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Abstract

A novel analog circuit fault diagnosis method is
proposed. This method uses a neural network paradigm to
cluster different faulis. It is capable of dealing with the
common fault models in analog circuits, namely the
catastrophic and parametric  faults. The proposed
technique is independent of the linearity or nonlinearity of
the circuit. The process parameter drifis and component
tolerance effects of the circuit are well taken care of.
Several fault diagnosis strategies for different problem
complexities are described. The proposed methodology is
illustrated by means of an Operational Transconductance
Amplifier (OTA) example.

1: Introduction

Analog circuits have rcached certain maturity in the
past few decades. However, the analog lault diagnostic
techniques are still very modcst. For analog circuits, fault
diagnostic techniques arc more complex when compared
to their counter parts in digital circuits [or various rcasons.
The circuit component tolerance in fault frec and faulty
circuits, the nonlincarity propertics of analog circuits and
the limited access to the internal nodcs of the circuit being
the the major factors that contribuic to its complexity.
Many diffcrent analog fault diagnosis methods have been
proposed [1]-[3], [9]-[13].

Current analog lault diagnostic technigues often suffer
the additional problems of i) Increased silicon arca and
power consumption with built—in sclf test circuits [4], ii)
The requirement of measurcments of current and voltage
signals at internal nodes and iii) The lack of good modcls
to simulate the circuit under test.

We propose a nonconventional and more general
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approach capable to overcome the above limitations. The
basic idca of this methodology consists of raining a ncural
nctwork paradigm. The training input vector has a set of
data points consisting of familics of simulatcd faulty as
wcll as fault free behaviors of the circuit. These input
veetors  are  called The neural network
paradigm classilics these signatures into different clusters.
The actual cxperimental vector called the test vector,
obtained from the circuit under test, is then presented to the
ncural network. The network outputs the cluster of known
signaturc(s) that best matches this test vector. This
approach allows the testing as well as the diagnosis of the
circuit. Scveral degrees of complexity of the proposed
technique are introduced in this paper. The practical and
theorctical aspects of this technique arc verified and
illustrated by mcans of an IC cxample.

signatures.

2: Background

A Kohonen  network 18 a  feature  mapping
sell=organizing  ncural  nctwork  with  unsupervised

competitive lcarning {5]. The characteristics of this
network is that it maps a given random input stimuli space
10 a cluster space composed of distinct cluster elements.
For example, a Kohonen network can be used to highlight
aleter, say, “A”, from a given sct of characters consisting
of letters and numbers and written in any calligraphic
style. After training, the network should be able to group
all “A’s”
cluster.

of various calligraphic styles in one single

Let us brielly describe the behavior of a Kohonen
nctwork. Fig. 1 shows its basic structure. The layer
consists of N ordercd processing clements cach receiving n
input

signals  xy, coming from an

n—dimensional Euclidcan space. A weight wy; is

X2, X3 Xn
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Fig. 1. Khonen Network Architgcture

associated with the jth Kohonen processing clement and
the ith input signal. Each Kohoncn processing clement
calculates a matching scorc M; according to the formula :
Mj=D(W; X). Wherew; = (wyj,
X2, X3 ... X,)' and
mcasurcment function. The Euclidean distance, D(ah) =

Whai \ﬂtgj___w,‘j)’lv, X=(x,

2]
the function Dfa.b) is a distance

la - bl, is a common mcasurc uscd in many applications.
Input signal vectors X, randomly taken from the input
space, are presented to the network onc at a time. The
number of input vectors can be @, @ < N. Once cach
Kohonen processing unit has calculated its matching scorc
M;, a competition takes place in the Winner Take All laycer
(WTA) to determine which of the units has the smallest
matching score, i.c to find out the weight vector W that
most closcly resembles the input vector  X. Mul{thing
score ( M; ) tics arc broken bascd on the processing unit
index number. The unit with the smallest matching factor
is called the winner. A unitcan win for more than onc input
vector X or may not win at all. The winner for a particular
vector(s) is said to represent that vector(s). The learning is
implemented by updating the weights by a fraction 1 such
that M; is minimized. Sec Appendix for the algorithm.

3: Fault Diagnosis Methodology
3.1: Procedure

A set of signatures is obtained from sampling the
response of the circuit for various bchavioral conditions
(BC).
predefined sct of faulty cases such as shorts and breaks.

These BC’s include the fault [ree case and a

The responscs (signatures) can be oblained by performing
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a [requency domain, time domain or a dc analysis using a
circuit simulator such as HSPICE. Data is obtained by
simulating the circuit with the fault induced and then by
sampling the response at a different points. This procedure
is repeated for cach fault case and for the fault free circuit.
We denote the set of data points as an n—dimensional
signature. Next, a Kohonen neiwork with # inputs and N
processing clements, where N is the number of BCs and n
is the dimensionality of the signaturc, is trained according
10 the algorithm  described in Appendix. The Kohonen
nctwork maps the signaturcs from the initial random
veetor space onto the processing clements. This vector
mapping property of the Kohonen network is used to
classily the signaturcs, and thus, to identify the faults.

Fig 2. shows our fauli-diagnosis procedure. A cluster
table is generated by recording the winner processing unit
for cach input signawre. If a unit wins {for more than one
signature, then the fault cases associated with those
signatures arc said 1o be collapsing faults. These faults
cannol be isolated from cach other using only these
signatures. We denote the phenomenon of reducing the
initial vector space, that includes all the signatures, 10 a
vector space consisting of fewer  signatures as fault
clustering. 11 this new vector space represented by a unit
consists ol only a single signature, then the fault case
associated with that signawre can be isolated. This is

referred 10 as fandt isolation.
3.2: Optimal Sampling Points

A good criteria was proposcd in onc of the earlicst
techniques for constructing fault dictionarics for lincar
frequency dependent circuits {6]. This criteria has been
uscd ever since [7-8]. As our technique involves ac, dc and
transicnt analyses, an alicrnalc mcthod was developed.
This technique is a compromisc between a  good
representation of all the responses and the number of
sampling points. Lesser sampling points implies smaller
Kohonen networks and henee shorter training periods. The
basic idca is 1o obtain the responses with a good number of
of
sampling points for cach signature by taking the derivative

sampling  points  and computc  independent-scts

ol the curve and including the points at
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Fig. 2. Fault diagnosis procedure

which the absolute valuc of the derivative is greater than a
reference  paramcter  deviation. The set of  optimal
sampling points, consisting of all the points in the above
independent-scts, is then obtained. The algorithm below
implements the proposcd mecthod. - Obscrve that the

parameter deviation is adjustablc and offers a degree of

freedom to control the sct of sampling points. A deviation
of 5% is used in our cxperiment. Let Mi(l) is the magnitude
of the signaturc at point 1, S(i) is the initial sct of points
used to generate the curves and v is the optimal sampling
point set.
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Step 1: Forcach signaturc i do
Compute deviation = {M;(1) = M(t-D)I/M;(1-1)}*100
Compute deviation2 = {M;(1) - M;(1-2)1/M;(1-2)}*100
i deviationl > deviation
[nclude t in the independent-sct 1S(1)
clseif
deviation2 > deviation
include tin independent-sct 1S(i)
Goto Step 1

Step 2: For cach point pES(3i)
if(p € ISM)
include p iny.
Go o Swep 2

Fig. 3 shows three curves which are generated with a set of
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Fig 3: Optimal Sampling Points
ten points cach. Applying the algorithm 1o these
signatures yiclds the marked points for cach signature. The
v setincludes points 0,2, 5,7, 8, 9.

4: Practical Results

The techniques presented presented are tested on the OTA
circuit shown in Fig 4a. A sctof 11 BCs, listed in Table 1, is
considered and the circuit is simulated using HSPICE. For
illustration purposcs, only single bridging faults are
considered for verification of thesc techniques. The
bridging faults arc modceled by a 5€ resistor. For the case
of measurement, the OTA is contigurcd as shown in Fig,
4b. The output current is obtained from the ac analysis and
the magnitude 1s plotied for cach BC over a [requency




range of 1 to 10McgHz as shown in Plot 1.
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Plot. 1. Signatures of the OTA.

A broader classification of fault clusiers s
accomplished using the basic technique described above.
However, a finer isolation of these clusters can be obtained
by using a combination of Kohonen nciworks and/or
multiple analyses. This strategy yields four categories:

1) Single Kohonen Single Analysis (SKSA)

2) Multiple Kohonen Single Analysis (MKSA)

3) Single Kohonen Multiple Analysis (SKMA)

4) Multiple Kohonen Multiple Analysis (MKMA)

4.1: SKSA Approach:

This is the simplcst of all the approaches. A possible
fault classification is shown in Fig. 5. Thc cllipses
represent a clustering of BCs. Here, the signatures are
generated by simulating the circuit with cach inducced fault
and by performing a dc, ac. or transicnt analysis sampling
the response at the output node. The results obtained for
the magnitude of the frequency response are shown in the
second column of Tablc 2. Wc sce that there arc 8 clusters
two of which indicate collapsing faults, namely BCs 0.9
and BCs 6,7,8. Similar results were obtained from a dc
analysis, a phasc analysis, and a transicnt analysis. though
the contents of the clusters differed in cach case.
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Table 1. Behavioral Conditions

Short
BC Between
Nodes
0 fault frec
1 1-6
2 4-5
3 1-3
4 6-8
S 2-9
6 1-7
7 9-10
4-6
9 4-9
10 3-5




4.2: MKSA Approach :

In this approach morc than one Kohonen network is
used. The generic architccture is shown in Fig. 6. The
boxes represent new Kohonen nctworks trained on the
signatures corresponding to the magnitude of a frequency
analysis. In this structure, thc BCs vyiclding (fault
collapsing in the SKSA arc used to train another Kohonen
network to obtain further classification. As the vector
space is now reduced o include only the signatures that arc
clustered together, the network now has 10 train on a more
uniform distribution of signatures. The information (rom
the signatures is utilized to the maximum possible extent
in this approach.

v

KOHONEN NET

Bchavioral Conditions

Clusters
Fig. 5. SKSA Architecture

Considering the output of the two rectangular boxes
marked Magnitude in Fig.7 the BCs 7 and &, that arc
clustered together in the SKSA approach, arc isolated from
each other in this approach. We sce that a classification
better than the onc obtained from the SKSA is achicved.
This technique is quite inexpensive and can be used as a
preprocessor to reduce the scarch spacce. This idca is
analogous to the fault collapsing technique donc in
digital testing.

4.3: SKMA Approach:

This Single Kohonen Multiple Analysis technique
yiclds a better classification of BCs. Under this approach,
the same Kohonen nctwork can be used (as the architecture
is the samc) for signaturcs of dilfcrent analyses by
re~initializing the weights. Diflcrent signatures can be
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obtained by i) performing a different analysis i) taking
the response at different access points in the circuit. The
latter option is often morc cxpensive than the first one as it
has an ovcrhcad of a few more pads in the chip. For our
cxperiments, the phase response of the circuit is used to
obtain ncw signaturcs. The clustering done by this
approach is shown in the 3rd column of Table 2. By
inspecting the results of both analyses we can sce that BCs
S and 6 arc now isolated. This docs a better fault collapsing
than the SKSA at the possible cost of additional analyses.

Table 2. SKSA and SKMA results

Magnitude Phase

BC Wwinncer Winner
0 2 4

1 9 4

2 0 4

3 3 4

4 7 4

5 ] 3

6 4 9

7 4 4

8 4 4

9 2 4
10 6 4

4.4: MKMA Approach

A new sct ol signatures are generated only for those
fault cases that are clusicred together in the MKSA
approach. The MKMA architccture represents a tree in
which cach Kohonen network can be trained on different
analyses. In our experiments new scts of signatures are
obtaincd from the phase response. These signatures are
generated only for faults that are collapsing. In our case,
for BCs 0, 8, 5 and 7. The depth of the tree, the number of
Kohonen networks and the number of different analyses
arc thc important factors in this mcthod. These are the
metrics uscd for comparison of the degree of classification
obtained from the whole process. Fig. 7 shows that all the
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BCsare in fact isolated. The depth of the tree depends on
the response of the system, ic the distribution of the
signatures in the vector space, and need not nceessarily
depend on the number of fault cases considercd. The latter
observation is investigated with similar cxperiments using
18 BCs. We could sce that all the faults were isolated and
that the depth of the tree, the number of Kohonens and the
number of analyscs were the same for both cxperiments.
This method is sclf—sufficicnt as it can be repeated for a
complete isolation of faults. Many techniques have been
proposed that rcquirc node voltage  and current
[2]-19]. This technigue
guarantecs the minimum usc ol additional access points

measurcments  mcasurcments

hence reducing computational complexity and silicon
overhead. If the signatures obtainced (rom the responsc of
the circuit at its output node for diffcrent analyses do not
provide the desired classification, the signatures can then
be taken from the response at a dilferent node which
provides the desired classification. Then, this node can be
uscd as an observation point. Thus, any access points {or
circuit obscrvability, in addition to the output pad, can be
determined by this approach.

4.5: Remarks And Observations

The fanlt diagnosis mcthod presented in this paper has the
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following relevant features:
4.5.1: Process Variation Independency

Current Simutation Before Test (SBT) techniques are
limited duc to parameter drift and noise. Using these
techniques, there is a chance that a given signature is not
among the stored faults in the dictionary, in which case
fault diagnosis is not possible. In our approach, as the
mapping is from the signature vector space and not from
the signature itsell, cifective diagnostic results  are
obtained if the paramcter drift duc to process variation and
noisc arc approximatcly 7-10% of their nominal values.
This feature was verified through the MKMA approach
over a set of  process parameters for the MOS  transistors
used in the OTA. Test signaturcs were obtained from the
circuit with the process parameters changed to within 10%
ol their nominal value. The results obtained were the same
as those obtained with test signatures obtained with the

nominal process parameters.

4.5.2: Reduced Number of Access Points

In all the experimental results presented in this paper,
only the circuit output is uscd to measure the response. The
simulations with thc OTA show that a complete fault
diagnosis is possible without additional access points.



This is an important factor to consider when testing
realistic systems.

4.5.3: Fault Model Independent

This technique can be used to diagnose any kind of
faults: ) bridges ii) opens iii) soft faults iv) multiple faults
v) faulty operating conditions.

4.5.4: Extension to Digital And Mixed Mode Circuits

The responsc of the circuit during the rise time and fall
time can be used to generate mixed-mode signatures.
Cluster tables can be gencrated using  this technique for a
digital and mixed modc circuit in a similar fashion as
indicated through out the paper.

5: Conclusions

A powcrful non-conventional analog fault diagnosis
methodology has been proposed. The approach based on
training a Kohonen (ncural) nctwork has the potential o
deal with hard and sof faults, docs not require additional
overhead or additional silicon arca of built-in sclf test
circuits or access o internal nodes of the circuit under test.
It has the potcntial to handic mixed modc circuits and
multiple faults. Prcliminary results using  practical
integrated circuits arc very encouraging

6: Appendix
Kohonen Paradigm:

The algorithm used 10 implement the self organizing
feature mapping Kohonen nctwork for our fault diagnosis
mcthod is as follows:

1) Initialize weights randomly.

2) Present new input pattern.

3) Compute matching factor M;:
computc distances D; between the input and cach
N-1

output node j using Z( X = Wy )?

i=0
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4) Select the output node with minimum distance.
Sclect j* as the node with minimum distance.

5) Update weights to node j* and its neighbors.

The neighborhood is defined by NE(j). This has a
radius of the cntirc proccssing units initially, and
decrcascs monotonically with the itcrations(t). As the
processing units are uni-dimensional, the radius can be
decreased in steps after certain itcrations. The new
weights for the winner are defined by the learning rule:

Wy (1+1) = Wii(1) +m(t) (Xi(1) - Wij(1))

where n(1) is any expression which decreases with ¢.

We use the expression 1y(t) = 1/(400 + t) in our

application. The Icarning rule for the neurons in the

ncighborhood is the same  as above except that the

lcarning rate (1) will be a decreasing function of the
radius as well. The expression
nQwvinnery

n = - - -
distance of the unit the winner

is used for the anits that fall in the neighborhood.
6) Repeat by going to Step 2.
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