 K. The density of HgI
and HgI2 is very low compared to other mercury species. These species have
not been taken into account in the model.

of molecules away from the walls multiplied with the stoichiometric coefficient.
Substitution of this equality into (4.9) results in

Rmol,elementDmol∇pmol = −Datom∇patom, (4.10)

with Rmol,element the stoichiometric coefficient. Rearranging the above leads to

∇patom = −

(

RDmol

Datom

)

∇pmol. (4.11)
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Figure 4.3: Selected species densities containing iodide only, calculated for a
mixture containing mercury, dysprosium and iodine elements. Species densities
for species containing dysprosium and mercury are shown in figures 4.1 and 4.2
respectively to avoid clutter. Just as in figures 4.1 and 4.2 the elemental dys-
prosium pressure is 100 Pa, the elemental iodine pressure 300 Pa and the total
pressure 2 MPa. The temperature is between 1000 K and 7000 K. The density
of I2 is very low compared to other iodine species in this example since there is
no excess iodine. These species not been neglected in the model, however, since
the model does have a large amount of excess iodine. Iodine ions are not taken
into account in the model since their densities are much lower than the other
ion densities.

Since Datom > Dmol a larger gradient of the molecular partial pressure can
be supported (∇patom < ∇pmol). Thus, radial segregation occurs, with more
of the additive in the form of molecules near the walls than in the form of
atoms in the centre of the discharge. The stoichiometric coefficient is also of
importance, however, as each DyI3 molecule transports three iodine atoms as it
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diffuses towards the wall. Thus the radial iodine segregation is limited.

4.3.2 Axial segregation

The large temperature gradients in the lamp drive natural convection. The
convection of the buffer gas drags the additives down along the walls and up
again through the centre of the discharge. Because the atoms diffuse outward
more readily than the molecules diffuse inward the additives stay at the bottom
of the discharge. This effect is known as axial segregation.

However, if the convection currents are large enough homogeneous mixing is
achieved. At intermediate convection speeds axial segregation is observed but
radial segregation is decreased.

4.3.3 Elemental pressure

A convenient quantity to describe the elemental composition is the elemental
pressure pα . The elemental pressure pα contains the contribution of the par-
tial pressures of all molecular, atomic and ionic species containing a particular
element α. It is defined as follows:

pα =
∑

i

Riαpi. (4.12)

This quantity is convenient because the total pressure is nearly constant over
the lamp. Therefore, the elemental pressure is also constant if the lamp is
homogeneously mixed. Additionally, a conservation equation can derived for
the elemental pressure [32, 40].

The conservation equation for the elemental pressure is as follows:

∇ ·

(

Dα

kT
∇pα +

pα

kT
~cα

)

= 0, (4.13)

with an effective diffusion coefficient Dα [40]

Dα = p−1
α

∑

i

RiαDipi (4.14)

and a pseudo convective velocity cα [40].
To fix the boundary conditions of (4.13) we assume the existence of a cold

spot at the bottom corner of the lamp. The elemental pressure in the cold spot
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is fixed. For all other boundaries, we assume that the flux of elements through
the wall is zero.

For the lamp containing DyI3 the elemental pressure is derived from the
x-ray induced fluorescence measurements[21]. This technique can be used to
determine the elemental density of mercury, dysprosium and iodide. We use the
measured density near the cold spot combined with the cold spot temperature of
1100 K to arrive at a cold spot pressure of 517 Pa for dysprosium and 4268 Pa for
iodine. Note that there is a lot of excess iodine, with iodine not three times but
more than eight times as abundant. This is because the dysprosium migrates
into the quartz walls.

For the lamp containing sodium iodide a cold spot vapour pressure of 1216
Pa has been assumed for both sodium and iodide. X-ray induced fluorescence
measurements cannot be used to determine the elemental sodium pressures be-
cause the setup used in [21] is not suitable for the relatively low energy photons
emitted from sodium.

Accurate determination of the vapour pressures presents a challenge in study-
ing metal halide lamps. This is because in situ measurements are difficult to
perform. Additionally, the vapour pressure is very sensitive to the temperature
of the cold spot. Another hindrance is that the relative abundance of metals
and halides varies over the life time of the lamp as the metals are absorbed by
the walls leading to excess iodide.

4.4 Model

The distribution of elements is calculated by the model described in chapters
2 and 3. This model solves conservation equations to obtain the temperature,
velocity and additive distribution in the lamp. A schematic view of the geometry
and grid used is given in figure 4.4.

4.4.1 Ohmic heating

The power to the plasma is supplied by Ohmic heating. We solve the Poisson
equation in the form:

∇ · (σel∇Φ) = 0, (4.15)

with Φ the potential. From the potential Φ we can derive the electric field ~E =
−∇Φ and the current density ~J = σel

~E = −σel∇Φ. The following boundary
conditions are employed:
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Figure 4.4: Schematic view of the geometry of the problem (not to scale) and
the finite volume grid used. The actual grid used is less coarse than suggested
in this figure. The computation grid has 66 cells in the axial and 28 cells in the
radial direction.

1. There is no current through the walls, resulting in a homogeneous Neu-
mann boundary condition (∂Φ

∂n = 0).

2. One electrode is kept at zero potential, which leads to a Dirichlet condition
Φ = 0 at that electrode.

3. The potential of the other electrode is initially put at 100 V. This value
is adjusted during the iteration process and determined by the fact that
the power dissipated in the discharge equals 135 W. This is equivalent to
the actual lamp power of 150 W of which 15 W is consumed by electrode
losses and 135 W by ohmic dissipation of the discharge.
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4.5 Results

With this model dedicated to mixtures containing dysprosium iodide, we are now
capable of calculating the properties of a discharge with a dysprosium chemistry
as well as comparing these calculations with experiments. The comparison with
experiments is the focus of chapters 6 and 7 In the following we will compare
with the results of a lamp containing sodium iodide and a lamp containing pure
mercury without additives. We will refer to the lamp containing sodium iodide
and the lamp containing dysprosium iodide as the sodium and the dysprosium
MH lamp, respectively.

We ran the dysprosium MH model with a total mercury filling of 20 mg,
and a power input of 135 W using effective transitions calculated from data in
[44] as described in chapter 5 and a dysprosium cold spot vapour pressure from
[21]. The results from this model were compared with the sodium MH model
with the same mercury filling and power input but with 19 sodium transitions
and a cold spot vapour pressure of 1016 Pa for both sodium and iodide. The
model run was also repeated with the same mercury filling and input power
but without additives to simulate a pure mercury lamp. To further compare
the model results with previous results with a sodium lamp in chapter 3 the
dysprosium MH model was run at various mercury fillings ranging from 3 mg to
20 mg to find the pressure at which the axial segregation is most pronounced.

4.5.1 Additive distribution

The prime quantity of interest in this study is the distribution of additives over
the lamp. In previous publications we examined axial demixing as a function
of pressure. It was found in chapter 3 that lamps containing sodium iodide
shows the most demixing at pressures between 15 and 20 bar, corresponding to
a mercury of filling of approximately 20 mg. Under these conditions dysprosium
MH lamps show less axial demixing, as is shown in figure 4.5. The elemental
pressure of dysprosium drops steeply near the electrodes and is constant for most
of the length of the discharge, whereas the sodium elemental pressure decreases
along the length of the discharge. The radial elemental pressure profiles are
shown in 4.6. Note that the elemental dysprosium pressure shows a strong dip
near the axis, as was also reported in measurements [21]. The sodium discharge
does not show this central dip.

To quantify the degree of axial demixing we introduce the dimensionless
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Figure 4.5: Elemental pressure of the metal additive along the axis of a sodium
MH lamp, compared to a dysprosium MH lamp. Both lamps have a total
mercury filling of 20 mg and are driven with 135 W of power. From these
results it is also apparent that the elemental pressure does not always decrease
exponentially along the axis.

segregation depth τ :

τ =
1

V

∫

V

τLdV, (4.16)

with τL given by

τL =
L

pα

(

∂pα

∂z

)

, (4.17)

and L the total length of the discharge. This quantity is called the segregation
depth in analogy with the optical depth. If the segregation depth is much smaller
than unity (τ << 1) the plasma is homogeneously mixed. The situation with
τ >> 1 corresponds to a situation with large axial segregation.

Figure 4.7 shows τ as a function of the total lamp pressure for both the
dysprosium and the sodium models. Dysprosium MH lamps show the largest
τ value at approximately 7 bar, a lower pressure than the sodium containing
discharges. Additionally, the maximum τ value of the dysprosium MH lamp is
smaller than that of the sodium MH lamp. This difference in the location of
the maximum τ value is due to diffusion coefficients shown in figure 4.8. The
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Figure 4.6: Midplane elemental pressure of the metal additive in a sodium MH
lamp, compared to a dysprosium MH lamp. Note the strong central dip in the
dysprosium MH lamp.

sodium atoms are smaller and diffuse more readily than the dysprosium atoms.
This means that greater convection is needed to obtain the same ratio between
convection and diffusion.

To quantify the ratio between axial convection and radial diffusion we intro-
duce the Peclet number Pe:

Pe =
R2Vz

LDα
, (4.18)

with R the radius of the discharge and Vz the axial convection speed. The
effective diffusion coefficient Dα from equation (4.14) is evaluated on the axis
halfway between the electrodes, as is the axial convection speed. Figure 4.9
shows the average axial segregation as a function of the Peclet number. The
Peclet number at which τ has a maximum is the same for dysprosium and
sodium. This shows that the Peclet number provides a useful scaling law. The
two curves are different in that the maximum τ value is smaller in dysprosium
than in sodium. The reason for this difference is examined in the next section.
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Figure 4.7: Dimensionless segregation depth as a function of lamp pressure for
a dysprosium MH lamp compared with sodium MH lamp results from chapter
3.

4.5.2 Convection

The convection patterns in the lamps studied are also altered by the additives.
This is demonstrated in figure 4.10 which shows the axial convection through
the midplane 4.10. The mercury lamp shows a slightly larger convection speed
than the sodium lamp due to the hotter centre. The reason for this hotter centre
is the less effective radiative cooling of the mercury plasma due to the absence of
strong radiators. The dysprosium causes the arc to contract, leading to an even
hotter centre, and thus even stronger convection. Figure 4.11 shows the axial
convection compared to the location of the molecules, atoms, and ions in the
dysprosium MH lamp. Note that the area with downward convection contains
mostly molecules. The transition to atoms occurs in a position where the net
flow is towards the top of the lamp. The point of transition is also the point
where the gradients of the partial pressures of atoms and molecules are largest.
In a sodium lamp, as shown in figure 4.12, the transition from molecules to
atoms is much closer to the walls. This means that the downward flow near
the walls contains more atoms than in the dysprosium discharge. Molecules are
not present in the upward flow. Thus, axial segregation is more pronounced in
the sodium containing discharges than in the dysprosium containing discharges.
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Figure 4.8: Diffusion coefficient on the axis halfway between the two electrodes
for dysprosium and sodium atoms compared.

This difference explains the difference in the segregation depth at the same
Peclet number found in figure 4.9.
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Figure 4.9: Dimensionless segregation depth as a function of the Peclet number
for a dysprosium MH lamp compared with sodium MH lamp results in chapter
3.
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Figure 4.10: Axial convection through the plane halfway between the two
electrodes. The difference between the lamps containing dysprosium and the
lamp containing sodium is substantial. The lamp containing pure mercury has
a slightly higher convection speed than the sodium lamp due to the hotter centre.
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are indicated with the dotted vertical lines. Note that transition from molecules
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in a sodium MH lamp compared with the axial velocity. The transitions are
indicated with the dotted vertical lines. Note that the transition from molecules
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sodium MH lamp. Both lamps have a total mercury filling of 20 mg and are
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Figure 4.14: Temperature on the axis of a pure mercury lamp, a sodium MH
lamp and a dysprosium MH lamp compared. All lamps have a total mercury
filling of 20 mg and are driven with a power of 135 W.
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Figure 4.15: Comparison of the temperature midplane between the two elec-
trodes for a pure mercury lamp, a sodium MH lamp and a dysprosium MH
lamp. All lamps have a total mercury filling of 20 mg and are driven with a
power of 135 W.

4.5.3 Temperature

All quantities in the LTE model are connected to the temperature distribution.
The convection speed, in particular is driven by the large temperature difference
between the wall and the hot centre. The dysprosium lamp shows less axial
segregation than the sodium lamp. This has an effect on the axial temperature
profile shown in 4.14. The temperature of the dysprosium MH lamp varies little
along the axis while the sodium containing discharge is much hotter at the top
than at the bottom. This is because little to no sodium is present near the
top electrode. Thus, in the sodium containing discharge, the temperature near
the top electrode approaches that of a pure mercury discharge. Additionally,
the presence of dysprosium causes the arc to contract. This is because a lot of
radiation is released just off-centre where most excited atoms are present. The
centre contains few atoms and the mercury ions push the dysprosium ions out
of the centre, leading to the strong central dip shown in figure 4.6. The central
temperature must be higher than in a pure mercury lamp to still allow sufficient
current to pass through the plasma. For comparison, the temperature of a pure
mercury discharge is also shown in figure 4.14.
The midplane radial temperature profiles in figure 4.15 show the contraction
most clearly. The pure mercury lamp has a parabolic temperature profile. The
sodium MH lamp is slightly flattened, and the dysprosium MH lamp shows
strong contraction. The dysprosium MH lamp shows the hottest central tem-
perature, followed by the pure mercury lamp and the sodium MH lamp has the
lowest central temperature.
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4.6 Conclusions

Using plasimo a model of an MH lamp based on a mixture of dysprosium iodide
and mercury has been built. The chemical composition has been calculated
using the Gibbs minimisation approach. From this chemical composition the
dominant species have been determined. Comparison with earlier results shows
that the pressure for which the axial demixing is most pronounced is lower
in lamps containing dysprosium than in lamps containing sodium additives.
This is because the dysprosium atoms move less easily through the background
mercury gas and have lower diffusion coefficients than the sodium atoms. The
maximal axial segregation of the dysprosium lamps is slightly smaller than the
of the sodium containing discharges. The reason for this is that the temperature
required to fully dissociate the dysprosium tri-iodide molecules is higher than
the temperature to dissociate the sodium iodide molecules. Additionally, the
dysprosium additives cause strong contraction in the arc. Thus, the molecules
dissociate further away from the walls with molecules not only dragged down
by convective flows near the walls, but also pushed upwards.

The temperature profiles of a lamp containing dysprosium additives differ
much from the temperature profiles of a lamp containing sodium. This is be-
cause of radiative cooling of atomic dysprosium, just off-centre. The central
part of the discharge contains little to no dysprosium and is thus less effectively
cooled. To allow enough current through the lamp the central temperature must
be greater than in a pure mercury lamp. Another difference occurs from the
depletion of additives near the top of the sodium containing lamp. The part of
the discharge devoid of additives approaches the temperature of a pure mercury
discharge.

The Peclet number, defined as the ratio of axial convection to radial diffusion
may be used to predict the conditions under which axial segregation is greatest.
Radial segregation plays a central role in the development of axial segregation.
The position at which the molecules dissociate to form atoms has an important
influence on the degree of segregation. When molecules dissociate in the part of
the lamp where the convection current moves downward the axial segregation
is more pronounced than when they dissociate further from the walls, into the
radial position where the convective flows are towards the top of the lamp.



Chapter 5

Radiation

Abstract. The radiation emitted by a lamp containing mercury and dys-
prosium additives is studied. Dysprosium has a spectral ”grass field” with
hundreds of lines, which are mostly optically open under the conditions stud-
ied. Mercury emits radiation on a small number of lines which may be op-
tically open, closed or in between, depending on the exact conditions. We
introduce effective transitions for the radiation emitted by the dysprosium
additive. These effective transitions are used in combination with ray tracing
to model the radiation transport of resonant and partially absorbed mercury
lines. The errors introduced by using effective transitions instead of simulat-
ing all known transitions is studied through a number of simple case studies.
The effective dysprosium transitions are then used in a self consistent model
of a metal halide lamp. The choice of data set has a significant impact on the
result. Using the data from Gorschkov et al leads to stronger arc contraction
than using the more recent data from Wickliffe et al. The distribution of
additives is also effected by the choice of input data.
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5.1 Introduction

In chapter 2 we presented a study that describes axial segregation in Metal
Halide lamps. One of the findings was that increasing the pressure increases
convective flows in the lamp. When the convective flows are strong enough
the elements become homogeneously mixed, both radially and axially. At low
pressures axial demixing is avoided, but radial demixing is still present. The
model can be used to predict the range of pressures that should be avoided when
designing a lamp. A disadvantage of the model presented in chapter 2 was that
the electrodes are approximated by two flat planes.

In chapter 3 we improved the model by taking the shape of the electrode
into account. This model with penetrating electrodes was run for a series of
conditions and it was found that the electrodes influence convection patterns
in the lamp. By changing the convection patterns the competition between
convection and diffusion is also changed, and thus also the degree of segregation
in the lamp. Not only the competition between convection and diffusion is
determinative for the segregation in the lamp. The temperature profile also has
some influence. However, this temperature profile is not only determined by
the fluid transport processes, the radiation also has a large effect on this profile.
Especially the correct treatment of radiation transport deserves attention.

For a part of the spectrum the plasma will be optically thick so that the
generated emission is locally re-absorbed whereas for another part radiation
can easily escape. For a correct description of both the optical thin and thick
radiation we used the method of ray spacing [41].

The models in chapters 2 and 3 were based on MH lamps consisting on
a mixture of Hg and NaI. The number of atomic lines in this plasma type is
limited. This implies that the ray-trace method can be restricted to a limited
number of frequency points.

To compare with experiments the authors have changed the model so that it
will work with dysprosium iodide. The primary reason for this is that we wish
to compare results with the measurements in [21], which uses, amongst others,
the technique of X-Ray Fluorescence (XRF) to measure the elemental densities.
This technique works with heavy elements such as mercury and dysprosium but
not with sodium. A plasma containing dysprosium additives, however, is more
difficult to model than one containing sodium for two reasons:

• A plasma with dysprosium additives has more intermediate molecular
species, and these molecules are more complex. To overcome this diffi-
culty we used lookup tables in conjunction with external chemical equi-
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librium calculations to calculate the chemical composition of the plasma
as described in chapter 4.

• Dysprosium atoms and ions have a large number of radiative transitions.
The data set of Wickliffe, Lawler and Nave [44] lists over 900 lines and
these represent only the most prominent transitions.

In this chapter we will focus on this last issue. Fortunately, the myriad of
spectral lines from dysprosium atoms and ions are, for the relevant conditions,
optically open. As will be shown, effective transitions can be used to model the
radiative energy emitted by the plasma. This method allows a great reduction
in the complexity of the calculation. Before further discussing the use of effec-
tive transitions we will first give a general overview of treatment of radiation
transport in the model. Then we will investigate the validity of the use of ef-
fective transitions via simple test models. We will conclude with results from a
full calculation employing these effective transitions for two different sources of
data.

5.2 Model description

In this section we give a short overview of the treatment of radiation transport in
the model and its interaction with the calculation of fluid properties. The model
solves conservation equations to obtain the temperature, velocity and additive
distribution in the lamp. More details are found in chapter 2. A schematic view
of the geometry and grid used is given in figure 5.1.

5.2.1 Energy balance

All modules come together in the energy balance to calculate the plasma temper-
ature. The temperature, in turn, strongly influences the transport coefficients,
composition, flow and radiation. The temperature is given by

∇ · (Cp~u∇T ) −∇ · (λc∇T ) = P − Qrad, (5.1)

where Cp is the heat capacity at constant pressure, λc the thermal conductivity,
Qrad the net radiated power 1 and P the Ohmic dissipation. To obtain boundary
conditions for equation 5.1 a cold spot temperature of 1100 K is assumed, with

1Note that in this work Qrad is defined such that it is positive if more radiation is emitted
than absorbed, contrary to the convention employed in [41].



78 Radiation

Electrodes

4 mm

2
0

 m
m

1
8

 m
m

Figure 5.1: Schematic view of the geometry of the problem (not to scale) and
the finite volume grid used. The actual grid used is less coarse than suggested
in this figure. The computation grid has 66 cells in the axial and 28 cells in the
radial direction.

the cold spot located in the bottom corner of the lamp. The electrodes are
assumed to have a surface temperature of 2900 K and the rest of the wall a
temperature of 1200 K.

5.3 Radiation transport

The term represented by Qrad in (5.1) is the primary focus of this chapter. It
is the net result of local emission and absorption at every point in the plasma.
To calculate the net radiated power we need to consider the energy gained
by absorption of light emitted elsewhere and the energy lost by light emitted
locally at each point in the plasma. Since emission and absorption are strongly
frequency dependent we also need to do this for a large number of different
frequencies and integrate over frequency space.
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The net radiated power is related to the radiation intensity Iν by [41]:

Qrad =

∫

ν

(

4πjν(ν, ~r) −

∫

4π

κ(ν, ~r)Iν(ν, ~r)dΩ

)

dν, (5.2)

with ν the frequency, jν(ν, ~r) the local emission coefficient and κ(ν, ~r) the local
coefficient for absorption along rays passing through the discharge. Note that
the subscript ν is used to denote a quantity per unit of frequency.

The radiation intensity Iν is determined by [41]

dIν

ds
= jν − κIν . (5.3)

5.3.1 Ray tracing on a structured mesh

To solve equation (5.3) we use the method of ray tracing, as outlined in [41].
This method was originally implemented for discharges with two degrees of
symmetry. The code has since then been modified to describe two dimensional
plasmas with only rotational symmetry. We will briefly outline our ray tracing
method following [41] and discussing the modifications implemented.

Radiation transport in plasmas is essentially non-local: every point in the
plasma may absorb photons from any other point in the plasma. This stands
in contrast with other fluid properties of which the transport can be handled
locally. That is, these properties, such as the density or the temperature, de-
pend only on the local value and the local gradients. The finite control volume
method works well for such local properties: the temperature in a control vol-
ume, for example, is assumed to be influenced only by the control volumes in the
direct neighbourhood. The plasma properties are defined on the nodal points.
Transport, or fluxes, of conserved properties, take place through the surfaces of
the cells.

The Ray Tracing Control Volume rtcv method describes the interplay be-
tween the local properties of the fluid and the non-local radiation by combining
ray tracing for the radiation transport with finite control volumes on structured
meshes for the fluid properties.

Ray tracing describes the intensity of the radiation by calculating this inten-
sity along a series of probe lines through the plasma. This is done by integrating
(5.3) along the probe lines. By clever use of the presence of symmetry the num-
ber of probe lines may be limited. The local emission and absorption along each
segment of the ray is determined from the fluid property in the control volumes
through which the ray passes. The rtcv method consists of a number of steps.
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1. The choice of probe lines which follows from the symmetry of the prob-
lem. This step does not need to be repeated during the iterative solution
procedure as long as the grid remains the same.

2. The integration of (5.3) along each probe line. The coefficients jν and κ
along each segment of the probe line are given by the fluid properties in
the control volume through which the probe line passes.

3. The calculation of the radiative fluxes through the boundaries of each
control volume given the intensity and the solid angle carried by the rays.
The net radiated power Qrad follows from the difference in the radiative
fluxes through the boundaries.

4. The calculation of fluid properties on the CV mesh given Qrad. From this
step new values of jν and κ follow.

5. Test for convergence, if convergence is not reached go back to step 2.

5.3.2 The choice of probe lines

The MH lamps under study are assumed to be rotationally symmetric. This
rotational symmetry may be exploited in the choice of probe lines. In particular,
the set of probe lines originating from a point may be re-arranged into a set of
parallel lines, or chords, as shown in figure 5.2. The one dimensional code used
a single parallel set of chords as the coefficients jν and κ are independent of the
axial coordinate in the one dimensional case. To account for the dependence on
the axial coordinate the code has been modified by using sets of parallel rays
at multiple angles to the axis (21 different angles are used in practice) for each
axial position in the grid. We chose an uneven number of angles with the axis
so that we do not have rays parallel to the axis. A schematic representation is
given in figure 5.4.

5.3.3 Integration along the probe lines

After choosing a suitable set of rays through the plasma the intensity is calcu-
lated by integrating (5.3) along these rays: [50, page 10]

Iν(~r, ~Ω) =

∫ ∞

0

jν(~r − s~Ω) exp

(

−

∫ s

0

κ(~r − s′Ω)ds′
)

s. (5.4)

The cylindrically symmetric control volume grid discretizes the plasma into
concentric cylinders. The coefficients jν and κ depend on plasma parameters
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Figure 5.2: Ray tracing with rotational symmetry. Probe lines originating from
a point P may be re-arranged into a set of of parallel lines through points P1,
P2 and P3.

defined on the nodal points and assumed to be constant for the entire volume
of the cell. The rays intersecting these control volumes are discretized into
segments. The length of the segment of probe line i passing through the control
volume a distance rj from the axis is denoted ∆si,j . From simple geometrical
considerations, as shown in figure 5.3, it follows that :

∆si,j =







(√

R2
i+1 − r2

i

)

/ sin(α) i = j
((√

R2
j+1 − r2

i

)

−
(√

R2
j − r2

i

))

/ sin(α) i 6= j
(5.5)

with α the angle with the axis of the cylinder.

The increase in intensity Iν is given by:

∆Iν = (exp(−κ∆s) − 1) (Iν − jν/κ) . (5.6)

To calculate Iν everywhere along the ray the code starts on the outside of the
lamp where Iν = 0 and integrates through to the other side of the lamp adding
∆Iν at each step.
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Figure 5.3: The length of the line segment through a control volume cell. Figure
(a) shows a three dimensional view of a single ray at an angle α to the axis.
Figure (b) shows two rays, one passing through a control volume only once, and
one crossing the same control volume twice.

5.3.4 Radiative fluxes

After integrating along each probe line the intensity Iν along the probe lines is
known. From this intensity the radiative fluxes through the walls of the control
volume boundaries can be calculated. The radiative flux through the boundaries
is given by the intensity and the surface area of the cell.

In general terms, the radiative flux through a surface with area A and normal
~n by a beam with solid angle d~Ω is given by [41]:

Φε
ν = A~n · d~ΩIν . (5.7)

In the case of our cylindrical control volume grid the discretized form of the
above equation becomes:

Φε
ν = 2Iν

dy

rdr
sin2 αdα, (5.8)

with dy the distance between chords in the plane, as shown in figure 5.4.
The term Qrad follows from the difference in the flux of radiation on the cell

boundary points:

Qrad,ν =
1

V
(Φε

ν(s + ds) − Φε
ν(s)) , (5.9)
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with Φε
ν the radiative flux and V the volume of the cell.

The current design of the RTCV code is a direct evolution from the original
spherically symmetric ray tracing code by Van der Heijden [41]. In this, original
design, the decision was made to calculate the radiative fluxes through the walls
of the control volumes instead of directly calculating Qrad on the nodal points
from the intensity. In the case of point symmetry the approach of calculating
the fluxes first and then the net radiated power is more accurate for reasons
outlined in [41]. In principle, it is also possible to calculate Qrad directly on the
nodal points of the grid, as also outlined in [41]. This latter approach would,
in some ways, be more flexible than the current method. Future plans include
refactoring the current code to be more general in terms of the geometry of the
problem.

α

top−view
side−on view

b ca

dr

d
s

Figure 5.4: Schematic representation of ray tracing on the two dimensional
cylindrically symmetric grid. Viewed from the top (c), the projections of the
rays follow chords through the cylinder interspaced with distance dy. These
chords are repeated at each axial grid position for a number of different angles
with respect to the axis, as shown in the schematic of the side-view (a). The
side view shows just two sets of rays for the central chord to minimise clutter.
Also shown is a single ray passing through the concentric cylinders which make
up the finite volume grid (b).



84 Radiation

5.4 Ohmic heating

The power to the plasma is supplied by Ohmic heating P = σE2. We solve the
Poisson equation in the form:

∇ · (σ∇Φ) = 0, (5.10)

with Φ the potential (∇Φ = − ~E). The boundary conditions are formed by
constant Dirichlet conditions of 100 V on one electrode and 0 V on the other
electrode. The upper value of 100 V is adjusted in an iterative manner to arrive
at an integrated power dissipation of 130 W. The current through the walls is
zero. Thus on these boundaries a homogeneous Neumann boundary condition
is used.

~J · ~n = σ∇Φ · ~n = 0. (5.11)

In an area a distance of 0.5 mm around the electrodes the conductivity is
adjusted to compensate for non-LTE effects. This is necessary since the electron
density near the electrodes will deviate significantly from the values expected
from chemical equilibrium. High temperature electrons travel to the electrodes,
leading to electron temperatures and densities approaching those of the hot spot
just in front of the electrode. Thus, the actual electrical conductivity will be
close to the electron conductivity in the hot plasma near the cathodes, and not
equal to the conductivity calculated by the assumption of LTE. Not correcting
for the increased conductivity at the electrodes would effectively couple all the
electrical energy in the first layer of cells near the electrodes, overestimating
the temperature in these cells, while underestimating temperature elsewhere. A
correction is made by imposing a minimal conductivity in a small area around
the electrode of 40 Ohm/m. This value corresponds to the electrical conductivity
at 4000 K.

5.5 Effective transitions

Adding dysprosium to a plasma results in a spectral ”grass-field”. We will
investigate to what extent this myriad of lines can be approximated by a single
formula describing the net radiated power how this will effect the temperature
distribution and how this will lead to different temperature profiles and thus to
different convection patterns and additive distributions. From previous studies
we know that for dysprosium containing MH lamps a large part of the radiation
is generated by dysprosium atoms (Dy I) and dysprosium ions (Dy II) lines and
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that most of this radiation can freely escape from the plasma. Throughout this
paper we will assume that within an atomic (or ionic) system the levels are
populated according to Boltzmann. We will at first consider Dy I and Dy II as
separate systems, and then study the result of the two combined. In particular,
we will study the radiated power per particle (RPP) in each system. First we
calculate the RPP using transition probability data from literature. This is done
using two different literature sources: [44] and [51] and for the systems DyI and
Dy II separately. We will show that the effect of literature source-selection on
the plasma shape is substantial. To enable a more systematic study of the effect
of the RPP and the impact of the different sets of transition probability sources
analytical fit functions of these RPP will be presented.

To this end we examine the error made by approximating Qrad by a limited
number of optically thin transitions. This is done through three case studies:

1. a sphere at a uniform temperature containing dysprosium vapour,

2. a sphere containing both mercury and dysprosium at a uniform tempera-
ture and

3. a cylinder with a radially dependent temperature profile and an axially
varying dysprosium concentration.

In the case of optically thin transitions, radiation presents a simple local
energy loss term to the energy balance of the plasma. This is the case for a
frequency ν if the optical depth at that frequency τ(ν) =

∫

κ(ν)ds is much
smaller than unity. In this case, we may ignore absorption so (5.3) becomes

dIν

ds
= jν = (hν/4π)nuAulφul,ν(ν), (5.12)

with nu the density of the upper state, Aul the transition probability and φul,ν

a normalised line broadening profile
∫∞

0
φul,νdν = 1.

In the following the ion and atoms systems are treated separately. If the
emitting system has an internal Boltzmann energy distribution with tempera-
ture T , the density of the upper level is given by the Boltzmann balance for
excitation [31]

nu =
nSgu

QS
exp

(

−
Eu

kT

)

, (5.13)

with nS the density and QS the partition function of the atomic or ionic system.
The partition function is given by

QS =
∑

p

gp exp

(

−
Ep

kT

)

(5.14)
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with gp the degeneracy of level p. The summation runs over all levels in the
system. In theory, the number of levels is infinite. To calculate the partition
function a cutoff is required. We simply limit the sum to the highest upper level
from which a radiative transition is in the dataset.

5.5.1 Radiated power per particle

We will now examine the RPP in each system. The energy radiated is given by
integrating over the frequency spectrum for all transitions.

Qrad =

∫

∑

u

∑

l

(hνulnuAulφul,ν(ν)) dν. (5.15)

If no radiation is absorbed this is equivalent to the summation over all transitions
without line broadening. Making use of (5.13) we obtain

Qrad

nS
=
∑

u

gu

QS
exp

(

−
Eu

kT

)

∑

l

Aulhνul. (5.16)

This quantity is the RPP, which we will seek to replace with a simple approxi-
mation. We replace (5.16) with an effective transition, as given by

Qrad(T )

nS
= Aeff∆Eeff exp

(

−
∆Eeff

kT

)

. (5.17)

The parameters ∆Eeff and Aeff are free fit parameters. We calculate the RPP
for fixed system densities and temperatures between 1000 K and 7000 K using
equation (5.16). The parameters ∆Eeff and Aeff are then determined by a
least squares fit through the results. Results of using the double sum in (5.16)
on data from [44] are shown in figure 5.5. The best fit of the single expression
(5.17) for ∆Eeff and Aeff is also shown in the same figure. The corresponding
values thus obtained are Aeff = 1.21× 108 Hz for the atoms and 1.43× 108 Hz
for the ions. The resulting effective energies are 2.279 eV for the atoms and
2.292 eV for the ions.

In the following subsections the case studies mentioned earlier will be stud-
ied. In the case studies the radiated power is determined by use of the effective
transitions just derived and compared with results from the full set of data. All
the case studies assume that the plasma is in LTE. Thus, the radiation emit-
ted is fully determined by the elemental composition and temperature in the
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Figure 5.5: Radiated power per particle for both the dysprosium atom (Dy I)
and dysprosium ion (Dy II) systems. To calculate the energy loss the densities
of the ground state where fixed and a Boltzmann distribution of the excited
states was assumed. The free parameters from equation (5.17) are determined
by fitting this equation through the results. The result of this fit is also shown
in figure 5.5. The resulting fit yields an effective transition probability of 1.21×
108 Hz for the atoms and 1.43 × 108 Hz for the ions. The resulting effective
energies are 2.279 eV for the atoms and 2.292 eV for the ions.

plasma. The distribution of dysprosium over the two systems is determined by
the Saha balance,

nenDy+

2nDy
=

QDy+

QDy

(

2πmekT

h2

)
3

2

exp

(

−
Ei

kT

)

, (5.18)
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5.5.2 Sphere filled with dysprosium

The first case study is formed by regarding the radiation emitted by a sphere
of dysprosium vapour at a uniform temperature, where the plasma may be
regarded as optically thin. The total dysprosium pressure is fixed at 1000 Pa.
The distribution over the ion and atom systems is determined by the Saha
balance, with the partition function calculated from the atomic levels from [44].
The electron density is determined by assuming quasi-neutrality ne = nDyII .
Only dysprosium atoms, singly ionised atoms, and electrons are considered. The
densities thus obtained are shown in figure 5.6.

Figure 5.7 shows the radiation emitted in the first case study. This figure
shows the RPP calculate two ways, by use of (5.16) and with (5.17). As ex-
pected, the agreement between the two approaches is excellent. Effectively, this
case study is the inverse of the procedure which determines the coefficients for
the effective transitions.

5.5.3 Sphere with dysprosium and mercury

Using these results in a plasma containing other radiative species is, however,
slightly more problematic. Other species, such as mercury, may absorb radia-
tion emitted by dysprosium. To examine the possible error, results are compared
again in a second case study for a sphere containing mercury as well as dyspro-
sium. We again look at a sphere of uniform temperature with a volume of 1cm3

containing dysprosium and mercury. The elemental abundance of mercury is
1,000 times that of a dysprosium . The total pressure is chosen at 10 bar. One
dimensional ray tracing is used to calculate the energy loss term for tempera-
tures from 1000 K to 7000 K. Full ray tracing is done on all lines, but for the
optically open lines only three frequency points are chosen. The ion densities
are given by the Saha balance. The resulting net radiated power is shown in
figure 5.8. The match between the effective transition approach and the full
data set is again very good at higher temperatures.

5.5.4 Cylinder with dysprosium and mercury

In metal halide lamps the temperature is far from constant. To examine a situ-
ation closer to that of a metal halide lamp a third case study will be performed.
A parabolic temperature profile

T (r) = Twall + TA

(

1 − (r/R)
2
)

. (5.19)
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Figure 5.6: Densities from the Saha balance as a function of temperature, using
the data from [44] to calculate the partition functions. The total dysprosium
pressure is 1000 Pa.

is imposed on a cylinder with a radius R = 5 mm and a length of 10 mm. The
coefficients are Twall = 1200 K, TA = 4800 K, The cylinder has an exponentially
decaying dysprosium pressure in the vertical direction given by

p = p0 exp(−z/Λ), (5.20)

with p0 = 150 Pa and Λ = 9.0 cm.
The net radiated power is then calculated using two effective transitions,

and the complete set of data from [44]. In all cases full two dimensional ray-
tracing is used, with three frequency points for the open lines and one hundred
frequency points for each mercury line. On a standard desktop computer the
calculation with the full data set takes close to one hour. As part of an iterative
method this is unacceptable as full calculations would take years to complete.

The results with the full data set and the effective transitions are shown
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Figure 5.7: Radiated power per particle as a function of temperature for two
systems, Dy I and Dy II. The distribution of dysprosium over the two systems is
determined by the Saha balance using ne = nDyII . The radiation emitted was
then calculated using the full set of data from [44] and by effective transitions
for the atoms and ions. The energy radiated away has been divided by the total
number of particles in the system.

in figure 5.9. As may be expected, agreement, though still reasonable, is not
as good as in the previous more artificial examples. The mercury vapour may
absorb radiation emitted by the dysprosium atoms or ions, and this has not
been taken into account. The differences are small enough, however, to allow the
use of the effective transitions to speed up calculations and generate a proper
starting point for more accurate calculations if so desired. Alternatively, a
number of transitions with frequencies that can be absorbed by the mercury
vapour could be added.
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Figure 5.8: Net radiated power by a sphere containing 10 bar mercury and 10
mbar dysprosium in LTE. The solid line shows the result with the radiation
emitted by dysprosium calculated through (5.17). The dashed line shows the
result using 1 dimensional ray tracing with the data from [44]. As these two
lines difficult to distinguish the relative error is also plotted with a dotted line.
The relative error is very small at the higher temperatures.

5.5.5 Sensitivity analysis

The last test case was repeated with the values for the effective transition fre-
quencies lowered and raised by fifty percent. As can be seen in the graph, the
result is not particularly sensitive to the effective transition probabilities. Rais-
ing the transition probabilities for the ion system leads to more emission from
the centre of the plasma.

Changing the effective energies has more effect. Figure 5.11 shows the effect
of changing the effective transition energies by five percent. Fortunately, the
transition energies for the complete system can be measured to an excellent
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Figure 5.9: Radiative power Qrad mid-plane as a function of the radial position
for a cylinder filled with mercury and dysprosium. A radial parabolic tempera-
ture profile has been imposed as well as an exponentially decaying dysprosium
abundance in the axial direction. Near the axis the match between the effective
transitions and the complete calculations is good, but towards the walls where
the temperature is lower a mismatch due to absorption becomes apparent.

degree of accuracy.

5.5.6 Choice of data set

As mentioned earlier, other data sets are also available. One of the most widely
used, due to its easy availability online is the set from Gorschkov [51] available
online via the Kurucz database. This set is much older than the set from
Wickliffe et al [44]. We repeated the fitting procedure with the set from [51]. As
can be seen in figure 5.12 the choice of data set has a large effect on the estimate
of the radiation emitted. The set of lines in [51] is also larger than the set in
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Figure 5.10: Radiative power Qrad mid-plane for a cylinder filled with mercury
and dysprosium. Three cases are shown: The straight line shows the result with
effective transition probabilities determined earlier, the dashed line shows the
result with the effective transition probability for the dysprosium atom system
increased fifty percent, and the dotted line shows the result with the effective
transition probability for the dysprosium ion system increased by fifty percent.

[44]. To test if the radiation in the latter is underestimated by not including
many lines with smaller transition probabilities we selected the lines from [51]
with a transition probability larger than 1 × 107s−1. As can be seen in figure
5.12 the influence of neglecting these lines is marginal. The difference between
the two can only be attributed to differences in the transition probability of the
most prominent lines.
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Figure 5.11: Radiative power Qrad mid-plane for a cylinder filled with mercury
and dysprosium. Three cases are shown: The straight line shows the result
with effective transition probabilities determined earlier, the dashed line shows
the result with the effective transition energy for the dysprosium atom system
increased five percent, and the dotted line shows the result with the effective
transition energy for the dysprosium ion system increased by five percent.

5.6 Results with a self consistent model

Now that we can estimate the RPP of DyI and DyII with a simple analytical
expression we will use this expression in a complete self consistent model of the
plasma. This allows us to examine the influence of the emitted radiation on the
temperature profile, the convective flow and finally on the additive distribution.

The model was run with a total mercury filling of 10 mg, and a power input
of 135 W using the effective transitions of [44] and [51].
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Figure 5.12: The influence of the choice of data set on the RPP. As the figure
shows, the influence of the choice of data set is large. Selecting only transitions
with a transition probability greater than 1×107 s−1. does not greatly influence
the result.

5.6.1 Temperature profile

Radial temperature profiles for two different axial positions can be seen in figure
5.13. The choice of data set has a significant impact on the contraction of
the discharge. The contraction is caused by radiative cooling of the flanks,
where the largest concentration of excited atoms is found. The ions radiate
less energy than the atoms. Additionally, mercury ions in the centre push the
dysprosium ions aside, leaving the central region with very low concentrations
of dysprosium. The mercury emits less radiation than the dysprosium leading
to higher temperatures in the centre. The model fixes, as a real lamp ballast
would, the electrical power input into the plasma. A strong arc contraction,
therefore requires a higher central temperature to still allow the same current
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to flow through the lamp. The difference in the degree of contraction is most
pronounced near the bottom of the lamp where the concentration of dysprosium
is greater. This is because there is very little dysprosium in the top of the lamp.
The reason that the difference is not even greater lies in the strong temperature
dependence of the radiated emission. A larger transition probability results in
more emission, leading to stronger cooling of the centre of the discharge. This
stronger cooling results in a lower temperature to reach a steady state. Because
the emission depends exponentially on the temperature, the temperature needs
to be only slightly lower to reach a new balance.
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Figure 5.13: Radial temperature profiles for two axial positions in the lamp:
5 mm from the bottom electrode and midplane. Note the strong contraction.

5.6.2 Additive distribution

The radiation emitted by the lamp primarily effects the temperature distribu-
tion. The temperature distribution, in turn, drives the convection in the lamp.
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This convection affects the distribution of additives. As is shown in figure 5.14,
the effect of the choice of data set on the additive distribution is significant.
The use of the data by Gorschkov et al leads to less axial segregation. The ra-
dial segregation is also effected, where the model result based on the Gorschkov
data shows a local maximum, a local minimum is predicted with the data by
Wickliffe et al.

5.7 Conclusion

By using effective transitions for the radiation emitted by dysprosium the model
of an MH lamp containing a mixture of sodium and mercury has been modified
to simulate a lamp containing dysprosium additives. The effective transitions
give an estimation of the radiated power per particle. The accuracy of this
estimation is primarily determined by the accuracy of the input data. Errors
introduced by this approach are much smaller than the accuracy of the input
data. The choice of data set from different literature sources has a large effect
on the emission at a fixed temperature. The effect on the predicted temperature
is smaller but still significant. Using the more recent data from [44] leads to
lower predicted contraction than the older data from [51]. There is an important
secondary effect on the distribution of additives; the smaller contraction leads
to larger axial segregation with the data from [44] than with the data from [51].
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Figure 5.14: Elementary dysprosium pressure along the axis (a) and midplane
(b) for the two data sets of [44] and [51].



Chapter 6

Comparison with

microgravity experiments

Abstract.

The results from optical emission spectroscopy experiments of metal halide
lamps under the microgravity conditions on board the international space
station are compared with the results of a numerical LTE model constructed
with the platform Plasimo. At microgravity there is no convection which
allows for easier modelling and for a separate study of the diffusion-induced
radial segregation effect, undisturbed by convection. The plasma parameters
that were experimentally determined and compared to the model were the Dy
atom and ion density, the Hg ion density and the temperature.

The model and experiments applied to a reference lamp burning on a
plasma mixture of DyI3 and Hg were found to be in reasonable agreement with
each other. The cross-section for electron-Hg collisions was studied, it was
found that the Rockwood values give the correct results. Experimental results
guided a sensitivity analysis of the model for the Langevin cross-sections. The
ratio of the ion densities n(Hg+)/n(Dy+) was found to be extremely sensitive
for the cross section of the elastic interaction σ(Hg, Dy+) between the Dy ion
and the Hg atom. The sensitivity analysis suggests that equating σ(Hg, Dy+)
to a value that is 10% higher than the Langevin cross section is the best choice.
We also found deviations from LTE in the outer regions of the plasmas for
relative radial positions of r/R > 50%.

This chapter is based on a publication submitted on invitation to a J
Phys. D. Special issue as ”Metal-halide lamps in microgravity, experiment
and model” with co-authors T. Nimalasuriya, W. W. Stoffels and J. J. A. M.
van der Mullen.
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Figure 6.1: (a) Colour separation in an MH lamp burner. (b) Schematic view
of an MH lamp; diffusion and convection of atoms (A) and molecules (M) are
indicated by arrows.

6.1 Introduction

The metal halide (MH) lamp [25, 52, 53] combines the high luminous efficacy and
good colour rendering of the fluorescent lamp with the compact and high-power
characteristics of the high-pressure Hg lamps. The lamp contains a rare gas
for starting and a Hg buffer gas plus a small amount of metal-halide additives
such as DyI3, TlI, or NaI. Even though the additive density is much less than
the mercury density, most light is emitted by the metals in the visible region,
which results in a very high power efficiency (up to 40%). However, despite the
clear advantages, the growth of the MH lamp has been hampered by a number
of limitations. One of these is the segregation of colours [5] caused by the
non-uniform distribution of the additives over the lamp due to the competition
between diffusive and convective processes, see figure 6.1.

To be able to unravel the complex interaction between convection and dif-
fusion, experiments under microgravity conditions have been performed at the
international space station. In absence of gravity, convection is eliminated, so
that the effect of diffusion can be studied exclusively and the problem is greatly
simplified. The MH lamp in microgravity is therefore easier to model. By com-
paring the model results to the experiments we can gain insight into the complex
transport phenomena in the MH lamp. The experiments verify the model re-
sults, whereas the model aids the interpretation of the experimental results.
The experiments are part of a poly-diagnostic study [54, 55, 11, 12, 21, 21] of
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the MH lamp.

In this paper we present the comparison between the experiments performed
on MH lamps under microgravity conditions and a numerical model. The ex-
periments were performed in the microgravity environment of the international
space station (ISS). The lamp was investigated by means of optical emission
spectroscopy, which yields line intensities of the species Hg, Dy and Dy+. From
the calibrated Hg line intensity measurements we constructed radial temper-
ature profiles. By combining the temperature profile with the calibrated line
intensities for Dy we obtained absolute radial density distributions of the Dy
and Dy+ systems. All measurements were done for different powers ranging
from 70 to 150 W. The results were reported in [12].

Metal halide lamps come in various shapes and sizes. To be able to compare
results of experiments done on MH lamps and to compare the results from mod-
els to the experiments a reference lamp has been defined within the framework
of the European project COST-529 [9]. The lamp was filled with an Hg buffer
gas and one salt, i.e. DyI3. This lamp has a relatively simple salt system and
therefore the results are easier to compare with the results of the numerical
model. We base our models on this lamp geometry. The simulation platform
used to construct this model is called Plasimo and is described in previous chap-
ters. The model simulated the lamp operating with the following conditions:
an electrode distance of 18 mm, a power of 130 W and a Hg pressure of 12 bar.

There are a number of input-parameters that are not well known, such as the
vapour pressure of the metal-halide salt at the cold-spot position, the transition
probabilities and the cross-sections for the elastic collisions between charged and
neutral particles. The latter is found to be determinative for the segregation
phenomenon. The sensitivity of the model results for the elastic collisional cross-
section for the Dy ion and Hg atom were tested. Because the cross-sections
for the elastic collisions between the Dy ion and the Hg atom are unknown,
the Langevin cross-section was used. The sensitivity of this approximation is
investigated.

This article is organised as follows. Section 6.2 describes the segregation
phenomenon. Section 6.3 gives an account of the experiment. Section 6.4 il-
lustrates the model. Results from both experiment and model are presented
and discussed in section 6.5. These results include the comparison between
model and experiment of the radial profiles of the arc temperature and abso-
lute atomic and ionic densities of Dy. Finally, section 6.6 offers conclusions and
recommendations for future work.
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Figure 6.2: Theoretical density distribution of Dy atoms, ions and molecules,
and Hg ions as a function of temperature at the midplane of a MH lamp. For
clarity, DyI2 and DyI have been omitted.

6.2 Demixing

When the MH lamp is operated, the Hg is entirely vapourised forming the
buffer-gas, whereas the few milligrammes of DyI3 additive do not evaporate
completely, leaving a liquid salt pool at the coldest spot at the burner wall. The
additive molecules diffuse from the relatively cool wall (∼ 1200 K) toward the
hot region (∼ 6000 K) of the arc where they dissociate. At the centre the atoms
are ionised and excited. As Dy atoms diffuse back to the wall they encounter I
atoms in the cooler gas near the walls and recombine back to molecules [52].

Three principal regions can therefore be identified within the radial density
distribution of elemental Dy [21] (see Figure 6.2). These are 1) the region near
the wall where DyI3 molecules are predominant, 2) the mantle region between
the wall and the arc core where Dy atoms predominate, and 3) the core where
the Dy is almost completely ionised in the form of Dy+. The molecule DyI is
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relatively unstable and does not have a dominant presence in any region of the
discharge.

When burned vertically, the discharge emits light that is non-uniform in
colour along its axis. This colour segregation, is caused by the interplay between
convection and diffusion which ultimately determines the distribution of the
plasma species. Let’s first consider the radial distribution. The temperature
profile, which is high in the centre and rapidly decreases towards the wall, leads
to a hollow profile for the mass density distribution due to the ideal gas law.
Another mechanism that influences the radial distribution of elemental Dy is
diffusion. The atoms and molecules have different diffusion velocities. The
smaller and lighter Dy atoms diffuse faster outward than the larger and heavier
molecules (DyI, DyI2, DyI3) diffuse inward. This difference in diffusion velocity
results, in steady-state, in an even more hollow profile of the elemental density
of Dy; this effect is called radial segregation [5]. Ambipolar diffusion [33], in
particular, causes the ions to diffuse out of the core faster than neutral atoms
or molecules diffuse inwards.

The axial distribution of the species is dominated by convection, which
causes the hot gas to move upwards in the hot centre of the arc and down-
wards along the cool wall of the lamp. This movement of the bulk gas drags the
high concentration of elemental Dy near the wall downwards, whereas the lower
concentration of Dy in the centre, caused by the radial segregation, is dragged
upwards. As a consequence, a high density of elemental Dy accumulates at
the bottom of the arc, a phenomenon which is known as axial segregation [5].
The combination of radial and axial segregation is shown in figure 6.1(b). The
latter obviously only occurs in presence of convection. Since there is no convec-
tion under microgravity conditions axial segregation does not occur, but radial
segregation does.

6.3 The experiment

In the ISS experiment, emission spectroscopy was performed on a MH lamp [9],
which is as mentioned above a reference lamp. The lamp consists of a quartz
burner of 20 mm in length and 8 mm in inner diameter and a transparent quartz
outer bulb. The space between the outer and inner bulbs is vacuum. The burner
is made of quartz in order to make the arc optically accessible. The distance
between the electrodes is approximately 18 mm. The lamp is driven by a 150 W
Philips Dynavision DALI ballast with a 83 Hz square wave current profile, and
operated at different input powers ranging from 70 to 150 W in steps of 20 W. In
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Figure 6.3: Setup used for the ISS measurements. It is an Echelle type spectrom-
eter in Littrow configuration, the imaging lens (III) is used for the collimation
of both the undispersed beam of light as well as the reflected dispersed beam of
light.

a commercial lamp, the burner is often made of PCA (poly-crystalline alumina).
PCA can withstand much higher temperatures, allowing the temperature of the
discharge, wall and salt pool to be higher than for a discharge contained by a
quartz burner. Therefore, more Dy is expected to be in the discharge in a PCA
burner than is the case for burners made of quartz.

An Echelle-type spectrometer was used as there is need for a robust and
compact setup with no moving parts for the experiments at microgravity. The
downside is that only a few lines could be analysed. A schematic of the Echelle-
type spectrometer is shown in figure 6.3 [12]. Its main components are an Echelle
grating with a high blaze angle (74◦), an interference filter for the selection of
the desired wavelength interval and a CCD camera for imaging. This spectrom-
eter was used to measure the absolute intensity of three lines of three different
systems. These are the 579.07 nm line of the atomic Hg system, and the 642.19
nm and the 402.44 nm line of the atomic and ionic Dy system respectively;
shortly denoted by the Dy and Dy+ system. The Hg line is used for the deter-
mination of the radial temperature distribution, and combined with the lines of
Dy and Dy+ the densities of the Dy and Dy+ systems can be determined.

The procedure is as follows, first the transition-integrated intensity of the
line emitting species is determined as a function of lateral position. After Abel
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inversion this gives the radiant power of the transition

Upq(r) = np(r)Apqhνpq (6.1)

from which, np(r), the radial distribution of the radiating level can be deter-
mined since the transition probability Apq and the photon energy hνpq of the
transition are known. The density of the system to which the radiating level
belongs can now be determined using the Boltzmann relation

nS(r) =
Upq(r)Q(T (r))

gpA(p, q)hνpq
exp

(

Ep

kT (r)

)

, (6.2)

where nS is the system density of an emitting atom or ion, gp the statistical
weight of upper level p, A(p, q) is the transition probability of the transition,
hνpq the energy of the emitted photon, Ep the excitation energy of the radiating
level, k the Boltzmann constant and T is the temperature. Q(T ) is the partition
function of the considered atomic or ionic system. Upq is the radiant power and
is determined experimentally, while Q(T ), gp and A can be found in literature
[44, 51].

In case of the 579 nm transition of Hg this expression can be used to find
the radial distribution of the temperature T (r). This is done by replacing the
left-hand-side of equation 6.2 by p/kT (r) which is justified since the atomic
Hg system delivers by far the most particles in the lamp so that Dalton’s’ law,
p =

∑

nkT , reduces to p = nHg(r)kT (r). This bulk pressure can be assumed
constant over the lamp. Since Upq(r) is known as function of radial position
we can use equation 6.2 to determine the temperature as a function of radial
position provided the pressure is known. Since this is not known we follow an
iterative procedure. First a guessed value of p is inserted which gives, using the
measured Upq(r), a radial T (r) distribution. In the second step we determine
nHg(r) = p/kT (r) which, integrated over the whole volume, gives the total
number of mercury atoms NHg in the discharge. In the last step this number,
multiplied with the mass of a Hg atom, thus NHgmHg, is compared to the filling
mass MHg. The mismatch MHg/NHgmHg is used to correct the pressure. With
this new pressure-value we can repeat steps 1 till 3 again. This is done until
convergence is reached.

Calculation of the radial density profiles is as follows. First the emission of
the line of interest is measured as a function of lateral position. This profile is
then Abel inverted into a radial intensity profile. The next step depends on the
species of which the emission line is measured.

In case of the 579 nm line of Hg, the intensity is calibrated and then the
absolute radial intensity profile is used to numerically determine the temperature
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profile. In case the atomic or ionic lines of Dy are measured, the temperature
profile is combined with the calibrated radial intensity profile of the additive
into an absolute radial system density profile using equation 6.2.

6.4 The model

A description of the model has been published in [40] and [56], reprinted in
chapters 2 and 3 where it has been applied to a MH lamp based on a mixture
of Hg and NaI. This model was modified to a simulation of a mixture of Hg and
DyI3, as discussed in chapters 4 and 5. One aspect of the model not discussed
so far is the calculation of transport coefficients. This section will repeat the
transport equation for the elements and discuss the calculation of the transport
coefficients in the model.

6.4.1 Particle transport

Since we assume LTE, the particle densities may be described by the local
temperature, pressure and elemental composition. Elemental pressure is defined
as the pressure that contains all molecular, atomic and ionic contributions of a
particular element. The elemental pressure pα for the element α can be written
as

pα =
∑

i

Riαpi, (6.3)

with pi the partial pressure of the species i, and Riα the stoichiometric coefficient
[32]. We solve a conservation equation for the elemental pressure

∇ ·

(

Dα

kT
∇pα +

pα

kT
~cα

)

= 0, (6.4)

with an effective diffusion coefficient Dα [32]

Dα = p−1
α

∑

i

RiαDipi (6.5)

and a pseudo convective velocity cα [32].
The diffusion coefficient Di is calculated from the binary diffusion coefficients

Dij by

Di =





∑

j 6=i

(pi/p) /Dij





−1

. (6.6)
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The binary diffusion coefficient for the diffusion of species i through species j is
given by [30, page 486] and depends on the differential cross-section.

In-situ measurements of the elemental pressure at the walls under micrograv-
ity conditions are not possible, therefore we assume a Dy elemental pressure at
the wall of 517 Pa and an I elemental pressure of 4268 Pa. These vapour pres-
sures were determined with x-ray induced fluorescence measurements at 1g [21].
These are assumed to give a good estimation of the vapour pressure at the walls
and are used to fix the boundary conditions.

6.4.2 The selection of cross-sections

In the conservation equations which form the model, important roles are played
by various transport coefficients, such as the diffusion coefficients Di, the ther-
mal conductivity λc and the electrical conductivity σel. These transport prop-
erties are calculated from collision integrals that are based on differential cross
sections [42].

Ideally, one would like differential cross-sections for every possible collision
between particles in the plasma. In practice such data is difficult to gather
or calculate since for only a few interactions energy-dependent integral cross-
sections σij are available. When available these are used in the model. For
collisions for which such data cannot be found approximations have to be used.
The collisions can be classified along the following categories:

1. Charged - charged collisions; in this case the shielded Coulomb cross-
sections is a good and generally applicable approach [33, page 55],

2. Neutral - neutral collisions; there where dedicated cross-section values are
not available these interactions are described as hard sphere collisions,

3. Charged - neutral collisions; this category is the most complicated since, in
principle, a full quantum mechanical (QM) treatment is needed in which,
for instance, the effect of the Ramsauer minimum has to be taken into ac-
count. For each pair of interacting particles the QM aspects are different.
If results of experiments or QM calculation are not available the use of the
Langevin cross-section is the only option. The formula for the Langevin
cross section reads

σij =

√

παpq2

µijǫ0 (|~vi − ~vj |)
, (6.7)
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with αp the dipole polarisability of the neutral species, q the charge of the
charged species, ǫ0 the permittivity of free space and µij the reduced mass
µij = mimj/(mi + mj) of the system of colliding particles.

When considering the influence of the cross-section on the values of the
transport coefficients Di, λc and σel it is important to note that Hg atoms form
the most dominant species in the discharge; all other species are present in small
concentrations.

We begin with the electrical conductivity σel that is mainly determined by
the elastic interactions between electrons with Hg atoms. This electron-Hg in-
teraction is of the third category but fortunately the corresponding cross-section
is well known and it is generally expected that the values from Rockwood [57]
are correct within a few percent. We studied whether this is indeed the case
by comparing the results using Rockwood values and Langevin cross-sections.
As the value of this cross-section determines the lamp resistance and the ohmic
dissipation we calculated the voltage drop over the lamp when the ohmic dissi-
pation equals 110 W. This was done for two cases, one based on the Rockwood
values and the other on the Langevin cross-section. Using the Rockwood values
the model predicts a voltage drop of 99 V, which is consistent with the mea-
sured value. The calculations done with the Langevin cross-section, however,
produces a voltage drop of 71 V, which is much too low. We may therefore con-
clude that the model gives a good description of the potential distribution over
the lamp and the corresponding ohmic heating by using the Rockwood values.

Next we study the influence of the choice of cross-section for the thermal heat
conductivity λc. Due to the low elemental concentration of Dy and I we can
neglect the heat generation that is liberated in the formation of DyIx molecules.
The reactive part of heat conductivity can therefore be neglected and only the
frozen part remains (see [42]) which is determined by the collisions of Hg atoms
mutually. These Hg-Hg collisions are of the second category and experimental
results given in [30] confirm that the hard sphere approach is valid here.

The diffusion of Dy containing species is determined by the collisions with
Hg atoms. In case of the neutral species we deal with the second category for
which the hard sphere approach can be used. Much less clear are the collisions
between Hg atoms and Dy ions. These are of the third category and since there
are no QM or experimental results available we have to use the expression of
the Langevin cross-section. However, it is known from literature that this is
not always a good approximation and errors in the order of 30% or more [58]
are frequently reported. To study the impact of the σ(Hg,Dy+)-value on the
model results we performed two sets of calculations, one with the Langevin
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cross-section σLV and one with a value that is 20% larger, i.e. 1.2 * σLV . In
this way we can determine the importance of this Hg-Dy+ cross section and test
the possible errors introduced by the approximation.

6.5 Results and discussion

The experiment and the model results are compared in this section. Both model
and experiments were done for a lamp in microgravity, so without convection,
operating at 130 W (of which 110 W dissipated in the discharge and 20 W
spend on electrode losses) and containing 10 mg Hg and 4 mg DyI3. The
sensitivity of the model result for the choice of σ(Hg,Dy+) is examined. To that
end two different cross-sections were used for the model, namely the Langevin
cross-section σLV and 1.2 σLV . This discussion will follow the line of the
theory presented in section 6.3 where the three atomic systems were introduced,
namely the Hg atom, the Dy ion and Dy atom. The Hg-system is used for the
determination of the temperature, and the atomic and ionic Dy system for the
spatial distribution of Dy atoms and ions and the radial Dy segregation.

The temperature profile as deduced from the Hg line is given in figure 6.4
and shows that the model based on the Langevin cross-section is in good agree-
ment with the experiment. Both profiles have an axis temperature of 6000 K
and nearly the same shape. If we take σ(Hg,Dy+) = 1.2 σLV this results in
a broader temperature profile with a lower axis temperature. The reason why
the higher σ(Hg,Dy+) value influences the temperature profile is the following.
By increasing σ(Hg,Dy+) the ambipolar diffusion in the central region is being
hampered which causes the Dy particles to be accumulated in the centre. The
temperature then decreases slightly as Dy has a lower ionisation potential than
Hg (5.93 eV versus 10.43 eV). However, the change in the temperature distri-
bution remains in the error margin of 10% [12] so that no conclusions can be
drawn about the optimum value for σ(Hg,Dy+) from the temperature value.

Figure 6.5 shows the total absolute density of atomic Dy for both the experi-
ment and two model results: one for with the original cross section σ(Hg,Dy+)
and one with σ(Hg,Dy+) increased by a factor 1.2. Both numerical and ex-
perimental curves have a steep slope at nearly the same radial position (about
3.3 mm) where the Dy atom associates into the DyI3 molecule, see figure 6.2.
The experimental curve has a steep slope, partially because in order for the
Abel fit to yield physical results, the fit was forced to zero near the edges of
the lateral profile [12]. It shows that the experimental and theoretical values
of the maximum of the atomic Dy system agree with each other within 20%.
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Figure 6.4: Radial temperature profile for a lamp containing 10 mg Hg and 4
mg DyI3 at the midplane of the lamp. The numbers 1.0 and 1.2 refer to the two
Langevin cross-sections that were used, the normal Langevin cross-section σLV

and 1.2 σLV . Exp denotes the experimental results.

This is in fairly good agreement in view of the fact that the uncertainty of the
transition probability from which the density is determined is in the order 20%.
Also important is the uncertainty related to the cold spot temperature. A small
change in this temperature will lead to a significant variation of the elemental
Dy density.

By dividing the Dy atom density by the Hg atom density distribution (which
is the bulk species) the atomic Dy concentration is found, see figure 6.6. The
atom concentration gives an indication of the radial segregation. The concen-
tration profile clearly shows radial segregation for both experiment and model.
Compared to the experiment, the model predicts more profound radial segre-
gation. However, by increasing the cross-section from σLV to 1.2 σLV we see
that the theoretical central Dy concentration increases drastically; with more
than a factor of 8. This implies that the amount of radial segregation is di-
minished and becomes much smaller than what is found experimentally. By
increasing the cross-section, the diffusion is reduced, resulting in a decreased
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Figure 6.5: Total radial Dy atom density profile for a lamp containing 10 mg
Hg and 4 mg DyI3 at the midplane of the lamp. The numbers 1.0 and 1.2 refer
to the two Langevin cross-sections that were used, the normal Langevin cross-
section σLV and a value that is 20% larger:1.2 ·σLV . Exp refers the experimental
results.

radial segregation.

The above clearly shows that the atom concentration at the centre is very
sensitive to the choice of the cross-section; an increase of the cross section by
20% leads to an increase of the central atomic density of a factor of 8.2 and
the figure suggests that σ(Hg,Dy+) will have a value somewhat larger than
σLV but smaller than 1.2 · σLV . However, care should be taken with this
theory-experiment comparison since the experimental values result from an Abel
inversion which is quite sensitive for errors at the centre of a hollow profile.

The comparison of the model and experiment with respect to the Dy ion
density is given in figure 6.7. We first focus on the central region where we find
that, just as the Dy atom density, the theoretical value of central ion density is
very sensitive to the value of σ(Hg,Dy+). The change from σLV to 1.2 · σLV

leads to an increase of the central density with a factor 5.4. This is smaller than
in the atomic case where a ratio of 8.2 is found.

The reason that both the Dy atom and ion density increase is that, as a
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Figure 6.6: The atomic Dy concentration obtained by dividing the Dy atom
density by the Hg density. The lamp contains 10 mg Hg and 4 mg DyI3 at
the midplane of the lamp. The numbers 1.0 and 1.2 refer to the two Langevin
cross-sections that were used, the normal Langevin cross-section σLV and 1.2
·σLV . Exp denotes the experimental results.

consequence of the decrease in the ambipolar diffusion coefficient, the amount
of Dy is more easily ’trapped’ in the centre. This causes the temperature in the
centre of the discharge to become lowered (as shown in figure 6.4) which as a
result will cause the Saha balance between the atomic and ionic system to shift
with respect to the atomic system. This is why the atomic Dy increases more
strongly than the Dy ion as σ(Hg,Dy+) is being increased.

Leaving the central region and moving outwards we see that the experimen-
tal Dy ion density in figure 6.7 has a much steeper slope than what the model
predicts. In part this is caused by the Abel fitting as mentioned before. How-
ever, a more important aspect is the validity of LTE away from the centre. The
experimental Dy ion density as shown in figure 6.7, denoted by ”exp Boltz-
mann”, is based on the application of the Boltzmann balance (equation 6.2) in
the ionic system; this gives the Dy ion system density using the emission of a
Dy ion line. However, since the charge of the core of the ion system (Z = 2) is
twice as large as that of the atom system (Z=1), we can expect that the transi-
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Figure 6.7: Radial Dy ion density profile for a lamp containing 10 mg Hg and
4 mg DyI3 at the midplane of the lamp. The numbers 1.0 and 1.2 refer to the
two Langevin cross-sections that were used, the normal Langevin cross-section
σLV and 1.2 ·σLV . Exp denotes the experimental results. The experimental
value for the Dy ion density was determined by either Boltzmann, denoted as
exp Boltzmann; or by Saha, then denoted by exp Saha.

tion frequency induced by electron collisions will be smaller (this scales as Z−2)
[59] whereas the radiative decay transition (scaling as Z4)[59] will be higher
than in a comparable atomic system. This means that as ne decreases (in the
direction toward the wall) the electron-ruled Boltzmann balance of excitation
and de-excitation will no longer be in equilibrium. The spontaneous emission
will then become the most dominant depopulation process and the level is in
the so-called Corona balance [59]. This causes the density of radiating states to
decline. This implies that the ionic system density as deduced from these levels
will decline as well.

We first investigate a possible departure from equilibrium by calculating the
ion density using the Saha relation between the atomic and ionic system. This
density is in fact based on the atomic radiation and thus the atomic system.
For this system we can expect that, due to the lower Z value (Z=1), it will not
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easily be effected by a drop in ne. The Saha relation between ni, the system
density ion stage, and n, the density of Dy atoms, reads

ne ni

n
= 2

Qi

Q

(

2πmekT

h2

)3/2

e −I/kT (6.8)

where Q is the partition function for the neutral species and Qi the partition
function for the ion, me the electron mass, T the temperature, I the ionisa-
tion potential of the atomic ground state, k the Boltzmann and h the Planck
constant. The density of the Dy ion system can be found by inserting in this
equation for ne the sum of the Hg ion and the Dy ion density. For the atom
density n the measured Dy atoms as shown in figure 6.5 are used.

The result of this equation, given in figure 6.7 denoted with ”exp Saha”,
show a much better agreement between the calculated ion density using Saha’s
equation and the model results in the outer region. In contrast to the curve
found by employing the Boltzmann relation (equation 6.2), the Saha value of
the ion system density declines more gradually in the outer region. There is a
factor of 2 difference between the Saha calculation and the model results. This
may be caused by a number of factors. First, there is more atomic Dy in the
model than in the real lamp as was shown in figure 6.5. Second, there may be
an error in the transition probability, leading to an error in the atom density
calculated with equation 6.2. Finally, an error may be introduced by the Abel
inversion.

As stated above in dealing with the Saha equation, we have to take ne equal
to the sum of the Hg ion and the Dy ion density. In contrast to commercial
lamps with PCA tubes for which the Dy vapour pressure is higher than in our
model lamp used in the experiments we can not neglect the contribution of the
Hg ions. In fact it was found experimentally from the Hg/Dy ion ratio [12] that
the Hg ions dominate in the centre, see figure 6.8 where the experimental values
of the n(Hg+)/n(Dy+) ratio are given. Two ratios are shown, one of which the
Dy ion calculation is based on Boltzmann (cf. equation 6.2) the other of which
the calculation is based on Saha (cf. equation 6.8). These are compared to two
model results based on σ(Hg,Dy+) = σLV and σ(Hg,Dy+) = 1.2 · σLV .

It is clear the model predicts the ratio n(Hg+)/n(Dy+) to be high for a
normal Langevin cross-section. At higher cross-section (1.2 · σLV ) this ratio is
much lower, as there are more Dy ions in the centre (cf. figure 6.7). A higher
cross-section causes Dy ions to be accumulated in the centre so that the central
temperature will decrease. This will radically reduce the number of Hg ions, as
they have a much higher ionisation potential.
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Figure 6.8: The Hg ion and Dy ion ratio for a lamp containing 10 mg Hg and 4
mg DyI3 at the midplane of the lamp. The numbers 1.0 and 1.2 refer to the two
Langevin cross-sections that were used, the normal Langevin cross-section σLV

and 1.2 ·σLV . Exp denotes the experimental results. The ratio is calculated
from either the measured Dy ion density (calculated from Boltzmann) or from
the measured Dy atom density (calculated from Saha).

It can be concluded from the above that the Hg/Dy ion ratio is the most
effective parameter for finding the optimum value of σ(Hg,Dy+) when compar-
ing the results of the model with that of the experiment. An advantage of using
the ion ratio is that the Abel inversion is more reliable for the Dy ion than for
the atom as the latter contains a hollow structure. Figure 6.8 suggests that the
best value of the σ(Hg,Dy+) will in the order of 1.1 · σLV .

6.5.1 Departure from LTE

We now return to the topic of the rapid decay in the Dy+ density at r=0.002
m as shown in figure 6.7, which was found using Boltzmann’s law. The Dy ion
system density is determined by that of an excited Dy ion state which decreases
rapidly due to the sudden decrease of the electron density. This underpopulation
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Figure 6.9: The collision frequency neK compared to the radiative frequency
which is represented by the transition probability A.

of the excited Dy ions has been previously reported [11] and is, as mentioned
before, expected near the wall where the number of electrons is dramatically
reduced. This causes the Boltzmann balance to shift to a Corona balance and
this leads to a departure from LTE. A deviation from LTE in the outer region
of the discharge has already been observed for the high pressure sodium lamp
[60].

The transition from the Boltzmann-Saha balance to the Corona balance,
happens when the collision frequency neKp is about equal to the radiative fre-
quency (i.e. transition probability) Ap.

neKp ≃ Ap (6.9)

where Ap and neKp are the rates for total radiative and collisional destruction.
We estimate the collision frequency by treating the Dy ion as hydrogen-like.
The collision rate can then be written as [59]

Kp = 4πa2
0(p/Z)4

(

3kT

me

)1/2

(6.10)



6.6 Conclusions 117

where a0 is the Bohr radius, Z the charge number of the core (which is 2 for the
ion) and me the electron mass. The effective principal quantum number p of
the level in question is calculated from Z

√

Ry/Ep with Ry the Rydberg energy
and Ep the ionisation potential of the level in question (thus in this case the
energy needed for Dy2+ formation) [59]. For Ap we use the radiative transition
probability of Ap = 8.4·106 s−1 as used in the experiment.

The results are depicted in figure 6.9. It shows that the assumption of
a Boltzmann distribution for the excited ion state is no longer valid after
r= /approx2 mm corresponding to half of the radius of the inner bulb. This
results in the excited Dy ions to be underpopulated. An underpopulation of
the excited states with respect to Boltzmann means that equation 6.2 will un-
derestimate the density of the ions. Thus we have found deviations from LTE.
However, this departure from LTE only has a limited effect on the main plasma
parameters such as the temperature and the electron density. It will also not
change the spectrum emitted by the plasma substantially. This means that us-
ing an LTE model is justified to describe the phenomena in this type of lamp.
When we calculate the threshold in equation 6.9 for the Dy atom we find that
the Boltzmann balance still holds.

It should be realized that in the way we employ equation 6.9 a hydrogen-
like system is assumed and we thus ignore the fact that the Dy ion has much
more lower lying levels that will facilitate step-wise excitation instead of direct
excitation from the ground level. For a proper description of the experimental
results a full collisional radiative model would be needed which is beyond the
scope of this work.

6.6 Conclusions

There is a reasonable agreement between model and experiment. The model
is, however, very sensitive to the elastic scattering cross sections between mi-
nority species and the background Hg gas. The following cross sections are
used: the electrical conductivity is based on the electron-Hg cross-section from
Rockwood, the thermal conductivity is determined from hard-sphere collisions
and the Hg-Dy+ collisions are determined from the Langevin cross-sections.
The temperature profiles are in good agreement but sensitive to the Langevin
cross-section used for the Hg-Dy+ collisions. The comparison between the ex-
periment and model results for the Dy atom concentration shows that the model
predicts more profound radial segregation. Both the atomic and ionic density
distribution are very sensitive to the choice of cross-section.
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The ratio Hg+/Dy+ was found to be extremely sensitive for the cross-section
of the elastic interaction σ(Hg,Dy+) between Dy+ and Hg atom. The sensi-
tivity analysis reveals that equating σ(Hg,Dy+) to a value that is 10% higher
than the Langevin cross section is the best choice. There is a clear discrepancy
between experiment and the LTE-based model for the Dy ion density profiles.
The experiment shows the Dy ion density to decrease much more rapidly. Fur-
ther analysis showed deviations from LTE in the outer regions of the plasmas
for relative radial positions of r/R > 50%. These deviations are manifest in the
excited part of the Dy+ system that for relatively low ne is ruled by the Corona
rather than by the Boltzmann balance. However, this departure of LTE only
has a limited effect on the main plasma parameters which means that using an
LTE model is justified.



Chapter 7

Comparison with centrifuge

experiments

Abstract.

The effect of the competition between convection and diffusion on the distri-
bution of metal halide additives in a high pressure mercury lamp has been
examined by placing COST reference lamps with mercury fillings of 5 mg
and 10 mg in a centrifuge. The resulting distribution of the additives, in this
case dysprosium iodide, has been studied by numerical simulations and by
measurements of the density of dysprosium atoms in the ground state using
imaging laser spectroscopy. The competition between axial convection and
radial diffusion determines the degree of axial segregation of the dysprosium
additives. By subjecting lamps to different accelerational conditions the con-
vection speed of the mercury buffer gas is altered while the diffusion speeds
remain constant. The competition between axial convection and radial diffu-
sion is best characterised by the dimensionless Peclet number. The degree of
demixing is quantitatively characterised by the segregation depth.

This chapter is based on a publication submitted on invitation to a J
Phys. D. Special issue as ”Competition between convection and diffusion in
a metal halide lamp, investigated by numerical simulations and imaging laser
absorption spectroscopy” with co-authors A. J. Flikweert, T. Nimalasuriya,
W. W. Stoffels and J. J. A. M. van der Mullen.
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7.1 Introduction

In previous chapters a numerical model was developed to study the the distri-
bution of additives in a Metal Halide (MH) lamp. In chapter 2 the basic the-
oretical framework was derived from kinetic theory. Chapter 3 then extended
this model to cover the case of electrodes protruding into the plasma. Subse-
quently, in chapters 4 and 5 the model was overhauled to allow for comparison
with experiments done on lamps containing dysprosium tri-iodide. This model
was compared with results under microgravity conditions in chapter 6. In this
chapter we will further compare the model with experiments as well as focusing
on the influence of convection on the distribution of additives in the lamp.

In chapters 2 and 3 it was found that increasing the pressure increases the
convection in the lamp. Results from the model showed that there is an optimum
pressure at which the axial segregation is most pronounced. In chapter 4 it was
found that this occurs when the convective and diffusive processes are in the
same order of magnitude. In the two limiting cases, when there is no convection,
or when there is extremely high convection, little to no axial segregation is
present. Increasing the pressure increases the rate of convection while decreasing
the rate of diffusion.

The rate of convection can also be influenced by placing the lamps under dif-
ferent accelerational conditions. In the previous chapter we compared the results
from the model with experiments done under microgravity, where convection is
absent. This enabled us to study the effect of diffusion on the phenomenon of
radial segregation in isolation. In this chapter we will compare results from the
numerical model with experiments under hypergravity conditions to enhance
convection. To create these hypergravity conditions the lamps were placed in
a centrifuge. The design of these experiments are outlined in previous publi-
cations [61, 62, 22, 13, 12, 63]. The metal-halide lamp that is investigated in
the centrifuge is again a cost lamp [9]. It contains 4 mg DyI3 as salt additive,
which is partially evaporated when the lamp is burning. In the centrifuge setup,
the ground state Dy density distribution is measured by means of Imaging Laser
Absorption Spectroscopy (ilas) [13]. These experimental results are compared
with the model.

7.2 Experiment

A centrifuge was built as a tool to investigate MH lamps [9] under hypergravity
conditions up to 10g and vary the convection speed in this way. In the next
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section the results will be compared with the results from the model.

7.2.1 Measurement technique

The experiment has been described before [13]; a summary will be given for
clarity. The centrifuge shown in figure 7.2 consists of a pivot, an arm connected
to the pivot and at the end of the arm a gondola that contains the lamp and
diagnostic equipment. The total diameter at maximum swing-out of the gondola
is close to 3 m. The total acceleration vector is always parallel to the lamp axis.

The measurement technique that is used in the centrifuge is Imaging Laser
Absorption Spectroscopy (ilas). By using this technique, the 2D density dis-
tribution of the ground state Dy atom can be obtained. The principle is as
follows. A laser beam is expanded so that it illuminates the full lamp burner.
When the lamp is switched on, part of the laser light is absorbed by Dy atoms
in the ground state. Behind the lamp, the light that is transmitted by the lamp
burner is detected. By comparing the detected laser intensity with and without
absorption, the line-of-sight ground state atomic dysprosium density is obtained
for each position in the lamp burner.

Figure 7.1: Schematic picture of the lamp, (1) outer bulb; (2) burner with height
20 mm and diameter 8 mm; (3) electrodes, distance between both electrodes
∼18 mm [9].

7.2.2 The lamp

The investigated lamps are COST lamps [9], see figure 7.1. The lamps are
20 mm in height (18 mm electrode distance) and 8 mm in diameter. They
contain either 5 mg Hg or 10 mg Hg. Furthermore they contain 4 mg DyI3 as
salt additive and 300 mbar Ar/Kr85 as a starting gas. The input power is 148
W; the acceleration a is varied from 1 g to 10 g.
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Figure 7.2: Schematic representation of the centrifuge. The coordinate system
shown is that of the lamp in the gondola; this is a co-moving system such that
~z is always parallel to the lamp axis [13].
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7.3 Results

The model described in chapters 4 and 5 was run for a set power PS of 135 W
and compared with experimental results using a 148 W ballast. The difference
of 13 W is an estimation of the electrode losses which are not accounted for in
the model. Experiments were done with lamp fillings of 5 mg and 10 mg Hg.
The model was run with lamp fillings ranging from 3 mg to 20 mg Hg. To fix
the boundary conditions for the elemental pressure we assume the existence of
a cold spot at the bottom corner of the lamp, where the elemental pressure is
derived from the x-ray induced fluorescence measurements at 1 g of the elemental
density of Dy and I at the cold spot [21]. Everywhere else the flux through the
wall is zero.

Direct measurements of the elemental pressure at the walls are not possible
for the lamps in the centrifuge, therefore we assume a Dy elemental pressure
at the wall of 517 Pa and an I elemental pressure of 4268 Pa. These vapour
pressures were determined with x-ray induced fluorescence measurements at 1 g
[21]. These are assumed to give a good estimation of the vapour pressure at the
walls and are used to fix the boundary conditions. Note that there is an excess
of iodine in the cold spot. This excess occurs because dysprosium is absorbed
by the walls of the lamp.

The density of dysprosium atoms was measured with the ilas technique de-
scribed in the previous section. The lamp underwent centripetal acceleration in
the centrifuge from 1 g to 10 g. The measurement technique yields the column
density of dysprosium atoms in the ground state along the line of sight. The
model yields many more results, of which only a minor part can be directly cor-
related to the experiment. We will present some of the model results separately
to further insight into the mechanisms behind what is observed experimentally.

The model solves differential equations for the total pressure, the velocity,
the temperature, the electric potential and the elemental pressures. From these
a number of derived quantities are obtained, notably the species densities and
the radiation intensity. We will first present the elemental pressures at different
lamp pressures and under different accelerational conditions.

7.3.1 Elemental pressure

The elemental dysprosium pressure at 1 g and 2 g with 10 mg of mercury is
given in figure 7.3 clearly shows both axial and radial segregation. The amount
of dysprosium in the top of the lamp increases with increasing centripetal ac-
celeration.
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Figure 7.3: Simulated elemental dysprosium pressure for a lamp with a 10 mg
mercury filling at 1 g (left) and 2 g (right).

When one examines figure 7.3 carefully, local minima and maxima can be
seen in the elemental dysprosium pressure. These are shown more clearly in the
profiles for a total mercury content of 5 mg shown in figure 7.4. These local
minima and maxima are not present if convection is switched off in the model, as
is shown in figure 7.5. For more results comparing this model with microgravity
experiments we refer to [14]. In figure 7.6 the axial convection speed is plotted.
The axial speed is greater in the centre of the lamp than at the edges, due to the
lower density and the smaller cross sectional area in the centre. Consequently,
the elemental dysprosium concentration in the center rises as the acceleration
increases. The radial position where the axial velocity crosses through zero does
not show the same increase in elemental dysprosium. The result is that with
the increase in convection more dysprosium enters the discharge and that the
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step like radial profile is disturbed.
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Figure 7.4: Simulated midplane elemental dysprosium pressure profiles for ac-
celerational conditions ranging from 1 g to 7 g for a lamp with 5 mg of mercury
filling. At low convection speeds the radial profiles have a shape comparable
with the microgravity situation.

7.3.2 Atomic dysprosium density

The experiment measures the column density of dysprosium atoms in the ground
state. The model calculates the dysprosium atom density from the elemental
pressure, total pressure and temperature. An example of the calculated dyspro-
sium density is shown in figure 7.7. As is evident in this figure, the dysprosium
atom density decreases towards the top of the lamp. Increasing the convection
speed by increasing the acceleration causes better mixing.

To compare with the experiments column densities have been calculated.
These are shown in figure 7.8. For comparison, figure 7.9 shows the measured
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Figure 7.5: Simulated elemental dysprosium pressure (Dy in the figure) with
convection switched off (corresponding to microgravity). The discharge shows
no axial segregation in this case. For comparison, the densities of the dysprosium
ions, atoms and DyI3 molecules are plotted (denoted with square brackets).

column densities of dysprosium atoms in the ground state. A qualitative com-
parison of these graphs shows a number of features present in both model and
experiment. Most notable are the heart shaped regions near the bottom of the
lamp, where the dysprosium atoms are concentrated. Under higher accelera-
tional conditions these regions move up slightly and become more elongated,
this feature is present in both the model and the experiment.

For a more quantitative comparison, cross sections of the results from both
the model and the experiment at an axial position of 5 mm from the bottom
of the lamp are show in figure 7.10. As before, the results are for a lamp con-
taining 10 mg of mercury under 1 g and 2 g acceleration in the centrifuge. The
position of the maximum atom density in the simulations correspond well with
the maximum absorption in the experiment. The absolute values, however, do
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Figure 7.6: Simulated axial velocity through the midplane for accelerational
conditions ranging from 1 g to 7 g in a lamp with 5 mg of mercury filling.

not agree. Figure 7.11 compares the measured atomic ground state density with
the simulated atomic densities along the axis, and 2 mm off-axis. These results
show good qualitative agreement between the simulation and the experiment.
In particular, the position of the maximum density shows good agreement. The
densities in the simulation are generally much larger. A possible reason might
be the assumed cold spot vapour pressure. The cold spot vapour pressure de-
pends exponentially on the temperature, as shown in figure 7.12. During the
lifetime of the lamp, however, dysprosium migrates into the quartz walls. The
individual lamps also differ. A change in the temperature of just 10 K leads to
a 30 % increase in the vapour pressure just above the cold spot.
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Figure 7.7: Simulated atomic dysprosium density for a lamp containing 10 mg
of mercury at 1 g and 2 g simulated accelerational conditions. The 1 g result is
shown mirrored (negative radial positions) and the 2 g result is shown on the
right half of the graph.
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Figure 7.8: Simulated column densities of dysprosium atoms for a lamp con-
taining 10 mg of mercury at 1 g and 2 g simulated accelerational conditions. As
in the previous graphs the 1 g results are shown mirrored with negative lateral
positions.



130 Comparison with centrifuge experiments

-2 0 2
0

5

10

15

20

x (mm)

y 
(m

m
)

1E17

3E17

7E17

2E18

5E18

1E19

3E19

(a) 1 g

-2 0 2
0

5

10

15

20

x (mm)

y 
(m

m
)

1E17

2E17

5E17

1E18

2E18

4E18

8E18

(b) 2 g

Figure 7.9: Experimental results for the ground state column densities of dys-
prosium atoms at 1 g and 2 g for a lamp containing 10 mg of mercury. Note
that negative and positive lateral positions correspond to the left and the right
side of the lamp respectively.
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Figure 7.10: Experimental results for the ground state column densities of dys-
prosium atoms at 1 g and 2 g for a lamp containing 10 mg of mercury compared
with the simulations. Results shown are at an axial position of 5 mm from the
bottom of the lamp.
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Figure 7.11: Experimental results for the ground state column densities of dys-
prosium atoms at 1 g for a lamp containing 10 mg of mercury compared with
the simulations. Results shown are along the axis, and 2 mm off-axis.
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7.4 Cold spot vapour pressure

To further investigate the dependence on the cold spot vapour pressure different
the model was rerun with dysprosium vapour pressures of 100 Pa to 400 Pa
in steps of 50 Pa. This study revealed that a dysprosium vapour pressure of
150 Pa, corresponding with a temperature of 1100 K gave the closest match with
experimental results. Figure 7.13 shows the ground state line-of-sight-integrated
densities of the dysprosium atoms at 5 mm from the bottom electrode for vapour
pressures between 100 Pa and 250 Pa compared with experimental results. The
results with the 150 Pa vapour pressure also match well at other distances from
the electrodes as shown in 7.14 which compares lateral ground state densities
as predicted by the model with a cold spot vapour pressure of 150 Pa with
experiments along a line 2 mm off-axis. A line 2 mm off-axis is chosen as it
offers the largest signal, and hence the best signal-to-noise ratio.
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Figure 7.13: Experimental results for the ground state column densities of dys-
prosium atoms at 1 g for a lamp containing 10 mg of mercury compared with
the simulations at vapour pressures from 100 Pa to 250 Pa. Results shown are
at an axial position of 5 mm from the bottom of the lamp.

Varying the cold spot vapour pressure also allows us to study the effect of
the radiation emitted by the additive. In the limit that the cold spot vapour
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Figure 7.14: Experimental results for the ground state column densities of dys-
prosium atoms at 1 g for a lamp containing 10 mg of mercury compared with
the simulations at a vapour pressure of 150 Pa.

pressure of dysprosium approaches zero the lamp becomes a pure mercury lamp
again. Figure 7.15 shows the resulting temperature profiles in the midplane
between the electrodes. From this figure it becomes evident that increasing the
dysprosium elemental vapour pressure increases the contraction of the arc. This
finding is in line with earlier findings in chapter 5 and is due to the radiation
emitted by dysprosium. In chapter 5 the radiation emitted was increased in
the model by increasing the transition probabilities of the radiation emitted
by dysprosium atoms and ions. Here it is increased by simply adding more
dysprosium to the discharge. The net effect is very similar and due to radiative
cooling. The greatest concentration of emitting species is found just off-centre.
The radiation emitted by dysprosium is optically open and not reabsorbed near
the walls. Thus the radiation cools down the plasma on the flanks. To still allow
sufficient current to pass through the plasma the centre has to become hotter.
Hence, the observed contraction of the arc.

The hotter centre also results in increased convection, as is shown in figure
7.16. This is simply due to the larger temperature difference. The larger tem-
perature difference translates directly into larger density gradients, which drive
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Figure 7.15: Midplane temperature profiles for three different cold spot vapour
pressures: 517 Pa, 350 Pa and 150 Pa. Adding more dysprosium clearly increases
the contraction of the arc.

the convective flow.

7.4.1 Demixing

We studied the demixing by defining the average segregation depth τα of element
α as

τ =
1

V

∫

V

τLdV, (7.1)

with τL given by

τL =
L

pα

(

∂pα

∂z

)

, (7.2)

If τ is much smaller than unity the element is homogeneously distributed.
Axial demixing occurs if τ is greater than unity.

To compare results with different lamp fillings we examine the segregation
as a function of the Peclet number as defined in (1.1). We use the velocity
on the axis halfway between the electrodes. The elemental diffusion coefficient
is taken from the same spot. The model was run with a number of different
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Figure 7.16: Midplane axial velocity profiles for three different cold spot vapour
pressures: 517 Pa, 350 Pa and 150 Pa. Adding more dysprosium increases
the contraction of the arc and thereby increases the axial velocity through the
midplane.

pressures and simulated accelerational conditions. If we plot τ as a function of
Peclet number a single curve emerges along which all results lie. The maximum
point on this curve lies at Pe = 1.
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Figure 7.18: Dysprosium elemental pressure along the axis for the original grid
(marked ”1 ×”) and a grid with double the number of cells in each direction
(marked ”2 ×”).

7.4.2 Discretization errors

In the numerical models described in this chapter a coarse finite volume grid
was used with 66 by 28 cells in the the axial and radial directions, respectively.
The use of such a coarse grid is possible because the flow is laminar and the
size of the features studied are large in comparison with the size of the lamp.
Grid stretching is used to reduce the size of the cells near the walls where the
gradients in the temperature and the elemental pressure are larger. The hybrid
scheme [15, page 88] used by Plasimo should work well with relatively coarse
grids. To get an idea of the influence of discretization errors on the results one
of the calculations was repeated with a grid with double the number of cells in
each direction. The result is shown in figures 7.18 through 7.21. The conditions
shown are with a cold spot vapour pressure of 350 Pa, 1 g acceleration and a
lamp filling of 10 mg. As with the other models in this chapter the lamp power
is 135 W.

The largest differences are observed in the elemental dysprosium pressures.
These are shown in figure 7.18 and 7.19 which show the elemental pressure
along the axis and midplane, respectively. The coarser grid does not sufficiently
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Figure 7.21: Temperature midplane for the original grid (marked ”1 ×”) and a
grid with double the number of cells in each direction (marked ”2 ×”).

resolve the large gradients near the bottom electrode resulting in overshoot and
slightly lower values between 4 mm and 10 mm from the bottom electrode.
A similar overshoot is witnessed in figure 7.19 where the coarse grid does not
resolve the steep transition between atoms and molecules as well as the finer
grid. The differences are small, however and do not alter the conclusions drawn
in this chapter. The effect on the temperature is smaller yet, as shown in figures
7.20 and 7.21 which show the temperature along the axis and midplane between
the electrodes, respectively.
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7.5 Conclusions

A metal halide lamp with the COST geometry has been placed in a centrifuge
to study the effect of the competition between convection and diffusion on the
distribution of additives in the lamp. Using the plasma modelling platform
Plasimo, we have simulated the same lamp under different accelerational condi-
tions. The density of dysprosium atoms in the ground state has been measured
using the ilas technique for different lamp fillings and accelerational condi-
tions. These ground state densities show good qualitative agreement with the
dysprosium atom densities predicted by the model.

The quantitative agreement between the model and experiments are not as
good. One possible reason is the cold spot vapour pressure of the elements. This
cold spot vapour pressure depends exponentially on the cold spot temperature.
Increasing the temperature by 10 K is enough to raise the vapour pressure 30%.
Using a vapour pressure of 150 Pa rather than the value of 517 Pa measured by
X-Ray Fluorescence (XRF) by Nimalasuriya et al [21] on similar lamps yields a
better quantitative match between model and experiment.

The study with different vapour pressures also gives insight into the effects
of the radiation emitted by the dysprosium additives. Increasing the partial
pressure of dysprosium atoms and ions increases the radiation emitted by these
species. Most of this radiation is emitted just off-centre from the axis. The ra-
diative cooling by dysprosium causes the arc to contract. Increasing the amount
of dysprosium in the discharge increases arc contraction.

The competition between convection and diffusion can be understood quan-
titatively by introducing a Peclet number defined as the ratio between the rate
of radial diffusion and axial convection. A Peclet number of unity leads to the
greatest axial segregation. Increasing the convection speed by increasing the
acceleration changes the radial profiles from a step like profile to a more erratic
profile with local minima and maxima. Obtaining a homogeneous distribution
of additives in the lamp can be achieved by designing a lamp such that the
Peclet number is much greater or much smaller than unity.



Chapter 8

Convection in MH Lamps

8.1 Introduction

In earlier chapters the competition between convection and diffusion in metal
halide lamps was studied through numerical modelling. In chapter 4 a simple
scaling law was found that can predict the conditions for which the lamp is most
strongly demixed. This simple scaling law relates the average segregation depth
τ with the Peclet Pe number. The Peclet number is given by the ratio of the
axial convection and radial diffusion rates. In terms of the effective diffusion
coefficient of the element Dα and the axial convection speed Vz it is equal to:

Pe =
R2Vz

LDα
, (8.1)

with L the length and R the radius of the lamp. In this chapter a simple
model will be derived to estimate Vz. This simple model will be compared with
the results of the more self-consistent numerical models presented in previous
chapters.

8.2 A simple flow model

In this section a basic scaling law for the convection of metal halide lamps will be
derived from the Navier Stokes equation and a greatly simplified energy balance.
The approach is similar to Elenbaas [64], but with the emphasis on deriving an
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analytical expression. Elenbaas used a graphical method to get a more accurate
estimation of the convection speed in high pressure mercury lamps.

Let us examine a cylinder with a large aspect ratio filled with an inert gas.
The walls of the cylinder are held at a fixed temperature Tw. The effect of ohmic
heating is modelled with a uniform heat source S. A schematic representation
of the lamp is given in figure 8.1.

agρ

dp

dz

agρ

dp

dz

L

R

g

Figure 8.1: The simplified geometry used to examine convection in the lamp.
The forces due to gravity and the pressure gradient on a volume element on the
axis and close to the walls are shown with arrows. Close to the walls the density
is greater and the net force is directed towards the bottom of the lamp. In the
centre the pressure gradient is identical but the density is much lower and the
net force is directed toward the top of the lamp.

The walls of MH lamps need to be relatively cool to avoid damage. For MH
lamps with quartz walls this means a temperature of approximately 1200 K, ce-
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ramic MH lamps can sustain temperatures of 1500 K. The centre of the discharge
must be hot enough to excite the light emitting species and partially ionise the
gas. In practice the temperature in the centre is approximately 6000 K.

The temperature difference between the hot centre and colder walls will
cause a density difference, with the centre of the discharge being less dens than
the gas near the wall. This density difference gives rise, under the influence
of gravity, to a buoyancy force. This buoyancy force, in turn, is balanced by
viscous forces and drives the convection flow.

8.2.1 The temperature profile

In this subsection a simple approximation for the temperature profile is sought.
The effects of radiation, chemistry and non uniform power input will be ig-
nored in order to arrive at an analytical expression. Neglecting the influence of
convection on the temperature balance one may write:

−
1

r

∂

∂r

(

rλ
∂T

∂r

)

= S,

where λ is the heat conductivity. As stated before, we assume the heat source
S is uniform and independent of the temperature. Solving the equation under
the boundary conditions that T (R) = Tw and using r dT

dr

∣

∣

r=0
= 0 yields:

T = Tw + T̂

(

1 −
( r

R

)2
)

, (8.2)

with T̂ = SR2/4λ.

8.2.2 Velocity

The Navier Stokes equation for the gas in the cylinder is given by:

∂ρ~u

∂t
+ (ρ~u · ∇) ~u = −∇p + ∇ · (µ∇~u) + ρ~ag, (8.3)

with ρ the density, ~u the velocity, t the time, p the pressure, µ the dynamic
viscosity and ~ag the gravitational acceleration.

As the aspect ratio of the cylinder is large, a number of simplifications are
possible. Away from the ends, the temperature depends solely on the radial
position (T = T (r)). The velocity through the midplane is axially directed and
also solely radially dependent ( ~u = u(r)~ez). The time dependency is ignored
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as we are looking for a stationary solution. It is also assumed that the viscous
forces are much larger than the inertial forces (the Reynolds number is low). To
further simplify the equations constant viscosity is assumed.

Using the above simplifications the Navier Stokes equation reduces to:

∂p

∂z
=

1

r

∂

∂r

(

µr
∂u

∂r

)

− ρag, (8.4)

∂p

∂r
= 0 and (8.5)

∂p

∂φ
= 0. (8.6)

The equation above shows that the pressure is independent of the radial and
azimuthal position. If the aspect ratio is large enough, the pressure gradient
will also be independent of the axial position.

The equation above is made dimensionless by introducing a dimensionless
position x = r/R, the dimensionless density ρ∗ = ρ/ρ0, with ρ0 the density in
the centre, and the dimensionless velocity u∗ given by

u∗ =
µ

ρ0agR2
u. (8.7)

Equation (8.4) then becomes

1

x

d

dx

(

x
du∗

dx

)

= ρ∗ + A, (8.8)

with A the dimensionless pressure gradient,

A =
1

ρ0ag

dp

dz
. (8.9)

By integration we obtain:

x
du∗

dx
=

∫ x

0

ρ∗x′dx′ +
1

2
Ax2 + C1,

with C1 = 0 since xdu∗

dx = 0 for x = 0. Integrating a second time yields:

u∗(x) =

∫ x

0

1

x′

(

∫ x′

0

x′′ρ∗dx′′

)

dx′ +
1

4
Ax2 + u0, (8.10)

with u0 the convection speed on the axis to be determined by the boundary
conditions. As the lamp is closed the net flux through the midplane must be

zero (
∫ R

0
ρ(r)u(r)rdr = 0). This condition will be used to find the parameter A.
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Substitution of the temperature profile

With the temperature profile found in the previous section one can now evaluate
the integral in equation (8.10). With the use of the ideal gas law and 8.2 one
may obtain:

ρ∗ =
(

1 − x2T̂ /T0

)−1

, (8.11)

with T0 the temperature on the axis. Substitution into (8.10) results in:

u∗(x) = u0 +
1

4
Ax2 + Li2

(

(T̂ /T0)x
2
)

, (8.12)

with Li2(x) the dilogarithm:

Li2(x) =

∫ 0

x

ln(1 − y)

y
dy. (8.13)

Using the no-slip condition on the wall (u∗(1) = 0) one may derive:

u∗(x) =
1

4
A(x2 − 1) + Li2

(

(T̂ /T0)x
2
)

− Li2

(

T̂ /T0

)

. (8.14)

To obtain the value of A that satisfies
∫ R

0
ρ(r)u(r)rdr = 0 a numerical technique

is required. Using the Levenberg-Marquand algorithm the value for A has been
calculated for different ratios of T̂ /T0. The result is shown in figure 8.2. A
typical MH lamp has a ratio T̂ /T0 between 0.7 and 0.8 resulting in a value of
A ≈ −20. From this result the dimensionless velocity u∗(x) may be calculated.
An example is shown in figure 8.3. Note that this dimensionless velocity depends
only on the ratio T̂ /T0.

8.2.3 Comparison with grand numerical model results

The velocity predicted by the simple flow model with a near analytical result
may now be compared with the more complex, two dimensional model with a
non-constant viscosity. Such a comparison is shown in figure 8.4, for a lamp
with a mercury pressure of 10 bar, a central temperature of 6000 K, and a wall
temperature of 1200 K. In the numerical model the viscosity has been calculated
by Wilke’s formula [36]. For comparison, a viscosity of 4 × 10−4Pas has been
chosen in the analytical expression. The velocity predicted by the analytical
expression is greater in magnitude than that predicted by the more complex
numerical model. The profile is remarkably similar, however.
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Figure 8.2: Value of A so that the equation
∫ R

0
ρ(r)u(r)rdr = 0 is satisfied.

Typical MH lamps have a ratio T̂ /T0 between 0.7 and 0.8.

To obtain an analytical expression a constant viscosity has been assumed.
The viscosity is, however, anything but constant, as is shown in figure 8.5.
Furthermore, an infinite aspect ratio has been assumed. In reality the aspect
ratio of the lamp under study is only 5. To get a better estimate the non-
constant viscosity needs to be taken into account. To correct for the smaller
aspect ratios a two dimensional model is required. In either case, the convection
flow can only be solved numerically.

We may, however, use the scaling parameter in (8.7) to find a scaling law
for discharges with a similar temperature profile. The dimensionless velocity
u∗ only depends on the ratio T̂ /T0. For discharges with the same temperature
profile we have:

u ∝
ρ0agR

2

µ
. (8.15)

Thus the velocity is

• proportional to the square of the radius,
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Figure 8.3: The dimensionless velocity u∗ for T̂ /T0 = 0.8.

• proportional to the density at the centre,

• proportional to the gravitational acceleration and

• inversely proportional to the viscosity.

Using the ideal gas law one may rewrite this as

u ∝
mHgpagR

2

µkT0
, (8.16)

with mHg the mass of the mercury atom. Thus the velocity also increases lin-
early with the total pressure. In the next two sections the validity of these
scaling laws will be examined using the results from more complex numerical
models. In particular the dependance an the pressure, the radius and the grav-
itational acceleration are examined.
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Figure 8.4: Axial velocity as calculated from (8.10) compared with results from
the MH lamp model. To get the velocity from the analytical model a value of
4 × 10−4Pas has been chosen for the viscosity.

8.3 Mercury lamp

The additives in MH lamps significantly improve the colour rendering of these
devices as compared with lamps containing pure mercury. The impact on the
convection patterns is much smaller and indirect. We examine the convection
with numerical experiments of a lamp containing pure mercury. The model of
this lamp is identical to the model for the mercury lamp described in chapter
4. The total pressure is varied by increasing the lamp filling.

Equation (8.16) predicts a linear relationship between the velocity and the
pressure. The assumptions of a uniform power input is not valid in lamps of
this type as most of the power is deposited on the axis close to the electrodes.
The viscosity and thermal conductivity are also temperature dependent. The
temperature profiles are also effected by the pressure. Nevertheless, as figure
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Figure 8.5: Viscosity from the MH lamp model calculated by the Wilke formula
[36].

8.6 shows, the velocity does show a linear dependence on the pressure.

The dependence on the square of the radius has also been investigated by
examining two lamps with the same volume and input power but with two
different radii: 2 mm and 4 mm respectively (with lengths of 80 mm and 20 mm).
According to (8.16) the velocity should increase with the square of the radius.
The dimensionless velocity u∗ should be independent of the radius and the total
lamp pressure. Figure 8.7 shows the dimensionless velocity midplane on the
axis as a function of the pressure for models of lamps with a radius of 2 mm
and 4 mm compared. The lamp with the longer aspect ratio has a greater
dimensionless velocity. There is also a weak dependence on the pressure.
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pure mercury lamp for different pressures corresponding to lamp fillings between
3 mg and 60 mg.

8.4 Metal halide lamp

We examined the velocity on the axis halfway between the electrodes as calcu-
lated by the metal halide lamp model in chapter 7. To compare with results of
experiments in a centrifuge we used different values for ag ranging from 1 g to
10 g. The model was also run with different lamp fillings from 3 mg to 20 mg.
The simple flow model derived earlier predicts a linear dependence on the prod-
uct of the pressure and the acceleration ag. Figure 8.8 shows that such a linear
dependence is a good approximation. This in spite of the non-constant power
input, changing temperature profiles for different pressures and the dependence
of the viscosity and thermal conductivity on the temperature.
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8.5 Conclusion and discussion

A simple semi-analytical expression has been derived for the axial velocity in
a metal halide lamp. The derivation is not completely analytical as one of
the parameters needs to be determined numerically. This numerical procedure
however, is much less time-consuming than the full numerical models consisting
of many coupled non-linear differential equations, ray-tracing and the determi-
nation of the chemical equilibrium via Gibbs minimisation. Furthermore, this
parameter A, representing the dimensionless pressure gradient, depends only
on the temperature difference between the centre and the wall of the discharge.
Comparing the velocity with full numerical model results shows, however, that
it gives only a rough approximation of the axial velocity.
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The scaling law derived is more useful, it shows a linear dependence of the
axial velocity on the pressure. Looking at the results from numerical models
of a pure high pressure mercury lamp and a metal halide lamp shows that
this is indeed a good approximation. The dependence on the gravitational
acceleration has also been examined. This is of interest for the estimation of
the axial velocity in experiments conducted in a centrifuge, such as those in
chapter 7. Results from the metal halide lamp modelled in this chapter show
that the predicted linear relationship between the gravitational acceleration and
the axial convection holds to good approximation. The scaling law also predicts
that the velocity is proportional to the square of the radius of the discharge. This
scaling law does not hold if the aspect ratio is also changed, as demonstrated
by a numerical model of a pure mercury discharge.



Chapter 9

General conclusion

The plasma simulation platform plasimo has been used to develop a numerical
model of the additive distribution in vertically burning metal halide lamps. The
model assumes axial symmetry, a steady laminar flow and the presence of LTE.
Two different transport modes were used. The balances of mass, momentum
and energy and the conservation of elements were solved using the control vol-
ume approach, the radiation transport is treated by means of ray tracing. The
input of this model is the set of control parameters, such as the fill chemistry,
driving power and vessel shape. The output is formed by plasma properties;
such as the voltage over the lamp electrodes, the production of heat and the
emission of radiation. Along the way many more plasma properties are cal-
culated: the distribution of the elements over the lamp and the fields of the
temperature, the velocities and the pressure. The model attempts to calculate
these parameters in a self consistent manner from first principles. There is no
place for fudge parameters. At the same time the model must be as simple as
possible; approximations that can be made should be made.

Using this model numerical simulations have been performed of lamps con-
taining mercury with sodium iodide and dysprosium iodide (Na and Dy lamps).
Initial studies were carried with Na as the simulation of the Na lamps is rel-
atively easy. The chemistry is rather simple and only a few Na lines have to
be taken into account in the ray tracing procedure. The modelling of the Dy
lamp is more complicated; a proper chemical description needs to include more
species and an enormous number of radiative transitions have to be dealt with.
There was no choice, however; we had to construct a model for the Dy lamp
since the experimental validation of a Na lamp is not easy.
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The central aim of the numerical studies was to come to a basic understand-
ing of the transport of additives in MH lamps. To this end model calculations
were done for many different conditions, that is to say, for different pressures,
accelerations and chemical compositions. Additionally, the studies were carried
out on the influence of the cold spot vapour pressure, the elastic scattering
cross section between dysprosium ions and mercury atoms and the choice of
data set for the transition probabilities of dysprosium atoms and ions. Results
from these calculations were classified by looking at the output; in particular at
the distribution of additives, the temperature, the velocity and the density of
the radiative species. The main results can be classified by the introduction of
two dimensionless parameters: the segregation depth of the lamp τ and the Pe
number. Together these describe the axial segregation in the lamp.

9.1 Axial segregation

Axial segregation was shown to be the result of the competition between ax-
ial convection and radial diffusion. This competition is best expressed by the
dimensionless Peclet number. When the Peclet number is approximately equal
to unity axial segregation is strongest. The degree of axial segregation is best
expressed by the dimensionless segregation depth τ . The largest value of τ de-
pends on the element under study and on the position in the discharge where
the molecules dissociate to form ions. This position, in turn, depends on the
temperature profile and on the dissociation energy of the molecule.

The Peclet number depends on the diffusion coefficient, the lamp geometry
and the axial convection speed. The diffusion coefficient can be estimated from
the total lamp pressure and the elastic cross sections of the additives with the
background mercury gas. In chapter 8 a scaling law was derived for the depen-
dence of the convection on the pressure and (in the case of a centrifuge) on the
accelerational conditions. It was shown that the convection depends linearly on
the pressure and the acceleration. The convection speed also depends on the
density gradients, and is thereby related to the temperature profile.

9.2 Temperature profile

In chapter 4 it was found that adding dysprosium to the discharge causes the
temperature profile to contract. The temperature along the flanks is decreased,
when compared to a pure mercury discharge, by radiation from dysprosium
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atoms. To still allow the same ohmic dissipation the temperature along the
axis has to increase. This arc contraction is in agreement with experimental
results found in X-Ray absorption measurements [65]. In chapter 5 it was found
that the degree of contraction predicted by the model depends on the choice
of data set for the transition probabilities. In chapter 7 it was also found that
the cold spot vapour pressure directly influences the degree of contraction. The
sodium discharges have a lower temperature along the axis due to the lower
ionisation potential. Additionally, sodium has a number of optically thick lines
which heat up the edges of the discharge. Dysprosium has a spectral grass field
of lines, most of which are optically open. In chapter 5 it was found that, for
the purpose of calculating the temperature profile, the spectral grass field can
be approximated by two effective transitions.

9.3 Comparison with experiments

The results of the model for the Dy lamp were compared to that of experi-
ments. In chapter 6 we dealt with microgravity conditions whereas chapter 7
was devoted to lamps in a centrifuge. Both studies show that the model is
capable to predict main trends. However, precise quantitative agreement can
only be obtained if experimental techniques are available that make it possible
to determine the cold spot temperature with high precision. This temperature
is very important in the determination of the vapour pressure of the Dy con-
taining molecules above the salt pool and thus for the number of Dy containing
components that enter the plasma phase.

Better input data is also needed for the elastic scattering cross sections be-
tween the Dy containing species and the mercury atoms which vastly outnumber
all other species. In chapter 6 the influence of the choice of elastic scattering
cross sections between dysprosium ions and the background mercury gas was
studied. The ratios of dysprosium to mercury ions in the centre of the discharge
appeared particularly sensitive to the choice of cross section. Thus, measuring
this ratio could help to validate elastic scattering cross section data. The mea-
surements would have to be performed in lamps with low convection speeds. A
low cost alternative to taking lamps to the international space station would
be to use lamps with a long aspect ratio and relatively small mercury dosings
(approximately 5 mg for a lamp equal in volume to the cost reference lamp).
As is shown in chapter 8 such conditions would also lead to low Peclet numbers.
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9.4 Outlook

To keep both the model and the experiments as simple as possible only lamps
with a single salt additive have been considered. Commercial lamps typically
have more additives. The model that has been developed alows for more than
one salt additive, however. The number of additives is limited only by the
amount of computer memory required for the look-up table with the species
densities as a function of the elemental abundance, temperature and pressure.
Currently, these lookup tables are around 28 MiB in size. Adding one or two
more additives lies well within the possibilities. Adding as many as six different
additives to fully simulate the mixture in a commercial lamp would require an
overhaul of the look-up tables from the current linear interpolation scheme to
a smarter interpolation scheme. Studying mixtures with two or three additives
would also be of interest to study the effect of additives on each other.

A related topic that is of utmost interest is how the combination of radia-
tive cooling and the association/dissociation position will facilitates instabilities.
Due to radiative contraction the wall stabilisation will be lost. Moreover self-
generated magnetic fields might be able to excite helical instabilities. The he-
lical instabilities would require a full three-dimensional time dependent model.
Other types of instabilities that can be present are those initiated by acoustic
resonances. These also require a time dependent model. There are certainly
plenty of challenges left in the study of metal halide lamps.
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Dankwoord

Bijna zes jaar geleden kwam ik bij Eddie van Veldhuizen op de kamer op zoek
naar een afstudeeropdracht. Deze bracht mij in contact met Joost van der
Mullen die mij verder introduceerde bij de groep EPG (Elementaire Processen
in Gasontladingen) en het Plasimo team. Tijdens mijn afstuderen vroeg Joost
van der Mullen of ik wou blijven om te promoveren. Dit wou ik, en na mijn
afstuderen ging ik gelijk aan de slag. Niet aan lage druk extreem ultraviolet
bronnen zoals tijdens mijn afstudeeronderzoek maar aan een lampje dat gewoon
zichtbaar licht uitstraalt. Dat met een lampje interessante wetenschap valt te
bedrijven heb ik de afgelopen vier jaar wel ondervonden. Ik dank dan ook mijn
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en de inspiratie die nodig waren om tot dit proefschrift te komen.
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passingen op plasma gebied. Ik ben daarbij in het bijzonder Jan van Dijk, Harm
van der Heijden en Bart Hartgers dank verschuldigd. Jan van Dijk voor de alge-
mene ondersteuning en ontwikkeling van Plasimo en Harm van der Heijden en
Bart Hartgers voor de stralingscode. Bart Hartgers is ook in het begin stadium
van mijn onderzoek zeer behulpzaam geweest in het aan de praat krijgen van
modellen. Verder dank ik mijn voormalige kamer-genoot Bart Broks voor de
nuttige discussies en Tanya Nimalasuriya en Arjan Flikweert voor de prettige
samenwerking, met name in het tot stand komen van hoofdstukken 6 en 7. Ten-
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slotte wil bedank ik mijn vriendin Kim Peerenboom voor het nakijken van mijn
proefschrift en het geduld met mij in de weken voor mijn promotie.



Curriculum Vitae
Born October 2nd 1975 in Bellingwolde

Education

1992-1994 International Baccalaureate. First year at the International School of Kenya
in Nairobi, Kenya second year at Rijnland’s Lyceum in Oegstgeest, The Nether-
lands.

1994-2003 Master of Applied Physics at the Eindhoven University of Technology.

2004-2008 Ph.D. research in numerical plasma physics at the Eindhoven University of
Technology.

Traineeships

April 1996 - December 1996 Internship with the Low Temperature Physics group of
the faculty of applied physics under supervision of prof. dr. A. T. A. M. de Waele
and ir. R.M.S. Knops. Title of the report: ”Turbulentie bij een diameterovergang
in de resonator van een thermo-akoestische koeler.”

September 1999 - May 2000 Trainee with Fymaz and FEV in Aken (Germany). Un-
der supervision of dr. ir. A.P.J. Voncken and dr. H.J.H. Clercx. Title of the report
”Modeling Dynamically Loaded Cylindrical Bearings”

September 2002 - December 2003 Masters thesis at the group EPG of the faculty
of applied physics (TUE). Supervisors: Dr. J.J.A.M. van der Mullen, ir. B.H.P.
Broks and ir. W.J.M. Brok . Title of the report ”Towards a Hybrid Fluid-Monte
Carlo Model for Pulsed Hollow Cathode Discharges”.

Experience

December 1996 - March 1998 Student tutor assisting with a practical class for me-
chanical engineering.

July 2000-July 2002 Modelling of the dynamic behaviour of electro magnetic valves
for Fymaz in Stolberg (Germany).


	Introduction
	The Cost 529 reference lamp
	Segregation
	Radial segregation
	Axial segregation

	Numerical models
	Thesis outline

	Theoretical framework
	Introduction
	The segregation curve
	Theory
	Particle Balance
	Force Balance
	Elemental Diffusion
	Energy Balance
	Temperature Balance

	Model Description
	Transport coefficients
	Lamp Chemistry
	Temperature source terms
	Solution procedure
	Geometry and grid
	Boundary conditions

	Results
	Axial velocity
	Temperature
	Diffusion

	Conclusion
	Addendum
	Laminar flow
	Time dependent behaviour
	Arc bending
	The choice of grid


	Protruding electrodes
	Introduction
	Demixing
	Geometry of the problem
	Structured Meshes
	Basic equations
	Energy balance
	Particle transport
	Ohmic heating
	Transport properties
	Bulk flow

	Results
	Temperature
	Bulk Flow
	Demixing
	Iodine

	Discussion

	Extending the model, DyI3 chemistry
	Introduction
	Chemistry
	Particle transport
	Radial segregation
	Axial segregation
	Elemental pressure

	Model
	Ohmic heating

	Results
	Additive distribution
	Convection
	Temperature

	Conclusions

	Radiation
	Introduction
	Model description
	Energy balance

	Radiation transport
	Ray tracing on a structured mesh
	The choice of probe lines
	Integration along the probe lines
	Radiative fluxes

	Ohmic heating
	Effective transitions
	Radiated power per particle
	Sphere filled with dysprosium
	Sphere with dysprosium and mercury
	Cylinder with dysprosium and mercury
	Sensitivity analysis
	Choice of data set

	Results with a self consistent model
	Temperature profile
	Additive distribution

	Conclusion

	Comparison with microgravity experiments
	Introduction
	Demixing
	The experiment
	The model
	Particle transport
	The selection of cross-sections

	Results and discussion
	Departure from LTE

	Conclusions

	Comparison with centrifuge experiments
	Introduction
	Experiment
	Measurement technique
	The lamp

	Results
	Elemental pressure
	Atomic dysprosium density

	Cold spot vapour pressure
	Demixing
	Discretization errors

	Conclusions

	Convection in MH Lamps
	Introduction
	A simple flow model
	The temperature profile
	Velocity
	Comparison with grand numerical model results

	Mercury lamp
	Metal halide lamp
	Conclusion and discussion

	General conclusion
	Axial segregation
	Temperature profile
	Comparison with experiments
	Outlook

	Bibliography
	Dankwoord

