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Chapter 1

Introduction and theoretical
tools

“The general laws of Nature are not, for the most part, immedi-
ate objects of perception. They are either inductive inferences
from a large body of facts, the common truth in which they
express, or, in their origin at least, physical hypotheses of a
causal nature serving to explain phenomena with undeviating
precision, and to enable us to predict new combinations of them.
They are in all cases, and in the strictest sense of the term, prob-
able conclusions, approaching, indeed, ever and ever nearer to
certainty, as they receive more and more of the confirmation of
experience. But of the character of probability, in the strict and
proper sense of that term, they are never wholly divested.” i

Turbulence represents an excellent example of a scientific research field in
which progresses have been and are made on the basis of causal hypothe-
ses and attempts to confirm them with observations. A turbulent flow is
the chaotic motion of a fluid, which is most probably described by a sys-
tem of nonlinear integro-differential equations, the Navier-Stokes equations.
Despite such equations are known, they remain an unsolved mathemat-
ical problem. Causal hypotheses on kinematical, dynamical, or energetic
grounds, are made to build simplified models describing some of the fea-
tures of turbulence, aiming to a fundamental understanding of the physical
mechanisms which lie behind such system of equations. The common and

iGeorge Boole (Boole, 1854, p. 4).
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2 Introduction and theoretical tools

necessary approach based on the idealisation of real flows as homogeneous,
isotropic, unbounded, and with negligible viscous effects, already implies
that any result should be interpreted in a probabilistic sense.

Boole proceeds in his page, stressing the distinction between the inves-
tigation of Nature and of the laws of the human mind:

“On the other hand, the knowledge of the laws of the mind does
not require as its basis any extensive collection of observations.
The general truth is seen in the particular instance, and it is
not confirmed by the repetition of instances.” i

The discussion of such statement is far from the scope of this thesis. Still,
learning the general case from the particular one has been proven to be a
successful approach also in the field of physics and of “the laws of Nature”.
In this field, though, the repetition of observations, their reproducibility, is
the key-element of any attempt to confirm generalised theories.

In this perspective, the study presented in this thesis describes the
anisotropic influence of the background rotation on a (bounded and steadily-
forced) turbulent flow, looking for the particular effects of the new dynam-
ical term which, as it will be shown in the following sections, appears in
and alters the general system of equations of motion.

This introductory chapter gives an overview of the general concepts and
of the essential mathematical tools, and presents this work in the context of
the most important results achieved in the field of rotating turbulence and
available in the literature. Sec. 1.1 introduces the concept of background
rotation and its effects on a fluid in motion: the main phenomenological
effects; the modification of the equations of motion; the emergence of in-
ternal waves typical of rotating fluids, known as inertial waves. Sec. 1.2
summarises instead the most important phenomenological and fundamen-
tal features of turbulence. Particular emphasis is given on the statistical
tools necessary for the flow analysis and used throughout the thesis, on
the kinematical objects which further describe the turbulent flow field, and
on the Lagrangian view-point used for part of the data analysis. A brief
specific overview of the most important results achieved in the past in the
field of rotating turbulence concludes this section and the chapter.

1.1 Fluid flows with background rotation

The influence of the Earth background rotation on oceanic and atmospheric
currents are maybe the most important examples of fluid flows affected by
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rotation. Together with vertical confinement and density stratification, ro-
tation contributes to their quasi-2D evolution. Rotation also plays an es-
sential role in astrophysics problems, as well as in the flow of the liquid
magnetic core of the Earth. At smaller length scales, the background rota-
tion influences the flow inside industrial machineries like mixers, turbines,
and compressors.

It is convenient to describe the dynamics of a body in the presence of
a background rotation in the rotating, non-inertial frame of reference. The
equations of motion in the rotating frame, shortly described in Sec. 1.1.1
for the dynamics of a fluid body, are derived on kinematical grounds as a
pure coordinate transformation. The result is an extra termii, the Corio-
lis acceleration, which strongly dictates the dynamics of rapidly rotating
systems. An excellent introduction to the Coriolis acceleration is given by
Persson (1998), who points out how such a kinematical derivation hides
the physical mechanisms behind it. In fact, the original work of Gaspard
Gustave de Coriolis (Coriolis, 1832, 1835) was derived in the framework
of rotating mechanical systems like hydraulic machines, and gives a dynam-
ical view-point of the problem. Coriolis explained that a body standing on
a rotating platform (still in the rotating frame) is subjected to the ficti-
tious centrifugal force directed radially outwards. A body which is instead
in motion in the rotating frame, is subjected to a centrifugal force which
is composed of a radial component and an extra one perpendicular to his
relative motion, the latter taking his name.

A fluid set in rotating motion supports inertial waves, a kind of internal
fluid waves solely promoted by the Coriolis force. A striking manifestation of
such waves is the Taylor column effect: let a container filled with fluid being
set in solid body rotation on a turntable spinning at constant angular veloc-
ity, and let a small body be slowly towed across the bottom of the container.
Fluid visualisations with the aid of dye reveal a column of fluid which follows
the motion of the body through the container, and the inertial waves are
the physical mechanism responsible for the observed flow behaviour. Such
experiment, performed by Taylor (1921b), proved what Proudman pre-
dicted shortly before, and which goes under the name of Taylor-Proudman
theorem: a fluid motion, slow with respect to the background rotation, is
independent of the coordinate along the rotation axis. In this sense, the

iiAs it will be shown in Sec. 1.1.1, two new terms appears in the equations of motion
written for the rotating frame, but one of them can be incorporated in the pressure
gradient term and – practically – does not constitute an extra term when manipulating
the equations.
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most remarkable effect of rotation on a fluid flow is the tendency of the
latter towards a two-dimensional state, for which the flow evolves mainly
in the plane perpendicular to the axis of rotation. The physical mechanisms
with which the Coriolis acceleration, through the development of an iner-
tial wave field in the fluid, induces this two-dimensionalisation process are
subtle, and not fully understood yet.

In the following sections, the necessary mathematical formalism is pre-
sented.

1.1.1 Equations of motion

For an incompressible flow of a Newtonian fluid in a fixed inertial Cartesian
frame of reference {xf , yf , zf}, and in case of absence of external forces, the
governing equations of motion state the conservation of mass and momen-
tum, and are known as the Navier-Stokes equations:

∇f · uf = 0 , (1.1)

Dfuf

Df t
≡

duf

dt
+ u · ∇fuf = −1

ρ
∇f p̃f + ν∇2

fuf , (1.2)

where the vector uf represents the local velocity of the fluid, p̃f the local
pressure, ρ and ν the fluid density and kinematic viscosity. The nabla op-
erator is represented by the vector ∇f ; the Laplacian by ∇2

f ; Df/Df t is
the material derivative (differentiation in time along the trajectory of the
elementary fluid particle), and by definition it equals the sum of the local
acceleration and the nonlinear advective term. The two equations state re-
spectively that the velocity field is divergenceless, and that the change in
velocity of a fluid particle is due to the pressure field and the viscous dis-
sipation. Together with the proper set of boundary and initial conditions,
they completely define the flow field in space and time. The difficulty of
such equations is inherent to their nonlinear integro-differential nature: in
order to retrieve the velocity information at one point in space and time,
it is necessary to integrate the system of equations over the entire field.

As mentioned earlier, the equations of motion in the rotating frame
are derived with a straightforward transformation of coordinates of the
system of equations from the inertial frame {xf , yf , zf} to the rotating
non-inertial one {x, y, z}. Let the non-inertial frame have common origin
with the inertial one, and rotate with constant angular velocity Ω in the
direction of the rotation vector Ω. The velocity of a fluid element, thus the
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temporal derivative d/dt of its position vector xf in the inertial frame, can
be expressed in the rotating frame as:

uf ≡
dxf

dt
≡ dx

dt
+ Ω × x ≡ u + Ω × x . (1.3)

The acceleration of the same fluid element is represented by the second time
derivative of the position vector, and it can be related to the acceleration
in the rotating frame as:

af ≡
d2xf

dt2
=

d2x

dt2
+ Ω × (Ω × x) + 2Ω ×

(
dx

dt

)
=

= a + Ω × (Ω × x) + 2Ω × u . (1.4)

The last two terms were recognised by Coriolis as the two components of the
centrifugal acceleration, and are nowadays known as centrifugal acceleration
and Coriolis acceleration, respectively. The first term is irrotational, and
can therefore be written as a gradient:

Ω × (Ω × x) ≡ −∇
(

1

2
Ω2r2

)
, (1.5)

with r the normal distance of the position x from the axis of rotation. Sub-
stituting the local acceleration in Eqs. 1.1 and 1.2 with the one expressed
in the rotating frame by Eq. 1.4, and making use of the relation 1.5 to
incorporate the centrifugal acceleration term in the pressure gradient one,
the Navier-Stokes equations are finally written for the rotating non-inertial
frame of reference:

∇ · u = 0 , (1.6)

Du

Dt
≡ du

dt
+ u · ∇ u = 2u × Ω − 1

ρ
∇ p + ν∇2u . (1.7)

The pressure term is now the gradient of the modified pressure p = p̃ −
1
2ρΩ2r2, and the Coriolis acceleration term 2u×Ω distinguishes the momen-
tum conservation equation in the rotating frame. In the following chapters,
the tensorial notation is often conveniently used. It is useful to write here
the same system of equations in tensorial notation, which reads:

∂ui

∂xi
= 0 , (1.8)
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Dui

Dt
≡ dui

dt
+ uj

∂ui

∂xj
= 2ǫijkujΩk −

1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
. (1.9)

It is also convenient to define here the nondimensional numbers which
characterise a fluid flow according to the relative importance of one over
another term in the momentum equation. Indicating with L and U the
length and velocity scales representative of the flow, the ratio between the
order of magnitude of different terms defines three relevant parameters:

Reynolds number : Re ≡ advection
viscosity =

U2/L
νU/L2

=
UL
ν

; (1.10)

Rossby number : Ro ≡ advection
Coriolis =

U2/L
2UΩ

=
U

2ΩL ; (1.11)

Ekman number : Ek ≡ viscosity
Coriolis =

νU/L2

UΩ
=

ν

ΩL2
. (1.12)

It is clear that only two over the three parameters are independent, the
third being a combination of the others. If the Reynolds numbers is suf-
ficiently high, the flow is chaotic, turbulent – as it will be defined later.
Viscous effects may therefore be negligible in the bulk of the fluid, but not
in proximity of the boundaries: here, viscosity becomes important in com-
parison with rotation, and the Ekman number becomes relevant. At high
Re and low Ek, the Rossby number Ro alone characterises the steady flow.
For Ek and Ro much smaller than unity, the viscous and advective terms
may be neglected, and in steady conditions the fluid particle acceleration
is solely determined by the pressure gradient and the Coriolis force. Such
situation is known as geostrophic balance, and it is of utmost importance
for the dynamics in the atmosphere. From such expression, the formalism of
the Taylor-Proudman theorem can easily be derived: (Ω · ∇) u = 0, which
states the suppression of the velocity derivatives in the direction of the
rotation axis.

1.1.2 Inertial waves

As mentioned earlier, rotating fluids support inertial waves, which are in-
ternal fluid waves solely promoted by the Coriolis force. These waves have
maximum vertical displacements in the interior of the fluid, and they van-
ish at the free surface, if present. In the inviscid limit in an unbounded
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domain, they are described by a solution of the type:

u = ℜ
{

ei(k·x−ft)

u
u

}
, (1.13)

where ℜ is the real part, i the imaginary unit, k the wave vector, and u
the wave amplitude. For a derivation of the wave equation and its solution,
the reader is referred to Greenspan (1969). Let the rotation period and
frequency be defined as:

TΩ =
2π

Ω
, fΩ =

1

TΩ
=

Ω

2π
. (1.14)

Inertial waves are characterised by angular frequencies f below the inertial
frequency fIW , where the inertial period and frequency are defined as:

TIW =
TΩ

2
=

π

Ω
, fIW = 2fΩ =

Ω

π
. (1.15)

Defining ek the unit vector in the wave vector direction, and k the wave
number, the angular frequency f is prescribed by the dispersion relation:

f = ±2ek · Ω . (1.16)

The phase velocity reads:

cp ≡ f

k
ek = ±2

k
(ek · Ω) ek . (1.17)

The group velocity reads:

cg ≡ ∂f

∂k
= ±

(
2Ω

k
− cp

)
= ±2

k
[ek × (Ω × ek)] . (1.18)

They propagate obliquely with respect to the rotation axis, the propagation
direction being dependent solely on their frequency and the rotation fre-
quency fΩ, for which the wave field is anisotropic. It is remarkable that such
waves have group velocity perpendicular to the phase velocity, so that the
energy propagates perpendicularly to the direction in which they appear to
travel.

The behaviour of inertial waves in the presence of domain boundaries,
unavoidable in a laboratory experiment, will be discussed in Chap. 4, and
in particular in Sec. 4.3, in the context of the possible influence of inertial
oscillations with frequencies in proximity of the resonant frequencies of the
fluid container used for the present experiments.
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1.1.3 Ekman boundary layers

A particular note has to be made concerning the effects of rotation in
the flow regions in proximity to the boundaries, regions dominated by the
viscous friction: the boundary layers. Such effects are not in the scope of
this thesis, and are mentioned here only for sake of completeness. For a
deeper insight, the reader is addressed to one of the many textbooks, e.g.
Kundu and Cohen (2004), or more specific manuals, e.g. Greenspan

(1969).
When rotation is dominant, the horizontal flow in the fluid bulk is dic-

tated by the geostrophic balance, i.e. the pressure gradient balances the
Coriolis acceleration term (both perpendicular to the flow streamlines).
Large-scale cyclonic and anticyclonic structures, with rotation axis nearly
vertical, dominate the flow. The pressure field they induce characterises
the cyclonic structures as low-pressure regions, and anticyclonic ones as
high-pressure regions. Such pressure field is propagated, independently of
the vertical coordinate, into the horizontal boundary layers. As the bound-
ary is approached, friction becomes more important and reduces the large-
scale horizontal velocities, and consequently the Coriolis acceleration. The
altered geostrophic balance inside the boundary layer results in the pres-
sure gradient forcing an extra horizontal velocity component, perpendicular
to the preexisting one and oriented to the left of it, i.e. inward for cy-
clones and outward for anticyclones. Mass conservation imposes that such
local horizontal flows are balanced by local vertical motion: in proximity of
the bottom boundary, the inward/outward motion in cyclonic/anticyclonic
structures results in a local upward/downward flow (pumping/suction ef-
fect), which propagates out of the boundary layer back into the fluid bulk.
The Ekman boundary layer is characterised by a thickness δEk ≡

√
ν/Ω,

which is independent of the flow velocity, and therefore homogeneous and
stationary.

The values of δEk for the current experiments are reported in the ta-
ble of Sec. 2.3.1. The measurement system used does not allow to retrieve
sufficient flow information only a few millimetres away from the bottom
boundary, and boundary effects remain out of the scope of this work. Nev-
ertheless – as explained – the effects of the Ekman pumping may propagate
also in the fluid bulk and play a role in the large-scale vertical motion.
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1.2 Turbulent flows

There exist no exact definition of turbulence. As already introduced in Sec.
1.1.1, a fluid flow reaches a turbulent state when the Reynolds number is
sufficiently high, i.e. when viscous effects are of minor importance in com-
parison with advection. Turbulence should be seen as the chaotic behaviour
of a strongly nonlinear and dissipative system with a large number of de-
grees of freedom. Despite its chaotic nature, the flow remains governed by
a deterministic system of equations (Eqs. 1.1, 1.2 in an inertial frame of
reference). This apparent contradiction is explained with the extreme sen-
sitivity of the system to the boundary and initial conditions, which lies in
the nonlinear, nonlocal, and not integrable nature of the equations. This is
far from being a complete definition. A critical and comprehensive intro-
duction to the subject is given by Tsinober (2003), where, in place of a
definition, a list of the major qualitative features of turbulent flows is given:

apparent randomness of the flow in space and time, due to the strong
amplification of any disturbance (boundary or initial conditions, ex-
ternal forces);

wide range of scales of the structures of the flow field interacting with
each other;

high dissipation of kinetic energy, which gets irreversibly transformed
into heat by viscous effects;

three-dimensional nature, as pure 2D flows lack some essential kinematic
mechanisms of 3D turbulenceiii;

rotational nature, revealed by the vortices and eddies which are continu-
ously created, stretched, and intensified;

strong diffusivity which enhances the dispersion and mixing properties
of (scalar and vectorial) passive objects.

Turbulent flows are rather ubiquitous in Nature and in technological ap-
plications. Different forcing mechanisms driving them, as well as different

iiiThere is no general consensus regarding the inclusion of chaotic purely-2D flows
in the definition of turbulence, and most authours do consider them turbulence. It is
instead well-known that 2D flows lack the vortex stretching mechanism, responsible for
the transfer of energy from large to small scales.



10 Introduction and theoretical tools

boundary conditions which represent their constraint, imply that turbulent
flows can differ considerably in terms of the spatial structure of their large
scales. Despite this, it is assumed that, for smaller scales (in the range of the
energy spectrum defined as inertial range), the flow forgets about the shape
of its boundaries and the nature of the forcing, and that all reflexional sym-
metries of the system of equations and boundary conditions are restored at
those scales. Turbulent flows may still be grouped into categories according
to the shape and nature of the large scale flow driving them. One classical
example is the flow in a pipe, which was investigated by Reynolds (1883)
to determine the critical transition point from a smooth laminar flow to
a chaotic turbulent one. As in a pipe, also in proximity of a flat boundary
(the region defined as the boundary layer) the mean shear implies strong
gradients of velocity, and for values of the mean streamwise velocity higher
than a critical one (or for viscosity lower than a critical value), the laminar
flow becomes unstable and evolves into a turbulent state. Turbulent jets
and plumes are characterised by a driving mean free shear flow. A very
special turbulent flow is the homogeneous isotropic one, which – despite
non-existing in Nature – constitutes a good idealised playground, in which
the system of equations, with the related boundary and initial conditions,
possesses all reflectional and rotational symmetries. Such flows are simu-
lated numerically in domains with periodic boundaries, and using different
forcing schemes (in physical or frequency space); they are also approxi-
mated in the laboratory using different generation methods, and extracting
quantitative measurements in regions of the flow sufficiently far from the
boundaries. The importance of (quasi) homogeneous isotropic turbulence
comes from the fact that it reveals more clearly the universal features, the
most important ones being listed above, which are recognised in every tur-
bulent flow. In fact, such idealised flows are free from external influences
(e.g., mean shear, buoyancy, centrifugal and Coriolis forces) which would
promote an organisation of the flow into structured large scales. Such or-
ganisation, often due to linear mechanisms, interacts with and partially
hides the nonlinear nature of turbulenceiv.

Analytical and statistical theories on turbulence need verifications from
experimental data, which are commonly obtained through computer simu-
lations and laboratory and field experiments. But in first place, especially

ivThe striking difference of the large-scale organisation of a turbulent flow with and
without the effect of the background rotation can be appreciated comparing the pho-
tographs obtained from laboratory experiments and shown in Chap. 4, Sec. 4.1.
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in the field of turbulence, numerical and physical experiments permits a
genuine insight in the physics which is behind the equations. As already
mentioned, simulations offer the advantage of idealised flow situations, and
they are usually cheaper to realise. The wide range of scales characteris-
tic of turbulence implies that scale resolution represents a technical chal-
lenge for both approaches, and in most cases in laboratory and numerical
experiments the smallest scales of the flow are not resolved. But while
under-resolution in numerical experiments may lead to erroneous results,
laboratory data guarantee that the flow observed is real, and the measured
results are correct for the resolved scales (Tsinober, 2003). Also because of
these reasons, numerical simulations and laboratory experiments are com-
plementary tools to investigate turbulence.

1.2.1 Statistical features and tools

As it is not possible to access analytically the full Navier-Stokes equations,
and in view of the apparent chaotic nature of turbulence, statistics repre-
sents the basic tool to investigate and compare turbulent flows. Averages
are needed to quantify fluctuating variables, and can be performed in space,
time, or over an ensemble of N repetitions. Ensemble, temporal, and spatial
averages of – say – the field variable ξ function of the 3D-position xi and
the time t, are respectively defined as:

〈ξ〉(xi, t) ≡
1

N

N∑

1

ξ(xi, t) , (1.19)

〈ξ〉t(xi) ≡
1

∆t

∆t∫

0

ξ(xi, t)dt , (1.20)

〈ξ〉s(t) ≡
1

∆V

∫∫∫

∆V

ξ(xi, t)dV . (1.21)

Here, N is the number of repetitions of the ensemble, ∆t the duration of
the observation time, and ∆V the size of the observation volume of the
field ξ(xi, t). It is noteworthy that the given definitions are true only under
specific hypotheses. In fact, the temporal average 〈ξ〉t is only a function of
the position xi if the flow is statistically stationary, and such average is then
equivalent to the ensemble average 〈ξ〉. The spatial average 〈ξ〉s is only a
function of the time instant t if the flow is statistically homogeneous, and in
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such case the spatial average corresponds to the ensemble average 〈ξ〉. These
statements constitutes the ergodic theorem, and give a clear indication of
the special significance of statistically steady and homogeneous turbulence.

More informations are given by the statistical probability distribution
function (PDF) of the variable ξ, which quantifies the number of occur-
rences of a certain value for the considered variable. Also useful is the
joint-PDF, which gives the probability of simultaneous occurrences of spe-
cific values for two (more or less independent) variables, quantifying the
degree of correlation of the two.

Since the work by Reynolds (1895), a statistically steady velocity
field ui(xj) is traditionally decomposed into the mean flow Ui(xj), and the
fluctuating part u′

i(xj). They read, respectively:

Ui(xj) ≡
1

∆t

∆t∫

0

ui(xj , t)dt , (1.22)

u′
i(xj , t) ≡ ui(xj, t) − Ui(xj) . (1.23)

Deriving the governing equations of motion for the fields Ui and u′
i (the

equations are omitted here, and the reader is referred to one of the many
textbooks), the term which appears in both equations with opposite sign is
−∂〈u′

iu
′
j〉/∂xj . The term describes the coupling between the mean flow and

the turbulent fluctuating field, and is a partial derivative of the Reynlds
stress tensor −〈u′

iu
′
j〉. It quantifies the stress per unit mass exerted by the

fluctuating field on the mean flow. As explained in Chap. 3 (see Eq. 3.6),
the Reynolds stress tensor multiplied by the strain rate tensor (the latter is
defined in the following section) of the mean flow represents the production
of turbulent kinetic energy driven by the same mean flow.

1.2.2 Velocity derivatives

Velocity derivatives are between the most useful kinematic quantities to
gain insights in the dynamics of turbulence. The rate of change of velocity in
space is represented by the velocity gradient tensor, ∂ui/∂xj . The velocity
gradient can be decomposed in its symmetric and anti-symmetric parts, the
strain rate tensor sij and the rotation tensor qij:

∂ui

∂xj
=

1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
+

1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
= sij + qij . (1.24)
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The rotation tensor is uniquely determined by the vorticity vector ωi, which
components read:

ωi =

{
∂uz

∂y
− ∂uy

∂z
;

∂ux

∂z
− ∂uz

∂x
;

∂uy

∂x
− ∂ux

∂y

}
. (1.25)

As said, vorticity and strain rate are important quantities, as they appear
as essential ingredients in the kinetic energy evolution equation (directly
derived from the Navier-Stokes equations, see, e.g., Kundu and Cohen

(2004)). Vorticity quantifies the local rotational motion of the fluid, and
coherent structures of vorticity of different sizes dominate the turbulent
flow field. Its intensity is expressed in terms of enstrophy, ωkωk/2. The rate
of strain quantifies instead the local deformation of an elementary fluid
element, and the kinetic energy dissipation mechanism depends directly on
this tensor.

1.2.3 The Lagrangian approach

The velocity vector ui and the quantities derived from it are defined in the
Eulerian frame, i.e. function of the position in space xj and time instant
t: uE

i = uE
i (xj, t). A different approach reveals particularly useful to de-

scribe certain properties of turbulence, in particular dispersion processes
(for which the reader is addressed to Chap. 6): the Lagrangian view-point.
The Lagrangian velocity is defined, in the same frame of reference, but for
individual fluid particles instead of fixed points in space. In other words,
the Lagrangian velocity uL is defined for an elementary fluid particle, and
it is a function of the position x∗

k it occupied at the initial time t∗, and of
the present time t. Formally:

uL
i =

∂xL
i (x∗

k, t)

∂t
= uE

i [xj(x
∗
k, t), t] . (1.26)

The relation between Eulerian and Lagrangian velocities is intrinsically
nonlinear and may give origin to chaotic statistical behaviour of the La-
grangian field even in the presence of a smooth laminar steady Eulerian
velocity field. The statistical features of the two fields are correlated, but
the nature of Eq. 1.26 does not permit to derive a relation between the
statistics in the two frames.

The notations uE and uL are omitted throughout the rest of this thesis,
as the context makes clear whether the analysis refers to the Eulerian frame
or the Lagrangian one.
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1.3 Brief overview of previous studies of rotating
turbulence

The anisotropisation of turbulent flows by means of external body forces,
and in particular induced by the background rotation, has been the subject
of several numerical and experimental investigations in the past, which
led to important progresses in the field. This section summarises the most
important studies based on simulations and physical experiments, and the
results achieved. More detailed overviews of the relevant literature in the
context of the large-scale flow and of the Eulerian correlations, are given in
chapters 4 and 5, respectively.

The early laboratory experiments by Traugott (1958) of rotating
grid-turbulence in a wind tunnel focused on the decay of the kinetic energy
and the energy dissipation rate. Ibbetson and Tritton (1975) quan-
tified for the first time the increase of Eulerian velocity correlations due
to rotation from experimental data. They forced a turbulent air flow in a
rotating annular container by a system of translating grids, and the tem-
poral decay of the turbulence was observed and measured. The small size
of their apparatus lead to predominant Ekman boundary layer effects, for
which they observed an increase of the dissipation rate with rotation. In
1976 McEwan revealed for the first time the concentration of vorticity in
coherent structures in rotating turbulence. Two years later, Wigeland

and Nagib (1978) performed experiments similar to the ones of Trau-
gott (rotating grid-turbulence in a wind tunnel), obtaining an homoge-
neous flow in the tunnel cross-section. Hopfinger et al. (1982) investi-
gated the large-scale effects of rotation on a turbulent flow continuously
forced locally in space, studying the population statistics of the vorticity
tubes which characterise the rotating flow. Hopfinger and co-workers also
gave a detailed phenomenological description of the instabilities of such
eddies for a specific rotation rate, their nonlinear mutual interactions and
eventual breakdowns. Jacquin and co-workers (Jacquin et al., 1990) re-
produced on a larger scale the experiment by Wigeland and Nagib. With
their observations, they confirmed the nonlinear nature of the transition
from 3D to predominantly 2D flow dynamics of homogeneous turbulence,
which was predicted by the model published the year before by Cambon

and Jacquin (1989). The numerical DNS study with large-scale forcing
by Yeung and Zhou (1998) described the important increase of velocity
correlations along the z-direction (intended as the direction parallel to the
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rotation axis), and the mild decrease of correlations along the perpendicular
directions, with increasing rotation. The DNS by Godeferd and Lollini

(1999) studied the combined effects on a turbulent flow, forced locally in
space, of the background rotation and the vertical (top and bottom) con-
finement. The authors observed an increase of horizontal integral length
scales with increasing rotation rate, followed by a decrease of the same
horizontal integral scales for the fastest rotation. They explained such final
decrease in terms of growth of the population of the columnar vortices,
which caused the decrease of the average horizontal size of the large-scale
eddies. More recently, Baroud et al. (2003) investigated turbulent water
jets in a rotating annulus at Reλ = 360, and found the turbulent flow to be
highly intermittent, independent of the Rossby number. Morize, Moisy, and
Rabaud performed several experiments of decaying rotating turbulence in
large and small facilities (Morize et al., 2005, Morize and Moisy, 2006,
Moisy et al., 2010), and described in details some aspects of the coupling
between the inertial wave pattern and the decaying turbulent field using
high-resolution PIV. Accurate visualisations by means of reflective flakes of
the formation and evolution of columnar eddies in rotating turbulence were
performed by Davidson et al. (2006). These experiments showed that –
for initially inhomogeneous turbulence – large coherent vortices build-up
in a time comparable with half the revolution period, compatible with lin-
ear effects, rather than on the longer time scale typical of nonlinear ones.
The stereo-PIV measurements by van Bokhoven (2007), van Bokhoven

et al. (2009) of the same flow studied here, characterised the effects on the
turbulence of a rapid background rotation. In particular, they described,
for the first time in laboratory settings, the reverse dependence on the rota-
tion rate of the spatial horizontal correlation coefficients. Furthermore, they
observed a linear (anomalous) scaling of the longitudinal spatial structure
function exponents in the presence of rotation.

The experimental data available is still scarce and purely of Eulerian
nature. In the context of the existing literature, the present work is based on
experiments resembling the ones performed in closed non-shallow contain-
ers, and with continuous forcing applied locally in space (see, e.g., Hopfin-

ger et al. (1982), Davidson et al. (2006)). The forcing scheme adopted
to continuously sustain the turbulence produces a flow which is similar to a
Taylor-Green flow, used as forcing in many DNS simulations of turbulence
(see, e.g., Mininni et al. (2009)). Particle Tracking Velocimetry is used
to get a Lagriangian insight of the flow. To our knowledge, this study de-
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scribes for the first time from experimental data the effects of rotation on
a turbulent flow in the Lagrangian frame.



Chapter 2

Experimental and numerical
tools

This study is the natural extension of the work done by van Bokhoven

(2007), van Bokhoven et al. (2009). They studied the influence of rapid
background rotation on a turbulent flow with a novel experiment. A ro-
tating table facility was developed and tested. A sealed water container
was put on the table, and it was equipped with a turbulence generator
which continuously drives the water flow by electromagnetic forcing. The
flow has been accurately described by means of stereoscopic Particle Image
Velocimetry (stereo-PIV). With this technique, they were able to measure
the three components of the velocity field in horizontal planes at several
heights inside the container. From these data they could characterise the
turbulence from an Eulerian point-of-view, by collecting velocity informa-
tion in time at fixed positions in space. With planar high-resolution data,
they had access to the perpendicular kinetic energy spectrum i of the tur-
bulent flow, to spatial (horizontal) and temporal correlations of velocity,
and to Eulerian structure functions. They also described phenomenologi-
cally the effects of rotation on the flow. The measurement approach they
used has revealed extremely flexible for scanning the entire tank height of
250 mm: measurements were performed at 20, 50, and 100 mm above the
tank bottom, and the most interesting flow region in terms of turbulence
intensity, homogeneity, and isotropy of the velocity field has been identi-

iThe perpendicular turbulent kinetic energy is defined as e(t) =
1

2

R

∞

−∞
û2

i (k⊥, t) dk⊥ ≡
R

∞

0
E⊥(k⊥, t) dk⊥, where E⊥(k⊥, t) is the perpendicular

energy spectrum, and k⊥ the perpendicular wave vector.

17



18 Experimental and numerical tools

fied around z = 50 mm. They showed well-known features of the effect of
rotation, as the reduction of kinetic energy dissipation, the suppression of
vertical velocity, and the increase of spatial and temporal velocity correla-
tions. They also described, for the first time in laboratory experiments, the
reverse dependence on the rotation rate of the spatial horizontal correla-
tion coefficients. Furthermore, they observed a linear (anomalous) scaling
of the longitudinal spatial structure function exponents in the presence of
rotation.

Planar stereo-PIV data are characterised by a high spatial resolution,
but they describe the flow only on 2D-sections of the domain. In order to
provide information on the three-dimensional structures in the flow, vertical
correlations, the full velocity derivatives tensor, and on genuine Lagrangian
data, it was decided to set up similar rotating turbulence experiments using
a different measurement technique for flow visualisation, three-dimensional
Particle Tracking Velocimetry (PTV or Particle Tracking). The acquisition
of new independent measurements of a known flow gave us the excellent
opportunity to compare both measurement techniques and, for this project,
to take advantage of the insights already gained with stereo-PIV measure-
ments.

In this chapter, the laboratory experiment for rotating turbulence stud-
ies is described in Sec. 2.1, and the reader is addressed to van Bokhoven

(2007), van Bokhoven et al. (2009) for further details. Sec. 2.2 is devoted
to the measurement system. The data processing algorithms are presented
in Sec. 2.3, and the validation of the measurements in Sec. 2.4 concludes
the chapter.

2.1 Experimental setup

The experimental setup consists of a fluid container equipped with a tur-
bulence generator, and an optical measurement system. These two key ele-
ments are mounted on a rotating table, so that the flow is measured in the
non-inertial rotating frame of reference. A side-view of the setup is sketched
in Fig. 2.1, and two pictures of it are shown in Fig. 2.2. More pictures of
the setup inside the present chapter focus on different hardware details.

The inner dimensions of the container define a flow domain of 500 ×
500 × 250 mm3 (length × width× height); note that the free surface defor-
mation is inhibited by a perfectly sealed top lid. The turbulence generator
forces the flow electromagnetically in the bottom region of the flow domain,
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and the measurements are performed when the turbulence is statistically
steady (measured by the kinetic energy of the flow). Similar to wind-tunnel
turbulence experiments, the mean kinetic energy of the flow is constant in
time and decays in space along the upward vertical direction: the flow is
fully turbulent in the bottom region of the container, where it is directly
forced. It is moderately turbulent around mid-height, and it is laminar in
the top half of the domain.

The container is made of transparent perspex, in order to ensure opti-
cal accessibility for the measurement system. Four digital cameras acquire
images of the central-bottom region of the flow domain through the top-lid,
and they are held by an aluminium frame on top of the container, mounted

Figure 2.1 – Schematic drawing of the experimental setup, side view. A perspex
container sits on top of a rotating table, and is filled with a NaCl solution. The
magnet array is visible below the container, as are the two electrodes immersed
in the fluid in the two side pockets. An aluminium frame holds the four cameras
in stable position (three of them are visible in the drawing); their common field-
of-view is sketched in red. On the left of the container, a LED-array provides the
necessary illumination in the measurement region.
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Figure 2.2 – Two pictures of the experimental setup. The top panel shows the
fluid container from a point-of-view very close to one of the four cameras (which
lens appears in the top part of the picture). The cameras look through the central
optical prisms, which constitute the windows of the measurement system. The
interior of the container is illuminated by the LED array, sitting on the opposite
side of the table. The bottom panel shows a side view of the full setup on the
rotating table in the laboratory, with part of the hardware (power supply and
cooling unit for the light source) sitting below the table and co-rotating with it.
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on the rotating table. All the hardware constituting the forcing system and
the measurement system is located on top of the table surface or under
it. The equipment is remotely controlled from an adjacent room for safety
precautions during rotating runs.

2.1.1 Electromagnetic forcing

The forcing system is an adaptation of a well-known system commonly used
for shallow-flow experiments, introduced by Sommeria (1986), and inde-
pendently further developed by Tabeling et al. (1991) and Dolzhan-

skii et al. (1992). The system consists of a container filled with a layer
of mercury (Sommeria, 1986) or NaCl solution (Tabeling et al., 1991,
Dolzhanskii et al., 1992), and a constant current density field parallel to
the bottom of the container. The current is provided by a power supply, and
it is homogeneously distributed through the fluid via two electrodes placed
along two opposite sides of the domain. An array of axially-magnetised

permanent magnets underneath the container creates a magnetic field
−→
B ,

which interacts, e.g. in the NaCl solution cases, with the ions dissolved in
water while they move from one electrode to the other. The magnets are
arranged following a chessboard scheme, i.e. alternating North and South
poles for the magnet’s top faces. The interaction between the magnetic

field
−→
B and the current density

−→
j is defined as the (magnetic) Lorentz

force
−→
FL = k

ρ

−→
j ×−→

B , with ρ the fluid density and k a coefficient not known
a priori.

When the Lorentz force is used to induce a flow in shallow-layer se-
tups, as in the experiments cited above, the thin layer of fluid intersects
the magnetic field in a region where the field can be considered vertical to a
good approximation. It is directed upward above the North poles and down-
ward above the South poles. As the current density is horizontal through
the fluid, the resulting forcing term is also predominantly horizontal. This
arrangement produces a regular array of horizontal flow structures in the
domain with alternating vorticity. Moreover, the overall energy content can
be easily regulated with the current supplied to the electrodes. These setups
are used to study continuously forced and decaying flows, laminar and tur-
bulent, which are subjected to the water-height constraint: shallow flows
illustrate well some features of quasi-two-dimensional fluid flows. Recent
experiments in similar arrangements (Akkermans et al., 2008, Cieslik

et al., 2009) showed instead the intrinsic three-dimensionality of shallow
flows induced by the boundary conditions, despite the fact that the forcing
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system acts mainly in the horizontal plane.
In the present experiments of confined rotating turbulence the same

forcing scheme is employed in a full three-dimensional domain. In this case

the magnetic field
−→
B cannot be considered approximately vertical inside

the entire flow domain: the
−→
B -field lines bend horizontally, as they con-

nect each pair of opposite magnetic poles, still inside the container. The
horizontal components of the resulting Lorentz force are predominant in
the lowest region of the domain, approximately in the lowest 30 mm. The
vertical component of the forcing becomes more important while moving
away from the bottom, and it is predominant around z = 40 mm. At this
height, the intensity of the magnetic field is greatly reduced, hence the im-
portance of the forcing term in the Navier-Stokes equation becomes small
when compared to the advective term. The magnetic field and the current
density field are sketched in figure 2.3: the central vertical xz-section and
the top view of the central bottom region of the container are shown on
the top- and bottom-panel, respectively. The central region marked with a
dashed line represents the measurement volume, defined as the calibrated
region of the intersection volume of the fields-of-view of the four cameras.
In the sketch the magnets are marked in black, and the polarity of their
top-faces is indicated by N (North) and S (South). The electric current

density field
−→
j is indicated in red, and the magnetic field

−→
B of the main

magnets in blue; the grey lines indicate the positions of the horizontal mean
flow structures resulting from the described forcing system (see Sec. 3.1.2
for a detailed description of the mean flow field).

The magnets are made of neodymium, their maximum strength is roughly
1.4 T (at the centre of the top-face), and their individual footprint under
the tank is 70 × 70 mm2. The entire array of 7 × 7 magnets, arranged in
a PVC frame, is in between the bottom wall of the tank (PVC, 3 mm
thick) and a 10 mm thick steel plate, which helps to increase the density
of the magnetic field lines in the fluid bulk. More magnets of smaller size
are placed in between the main ones, in order to directly force smaller flow
structures and inject kinetic energy in the flow at different scales. A pic-
ture of the partially-mounted setup, shown in figure 2.4, reveals the magnet
array without the perspex container mounted on top of it.

A power supplyii equipped with feedback system provides a stable elec-
tric current of 8.39 A through the fluid via two titanium elongated elec-
trodes adjacent to the bottom and on opposite sides of the tank. The elec-

iiKEPCO BOP 50-8P.
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Figure 2.3 – Schematic drawing of the forcing system. Top panel shows the xz-
section through the origin of the central part of the forced region of the flow.

Bottom panel shows the top view of the same region. The magnetic field
−→
B and

the current density
−→
j are indicated, together with the position of the magnets and

their top-face polarity. The measurement region is marked with a dashed line. The
position of the same Cartesian reference frame {x, y, z} indicated in the drawing
presented here, is also shown on a picture of the full array of magnets in Fig. 2.4.
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Figure 2.4 – Picture of the setup partially mounted: the full magnet array is
surrounded by the light source (on the right) and the cameras (on top). The full
array of 7 × 7 large magnets, and the smaller magnets placed between them, are
visible. The position of the Cartesian reference frame {x, y, z}, already shown in
Fig. 2.3, is here indicated in red.

trodes are out of the flow domain, immersed into two side pockets to prevent
the contamination of the bulk fluid with gas bubblesiii. The two side pock-
ets have openings on the bulk volume along the electrodes, protected with
cotton membranes, which assure electrical conductivity but are not per-
meable to gas bubbles; gases can exit from exhausts on the top lid. The
electric circuit is closed by the fluid itself, a highly concentrated solution of

iiiThe chemical reactions at the electrodes are:
2Cl− −→ Cl2 ↑ +2e− and 2Cl2 ↑ +6H2O −→ 4H3O

+ + 4Cl− + O2 ↑ at the positive
electrode;
2H2O + Na+ + 2e− −→ Na+ + 2OH− + H2 ↑ at the negative electrode.
Chlorine gas and oxygen are produced at one side, hydrogen at the opposite side.
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NaCl in water, 28.1% brixiv.
The flow induced by such a forcing system is described and discussed

in detail in the following chapter.

2.1.2 The rotating table: accuracy requirements

The base of the present setup is the rotating table. It is a remote controlled
platform which can spin at constant angular velocity Ω ∈ [0.01; 10] rad/s ±
0.005Ω. Further accuracy requirements, related with the application of Par-
ticle Tracking Velocimetry, will be discussed here.

As described in the following section, Particle Tracking Velocimetry
uses the principles of Computer Vision to reconstruct a 3D-view of the im-
aged space: a calibration procedure allows to link object-space coordinates
of a known target to the coordinates in the image-space of each camera.
The inverse transformation ensures the 3D-positioning of the seeding par-
ticles recorded by the cameras. It is obviously extremely important that
the relative position of the cameras, the light system, and the experimen-
tal setup remains constant through the calibration and the measurement
phases. Slight misalignments of the table top and its axis and variations
of the rotation speed may induce vibrations on the entire setup, modifying
the relative position of the optical elements and therefore corrupting the
measurements.

Before starting the experimental campaign, several tests are performed
on the rotating table in order to estimate the precision of its motion and the
possible consequences on the PTV system. The planarity and inclination
of the table top are checked with accurate measurements using a digital
water-level. The same inclination is verified with the rotating platform set
in motion: dynamic measurements are performed using a digital water-
level fixed tangentially on the table edge. The data are analysed looking
for possible periodic oscillations of the inclination signal, and these are
not identified. This result also anticipates that the table is able to rotate
at constant angular velocities without appreciable angular accelerations,
which would have been measured as tangential acceleration along the water-
level axis. The maximum misalignment of the table surface is quantified by

ivThe concentration 28.1% brix corresponds to 25 g/100 g of NaCl in water, and the
saturation point for NaCl in water at 20� is 29.6% brix. The fluid density ρfluid is
1.19 g cm−3. The kinematic viscosity ν is 1.319 mm2s−1, as measured with a capillary
viscosimeter Schott Instruments (capillary 501 13) at 30� (the average temperature of
the fluid after an experimental run).
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a maximum vertical displacement at its edge of 7.5 µm, measured with
the table rotating at 0.01 rad/s. The accuracy of the angular velocity of
the platform is then estimated by recording the light signal of a laser light
source, reflected by regularly spaced white markers fixed on the edge of
the table, by a photo-diode. The residual angular acceleration is below
|10−3| s−2 at every rotation rate tested, up to 10.00 rad/s.

One last test permits to exclude the influence of vibrations of any origin
on the PTV system: images of a calibration target are taken at 15 Hz with
a measurement camera, using a cluster of 8 LEDs as a light source. Five
runs are performed for Ω ∈ {1.28, 2.50, 5.00, 7.50, 10.00} rad/s, acquiring
datasets between 100 and 200 images each. The images are processed to
extract the image coordinates of each blob, and the probability distribution
of the fluctuation magnitude of the blob coordinates are computed. The
PDFs shown in figure 2.5 refer to the five rotation rates tested, and report
the occurrences of the blob displacement in the recorded images, for all the
calibration dots, measured in pixels. The distributions get broader while Ω
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Figure 2.5 – Probability distribution functions of the displacement of the detected
positions of the dots of a calibration target, recorded during the vibration tests.
The PDFs correspond to the same test repeated for different rotation rates, and
show the probability distribution for the displacement measured in pixels.
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is increased, the effect is clear already at 5 rad/s. Nevertheless, the values
of the position fluctuations are in the worse case one order of magnitude
lower than the accuracy of the blob locating procedure (0.33 pixels, see
Raffel (2007)), achieved performing a Gaussian fitting of the blob images
along the two image-coordinates: the standard deviation of the coordinate
fluctuations at 10 rad/s is still below 0.026 pixels, which correspond to
4 µm in object-space. In conclusion, the vibrations produced by the rotating
motion do not influence the accuracy of the measurements presented in this
thesis.

2.2 The Particle Tracking system

Three-dimensional Particle Tracking Velocimetry is chosen as the most suit-
able measurement technique for collecting Lagrangian data in the described
turbulent flow.

The measurement system is an adaptation of a classical PTV-setup (see
e.g. Virant and Dracos (1997)) on a rotating table facility. It acquires
images of the flow from four different points-of-view, in order to maximise
the particle ’trackability’ of the PTV algorithm (Willneff and Gruen,
2002). The fluid container offers three faces which are optically accessible:
two side faces are used for the illumination, while the full top-lid is available
for the imaging system. The ideal 90◦ angle between the four distinct optical
axis would allow to achieve the same resolution along the three spatial
directions. The present container allows a maximum angle of 60◦ between
the four viewing directions, which implies that the measurement resolution
along the vertical z-direction is half of the corresponding values for the
horizontal directions.

For the imaging system two options have been considered: the first one
consists of the classical four-cameras setup; a second option relies on only
one camera together with an image-splitter, which projects four different
views of the same observation volume onto a single image sensor. Its princi-
ple and schematic representation is shown in figure 2.6, where the 3D-CAD
optical design is presented. A similar mirror pyramid has been described in
Schlicke (2001), where it has been used instead to record the same view
with four different cameras acquiring in a synchronous successive mode:
four cameras, placed in distinct positions in space, are aligned with the
mirrors to acquire images of the same subject from the same point-of-view.
The image-splitter designed for the present measurements consists in the
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Figure 2.6 – CAD design of the optical setup based on one camera and an image-
splitter (not adopted in the final design of the measurement system). The splitter
projects four different views of the same observation volume onto a single image
sensor: it allows to record four different views of the same subject onto the same
image file, eliminating the need of synchronisation for multiple cameras. The cam-
era sensor and the camera lens are sketched in red; the primary mirror pyramid
and the four secondary mirrors are marked in blue; the optical path is sketched in
yellow when in air (outside of the fluid container), and in orange when it passes
through the salt solution (inside the container); the intersection of the four optical
paths inside the container determines the measurement volume, and it is marked
in black as a pyramidal-shaped volume adjacent to the bottom plate. The same
optimization of the measurement volume has been used also for the four-camera
setup, which has been preferred and implemented; thus the measurement volume
marked here in black represents the one used for the experiments.
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same arrangement of mirrors, but the direction of the light path is reversed:
one camera and four points-of-view, instead of four cameras and one point-
of-view. An accurate optical design of the image-splitter (Fig. 2.6), together
with several optical tests performed in the laboratory, showed its limits: the
necessary depth-of-focus imposes serious constraints to the focal length and
the distance of the cameras from the observation volume, in contrast with
the need of a compact design to minimise vibrations. The required image
sensor size exceeds the largest available on the market of high-speed cam-
eras. The blurring of the out-of-focus edges of the mirrors imply a further
loss of image area, estimated around 8%. A four-camera system is thus
preferred in this particular arrangement, as it allows a greater flexibility
for optical tuning, as well as a more compact design. The cameras are kept
as close as possible to the rotation axis, in order to reduce the centrifugal
force acting on them, and are mounted on a rigid aluminium frame.

2.2.1 The imaging system: optics and light source

The imaging system has been designed in view of preliminary estimates
of the spatial and temporal scales of the flow based on PIV data on one
horizontal plane 30 mm above the bottom plate. More accurate stereo-
PIV measurements indicated similar values for the flow scales, which are
estimated on the base of the r.m.s. fluctuating velocity. The values for urms

measured with stereo-PIV for z = 20, 50, 100 mm are reported in Fig.
3.3 of the following chapter. As explained in Sec. 3.1.3, these data lead
to an overestimate of the kinetic energy dissipation, thus the necessary
temporal resolution of the imaging system has been overestimated to be
500 Hz. Four high-speed cameras are used with a variable frame rate for
the different rotating runs. The cameras are Photron FastcamX-1024PCI,
based on a 10242 pixels CMOS sensor running at 1 KHz; four imaging
heads are connected to frame-grabber boards hosted inside the same PC
and controlled in remote via this one. One of the most important features
which lead us to the choice of this hardware is the extreme sensitivity
of the sensor in low-light conditions (main wavelength 470 nm), together
with an acceptable noise-to-signal ratio of 12.5%v. The camera system does
not provide on-the-fly writing of data on hard-disks, but each camera is
provided with 12 GB of RAM memory to acquire 9600 images per run.

The cameras are equipped with Nikkor Micro 70−180 mm f#4.5/5.6 ED

vEstimated via extensive tests in our laboratory.
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lenses, which ensure a depth-of-focus of 140 mm throughout the measure-
ment volume when used with aperture f#16 at a working distance of
700 mm.

Severe optical aberrations are found to affect the recorded images, and
do not allow to properly focus the optics on the measurement volume. Sev-
eral tests are conducted, and the cause identified as the outer refractive
interface between air (refractive index 1.000) and perspex (refractive index
1.491), which is crossed with an angle of almost 45◦ (in air, 30◦ in water).
The use of a non-strictly monochromatic light source (see following para-
graphs) in combination with an important angle of incidence of the light
path with the transparent lid, induces transmission of light rays refracted
with different angles according to their wavelength, resulting in a severe
blurring of image details. An additional optical element (visible in the left
panel of figure 2.7) is then designed and manufactured: four perspex prisms
with a wedge angle of 30◦ are drilled out of a single perspex block with a
CNC-cutter, polished, and fixed onto the container top-lid with the interpo-
sition of a water film; thus the optical axis of each camera crosses the outer
interface perpendicularly, and minor optical distortions are confined to the
outer region of the images. As explained in section 2.2.3, this refractive
interface is not explicitly modelled by the calibration and 3D-positioning
routines.

Thanks to a high concentration used for the salt solutionvi, its refrac-
tive index is relatively high, precisely 1.378. The difference with the refrac-
tive index of perspex, 1.491, induces optical aberrations due to refraction
through the inner interface between the perspex lid and the salt solution.
The light rays cross this interface at roughly 30◦, and the calibration and
3D-positioning routines directly model this effect, as described in section
2.2.3.

The illumination is provided by an innovative light source, especially
designed for volumetric measurements with high temporal resolution and,
to our knowledge, used for the first time in PIV/PTV measurements. An
array of 238 LEDs is designed and manufactured. Extensive tests on single
units and clusters permit to choose the LEDs: Luxeon K2, narrow-band
spectrum with dominant wavelength 455 nm, and using 1.5 A of continu-
ous DC current at 3.85 V. Their efficiency is estimated to be around 11%.

viThe exact value of salt concentration, 28.1% brix, is chosen to match the density of
the seeding particles, as explained later in this section. Such concentration is close to the
saturation point, which is at 29.7% brix (at 25�).
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Clusters of 7 LEDs are mounted under 6◦ collimating PVC lenses, and the
34 clusters are mounted on a thick aluminium block provided with water-
cooling channels (see sketches and pictures in figure 2.7), which assures the
necessary heat dissipationvii. The horizontal section of the block, as shown
in the right-bottom panel of figure 2.7, has a circular shape to focus the
light inside the measurement volume. A reflective panel on the opposite face
of the container homogenises the illumination. Part of the light entering the
container is absorbed by the perspex walls and the fluid, forcing a convec-
tive motion which velocities are measured to be O(10−2) compared to the
ones induced by the EM-forcing system, thus negligible in our study. This
innovative light source costs roughly 20 times less than a continuous laser
with equivalent power; on the other hand it does not permit to selectively
illuminate a layer of fluid, and it does not provide strictly monochromatic
light.

PMMA (poly methyl methacrylate) particles are used as flow tracers.
Their mean diameter is 127.0 µm, standard deviation 2.8 µmviii. The con-
centration of the salt solution is adjusted to match the PMMA density,
ρfluid = ρPMMA = 1.19 gcm−3, measuring the settling/rising velocities in
a vertical fluid column. At this concentration, the particles are neutrally
buoyant in the solution. The Stokes number for these tracers expresses the
ratio between the particle response time and a typical time scale of the
flow. It can be estimated as

St ≡ τp

τη
=

ρp

ρf

d2
p

18ν

τη
= O(10−3) , (2.1)

where τp is the particle response time, function of the particle-to-fluid den-
sity ratio and the particle diameter dp, and τη is the characteristic time of
the small-scale turbulent flow fieldix. The chosen seeding particles can thus
be considered as passive flow tracers in respect to our study, both in terms
of buoyancy and inertial effects.

viiThe light source dissipates 238 × 1.5 × 3.85 = 1375 W, of which roughly 150 W are
emitted in form of light; 23 cooling channels in the aluminium block are connected to a
water line through the rotating table to remove the heat.

viiiParticles provided by Micro Particles GmbH, Germany, lot. PMMA-R-L614.
ixThe value of the Kolmogorov time scale used here is presented in the following

chapter.
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Figure 2.7 – Light source. Left panel: picture of the back-side of the LED-array with its cooling connections. Right-
top-panel: detail of the front-face of the unit, revealing the cluster arrangement of the LEDs and the collimating optics.
Right-mid and right-bottom panels shows the CAD of the cooling block, front- and top-view respectively.
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2.2.2 Particle Tracking Velocimetry software

The core of the PTV system is the code with which the image sequences
from the four cameras are processed and the 4D-coordinates {x, y, z, t}
of the tracer particles are reconstructed. It is chosen to make use of the
code developed at ETH (Institutes IGP, IFU), Zürich, which is made freely
available for non-commercial use. The code operates in three phases: cal-
ibration of the camera system on a known target body; reconstruction of
3D-positions from image to object space; temporal tracking. 3D-positioning
uses eight observations (two image coordinates from each of the four cam-
eras) for each particle at each time-step to recover the three object coor-
dinates. Recent developments of the spatio-temporal matching algorithm
allow to make use of the five redundant observations, together with predic-
tions over successive time-steps, to establish spatio-temporal connections
even in case of high seeding density and high particle accelerations. With
the present setup, up to 2500 particles per time-step have been tracked on
average, a remarkable result when compared to other state-of the-art PTV
measurement campaigns of turbulent flows in laboratory settings (Walpot

(2007), Willneff and Gruen (2002), Berg et al. (2005), and private
communication with Beat Lüthi).

The reader is addressed to the exhaustive literature published which
illustrates in detail the algorithms used in the code, and in particular:
Maas et al. (1993) for the calibration and 3D-positioning algorithms;
Malik et al. (1993) for the temporal tracking algorithm; and Willneff

and Gruen (2002), Willneff (2002, 2003) for the latest developments
of the tracking routine. The adaptation of the calibration procedure to our
setup is explained in details in the following section.

2.2.3 Calibration for 3D-positioning

The 3D-positioning routine is based on a pinhole camera model with up to
three media with different refractive indices. The optical model used for the
four-cameras setup does not differ substantially from the one-camera setup
model, which is sketched in figure 2.6, apart from the obvious absence of
reflecting mirrors: epipolar lines are traced from the particle image location
on the camera sensor through the lens pinhole into the object space; the
approximate (with the desired tolerance εPTV ) crossing of two, three, or
four epipolar lines in the measurement volume defines the 3D-location of
the particle in object space. Each camera is calibrated individually, imag-
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ing a target with a known dot pattern (known dot coordinates in object
space, and measured image coordinates) and solving the overdetermined
direct system of equations to retrieve intrinsic and extrinsic camera param-
eters. The first ones model lens aberrations, while the extrinsic parameters
consist of pinhole position, optical axis direction, and focal length. A de-
tailed description of the procedure can be found in Trucco and Verri

(1998). The refractive interfaces are modelled following Kotowski (1988),
as explained in Maas (1995): a look-up-table is built during the calibration
procedure, so to efficiently correct for refraction effects on the position of
thousands of particles per image.

For this specific camera arrangement three different approaches are
tested: calibration over an horizontal planar target mid-height in the mea-
surement volume; a multi-plane calibration, consisting of the acquisition of
multiple images of the same planar target positioned at different heights
inside the volume, followed by the combination of the image coordinates to
simulate a three-dimensional target; calibration on a real 3D-target. The
first approach results in a poor mapping of the volume, and does not allow
to retrieve a sufficient accuracy in the top and bottom regions. The accu-
racy of the second approach strongly depends on the accuracy with which
the planar target is positioned inside the volume, and does not perform
optimally even when using high-precision translation actuators to control
the relative positions of the target. The calibration of the measurement
presented in this work is thus achieved using a 3D-body with a V-shaped
stair section, similar to the target used in Willneff and Maas (2000).
This target allows a direct mapping of a volume of 80 × 80 × 55 mm3 in
the centre of the common field-of-view of 100 × 100 × 100 mm3. Different
adaptations of the multimedia model are tested both with laboratory im-
ages, and with synthetic images. The adopted scheme simplifies our optical
setup to a two-media environment: only one refractive interface is modelled,
the inner perspex-fluid interface. The outer air-perspex one is crossed per-
pendicularly by the optical axis of the cameras, thus ignored imposing the
refractive index of the outer medium (air) to be the same as the one of per-
spex, 1.491. The retrieved apparent pinhole positions of the four cameras
differ from the real positions, and are used to reconstruct particle positions
in the modelled two-media environment. Lens distortion parameters partly
correct for the aberrations in the outer region of the images, where the light
path does not cross orthogonally the outer interface, an effect which the
chosen model cannot correct for.
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A further improvement of the measurement accuracy is achieved with a
refinement of the camera extrinsic and intrinsic parameters with low seed-
ing density flow images, using the algorithm developed at Risø, Roskilde,
Denmark (Mann et al., 1999): with this approach the camera parame-
ters are optimised, reducing the r.m.s. distance of the epipolar lines to the
retrieved particle positions. For this procedure 50 to 300 particles detected
by all four cameras and tracked in time for at least 20 time-steps are used,
and the r.m.s. distance of the four epipolar lines from each of them is min-
imised in a least-square-sense. An estimate of the accuracy achieved with
this procedure is reported in section 2.4.1.

2.3 Data acquisition and processing

The experimental data analysed in this thesis are collected via a three-step
procedure, illustrated in the following sections: the experiment is performed
and flow image sequences are acquired; the images are processed with the
PTV software to extract quantitative measurements of the 4D-positions of
the particles {x, y, z, t}; position data are post-processed. This last step is
needed to filter out the measurement noise, compute velocities and acceler-
ations along trajectories, interpolate the velocities over the Cartesian grid,
and perform data analysis. In the last section the procedures to retrieve
spatial and temporal velocity derivatives on particle position are presented
and discussed.

2.3.1 Experimental procedure

Approximately one week before performing the experiments, 100 l of salt
solution is prepared: after 12 hours of mechanical mixing, the fluid is kept
for four days at a temperature between 60� and 70� to degas, as the
oxygen bubbles released inside the experimental container may disturb the
optical accessibility to the tank; in other two days the fluid is brought back
to the ambient temperature of 20�, and 80 l is accurately filtered and
poured into the container. The calibration target is immersed in the fluid
and it is recorded with the four cameras, using an incandescent light spot to
provide illumination through the centre of the top lid. After the calibration
procedure, the fluid is seeded with 0.15 g of tracer particles, premixed in
water with the help of one drop of detergent to lower the surface tension
and facilitate mixing. The container is sealed, the light source is powered
with a 105 A current, and the rotating table set in motion at the desired
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rotation rate. From this moment, all the hardware is operated in remote
from an adjacent room. The camera system allows real-time visualisation of
the flow in the rotating frame, so that the condition of solid body rotation
can be visually checked on an external monitor before starting the forcing.
The actual spin-up times Tspin−up used and the corresponding Ekman times
TE

x are reported for each experiment in table I. The same table also reports
the value of the Ekman number Ek and the estimated thickness δEk of the
Ekman boundary layerxi for each run. The forcing is initiated, and the flow

Ω (rad/s) 0.2 0.5 1.0 2.0 5.0

Tspin−up (s) 936 840 780 600 540

TE (s) 490 310 219 155 98

Tspin−up/TE 1.9 2.7 3.6 3.9 5.5

Ek 1 × 10−4 4 × 10−5 2 × 10−5 1 × 10−5 4 × 10−6

δEk (mm) 2.5 1.6 1.1 0.8 0.5

Table I – Values for rotating experiments of the spin-up time Tspin−up actually

used, the Ekman time TE ≡ Lz/(
√

νΩ), their ratio, the Ekman number Ek ≡
ν/(ΩL2

z), and the thickness of the Ekman boundary layer δEk ≡
√

ν/Ω.

is forced for more than 60 s, in order to let the kinetic energy content of the
flow reach a stationary level. Image acquisition is then started, triggering
the cameras with a function generator at a frame rate of 60 Hz for runs
with Ω ∈ [0; 1.0] rad/s, 30 Hz for Ω ∈ [2.0; 5.0] rad/s. The exposure time
is set to 8 ms, aperture f#16 for cameras 1,2,3 and f#11 for camera 4xii.
The flow is recorded for 160 s at the lowest rotation rates, and 320 s for
Ω ∈ [2.0; 5.0] rad/s. Image sequences are then transferred to processing
workstations. This entire procedure is repeated every three runs, as the
fluid solution gets slowly contaminated with dust of metal oxide coming
from the electrodes, visible in the images, which may corrupt the fidelity
of the flow tracers.

xThe Ekman spin-up time is defined as TE ≡ Lz/(
√

νΩ), with Lz = 250 mm the
vertical domain size, ν = 1.3 10−6 m2s−1 the kinematic viscosity, and Ω the rotation
rate.

xiThe Ekman number is defined as Ek ≡ ν/(ΩL2
z), and the thickness of the Ekman

boundary layer as δEk ≡
p

ν/Ω.
xiiA larger aperture is required for camera 4, as it detects lower intensity values cause

of its position relative to the light source.
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2.3.2 PTV processing

The quality of the data acquired with the described procedure allows to
detect on average 4000 particles per image, reconstruct the 3D-position of
roughly 2900, and link to past and future time-steps between 2000 and
2500 particles. The size of the measurement volume represents a compro-
mise between spatial resolution and observation of large scale flow features.
As a consequence, the average trajectory length is limited as particles are
rapidly advected out of the field-of-view by vortices of comparable size. The
maximum tolerance εPTV used for epipolar line crossing (see section 2.2.3)
is 20 µm. The retrieved spatial resolution (see accuracy estimates in section
2.4.1) allows to measure the smallest position and velocity fluctuations due
to turbulence along trajectories. On the other hand, the limited seeding
density results in an average inter-particle distance δip estimated as

δip =
Lvol

2 3
√

N/4
= 5.85 mm , (2.2)

where Lvol is the side length of the measurement volume, and N the average
number of particles positioned in the volume per time-step. As discussed
in the next chapter, the inter-particle distance is larger than the smallest
flow scales, thus it is not possible to differentiate velocities in space at those
scales.

2.3.3 Post-processing of position and velocity signals

Following the approach described in Lüthi (2002), the raw position signal
x̃i(t) in the i-direction is filtered by fitting cubic polynomials along the
trajectories to remove the measurement noise ǫ(t). The raw position is
expressed as:

x̃i(t) = ci,0 + ci,1t + ci,2t
2 + ci,3t

3 + ǫi(t) . (2.3)

The fit is performed for each time step t on a segment of trajectory [t −
10 dt; t + 10 dt], which is found to be the optimal filter width to remove
the background noise from the present data. As explained in section 2.4.2,
’calm’ trajectories have been analysed to estimate the measurement noise,
and this is found to have an amplitude O(10−5) m. Values for the smallest
length scale of the flow (the Kolmogorov scale η) are presented in Sec. 3.2.3,
and are shown to be O(10−4) m. The noise ǫ is thus easily distinguishable



38 Experimental and numerical tools

from the real flow features, and the filter width is optimised in order to
suppress non-physical fluctuations with size O(10−5) m, without damping
the fluctuations of the real turbulent field. This optimisation is performed
on a set of trajectories characterised by different values of the acceleration
r.m.s. (’calm’ and ’fast’ trajectories).

For each time step t, a system of equations is written for the 21 data
points of the trajectory segment centred at t, and for the three coordinates
i = 1, 2, 3. The raw position signal x̃i and the filtered one xi are expressed
for the 21 data points by the vectors x̃i and xi, which read:

x̃i = A ci + ǫi (2.4)

xi = A ci . (2.5)

The system matrix is:

A ≡




1 (t − 10 dt) (t − 10 dt)2 (t − 10 dt)3

1 (t − 9 dt) (t − 9 dt)2 (t − 9 dt)3

...
...

...
...

1 (t + 10 dt) (t + 10 dt)2 (t + 10 dt)3


 (2.6)

and the coefficient vector for each coordinate reads:

ci ≡




ci,0

ci,1

ci,2

ci,3


 . (2.7)

Equation 2.4 is inverted as ci = (AT x̃i)
T (AT A)−1.

Finally, from the coefficients of the 3rd order polynomials, the filtered po-
sition xi, velocity ui, and acceleration ai components are derived for each
time step as:

xi(t) = ci,0 + ci,1t + ci,2t
2 + ci,3t

3 (2.8)

ui(t) = ci,1 + 2ci,2t + 3ci,3t
2 (2.9)

ai(t) = 2ci,2 + 6ci,3t . (2.10)

It is important to note that the frequency response of the applied smoothing
filter varies for position, velocity, and acceleration signals. The frequency
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response is in fact proportional to 1/dt3, 1/dt2, and 1/dt xiii for xi(t), ui(t),
and ai(t), respectively. A comparison of raw and filtered trajectories is
shown in the left panel of figure 2.8: in the top panel, the raw signal and
the filtered one are clearly distinguishable. The bottom panel shows an
example of velocity and acceleration signals computed from the polynomial
coefficients for a different trajectory.

Figure 2.8 – Top panel: comparison of raw position signal and the cubic poly-

nomial fitted around a typical trajectory. Bottom panel: example of velocity and

acceleration signals computed from the polynomial coefficients. In both panels the

grid-spacing is 2 mm.

2.3.4 Spatial velocity derivatives along trajectories

Differentiation in space of the velocity field allows to recover the full veloc-
ity gradient tensor ∂ui/∂xj on particle positions. For each time-step and
for each detected particle P0 at location xj,0, the velocity informations at

xiiiThe PTV time-step dt is 0.01667 s for the reference non-rotating experiment.
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the closest N neighbouring particle positions xj,p are used to compute the
spatial derivatives. Three different approaches are tested: first, an indepen-
dent linear fit for each velocity component ui and for each direction xj is
performed over the set of N data points, and the components of ∂ui/∂xj

are obtained as the slopes of the fitting lines. Second, a multiple linear re-
gression versus the three coordinates xj is performed for each of the three
components ui; each component of ∂ui/∂xj is then defined as the slope in
the direction xj of the retrieved interpolating hyperplane in the 4D-space
{x, y, z, ui}. Both these approaches reveal to be too sensitive to the error
in the velocity signal.

A third method is thus implemented, with the aim of retrieving ∂ûi/∂xj

from a smoothed, ’coarse-grained’, velocity field ûi. This approach reveals
to be superior in view of the results of the checks on the velocity gradi-
ent presented in the following sections, and thus it is adopted for the final
post-processing of the data presented in this thesis. The procedure follows
the one described in Lüthi et al. (2007b), with some modifications. For
each time-step t and for each detected particle P0 at location xj,0, the clos-
est N neighbouring particles Pp at locations xj,p are identified. The search
algorithm uses an adaptive search radius R, which is increased from 1 to
15 mm untill at least N particles Pp are found around xj,0. This leads to the
automatic tuning of the size of the sphere containing the particle positions
according to the local density of detected particles, thus the automatic tun-
ing of the smoothing filter size throughout the measurement volume. On
the present datasets, N = 20 is used: typically, 20 particles are found in
a sphere with R = 4 mm in the core of the measurement volume, and
R = 11 mm in the outer region. The three components of velocity are inde-
pendently convoluted along the three directions (9 operations, one for each
component of ∂ui/∂xj) over the N positions, using the kernel KF,s. The
smoothed velocity component ûi, in the central point P0 with coordinates
xj,0, reads:

ûi(xj,0) =

∫

V

[KF,s ui(xj,p)] dV , (2.11)

where the integral is intended over the volume V of the sphere centred
in P0 with radius R. The discrete convolution is computed with a Monte-
Carlo integration, for which

∫
V f dV = V 〈f〉 + ǫ, where the error ǫ =

±
√

(〈f2〉 − 〈f〉2)/N . In this way, the integral in eq. 2.11 can be approxi-
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mated to a summation over the N neighbour particle positions:

ûi(xj,0) =
4

3
πR3 1

N

N∑

p=1

[KF,s ui(xj,p)] . (2.12)

A half-cosine kernel KF,s is used as weighting function in the convolution, so
that the weight of the velocity information at each point Pp decreases with

the distance of Pp from P0, |xh,p − xh,0| = [(xh,p − xh,0)(xh,p − xh,0)]
1/2.

The kernel is defined as:

KF,s =





π2

(π2−8)(2R)3
cos

[
π
2R (|xh,p − xh,0|)

]
for |xh,p − xh,0| ∈ [−R;R]

0 for |xh,p − xh,0| /∈ [−R;R]

(2.13)

which satisfies
∫
V KF,sdV = 1. Combining 2.12 and 2.13 leads to the fol-

lowing expression for the smoothed velocity field ûi:

ûi(xj,0) =
π3

6(π2 − 8)N

N∑

p=1

{
cos

[ π

2R
(|xh,p − xh,0|)

]
ui(xj,p)

}
. (2.14)

Computing the analytical spatial derivatives in the directions xj of the
components ûi in Eq. 2.14, the smoothed velocity gradient components
∂ûi/∂xj at point P0 are expressed as:

∂ûi

∂xj
=

π4

12(π2 − 8)RN

N∑

p=1

{
sin

[ π

2R
(|xh,p − xh,0|)

] xj,p − xj,0

|xh,p − xh,0|
ui(xj,p)

}
,

(2.15)

where R is the search radius used to find the N particles around the po-
sition xj,0, which velocity data are used for the discrete convolution. The
components ∂ûi/∂xj expressed by 2.15 do not vanish for a uniform velocity
field. This is corrected, again following Lüthi et al. (2007b), subtracting
the mean value of each velocity component for the cloud of N points used



42 Experimental and numerical tools

for the local convolution. Finally:

∂ûi

∂xj
=

π4

12(π2 − 8)R(N − 1)

N∑

p=1

. . .



sin

[ π

2R
(|xh,p − xh,0|)

] xj,p − xj,0

|xh,p − xh,0|


ui(xj,p) −

1

N

N∑

q=1

ui(xj,q)






 .

(2.16)

As in Lüthi (2002), the relative divergence γ is used as a quality indicator
of the reconstructed signal. It is defined as:

γ ≡
‖∂û1

∂x1
+ ∂û2

∂x2
+ ∂û3

∂x3
‖

‖∂û1

∂x1
‖ + ‖∂û2

∂x2
‖ + ‖∂û3

∂x3
‖

. (2.17)

Its value is ideally zero for incompressible flows, and does not exceed unity.
The quality of the velocity derivatives is considered acceptable when γ is
lower than 0.20.

As a last step, and following the approach described in Lüthi et al.

(2005), all components of ∂ûi/∂xj are filtered by fitting cubic polynomi-
als along the trajectories. The fit is performed for each time step t0 on
a segment of trajectory [t0 − 5dt; t0 + 5dt], with dt the PTV time-step.
The procedure is equivalent to the one used to filter the position signal,
and described in the previous section 2.3.3. The only difference is that
here the relative divergence γ is used for weighting the contributions of the
data points involved in the fit, as explained in Appendix C of Lüthi et al.

(2005): doing so, not only a second low-pass filtering is applied to the tensor
components along trajectories, but also a mild correction is applied, which
is based on the physical property of incompressibility of water. Throughout
the other sections of this thesis, the velocity gradient components on par-
ticle positions retrieved from experimental data with PTV and processed
with the described procedures, will be denoted for simplicity ∂ui/∂xj .

The results of these procedures and further discussion are presented in
Sec. 2.4.

2.3.5 Temporal velocity derivatives along trajectories

Differentiation in time of the velocity field allows to recover the local time
derivative components ∂ui/∂t on particle positions. The approach used for
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the spatial derivatives, and explained in the previous section, is here ex-
tended to the 5D-space {x, y, z, t, ui}. For each time-step t0 and for each
detected particle P0 at location xj,0, a minimum of N particles Pp at all
time-steps tp ∈ [t0 − δt; t0 + δt] are identified in the neighbourhood of the
4D-position (xj,0, t0). The velocity informations at these N particle posi-
tions (xj,p, tp) are used to compute the temporal derivatives. As for the
spatial derivatives, neighbouring particles are searched with an adaptive
radius R in space (R ∈ [1; 15] mm). The half-width of the time interval is
instead fixed, and δt = 5 time-steps is used for the present data. The three
components of velocity are independently convoluted in space and time
(3 operations of 4D-convolution, one for each component of ∂ui/∂t) over
the N positions, using the kernel KF,t. The expression for the smoothed
velocity field ûi(xj,0, t0) is similar to Eq. 2.11, but here consists of a double-
integration over the volume V of the sphere centred in P0 with radius R,
and over the time interval [t0 − δt; t0 + δt]. In the central point P0 with
coordinates xj,0 at time t0, it reads:

ûi(xj,0, t0) =

δt∫

−δt

∫

V

[KF,t ui(xj,p, tp)] dV dt . (2.18)

A Monte-Carlo integration is used to approximate the two integrals, and the
velocity signal is smoothed in the convolution using the double half-cosine
kernel KF,t, which now reads:

KF,t =





π3

2(π2−8)(2R)32δt
cos

[
π
2R (|xh,p − xh,0|)

]
cos

[
π

2δt
(tp − t0)

]

for |xh,p − xh,0| ∈ [−R;R]
and (tp − t0) ∈ [−δt; δt]

0 for |xh,p − xh,0| /∈ [−R;R]
or (tp − t0) /∈ [−δt; δt]

(2.19)

and which satisfies
∫ δt

−δt

∫
V KF,tdV dt = 1. Such kernel implies a weight for

the information at each data point Pp which decreases with increasing the
distance from the central point P0. Even though the distance should be
intended in the 4D-space {x, y, z, t}, the dependences on the temporal (1D)
and spatial (3D) distances are decoupled in the chosen kernel KF,t, so that
time- and space-integrations can be performed independently. Inserting this
kernel into the expression for the discrete convolution of velocity in time
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and space, one gets the following expression for the smoothed velocity field
ûi:

ûi(xj,0, t0) =
π4

12(π2 − 8)N

N∑

p=1

{
cos

[ π

2R
(|xh,p − xh,0|)

]
. . .

cos

[
π

2δt
(|tp − t0|)

]
ui(xj,p, tp)

}
.

(2.20)

The analytical temporal derivatives of the components ûi are computed,
and the mean value of each velocity component for the cloud of N points
used for the local convolution is subtracted, as done for the spatial deriva-
tives. The local acceleration ∂ûi/∂t of the smoothed velocity field results:

∂ûi

∂t
=

π5

24(π2 − 8)δt(N − 1)

N∑

p=1

{
cos

[ π

2R
(|xh,p − xh,0|)

]
. . .

sin

[
π

2δt
(|tp − t0|)

] [
ui(xj,p, tp) −

1

N

N∑

q=1

ui(xj,q, tq)

]}
.

(2.21)

As done for ∂ûi/∂xj , the components of ∂ûi/∂t are filtered by fitting
cubic polynomials along the trajectories. The fit is performed for each time-
step t0 on a segment of trajectory [t0−5dt; t0+5dt], with dt the PTV time-
step. Again, the relative divergence γ is used for weighting the contributions
of the data points involved in the fit. Throughout the other sections of this
thesis, the local velocity derivatives on particle positions retrieved from
experimental data with PTV and processed with the described procedures,
will be denoted for simplicity ∂ui/∂t.

The results of these procedures and further discussion are presented in
Sec. 2.4.

2.3.6 Interpolation and velocity gradient on regular grid

The data obtained through Particle Tracking Velocimetry, and further pro-
cessed as described in the previous sections, is distributed in the mea-
surement volume on random particle positions, with increasing density
of data points in the core region (for which the calibration parameters
for 3D-reconstruction get optimised). In order to facilitate the Eulerian
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flow analysis and to allow the computation of temporal averages and cor-
relations of the velocity field, the data is interpolated over a regularly-
spaced 3D-grid. The pyramidal-shaped measurement volume (shown in
black in figure 2.6) is almost entirely contained in the cube 100 × 100 ×
100 mm3, which is chosen as the domain for data interpolation: {x; y; z} =
{[−50; 50]; [−50; 50]; [0; 100]} mm. The average inter-particle distance δip in
the full domain is 5.85 mm; but, being the density of the detected tracer
particles much higher in the bulk of the domain (where δip = 2.81 mm), the
mesh size dx = 2.0 mm is chosen. An example of the velocity fields interpo-
lated on a grid is shown for the reference non-rotating experiment in figure
2.9, where the three velocity components (vector map for {ux, uy}, colour
map for {uz}) are plotted for the mid-height horizontal slice (z = 50 mm).
The velocity fields on a regular grid are averaged in time in order to retrieve
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Figure 2.9 – Vector map of the horizontal flow field {ux, uy}, and colour map of

the vertical one {uz}, plotted for the mid-height horizontal slice (z = 50 mm) of

the domain.

the mean flow fields, as explained in Sec. 3.1.2. An example of a mean flow
field is shown for the reference non-rotating experiment in figure 3.2.

The gridded data also allow to compute the nine components of the
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velocity gradient tensor ∂ui/∂xj on grid, for which a second-order central
difference scheme is used. Horizontal and vertical slices of the fields of the
three components of the vorticity vector

ωx =
∂uz

∂y
− ∂uy

∂z

ωy =
∂ux

∂z
− ∂uz

∂x

ωz =
∂uy

∂x
− ∂ux

∂y

(2.22)

are investigated and compared to the corresponding velocity fields.

2.4 Validation of measurements

The experimental data is validated through direct checks on mathemat-
ical and physical flow properties, as well as via comparison of the main
statistical properties of a similar turbulent flow obtained from stereo-PIV
measurements (van Bokhoven, 2007, van Bokhoven et al., 2009). The
comparison between PTV and stereo-PIV data is presented in the follow-
ing chapters together with the characterisation of the flow. Direct checks
on the data are instead presented in the following sections. They include:
estimate of the measurement accuracy through target dots repositioning,
and via evaluation of the positioning noise on ’calm’ particle trajectories.
Furthermore, checks are made of the normalised divergence of the velocity
signal, and of the modulus and alignment of the Lagrangian acceleration
vector.

2.4.1 Accuracy of particle positioning

The particle positioning accuracy retrieved with the calibration procedure
described in the previous section can be estimated via accurate relocation
of known target dots. The r.m.s. value of the distance of the epipolar lines
traced from each camera to the detected particle positions (see section
2.2.3) is 6 µm for the horizontal directions, and 12 µm for the vertical one.
The maximum error is limited by the tolerance of εPTV = 20 µm set as an
input parameter for epipolar line crossing. The measured maximum error
is lower than 9 µm in the horizontal directions, and 18 µm in the vertical
one.
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2.4.2 Measurements of calm trajectories

The check described in the previous section permits to estimate the accu-
racy of absolute positioning, where absolute refers to the Cartesian reference
frame defined with the calibration procedure (and sketched in figures 2.3
and 2.4). It is also important to estimate the positioning error relative to a
single trajectory: the fluctuations in time of the position signal of a single
particle at frequencies higher than the highest flow frequency 1/τη

xiv give
an indication of the error of the derived velocity signal. Measurements are
performed in an almost quiescent fluid, so that the noise is clearly distin-
guishable from the physical fluctuations of ’calm’ trajectories. An example
of this residual noise in a ’calm’ trajectory is shown in figure 2.10.

Figure 2.10 – Measurement noise in a ’calm’ trajectory: left, centre, and right

panels show the fluctuations in time (expressed in PTV time-steps) of the position

signal in the x, y, z-direction respectively.

The r.m.s. of the position fluctuations for all trajectories in a dataset is
typically 7.2 µm in the x-direction, 7.6 µm in the y-direction, and 19.8 µm
in the vertical z-direction. These values allow us to tune the filter width
used for trajectory filtering (as described in section 2.3.3) and remove the
noise before further processing the data.

2.4.3 Normalised divergence

The conservation of mass for incompressible fluids translates into the di-
vergence of the velocity field being zero, as stated by equation 1.1. This
physical property has already been used to apply a mild correction to the
raw velocity derivatives (computed on a ’coarse-grained’ velocity field) as
a final processing step: all components of ∂ui/∂xj are further smoothed
using weights based on the relative divergence γ, as explained in sections

xivSee section 3.2.3 for the values of the Kolmogorov time scale τη.
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2.3.4 and 2.3.5.
As a quality check, the joint probability distribution function (joint-

PDF) of the sum of the first two diagonal components (∂ux/∂x + ∂uy/∂y)
of the velocity gradient tensor and the opposite of the third one (−∂uz/∂z)
is plotted for the non-filtered velocity gradient in figure 2.11, left panel.
In the right panel of figure 2.11, the same plot is shown for the filtered

Figure 2.11 – Joint-PDF of the sum of the first two diagonal components of the

velocity gradient tensor and the opposite of the third one. Left panel: non-filtered

velocity gradient (correlation coefficient R = 0.480). Right panel: filtered velocity

gradient (correlation coefficient R = 0.578).

velocity gradient, as an indication of the importance of the correction ap-
plied to the components of ∂ui/∂xj . The correlation coefficient of the two
variables is also shown on the plot: for two generic variables a and b, this is
defined as R = 〈ab〉/

√
〈a2〉〈b2〉. It varies from 0 to 1, for two uncorrelated

variables and for perfectly correlated variables, respectively. In case of a
perfectly divergence-free velocity field, the joint-PDF shown in figure 2.11
would collapse onto the diagonal of quadrants I and III, and the correlation
coefficient would equal 1. The actual aspect-ratio of the scattered cloud of
points around the diagonal, thus the value of the correlation coefficient R,
quantifies the quality of the velocity gradient. The correlation coefficient of
the two terms is 0.480 for the non-filtered gradient, and 0.578 for the filtered
velocity gradient. Obviously, the low-pass filtering procedure with weights
based on the relative divergence influences directly the result of this check,
and the increase of the correlation coefficient gives a quantitative indication
of the correction that is applied to the gradient components.
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2.4.4 Lagrangian acceleration

The Lagrangian acceleration vector is computed via double-differentiation
in time as ai ≡ d2xi/dt2 along particle trajectories, following the procedure
described in section 2.3.3. The same vector can be computed as the sum
of the local time derivative of velocity and the advective term (extracted
from the data with the procedures described in sections 2.3.4 and 2.3.5),
as from the definition of the material derivative:

ai ≡
Dui

Dt
≡ ∂ui

∂t
+ uj

∂ui

∂xj
. (2.23)

Checks of the modulus and of the alignment of the vectors represented by
the left-hand-side and right-hand-side of equation 2.23 are presented in the
following two subsections.

Modulus

The joint-PDFs of the left-hand-side and right-hand-side of the projections
of equation 2.23 along the three coordinate directions constitute a hard
check for the processed data, as it involves spatial derivatives, temporal
derivatives, and the pure Lagrangian information measured along trajecto-
ries. As done in section 2.4.3, the results obtained using the raw velocity
derivatives (computed on a ’coarse-grained’ velocity field) and the velocity
derivatives further smoothed with weights based on the relative divergence
γ, are compared in the left and right panels of figure 2.12, respectively. The
quality of the Lagrangian acceleration signal benefits only marginally of the
applied correction based on relative divergence: the correlation coefficients
corresponding to the joint-PDFs shown in figure 2.12 increase only from
0.40 to 0.45, from the raw to the filtered components, respectively.

Alignment

The alignment between the Lagrangian acceleration vector Dui/Dt mea-
sured along trajectories, and the summation of the (Eulerian) local acceler-
ation and the advective one (∂ui/∂t+uj∂ui/∂xj) (right-hand-side and left-
hand-side of equation 2.23, respectively), is shown in figure 2.13 in terms
of the PDF of the cosine of the angle between the two vectors. The PDF is
strongly positively skewed, indicating that the two terms are statistically
aligned.
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See caption on next page.
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Figure 2.12 – (Figure on previous page). Joint-PDF of Lagrangian acceleration
along trajectories and summation of local time derivative and advective term as
computed through convolution of velocity locally in space and time. R is the cor-
relation coefficient of the two terms. Left panels: non-filtered velocity gradient
(correlation coefficients R = 0.40, 0.41, 0.41 for the three directions). Right pan-
els: filtered velocity gradient (correlation coefficients R = 0.45, 0.45, 0.46 for the
three directions). First, second, and third raw correspond to the projections of the
vectorial relation along the directions x, y, z, respectively.

Figure 2.13 – PDF of the cosine of the angle between the Lagrangian acceleration

vector Dui/Dt along trajectories, and the summation of the local acceleration and

the advective acceleration (circles, black online). PDF of the cosine of the angle

between the local acceleration and advective acceleration (stars, blue online).

In the same figure, the PDF of the cosine of the angle between the local
acceleration ∂ui/∂t and the advective term uj∂ui/∂xj (the two terms on
the right-hand-side of equation 2.23) is also shown. The PDF is negatively
skewed, indicating that the two terms are anti-aligned: the two terms partly
compensate each other, while contributing to the Lagrangian acceleration
of the fluid particle. This observation in agreement with previous labora-
tory and field measurements (Tsinober, 2003, pp. 132-135, and references
therein).





Chapter 3

Flow characterisation with

and without background

rotation

It is a well-known property of turbulent flows that the large-scale flow is
a source of kinetic energy feeding the small-scale turbulent fluctuations.
One of the non-trivial features of turbulence is the dependence of its dy-
namics on the forcing mechanism which drives the flow, on the boundary
conditions of the flow domain, and on the effects of volume forces like the
Coriolis force. Unbounded homogeneous isotropic turbulence follows uni-
versal scaling laws in the inertial and dissipative ranges of scales (Monin

and Yaglom, 1975, Frisch, 1995)). Laboratory flows may approximate
to some extent the hypotheses of homogeneity and isotropy, but one can-
not neglect the influence of the boundaries of the experimental facility.
As a first step, it is of primary importance to characterise the flow in the
non-rotating experiment. This allows a fair comparison of the flow gener-
ated in the current setup with other experimental and numerical studies in
the literature. Moreover, the characterisation of the flow for the reference
non-rotating experiment is essential for the description and analysis of the
effects induced by the background rotation. This is particularly important
for the turbulent flow studied in this work, where an intrinsic anisotropy is
present in the measurement domain, due to the (vertically) localised forcing

53
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(see Sec. 2.1.1).
A first characterisation of the dynamical influence of rotation on the flow

under consideration is given by the values of the two non-dimensional num-
bers Reλ ≡ urmsλ/ν (Taylor-scale Reynolds number) and Ro ≡ urms/(2ΩL)
(Rossby number) for all performed experiments, reported in table I. The

Ω (rad/s) 0.0 0.2 0.5 1.0 2.0 5.0

Reλ 53 38 46 67 151 88

Ro ∞ 0.47 0.20 0.13 0.09 0.02

Table I – Taylor-scale Reynolds number Reλ ≡ urmsλ/ν and Rossby number
Ro ≡ urms/(2ΩL) averaged over the entire measurement domain, for all experi-
ments.

two numbers are obtained from full-volume averages. Reλ gives an indica-
tion of the variation of turbulence intensity; Ro expresses the importance
of the advective acceleration over the Coriolis acceleration in the equation
of motion.

The present chapter is divided into two sections. The first one describes
the characterisation of the flow for the non-rotating experiment. It includes
the investigation of the stationarity in terms of energy content, the analysis
of the mean flow field driven by the electromagnetic forcing, the description
of its spatial (in)homogeneity, its (an)isotropy, and a study of geometrical
statistics for the vorticity vector. In the second section the results from the
rotating experiments are presented. These are unique, as they represent the
first rotating turbulence experiments with Particle Tracking Velocimetry.
Particular attention is devoted to the influence of rotation on the kinetic
energy content, the kinetic energy dissipation rate, the production of tur-
bulent kinetic energy, the vertical decay of velocity r.m.s., and the velocity
derivatives of the mean flow field.

3.1 Reference non-rotating experiment

The description of the flow for the reference experiment (Ω = 0) aims
to illustrate the main phenomenological, both kinematical and dynamical,
features of the particular fluid flow in examination, which is electromagnet-
ically forced according to the experimental setup described in the previous
chapter.
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3.1.1 Flow stationarity

The flow is forced steadily in time. The time it takes for the flow to reach
statistical stationarity has been accurately measured through long-time im-
age sequences analysed with stereo-PIV and reported in van Bokhoven

(2007). In view of these stereo-PIV measurements and of preliminary PTV
experiments, it is decided to start the actual measurements 60 s after the
forcing is initiated, so that the kinetic energy has been advected throughout
the entire domain, and the flow is in a statistically steady state. The flow
is then recorded for 160 s for runs with Ω ∈ [0; 1.0] rad/s, and 320 s for
Ω ∈ [2.0; 5.0] rad/s. Time-series of several quantities extracted from the
PTV data are investigated: the velocity magnitude (|u|), the kinetic energy
per unit mass (u2), and an estimate of the kinetic energy dissipation (u3/L).
All time-series are extracted from single-point measurements in space, as
well as from the r.m.s. velocity magnitude over the entire measurement
domain (spatial averages). For each time-series, the total (instantaneous)
velocity field has been used, and compared with the time-series from the
mean flow field and the turbulent fluctuating onei. In figure 3.1 only the
time-series of kinetic energy are shown, both from a single point in space
(the central point of the measurement domain is chosen) and from the spa-
tial average. Both plots distinguish the total, mean and fluctuating flow
components. The time-series show that the flow is indeed statistically sta-
tionary over the time-window of observation. The kinetic energy content of
the fluctuating flow field is roughly twice the kinetic energy content of the
mean flow field, indicating the importance of the small-scale turbulent flow
field over the large-scale one.

3.1.2 Mean flow

In order to distinguish between the energy contributions of the forced mean
flow and the turbulent fluctuating one, the velocity fields on a regular grid
are averaged in time over the Ndt = 9600 measurement time-steps. From
the instantaneous total velocity fields ui(xj , t) (as obtained through inter-
polation of the velocity fields from random particle positions on the regular
grid) the mean flow field Ui(xj) is subtracted, in order to obtain the in-
stantaneous fluctuating fields u′

i(xj , t):

iThe reader is addressed to Sec. 3.1.2 for the definitions of total, mean, and fluctuating

flow fields.
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Figure 3.1 – Time-series of kinetic energy (u2) for the reference non-rotating
experiment, computed using the velocity fields of the total flow, mean flow, and
fluctuating turbulent flow. Top panel: time-series from a single point in space.
Bottom panel: time-series of the r.m.s. value over the full measurement domain.
The total recording duration of 9600 time-steps corresponds to 160 s.
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Ui(xj) ≡ 1/Ndt

Ndt∑

t=1

ui(xj , t) , (3.1)

u′
i(xj , t) ≡ ui(xj, t) − Ui(xj) . (3.2)

In figure 3.2 the same slice of total velocity field shown in the previous
chapter (mid-height horizontal plane, z = 50 mm) is plotted on the left
panel, and the corresponding mean flow field on the right panel.
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Figure 3.2 – Vector map of the horizontal flow field {ux, uy}, and colour map
of the vertical one {uz}, for the reference non-rotating experiment. The fields are
extracted from the mid-height horizontal slice (z = 50 mm) of the domain. Left
panel: instantaneous (total) flow field for a randomly chosen time instant; right
panel: mean (time-averaged) flow field.

When the vertical position of the horizontal slice is varied through the
measurement domain and up to z ≃ 70 mm, the horizontal mean flow pat-
tern is observed to remain qualitatively similar to the one showed in the
right panel of Fig. 3.2. This indicates the presence of coherent mean flow
structures vertically aligned in the domain. As expected, the magnitude of
the horizontal and vertical flow fields decreases with the distance from the
bottom forcing region, thus with the height of the horizontal slice, as quan-
tified in the following section. The mean flow pattern reveals two vertical
counter-rotating vortices, which were expected in view of the arrangement
of magnets and the resulting forcing pattern, as described in Sec. 2.1.1. It
is important to note that these two large-scale structures of vertical vor-
ticity are not visible when inspecting the total (instantaneous) flow fields,
but appear clearly in the time-averaged one: the fluctuating flow contains
roughly twice the kinetic energy of the mean flow, and easily masks the
mean flow in a random instantaneous snapshot. The mean velocity field
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shown here (as well as the ones extracted from horizontal slices at z = 20
and 100 mm, and not shown here) is in very good qualitative agreement
with the stereo-PIV measurements reported in van Bokhoven (2007) at
the corresponding heights z: vertical mean flow structures of the same size
and in the same positions are shown, despite the different forcing settings
used for the PTV experiments.

3.1.3 Flow (in)homogeneity

The forcing system is placed below the fluid container, and acts in the bot-
tom flow region. It is thus expected that the energy content of the flow
decays in the vertical direction z while increasing the distance from the
bottom plate. Because the magnet array extends below the entire bottom
plate of the container (500 × 500 mm), and the electric current density
field is roughly homogeneous along the horizontal directions x and y, the
kinetic energy is expected to be statistically homogeneous in the central
measurement area (100 × 100 mm) of each horizontal section of the flow
field. The top row of figure 3.3 shows the profiles of the r.m.s. velocity along
the three Cartesian directions: each data-point of the profiles is computed
as the r.m.s. of all the points lying in the plane perpendicular to the coordi-
nate direction under consideration. In the bottom row, the profiles for the
estimate of the kinetic energy dissipation rate (ε = 〈u2〉3/2/L) are shown.

The x- and y-profiles gives similar results: the first two panels reveal
indeed that the flow is homogeneous to a good approximation in the hori-
zontal directions x and y. The third panel quantifies the inhomogeneity in
the z-direction. On the z-profile the values measured with stereo-PIV dur-
ing different realizations of the same experiment are also reported. They
are marked as triangles and circles at the three heights at which the planar
measurements were performed. Circles represent measurements with 4.00 A
forcing current, which data have been published in van Bokhoven (2007),
van Bokhoven et al. (2009). Data marked with triangles was instead
collected using 8.00 A forcing current, and has not been published ii. The

iiAs the stereo-PIV data with 8.00 A forcing current is not available for all rotating

experiments, in Sec. 3.2.3 the comparison between PTV and stereo-PIV data of the

z-profiles of urms is based on the 4.00 A forced runs (published data). Here, the two

stero-PIV datasets are compared for the non-rotating experiment, in order to quantify

the significant influence of the different forcing settings on urms and allow for a fair

comparison between the PTV and stereo-PIV rotating datasets. As shown by the two sets
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profiles from PTV data refer to experiments with 8.39 A forcing current,
thus with very similar settings to the triangles in Fig. 3.3. The value of
urms for z = 20 mm (triangle, 8.00 A) is seen to differ only marginally
from the present measurements. The values at z = 50 mm and z = 100 mm
collapse over the PTV data points. Overall, a good agreement between the
values measured with the two techniques can be assessed. In view of the
stereo-PIV data points, a linear decrease of energy along the vertical direc-
tion was expected. The present volumetric measurements, exploring also
the region of the flow near to the bottom boundary, reveal that the r.m.s.
velocity has a peak around z = 24 mm and decreases at lower heights.
Because of the different picture of vertical decay of energy that was drawn
after the stereo-PIV measurements were analysed, higher velocities were
expected to be measured by PTV in the bottom region of the container
(and out of the boundary layer). Also, the higher forcing current used for
the PTV runs was expected to have a more significant effect on the kinetic
energy content of the flow. Before the PTV data have become available, the
stereo-PIV data have been used to estimate the requirements of the new
measurement system. The necessary temporal resolution has been overes-
timated to be O(10) of the frame rate effectively required, and used for the
PTV measurements.

Several properties based on the Eulerian representation of the measured
flow field, described in the following sections and chapters, are extracted
from horizontal slices of the flow domain with thickness of 20 mm. In such
a slice the flow can be considered approximately homogeneous in all direc-
tions, thus including the vertical one. By considering these slices separately,
the vertical decay of the (turbulent) flow field is taken into account.

3.1.4 Flow (an)isotropy

The three velocity components are compared in terms of their PDFs to
quantify in a statistical sense the degree of isotropy of the velocity field.
The PDFs are computed on gridded data, sampling one time-step over five,
and on five horizontal slices of the domain:
z ∈ {[0; 20], [20; 40], [40; 60], [60; 80], [80; 100]} mm. Figure 3.4 shows the

of stereo-PIV data points, the increase of forcing current does not lead to a proportional

increase of urms, which is nevertheless significant.
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Figure 3.3 – Top row: profiles of the r.m.s. velocity (urms = 〈u2〉1/2) averaged
over planes perpendicular to the coordinate direction under consideration, for the
non-rotating reference experiment. Bottom row: same profiles, but for the estimate
of the energy dissipation rate (ε = 〈u2〉3/2/L). The large symbols on the z-profiles
indicate the values as measured with stereo-PIV during previous experiment8al
campaigns (circles: 4.00 A; triangles: 8.00 A forcing current).
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PDFs for ux, uy, uz over the five horizontal slices (ordered from the highest
to the lowest slice), both linear-linear and linear-logarithmic scales (left and
right column, respectively).
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Figure 3.4 – PDFs of the three instantaneous velocity components ux, uy, uz for
the non-rotating reference experiment, computed over the five horizontal slices of
the domain z ∈ {[80; 100], [60; 80], [40; 60], [20; 40], [0; 20]} mm, from first to fifth
row. In the left column, the linear-linear plots are shown. In the right column, the
linear-logarithmic plots are shown (for readability, only one data point over two is
plotted), together with a Gaussian fit Gx for the PDF of ux.

The PDFs of the horizontal velocity components collapse onto each
other, and are shown to be close to a Gaussian distribution, for slices from
the third (mid-height) to the fifth (bottom). The shape of their distributions
depends in a similar way on the height of the horizontal slice considered:
while z is increased (ascending the rows of panels in Fig. 3.4), the distri-
butions get narrower and taller, revealing once more the vertical energy
decay. The PDF of uy is negatively skewed for z ∈ [0; 20] mm, which can
be explained in view of the large-scale mean flow pattern shown in the
right panel of Fig. 3.2. In fact, the two vorticity structures, directly forced
electromagntically, are not completely contained in the horizontal field-of-
view of the present measurements. Because of it, the high velocities in the
negative y-direction induced in the centre of the domain are only partly
balanced by the fluid motion in the positive y-direction at the right and
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left edges of the domain. This effect is noticeable only for the bottom hori-
zontal slice, where horizontal forcing is predominant. Values for the vertical
velocity component uz at heights z ∈ [0; 60] mm are lower than for the hor-
izontal components, as indicated by its narrower PDFs. The distribution
of uz gets wider when increasing z from the first to the second slice, and
becomes narrower when the height is further increased. The latter shows
that the vertical velocity component is dominant for z ∈ [20; 40] mm. This
corresponds to the height above the magnets where the magnetic field lines
bend horizontally and the Lorentz force turns vertical (see Sec. 2.1.1), thus
where the electromagnetic forcing most strongly injects energy in the ver-
tical velocity component. The PDFs of uz show a positive skewness from
the second slice till the top (z ∈ [20; 100] mm), which is presumably the
signature of a large circulation cell in the full flow domainiii. The hori-
zontal velocity components of the flow under consideration turn out to
be approximately statistically isotropic for z ∈ [20; 60] mm. The intrinsic
three-dimensional anisotropic character of the flow is instead clearly re-
vealed by the lower values measured for the vertical velocity, as compared
to its horizontal components.

3.1.5 Geometrical statistics

“ (...) alignments belong to the rare quantitative statistical ma-
nifestation of the existance of structure in turbulence.” iv

Geometrical statistics in turbulence is intended as the statistical study
of the probabilities of alignment in physical space between the vectorial
dynamical terms in the equations of motion. The probability distribution
functions of the cosine of the angles between those terms, computed over
all available data points or over particular subsets of points (conditioned
PDFs), permit to characterise geometrical features of the large- and small-
scale dynamical structure of turbulence.

As seen in Sec. 1.2.2, a key-quantity which characterises the velocity gra-
dient tensor ∂ui/∂xj in turbulent flows, and in particular its anti-symmetric
part qij = 1/2(∂ui/∂xj − ∂uj/∂xi), is the enstrophy ω2/2 = ωkωk/2. The
vorticity vector ωi is defined by Eq. 1.25. The evolution equation for ω2

iiiThis large-scale circulation cannot be further investigated due to the limited size of

the observation window of the present data.
ivArkady Tsinober (Tsinober, 2003, p. 100).
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in an inertial (non-rotating) frame is derived from the equation of motion
written for ωi, and reads:

1

2

Dω2

Dt
= ωiωjsij + ǫijkωi

∂fk

∂xj
+ νωi

∂2ωi

∂xj∂xj
. (3.3)

On the right-hand-side of Eq. 3.3, the first term represents the enstrophy
production due to self-amplification of ∂ui/∂xj ; the second is responsible for
the enstrophy production by the external forces fi; the third and last term
represents the viscous dissipation of enstrophy. The two production terms
have been observed to differ by several orders of magnitude in numerically
simulated turbulent flows (see e.g. the work reported in Galanti and

Tsinober (2000), and table II therein). In fact, the self-amplification term
is found to be O(102) compared to the forcing term in Eq. 3.3 at Reλ = 35;
O(103) at Reλ = 110; O(104) at Reλ = 250. These observations were made
for the mean (volume-averaged) values, and also point-wise throughout the
flow field. Thus the self-amplification term ωiωjsij is of utmost importance
in the evolution process of enstrophy. It can be expressed in terms of the
eigenvalues Λi and eigenvectors λi of the strain rate tensor sij

v, as

ωiωjsij = ω2Λi cos
2(ωj, λj) . (3.4)

It is also useful to decompose it as the scalar product

ωiωjsij = ωi(ωjsij) = ωiWi = ωW cos(ωi,Wi) , (3.5)

where Wi = ωjsij is the vortex stretching term. These two expressions for
the self-amplification term clearly reveal the importance of the (statistical)
alignment of the vorticity vector with respect to W and λi. A well-known
example of importance of the term Wi, thus of the geometrical relation
between the vector ωi and the eigenframe {λi}, is the key difference between
3D- and 2D-turbulence: for a pure 2D-flowvi, the eigenvectors λi lie in the

vThe eigenvectors λi of the tensor sij correspond to the eigenvalues Λi ordered from

the largest to the smallest.
viPure 2D flows do not exist in nature, but several causes may impose a quasi-two-

dimensional (Q2D) character to real flows. Geometrical confinement (shallow flow do-

main), strong stratification, or fast rotation are typical ’ingredients’ of Q2D flows. As

indicated by the flow analysis presented throughout the following chapters, the fastest

rotating run (Ω = 5.0 rad/s) performed for the present experimental campaign reveals

to be a good example of Q2D flow.
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plane of motion, while the vector ωi is orthogonal to the plane, so that their
scalar product vanishes. The absence of the process of vortex stretching
dictates the dynamics of 2D flows.

The alignment of the vorticity vector ωi with respect to the eigenframe
{λi} is investigated for the non-rotating experiment. Figure 3.5 shows the
PDFs of the cosine of the angles between ωi and each eigenvector λi, com-
puted for all points and all time-steps on particle positions (the velocity
gradient computed along trajectories is used). The vorticity vector is found

Figure 3.5 – Alignment of the vorticity vector with the strain rate eigenframe.
Each PDF refers to the cosine of the angle between vorticity and each strain rate
eigenvector.

to be strongly aligned or anti-aligned in a statistical sense with the second
eigenvector λ2 (|cos(ωi, λ2)| ≃ 1). It is found to be statistically perpendicu-
lar to λ3 (cos(ωi, λ3) ≃ 0), being λ3 the direction of compression (Λ3 < 0).
Hardly any preferential alignment with the first eigenvector λ1 has been
found, the stretching direction (Λ1 > 0). These observations are in quali-
tative and quantitative agreement with the results from the experimental
data (Reλ ≃ 50) reported in Lüthi et al. (2005), as well as with the
ones from the field data (Reλ ≃ 103) reported in Gulitski et al. (2007a).
Despite the well-known preferential alignment of ωi with λ2, the main con-



66 Flow characterisation with and without background rotation

tribution to the term ωiωjsij , thus the strongest interaction of vorticity and
strain, has been observed to come from regions of the flow domain where
the vorticity aligns with the first eigenvector λ1 (see, e.g., Fig 6.15 in Tsi-

nober (2003)). This is understandable considering that the contribution
of the second eigenvector λ2 to the enstrophy production is limited by the
fact that its eigenvalue Λ2 takes both positive and negative values. On the
other hand, Λ1 is strictly positive, thus the contribution of λ1 to ωiωjsij is
positive on average.

3.2 Rotating experiments

The previous stereo-PIV measurements investigated a similar electromag-
netically forced flow subjected to three background rotation rates, and com-
pared it with the flow from a reference non-rotating run; four parameter
settings in total have been considered: Ω ∈ {0; 1.0; 5.0; 10.0} rad/s. It has
been observed (van Bokhoven, 2007) that rotation already affects the
flow under consideration very strongly for Ω = 5.0 rad/s, and no rele-
vant differences have been identified when the rotation rate was further
increased to Ω = 10.0 rad/s. For these reasons the present experiments
aim to describe the influence of milder rotation rates on the flow, for
which the Rossby number is expected to be close to unity. For Ro ≃ 1,
the Coriolis term competes with the advection in the momentum equation
for the flow. Experiments with five different rotation rates are performed,
together with a reference non-rotating one, thus six experiments in total:
Ω ∈ {0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/s.

In the following sections the effect of different rotation rates on the flow
kinematics and dynamics is analysed and quantified in terms of the r.m.s.
velocity fluctuations, including the kinetic energy contributions of mean
and turbulent fluctuating flows. The production of turbulent kinetic en-
ergy is investigated to quantify the effect of rotation on the energy transfer
between large and small scales of the flow. Furthermore, the influence of ro-
tation on the vertical decay of kinetic energy is described in terms of vertical
profiles of velocity r.m.s. (urms), as well as profiles of other meaningful pa-
rameters, directly derived from urms, which characterise the turbulent flow.
Finally, the damping due to rotation of the velocity gradient components
of the mean flow field, which is the energy source for the turbulent field, is
discussed. Further analysis of the experimental data from rotating experi-
ments (including the effects of rotation on the PDFs of velocity shown in



3.2 Rotating experiments 67

Sec. 3.1.4 for the non-rotating run) is presented in the following chapters.

3.2.1 Kinetic energy

The same analysis presented in Sec. 3.1.1 for the reference experiment is
performed for all rotating runs and presented here. Time-series of several
quantities averaged over the entire measurement domain are investigated:
r.m.s. velocity urms, estimate of the kinetic energy per unit mass (u2

rms),
estimate of the kinetic energy dissipation rate (u3

rms/L). Additionally, the
corresponding time-series extracted from a single point in space are in-
spected: local velocity magnitude (|u|), estimate of the local kinetic en-
ergy per unit mass (u2), estimate of the local kinetic energy dissipation
rate (u3/L), for the point P0 = {0; 0; 40} mm. For all time-series the to-
tal velocity field has been used, and compared with the time-series from
the turbulent fluctuating one and with the constant values relative to the
mean flow field. In figure 3.6 only the time-series of kinetic energy based
on the spatially-averaged r.m.s. velocity are shown, for the total, mean and
fluctuating flow fields.

The time-series indicate that the flow can be considered statistically sta-
tionary over the time-window of observation for Ω ∈ {0; 0.2; 0.5; 1.0} rad/s.
The two fastest rotating runs reveal instead fluctuations of the kinetic en-
ergy of longer period, and the time-window of the present measurements
is too limited to observe statistical steadiness. On the other hand this was
expected in view of the previous stereo-PIV measurements, which are char-
acterised by time-series four to eight times longer than the present ones.
This implies that the correct mean flow cannot be extracted by averaging,
as the time-series are of insufficient length. Indeed, in Sec. 4.3 of the fol-
lowing chapter, the time-averaged velocity field for Ω = 2.0 rad/s is shown
to differ from the one expected in view of the forcing applied to the flow.

3.2.2 Production of turbulent kinetic energy

The energetic coupling between the large scales of the flow and the small-
scale turbulence is represented by the turbulent kinetic energy production
PTKE, the product between the Reynolds stress tensor −〈uiuj〉 and the
strain rate tensor Sij of the large-scale mean flow (see Sec. 1.2.1):

PTKE = −〈uiuj〉Sij . (3.6)
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Figure 3.6 – Time-series of kinetic energy (u2) for all experiments, computed
using the velocity fields of the total flow, mean flow, and fluctuating turbulent flow.
Time-series of the r.m.s. value over the full measurement domain. From left to right
and from top to bottom: rotating experiments, Ω ∈ {0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/s.
The total recording duration of 9600 time-steps corresponds to 160 s for the first
four runs, 320 s for Ω ∈ {2.0; 5.0} rad/s.
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The probability distribution of PTKE is well-known to be positively skewed
(see e.g. Liberzon et al. (2006)), meaning that its integral over the en-
tire volume is positive. This is a typical signature of turbulence, for which
the large-scale flow continuously feeds the small-scale turbulent flow with
kinetic energy, and the exchange term PTKE is positive on the average.

The probability distribution functions of the term PTKE are computed
on five horizontal slices of the domain (slice thickness δz = 20 mm) on
gridded data. In figure 3.7, plots for the five slices show the influence of
rotation on the TKE production term at different heights z. On the plots,
the arrow marked Ω indicates the order of the curves according to increasing
rotation rate, from 0 to 5 rad/svii. The plot relative to the central slice
(z ∈ [40; 60] mm) is enlarged, in order to distinguish more clearly the
distribution for each rotation rate. The PDFs from the highest slice (z ∈
[80; 100] mm) are almost too noisy to distinguish any trend. The velocity
field is weak at those heights, thus the error in the velocity gradient is larger.
Another source of error, which effects the results from top and bottom
slices, is the lower number of data points available out of the core of the
measurement volume. Statistical convergence is checked, and only minor
quantitative differences are observed in the PDFs when the number of time-
steps sampled is reduced from 2000 to 200. Despite these considerations, the
PDFs of PTKE clearly get narrower for the highest rotation rates, indicating
that PTKE is reduced by rotation. Most importantly, all PDFs are positively
skewed, as expected. Moreover this positive skewness of the distributions,
typical signature of turbulence, is seen to be monotonically reduced with
increasing rotation rate.

Three processes may contribute to the decrease of positive skewness of
the PDFs: the reduction of the norm of the strain rate tensor of the mean
flow, a reduction of the norm of the Reynolds stress tensor, and a reduction
of the direct coupling of the two tensors. In order to isolate the latter, the
production term is normalised with the local values of the norms of both
tensors, as done in Liberzon et al. (2006):

PTKE/PTKE, 0 =
−〈uiuj〉Sij√

〈uiuj〉〈uiuj〉
√

SijSij

. (3.7)

viiIn this and in the following figures of the present chapter the measurement unit

rad/s for the rotation rate Ω is abbreviated as s−1.
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Figure 3.7 – PDFs of PTKE on five horizontal slices of the domain, each panel
refers to one slice. The arrow marked Ω indicates the order of the curves accord-
ing to increasing rotation rate, for Ω ∈ {0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/svii. The plot
relative to the central slice (z ∈ [40; 60] mm) is enlarged, in order to distinguish
more clearly the distribution referring to each rotation rate.
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Figure 3.8 – PDFs of PTKE/PTKE, 0 (non-dimensional) on five horizontal
slices of the domain, each panel refers to one slice. The arrow marked Ω in-
dicates the order of the curves according to increasing rotation rate, for Ω ∈
{0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/svii. The plot relative to the central slice (z ∈
[40; 60] mm) is enlarged, in order to distinguish more clearly the distribution re-
ferring to each rotation rate.
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The locally-normalised PDFs, for the same five horizontal slices and for the
same experiments, are presented in figure 3.8. In first place, the PDF for the
non-rotating experiment is seen to be in good quantitative agreement with
the one presented in Liberzon et al. (2006) (see Fig. 9 therein). A mono-
tonic decrease of the positive skewness of the distributions of PTKE/PTKE, 0

is observed for increasing rotation rate. In fact, as for the dimensional
PTKE, also the PDFs of the normalised PTKE are monotonically ordered
on the graphs according to the rotation rate Ω from 0 to 5.0 rad/s, as indi-
cated by the arrow. The same trend is observed for all the horizontal slices.
Only one run (Ω = 2.0 rad/s) does not respect the monotonic decrease
of positive skewness: at this rotation rate, the skewness of the normalised
distribution is strongly reduced. It gets higher again for Ω = 5.0 rad/s. The
reduced skewness of the PDFs of the normalised TKE production clearly
reveals that the coupling between the tensors −〈uijuij〉 and Sij is strongly
reduced by the background rotation. This implies that the transfer of energy
from the large-scale flow to the small-scale turbulence is partly inhibited.

3.2.3 Vertical decay of urms, energy dissipation rate, and

derived quantities

The profiles along the vertical z-direction of the fluctuating velocity r.m.s.
(urms), already shown in the right-top panel of Fig. 3.3 for the non-rotating
reference experiment, are here investigated for all rotating runs. Some basic
turbulence quantities and scales, derived from urms, are also plotted against
the z-coordinate and compared between runs characterised by different ro-
tation rates.

Figure 3.9 shows the z-profile of urms for the six PTV rotating runs,
together with the three data points for z ∈ {20; 50; 100} mm from the three
stereo-PIV runs with Ω ∈ {0; 1.0; 5.0} rad/s and 4.00 A forcing current.
As explained in the footnote made on a previous page (see Sec. 3.1.3), the
comparison between the two datasets cannot be quantitative, because of
the different forcing settings (which effect on the non-rotating reference
flow is illustrated by Fig. 3.3). The profiles suggest that different terms
in the equation of motion may dictate the dynamics in different regions
of the measurement domain. In the bottom region (z ∈ [0; 15] mm), the
influence of rotation on the turbulent energy content is non-trivial and of
difficult interpretation (the r.m.s. values for slices in [0; 10] mm are com-
puted on a very limited number of points). In the region (z ∈ [15; 35] mm),
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Figure 3.9 – Vertical profiles of the r.m.s. velocity (urms = 〈u2〉1/2) averaged over
horizontal planes, for all experimentsvii. Data points marked with larger symbols
at z = 20, 50, 100 mm are from stereo-PIV experiments with 4.00 A forcing
current.

where the electromagnetic forcing is expected to be dominant, urms is in-
deed hardly affected by rotation. On the contrary, stereo-PIV data show
that, for z = 20 mm, rotation significantly damps the r.m.s. velocity of the
fluctuating part of the turbulent flow field. Such a different trend in the
forced region suggests that the higher forcing current used for the PTV
experiments (more than twice as high) plays a decisive role in the com-
petition between the Coriolis acceleration and the electromagnetic forcing
term in the momentum equation of the flow. Above z = 35 mm and for
Ω ≥ 0.2 rad/s , velocities are progressively and strongly enhanced with
increasing background rotation, an observation which is also supported by
the stereo-PIV data points. This indicates that there exists an important
spatial upward energy transport from the forcing region to the upper one.
The inertial oscillations sustained by the background rotation are the phys-
ical mechanism of the described energy propagation along the direction of
the rotation axis in a rotating fluid (Greenspan, 1969). A separate case
is the anomalous run Ω = 2.0 rad/s, for which the profile is significantly
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shifted towards higer values of velocity.
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Figure 3.10 – Vertical profiles for all experimentsvii of the eddy turn-over time
Te = L/urms.

Figure 3.10 shows the profiles for the estimates of a key-quantities in tur-
bulence, which is derived directly from the values of urms presented above:
the eddy turn-over time Te = L/urms is plotted against the z-coordinate,
for all rotating runs. The eddy turn-over time at fixed height z is seen to be
progressively and significantly decreased in the upper domain region, while
the background rotation is increased.

The turbulent kinetic energy dissipation rate ε is estimated following
two different definitions. First, the full strain rate tensor sij of the turbulent
fluctuating field is used:

ε3D ≡ 2ν〈sijsij〉 . (3.8)

Second, the estimate ε3D is compared with its surrogate ε1D, which, for
historical reasons, depends only on the first component ∂u1/∂x1 of the
velocity gradient tensor of the turbulent fluctuating field:

ε1D ≡ 15ν〈(∂u1/∂x1)
2〉 . (3.9)

This approximation is derived under the assumption of isotropy, which in
principle would not be applicable to the flow studied here. Despite this,
ε1D represents an important term of comparison with the classical turbu-
lence literature. As done for the computation of the profiles shown before,
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the averages in equations 3.8 and 3.9 are intended over time, as well as
in space over horizontal slices 10 mm thick. The spatial derivatives on a
regular grid are used to compute the two estimates. The kinematic vis-
cosity ν is 1.319 mm2s−1 (see footnote in Sec. 2.1.1). Fig. 3.11 displays
the z-profiles of the estimate defined by Eq. 3.8, while Fig. 3.12 shows the
estimate defined by Eq. 3.9. Both plots, besides comparing the effects of
different background rotation rates from the present PTV data, also report
the three data points for z ∈ {20; 50; 100} mm from the three stereo-PIV
runs with Ω ∈ {0; 1.0; 5.0} rad/s. As said about the profiles of urms, the
comparison between the two datasets cannot be quantitative, because of
the different forcing settings (8.39 and 4.00 A forcing current for PTV and
stereo-PIV experiments, respectively).
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Figure 3.11 – Vertical profiles for all experimentsvii of the energy dissipation
rate estimated as ε3D ≡ 2ν〈sijsij〉. Data points marked with larger symbols at
z = 20, 50, 100 mm are from stereo-PIV experiments with 4.00 A forcing current.

Both estimates of the turbulent kinetic energy dissipation rate are seen
to be significantly reduced by rotation rates up to Ω = 1.0 rad/s for
z ∈ [0; 70] mm, and amplified in the highest region z ∈ [70; 100] mm. For
faster rotation rates, the dissipation rate is enhanced again, and it shows
an almost homogeneous profile in the z-direction. These observations are
in qualitative agreement with the results of the stereo-PIV measurement
campaign (van Bokhoven et al., 2009)) quantified by the large symbols
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Figure 3.12 – Vertical profiles for all experimentsvii of the energy dissipation rate

estimated as ε1D ≡ 15ν〈(∂u1/∂x1)
2〉. Data points marked with larger symbols at

z = 20, 50, 100 mm are from stereo-PIV experiments with 4.00 A forcing current.

in figures 3.11 and 3.12. It is important to remind that the velocity fields
retrieved with PTV are spatially slightly underresolved. Thus the present
values of the energy dissipation rate ε obtained from the turbulent flow
field by PTV are expected to underestimate the actual dissipation rate of
kinetic energy in the flow under examination. For coherency with the lit-
erature, and in view of the minor quantitative difference between ε3D and
ε1D, throughout the rest of this thesis the dissipation rate ε is intended
as the estimate ε1D defined by Eq. 3.9 and quantified by Fig. 3.12. The
kinetic energy dissipation rate ε ≡ ε1D is also used to retrieve the following
profiles of quantities directly derived from the dissipation rate, such as the
Kolmogorov scales.

In figure 3.13 the vertical profiles for the estimates of the Kolmogorov
length and time scales, η = (ν3/ε)1/4 and τη = (ν/ε)1/2, are presented in
the left and right panels, respectively. The profiles reflect the decrease of ε
induced by rotation in the mid-height and bottom regions of the measure-
ment domain, here shown in terms of amplification of η and τη. In the top
region, instead, the increase of ε induced by rotation implies a reduction of
the Kolmogorov scales.
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Figure 3.13 – Vertical profiles for all experimentsvii. Left panel: Kolmogorov
length scale η = (ν3/ε)1/4. Right panel: Kolmogorov time scale τη = (ν/ε)1/2.

The Taylor microscale λ, in the original definition introduced by Tay-
lor, expresses the importance of the velocity fluctuations over the velocity
derivatives. Historically, it is defined for isotropic turbulence using only one
velocity component and one velocity gradient component. It reads:

λ ≡ 〈u2
1〉1/2/〈(∂u1/∂x1)

2〉1/2 = u1,rms

√
15ν/ε , (3.10)

where the subindex 1 indicates the velocity component and the spatial
derivative in the x-direction. The vertical profiles of λ are shown in figure
3.14 for all experiments. The Taylor scale is seen to decrease in the bottom-
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Figure 3.14 – Vertical profiles for all experimentsvii of the Taylor microscale
λ ≡ u1,rms

√
15ν/ε.

half of the domain when a mild background rotation (Ω = 0.2 rad/s) is
applied. The further increase of Ω induces an even more pronounced reduc-
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tion of λ in the bottom-half region, while λ gets higher in the top-half of
the measurement domain. As for other quantities investigated in the previ-
ous sections, also the profiles of the Taylor scale reveal an anomaly for the
Ω = 2.0 rad/s run, for which λ is seen to be significantly higher than for
the 1.0 and 5.0 rad/s runs.

The top-panel of figure 3.15 shows the z-profiles for the estimate of
the Reynolds number based on the Taylor microscale, Reλ ≡ urmsλ/ν.
The bottom-panel shows the z-profiles for the estimate of the Rossby num-
ber Ro ≡ urms/(2ΩL). The variation of Reλ with Ω and z reflects once
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Figure 3.15 – Vertical profiles for all experimentsvii. Top panel: Taylor-scale
Reynolds number Reλ ≡ urmsλ/ν. Bottom panel: Rossby number Ro =
urms/(2ΩL).

more the enhancement induced by rotation of urms and ε in the top-half
of the domain. The run Ω = 2.0 rad/s appears to be an outlier also in
terms of Reλ. The z-profiles for the Rossby number reveal a significant
vertical inhomogeneity of Ro for the slowest rotation rate (Ω = 0.2 rad/s).
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This inhomogeneity is progressively suppressed while the rotation rate is
increased: it is already much less important for Ω = 0.5 rad/s, and Ro
is seen to assume an almost constant value across the entire z-profile for
Ω ∈ [1.0; 2.0; 5.0] rad/s. It is important to note that Ro ≃ 1 only for
Ω = 0.2 rad/s and in the bottom-half of the measurement domain. Here,
the Coriolis force is expected to compete with the turbulent advection of
velocity. For faster rotation rates, when Ro ≃ 0.1, the effects of rotation
are expected to dominate the flow dynamics.

3.2.4 Mean flow velocity derivatives

The strain rate of the large-scale mean flow drives the turbulent fluctu-
ating field, thus the velocity gradient of the mean flow field is of primary
importance. The magnitude of all spatial derivatives of the time-averaged
flow field, as well as the squared vertical vorticity component, are aver-
aged over horizontal slices of the measurement domain, and the resulting
vertical profiles are plotted for all experiments. The panels of the top row
of figure 3.16 display the profiles of the sum of the squared horizontal
derivatives of the horizontal velocity components 〈∑i=1,2

j=1,2
(∂ui/∂xj)

2〉 (left

panel), and of the sum of the squared vertical derivatives of the horizon-
tal velocity components 〈∑i=1,2

j=3
(∂ui/∂xj)

2〉 (right panel). In the bottom

row, the profiles of the squared horizontal derivatives of the vertical ve-
locity component 〈∑ i=3

j=1,2
(∂ui/∂xj)

2〉 are shown (left panel), together with

the profile of the squared vertical derivative of the vertical velocity compo-
nent 〈∑i=3

j=3
(∂ui/∂xj)

2〉 (right panel). Figure 3.17 shows the profile of the

squared vertical vorticity component 〈ω2
z〉 = 〈(∂uy/∂x − ∂ux/∂y)2〉.

All profiles indicate a general damping of the mean flow velocity deriva-
tives when the rotation rate is increased to Ω = 0.5 rad/s and further. The
magnitude of the horizontal derivatives of the horizontal velocity, and con-
sequently of the squared vertical vorticity, is instead slightly increased in
the bottom region (z ∈ [0; 13] mm) for Ω = 0.2 rad/s, and uniformly in z
for Ω ∈ {2.0, 5.0} rad/s. The profile of the squared horizontal derivatives of
the vertical velocity for Ω = 2.0 rad/s anticipates the anomalous behaviour
of the flow for this run.
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Figure 3.16 – Vertical profiles of the magnitude of the velocity derivatives of the
mean flow field (the components are indicated on the plot) for all experiments.

3.3 Summary of the characterisation of the flow

with and without background rotation

The flow for the reference experiment (Ω = 0) is described phenomeno-
logically. The kinetic energy time-series assesses its statistical stationarity.
The kinetic energy content of the fluctuating flow field is seen to be roughly
twice the kinetic energy content of the mean flow field, indicating the impor-
tance of the small-scale turbulent field over the large-scale mean flow. The
flow pattern of the time-averaged (mean) flow reveals two vertical counter-
rotating vortices, which are directly driven by the electromagnetic forcing
system. The flow is characterised as roughly homogeneous in the horizontal
directions, and inhomogeneous in the vertical direction. The energy decay
from the forced bottom region to the top of the fluid container is intrinsic
in the design of the experimental setup, and quantified in terms of vari-
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Figure 3.17 – Vertical profiles of the squared vertical vorticity for all experiments.

ous parameters. The flow is also seen to be intrinsically anisotropic, as the
vertical velocity component is significantly lower than the horizontal ones.
The measured preferential alignment of the vorticity vector with the sec-
ond eigenvector of the strain rate tensor is in qualitative and quantitative
agreement with previous experimental studies in the literature.

The rotating experiments (Ω ∈ {0.2; 0.5; 1.0; 2.0; 5.0} rad/s) are anal-
ysed and compared to the non-rotating one (Ω = 0). The kinetic energy
time-series indicate that the time-window of the present measurements is
too limited to observe statistical steadiness for the two fastest rotating runs,
but is instead sufficient for Ω up to 1.0 rad/sviii. A monotonic decrease of
the positive skewness (typical signature of turbulence) of the distributions
of the turbulent kinetic energy production (dimensional and locally nor-
malised) is observed for increasing rotation rate. This indicates that the
transfer of energy from the large-scale flow to the small-scale turbulence
is partly inhibited by the background rotation. In the top-half of the mea-
surement domain, out of the forced flow region, velocities are enhanced by
rotation. This is understood as the existence of an important spatial up-
ward transport of energy from the bottom forcing region, for which the

viiiNevertheless, the time-averaged velocity fields shown in the next chapter (see Fig.

4.4) reveal that also the time-series extracted from the run with Ω = 5.0 rad/s are

representative of the stationary forced flow field.
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inertial oscillations in the rotating fluid are responsible. The Rossby num-
ber approximates unity for Ω = 0.2 rad/s in the bottom-half of the mea-
surement domain: here, the Coriolis force is expected to compete with the
turbulent advection of velocity. For faster rotation rates Ro ≃ 0.1, and
the effects of rotation are expected to dominate the flow dynamics. The
magnitude of the velocity derivatives of the mean flow is generally damped
when the rotation rate is increased. The magnitude of the horizontal deriva-
tives of the horizontal velocity components (and consequently of the mean
flow vertical vorticity) is instead mildly amplified in the bottom region for
Ω = 0.2 rad/s, and uniformly in z for Ω ∈ {2.0, 5.0} rad/s. Finally, it has to
be remarked that the analysis of many quantities investigated here antic-
ipates the anomalous behaviour of the flow for the experimental run with
Ω = 2.0 rad/s. The reader is addressed to Chap. 4 for a more detailed ana-
lysis of the large-scale phenomenology of the rotating flow described here,
and in particular of the anomaly observed for Ω = 2.0 rad/s.



Chapter 4

Large-scale Eulerian flow

features in rotating

turbulence

This chapter is devoted to the study of the effects of rotation on the large
scales of the turbulent flow described in the previous chapter. The inter-
est towards the large-scale flow originates in the context of geophysical
and astrophysical fluid dynamics, as well as of many applications at the
industrial scale. The dynamics of quasi-geostrophic turbulence is strongly
characterised by its large-scale flow structure, which induces anisotropy in
the turbulent velocity fluctuations, in the spatial distribution of energy,
and in the energy dissipation of the flow field. When the Rossby number
Ro ≡ urms/2ΩL is significantly smaller than unity (thus when the Coriolis
acceleration is sufficiently more important than inertia), the component of
the vorticity field in the direction of the axis of rotation organises in space,
and columnar structures parallel to the same rotation axis are formed. The
flow field under strong background rotation is well-known to be dominated
by the presence of vorticity tubes aligned with the rotation vector, both
cyclonic and anticyclonic. As remarked by Hopfinger and van Heijst

(1993), the emergence of large coherent vorticity structures in rotating tur-
bulent flows plays an essential role in oceanic and atmospheric flows, and
especially in their dispersion and mixing properties. Still, we have incom-

83
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plete answers to these important problems, as the dynamics of the forma-
tion and of the mutual interactions between these columnar eddies remains
poorly understood. Moreover, the large-scale flow represents the source of
energy for the turbulent fluctuating velocity field, and it is able to ’shape’
the turbulence to some extent. This suggests that also some of the flow
properties related to the small-scale turbulence are indirectly affected by
rotation.

In the last thirty years important progress has been made in the phe-
nomenological description and partial understanding of the turbulent flow
dynamics modified by rotation. A wide variety of flow configurations have
been investigated numerically and in the laboratory. These data permit to
verify the results of analytical and numerical models of flows subjected to
rotation, and in general to shed more light on the non-trivial dynamical
processes involved. While the early laboratory experiments by Traugott

(1958) of rotating grid-turbulence in a wind tunnel focused on the decay of
the kinetic energy and the energy dissipation rate, Ibbetson and Trit-

ton (1975) quantified for the first time the increase of Eulerian velocity
correlations due to rotation from experimental data. They forced a turbu-
lent air flow in a rotating annular container by a system of translating grids,
and the temporal decay of the turbulence was observed and measured. The
small size of their apparatus lead to predominant Ekman boundary layer
effects, for which they observed an increase of the dissipation rate with
rotation (for a discussion see, e.g., Jacquin et al. (1990)). In 1976 McE-
wan revealed for the first time the concentration of vorticity in coherent
structures in rotating turbulence. Two years later, Wigeland and Nagib

(1978) performed experiments similar to the ones of Traugott (rotating
grid-turbulence in a wind tunnel), obtaining an homogeneous flow in the
tunnel cross-section. Particularly significant in the context of the present
study are the experimental data published by Hopfinger et al. (1982),
who investigated the large-scale effects of rotation on a turbulent flow con-
tinuously forced locally in space by means of a vertically (i.e. parallel to
the rotation axis) oscillating grid. They studied the population statistics
of the vorticity tubes which characterise the rotating flow, and gave a de-
tailed phenomenological description of the instabilities of such eddies for
Ro = 0.2, their nonlinear mutual interactions and eventual breakdowns (vi-
sualising the cores of the vortices using air bubbles). Jacquin and co-workers
(Jacquin et al., 1990) reproduced on a larger scale the experiment by
Wigeland and Nagib. With their observations, they confirmed the nonlin-
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ear nature of the transition from 3D to predominantly 2D flow dynamics of
homogeneous turbulence, which was predicted by the model published the
year before by Cambon and Jacquin (1989) (where the Eddy-Damped-
Quasi-Normal theory is used to model the anisotropic effects on the triple-
correlations). Early Lagrangian measurements in grid-generated decaying
rotating turbulence were performed using Particle Tracking by Dalziel

(1992). Recently, Baroud et al. (2003) investigated turbulent water jets
in a rotating annulus at Reλ = 360, and found the turbulent flow to be
highly intermittent, independently of the Rossby number. Morize, Moisy,
and Rabaud recently performed several experiments of decaying rotating
turbulence in large and small facilities (Morize et al., 2005, Morize

and Moisy, 2006, Moisy et al., 2010), and described in details some
aspects of the coupling between the inertial wave pattern and the decay-
ing turbulent field using high-resolution PIV. Accurate visualisations by
means of reflective flakes of the formation and evolution of columnar ed-
dies in rotating turbulence were performed by Davidson et al. (2006).
These experiments showed that – for initially inhomogeneous turbulence –
the build-up time of large coherent vortices is of the order of the short time
scale 1/2Ω, which characterises direct linear effects of the inertial waves on
the flow, rather than on the longer time scale L/urms typical of nonlin-
ear effects. The stereo-PIV measurements by van Bokhoven (2007), van

Bokhoven et al. (2009) of the same flow studied here, characterised the
effects on the turbulence of a rapid background rotation. In particular, they
described, for the first time in laboratory settings, the reverse dependence
on the rotation rate of the spatial horizontal correlation coefficients. Fur-
thermore, they observed a linear (anomalous) scaling of the longitudinal
spatial structure function exponents in the presence of rotation.

In the context of the existing literature, our experiment closely resem-
bles the ones performed in closed non-shallow containers, and with contin-
uous forcing applied locally in space (see, e.g., Hopfinger et al. (1982),
Davidson et al. (2006)). As shown by the profiles of urms in Sec. 3.1.3,
the turbulent fluctuations are stationary in time, homogeneous in the plane
of rotation, and they decay with the distance from the forcing region in the
direction of the rotation axis. These setups somehow mimic the flow past
a grid in a rotating wind tunnel (stationarity, homogeneity in the cross-
section, and decay in the streamwise direction), but they differ in terms
of the driving mean flow. In fact, the mean flow in a rotating wind tunnel
is homogeneous: a streamwise drift in the rotating frame, a helical mo-
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tion in the inertial frame. Forced flows in closed containers exhibit instead
complex circulatory mean flows, inhomogeneous in space, and strongly de-
pendent on the forcing applied and on the geometry of the container. Our
forcing produces a large-scale mean flow which is essentially represented by
a chessboard of counter-rotating columnar eddies with strength decaying
along their axial direction. This flow can be compared with the Taylor-
Green flow used as forcing in many DNS simulations of turbulence. One
recent example is found in the rotating turbulence simulations by Mininni

et al. (2009). We performed five rotating experiments and compared the
resulting flow with the non-rotating reference flow, thus six runs in total:
Ω ∈ {0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/s.

In the following sections, optical flow visualisation images are presented
first, in order to illustrate the main large-scale features of our flow at three
different rotation rates Ω. Visualisations of quantitative measurements by
means of Particle Tracking in a 3D-subvolume of the flow domain for all
(non-)rotating experiments, show the same flow features in larger detail.
Finally, the anomalies revealed by the run Ω = 2.0 rad/s are investigated
in view of the possibility of different dynamical scenarios.

4.1 Flow visualisations

Some first qualitative impressions of the large-scale flow features at different
rotation rates Ω are given by the optical visualisations shown in Fig. 4.1.
The photographs in the three panels refer to the electromagnetically forced
turbulent flow in statistically steady conditions, and in two cases subjected
to the background rotation Ω. The first panel shows the non-rotating refer-
ence flow (Ω = 0); the second describes the flow for Ω = 2.0 rad/s; the third
panel refers to Ω = 5.0 rad/s. While the PTV measurements presented in
the following sections are performed in a small subvolume of the flow do-
main, the field-of-view of the visualisations covers the entire fluid container:
the side walls are visible, as well as the top lid and the bottom wall. We
choose coated titanium-oxide flakesi as flow tracers dispersed in the fluid,
and we illuminate them using a white light source (positioned at the right
side of the image). As explained by Savaş (Savaş, 1985), thin flakes tend to
get parallel to the stream surfaces of the flow. Their finite thickness, typi-
cally O(10−1) of their other dimensions, causes only rapid turnovers of the

iBasf MagnaPearl 4000, size distribution 15 − 150 µm.
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flakes around their equilibrium position. We mount a standard single-lens
reflex cameraii in front of one of the side-windows of the flow container,
and illuminate the flow by means of a slide projector (volumetric illumina-
tion) through the adjacent side-wall. With this optical configuration, and
by manually operating the camera in remote, we record the light reflected
by the flakes. The regions of the flow which reflect most of the light are
the ones where the streamlines are perpendicular to the bisector of the 90◦

angle between the camera optical axis and the light axis. Since both the
camera axis and the light axis lie in the horizontal plane, planes perpendic-
ular to their bisector are verticaliii. Let us consider a vortex tube vertically
aligned. Two vertical bands, diametrically opposed to each other, on the
(approximately) circular cylindrical surface of the vortex, are visualised by
the light reflected by the flakes. The depth-of-focus available with aperture
f#4.5, together with the volumetric illumination, allows to obtain a rea-
sonably sharp view inside the full container. Each pair of vertical stripes
marking a single vortex tube may be distinguished by its xy-position in the
domain, which is revealed by the inhomogeneity of the illumination pro-
vided by the slide projector. The flow is continuously forced, it reached a
statistically steady kinetic energy level before the images are taken (as done
for the quantitative PTV experiments), and it is in solid body rotation (for
the rotating runs).

Four experiments are performed for Ω ∈ {0; 1.0; 2.0; 5.0} rad/s, although
photographs of only three of these are presented in Fig. 4.1, viz. for the
runs with Ω = 0, 2.0, and 5.0 rad/s. The photograph referring to the

iiThe camera is equipped with a 12 Mpixels CMOS sensor, with a magnification

conversion factor from the standard 35 mm frame of 1.6. The sensor is able to record

sufficient light when its gain is set up to 400 ISO, and the noise level is still acceptable. A

Sigma DC-EX Macro lens with 18 − 50 mm focal length and f#2.8 maximum aperture

is used at 18 mm (equivalent to 1.6 × 18 = 28.8 mm on the standard 35 mm frame).

Exposure is set to f#4.5, 1/100 s. The raw images are processed in a later stage: the

luminosity histogram is slightly modified to reduce the noise caused by randomly oriented

flakes throughout the entire volume.
iiiThe camera axis is slightly tilted down to obtain a better perspective view of the

flow domain and its bottom boundary. This implies that the surfaces reflecting most of

the light are not perfectly vertical (this is the case for the first and second panels of Fig.

4.1), or that the vertical surfaces revealed in the images do not reflect the maximum of

the light in the direction of the camera (as for the third panel of Fig. 4.1).
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run Ω = 1.0 rad/s is not shown because of its strong similarityiv with
the one with Ω = 2.0 rad/s. The luminosity pattern clearly reveals the
presence of coherent structures in the flow. The three pictures give a good
idea of the transition from a fairly isotropic turbulent flow, to a quasi-
two-dimensional turbulent flow. Instantaneous vorticity structures in the
non-rotating case are randomly oriented in the flow, and their size does not
exceed the forcing scale L = 70 mm (revealed by the pattern of the bottom
deposit). For Ω = 1.0 and 2.0 rad/s, well-defined vortex tubes occupy the
entire container, showing a clear tendency towards vertical alignment. Still,
the tubes strongly fluctuate in space and interact with each other, bending
their axes. At Ω = 5.0 rad/s, the columnar eddies are perfectly aligned with
the vertical direction, and slowly fluctuate in space. Another important
feature of rotating turbulence is visible in the same figure: the deposit of
reflective flakes on the black bottom plate (they are slightly heavier than the
fluid) gives a clear indication of the horizontal dimensions of the large-scale
vorticity structures at each rotation rate. The increase of the typical size
of this pattern with increasing Ω anticipates the enhancement of horizontal
Eulerian correlations of velocity induced by rotation (see chapter 5).

While the three photographs refer to a statistically steady state, we
add some comments about the flow during the transient which we visually
observed after initiating the electromagnetic forcing, and before reaching
statistical stationarity of the kinetic energy. In the non-rotating case, the
flow is set into motion from a condition of fluid at rest, when no pattern
of flakes is visible. As the forcing is initiated, the fluid close to the bottom
(z ∈ [0; 30] mm) is immediately set into turbulent motion, and some tracer
flakes deposited on the bottom get re-suspended. Within 10 to 20 s, the
turbulent spots extend from the bottom up to roughly mid-height (z ≃
125 mm), uniformly in the x- and and y-directions. In the top-half of the
container, the flow remains laminar, and the fluid appears to be completely
quiescent adjacent to the top lid (z ∈ [240; 250] mm). For all rotating runs,
the flow is first set in solid body rotation, and at this point no pattern
of flakes is visible in the fluid. As the forcing is initiated and the bottom
deposit is re-suspended, vertical stripes of higher light intensity suddenly
appear through the fluid. The columnar eddies are formed on a time scale
of the order of 0.1 s. This observation is in agreement with the quantitative
visualisations reported by Davidson et al. (2006), where the time it takes

ivDespite the qualitative resemblance of the visualisation photographs, these two runs

are shown to differ substantially on the base of quantitative PTV measurements.
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Ω = 0 rad/s

Ω = 2.0 rad/s

See caption on next page.



90 Large-scale Eulerian flow features in rotating turbulence

Ω = 5.0 rad/s

Figure 4.1 – Flow visualisations by dispersed reflecting flakes. The photographs

in the three panels aim to give a qualitative insight of the flow. The flow is forced

electromagnetically and it is in the statistically steady regime. The first panel

shows the non-rotating reference flow; the second describes the rotating flow for

Ω = 2.0 rad/s; the third panel refers to Ω = 5.0 rad/s. The field-of-view covers

the entire fluid container: the side walls are visible, as well as the top lid and the

bottom wall. The flow is imaged using reflective titanium-oxide flakes dispersed

in the salt solution, and illuminated by a white light source (positioned at the

right side of the image). The reflective flakes experience preferential orientations

in the flow, statistically parallel to the local stream surfaces, and thus reveal the

presence of coherent structures in the flow. The three photographs give a clear idea

of the transition from a fairly isotropic turbulent flow, to a quasi-two-dimensional

turbulent flow. Furthermore, the deposit of tracer particles on the bottom gives a

clear indication of the horizontal dimensions of the large scale vorticity structures

at each rotation rate.

The photographs on the cover of this thesis are obtained using the same technique,

and they refer to the same three rotation rates Ω ∈ {0; 2.0; 5.0} rad/s. A planar

illumination is used to visualise only a vertical slice of the flow field, and a longer

focal length is set to narrow the field-of-view.
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the eddies to develop is shown to reflect the linear time scale 1/2Ω (which
corresponds to 0.50, 0.25 and 0.1 s for Ω = 1.0, 2.0 and 5.0 rad/s, re-
spectively). No further evolution of the pattern of flakes is visible for Ω =
5.0 rad/s. Instead, for Ω = 1.0 and 2.0 rad/s, the flow pattern evolves from
a scenario similar to the one seen for the faster rotating run, towards its
final state illustrated by the second panel of Fig. 4.1. This second transient
is characterised by a temporal duration compatible with the nonlinear time
scale L/urms, which value is roughly 0.07/0.015 ≃ 4.7 s on the basis of the
results reported in Sec. 3.2.3. During this time, instabilities are triggered
in the four corners of the container, from where they are advected towards
the bulk. For Ω = 2.0 rad/s, as the following quantitative measurements
confirm, the vertical eddies are seen to experience fluctuations in space of
much larger amplitude than in any other run. The qualitative observations
reported here support the idea of a development of a 2D large-scale flow by
means of linear effects, followed by mutual interactions of nonlinear nature
between the single coherent structures, when the Rossby number is not too
low.

4.2 Two-dimensional organisation of the flow

While the visualisations give a qualitative impression of the flow, we shall
now present quantitative results from Particle Tracking measurements. The
advantage is not limited to a descriptive quantification of the flow, but
includes the possibility of averaging the velocity field in time to distinguish
between the mean flow and the turbulent fluctuations. We stress here that
the visualisations presented in the previous section give an overview of the
instantaneous flow, but cannot reveal the coherent mean flow field as a
result of the electromagnetic forcing. For example, for Ω = 0, such a mean
flow can only be observed in the time-averaged flow field.

The suppression of vertical gradients of the velocity field (the transition
process from 3D to 2D, for which the flow tends towards the geostrophic
balance) can be visualised in terms of the magnitude of the horizontal
velocity, both from the mean and the fluctuating flow fields, denoted by
Ui(xj) and u′

i(xj), respectively, and read:
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Figure 4.2 – Magnitude fields of horizontal velocity for the mean flow (Uh(xj))
and the fluctuating flow (u′

h(xj , t), for a random t), left and right panels, re-
spectively. Each row in the two-page figure refers to a rotation rate Ω ∈
{0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/s, as indicated on the figure. The 3D-fields of the
scalar quantities Uh and u′

h are visualised as colour maps (with velocity ex-
pressed in mm/s) on three vertical xz-slices of the measurement domain (y ∈
{−30; 0; 30} mm).
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Uh(xj) =
√

U1
2(xj) + U2

2(xj) , (4.1)

with Ui(xj) ≡
1

Ndt

Ndt∑

t=1

ui(xj , t) ;

u′
h(xj, t) =

√
u′

1
2(xj, t) + u′

2
2(xj , t) , (4.2)

with u′
i(xj , t) ≡ ui(xj , t) − Ui(xj) .

The fields Uh(xj) are shown in the panels of the left columns of figure
4.2, where each row in the two-page figure refers to a rotation rate Ω ∈
{0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/s. The panels in the right columns show the
fluctuating field u′

h(xj , t) for the same experiments, and for a randomly-
chosen time instant t. The 3D-fields of the scalar quantities Uh and u′

h

are visualised as colour maps on three vertical xz-slices of the domain at
y ∈ {−30; 0; 30} mm. The dampening of the vertical gradients of the the
horizontal velocity induced by increasing background rotation appears ev-
ident both in the large-scale mean flow field, and in the small-scale fluc-
tuating flow field. Already at Ω = 2.0 rad/s, both Uh(xj) and u′

h(xj, t)
appear to be organised in a vertically aligned pattern, almost independent
of z. The velocity scale has been chosen to be the same for the mean and
fluctuating fields, in order to give a visual comparison of the different hor-
izontal kinetic energy content of the two fields. The effective maximum
horizontal velocity (56 mm/s) is actually slightly higher than the colour
bar full-scale (40 mm/s), and it is measured in the fluctuating field of the
run Ω = 2.0 rad/s. The velocity scale is cropped at 40 mm/s for a bet-
ter readability of the weak mean flow fields. Large-scale vertical coherent
structures are visible also in the mean flow field for Ω = 0 and for slow ro-
tation rates: these vortices, directly forced electromagnetically, extend up
to z ≃ 30 mm, and get considerably weaker above that height. The fast
process of two-dimensionalisation of the flow field (observed to transform
the flow in a time comparable with the linear time scale of rotation 1/2Ω,
see Sec. 4.1) elongates these vortices till the top-height of the container for
Ω ≥ 1.0 rad/s. A strong rotation (Ω = 5.0 rad/s) forces them to a strict
vertical alignment.

As explained in the previous paragraphs, it is of interest to monitor the
evolution of individual large-scale vortices in the flow. Following the method
explained by Hunt et al. (1988), we plot isosurfaces of the Q-invariant
at a certain threshold level, in order to identify coherent structures in the
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3D turbulent velocity fields. The Q-invariant is defined as:

Q =
1

2

(
||qij ||2 − ||sij||2

)
, (4.3)

where sij and qij are the symmetric and antisymmetric parts, respectively,
of the velocity gradient tensor. The operator ||aij || represents the Frobenius
norm of a square tensor aij, and it is defined as:

||aij || ≡
√

Tr (a2) =

√√√√
3∑

i=j=1

(a2
ij) . (4.4)

Hunt showed that regions of the flow where Q > 0 are mostly associated
with regions of concentrated vorticity, thus the isosurfaces defined by a
positive threshold value Q0 locate patches of high vorticity in the flow. In
order to remove the experimental noise and the small-time flow fluctuations
before computing the velocity gradient, the velocity fields (interpolated over
a regular grid, as explained in Sec. 2.3.6) are averaged in time over intervals
of duration δtavg . We vary δtavg from 1 s to half of the total recording time:
80 s for Ω ∈ [0; 1.0] rad/s; 160 s for Ω ∈ {2.0; 5.0} rad/s. The results
are investigated in terms of the isosurfaces of Q at a fixed threshold Q0,
where Q0 is optimised for each run in order to remove the small-scale
fluctuations from the visualised Q-fields. In figure 4.3 we present the results
obtained from long-time-averaged velocity fields, where the exact values
used for δtavg and Q0 reported in table I. The long-time averaged results

Ω (rad/s) 0 0.2 0.5 1.0 2.0 5.0

δtavg (s) 40 40 40 40 80 80

Q0 (s−2) 0.2500 0.1875 0.1250 0.0625 0.0938 0.0625

Table I – Averaging interval duration δtavg and threshold level Q0 used to plot
the isosurfaces of the Q-invariant shown in Fig. 4.3, for each background rotation
rate Ω.

shown in Fig. 4.3 (only one of the four time-averaged intervals is shown
in the figure for each Ω) aim to illustrate the typical shape, orientation
and size of coherent eddies at each rotation rate. Vorticity is distributed
isotropically as patches of irregular shape when no rotation is applied. A
mild rotation of 0.2 rad/s induces already noticeable effects on the flow,
and for Ω = 0.5 rad/s we clearly distinguish columnar eddies. The position
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Ω = 0 rad/s Ω = 0.2 rad/s

Ω = 0.5 rad/s Ω = 1.0 rad/s

Ω = 2.0 rad/s Ω = 5.0 rad/s
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Figure 4.3 – (Figure on previous page). Regions of concentrated vorticity for
different background rotation rates Ω are revealed by the isosurfaces of the Q-
invariant at the threshold level Q0. The Q-invariant is computed over velocity
fields averaged in time over intervals of duration δtavg. The values used for δtavg

and Q0 for each experiment are reported in table I.

of these eddies is rather stable when the maximum rotation rate is applied
(Ω = 5.0 rad/s), as seen by comparing the plots from the four averaged
time intervals (not shown here). In contrast, for Ω = 2.0 rad/s, their posi-
tion changes rapidly. We analysed video sequences of the evolution of the
columnar eddies at each background rotation rate, using short-time aver-
aged velocity fields: δtavg ∈ {1; 2; 5; 10} s. The eddies appear to fluctuate
in space for Ω = 2.0 rad/s on a time scale 2 s ≤ T ∗ ≤ 5 s (compatible
with the advection time-scale), while they hardly move from their position
for Ω = 5.0 rad/s. For slower rotation rates (Ω ∈ {0.5; 1.0} rad/s), the
eddies are already visible, and their position is subject to small-amplitude
fluctuations, and on a time-scale shorter than 2 s.

4.3 An anomalous run: Ω = 2.0 rad/s

The flow analysis presented throughout Chap. 3 anticipated the anomalous
behaviour of the run Ω = 2.0 rad/s for almost all the quantities which have
been studied. In Sec. 3.2.1, the two experiments with the highest rotation
rates are seen to be characterised by long-time fluctuations of the kinetic
energy. The time-window of the present measurements is too limited to ob-
serve statistical steadiness, thus the length of the velocity time-series is not
sufficient to extract the correct mean flow field for those runs. In Sec. 3.1.2,
an instantaneous flow field and the mean flow field are presented in Fig. 3.2
for the reference non-rotating experiment. We present here in Fig. 4.4 the
same plots for all rotating experiments: the three velocity components (vec-
tor map for {ux, uy}, colour map for {uz}) are plotted for the mid-height
horizontal slice (z = 50 mm), for the instantaneous flow (from a randomly
chosen time instant) and the mean flow, left and right panels, respectively.
The mean flow pattern reveals two counter-rotating vortices with vertical

axes, which are expected in view of the arrangement of magnets and the
resulting forcing pattern, as described in Sec. 2.1.1. The horizontal swirling
velocity of these two eddies is seen to decay with the height z in the non-
rotating case, and the vortices vanish above z ≃ 70 mm.
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Figure 4.4 – (Figures on the previous two pages). Vector map of the horizontal
flow field {ux, uy} and colour map of the vertical one {uz}, for the instantaneous
(total) flow ui(t) (for a randomly chosen time t) and the mean flow Ui, left and
right panels respectively. Each row in the two-page figure refers to a rotation
rate Ω ∈ {0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/s, as indicated on the figure. The fields are
extracted from the mid-height horizontal slice (z = 50 mm) of the domain, and
velocities are expressed in mm/s.

When a rapid background rotation (Ω = 1.0, 2.0, 5.0 rad/s) is applied, the
horizontal mean flow pattern is instead seen to be qualitatively and quan-
titatively the same throughout the full-depth of the container. Moreover,
already for Ω = 1.0 rad/s, the randomly-chosen instantaneous flow field is
seen to resemble the mean flow one, and the instantaneous and mean flow
fields at Ω = 5.0 rad/s are seen to coincide to a good approximation. For
Ω = 1.0 rad/s, the (forced) mean flow pattern is partly distorted, indicating
that the time scale of the large-scale fluctuations of the flow field increases,
and the recording time (160 s) is not sufficient to retrieve the exact mean
flow. For Ω ∈ {2.0; 5.0} rad/s, our time-series are twice as long (320 s),
and such recording duration reveals to be sufficient to correctly average the
flow field at 5.0 rad/s. On the contrary, despite the extended recording time,
the time-averaged velocity field for Ω = 2.0 rad/s differs substantially from
the one which is forced electromagnetically and approximately retrieved for
all the other runs. This can be explained in view of the large-amplitude,
long-time fluctuations of the vertical eddies in space, which are revealed
by comparing time-averaged velocity fields computed over four intervals of
the full time-seriesv. This effect is also confirmed by the observation of the
evolution of the columnar vortex structures, visualised by optical means,
and by means of the isosurfaces of the Q-invariant. This has an important
implication for that particular dataset: the fluctuating flow fields obtained
by subtracting an incorrect mean flow field are not representative of the
real turbulent flow. As a consequence, for Ω = 2.0 rad/s, all the quantities
characterising the turbulence in terms of velocity fluctuations, are seen to
behave as anomalies between the trends indicated by the other runs. In
addition, the fact that the time-series are not representative of the statis-
tically steady flow, may have an influence also on quantities based on the
instantaneous velocity fields. In view of these considerations, the results for

vAs an illustration, horizontal slices of the horizontal velocity field averaged over one

of the four time-intervals, and for each rotation rate Ω, are shown in Fig. 4.7, together

with the maps of the absolute vertical vorticity.
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Ω = 2.0 rad/s presented in the previous and following section and chapters
have to be treated with special care.

The distortion of the symmetric mean flow pattern is quantified by
the PDFs of the vertical vorticity component of the time-averaged flow
fields computed on four intervals of the full time-series (’chunks’ which
length equals 40 s for Ω ∈ [0; 1.0] rad/s, 80 s for Ω ∈ {2.0; 5.0} rad/s),
shown in Fig. 4.5. A positive skewness of the PDFs indicates that the
cyclonic columnar eddy is in the field-of-view of our measurement system for
longer time than the anticyclonic one, during the considered time interval;
a negative skewness indicates instead the prevalence of the anticyclonic
vortex. The PDFs relative to the four time intervals are seen to collapse
in the non-rotating case, and they remain reasonably close to each other
for Ω ∈ {0.2; 0.5} rad/s. At Ω = 1.0 rad/s, three PDFs of the four are
significantly positively skewed, indicating the positions of the large-scale
eddies fluctuate on a longer time scale. The four PDFs for Ω = 2.0 rad/s
are significantly different from each other, and extremely noisy, revealing
a completely different evolution of the vertical vorticity distribution for
this run (despite the extended duration of 80 s for each time interval). At
5.0 rad/s the skewness of the four PDFs is considerably reduced, as is their
mutual difference.

A possible explanation for the drastic change in the flow dynamics for
Ω = 2.0 rad/s is represented by centrifugal instabilities of individual co-
herent structures in the flow field, which may induce interactions between
different vortices, causing their oscillatory motion in the container. We in-
vestigate this possibility studying the stability of the mean flow columnar
eddies in terms of the Rossby number characterising them, and in terms of
the absolute vorticity.

The Rossby number Row ≡ ωw/2Ω = Uw/ΩLw characterising the large-
scale columnar (worm-like) vorticity structures is defined on the basis of
their velocity and horizontal length scale, Uw and Lw, respectively. The
ratio 2Uw/Lw = ωw expresses a typical scale for their vorticity, ωw. Two
approaches are followed to compute Row. First, the r.m.s. vertical vorticity
of the mean flow field is used to estimate the vorticity scale, ωw = ωrms. As
a second approach, the maximum tangential velocity component is used as
Uw, and the radius of the vortex is taken as Lw. Following both approaches,
we perform the described analysis on three horizontal slices of the flow
field at z ∈ {10; 20; 40} mm. In Fig. 4.6, an example of the output of the
automated procedure which implements the second approach is shown for
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Ω = 0 rad/s Ω = 0.2 rad/s

Ω = 0.5 rad/s Ω = 1.0 rad/s

Ω = 2.0
rad/s

Ω = 5.0 rad/s

Figure 4.5 – PDFs of the vertical vorticity component (in rad/s) of the time-
averaged flow fields computed on four intervals (’chunks’) of the full time-series.
Each panel, from left to right and top to bottom, refers to a rotation rate Ω ∈
{0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/s, as indicated in the figure.
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Figure 4.6 – Output of the automated procedure used to estimate radius and maximum tangential velocity of the
large scale columnar eddies. The plots refer to one experiment (Ω = 5.0 rad/s) and one horizontal slice of the flow field
(z = 40 mm). The left panel shows the vector map of the horizontal time-averaged velocity field, and the colour map of
the vertical vorticity of the same field. The local minima and maxima of the horizontal velocity field are marked as blue
and red stars, respectively, and are used to retrieve the position of the vortex cores and their spatial extension Lw. In the
right panel, the profiles of the horizontal velocity magnitude (Uxy, in red) and the vertical vorticity (ωz, in black) along
the section that passes through the cores of the two vortices (in red in the left panel), are shown as a term of comparison
for the estimated values Uw and ωw = 2Uw/Lw (see table II).
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one experiment and one slice (Ω = 5.0 rad/s, z = 40 mm): for each vortex,
the local minima and maxima of the horizontal velocity field are located to
estimate the position of the core, the radius, and the maximum tangential
velocity. The left panel of Fig. 4.6 shows the vector map of the horizontal
time-averaged velocity field, and the colour map of the vertical vorticity;
the local minima and maxima of the horizontal velocity field are marked
as blue and red stars, respectively. In order to check the estimated value
of ωw = 2Uw/Lw, the profiles of the horizontal velocity magnitude and
the vertical vorticity are computed along the section that passes through
the cores of the two vortices, marked in red in the left panel. The two
profiles are shown in the right panel of the same figure, Uxy in red and
ωz in black. The results are summarised in table II, which reports the
maximum tangential velocity Uw, the radius Lw, and the Rossby number
Row ≡ ωw/2Ω = Uw/ΩLw relative to the left (anticyclonic) and right
(cyclonic) columnar eddies which characterise the large-scale flow field, for
all background rotation rates Ω. When the core of the vortices is out of the
field-of-view, an incorrect radius is estimated, leading to incorrect values for
the vorticity and the Rossby number. Such cases are reported in parenthesis
in the table. The Rossby numbers computed at heights z = 10 and 20 mm
do not differ significantly from the ones reported in the table, which are
derived from the horizontal mean flow fields at z = 40 mm. Moreover, the
estimates of Row derived from the r.m.s. vertical vorticity following the first
approach (not reported here) are found to be in good agreement with the
values obtained with the second approach (reported in table II). Despite
the fact that the cores of the cyclone for Ω = 1.0 rad/s, and of both eddies
for Ω = 2.0 rad/s, are out of the field-of-view, the real values for Row are
not expected to differ substantially from the values reported in parenthesis,
in view of the general trend observed for both vortices while Ω is increased.

The instability of coherent vortex structures can be investigated using
different criteria. Kloosterziel and van Heijst (1991) presented a mod-
ified Rayleigh criterion indicating which regions of the flow field are locally
prone to instabilities. The present data are not suited for the application of
such a local criterion, mainly because of the experimental noise in the vor-
ticity field. Therefore we choose to use a more rough criterion. According
to the criterion of zero absolute vorticity (see, e.g., Pedlosky (1987)), an
anticyclone in a rotating fluid may become unstable when its vorticity scale
ωw in the rotating frame equals the background vorticity 2Ω. This can be
expressed in terms of its absolute vorticity (−ωw+2Ω) being zero, as well as
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in terms of a critical Rossby number Rocr ≡ ωw/2Ω = 1. As different defi-
nitions of the Rossby number (based on different length, velocity, and vor-
ticity scales) are given in the literature to describe the instability of eddies
in rotating flow configurations very different from each other, the reported
values for the critical Rossby number vary in the range Rocr ∈ [0.1; 10]. In
particular, the experiments by Hopfinger et al. (1982) (characterised
by a flow configuration relatively similar to ours), indicate that the vor-
tices are subjected to centrifugal instabilities for Rocr ≃ 0.2, leading to
frequent vortex breakdowns. The values reported in table II show that the
stability of the anticyclonic eddy may be compromised for rotation rates
1.0 < Ω < 5.0 rad/s, therefore possibly for Ω = 2.0 rad/s.

The criterion of zero absolute vorticity is also used to analyse the point-
wise stability of vertical vorticity throughout the entire flow field ui(xj).
Horizontal maps of the absolute vertical vorticity (ωz(xj) + 2Ω) are ex-
tracted at heights z ∈ {10; 20; 40} mm from the time-averaged velocity
fields computed over four intervals of the full time-series, in order to observe
long-time variations. The maps from one time-interval for each experiment
are shown in Fig. 4.7. The colour map highlights in red the regions for

Ω (rad/s) 0 0.2 0.5 1.0 2.0 5.0

Anticyclone (left eddy)

Uw (mm s−1) 11.0 11.0 12.4 11.8 (15.8) 11.0

Lw (mm) 28.0 36.0 38.5 27.9 (60.1) 32.2

Row ∞ 1.53 0.64 0.42 (0.13) 0.07

Cyclone (right eddy)

Uw (mm s−1) 10.2 12.3 11.1 (11.8) (15.7) 12.9

Lw (mm) 27.2 32.2 39.8 (52.0) (60.0) 32.2

Row ∞ 1.91 0.56 (0.23) (0.13) 0.08

Table II – Maximum azimuthal velocity Uw, radius Lw, and Rossby number
Row ≡ Uw/ΩLw, for the left (anticyclonic) and right (cyclonic) vertical eddies
which characterise the large-scale flow field at z = 40 mm, and for all background
rotation rates Ω. The values are computed with the procedure illustrated in Fig.
4.6. When the core of the vortices is out of the field-of-view, an incorrect radius
is estimated, leading to incorrect values for the vorticity and the Rossby number.
Such cases are reported in parenthesis.
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Figure 4.7 – Horizontal maps of the vertical absolute vorticity (ωz(xj) + 2Ω)
extracted at z = 40 mm from the time-averaged flow fields computed on one
(randomly-chosen) over four time intervals (’chunks’) of the full time-series.
The panels, from left to right and top to bottom, refer to the rotation rates
Ω ∈ {0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/s. The modified colour map highlights in red
the regions for which (|ωz(xj) + 2Ω|) < 0.1(|ωz(xj) + 2Ω|)max.
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which (|ωz(xj) + 2Ω|) < 0.1(|ωz(xj) + 2Ω|)max. The maps reveal that the
absolute vertical vorticity is roughly zero in the region occupied by the
anticyclonic eddy when Ω = 0.5 rad/s, for which instead no significant
instabilities of the large-scale eddies have been observed. This result was
partly expected, as the pointwise application of the criterion characterises
the small-scale vorticity field, but it is not representative of the large-scale
columnar eddies. On the contrary, we showed that the application of the
same criterion to the large-scale eddies does indicate the possibility of in-
stabilities in the range of Ω around 2.0 rad/s.

The investigations on the large-scale flow would tremendously benefit
from a wider field-of-view in the horizontal directions. This is especially
true in view of the significant interactions between coherent structures in
the flow at scales exceeding the size of the present measurement domain.
Unfortunately, the preliminary measurements by van Bokhoven (2007),
van Bokhoven et al. (2009) (planar stereoscopic PIV measurements),
which investigated the flow on larger cross-sections, did not include the case
Ω = 2.0 rad/s. The same stereo-PIV technique is seen as the most suitable
tool to further investigate this case, as the measurements would benefit
from the wider field-of-view, as well as from the higher spatial resolution in
the measurement plane. In view of the results presented in this chapter, we
expect such stereo-PIV measurements to confirm the importance of insta-
bility mechanisms of the columnar eddies for Ω = 2.0 rad/s, and eventually
to show breakdown events of anticyclonic vortices. Also, it would be ad-
visable to investigate more rotation rates in the range Ω ∈ [1.0; 5.0] rad/s,
in order to be able to observe the transition towards the unstable large-
scale flow at Ω = 2.0 rad/s, and its further evolution towards the quasi
two-dimensional state observed for Ω = 5.0 rad/s.

To conclude the analysis of the large-scale flow, we investigate the ve-
locity time-series in spectral space, in order to exclude that wave resonance
effects within the experimental container play an important role in the flow
dynamics for Ω = 2.0 rad/s. Such oscillations may be triggered by inertial
wavesvi , which are internal fluid waves solely promoted by the Coriolis
force. These waves have maximum vertical displacements in the interior of
the fluid (and vanish at the free surface, if present), and they are charac-
terised by frequencies below the inertial frequency fIW = 2fΩ = Ω/π. They
propagate obliquely with respect to the rotation axis, the propagation direc-
tion being dependent solely on their frequency and the rotation frequency

viFor an introductory mathematical description the reader is addressed to Sec. 1.1.2.
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fΩ. Inertial waves are known to trigger oscillatory modes in rotating closed
containers. The wave response of the container strongly depends on its
geometry: in Maas (2003), the analytical solutions of the hyperbolic wave
equation with the boundary conditions of a rectangular parallelepiped with
variable aspect ratio are derived and presented for the first time. Oblique
boundaries (with respect to the rotation axis) are prone to focus waves, and
the effects of the geometrical confinement on the wave spectrum do not re-
sult in isolated frequencies. Maas explained that inertial waves in a box
have a dense frequency spectrum. However, the horizontal parallelepiped
constitutes a special case, as its boundaries are either parallel or perpen-
dicular to the rotation axis, therefore cannot focus inertial waves. In this
geometry, discretisation of frequencies occurs, and a number of eigenfre-
quencies describes the wave spectrum. When the size of the container is
increased, thus the confinement is reduced, these eigenfrequencies are seen
to converge to the inertial frequency fIW , signatures of inertial waves in an
unbounded rotating fluid. The symmetries of our experimental container
may induce standing resonant waves with growing amplitude, and their ex-
istence may significantly alter the observed flow field. As remarked also by
Greenspan (1969, p. 62), resonance of waves may induce instabilities in
the bottom horizontal Ekman boundary layer, and extending out of it.

In this perspective, we study the spectra of the velocity time-series
looking for accumulation of energy at discrete frequencies in all rotating
runs. The FFT of single-component velocity time-series are computed for
all data points in the core subvolume of the measurement domain defined by
{x, y, z} = {[34; 68], [34; 68], [0; 100]} mm. This subvolume is divided into
horizontal slices with thickness 20 mm, and for each slice the three velocity
time-series are extracted, the FFT are computed for all points, and the
resulting spectra are averaged together for the current slice. With this pro-
cedure, we investigate the velocity spectra for each component as a function
of the height z. The lowest and highest slices show very noisy spectra (not
shown here), which can be explained in view of the lower number of data
points available. The spectra for uz (also not shown here) do not present
relevant features. Because no important differences are found between the
spectra of ux and uy from the central three slices (z ∈ [20; 80] mm), these
spectra are averaged together to further suppress the experimental noise
and enhance systematic features. The results are shown in the top panel
of Fig. 4.8, for all rotation rates Ω and in logarithmic scales. The bottom
panel shows a close-up of the spectrum plotted with linear scales for the
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Figure 4.8 – Spectra of velocity time-series, averaged over the two horizontal
components and over all data points in the subvolume defined by {x, y, z} =
{[34; 68], [34; 68], [20; 80]} mm. The top panel shows the spectra for all rotation
rates Ω ∈ {0; 0.2; 0.5; 1.0; 2.0; 5.0} rad/s (in the figure the measurement unit for
the rotation rate Ω is abbreviated as s−1) in logarithmic scales, vertically shifted
for readability by multiplication with the plot-coefficient α. The two arrows indi-
cate two peak frequencies in the top-most spectrum. The bottom panel reports a
close-up of the spectrum for Ω = 5.0 rad/s plotted with linear scales, where the
frequencies corresponding to the two peaks can be read.
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fastest rotating experiment (Ω = 5.0 rad/s), for which two peaks appear in
the spectrum. Their frequencies, readable from the close-up linear plot, per-
fectly correspond to the inertial frequency fIW = 5.0/π = 1.59 Hz and its
half fIW /2 = 0.795 Hz. These peaks are the clear signature of inertial waves
in the flow for the fastest rotating run. No peaks are observed for slower
rotation rates, though, and – most importantly – no distinguishing features
(not distinct peaks, nor intervals of dense accumulation of energy around
possibly-resonant frequencies) are found in the spectrum for Ω = 2.0 rad/s.
This confirms that resonant oscillations in the container, triggered by in-
ertial waves, do not occur in our experiments and are not the cause of the
anomalies which characterises the flow at this specific background rotation
rate.

4.4 Conclusions

The effects of rotation on the large scales of the turbulent flow are inves-
tigated. Optical flow visualisation images show the transition from a fairly
isotropic turbulent flow to a quasi two-dimensional one, for which vertically-
aligned columnar vortices dominate the large scales. The photographs also
give a first indication of the growth of the horizontal dimensions of the large-
scale eddies with increasing rotation. The observations of the rapid tran-
sient during which the flow evolves from 3D to 2D support the idea of linear
effects playing an essential role at this stage, while successive mutual in-
teractions between the vortices develop on a longer (presumably nonlinear)
time-scale, when the Rossby number is not too low. Visualisations of quan-
titative measurements by means of Particle Tracking in a 3D-subvolume of
the flow domain reflect the same features in larger detail. The damping of
the vertical gradients of the horizontal velocity with increasing background
rotation appears evident both in the large-scale mean flow field, and in
the small-scale fluctuating flow field. Regions of concentrated vorticity are
revealed by the isosurfaces of the Q-invariant, computed on velocity fields
averaged in time over intervals of variable duration. For Ω = 0.5 rad/s
we clearly distinguish columnar vortex structures, which position is gen-
erally rather stable for high rotation rates. Instead, for Ω = 2.0 rad/s,
they appear to fluctuate in space on a time scale 2 s ≤ T ∗ ≤ 5 s. As
already observed in Sec. 3.1.2, the length of the experimental time-series
is not sufficient to extract the correct mean flow field for the two fastest
rotating runs (Ω ∈ {2.0; 5.0} rad/s). While the time-averaged flow fields at
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Ω = 5.0 rad/s is still seen to reflect to a good approximation the electro-
magnetically forced flow pattern, for Ω = 2.0 rad/s they differ substantially,
revealing larger-amplitude, longer-time fluctuations of the columnar eddies
for this run. This has an important implication for that particular dataset:
the fluctuating flow fields obtained by subtracting an incorrect mean flow
field are not representative of the real turbulent flow, thus all quantities
characterising the turbulence in terms of velocity fluctuations are seen to
behave as anomalies between the trends indicated by the other runs. In
addition, the fact that the time-series are not representative of the forced
statistically steady flow, may have an influence also on quantities based on
the instantaneous velocity fields. In view of these considerations, the results
for Ω = 2.0 rad/s presented in the previous and following section and chap-
ters have to be treated with special care. The anomaly is also characterised
in terms of vertical vorticity, which is seen to have a completely different
statistical distribution for this run.

The anomalies revealed by the run Ω = 2.0 rad/s are investigated in
view of two different plausible dynamical scenarios.

First, we look for possible instabilities of individual coherent structures,
which may induce interactions between different vortices, causing their os-
cillatory motion in the container. We investigate this possibility studying
the stability of the mean flow eddies in terms the Rossby number which
characterises them, and in terms of absolute vertical vorticity of the flow.
Estimated values for the critical Rossby number (which reflects the zero
absolute vorticity criterion) indicate that the stability of the anticyclonic
eddies may indeed be compromised for 1.0 < Ω < 5.0 rad/s. The same
criterion is also used to analyse the pointwise stability of vertical vorticity
throughout the entire flow field. Horizontal maps reveal that the absolute
pointwise vertical vorticity is roughly zero in the region occupied by the
anticyclonic eddy for a rotation rate Ω = 0.5 rad/s, for which instead no
significant instabilities of the large-scale eddies have been observed. This
result was partly expected, as the pointwise application of the criterion
characterises the small-scale vorticity field, but it is not representative of
the large-scale columnar eddies.

Second, we investigate the velocity time-series in spectral space, in order
to exclude that wave resonance effects within the experimental container,
triggered by inertial waves, play an important role in the flow dynamics
for Ω = 2.0 rad/s. We compute spectra of velocity time-series, and no-
tice two clear peaks in the spectrum for the fastest rotating experiment
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(Ω = 5.0 rad/s), which frequencies perfectly correspond to the inertial fre-
quency fIW = Ω/π and its half fIW /2. These peaks are the clear signature
of inertial waves in the flow for this run. No peaks are instead observed
for slower rotation rates, and no distinguishing features are found in the
spectrum for Ω = 2.0 rad/s. This confirms that resonant oscillations in the
container, triggered by inertial waves, are not the cause of the anomalies
which characterises the flow for Ω = 2.0 rad/s.

We conclude that instabilities of single vortices may be the cause of
the anomalies revealed at Ω = 2.0 rad/s, but further investigations are
necessary to confirm this. In particular, 3D measurements in a larger vol-
ume or 2D measurements in a large horizontal plane, both with record-
ing time considerably extended (at least four times, thus 1280 s), could
shed more light on the large-amplitude, long-time fluctuations of the large-
scale flow. In view of the results presented in this chapter, we expect such
measurements to confirm the importance of instability mechanisms of the
columnar eddies for Ω = 2.0 rad/s, and eventually to show breakdown
events of anticyclonic vortices. It is also advisable to perform quantitative
measurements of the transient regime during which the two-dimensionality
develops. Furthermore, the investigation of other rotation rates in the range
Ω ∈ [1.0; 5.0] rad/s would allow to describe the transition towards the un-
stable large-scale flow at Ω = 2.0 rad/s, and its further evolution towards
the quasi two-dimensional state observed for Ω = 5.0 rad/s.



Chapter 5

Eulerian and Lagrangian

correlations

5.1 Definitions and historical background

Correlations are one of the most useful statistical tools in the study of sta-
tionary stochastic processes, statistically steady turbulence among themi.
The correlation of two random variables is defined as the ensemble average
of the product of the two variables evaluated at two different positions, may
these be in space, time, or both.

The correlations of the velocity components of a statistically homoge-
neous turbulent flow field can be defined in the Eulerian frame with spatial
increments of position in a specific coordinate direction, and averaging in
space and time under the assumptions of homogeneity and stationarity.
The Eulerian spatial correlation between the velocity component ui at the

i“The distinguishing feature of turbulent flows is that its velocity field appears to

be random and varies unpredictably. The flow does, however, satisfy a set of differential

equations, the Navier-Stokes equations, which are not random. This contrast is the source

of much of what is interesting in turbulence theory” Chorin (1975), as quoted by Tsi-

nober (2003, Appendix A). The random appearence of the flow field makes the use of

statistical tools necessary, also for the analysis of a fundamentally deterministic problem

like turbulence.
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position x, and the component uj at (x + δek), reads:

CE
ij,k(x, δek, t) ≡ 〈ui(x, t)uj(x + δek, t)〉 . (5.1)

The hypotheses of homogeneity and stationarity guarantee that the nine
components of the three tensors (k = 1, 2, 3) depend solely on the separa-
tion distance δ in the ek coordinate direction, i.e. CE

ij,k(x, δek, t) = CE
ij,k(δ).

Furthermore, all components are symmetric, i.e. CE
ij,k(δ) = CE

ij,k(−δ). Nor-
malising the auto-correlations with their value for zero separation distance,
we obtain the correlation functions, or correlation coefficients, RE

ij,k, which
read:

RE
ij,k(δ) ≡

〈ui(x, t)uj(x + δek, t)〉
〈ui(x, t)uj(x, t)〉 . (5.2)

The correlation coefficients respect |RE
ij,k(δek)| ≤ 1. The coefficients char-

acterised by i 6= j are known as cross-correlation coefficients; for i = j
we have instead the auto-correlation coefficients RE

ii,k(δek). Each of the
nine auto-correlation coefficients describes the spatial structure along the
k-direction of the velocity field in terms of the ui velocity component. Note
that, for i = j, the normalisation factor becomes the variance of the veloc-
ity component, 〈uiui〉. Transversal auto-correlation coefficients have i 6= k;
while with i = k we define the three longitudinal auto-correlation coeffi-
cients, RE

ii,i(δ), to which the following discussion and our data analysis are

restricted. From now on, we abbreviate their notation as RE
xx(δx), RE

yy(δy),

RE
zz(δz).

In the same Eulerian frame, the auto-correlations can be estimated in
time. The product of the random variable evaluated at two times is aver-
aged in space under the hypothesis of homogeneity. The resulting temporal
auto-correlations depend solely on the time difference δt because of sta-
tistical steadiness. They are normalised with the variance of the variable
to obtain the three Eulerian temporal auto-correlation coefficients for the
three velocity components ui, which read:

RE
ii (δt) ≡

〈ui(x, t)ui(x, t + δt)〉
〈ui(x, t)ui(xj , t)〉

. (5.3)

The temporal auto-correlations go to zero for a sufficiently long time differ-
ence for statistically steady turbulence. In fact, as for a stationary random
process, also steady turbulence has a finite ‘memory’ of its initial conditions.
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The temporal auto-correlation coefficients are symmetric with respect to
time, i.e. RE

ii (δt) = RE
ii (−δt), and respect |RE

ii (δt)| ≤ 1.
Another way to look into the spatial and temporal structure of a tur-

bulent flow field is by evaluating the auto-correlations in the Lagrangian
frame, i.e. averaging the product of a variable evaluated at two different
spatio-temporal positions, distant τ in time, along the trajectories of in-
finitesimal fluid elements defined by their position vector x(t). Under the
same hypotheses of homogeneity and stationarity of the flow field, the av-
erage is intended over a sufficient number of trajectories, and the results
depend only on the time difference τ . The usual normalisation with the
variance of the variable is applied to obtain the Lagrangian auto-correlation
coefficients, which, e.g. for the three velocity components ui(x(t), t) ≡ ui(t),
read:

RL
ui(τ) ≡ 〈ui(t)ui(t + τ)〉

〈ui(t)ui(t)〉
. (5.4)

For all auto-correlations, it is useful to define the integral scale, which
gives a measure of the space distance or time length over which the variable
is correlated with itself. Eulerian auto-correlations are quantified by the
three longitudinal integral length scales and the three integral time scales,
which readii:

LE
ii ≡

∞∫

0

RE
ii (δxi)d(δxi) , T E

i ≡
∞∫

0

RE
ii (δt)d(δt) . (5.5)

The three Lagrangian integral time scales are equivalently defined as:

T L
i ≡

∞∫

0

RL
ui(τ)dτ . (5.6)

Obviously, the three longitudinal integral length scales, measuring the auto-
correlations of each velocity component along its direction, coincide in case
of isotropy. The same is true for the three Eulerian and the three Lagrangian
integral time scales. In general, and in particular for strongly anisotropic

iiA rough estimate of the spatial integral scale is given by the energy injection scale,

the typical forcing scale of the turbulent flow. Throughout the entire thesis, the typical

length scale of our electromagnetic forcing is denoted without direction indices, L, and

it is taken as the spacing between adjacent large magnets (see Sec. 2.1.1): L = 70 mm.
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turbulence as the one influenced by fast background rotation, the individual
scales may differ substantially. Thus the comparison of equivalent scales
for different coordinate directions (in case of space correlations), and for
different velocity components (for all correlations), permits to quantify the
anisotropy of the large-scale flow.

Despite the Lagrangian and Eulerian auto-correlation coefficients share
the same formalism, and all of them give insights in the spatio-temporal
structure of the large scales of the flow field, they describe different features
of the flow because of their intrinsically different nature. The integral length
and time scales derived from the Eulerian velocity correlations give a rough
estimate of the size and the turn-over time, respectively, of the large eddies
in the flow. The interpretation of the Lagrangian time scale is instead less
straightforward, as it quantifies the correlation of the velocity of a fluid
element advected by the flow field along its path. This can be read as the
typical time a fluid particle remains trapped inside a large-scale eddy, and
therefore it might be used as a lower-bound for the typical lifetime of the
large eddies.

Eulerian and Lagrangian correlations of velocity have been extensively
used to investigate homogeneous isotropic turbulent flows. In particular, La-
grangian correlations of velocity have been recognised as the key-ingredient
of the process of turbulent diffusion since the work by Taylor (1921a) (see,
e.g., Monin and Yaglom (1975)). Since then, the Lagrangian view-point
received a growing attention. Pure Lagrangian data were extracted from the
geostrophic trajectories of constant pressure balloons in the atmospheric
boundary layer during the 60s (see, e.g., the work by Kao (1961), Kao

and Bullock (1964)). In the same years, Kraichnan (1964) explained
that Eulerian and Lagrangian time correlations depend on different dynam-
ical mechanisms, and that the turbulent spatial energy transfer needs to
be viewed and explained in the Lagrangian frame. More recently, Kaneda

(1993) suggested that, while the turbulent energy transfer is related to the
Lagrangian decorrelation time, the transfer of momentum depends on the
Eulerian correlations.

Correlations of velocity were measured experimentally with an acous-
tic technique at very high Reynolds number (Reλ ≃ 800) by Mordant

et al. (2001), Mordant et al. (2004b). They described a decay of the
correlation coefficients of single velocity components proportional to e−τ/τ0 ,
with τ0 comparable to the energy injection time scale. The same decay has
been observed by Gervais et al. (2007), who compared Eulerian and
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Lagrangian correlations of velocity in a Reλ ≃ 320 turbulent flow, also re-
lying on acoustic measurements. In the last twenty years, the Lagrangian
acceleration vector got much attention, and it has been shown to decor-
relate with itself on a much shorter time-scale than the velocity vector,
comparable to a few Kolmogorov times τη. In classical Lagrangian mod-
els for particle absolute and relative displacement and velocity in turbu-
lent flows, the acceleration correlation was neglected (see table 2 in Pope

(1994)). More recent Lagrangian models of turbulent diffusion and mix-
ing treat the particle acceleration in different ways, without neglecting its
short but non-vanishing correlation. For example, the acceleration correla-
tion is a core element in Lagrangian models like the ones by Jeong and

Girimaji (2003) and Chevillard and Meneveau (2006). Correlations
of the Lagrangian acceleration and of the Eulerian time-derivative of ve-
locity have been extracted from numerically simulated and experimentally
measured data. Yeung (1997) investigated separately the magnitude of
the Lagrangian acceleration and its direction from DNS data (Reλ = 140),
showing that the magnitude remains correlated with itself for much longer
time than the very short decorrelation time of the vector direction. Mor-

dant et al. (2004a) set up another high-Reλ experiment and measured
Lagrangian trajectories using high-energy physics particle detectors, which
allowed them to retrieve only short-time statistics: the extreme temporal
resolution of their system allowed them to fully resolve the highly intermit-
tent Lagrangian acceleration signal at Reλ ≃ 700 (roughly 70 data-points
per τη), and to quantify its decorrelation time. The same experiment was re-
peated and the flow was measured with a more standard high-speed camera
system (Xu et al., 2007), confirming the same findings. The experimen-
tal and numerical studies of Guala et al. (2007) and Biferale et al.

(2008) quantified the bias due to a finite measurement volume, typical of
laboratory experiments. The first ones also proposed different estimators
for the Lagrangian correlations of velocity, and studied as well the correla-
tions of strain, enstrophy, and of the key-terms of their evolution equations.
Statistics of the Lagrangian acceleration (derived from Eulerian measure-
ments) for the highest-Reλ flow to date were measured in the atmospheric
boundary layer with a multi-hot-wire probe by Gulitski et al. (2007b).
Their technique allowed them to access the Eulerian spatial correlations of
the Lagrangian acceleration vector.

As mentioned earlier, spatial directional correlations are a useful tool
to characterise the anisotropy of the field of a variable, being this a scalar
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or a component of a vectorial quantity. The anisotropisation effect of the
background rotation on a turbulent flow has been characterised in terms
of the Eulerian spatial and temporal correlations of the velocity field. The
numerical DNS study with large-scale forcing by Yeung and Zhou (1998)
described the important increase of integral scales along the z-direction (in-
tended as the direction parallel to the rotation axis), and the mild decrease
of integral scales along the perpendicular directions, with increasing rota-
tion. The DNS by Godeferd and Lollini (1999) studied the combined
effects on a turbulent flow of the background rotation and the vertical (top
and bottom) confinement. Moreover, the application of large-scale forcing
localised in space (and close to the bottom boundary) makes this numeri-
cal experiment especially relevant in the context of the present work. The
authors observed an increase of horizontal integral length scales with in-
creasing rotation rate, followed by a decrease of the same horizontal inte-
gral scales for the fastest rotationiii. They explained such final decrease in
terms of growth of the population of the columnar vortices, which caused
the decrease of the average horizontal size of the large-scale eddies. Finally,
van Bokhoven (2007), van Bokhoven et al. (2009) studied the same
electromagnetically forced flow subject of the present thesis, under the in-
fluence of different rotation rates. Using stereo-PIV data, they characterised
the rotating flow also in terms of the Eulerian spatial (limited to the hor-
izontal directions) and temporal correlations of velocity. They confirmed
the results of Godeferd and co-workers, showing the increase of horizontal
spatial correlations for a rotation rate Ω = 1.0 rad/s in comparison with
the non-rotating reference case; for faster rotation rates and for Ω up to
10.0 rad/s, the horizontal correlations are instead partially reduced.

To our knowledge, this study describes for the first time from exper-
imental data the effects of rotation on a turbulent flow in terms of La-
grangian correlations. We have access to Lagrangian time-series of all three
components of the position, velocity, and acceleration vectors, as well as
the nine components of the velocity gradient tensor. Using these data, we
investigate the correlations of the three components of the velocity and
acceleration vectors of our tracer particles, as well as their magnitude and
polar angle on the horizontal plane. We distinguish not only between the
three Cartesian components of the acceleration vector, but we also follow

iiiThe described behaviour is shown in Fig. 2.6 of their paper (Godeferd and

Lollini, 1999), while in the text they comment only the decrease of horizontal inte-

gral scales for the smallest Ro (fastest rotation rate).
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the temporal evolution of its longitudinal (parallel to velocity) component,
its transversal horizontal and transversal (partially) vertical components.
Using the velocity gradient data, we compute also the correlations of the
components of the vorticity vector along trajectories.

In the following sections, we first show (Sec. 5.2) the PDFs of the ve-
locity and acceleration components for all (non-) rotating experiments, in
order to illustrate the basic features of our flow and the influence of the
background rotation on these. In Sec. 5.3 we present the Eulerian spatialiv

correlations in the three directions and for all (non-)rotating experiments,
computed on the data interpolated on a regular grid. These allow us to
compare our results for the horizontal directions with the ones retrieved
from the stereo-PIV experimental campaign of van Bokhoven et al.

(2009), and to quantify the effects of rotation on the vertical correlations
of velocity, which could not be accessed with horizontal stereo-PIV data.
Finally, in Secs. 5.4, 5.5, and 5.6 we show the Lagrangian correlations of
velocity, acceleration, and vorticity, respectively. Sec. 5.7 summarises and
concludes the chapter.

5.2 PDFs of velocity and acceleration components

The PDFs of the three Cartesian components of the velocity vector, ux, uy,
uz, and of the Lagrangian acceleration vector ax, ay, az, are computed based
on all particle positions detected at each time-step every five, resulting in
roughly 4 · 106 data points for each PDF. Figure 5.1 shows the PDFs in
linear-logarithmic scale for all rotating experiments together: left column
for velocity and right column for acceleration; first, second, third row for
the x-, y-, z-component, respectively.

The background rotation is seen to induce only a slight anisotropy of the
horizontal components of velocity, while the PDFs are strongly skewed for
Ω = 2.0 rad/s. The most important effect of rotation is seen on the vertical
velocity component, which gets strongly damped for Ω = 5.0 rad/s. The
distributions for Ω ∈ {0; 1.0; 5.0} rad/s are in good quantitative agreement

ivWe did investigate also the Eulerian temporal correlations of the velocity compo-

nents. The results are not presented here, as the distributions revealed lack of statistical

convergence for some of the experimental runs. We did observe, though, a general quali-

tative agreement with the temporal correlations shown by van Bokhoven et al. (2009,

see Fig. 6 therein).
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Figure 5.1 – PDFs of velocity and acceleration Cartesian components, for all
rotating experiments and in linear-logarithmic scale. Left column, velocity; right
column, acceleration. First, second, and third row for the x, y, and z components,
respectively.
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with the ones published by van Bokhoven et al. (2009) (see Figs. 8 and
14 therein).

The PDFs of the acceleration components for the non-rotating experi-
ment show similar features already described in the literature: the distribu-
tions are highly non-Gaussian, indicating strong intermittency of the tur-
bulence at the level of accelerations. We compared these distributions with
the results from some recent experimental investigations of the Lagrangian
acceleration vector in high-Reλ isotropic turbulence, and in particular with
the works by Voth et al. (1998), La Porta et al. (2001), Voth et al.

(2002), Mordant et al. (2004a), Mordant et al. (2004b), Reynolds

et al. (2005), Gulitski et al. (2007b), Gervais et al. (2007). We note
the effect of a temporal under-resolution of our measurements, which do
not allow us to measure the highest acceleration events of the turbulencev.
This effect is revealed by the end tails of the PDFs, which gets lower for
accelerations higher than 0.1 m/s2. The effect is more pronounced for the
horizontal components, and it is visible also in the PDFs relative to the
rotating runs. Despite the highest acceleration events are not properly re-
solved, this temporal under-resolution is not expected to significantly bias
the comparison of PDFs obtained for different rotation rates.

Rotation does not influence the distribution of the horizontal acceler-
ation in a monotonic way. The tails of the PDFs get slightly lower for
Ω = 0.2 and 0.5 rad/s. They get higher and significantly higher for Ω = 1.0
and 2.0 rad/s, respectively. Only the end tails get slightly lower when the
rotation rate is further increased from 2.0 to 5.0 rad/s. The PDF of the
vertical acceleration component, on the contrary, have its tails monotoni-
cally lowered as the rotation is increased, if we exclude the Ω = 2.0 rad/s
run which shows slightly higher tails than the 1.0 rad/s case. This indicate
that the two-dimensionalisation process induced by rotation is equally im-
portant at the level of the velocities and of the accelerations that the fluid
particles experience, despite the same three-dimensional steady forcing is
applied to the flow at every rotation rate.

The distributions shown in Fig. 5.1 are further quantified extracting

vThe PTV frame rate for the non-rotating experiment is 60 Hz, which, together

with an estimate of the minimum Kolmogorov time scale τη ≃ 0.25 s (see Fig. 3.13,

Sec. 3.2.3), implies the acquisition of roughly 15 data points per Komogorov time. As a

term of comparison, the acceleration measurements of some of the experimental studies

published in the last decade (see, e.g., Mordant et al. (2004a)) rely on an acquisition

frequency of roughly 70 data points per τη.
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their values of standard deviation, skewness, and kurtosis (or flatness fac-
tor), which are presented in table I.

Ω (rad/s) 0 0.2 0.5 1.0 2.0 5.0

Standard deviation
ux 9.6 9.4 9.8 12.0 17.0 14.4
uy 9.6 9.1 9.8 12.1 17.5 12.2

〈α2〉1/2, with α =
uz 8.3 7.7 7.8 6.6 7.3 2.0

ax 28.8 26.0 24.6 29.3 40.9 41.0
(mm/s for α = ui) ay 28.3 24.7 24.7 29.4 41.1 37.4

(mm/s2 for α = ai) az 24.3 20.6 18.6 15.9 19.6 7.1

Skewness
ux -0.24 -0.13 0.81 -0.53 0.89 -0.52
uy -0.07 -1.03 -0.45 -1.14 -0.46 -0.14

〈α3〉

〈α2〉3/2 , with α =
uz 0.82 0.34 0.30 -0.09 -0.03 0.12

ax 0.02 0.02 0.04 -0.01 -0.01 -0.07

(-)
ay 0.03 0.03 0.10 0.00 0.10 0.04
az 0.10 0.07 0.00 -0.27 -0.17 -0.02

Kurtosis
ux 4.03 3.63 3.61 3.56 3.00 3.12
uy 3.73 4.13 3.67 3.15 2.93 3.24

〈α4〉
〈α2〉2

, with α =
uz 4.21 3.98 3.47 3.67 3.44 11.46

ax 11.37 12.99 15.09 13.82 8.74 7.69

(-)
ay 10.84 14.76 14.86 13.43 8.72 7.97
az 10.43 12.60 13.39 14.93 8.97 26.72

Table I – Standard deviation, skewness, and kurtosis of the distributions (shown

in Fig. 5.1) of the Cartesian components of velocity, ux, uy, uz, and acceleration,

ax, ay, az, for all (non-)rotating experiments.

It is noteworthy the strong dampening of the standard deviation of the
PDFs of the vertical velocity and acceleration components for the highest
rotation rate. The values of the kurtosis for the three acceleration Carte-
sian components are also plotted against the rotation rate, and shown
in Fig. 5.2, in order to outline their non-monotonic variations. In fact,
a mild background rotation (Ω ∈ [0.2; 0.5] rad/s) is seen to amplify the
kurtosis of all acceleration components, while a further increase of rotation
(Ω ∈ [1.0; 2.0] rad/s) induces a reduction of the kurtosis. Such a reduction
proceeds when Ω is raised to 5.0 rad/s for what concerns the horizontal
components. The kurtosis of the vertical acceleration component, instead,
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is strongly enhanced for the fastest rotating run, reflecting the strong sup-
pression of vertical acceleration induced by rotation (and quantified by the
corresponding value of the standard deviation for az in table I). The gen-
eral trend observed for rotation rates higher than 0.5 rad/s describes the
tendency of the acceleration distribution to become Gaussianvi, which indi-
cates a reduction of the acceleration intermittency with increasing rotation
rate: acceleration PDFs are known to be Gaussian in case of 2D turbu-
lence. The values for the kurtosis are also in good agreement with the ones
reported in the literature for isotropic turbulence at comparable Reλ (see,
e.g., the inset of Fig. 2(a) in Bec et al. (2006)). Similar trends are ob-
served for the distributions of the velocity components, despite their values
are more modest and closer to the ones of the Gaussian distribution.

00.2 0.5 1 2 5
0

5

10

15

20

25

30

Ω (rad/s)

〈α
4
〉/
〈α

2
〉2

(−
)

 

 
α = ax
α = ay
α = az

Figure 5.2 – Values of the kurtosis 〈α4〉/〈α2〉2 of the acceleration Cartesian com-
ponents, as from table I, plotted against the rotation rate Ω.

5.3 Eulerian spatial auto-correlations of velocity

The Eulerian spatial longitudinal auto-correlation coefficients RE
xx(δx),

RE
yy(δy), RE

zz(δz) are defined by equation 5.2, with the space increment δxi

intended as the distance δ in the direction of the respective velocity com-
ponent ui. They are computed on the data interpolated over a regular grid.
In this way, it is possible to subtract the mean flow from each velocity field,

viThe kurtosis of the Gaussian distribution equals 3.
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and compute the correlations of the turbulent fluctuating field. In order to
take into account for the intrinsic stationary vertical energy decay of our
turbulent flow, the cubic interpolation domain is divided into the five hor-
izontal slices defined by z ∈ {[0; 20], [20; 40], [40; 60], [60; 80], [80; 100]} mm.
The correlations are computed separately for each slice, over which the flow
can be considered approximately homogeneous in all directions, including
the vertical one. Homogeneity and stationarity let us make use of the er-
godic theorem, and replace the ensemble averages with spatial averages
(in the directions perpendicular to the spatial increment δxj) and temporal
averages (sampling one every ten velocity fields). Fig. 5.3 compares the lon-
gitudinal auto-correlation coefficients from all (non-)rotating experiments,
for each horizontal slice from top to bottom. The vertical coefficients, shown
in the right panels of the figure, are limited by the slice thickness.

The horizontal correlations are progressively increased for Ω up to 1.0
rad/s at every height z, and decreased again for faster rotations. This be-
haviour is in agreement with the stereo-PIV data by van Bokhoven et al.

(2009), as well as with the DNS study by Godeferd and Lollini (1999),
characterised by the combined effects of rotation, vertical confinement, and
localised forcing. The horizontal correlation length scales get visibly longer
than the size of the measurement domain already at Ω = 1.0 rad/s. For
Ω = 5.0 rad/s, the y-coefficient shows a long negative loop which gets
more and more pronounced while descending towards the bottom bound-
ary (z = 0). The vertical correlations do not converge for the bottom and
top slices, z ∈ [0; 20] and [80; 100] mm, respectively. For the three interme-
diate slices and for a maximum spatial separation of 20 mm, the vertical
correlation of vertical velocity is enhanced by rotation till Ω = 2.0 rad/s,
and significantly reduced for the maximum rotation rate, Ω = 5.0 rad/s.
This behaviour is explained in view of the PDFs of the velocity components
shown in the previous section. In fact, the two-dimensionalisation induced
by rotation should not be seen as an absence of vertical motion, but only
as a strong reduction of vertical derivatives of the velocity field. But the
vertical confinement in our flow, in combination with rotation, causes the
suppression of the vertical velocity component at the highest rotation rate.
This is true for the instantaneous flow fields (to which the PDFs shown in
Fig. 5.1 refer), and the effect gets even more important when we consider
the PDFs of the fluctuating flow fields (not shown here). We suspect that
most of the effects of the Ekman pumping process, triggered by the large-
scale vorticity structures and which instead induces vertical velocities in the
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top and bottom boundary layers, are hidden by subtracting the mean flow.
When the effective vertical velocity is almost completely suppressed, the
vertical auto-correlation reflects a significantly lower signal-to-noise ratio,
which explains its damping.

The corresponding longitudinal integral length scales LE
ii are computed

according to the definition given by Eq. 5.5, replacing the integral with a
discrete integration over the available data points. The results, reported in
table II, quantify in a more synthetic way the behaviour already described
by the plots of the correlation coefficients. The values reported for the
vertical direction reflect the limited maximum vertical separation for each
horizontal slice. They are reported only as a qualitative indication of the
effects of rotation on the vertical integral scale, even though they strongly
underestimate the latter. The values of the three integral length scales
relative to the mid-height horizontal slice, z ∈ [40; 60] mm, are plotted
against the rotation rate Ω in Fig. 5.4. On the same plot, we indicate also
the corresponding horizontal lenght scales as measured by means of stereo-
PIV at z = 50 mm in a similar experiment with milder forcing (see footnote
in Sec. 3.1.3), published in van Bokhoven et al. (2009). The data reveal
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Figure 5.3 – Eulerian longitudinal auto-correlation coefficients of velocity com-
ponents, for all (non-)rotating experiments. Left, centre, and right panels show
the coefficients in the x−, y−, and z-direction, respectively. Right panels share
the same legend of the other panels. Panels from top to bottom in the two-
page figure refer to the horizontal slices of the measurment domain defined by:
z ∈ {[80; 100], [60; 80], [40; 60], [20; 40], [0; 20]}mm. While the correlations are com-
puted on a regular grid with spacing 2 mm, only one data point every 4 mm is
shown here for better readability.

a very good agreement between the PTV and stereo-PIV measurement
campaigns. We remark once more that the saturation of LE

zz is due not
only to the vertical constraint of the fluid container (250 mm), but mainly
to the limited thickness (20 mm) of the horizontal slice we investigated in



5.3 Eulerian spatial auto-correlations of velocity 127

order to take into account for the intrinsic statistical inhomogeneity of the
flow in the vertical direction.

z (mm) Ω (rad/s) 0 0.2 0.5 1.0 2.0 5.0

[0; 20]

LE
xx (mm)

15.9 15.8 29.1 47.4 46.0 38.5
[20; 40] 21.1 17.8 28.3 48.7 37.9 39.3
[40; 60] 21.5 23.3 33.8 49.5 38.6 39.5
[60; 80] 22.1 30.3 37.6 47.3 39.8 39.0

[80; 100] 24.6 27.5 36.4 46.3 39.9 37.3

[0; 20]

LE
yy (mm)

20.3 19.1 35.1 62.1 55.5 36.0
[20; 40] 20.6 19.2 33.4 54.6 45.4 34.0
[40; 60] 21.7 24.5 32.2 52.2 46.2 34.6
[60; 80] 20.8 26.1 33.1 49.5 44.2 33.7

[80; 100] 24.0 26.2 33.8 48.1 39.9 32.6

[0; 20]

LE
zz (mm)

7.0 7.1 7.6 8.0 7.9 4.3
[20; 40] 12.0 12.1 13.1 14.8 16.0 9.3
[40; 60] 12.2 12.7 14.7 16.1 17.2 12.3
[60; 80] 12.5 12.8 16.1 16.4 17.4 14.7

[80; 100] 11.8 13.1 14.4 15.5 11.1 13.2

Table II – Eulerian longitudinal integral length scales LE
ii , defined by Eq. 5.5 and

computed via discrete integration of the respective correlation coefficients show in

Fig. 5.3.

Finally, we would like to add a note about the error margins of the
data we presented. The measurement error, estimated in terms of the PTV
r.m.s. error for particle matching (see Sec. 2.4.1) and in terms of residual
position noise for ’calm’ trajectories (see Sec. 2.4.2), is seen to be below
9 µm in the horizontal directions, and below 20 µm in the vertical direc-
tion. We expect this error to be negligible after averaging in time (over 960
time-steps) and in space (along the two directions normal to the separa-
tion vector considered, 51 × 51 points for the z-direction and 51 × 10 for
the horizontal ones). The statistical error, which is maximum for the hor-
izontal directions, can be estimated as 1/

√
N = 1/

√
960 × 51 × 10 ≃ 10−3

of the reported values. Systematic errors definitely have a more important
influence on our data. We expect the finite measurement volume to be the
first cause of underestimation of all correlations and corresponding length
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Figure 5.4 – Eulerian longitudinal integral length scales LE
ii against the rotation

rate Ω. The values are taken from table II for the mid-height horizontal slice, z ∈
[40; 60] mm (open symbols). The corresponding horizontal length scales measured
by stereo-PIV at z = 50 mm in a similar experiment are also indicated on the
plot (solid symbols). The saturation of LE

zz is due to the limited thickness of the
horizontal slice, 20 mm, and the values are reported only as a qualitative indication
of the effects of rotation on the vertical length scale.

scales, as shown by Guala et al. (2007) and Biferale et al. (2008)
(their conclusion regarding Lagrangian data are equally valid in the context
of Eulerian correlations).

5.4 Lagrangian auto-correlations of velocity

The Lagrangian auto-correlation coefficients RL
ui(τ) of the Cartesian veloc-

ity components are defined by Eq. 5.4. The variables which are correlated
are supposed to have zero mean (see, e.g., Pope (1994), Yeung (2002)). We
tried to follow the approach described by Guala et al. (2007): the mean
value of each velocity component along each single trajectory is subtracted
from the component before computing the correlation. The resulting cor-
relation coefficients of velocity do not vanish at long times, but instead
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show a persistent negative correlation, RL
ui(τ) ≃ −0.25 for large τ . Most

probably, this is due to the subtraction of an incorrect mean value, as sug-
gested by the fact that the correlation coefficients of the derivatives of the
velocity components (i.e. the Lagrangian acceleration components), com-
puted with the same procedure, do go to zero at sufficiently large times.
The facts that the PDF of each velocity component is centred around
zero and that the values of the skewness are sufficiently moderate, in-
dicate that there is no uniform mean flow in our measurement domain.
Because of this, we compute the correlations of the velocity components
without subtracting the mean value of each trajectory. The ensemble av-
erages in Eq. 5.4 are performed over all trajectories in the datasets longer
than τmin = 50dt = 0.833 s (where dt is the PTV time-step), and over
several chunks of each trajectory, in order improve the statistical conver-
gence. Practically, the correlations are computed over each trajectory as
many times as the ratio of its length over an appropriate decorrelation
time τdec. In other words, a particle P which has been tracked for a time
longer than τmin = 50dt, e.g. for 1001dt, using an averaging time-step
τdec = 300dt, contributes to the ensemble average with the four chunks
t ∈ {[0; 1000dt], [300dt; 1000dt], [600dt; 1000dt], [900dt; 1000dt]}. With this
approach, we extract correlation curves which fidelity is inversely propor-
tional to the separation time τ : on the present data, we average ∼ 104 data
points for τ = 300dt = 5 s, but only ∼ 103 data points for τ = 600dt = 10 s.
The auto-correlation curves are then cropped at the time separation τ for
which the number of trajectories going into average for each experiment is
insufficient to reach statistical convergence.

The Lagrangian auto-correlation coefficients of the Cartesian velocity
components ui are shown in the top-left panel of Fig. 5.5 for the non-
rotating experiment and in physical units (s), and compared with the corre-
lation coefficients of the modulus of velocity

√
uiui, as well as of its polar an-

gle θu in the horizontal xy-plane. The modulus is seen to remain correlated
with itself for times longer than the temporal window over which we have
statistical convergence. The single components, instead, live on a shorter
time scale, comparable to the one which characterises the decorrelation of
θu. This indicates that the velocity vector along trajectories changes direc-
tions much faster than it varies its modulus. A slight anisotropy is observed
for the two horizontal components, and it is presumed to be caused by the
electromagnetic forcing, which acts predominantly in the y-direction (its
z-component is less important, and its x-component is zero, as explained
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Figure 5.5 – Lagrangian auto-correlation coefficients for the non-rotating exper-
iment, in physical units (s). Top-left panel: correlations of the Cartesian velocity
components ui, of the modulus of velocity

√
uiui, and of its polar angle θu in the

horizontal xy-plane (only one symbol every ten data points is plotted for readabil-
ity). Bottom-left panel: same as for the top-left one, but the horizontal velocity
components refer here to a rotated Cartesian frame (+45◦ around z). Top-right
panel: correlations of the Cartesian acceleration components ai, of the modulus of
acceleration

√
aiai, and of its polar angle θa in the horizontal xy-plane (only one

symbol every four data points is plotted for readability). Bottom-right panel: same
as for the top-right one, but with the longitudinal (al), the transversal (partially)
vertical (atv), and the transversal horizontal (ath) acceleration components.
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in Sec. 2.1.1). This hypothesis is confirmed by the plot (shown in the mid-
left panel of Fig. 5.5) of the correlation coefficients of the Cartesian velocity
component in a reference frame {xr; yr; z} rotated +45◦ around the vertical
axis z of the default reference frame {x; y; z}. As expected, the horizontal
anisotropy is strongly reduced in the rotated reference frame. The data also
support the conjecture that the decorrelation time of the velocity compo-
nents depends strongly on the Reynolds number, when compared with the
data by Gervais et al. (2007) (Reλ = 320, first zero-crossing at 142 τη)
and Mordant et al. (2004b) (Reλ = 810, first zero-crossing at 227 τη):
the first zero-crossing of our auto-correlation curves is observed between 8
and 14 τη.

The Lagrangian auto-correlation coefficients of the Cartesian velocity
components ui are shown in Fig. 5.6 for all (non-)rotating experiments,
with time normalised with the Kolmogorov time scale τη and in linear-
linear scale. The same coefficients are plotted in linear-logarithmic scale
and shown in Fig. 5.7.

Despite, for times separations τ longer than 10τη, some of the correla-
tions show a non-perfect statistical convergence (7τη for Ω = 1.0 rad/s),
the correlations describe clearly a monotonic influence of rotation: the coef-
ficients gets progressively higher for increasing Ω, for all three components.
The linear-logarithmic plots reveal that the decorrelation is roughly ex-
ponential, at least till the coefficients drop under 0.4, in good agreement
with the relevant literature (see, e.g., Mordant et al. (2001), Mordant

et al. (2004b), Gervais et al. (2007)). The exponential decay of the
velocity auto-correlation plays an essential role in some dispersion models,
strongly characterising them (see, e.g., Sawford (1991)). Following Mor-

dant et al. (2001), we fit the function e−τ/τ0 over all curves, limited to the
time interval over which each curve shows a convincing exponential decay.
The Lagrangian integral time scales T L

ui are then estimated as the constant
τ0 retrieved from each fit, and presented in table III. The integral scales
are seen to confirm the described behaviour of the respective correlation
coefficients. In order to facilitate the comparison between horizontal and
vertical time scales, we average together the two horizontal scales, in view
of the symmetry of our flow around the x- and y-axis (horizontal isotropy).
The results are plotted against the rotation rate and compared with the
vertical time scale in Fig. 5.8. The horizontal scale progressively increases
with increasing rotation rate. The vertical one, on the contrary, decreases
for Ω up to 1.0 rad/s, and increases only for higher rotation rates.
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Figure 5.6 – Lagrangian auto-correlation coefficients of the Cartesian velocity
components ui for all (non-)rotating experiments, with time normalised with the
Kolmogorov time scale τη, in linear-linear scale. Only one symbol every ten data
points is plotted for readability.
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Ω (rad/s) 0 0.2 0.5 1.0 2.0 5.0

T L
ux (s) 3.5 4.0 4.0 4.3 7.9 18.7

T L
uy (s) 5.0 4.7 4.3 5.1 11.7 13.1

T L
uz (s) 3.2 4.0 4.2 2.6 5.1 6.3

Table III – Lagrangian integral time scales T L
ui , defined by Eq. 5.5. The values

presented here are estimated as the constant τ0 of the exponential fit e−τ/τ0 per-
formed over each correlation curve of Fig. 5.7, for the time interval over which the
correlation shows a convincing exponential decay.
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Figure 5.8 – Horizontal and vertical Lagrangian integral time scales against the
rotation rate Ω. The values are taken from table III. The two horizontal time scales
are averaged together and compared with the vertical time scale.

5.5 Lagrangian auto-correlations of acceleration

The Lagrangian auto-correlation coefficients RL
ai(τ) of the Cartesian accel-

eration components are defined by the same Eq. 5.4, when the variable ui

is substituted with ai. We follow the same exact procedure explained in
Sec. 5.4 to compute the correlations, and we plot the coefficients for the
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three Cartesian components ai, the modulus
√

aiai, and the polar angle
θa in the horizontal xy-plane of the Lagrangian acceleration vector. These
are shown for the non-rotating experiment and in physical units (s) in the
top-right panel of Fig. 5.5. The Lagrangian acceleration decorrelates much
faster than the velocity: the coefficients drop to zero before 2.5τη , and each
component shows the well-known negative loop (a mild anti-correlation
at short times). The decorrelation process of the Cartesian components is
due – as seen for the velocity – to the change of the direction of the vector,
rather than to a change of the acceleration magnitude. The vertical compo-
nent shows a deeper negative loop, which might be the effect of the bottom
boundary being the only rigid boundary of our measurement domain. These
observations confirm well-known features of the Lagrangian acceleration in
homogeneous isotropic turbulence, already described for numerically sim-
ulated turbulence (see, e.g., Yeung (1997)) and measured experimentally
(see Voth et al. (1998), Mordant et al. (2004b), Mordant et al.

(2001), and Gulitski et al. (2007b)). The values reported in literature
show a strong dependence with the Reynolds number, as seen for the veloc-
ities: the time separation of the first zero-crossing of the auto-correlations
of single acceleration components ranges from 2τη to 10τη , for Reλ between
140 and 103. Our measurements of the non-rotating flow confirm the gen-
eral picture, remarked by Mordant et al. (2004b): the dynamics of the
Lagrangian acceleration vector involves both the dissipative scale τη (over
which it rapidly changes direction), and the integral time-scale (relevant
for the evolution of its magnitude). As the authors observed, this state-
ment violates the assumption behind the K41 theory, according to which
the acceleration should be independent of the large-scale flow.

We also compute the correlation coefficients of the longitudinal (al), the
transversal horizontal (ath), and the transversal (partially) vertical (atv)
components of the acceleration vector. The decomposition is sketched in
Fig. 5.9, where a curved particle trajectory is marked as a thick dotted line,
and the transversal plane (the plane perpendicular to the velocity vector u)
is denoted as Πt. The acceleration vector a is first decomposed into its lon-
gitudinal and transversal components, where the longitudinal acceleration
is defined as the projection over the velocity unit vector, al = aiui/

√
ukuk.

The transversal horizontal acceleration is defined as the projection over the
direction h, which is simultaneously perpendicular to the velocity vector u
and to the vertical unit vector ez: ath = aihi, with hiui = 0, hiez = 0, and
hihi = 1. The direction of h is sketched as a thin dashed line, and it repre-
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Figure 5.9 – Sketch of the decomposition of the Lagrangian acceleration in its
longitudinal, transversal horizontal, and transversal (partially) vertical compo-
nents. An example of particle trajectory is sketched as a thick dotted line, and
its transversal plane (perpendicular to the velocity vector u) is denoted as Πt.
The acceleration vector a is first decomposed into its longitudinal and transversal
components, with the longitudinal acceleration al being defined as the projection
over the velocity unit vector ui/

√
ukuk. The direction h, sketched as a thin dashed

line, represents the intersection of the plane Πt with the horizontal plane in the
current particle position. The transversal horizontal acceleration ath is defined as
the projection over the direction h.

sents the intersection of the plane Πt with the horizontal plane passing by
the current particle position. The transversal (partially) vertical accelera-
tion is defined as the remaining component, and in general it is not purely
vertical: atv = ai − alui/

√
ukuk − athhi. We are particularly interested in

such a decomposition of the acceleration vector because the Coriolis accel-
eration introduced in the flow by the background rotation acts solely in the
direction perpendicular to the rotation axis, and perpendicular to the veloc-
ity vector, being defined as twice the vector product of the two. Therefore it
is expected that rotation will directly affect only the transversal horizontal
component ath of the acceleration of fluid particles.

The mid-right panel of Fig. 5.5 shows the same correlation coefficients
of the modulus and the polar angle of the acceleration vector, together with
the correlation coefficients of the longitudinal (al), the transversal horizon-
tal (ath), and the transversal (partially) vertical (atv) components of the
acceleration vector, all for the non-rotating experiment. The components
al and atv decorrelate with themselves on a very short time scale, the same
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Figure 5.10 – Lagrangian auto-correlation coefficients of the Cartesian acceler-
ation for all (non-)rotating experiments. The coefficients for the Cartesian com-
ponents ax, ay, az are shown in the left panels from top to bottom, respectively.
The longitudinal (al), the transversal (partially) vertical (atv), and the transversal
horizontal (ath) components are displayed in the right panels from top to bottom,
respectively. The time is normalised with the Kolmogorov time scale τη, the plot
is in linear-linear scale, and only one symbol every four data points is plotted for
readability. Note that in the last plot a different scale for the time axis is used.
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of the single Cartesian components ai and of the polar angle θa, and show
the negative loop typical of the correlation curves of every Cartesian compo-
nent. The transversal horizontal component ath remains mildly correlated
for a longer time, corresponding to roughly 5τη.

The Lagrangian auto-correlation coefficients of the Cartesian acceler-
ation components ai are shown in the left panels of Fig. 5.10 for all
(non-)rotating experiments, with time normalised with the Kolmogorov
time scale τη and in linear-linear scale. The right panels of the same figure
display the coefficients for the components al, atv, and ath of the Lagrangian
acceleration.

The effects of rotation on the correlations of the Cartesian components
get appreciable for Ω = 1.0 rad/s, and important for Ω = 2.0 and 5.0 rad/s.
For these runs, the time scale of the decorrelation process is significantly
increased, as revealed by the temporal shift of the negative loop of the cor-
relations of the horizontal components, and of the vertical component only
for Ω = 2.0 rad/s. The plots shown in the right panels illustrate that the
correlations of the longitudinal and transversal (partially) vertical compo-
nents are only mildly affected by rotation, even for the highest rotation
rates. The transversal horizontal component of the acceleration vector is
instead strongly affected by the background rotation: at Ω = 2.0 rad/s, its
coefficient is still around 0.3 for time separations over 30τη , and the cor-
relation gets only partially reduced for Ω = 5.0 rad/s. This confirms the
direct role played by the Coriolis acceleration in the amplification of the
Lagrangian acceleration correlation in turbulence.

5.6 Lagrangian auto-correlations of vorticity

The Lagrangian auto-correlation coefficients RL
ωi(τ) of the Cartesian vor-

ticity components are defined, once more, by the same Eq. 5.4, when the
variable ui is substituted with ωi. We follow the same exact procedure ex-
plained in Sec. 5.4 to compute the correlations, and we plot the coefficients
for the three Cartesian components ωi and the modulus

√
ωiωi. These are

shown for the non-rotating experiment and in physical units (s) in Fig.
5.11. As already observed for the velocity and the acceleration vectors, also
the modulus of vorticity decorrelates on a longer time than the single com-
ponents do. No significant anisotropy is found comparing the Cartesian
components.

The Lagrangian auto-correlation coefficients of the vorticity components
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Figure 5.11 – Lagrangian auto-correlation coefficients of the Cartesian vorticity
components ωi, and of the modulus of vorticity

√
ωiωi, for the non-rotating ex-

periment. Time is in physical units (s), and only one symbol every six data points
is plotted for readability.

ωi and of the vorticity magnitude
√

ωiωi are shown in Fig. 5.12 for all
(non-)rotating experiments, with time normalised with the Kolmogorov
time scale τη and in linear-linear scale. Rotation is seen to reduce the auto-
correlation of both the horizontal components, even though the effect is
more evident for the ωx auto-correlation. The vertical correlation of the
vertical vorticity component, ωz, is instead monotonically and strongly am-
plified by rotation. The reduction of auto-correlation of horizontal vorticity
indicates – once more – the suppresion of vertical motion due to the com-
bined effects of rotation and vertical confinement. The strong enhancement
of auto-correlation of vertical vorticity characterises instead the growth of
columnar vortex structures in the flow, which implies the reduction of ver-
tical gradients of the velocity field and of the vertical vorticity field.

5.7 Conclusions

To our knowledge, this is the first experimental study of the effects of
rotation on a turbulent flow in terms of Lagrangian correlations. We have
access to Lagrangian time-series of all three components of the position,
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Figure 5.12 – Lagrangian auto-correlation coefficients of the vorticity components
ωi and of the vorticity magnitude

√
ωiωi, for all (non-)rotating experiments. Panels

from top to bottom: x-, y-, and z-component, respectively. The time is normalised
with the Kolmogorov time scale τη, the plot is in linear-linear scale, and only one
symbol every six data points is plotted for readability. The outliers for Ω = 0 and
5.0 rad/s at τ ≃ τη and 2.5τη are the result of technical errors in the processing
routines, and ignored in the discussion of the plots.
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velocity, and acceleration vectors, as well as the nine components of the
velocity gradient tensor. We also interpolate the data on a regular grid, to
easily extract Eulerian informations.

First, we showed that the PDFs of the horizontal velocity components
get slightly skewed with rotation, and strongly skewed for Ω = 2.0 rad/s.
The magnitude of the vertical velocity component gets progressively re-
duced, and strongly damped for Ω = 5.0 rad/s. The distributions for
Ω ∈ {0; 1.0; 5.0} rad/s are in good quantitative agreement with the ones
published by van Bokhoven et al. (2009).

Despite the highest acceleration events are not properly resolved be-
cause of temporal under-resolution, the PDFs of the acceleration compo-
nents for the non-rotating experiment are shown to be highly non-Gaussian,
indicating strong intermittency of the turbulence. The tails of the distribu-
tion of the horizontal acceleration get slightly lower at the rotation rates
Ω = 0.2 and 0.5 rad/s. They get higher and significantly higher for Ω = 1.0
and 2.0 rad/s, respectively. Only the end tails get slightly lower when the
rotation rate is further increased from 2.0 to 5.0 rad/s. The PDF of the ver-
tical acceleration component, on the contrary, has its tails monotonically
lowered as the rotation rate is increased, (excluding the Ω = 2.0 rad/s run,
which shows slightly higher tails than the 1.0 rad/s case). This indicates
that the two-dimensionalisation process induced by rotation is equally im-
portant at the level of the velocities and of the accelerations that the fluid
particles experience.

Next, we showed the Eulerian spatial correlations in the three directions,
computed over five horizontal slices of the measurement domain over which
the flow can be considered approximately homogeneous. In agreement with
the stereo-PIV measurements of van Bokhoven et al. (2009) and with
the DNS study by Godeferd and Lollini (1999), the horizontal correla-
tions are seen to be progressively increased for Ω up to 1.0 rad/s at every
height z, and decreased again for faster rotations. For Ω = 5.0 rad/s, the y-
coefficient shows a long negative loop which gets more and more pronounced
while descending towards the bottom boundary (z = 0). The vertical auto-
correlation of velocity is instead enhanced by rotation till Ω = 2.0 rad/s,
and significantly reduced for the maximum rotation rate, Ω = 5.0 rad/s.
This final reduction is explained in terms of a significantly lower signal-to-
noise ratio for this run, due to strong suppression of the vertical velocity
(resulting from the combined effects of the strong background rotation and
the vertical confinement of the flow). The spatial correlations are syntheti-
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cally quantified by the corresponding integral scales.
We then investigated the correlations in the Lagrangian frame from

pure PTV data. We followed the three components of the velocity and
acceleration vectors of our tracer particles, as well as their magnitude and
polar angle on the horizontal plane. We distinguished not only between the
three Cartesian components of the acceleration vector, but we also followed
the temporal evolution of its longitudinal (parallel to velocity) component,
its transversal horizontal and transversal (partially) vertical components,
being especially interested in the selective effect of the Coriolis acceleration
on individual components.

The modulus of the velocity vector is seen to remain correlated with
itself for times longer than the temporal window over which we have statis-
tical convergence, for the reference non-rotating run. The Cartesian com-
ponents of velocity, as well as its polar angle in the horizontal plane, live
instead on a shorter time scale. This indicates that the velocity vector along
trajectories changes directions much faster than it varies its magnitude. A
slight anisotropy of the horizontal velocity is shown to be inherent of our
EM-forced flow. When we add the background rotation, the correlations of
the Cartesian velocity components get progressively amplified for increas-
ing Ω. The decorrelation is roughly exponential, in good agreement with
the relevant literature. The Lagrangian integral time scales are estimated
from the exponential fit applied to the auto-correlation coefficient curves.

The Lagrangian acceleration in case of no rotation is seen to decorrelate
much faster than the velocity, in roughly 2.5τη , a value which fits well in the
range of decorrelation times reported in the literature. The decorrelation
process of the Cartesian components is due, as seen for the velocity, to the
change of direction of the vector, rather than to a change of the acceleration
magnitude. The vertical component shows a deeper negative loop, which
might be the effect of the bottom boundary being the only rigid boundary
of our measurement domain. These observations confirm well-known fea-
tures of the Lagrangian acceleration in homogeneous isotropic turbulence,
already described for numerically simulated turbulence and measured ex-
perimentally. In particular, our results agree with the general picture of the
dynamics of the Lagrangian acceleration vector obeying to two different
time scales: the dissipative one, over which it rapidly changes direction;
and the integral time-scale, which characterises the evolution of its magni-
tude. As observed by Mordant et al. (2004b), this violates the assump-
tion behind the K41 theory, according to which the acceleration should be
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independent of the large-scale flow. The longitudinal and transversal (par-
tially) vertical components of the Lagrangian acceleration vector are seen
to decorrelate with themselves on a very short time scale, the same of the
single Cartesian components and of the polar angle, and show the negative
loop typical of the correlation curves of every Cartesian component. The
transversal horizontal component remains instead mildly auto-correlated
for a longer time, corresponding to roughly 5τη. When a slow background
rotation is applied, no remarkable differences are seen in the correlation
coefficients of the Cartesian components of the acceleration. For Ω = 2.0
and 5.0 rad/s, the time scale of the decorrelation process is instead sig-
nificantly increased. The correlations of the longitudinal and transversal
(partially) vertical components are only mildly affected by rotation, even
for the highest rotation rates. This results are in agreement with the fact
that the Coriolis acceleration acts solely in the direction perpendicular to
the rotation axis (which is vertical in our experiments), and perpendicular
to the velocity vector. Therefore it can directly influence only the transver-
sal horizontal component of acceleration, fact which is confirmed by its
auto-correlation coefficient being significantly enhanced for increasing ro-
tation rates (it gets partially reduced only for Ω = 5.0 rad/s). This confirms
us the direct role played by the Coriolis acceleration in the amplification of
the Lagrangian acceleration correlations in turbulence.

Finally, we investigated the Lagrangian correlations of the components
of the vorticity vector. For no rotation, they indicate that the flow is, to a
good approximation, isotropic at the level of velocity derivatives. Rotation
is seen to slightly reduce the auto-correlation of the horizontal components,
revealing the suppresion of vertical motion due to the combined effects of
rotation and vertical confinement. The vertical correlation of the vertical
vorticity component is instead monotonically and strongly amplified by
rotation, characteristic of a flow dominated by columnar vortex structures,
which implies the reduction of vertical gradients of the velocity field and of
the vertical vorticity field.





Chapter 6

Particle dispersion at short

times

Turbulence is well-known to enhance the diffusion and mixing properties
of any scalar or vectorial field in a fluid flow. Such a feature is an essential
ingredient of natural and anthropomorphic processes of utmost importance:
the dispersion of pollutant substances (solid or droplet suspension, or gas)
in the turbulent atmosphere, and the dispersion of pollutants or plankton
in the oceans are only a few examples of problems for which prediction
models are needed. The recent eruption of the Eyjafjallajökull volcano and
the consequent dispersion of the ash-plume from Iceland over the entire
Europe, as well as the diffusion of the oil plume from the leakage in the
offshore oil platform in front of the Louisiana coast, are clear examplesi of
the importance of models for turbulent dispersion.

Two quantities are easily identified as fundamental elements of the dis-
persion process: the rate at which a single particles moves away from its
initial position (absolute or single-particle dispersion), and the rate at which
two particles, sufficiently close to each other at an initial time, diverge in
time (relative or particle-pair dispersion). Both processes are characterised
by the interplay of the wide range of temporal and spatial scales typical
of turbulence. More recently, the statistics of three, four, or more particles

iAn excellent resource of satellite images of such events is represented by the archives

of the NASA’s Goddard Space Flight Center, of which an interesting selection is published

under a Creative Commons license at http://www.flickr.com/photos/gsfc/.
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(i.e. the evolution of 2D and 3D geometrical shapes) also gained attention.
Single-particle dispersion dates back to the studies of Taylor (1921a),

who identified the fundamental relation which expresses the average growth
rate 〈σ2(τ)〉 of the squared distance travelled by particles in the time τ in
terms of the Lagrangian velocity correlation tensor (defined by Eq. 5.4). The
analysis for short times indicates that 〈σ2〉 initially grows proportionally
to τ2, following a ballistic regime for which particles are not yet advected
by the smallest turbulent eddies. For longer times, 〈σ2〉 increases instead
linearly with the time τ . Consequently, the radius of a cloud of particles
starts to grow as τ for short times, after which it proceeds increasing as
τ1/2.

The concept of relative diffusion has been introduced only few years
later by Richardson (1926), who studied the probability distributions of
pair-separation (which he named the distance-neighbour graph) to charac-
terise the spread of a cloud of particles in the atmosphere. His observations
lead to the Richardson law, which states that, in the inertial range of turbu-
lence, the average squared separation between pairs, 〈̺2(τ)〉, is proportional
to the mean kinetic energy dissipation ε, and it grows as the third power
of time: 〈̺2〉 ∼ ετ3. The same averaged square separation grows initially
in a ballistic way following τ2, till it reaches the size of the smallest eddies
and its growth accelerates to τ3. When the separation distance exceeds
the largest scales of the flow, its growth proceeds with a final asymptotic
τ -regime. Recent high-Re turbulence data from experiments and direct nu-
merical simulations (Boffetta and Celani, 2000, Ott and Mann, 2000,
Mazzitelli and Lohse, 2004, Lüthi et al., 2007b, between the others)
confirm the Richardson τ3-law. It is worth to mention that other experimen-
tal data (Bourgoin et al., 2006) are instead in favour of the τ2-regime
predicted by Batchelor (1950) in the inertial range.

The examples of dispersion in geophysical flows mentioned earlier are
also characterised by the anisotropic effects of the Earth background rota-
tion on the flow, which has an important influence on the dispersion rate:
a fast rotation is known to suppress the dispersion in the direction of the
rotation axis, and to reduce the dispersion in the perpendicular directions.
Important investigations published in the literature include the studies of
Borgas et al. (1997), who used a simplified analytical model of flow with
broken reflectional symmetry, which revealed being able to capture most of
the features of rotating turbulent dispersion. Yeung and Xu (2004) stud-
ied the effects of rotation on the turbulent mixing of passive scalars, and
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quantified the increase of mixing time. An analytical model has been built
by Cambon et al. (2004) to describe rotation effects on single-particle dis-
persion, and its results have been compared with DNS data. Cambon and
co-workers identified the time for which the rate of increase of 〈σ2〉 changes
slope from τ2 to τ coinciding with half of the rotation period TΩ/2 = π/Ω,
and finding a good collapse of the curves from runs with different Rossby
numbers when normalised with TΩ/2. They also quantified the damping
effect of particle-pair dispersion (〈̺2〉) induced by rotation in the direc-
tion parallel and perpendicular to the rotation axis, results published in
Liechtenstein et al. (2006).

In view of the existing literature, of the lack of experimental data, and
of the impelling demand for conceptual understanding and simplified pre-
diction models of the physical processes involved in the problem(s) of rotat-
ing turbulent dispersion, the present study aims to describe the dispersion
properties extracted from experimental Lagrangian measurements in the
turbulent flow described throughout the previous chapters. The present
data suffers from a limited average trajectory length, which originates from
the compromise between trajectory length and instantaneous spatial resolu-
tion of Particle Tracking measurements. Despite this, it will be shown that
rotation effects are important already at short times, as is their anisotropic
character. In Sec. 6.1, single-particle dispersion is investigated, and its ver-
tical and horizontal components (parallel and perpendicular to the rotation
axis, respectively) are compared for different rotation rates. Particle-pair
dispersion analysis is presented in Sec. 6.2, also distinguishing between hor-
izontal and vertical projections of the separation distance. The concluding
remarks of Sec. 6.3 close the chapter.

6.1 Single-particle dispersion

The average square distance travelled in time by individual particles is
defined in the 3D space, as well as projected on the horizontal plane and
on the vertical axis:

〈σ2(τ)〉 ≡ 〈[xi(τ) − xi(0)][xi(τ) − xi(0)]〉 , i = 1, 2, 3 ;

〈σ2
h(τ)〉 ≡ 3

2〈[xi(τ) − xi(0)][xi(τ) − xi(0)]〉 , i = 1, 2 ; (6.1)

〈σ2
v(τ)〉 ≡ 3〈[x3(τ) − x3(0)][x3(τ) − x3(0)]〉 .

The coefficients introduced in the definitions permits a fair comparison
between the three quantities, which are characterised by a different number
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of degrees of freedom: in fact, they quantify, respectively, 3D, 2D, and 1D
dispersion processes. The results are presented in figure 6.1 in physical
units, in linear scale (left column) and logarithmic scale (right column). On
the logarithmic plots, the reference slopes τ2 and τ are also reported. In
figure 6.2, the same plots are presented with time and distance normalised
with the Kolmogorov time and length scales, η and τη, respectively. The
values of η and τη are obtained from averaging along the vertical direction
the profiles shown in Fig. 3.13, and summarised in the following table I.

Ω (rad/s) 0 0.2 0.5 1.0 2.0 5.0

η (mm) 0.71 0.76 0.77 0.82 0.74 0.77

τη (s) 0.40 0.46 0.46 0.51 0.41 0.45

Table I – Kolmogorov time and length scales, η and τη, volume-averaged. The
values are obtained from averaging along the z-direction the vertical profiles shown
in Fig. 3.13.

The 3D curve for Ω = 0 shows a good agreement with previously pub-
lished data, see e.g. the works by Squires and Eaton (1991). The initial
ballistic regime is evident, while only a transition towards the following
inertial regime can be identified. The reduction of slope is certainly also
affected by the bias induced by the finite size of the measurement volume.
This can be estimated in terms of residence-time of the particles, which
are advected by the large-scale mean flow described in Sec. 3.1.2. Consider
a fluid particle which swirls within a large vortex, of which only half is in
the field-of-view (FOV) of the measurement system. The particle enters the
FOV, and it is advected around half vortex circumference, before exiting
the FOV again. Such a pictures suggests that the average residence-time of
particles is of the order of τres = π(L/2)/U , where the length scale is as-
sumed to represent the vortex diameter, L = 70 mm, and the velocity scale
is taken as the maximum radial velocity within the vortex, U ≃ 10 mm/s.
It results in τres ≃ 11 s, confirming the effects of such bias on the late-time
evolution of the presented dispersion curves.

Rotation is seen to have an anisotropic effect: the growth of the horizon-
tal square distance is enhanced for moderate rotation rates, and it is reduced
only for Ω ∈ [2.0; 5.0] rad/s. The growth of the vertical square distance is
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Figure 6.1 – Single-particle dispersion: average particle squared displacement in
3D (〈σ2〉), projected on the horizontal plane (〈σ2

h〉), and projected on the vertical
axis (〈σ2

v〉). Plots in physical units, linear scale for the left column and logarithmic
scale for the right column.

also enhanced for slow rotations, and it is strongly damped for the fastest
rotating runs, especially for Ω = 5.0 rad/s. It is noteworthy that a similar
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Figure 6.2 – Single-particle dispersion: average particle squared displacement in
3D (〈σ2〉), projected on the horizontal plane (〈σ2

h〉), and projected on the vertical
axis (〈σ2

v〉). Plots normalised with the Kolmogorov length and time scales (η and
τη), linear scale for the left column and logarithmic scale for the right column.

non-monotonic behaviour has been observed in the Eulerian spatial auto-
correlation coefficients (see Fig. 5.3), but not in the Lagrangian ones. The
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normalisation of the time axis with half the rotation period TΩ/2 = π/Ω, as
proposed by Cambon et al. (2004), has been tested on the present data
(the plots are not shown here), but no collapse of the dispersion curves
has been observed. We believe that τη represents the most significant time-
scale to normalise the present data, which describes only the short-time
dispersion.

6.2 Particle-pair dispersion

The average separation between pairs of particles is defined in the 3D space,
as well as projected on the horizontal plane and on the vertical axis:

〈̺(τ)〉 ≡ 〈
√

[xi(P1, τ) − xi(P2, τ)][xi(P1, τ) − xi(P2, τ)]〉, i = 1, 2, 3;

〈̺h(τ)〉 ≡
√

3
2〈

√
[xi(P1, τ) − xi(P2, τ)][xi(P1, τ) − xi(P2, τ)]〉, i = 1, 2;

〈̺v(τ)〉 ≡
√

3〈|x3(P1, τ) − x3(P2, τ)|〉. (6.2)

Note that, contrary to the single-particle dispersion analysis, here the square
root of the squared separation has been taken before computing the ensem-
ble average, so that the data refers to the averaged (non-squared) separation
distance 〈̺〉. Pairs of neighbouring particles are searched at each time in-
stant, where the neighbouring condition is expressed as their distance being
smaller than 2 mm (less than 3τη). The choice of the maximum initial sep-
aration of pairs comes from the compromise of its value being comparable
with the Kolmogorov length scale, and of collecting a sufficient number of
pairs for statistical analysis. The results are presented in figure 6.3 in physi-
cal units, in linear scale (left column) and logarithmic scale (right column).
On the logarithmic plots, the reference slopes τ and τ3/2 (corresponding
to the slopes τ2 and τ3 on the plot of the square separation 〈̺2〉) are also
reported. In figure 6.4, the same plots are presented with time and dis-
tance normalised with the Kolmogorov time and length scales, η and τη,
respectively (the same values presented in table I).

The logarithmic plots permits to clearly identify the initial ballistic
regime (τ), and some runs also show a final increase of slope from τ to τ3/2

for τ ≃ τη, signature of the beginning of the inertial range of turbulence.
Such value is in quantitative agreement with previously reported studies,
see, e.g., the DNS results by Yeung (1994). The limited Reynolds number
of the present experiments implies a limited range of scales of the inertial
range of the turbulence. From a comparison of various datasets (PTV,
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Figure 6.3 – Particle-pair dispersion: average particle separation in 3D (〈̺〉),
projected on the horizontal plane (〈̺h〉), and projected on the vertical axis (〈̺v〉).
Plots in physical units, linear scale for the left column and logarithmic scale for
the right column.
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Figure 6.4 – Particle-pair dispersion: average particle separation in 3D (〈̺〉),
projected on the horizontal plane (〈̺h〉), and projected on the vertical axis (〈̺v〉).
Plots normalised with the Kolmogorov length and time scales (η and τη), linear
scale for the left column and logarithmic scale for the right column.
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Reλ = 170; DNS, Reλ = 280; PTV, Reλ = 815), Lüthi et al. (2007a)
deduced and explained that to observe a true Richardson τ3/2-scaling, Reλ

should be higher than O(103), so that the ratio between the integral scale
L and the initial separation ρ0 between the particles can be chosen larger
than 30. In fact, the present data indicate only a tendency towards the
τ3/2-scaling for long enough times, and before finite volume effects bias
and damps the measured dispersion rate.

The effects of the background rotation on pair-dispersion are approxi-
mately isotropic till Ω = 2.0 rad/s, and the anisotropy is revealed only for
the fastest rotating run: for Ω = 5.0 rad/s the vertical pair-dispersion is
damped significantly more than the horizontal one. Rotation induces a mo-
notonic reduction of particle-pair dispersion, contrary to its non-monotonic
influence on single-particle dispersion.

6.3 Conclusions

The present data permit to characterise the turbulent dispersion process in
the presence of rotation only at short times, but sufficient to observe the
change of slope from the initial ballistic regime to the dispersive regime
in the inertial range of turbulence. Single-particle and particle-pair statis-
tics are presented, and the components parallel and perpendicular to the
rotation axis are distinguished and compared. Rotation is seen to have
a more important effect on single-particle dispersion than on pair disper-
sion. Single-particle statistics are influenced by rotation in a non-monotonic
way, revealing strong anisotropic effects for the fastest rotation rates. On
the contrary, two-particle dispersion is monotonically and isotropically re-
duced with increasing rotation rate, and the effects become anisotropic only
for the fastest rotating run. The present data constitutes an anticipation of
possible further experiments, which would characterise the turbulent dis-
persion within the inertial range.



Chapter 7

Concluding remarks and

outlook

This thesis describes, from an experimental view-point, the influence of the
background rotation on the statistical properties and the large-scale flow
of a bounded and steadily-forced turbulent flow. The study originates as
the natural extension of the work done by van Bokhoven (2007), van

Bokhoven et al. (2009), who accessed a similar flow with stereo-PIV
measurements. An experimental water turbulence setup, equipped with an
electromagnetic forcing system, is set on top of a rotating table, together
with a Particle Tracking Velocimetry system. The measurement system is
composed of a LED continuous light source, four digital cameras, and the
suitable optics. Experiments of the same turbulent flow subjected to differ-
ent background rotation rates Ω are performed, and the flow is measured
in the rotating frame, in a subvolume which side is larger than the forcing
scale. The data collected is processed, gaining access to Lagrangian time-
series of all three components of the position, velocity, and acceleration
vectors, as well as the nine components of the velocity gradient tensor.
The data is also interpolated on a regular grid, to easily extract Eulerian
informations.

The flow for the reference experiment (Ω = 0) is shown to be statis-
tically steady, and the fluctuating turbulent field is seen to have roughly
twice the kinetic energy content of the mean flow field. The pattern of the
mean flow reveals two vertical counter-rotating vortices, which are directly
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driven by the electromagnetic forcing system. The flow is characterised as
roughly homogeneous in the horizontal directions, and inhomogeneous in
the vertical direction. The decay of energy from the forced bottom region
to the top of the fluid container is intrinsic in the design of the experimen-
tal setup, and quantified in terms of various parameters. The flow is also
seen to be intrinsically anisotropic, as the vertical velocity component is
significantly smaller than the horizontal ones. The PDFs of the accelera-
tion components are shown to be highly non-Gaussian, indicating strong
intermittency of the turbulence. The measured preferential alignment of the
vorticity vector with the second eigenvector of the strain rate tensor is in
qualitative and quantitative agreement with previous experimental studies
reported in the literature.

The rotating experiments (Ω ∈ {0.2; 0.5; 1.0; 2.0; 5.0} rad/s) are then
analysed and compared to the non-rotating one (Ω = 0). The length of the
recorded time-series appears to be too limited to observe statistical steadi-
ness for the run Ω = 2.0 rad/s, as revealed by the time-averaged velocity
fields. The magnitude of the vertical velocity component gets progressively
reduced, and strongly damped for Ω = 5.0 rad/s. The tails of the PDFs
of the horizontal acceleration components get slightly lower at the rota-
tion rates Ω = 0.2 and 0.5 rad/s. They get higher and significantly higher
for Ω = 1.0 and 2.0 rad/s, respectively. Only the end tails get slightly
lower when the rotation rate is further increased from 2.0 to 5.0 rad/s.
The PDF of the vertical acceleration component, on the contrary, have its
tails monotonically lowered as the rotation rate is increased (excluding the
Ω = 2.0 rad/s run). This indicates that the two-dimensionalisation process
induced by rotation is equally important at the level of the velocities and
of the accelerations that the fluid particles experience.

The transfer of energy from the large-scale flow to the small-scale tur-
bulence is partly inhibited by the background rotation, as indicated by the
progressive monotonic decrease of the positive skewness of the distribu-
tions of the turbulent kinetic energy production (dimensional and locally
normalised) for increasing rotation rate. Out of the forced flow region, ve-
locities are enhanced by rotation. This indicates the existence of an impor-
tant spatial upward transport of energy from the bottom forcing region,
for which the inertial oscillations in the rotating fluid are responsible. The
Rossby number approximates unity for Ω = 0.2 rad/s in the bottom-half of
the measurement domain: here, the Coriolis force is expected to compete
with the turbulent advection of velocity. For faster rotation rates Ro ≃ 0.1,
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and the effects of rotation are expected to dominate the flow dynamics. The
magnitude of the velocity derivatives of the mean flow is generally damped
when the rotation rate is increased.

A separate chapter is devoted to the effects of rotation on the large-scale
flow. Optical flow visualisation images, obtained seeding the flow with re-
flective flakes, show the transition from a fairly isotropic turbulent flow to
a quasi-two-dimensional one, for which vertically-aligned columnar vortices
dominate the large scales. The photographs also give a first indication of
the growth of the horizontal dimensions of the large-scale eddies with in-
creasing rotation rate. The observations of the rapid transient during which
the flow evolves from 3D to 2D support the idea of linear effects playing
an essential role at this stage, while successive mutual interactions between
the vortices develop on a longer (presumably nonlinear) time-scale, when
the Rossby number is not too low. The quantitative PTV measurements
reflect the same features in larger detail. The vertical gradients of the hor-
izontal velocity are strongly reduced with increasing background rotation,
and columnar vorticity tubes appears for Ω ≥ 0.5 rad/s. Their position is
generally rather stable for high rotation rates, but for Ω = 2.0 rad/s they
fluctuate in space on a longer time scale. Only for this run, being the time-
averaged flow not representative of the effective mean flow, all quantities
characterising the turbulence in terms of velocity fluctuations are seen to
behave as anomalies between the trends indicated by the other runs. Con-
sequently, the results for Ω = 2.0 rad/s have to be treated with special
care. The anomalies revealed by this run are investigated in view of two
different plausible dynamical scenarios. First, the estimated values for the
critical Rossby number indicate that the stability of the anticyclonic ed-
dies may be compromised for 1.0 < Ω < 5.0 rad/s. Second, the spectra of
velocity time-series reveal two peaks, clear signature of inertial waves, only
for the fastest rotating run (Ω = 5.0 rad/s). No peaks are instead observed
for slower rotation rates, and no distinguishing features are found in the
spectrum for Ω = 2.0 rad/s. This indicates that resonant oscillations in the
container, triggered by inertial waves, are not the cause of the anomalies
which characterises the flow for Ω = 2.0 rad/s. Further investigations are
necessary to explain the anomaly measured for this run, but the present
data suggest the possibility that anticyclone instabilities significantly alter
the large-scale flow.

An important part of the present study investigates the effects of rota-
tion on the flow in terms of Eulerian spatial correlations, and – for the first
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time – of Lagrangian correlations. The Eulerian spatial auto-correlation co-
efficients in the three directions are computed over five horizontal slices of
the measurement domain, over which the flow can be considered homoge-
neous. In agreement with the stereo-PIV measurements of van Bokhoven

et al. (2009) and with the DNS study by Godeferd and Lollini (1999),
the horizontal correlations are seen to be progressively increased for Ω up
to 1.0 rad/s at every height z, and decreased again for faster rotations.
The vertical auto-correlation of velocity is instead enhanced by rotation till
Ω = 2.0 rad/s, and significantly reduced for the maximum rotation rate,
Ω = 5.0 rad/s. This final reduction is explained in terms of a significantly
lower signal-to-noise ratio for this run, due to the strong suppression of the
vertical velocity.

The correlations in the Lagrangian frame are computed for the three
components of the velocity and acceleration vectors, as well as their magni-
tude and polar angle on the horizontal plane. Distinction is made not only
between the three Cartesian components of the acceleration vector, but
also between its longitudinal (parallel to velocity) component, its transver-
sal horizontal and transversal (partially) vertical components. The modu-
lus of the velocity vector is seen to remain correlated with itself for times
longer than the temporal window over which there is statistical conver-
gence, for the reference non-rotating run. The Cartesian components of
velocity, as well as its polar angle in the horizontal plane, live instead on
a shorter time scale. This indicates that the velocity vector along trajecto-
ries changes direction much faster than it varies in magnitude. When the
background rotation is added, the correlations of the Cartesian velocity
components get progressively amplified for increasing Ω. The decorrelation
is roughly exponential, in good agreement with the relevant literature. The
Lagrangian acceleration in case of no rotation is seen to decorrelate much
faster than the velocity, in roughly 2.5τη , a value which fits well in the
range of decorrelation times reported in the literature. The decorrelation
process of the Cartesian components is due, as seen for the velocity, to the
change of the direction of the vector, rather than to a change of the accel-
eration magnitude. These observations confirm well-known features of the
Lagrangian acceleration in homogeneous isotropic turbulence, already de-
scribed for numerically simulated turbulence and measured experimentally.
In particular, our results agree with the general picture of the dynamics of
the Lagrangian acceleration vector obeying to two different time scales: the
dissipative one, over which it rapidly changes direction; and the integral
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time-scale, which characterises the evolution of its magnitude. The longi-
tudinal and transversal (partially) vertical components of the Lagrangian
acceleration vector are seen to decorrelate with themselves on a very short
time scale, the same of the single Cartesian components and of the polar
angle. The transversal horizontal component remains instead mildly auto-
correlated for a longer time, corresponding to roughly 5τη. When a slow
background rotation is applied, no remarkable differences are seen in the
correlation coefficients of the Cartesian components of the acceleration. For
Ω = 2.0 and 5.0 rad/s, the time scale of the decorrelation process is instead
significantly increased. The correlations of the longitudinal and transversal
(partially) vertical components are only mildly affected by rotation, even
for the highest rotation rates. These results are in agreement with the fact
that the Coriolis acceleration acts solely in the direction perpendicular to
the rotation axis (vertical), and perpendicular to the velocity vector. There-
fore it can directly influence only the transversal horizontal component of
acceleration, fact which is confirmed by its auto-correlation coefficient be-
ing significantly enhanced for increasing rotation rates (it gets partially
reduced only for Ω = 5.0 rad/s). This confirms the direct role played by
the Coriolis acceleration in the amplification of the Lagrangian acceleration
correlations in turbulence. The components of the vorticity vector, in case
of no rotation, indicate that the flow is isotropic at the level of velocity
derivatives. Rotation is seen to slightly reduce the auto-correlation of the
horizontal vorticity components, revealing the suppresion of vertical motion
due to the combined effects of rotation and vertical confinement. The verti-
cal correlation of the vertical vorticity component is instead monotonically
and strongly amplified by rotation, characteristic of a flow dominated by
columnar vortex structures, which implies the reduction of vertical gradi-
ents of the velocity field and of the vertical vorticity field.

A final part of the present study is devoted to characterise the tur-
bulent dispersion process in the presence of rotation at short times. The
limited trajectory length which characterise the present data is still suffi-
cient to observe the change of slope from the initial ballistic regime to the
dispersive regime in the inertial range of turbulence. Single-particle and
particle-pair statistics are presented, and the components parallel and per-
pendicular to the rotation axis are distinguished and compared. Rotation
is seen to have a more important effect on single-particle dispersion than
on pair dispersion. Single-particle statistics are influenced by rotation in a
non-monotonic way, revealing strong anisotropic effects for the fastest ro-
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tation rates. On the contrary, two-particle dispersion is monotonically and
isotropically reduced with increasing rotation rate, and the effects become
anisotropic only for the fastest rotating run. The present data constitutes
an anticipation of possible further experiments, which would characterise
the turbulent dispersion within the inertial range.

Some of the results presented in this thesis are completely new. Other
results confirmed well-known features of rotating turbulent flows, further
quantifying them on the basis of state-of-the-art Particle Tracking exper-
imental data. Surely this work opened new questions, in particular con-
cerning the large-scale flow dynamics at Ω = 2.0 rad/s. 3D measure-
ments in a larger volume or 2D measurements in a large horizontal plane,
both with recording time considerably extended, could shed more light on
the large-amplitude, long-time fluctuations of the large-scale flow. In view
of the results presented in this thesis, we expect such measurements to
confirm the importance of instability mechanisms of the columnar eddies
for Ω = 2.0 rad/s, and eventually to show breakdown events of anticy-
clonic vortices. It would also be advisable to perform quantitative mea-
surements of the transient regime during which the two-dimensionality de-
velops. Furthermore, the investigation of other rotation rates in the range
Ω ∈ [1.0; 5.0] rad/s would allow to describe the transition towards the un-
stable large-scale flow at Ω = 2.0 rad/s, and its further evolution towards
the quasi two-dimensional state observed for Ω = 5.0 rad/s.

The results presented in this thesis, and their comparison with the
stereo-PIV data published by van Bokhoven et al. (2009), extend the
characterisation of a flow generated with an innovative experimental setup:
electromagnetic steady-forcing, localised in space, in a 3D fluid domain.
The application of electromagnetic forcing brilliantly solves the technical
issues related to the vibrations typically introduced by mechanical forcing
systems, and solutions were found for other minor drawbacks. On the other
hand, such a forcing system strongly limits the maximum rate of energy
injected in the flow, resulting in moderate-Reλ flows which – as shown by
the energy spectra published by van Bokhoven and coworkers – lacks a
fully developed inertial range of the turbulent field. Moreover, the spatial
decay of turbulence intensity for Ω = 0, intrinsic of any flow forced steadily
and locally in space, introduces serious difficulties for the interpretation
of the comparison between non-rotating and rotating experiments. It also
constrains – more than the measurement system does – the spatial extents
of the flow region where the hypothesis of homogeneity can be used for sta-
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tistical analysis, effect which cannot be taken into account in the long-time
Lagrangian analysis. To conclude, Lagrangian studies, and in particular
the analysis of the anisotropic effects of rotation on the flow, would benefit
from the adoption of a more classical mechanical forcing, arranged in such a
way to assure approximate homogeneity and isotropy in a central fluid vol-
ume sufficiently far from the forcing. Cubic turbulence boxes equipped with
eight baffled disks have been proven to induce high-Reλ flows with negligible
mean circulatory motions, and would be the recommended choice in view of
the design of a new experimental setup specifically devoted to Lagrangian
flow analysis and/or to the investigation of rotating steady turbulence.
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Summary

Table-top rotating turbulence: an experimental insight through Particle
Tracking

The influence of the Earth background rotation on oceanic and atmospheric
currents, as well as the effects of a rapid rotation on the flow inside indus-
trial machineries like mixers, turbines, and compressors, are only the most
typical examples of fluid flows affected by rotation. Despite the Coriolis ac-
celeration term appears in the Navier-Stokes equations with a straightfor-
ward transformation of coordinates from the inertial system to the rotating
non-inertial one, the physical mechanisms of the Coriolis acceleration are
subtle and not fully understood. Several fluid flows affected by rotation
have been studied by means of numerical simulations and analytical mod-
els, but the experimental data available is scarce and purely of Eulerian
nature. The present work addresses experimentally the topic, focusing on a
class of fluid flows of utmost importance: confined and continuously forced
rotating turbulence.

Experiments of the same turbulent flow (maximum Reλ ≃ 110 for Ω =
0) subjected to different background rotation rates (Ω ∈ {0; 0.2; 0.5; 1.0; 2.0;
5.0} rad/s) are performed, visualised by optical means, and measured quan-
titatively by means of Particle Tracking Velocimetry. The measurement
system is designed and implemented around the experimental setup, us-
ing innovative solutions. The data collected is processed in the Lagrangian
frame, where the trajectories are filtered and the 3D time-dependent sig-
nals of position, velocity, acceleration, temporal velocity derivatives, and
full velocity gradient tensor are extracted. The data is further interpolated
over a regular grid, in order to analyse it in the Eulerian frame.

The background rotation is found to decrease the kinetic energy and the
energy dissipation of the turbulent field, and to damp the coupling between
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large-scale flow and small-scale turbulence. Interesting large-scale features
of the flow field are revealed: the increase of rotation rate induces verti-
cal coherency of the fluid motion (in terms of velocity, velocity derivatives,
Eulerian spatial and temporal auto-correlations of velocity), till at the max-
imum rotation rate of 5 rad/s a quasi-2D flow is measured, dominated by
stable counter-rotating vertical tubes of vorticity. Exception is the 2 rad/s
run, for which an anomalous behaviour of all the investigated flow features
is observed: at this rotation rate, the vertical vortex tubes fluctuate in the
measurement domain with much higher amplitude and on a longer time
scale than for any other run. The estimated values for the critical Rossby
number indicate that the stability of the large-scale anticyclonic vortices
may be compromised for 1.0 < Ω < 5.0 rad/s. No indications of reso-
nant oscillations in the container, triggered by inertial waves, are instead
recognised in the data. Further investigations are necessary to explain the
anomaly measured for this run, but the present data suggest the possibility
that anticyclone instabilities significantly alter the large-scale flow.

The (non-)rotating turbulent flow is also investigated in terms of Eule-
rian spatial correlations of the velocity field, and – for the first time – of
Lagrangian correlations of the velocity, acceleration, and vorticity vectors
extracted along fluid particle trajectories. The increase of vertical (paral-
lel to the rotation vector) and horizontal velocity correlations induced by
rotation is measured in the Eulerian and the Lagrangian frames. Rotation
is seen to strongly enhance the correlation of the vertical vorticity com-
ponent, characteristic of a flow dominated by columnar vortex structures.
It is also seen to enhance the longitudinal horizontal acceleration correla-
tion, confirming the direct role played by the Coriolis acceleration in the
amplification of the Lagrangian acceleration correlations in turbulence.

In the same Lagrangian frame, the turbulent dispersion process at short
times in the presence of rotation is investigated. The data permits to de-
scribe the initial ballistic dispersion regime, and the beginning of the iner-
tial range regime. A more pronounced effect is observed on single-particle
dispersion statistics, which are influenced by rotation in a non-monotonic
way, strongly anisotropic only for the fastest rotating runs. Two-particle
dispersion is monotonically reduced with increasing rotation rate, and the
anisotropy is revealed only for the maximum rotation rate.

Some of the results presented in this thesis are completely new. Other re-
sults confirm well-known features of rotating turbulent flows, further quan-
tifying them on the basis of state-of-the-art Particle Tracking experimental
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data. Surely this work opened new questions. Concluding remarks give sug-
gestions about possible future measurements in the same turbulence setup,
as well as in view of the design of a new experimental setup specifically de-
voted to the Lagrangian flow analysis and/or to the investigation of rotating
steady turbulence.

The results obtained in this study have been presented at international
conferences and workshops, and will be submitted for publication to inter-
national journals.
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