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Two Level World Modeling for Cooperating Robots Using a Multiple
Hypotheses Filter

J. Elfring, M.J.G. van de Molengraft, R.J.M. Janssen and M. Steinbuch

Abstract— Robots increasingly operate in dynamic environ-
ments and in order to operate safely, reliable world models are
indispensable. A world model is the robot’s view of the world
and contains information about obstacle locations and velocities.
A two level algorithm is proposed. It is of particular use for
teams of cooperating robots and the algorithm is based on a
multiple hypotheses filter. Each robot features a low level world
model with a fast update rate which can be used for obstacle
avoidance. The local world models are combined to one global
view of the world that is shared between all robots and can
be used for the implementation of team strategies. Labeling
and tracking is added to the multiple hypotheses filter in order
to reduce the sensitivity to track loss in case of temporary
occlusions of objects or false measurements. The algorithm
was extensively tested during the 2010 RoboCup Middle Size
League world championships in Singapore, the results of which
are presented.

I. INTRODUCTION

Autonomous systems are increasingly operating in dy-
namic environments. In order to operate safely, reliable
navigation skills are crucial. For this purpose, an autonomous
system needs knowledge about the locations of the objects
around it. This type of knowledge is typically stored in a
world model, which contains the robot’s view of the world.
In addition, a world model can contain room temperature,
humidity, etc. In this paper, the focus is on world models
that contain the location of a robot in its environment and
the location and velocity of an unknown varying number of
moving objects around it.

Building up a world model must be done in real-time
on the basis of measurements that are performed either by
sensors on the robot, e.g., an onboard laser range finder, or
sensors around the robot, e.g., a camera on the ceiling of
the room. The measurements can originate from multiple,
possibly different sensors and from multiple robots. The
number of objects is typically unknown and varying, since
humans, robots or other moving objects, might enter and
leave the robot’s environment at any time. Determining
whether measurements indeed represent a specific object or
measurement noise (clutter) is called the data association
problem. The problem of building a world model consisting
of object locations and velocities is often referred to as
multiple target tracking and localization (MTTL), see [1].

In literature, many MTTL algorithms solving the world
modeling problem that is considered in this paper are intro-
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duced. The most promising algorithms are described below.
For an extensive overview of MTTL algorithms the reader
is referred to [1].

The first method is the Multiple Hypotheses Filter (MHF),
introduced in [2] and used in, e.g., [3]. With this filter, a tree
that maintains all possible solutions to the data association
problem is built and the corresponding probabilities are
calculated. The hypothesis with the highest probability is
selected as being the correct solution. An advantage is that
multiple hypotheses are maintained, which enables revising
the solution on the basis of new sensorial information.
Furthermore, the MHF is ”generally accepted as the preferred
method for solving the data association problem in modern
multiple target tracking (MTT) systems”, according to [4].
However, the number of hypotheses in an MHF increases
rapidly and therefore a pruning strategy has to be applied.
Pruning should happen carefully, since elimination of the
most probable hypotheses must be prevented. Even with
pruning strategy, the algorithm has high computational cost
and storage which is one of its main disadvantages.

A second method that is widely applied in literature is an
advanced joint probabilistic data association filter (JPDAF),
e.g., Monte Carlo JPDAF introduced in [5] or sample JPDAF
introduced in [6]. Within the Bayesian JPDAF, as explained
in [7], the target location is calculated using a weighted
average of validated measurements. Validation of measure-
ments is based on prediction and the weights are probabilities
that represent the probability that the measurement indeed
is target originated. Contrary to the JPDAF, the sample
JPDAF is able to deal with an unknown, varying number
of objects and allows nonlinear process and measurement
models, which clearly is beneficial. The sample JPDAF
has low computational costs compared to the MHF but
the JPDAF class of algorithms makes irreversible decisions.
Once the data association algorithm fails to select the proper
solution, correcting is hard. Furthermore, the algorithm does
not deal well with different tracks that approach each other.

A third method is the Probability Hypothesis Density
(PHD) filter, see [8], or the improved cardinalized PHD
filter, see [9]. In the cardinalized PHD filter, a probability
distribution is used for the number of objects and the
sequential Monte Carlo implementation introduced in [10]
allows for dropping linearity assumptions. An advantage is
that this method, contrary to the MHF and the sample JPDAF,
is able to deal with measurements that are originated from
multiple targets. However, in order to be of practical use,
assumptions or approximations are required in order to find a
closed form solution. Furthermore due to the lack of ordering
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in the finite sets that are used, the PHD based algorithms are
not able to maintain a record of target identities.

The world modeling algorithm that is proposed in this
paper is based on a Bayesian MHF and uses [11] as a
source of inspiration. In [11], static objects are considered.
Here, filtering is added in order to allow tracking dynamic
objects. Furthermore the pruning mechanism is replaced and
the particle filtering used for clustering is redundant due to
the two level approach. More specifically, the contributions
of this paper are:

1) A two level approach: Each agent builds a local low
level world model on the basis of its own measurements.
This low level world model runs at a high update rate (order
30 Hz) to facilitate obstacle avoidance. In addition, a global
high level world model collects the information from local
world models at different agents in order to generate one
global view of the world. This high level world model can
run at lower update rates and enables cooperation between
the robots.

Both the local and the global world model are based
on the same Bayesian MHF approach. The local world
model effectively performs a huge data reduction on the total
number of measurements, such that the global world model
can run in real-time. This way, the CPU effort scales about
linearly with the number of measurements. An additional
advantage is that this global world model provides a robot
with information about objects that are outside its own
measurement range. Fig. 1 visualizes the two level structure.

2) A heuristic labeling strategy: Often, objects are invis-
ible due to temporary occlusion, which makes it difficult to
keep track of the individual objects. During target occlusion,
the labeled object position is propagated and once the object
is visible again, the label is recognized and its position and
velocity are updated.

3) Real-time demonstrator with a team of robots: The
two level world model is tested in the RoboCup Middle Size
League (MSL). In the MSL two teams of five autonomous
robots play soccer against each other. Each robot has an
omnivision camera that allows the robot to search a part of
the field for obstacles. However, with this camera the robot
can not distinguish between opponents and peer players since
they both appear as black blobs in the camera image. The
field measures 12 × 18 [m] and the field lines are used
to determine the robot’s absolute position. The RoboCup
MSL is an ideal testing environment for MTTL based world
modeling algorithms since multiple cooperative robots are
involved. They all have individual tasks, e.g., avoid oppo-
nents, but also have to collaborate in order to win the match.
The high velocities of the opponents (up to 4 [m/s]) make
the environment very challenging. The two level approach
as presented in this paper does not rely on any RoboCup
related assumption.

This paper is organized as follows. In Section II, some
more details about the two levels within the algorithm are
given. Section III explains the algorithm itself and Section
IV presents experimental results taken from the RoboCup
MSL. The paper ends with conclusions and an outlook to
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Fig. 1. Schematic representation of the two level world model.

future work in Section V.

II. HIGH LEVEL VERSUS LOW LEVEL WORLD
MODEL

The approach presented here explicitly takes into account
that measurements can be performed by multiple agents and
as a result, a two level strategy is proposed.

The low level part consists of a local world model that runs
on each of the robots. It is assumed that each of the robots has
at least one sensor that is able to measure 2D object locations
(zx(k), zy(k)) relative to its own position, where k represents
the time step of the measurement. These measurements are
fed into the MTTL algorithm and the output of the algorithm
is a local world model consisting of a collection of vectors
Oi(k):

Oi(k) =
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ẋi
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 , . . . ,
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 , (1)

where each state vector contains the absolute position and
velocity of an object, nobj represents the number of objects
according to the algorithm, and i represents the agent num-
ber. In the remainder of the paper, the argument k is replaced
by a subscript for ease of writing. This local world model
typically runs at high update rates and is used for, e.g.,
obstacle avoidance. Furthermore, it effectively performs a
huge data reduction on the total set of measurements such
that the global world model can run in real-time.

The high level part consists of a global world model
that takes all object vectors generated by the local world
models as input. A new collection of vectors, Og

k, with object
positions and velocities is the output. The global world model
will mainly be used for strategy and, therefore, typically
runs at a lower update rate. Furthermore, the global world
model provides agents with information about objects that lie
outside their own line of sight, but within the measurement
range of fellow robots. In the RoboCup domain, the global
world model is used for, e.g., passing or global path planning
towards the opponent’s goal. Each individual robot runs
its own version of the global world model. No centralized
computer is available and running the global world model
on one robot is undesired since the robots operate in an
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aggressive environment. Breakdown of one robot would
degrade the performance of all others. Ideally, all robots get
the same input data from the low level world models which
results in a consistent global world model.

III. ALGORITHM

This section gives a detailed explanation of the low level
MHF algorithm. Sections III-A – III-E give a step by step
explanation, whereas Algorithm III.1 gives a summary of the
steps in pseudo code. The high level algorithm is identical,
unless stated differently.

Algorithm III.1 Local world model algorithm
Input: New measurement (zx(k), zy(k))
Output: Collection of vectors Oi(k)

// Step A: Expand tree

for all hypotheses at time (k − 1) do
new hypothesis = old hypothesis + new object;
new hypothesis = old hypothesis + clutter;
for all objects in current hypothesis do

new hypothesis = old hypothesis + existing object;
end for

end for

// Step B: Propagate and update if possible

for all hypotheses at time k do
for all objects in current hypothesis do

Propagate using constant velocity model;
end for
if (zx(k), zy(k)) associates with object then

Update using constant Kalman gain observer;
end if

end for

// Step C: Update probabilities

for all hypotheses at time k do
Calculate p(zk|hj,k), pc, pn, pe, using (3) – (4)
Update probability using Bayes’ law: (2);

end for

// Step D: Pruning hypothesis tree

for all hypotheses at time k do
if C1 or C2 or C3 then

Delete current hypothesis or object in hypothesis;
end if

end for

// Step E: Select the best hypothesis

for all hypotheses at time k do
Check phj(k) and select hbest

end for

A. Expanding the hypothesis tree

Each time a new measurement arrives, the hypotheses
tree is expanded. In the low level world model, this is a

measurement performed by one of the robot’s sensors, in the
high level world model, such a measurement is the output
of one of the local world models. In each of the levels, a
measurement can either be (i) clutter, (ii) a newly appeared
object, or (iii) an existing object. Each of these hypotheses
has its own probability, pc, pn, and pe respectively. This way,
the first measurement generates two hypotheses:
h1: The measurement represents a new object, or
h2: The measurement results from clutter
and a second measurement generates five hypotheses:
h1: Both measurements represent a new object
h2: The first measurement represents a new object, the

second measurement comes from the same object
h3: The first measurement represents a new object, the

second measurement results from clutter
h4: The first measurement results from clutter, the second

measurement represents a new object
h5: Both measurements are clutter

Each time a new object is generated, a stationary Kalman
filter with a constant velocity system model is initialized
and attached to the object. The filter is initialized at the
measurement location and initially has a zero velocity. This
filter is an additional step compared to, e.g., [11], and allows
predicting and updating locations of moving objects.

B. Propagating and labeling of the objects

After expanding the tree, the filters are used to make a
prediction of all object locations at the current time instant.
The prediction is done using the predicted or updated object
location and velocity after the previous measurement together
with the constant velocity model.

For all objects associated with the latest measurement, the
full state is updated. The update is done using a constant
gain observer, where the gain is chosen to be the stationary
Kalman gain under steady-state operation. A better choice
for the filter gain would be to solve the Riccati equation
online for each filter, but the high number of filters and the
complexity of the algorithm complicate this alternative.

In the high level world model, this step also incorporates
the heuristic labeling strategy used to distinguish between
robots. Each robot knows its own position and its own unique
identifier (ID). The measurement of its own location is very
reliable and is labeled with a value equal to the robot’s ID,
measured locations of other robots do not have a label. Now
the heuristic labeling update step is performed as follows:
• If the new measurement has a label ID and is associated

with an existing object, the existing label is replaced by
the robot’s ID

• If the new measurement has no label and is associated
with an existing object, the existing label is maintained

• If the new measurement has a label ID and is associated
with a new object, the new object label has value ID

• If the new measurement has no label and is associated
with a new object, the new object gets a new label

• If the new measurement is associated with clutter, no
labeling is required
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As a result of the first and third option two different objects
within the same hypothesis can both have a label with the
value ID. In that case the oldest object gets a new unique
valued label while the newer label maintains its value ID.
This effectively means that the newer measurement is con-
sidered to be more reliable. This heuristic labeling strategy
has proven to be robust against temporary occlusions and
enables the ability to distinguish between various opponents
and peer players.

After this labeling, the distance between the measurement
and the location of the object it is associated with is calcu-
lated. If the distance is too large, the association is considered
to be unreliable and, therefore, the object is eliminated while
the remainder of the hypothesis is maintained.

C. Updating and normalizing probabilities

In this step, the probabilities are updated using Bayes’
rule:

p(hj,k|zk) =
p(zk|hj,k)p(hj,k|hj,k−1)p(hj,k−1|zk−1)

p(zk|zk−1)
, (2)

where p(hj,k|zk) is the probability of the current hypoth-
esis given all measurements, p(zk|hj,k) is the probability
of the latest measurement given the current hypothesis,
p(hj,k|hj,k−1) is the probability of the current hypothesis
given the previous hypothesis, p(hj,k−1|zk−1) is the proba-
bility of the previous hypothesis based on all measurements
up to time k − 1, the normalizing factor p(zk|zk−1) is the
probability of the current measurement based on all previous
measurement, and j is the hypothesis index.

Only hypotheses that associate the most recent measure-
ment with an object include p(zk|hj,k) in (2) and this
step is an alternative of the observation likelihood step
in [11]. The distance between the position of the m-th
object according to the filter state and the measurement, i.e.,
(xm(k) − zx(k), ym(k) − zy(k)), is translated to a scaled
probability:

p(zk|hj,k) = e
− 1

2

(
(xm−zx)2

σ2
x

+
(ym−zy)2

σ2
y

)
, (3)

where σx and σy are (tunable) standard deviations. Here
σx = σy = 0.3 is chosen based on the expected radius
of robots in combination with knowledge about the mea-
surement inaccuracy. If the object detection algorithm is
improved (increase measurement accuracy), or better system
models and observer gains are used (improved prediction or
update), these standard deviations can be decreased.

The probability p(hj,k|hi,k−1) depends on pn, pc, or pe.
These probabilities depend on the application and, as a first
simple model, are chosen to be:

pc = 10−3 (4)
pn = αpe (5)

pe =
1− pc − pn

nobj
, (6)

where α is a tunable parameter and nobj is the number of
objects in the hypothesis that is considered. The value α

is used to balance the probabilities pn and pe and depends
highly on the environment. Within the RoboCup domain,
objects come and go regularly and, therefore α = 0.1 based
on experience. Experimentally obtained data could be used
to further improve these simple models.

The probability p(hj,k−1|zk−1) is known from the previ-
ous time step and the normalizing factor p(zk|zk−1) ensures
that the probabilities of all actual hypotheses sum up to one.

D. Pruning of the hypothesis tree

The number of hypotheses grows more than exponentially
in the number of measurements. Clearly, pruning of the
hypotheses tree is inevitable to keep the algorithm main-
tainable. It is important that pruning happens carefully, since
eliminating hypotheses is irreversible. In this algorithm, three
criteria are checked:
C1: Is the probability of a hypothesis lower than a prede-

fined threshold?
C2: Does the measurement fall outside a circular region with

predefined radius relative to the sensor?
C3: Does the time since the last filter update exceed a

predefined maximum time?
If C1 is answered with yes, the hypothesis is eliminated, if
C2 or C3 is answered with yes the corresponding object is
eliminated in all hypotheses while the hypotheses themselves
are maintained.

In the first criterion it is assumed that once the corre-
sponding hypothesis drops below a certain threshold, it will
be likely not to be close to the real world situation. Here
this threshold is chosen rather conservative as 1% of the
highest probability occurring in the hypothesis tree. The
second criterion is optional in the sense that it depends
on the sensors that are used. In the RoboCup domain, the
omnivision camera measurements are only reliable if the
distance to the object is limited. If an object is not seen by the
sensors for a pre-specified time, it is assumed that the object
does not exist (anymore), as stated in C3. This maximum
time should depend on the dynamics of the environment, i.e.,
a highly dynamical environment such as RoboCup requires
a low time.

In the high level world model, the second criterion is
replaced by a criterion that ensures that at most a predefined
number of hypotheses is maintained. If the number of
hypotheses after the above mentioned pruning exceeds 1000,
the least probable hypotheses are eliminated in addition.
A less conservative pruning strategy would decrease the
computational costs at the expensive of a higher risk of
pruning valuable hypotheses.

E. Selection of the best hypothesis

In the last step, the hypothesis with the maximum a
posteriori probability is selected. The corresponding object
locations and velocities are the outputs of the algorithm.

IV. EXPERIMENTS

The two level algorithm that was explained in the previous
sections has been extensively tested during the RoboCup
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MSL world championship 2010 in Singapore. Team TechU-
nited became vice world champion and played all their ten
matches with this world model, which means about five hours
of test data. This section presents some illustrative results
taken from the final, where the TechUnited soccer robots
(called turtles) played against the Chinese team Water. A
photograph taken during this match is shown in Fig. 2.

Fig. 2. Photo taken during the final: TechUnited vs. team Water.

During the games, recordings were made using a per-
spective camera. A qualitative inspection of the output of
the global world model, i.e., the numbers of turtles and
opponents and their trajectories, using this camera showed
good correspondence.

Now, consider Fig. 3. The black dots represent the com-
bined output of the local world models that run on the goal
keeper and the defenders, i.e., turtles 1, 3, and 4. Due to
the limited surveillance range each turtle has, the field looks
rather empty. Fig. 4 shows the output of the high level global
world model that in addition to the data in Fig. 3 uses the
data from the attackers. This gives a much more complete
view of the field and illustrates why sharing data is highly
advantageous. With the global world model, the defenders
are able to position better and anticipate faster without having
to explore the whole field on their own.

Next consider Fig. 5. This visualizes the output of the
global world model, at a certain time t∗, combined with
the black dots that are generated by the local world models.
Based on the black dots shown in this figure, the algorithm
introduced here generates results that might be debatable,
especially regarding the locations of turtles 2 and 5, and
opponents 3 and 4. However, on the basis of the trajectories
of the players over a certain time interval up to time t∗,
shown in Figure 6, the outcome does make sense. This
clearly illustrates the advantage of labeling combined with

Fig. 3. Local world model output from turtles 1, 3, and 4 (represented by
black dots) and turtles locations (represented by red circles).

Fig. 4. Output of all local world models (represented by black dots) and
the output of the global world model. Turtle and opponent locations are
represented by red circles, respectively blue squares.

tracking, i.e., it can be avoided that tracks are lost during
path crossing or temporarily occlusion and a more reliable
output is generated as a result of the improved robustness.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, a two level algorithm for developing a real-
time world model that can be used for cooperating robots
is developed. The local low level world model effectively
reduces the amount of measurement data such that the
global high level world model can run in real-time. The
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Fig. 5. Output of all local world models (represented by black dots).
Turtle and opponent locations determined by the global world model are
represented by red circles, respectively blue squares.

Fig. 6. Global world model output over a certain time interval up to time
t∗. Turtles are represented by red circles, opponents by blue squares.

low level runs at each robot and is used for local tasks
such as obstacle avoidance, whereas the high level represents
a consistent view of the world to all cooperating robots
using the output of their low level world models. One of
the main benefits of this approach is that all robots have
the same information, which allows for easy and effective
implementation of strategies. Furthermore, the global world
model covers a larger area than the local world models.

This paper uses a Bayesian MHF with constant gain
Kalman filters for target tracking. In addition, the contri-
butions of this paper are:

• A successful extension of the filter with a heuristic
labeling strategy

• An extension to a two level approach which allows real-
time implementation

• A real-time demonstration of the algorithm that was
presented with a team of robots

B. Future Works

In this paper, simple constant gain filters are used for
object tracking. It is expected that a more advanced strategy
for determining these gains will further improve the result.
Also, the use of better probabilistic models for (4) – (6) can
improve the result. Experimentally obtained data can be used
to obtain such improved models.

The results in this paper clearly show the power of sharing
knowledge among multiple robots. This idea is the basis of
the RoboEarth project, see [12], where any useful knowledge
obtained by a particular robot will be stored in a world-
wide-web style database such that other robots can use it to
improve their performance. In other work, the focus will be
on the further development of the RoboEarth approach.
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