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Abstract

Applications of rank-order-based methods to image and sig-
nal analyses have primarily focused on filtering. Classical
median, min, and max filters have long been part of stan-
dard image processing toolboxes. More recent work has
focused on more elaborate versions of such filters and as-
sociated computational issues. However, the application of
these nonlinear methods to problems such as image inter-
pretation has been scarce. We attempt to show that simple
rank-order-based methods for coding image patches provide
informative and computationally efficient local image de-
scriptors.

1. Introduction
This paper is about ordinal, rank-based coding of microim-
ages. Since this concept is not generally familiar in the com-
puter vision community, we begin with an informal defini-
tion and an example. A coder or quantizer is a mapping F
from n×n subimages to n×n integer-valued matrices with
entries in {0, 1, . . . , n2 − 1}. Consider the 3 × 3 subimage
on the left-hand side of (1) below and suppose a threshold
or granularity t has been fixed in advance, say t = 16. Then

33 8 32
11 15 3
14 65 67

(F,t)
7→

1 0 1
0 0 0
0 2 2

. (1)

The procedure is as follows: The intensities of the subim-
age are first ranked: 3 ≤ 8 ≤ 11 ≤ 14 ≤ 15 ¿ 32 ≤ 33 ¿
65 ≤ 67, where ¿ indicates a jump above t = 16. We
code this subimage by assigning 0 to pixel(s) with the low-
est intensity, hence 3 → 0, and proceed in the ascending
order, counting only the significant transitions, i.e., those
> t. Thus, 8, 11, 14, 15 are all coded by 1; 32, 33 by 2; and
65, 67 by 3. We will refer to this subimage coding scheme
(F, t) as an ordinal quantizer. Note that the photometric
translates of a patch are independent of t. Another prop-
erty of F that holds independently of t is that F preserves
relative brightness: su ≤ sv ⇒ cu ≤ cv .

We will also refer to these matrix-valued codes as pat-
terns and the totality of possible codes as the codebook

C. Note that not every n × n matrix with entries from
{0, 1, . . . , n2 − 1} can be an (F, t) pattern, hence C is a
proper subset of the above matrices. Finally, when n is very
small, we refer to a subimage s and its pattern F (s) as a
“microimage” and a “micropattern”, respectively. The “all
zeros” pattern is special and represents small contrast noise
or clutter with respect to (F, t).

1.1. Previous Related Work
In image and signal analyses, applications of order statistics
[10] have primarily been to filtering “impulsive” noise that
would be too difficult to eliminate with linear filters without
over-smoothing useful structures. More recent work has fo-
cused on associated computational issues [12], more elab-
orate versions of such filters [11], and has also extended
these filters to detectors of simple objects [13] for SAR im-
agery. Overall, however, the application of these nonlin-
ear methods to problems involving image interpretation has
been scarce.

The ordinal quantizers (F, t) and “microimage codes”
described earlier appear to have been originally introduced
by Geman and Koloydenko in [3] in the context of natu-
ral image statistics. In [2], Neemuchwala et al apply these
subimage quantizers F for registration of ultrasound breast
images. Whereas acknowledging an improved performance
in image registration relative to using the image intensities
directly, the authors in [2] point out an undesirable sensitiv-
ity (at least in their application) to local contrast variations.
Here (in §5.2) we propose variable thresholds t, enabling F
to adapt to local contrast variations.

In [3], the probability distribution of F -codes is reported
to vary insignificantly with the imaging domain, spatial and
intensity scales, in effect suggesting that this distribution
can be used as a universal prior for higher-level visual tasks.
We shall return to the crucial issue of invariance in §4.

In [4], Lee et al consider large samples of 3 × 3 subim-
ages randomly sampled from images of natural scenes.
They observe that the natural subimage signal S concen-
trates in very “small” subspaces of its nine-dimensional am-
bient space. Specifically, according to [4], the high-contrast
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component of S washes out low-dimensional surfaces cor-
responding to ideal primitive microstructures (e.g. edgelets,
blobs, bars, etc.). In the search for a compact description
of the natural microimage data, their analysis relies on ad-
vanced techniques for sampling on nonlinear surfaces. In-
terestingly, the set of microstructure descriptors obtained
in [4] as surface representations appear to correspond well
with the codebook C with the zero pattern removed. Thus,
the (F, t) map can be viewed as a discrete, coarse represen-
tation of a continuous mapping of the microimage data to
its principal surfaces. Clearly, the optimality of such a dis-
cretization depends on t; using a single t for coding many
different locations of a complex image is unlikely to per-
form best for any specific purpose (see below). This pro-
vides another motivation to investigate adaptations of t to
the local and global image contrasts.

Much has been learned about how biological visual pro-
cessing adapts to contrast variations in natural images, pre-
sumably in order to maintain efficiency ([6],[7]). In [8] in
particular, the authors show how the basic vision task of
contour integration might be adapted to local contour statis-
tics of natural images, and how this adaptation would then
allow integration to begin earlier in the process than previ-
ously believed. We are thus also motivated by the above
hypothesis that the functional architecture of an efficient vi-
sion system might allow for almost simultaneous detection
and integration of microscopic structure from natural stim-
uli. Specifically, this leads us to assess (§3) suitability of
(F, t) codes for their efficient integration.

1.2. Contributions
In view of the current status of ordinal methods, work on
natural image statistics, and the somewhat isolated observa-
tions mentioned above, we attempt to integrate these ideas
and findings into a coherent assessment of the suitability of
ordinal microimage coders for investigating image content.

The information content, and perceptual distortions, of
coding microimage populations by (F, t) can be studied in
the context of empirical probability distributions {pF (c|I =
i)}c∈C of F -codes within individual images I , or even over
whole imaging domains. Using 2 × 2 as the smallest non-
trivial microimage configuration, we estimate {pF (c|I =
i)}c∈C and its entropy H(pF ) from thousands of high res-
olution natural images, representing various domains. The
obtained confidence intervals at standard significance lev-
els are rather tight, which is consistent with the findings
in [3] on stability of the microimage distribution. (In fact,
simultaneous confidence intervals are used to estimate the
pF probability vector.) For F with adaptive thresholds, we
additionally estimate the mutual information M(S;F ) be-
tween the original microimage S signal and its F coding.
These and other experimental results are presented in §5
and include comparisons of different adaptable versions of

F by mutual information M(S;F ). In §6, we also explain
that average perceptual distortions Ed(S, F ) might need to
be estimated in practice for a more complete comparison of
such coders among themselves as well as with others.

2. Ordinal Quantization
Putting aside computational efficiency, the F transforma-
tion of n × n subimages s ∈ R

n2

into codes is formally
described by the following steps:

1. Compute the ranks s(1) ≤ s(2) ≤ . . . ≤ s(n2).

2. Derive the (discrete) derivatives 0, s(2) − s(1), s(3) −
s(2), . . . , s(n2) − s(n2−1).

3. Binarize by thresholding with t:
0, I{s(2)−s(1)>t}, I{s(3)−s(2)>t}, . . . , I{s(n2)−s(n2−1)>t},
where IA stands for the indicator of set A.

4. Integrate the resulting derivative chain, producing (2)
below.

5. Compose the code matrix by placing these in their
proper original pixel locations.

0, I{s(2)−s(1)>t}, I{s(2)−s(1)>t} + I{s(3)−s(2)>t}, . . . ,
∑n2−1

j=1 I{s(j+1)−s(j)>t}. (2)

Summarizing:

Definition 1 Let L represent the number of pixels in patch
s ∈ R

L and let t > 0. The ordinal quantizer (F, t) : R
L →

R
L is defined component-wise by (3) below:

Fl(s) =

rl−1∑

j=1

I{s(j+1)−s(j)>t}, (3)

where s(1), s(2), . . . , s(n2) are the (ascending) order statis-
tic of the intensities in patch s, and rl is the ascending order
rank of the lth pixel.

Note that the assignment (3) is in fact independent of
possible ties in ranking and hence well-defined. Note also
that, for unbounded continuous intensities, all the maps F
have the same range C independently of t; hence C is not
parameterized by t. Namely, if c is a pattern under (F, t)
for some t, than it is also a pattern for all t > 0. However,
in practice s is almost always discrete, hence, depending on
the initial intensity quantization and on t, the range of F
might be a proper subset of C.

The size of the codebook C is given by

|C| =
L∑

m=1

∑

kl>0 1≤l≤m

k1+...+km=L

(
L

k1 k2 · · · km

)
. (4)
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Thus, in the case of 2 × 2 patches (n = 2, L = 4), there
are 75 micropatterns. The summation index m represents
the number of subchains in the order statistic separated by
significant jumps, and can be thought of as a local estimate
of the depth of the image surface (3).

3. Relevance for Visual Processing

We show elsewhere that (F, t) coding emerges naturally as
satisfying a set of “perceptual axioms” based on the bright-
ness partial order relations on the subimage and pattern sets.
A central axiom is that F needs to commute with pixel per-
mutations σ: σ−1(F (σ(s))) = F (s). We find this axiom
sensible for “early vision”, thinking of the primitive visual
processor capable only of sorting out the received lumi-
nance, and not equipped with a basis for direct estimation
of directional derivatives.

3.1. Invariance

An important issue here is that of invariance: Many subim-
ages may share a code c and there are both perceptual and
statistical relationships among subimages within one such
“fiber”.

When the semantic explanation of image structure is of
direct importance, a high level of photometric invariance
is desired and illumination is a nuisance parameter. Often,
this type of invariance is considered at the global, i.e. im-
age scale, requiring an operation to yield the same results
for image I as for its (constant) translates I + const. For
every t, F is clearly invariant to photometric translation:
F (s) = F (s + const). Additionally, if the same coding
(i.e. keeping t fixed) is carried out for every disjoint n × n
subimage(s) s of I (or a subset thereof), the collective result
clearly remains unchanged even if the individual subimages
were “brightened” unequally (by const(s)).

Photometric translation invariance simply means that, as
a coder of an isolated subimage, (F, t) conveys no infor-
mation about the absolute brightness of the coded patch.
However, when coding a population of subimages, some
of the original brightness information may be statistically
correlated with structure, and hence may still be preserved
indirectly.

In fact, the photometric shifts are only a subset of all
patch transformations that do not affect the F -codes. This
can, for example, be seen from Figure 1. It can also be seen
(as mentioned earlier) that under (F, t), any two patches re-
ceive a common code if they answer the same way to all the
queries: “Is pixel u brighter than pixel v by more than t?”
At the same time, answering all such queries identically is
not necessary for two patches to be coded identically. Thus,
there is still more invariance than explained by aggregating
patches based on the binary queries above. This remaining
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11 15 3
14 65 67

34 0 23
0 0 5
6 80 96

117 100 117
68 84 100
90 134 134

217 129 227
128 126 130
131 254 255

128 0 128
0 0 0
0 255 255

Figure 1: Subimages that are mapped to the same right-
hand pattern of (1) by (F, 16) are rendered with 256 levels
of gray (top) and numerically transcribed (bottom).

invariance can intuitively be described based on the struc-
ture of the patch order statistic (see, for example, the com-
mentary to (1) above): In two patches with the same code, a
pair of pixels from a subchain enclosed by significant jumps
(¿) may respond differently to the same query.

Unlike the photometric shift invariance, the additional
modes of invariance above do depend on t, which might
be exploited in applications by applying F with variable t.
This latter possibility has largely motivated this work.

3.2. Information Content
We reiterate that, despite being defined purely based on
intensity ordering, the “non-flat” (F, t)-micropatterns do
carry primitive directional information as well as primitive
surface depth information. This can be seen from Figure 2.

Most binary patterns are trivially associated with one
of the eight directions (on the π/4 angular scale). The
“ridgelets” 01

10 and 10
01 are the only exceptions but they occur

less frequently; see §5. Any non-zero non-binary pattern c
can be “pulled back” up to the level of its coarser, binary an-
cestors (although non-uniquely) in order to “estimate” the
captured direction.

The uncertainty in simultaneous estimation of position
and direction is well-known to be generally inevitable. This
scheme provides a simple mechanism to exercise the trade-
off: Suppose, for instance, the pattern 01

00 is signaling the
same diagonal direction as 11

01 . In that case the two would
be each other’s translates along the direction normal to the
signaled one. Lowering the granularity t, would then refine
01
00 to 12

01 .
A competing interpretation might link 01

00 to 11
00 , in which

case 01
00 would resolve into 12

00 . In general, under this
scheme, refining the interpretation of a code correspond-
ing to an internal node, requires lowering the granularity t.
Thus, a contour integrator might exercise this granularity
control, for example, in a feedback loop iteratively attempt-
ing to connect neighbors if their codes have compatible di-
rections. The directional ambiguity of the coarser codes
would then lead to more aggressive explorations of conti-
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nuity, perhaps resulting in illusory contours. When, and if,
the number of contouring hypotheses reaches a predefined
limit, the codes of the more ambiguous junctions would be
refined. Any discovered misalignment would then result in
discarding the affected contours.

The depth of the code in the C hierarchy appears to pro-
vide rudimentary information about the depth of the coded
structure. We refer to this depth as m(c) (m = 1, . . . , 4 as
determined by n = 2). There is certainly even more am-
biguity in interpreting the depth information than the direc-
tional one. However, short of real estimation of curvature,
the (F, t) scheme does appear to be sufficient in the sense of
providing the 2.5D primary sketch [9]. Parallel implemen-
tations of this coding (with larger patches) might then also
allow for fast scene exploration and local contour integra-
tion to develop simultaneously.
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Figure 2: A fragment of C for n = 2 illustrating, among
other features, how the direction and depth of the mi-
crostructure can be induced from the “brightness” order re-
lation on C preserved from the original such order on the
patch space.

Figure 3: A natural image (log intensities are used due to
the very large image size).

Let us apply F to every distinct 2 × 2 microimage of
image in Figure 3. Figure 4 marks as white all the “flat”

(i.e. background) sites of image I , setting t = contr(I)
the unit of the spatial contrast of the image according to the
following definition:

contr2(I) =
1

M(N − 1) + N(M − 1)

∑

k∼l

(Ik − Il)
2 (5)

where the summation is over all M(N − 1) + N(M − 1)
neighboring (vertical and horizontal but not diagonal) pairs
(k, l) of image sites. This definition of contrast is advocated
in [4], in particular for being (a discrete version of) the only
scale invariant norm on image spaces. We also find this
definition helpful in general for comparing intensity images
presented on different intensity scales, and also for compar-
ing subimages within an image.

As shown in Figure 5, the unit contrast coincides (for this
image on the logarithmic intensity scale) with the 80-th per-
centile of the empirical distribution of the (absolute) differ-
ences between the horizontally and vertically neighboring
pixels. Let us denote by G the corresponding distribution
function, and by G−1 - its inverse, the quantile function.

200 400 600 800 1000 1200 1400

100

200

300

400

500

600

700

800

900

1000

Figure 4: The background class (white) occupies 74% of
image in Figure 3, according to F with t = contr(I).

4. Microimage and Micropattern Dis-
tributions and Information

The statistical context of our experiments requires some no-
tation. The reader familiar with information theory might
skip the latter parts.

Let Q represent the original quantized intensity scale, in
our case Q = {0, . . . , 216 − 1}. Let I = QMN be our
image space for some positive image dimensions M and N
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Figure 5: Cumulative distribution functions G for the popu-
lation of the (absolute) differences between the horizontally
and vertically neighboring pixels of image in Figure 3 (top),
and other 50 random images (below) from the same data set
(§5.3). The x-values are scaled to unit contrast (5)

(M = 1024, N = 1536 in our experiments), and let i refer
to an individual image from I. The space of microimages
s is denoted by Ω = Qn2

. We are going to think of the
microimage signal S as a random variable with values in Ω
distributed according to pS|I , the distribution of the popula-
tion of all the microimages s observed in image i:

pS|I(s|I = i) =

∑
s′ I{s′=s}

(M − n + 1)(N − n + 1)
, (6)

where the summation is over all n × n subimages of i.
Let C be a finite set, image i be fixed and let F : Ω → C.

Definition 2 The F -microcode distribution of image i (over
codebook C) is the distribution of the population of all the
micropatterns F (s) observed in i:

pF |I(c|i) =

∑
s I{F (s)=c}

(M − n + 1)(N − n + 1)
. (7)

Given a probability distribution P on I, the expectations

pS(s) =

∫

I

pS|I(s|i)dP (i), pF (c) =

∫

I

pF |I(c|i)dP (i)

are the mean microimage and microcode distributions, re-
spectively.

Similarly defined are pS,F |I(s, c|i) and pS,F (s, c), the
joint distributions of the microimage signal S and its F -
coding relative to individual image i and image distribution
P , respectively. The entropy of the random variables S and
F (within image i) are written as H(S|I = i) and H(F |I =
i), respectively. (For a comprehensive reference on infor-
mation theory, see [1].) The corresponding conditional en-
tropies are also given by H(S|I) =

∫
I H(S|I = i)dP (i)

H(F |I) =
∫
I H(F |I = i)dP (i), respectively, where the

random image I is assumed to follow P .
Finally, given i ∈ I, the mutual information between

the microimage signal S and its F -coding is defined in (8)
below:

M(S;F |I = i) = (8)
∑

s∈Ω,c∈C

pS,F |I(s, c|i) log
pS,F |I(s, c|i)

pS|I(s|i)pF |I(c|i)

and the conditional information (relative to P ) is then

M(S;F |I) =

∫

I

M(S;F |I = i)dP (i). (9)

Figure 6: A random sample of 2× 2 subimages from image
in Figure 3.

5. Experiments
We are interested in estimating probability distributions of
(F, t) codes for various methods of defining t. In particu-
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lar, we are interested in assessing variations of these esti-
mates from image to image. We are also interested in es-
timating the corresponding information measures (H(F |I)
and M(S;F |I)) in view of their dependence on the t se-
lection. Finally, we would like to assess these coders per-
ceptually, similarly to how Figure 4 explicates the notion of
microstructure according to a particular t-selection method.

5.1. Data
Our test images come from the popular van Hateren’s col-
lection of 4167 still natural stimuli: 1024 × 1536, two
bytes/pixel, raw images of natural and urban landscapes
obtained with a Kodak DCS420 camera, “linearized with
the lookup table generated by the camera for each image”
[5]. We have used both the truly linear version as well as
the deblurred version (corrected for the PSF of the cam-
era), but present here only the results for the deblurred im-
ages. We have also excluded 49 irregular images (42 ex-
tremely blurred and seven disoriented ones), arriving at the
image sample size of Nim = 4118. Thus, we assume that
i1, i2, . . . , iNim

are i.i.d. random images distributed accord-
ing to a hypothetical natural image distribution P on I.

5.2. Adaptive Ordinal Quantization
We have considered two categories of methods of adapta-
tion of (F, t) coders to contrast variations within image i.
First, the coder can be adapted globally, i.e. t is computed
based on some global image function. E.g. t = γ ·contr(i),
a fraction of the spatial contrast, or G−1(γ), the γ ·100%-th
percentile of the distribution of the pairwise absolute dif-
ferences. Note that in any of these cases every instance of
configuration s in the image receives the same code F (s)
(M(S;F |I = i) = H(F |I = i)).

Second, (F, t) coders can be adapted locally. For in-
stance, t can be set to γ · contr(Ns) or G−1

Ns
(γ), where Ns

is some neighborhood of the coded patch s. Note that in
this case, it is possible for two identical patches s = s′ ex-
tracted from different locations in the image to be coded
differently F (s) 6= F (s′) (M(S;F |I = i) = H(F |I =
i) −H(F |S, I = i).

Graphs in Figure 8 show dependence of the coded in-
formation on the level γ in the contexts of defining t =
G−1(γ), and using global (subscript F∞) and local (F8 -
8 × 8 neighborhoods) adaptations. The estimates are ob-
tained for 16 levels of γ and are presented along with their
90% simultaneous confidence intervals computed accord-
ing to (10) below, using the multivariate normal asymptotic
([14]):

δ2
γ(α) = (10)

v̂ar(M)) ×
(Nim − 1)(K − 1)FK−1,Nim−K+1(α)

Nim(Nim − K + 1)
,

where M stands for the random version of M(S;F |I = i),
FK−1,Nim−K+1(α) is the (1 − α) × 100-percentile of the
F -distribution with K − 1 and Nim − K + 1 degrees of
freedom; α = 0.1, K = 15.

−1 0 1 2

−1

0

1

2

−3 0 1 4

−2

0

2

4

−6 −3 0 3 5 8

−6

−3

0

3
5

8

−12 −6 0 6 12

−12

−6

0

6

12

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

Figure 7: Left: A 2 × 2 central block s is presented in its
variable size natural contexts Ns extracted from image in
Figure 3. The block is coded either as 12

00 or 11
00 , depending

on the context Ns and the significance level γ for threshold
selection. Right: Cumulative distribution functions GNs

for
the corresponding populations of the (absolute) differences
between the horizontal and vertical neighbors.

5.3. Estimation of pF

Recall (4) that with n = 2, we have |C| = 75 patterns. We
compute the 75-dimensional probability vectors pF (·|I =
i) for every image in the data set, and for several (F, t)
coders distinguished by the threshold selection method, and
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Figure 8: Comparison of the information contents of global
(F∞) and local (F8) adaptations across several γ levels.

we estimate the corresponding means pF (·) (over the natu-
ral image ensemble) with simultaneous confidence intervals
similarly to the ones in (10). In Figure 9, pF is estimated
when F is adapted to 8× 8 contexts N via t = contr(N ).

6. Summary and Conclusions

We have discussed a class of ordinal, nonlinear methods
for coding microscopic structure in intensity images with
a view toward image interpretation. Our goal has been to
collect theoretical and empirical evidence in order to assess
practical suitability of these methods. Our extensive statisti-
cal analysis allows us to conclude that the considered coders
capture microscopic structure in various natural domains,
and with different image preprocessing, consistently: High
frequency patterns in one such domain, or with one partic-
ular intensity scale, remain comparably frequent in other
such domains, or with other intensity scales, or preprocess-
ing regimes. The information content of these coders is con-
sequently stable with respect to the above conditions.

Additional adaptations have also been introduced mainly
in order to emphasize flexibility of the methods.

For applications, our naive comparison of information
contents M(S;F ) and M(S;F ′) of coders F and F ′ might
be insufficient. In addition to global perceptual analysis, a
distortion measure d(s, c) might also be needed in order to
relate micro- and macroscopic perceptual losses, similarly
to the rate distortion analysis ([1]). Namely, coders with
M(S;F ) = M(S;F ′) might have different expected dis-
tortions Ed(S, F (S) 6= Ed(S, F ′(S). There are many rel-
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Figure 9: Local adaptation, t = contr(N ) with 8 × 8 con-
texts N . Principal masses total to ≈ 99%.

evant choices for such measures ([1]), and we suggest one
here, see (11) below:

d(s, c) =
2

n(n − 1)

∑

k 6=l

G((sk − sl)
+)I{ck≤cl}, (11)

where G is as before the cumulative distribution function
of the population of the (absolute) difference between hori-
zontal or vertical neighbors in a given image (see also Fig-
ure 5); (sk − sl)

+ = max(0, sk − sl). This measure is
normalized to [0, 1], counting severeness of distorting the
relative brightness between two pixels.

Computing these codes efficiently is no less important
for applications, and the necessity of executing many sort-
ings, however optimally [12], might still be unattractive for
some applications. The fact that the set of answers to all
binary queries su − sv > t within patch s uniquely identi-
fies the code of s appears crucial: For a given subimage, a
small subset of these answers might be sufficient. Depend-
ing on the subimage population (i.e. on the joint distribution
of the query bitstrings and the F -codes), different subim-
ages would generally require different subsets of queries for
computational efficiency in the sense of minimizing the av-
erage number of the queries evaluated in determining the
code. For this purpose, a suboptimal tree-based Vector
Quantizer based on the above queries at internal nodes and
the F -codes at leaf nodes might be learned from the training
subimage data; for instance, one may use the same strategy
as in building decision trees, namely greedy entropy reduc-

7



tion. Regarding the internal nodes as approximate, yet more
invariant, F -codes might also be a viable option for gener-
ating a coarse-to-fine hierarchy of local image features for
object recognition and classification. Such VQ trees are but
one example of defining local image features based on or-
dinal methods.
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