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Large-time asymptotics of Stokes flow for
perturbed balls with injection and suction
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Abstract

We discuss large-time behaviour of Stokes flow with surface tension and with
injection or suction in one point. We consider domains in R? or R® that are ini-
tially small perturbations of balls. After a suitable time-dependent rescaling, a
ball becomes a stationary solution. To prove stability of this solution, we derive a
nonlinear non-local evolution equation describing the motion of perturbed domains.
From spectral properties of the linearisation, we find global existence in time and
decay properties for the injection case. For the suction case, we find that an arbi-
trarily large portion of liquid smaller than the entire domain can be removed if the
initial domain is close enough to a ball.

AMS subject classifications: 35R35, 35K55, 76D07
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1 Introduction

In the problem of Stokes flow with surface tension and with injection or suction in one
point one seeks a family of domains ¢t — Q(t) in RY and two functions p(-,¢) : Q(t) — R
and v(-,t) : Q(t) — RY that satisfy the following system of PDEs:

—-Av+Vp=0 in Q(¢),
divo=pd  in Q(¢), 1.2)
(Vo + Vol —pl)n=vkn onT(t) :=002).

—~~
—
—_
~—

The family ¢ — Q(t) models a liquid that moves under influence of injection or suction
and surface tension. The functions v and p denote dimensionless velocity and pressure,
respectively, p is the injection speed (u > 0) or suction speed (pu < 0), v is a positive



constant called surface tension coefficient, s is the mean curvature (taken negative for
convex domains), n is the outer normal on the boundary, I the identity matrix and &
denotes the delta distribution. The evolution of the boundary ¢ — T'(t) is specified by
the requirement that its normal velocity v,, satisfies

Up = U N. (1.4)

The velocity component in the fixed time problem (1.1)-(1.3) is determined only up
to rigid body motions. The problem becomes uniquely solvable if we add two extra

conditions, namely
/ vdr =0, (1.5)
Q(t)

which implies that the geometric centre of Q(t) is constant in time (see Lemma 4.3), and

/ rotv dz = 0. (1.6)
Q(t)

Here, the operator rot in N dimensions should be interpreted in the following way. Let
w be any bijection between {(i,j) € N?:1 <i< j < N} and {1,2,...,(3)}. We define

rotu = Z (833Z — 81;]> €u(i,j)>

1<i<j<N

N
where ey, is the k-th unit vector in R(z).

The model can be derived from the Navier-Stokes equations if one assumes a fluid
with low Reynolds number. A closely related model is used to study the growth of certain
tumours, for which the tissue can be modeled as a fluid (see [3], [4] and [5]). The process
of viscous sintering in glass technology is modeled by Stokes flow as well (see [10]). More
industrial applications are given in [14].

Short-time existence of solutions for the problem without injection or suction is proved
in [8]. In the same work, global existence results have been found for the case that the
initial domain is close to a ball. The global existence results however, do not straight-
forwardly generalize to our situation with a source or sink since there is no stationary
solution. Joint spatial and temporal analyticity of the moving boundary for the problem
without injection or suction has been proved in [2].

For the problem with injection or suction, short-time existence results and smoothness
of the boundary have been proved in [12]. Exact solutions for the suction problem are
found in [1] from complex variable theory. In this paper we prove global existence results
assuming initial domains that are perturbations of a ball. We use methods that are also
used in [15] for Hele-Shaw flow.

We start by identifying the trivial solution, where Q(0) = BY := {z ¢ RY : |z| < 1}.
For this special case, the functions v and p will be denoted by vg and pg. It is easy to
check from the divergence theorem that the volume U(¢) of the evolving domain (%)
that satisfies (1.1)-(1.6) changes linearly in time with rate p:

d
E: U.nda':/ dive dx = p.
dt I(t) Q(t)



Because of radial symmetry, the evolving domain will be a ball with radius «(t), given

by
Nt
a(t) = § LA
V on

Here oy is the surface area of the unit sphere S¥ =1 in RV, Note that the suction problem

only makes sense on the interval (0,7, where T := —Z—JA\’[. It is easy to see that
1
vg = ——T.
onlz|N

The mean curvature of S¥=! is 1 — N. Therefore the mean curvature of I'(t) is equal to
% and we have
N-1 N-—-1

N RO LA

To investigate the stability of the trivial solution Q(t) = a(t)BY, we rescale a moving
domain Q(t) that solves (1.1)-(1.6) by «(t)~! such that the domain BY becomes a sta-
tionary solution. We consider small star-shaped perturbations of this stationary solution.
These perturbations will be described by a function 7(-, ) : S¥ =1 — R.

In Section 2 we derive a nonlinear non-local evolution equation for r and linearise it
around r = 0.

In Section 3, we determine the spectrum of the linearisation. We write it in terms
of the Dirichlet-to-Neumann operator for the Laplacian on BY for the cases N = 2, 3.
This is done by solving a boundary value problem on BY in terms of (scalar) spherical
harmonics and vector spherical harmonics (see [9], [7] and [6]). For N > 4 calculating the
spectrum becomes more complicated and the problem is less interesting for applications.
Therefore we restrict ourselves to the cases N = 2, 3.

In Section 4 we derive global existence in time of solutions r for the case of injection.
We also show that the corresponding moving domain converges to a ball as time goes to
infinity. This is done by finding energy estimates in Sobolev spaces. A generalised chain
rule for differential operators on functions on SV~ is used to close a regularity gap.

In Section 5 we consider the case of suction. Because the eigenvalues of the lineari-
sation go to infinity as ¢ tends to 7', we cannot derive global existence results. However,
we show that an arbitrarily large portion of liquid smaller than the entire domain can be
removed if the initial domain is close enough to a ball.

Comparison with Hele-Shaw flow
We end this introduction by comparing our problem to the corresponding problem for
the related Hele-Shaw flow, where (1.1) is replaced by Darcy’s law v = —Vp and (1.3)
is replaced by p = —vyk (see [15] and [16]). Again we have an elliptic system for each
time and the evolution of a moving boundary that follows from the kinetic boundary
condition v,, = v-n. For both problems, the domain is rescaled such that a ball becomes
stationary and existence results and decay properties are obtained from linearisation.
The fixed time problem for Hele-Shaw flow can be reduced to one scalar equation
and a boundary condition for pressure only. The system (1.1)-(1.3) however cannot be
decoupled. As a result, the evolution equation (2.20) for the motion of Q(t) is more
complicated than the equation for Hele-Shaw flow.



In both problems the linearisation is related to a solution operator for a boundary
value problem on BY (see (3.1)-(3.5)) and the (scalar) spherical harmonics (see Section 3)
are eigenfunctions. This is not surprising since both evolution operators are equivariant
with respect to rotations and therefore the eigenspaces have a corresponding invariance
property. In contrast to Hele-Shaw flow, in order to solve the coupled Stokes system
(3.1)-(3.5) we need to introduce vector-valued spherical harmonics as well.

Only for N = 3, the evolution problem for Hele-Shaw flow can be regarded as au-
tonomous. Global existence results can be derived from the principle of linearised sta-
bility (see [16]). For Stokes flow, this only works for the uninteresting case N = 1. For
other dimensions, we use the more complicated method of finding energy estimates. The
existence results for N = 2,3 (see Theorems 4.4 and 5.1) turn out to be similar to those
for Hele-Shaw flow with N > 4.

The evolution operator in (2.20) is of first order whereas the operator for Hele-Shaw
flow is of order three. Therefore one can apply a first order chain rule of differentiation
(4.1) to obtain useful energy estimates in the existence proofs. For Hele-Shaw flow with
N # 3 it is necessary to work with a second order chain rule.

2 An evolution equation for the motion of the domain

Let G¥ be the space of spherical harmonics of degree k on SV ~1. Choose an Ly(SV~1)
orthonormal basis of G :

{Sk,h Sk,25 -+ sk,u(N,k)} s

where v(N, k) € Ny. It is well-known (see e.g. [11] Lemma 2) that the spherical harmonics

oo
U {Sk,h Sk,2y 0 Sk,l/(N,k)} )
k=0

form an orthonormal basis for Ly(SV¥~1). Let (-,-)o be the usual inner product on
Lo(SV~1). For each r € Lo(SN 1) define ry, ; by

Tkyj = (7", 5k,j)0~
Equip for all s > 0, the Sobolev space H*(SV~!) with the inner product
(7", 7;)5 = Z(kz + 1)8Tk’jfk,j.
k,j

In this paper we use the Sobolev imbedding theorem: If k& € Ny, o € [0,1) and s >
% + k + a, then

Hs(SNfl) M Ck,a(SNfl)
and L

H**3 (BY) — o (BV).

We will also use the fact that for s > %, Hstz (BY) and H*(SV~1) are Banach algebras.



Any continuous function f: S¥~! — (—1,00) describes a domain Qy in the following
way:
Q= {xERN\{O}:|;z:| < 1+f<“;|>}u{0}.
We also introduce I'y := 0Qy. For a domain €2(¢) moving according to (1.1)-(1.6) we
introduce a continuous function R(-,t) : SN~ — (=1, 00) satisfying Q(t) = Qp(.+). Here
we need to restrict ourselves to star-shaped domains. Besides R(-,t) we introduce r(-,t)
such that L+ R()
+
t) = ————1 2.1
() = =1 (21)
which is equivalent to
Qr(-,t) = Oz(t)_lﬂR(.’t).
Very often we will omit the argument ¢ in r(t). We assume that r(¢) is a small element
of H*(SN—1) for each t with

N+5
5 > % (2.2)
Introduce the function ® : RY — R by
1
~ 5 In |z| N =2,
™
O(z) = ) ) (2.3)

— N > 3.
(N —2)on|z[N2 ~ (N —2)on =

This function satisfies A® = —§ and it vanishes on S¥ 1. Define the functions V and P
by

Vi=v4+uVe =v—1 (2.4)
and
P :=p— pd.
If v and p satisfy (1.1)-(1.2) then we have
~AV+VP=0 onQg, (2.5)
divV =0 on Qg. (2.6)
The boundary condition (1.3) becomes
(VV +VVT — PI)n = ykn + 2uHn on I'g, (2.7)
where H : RV — RY*N is the Hessian of ® given by
1 N
H(z) = on® (—I+ Wx@x) )

where  ® x denotes the matrix with coefficients z;2;. The extra conditions (1.5) and
(1.6) translate to

/ Vidr = / uVe dx, / rot V dz = 0. (2.8)
Qr Qr Qr

Define



o Vi, Pip)T :Qp — RY xR as the solution to (2.5) and (2.6) on the domain
with boundary condition

(Vvl,f-FVVEf — Py fI)n=kn on Iy
and extra conditions

Vi dx =0, / rot Vi 5 dx =0,
S5 Qs

o (Vo ,Poy)T : Qp — RN x R as the solution to (2.5) and (2.6) on the domain Q;
with boundary condition
(VVar+ VVQTf — P, sI)n =2Hn on I'y

and extra conditions

/ Vo r dx = Vo dzx, / rot Vo r dx = 0.
Q25 Qy 2y

It is known (see e.g. [12] Chapter 3), that the solutions (Vi ¢, P1 )T and (Va 5, P ¢)7
exist and are unique for appropriate domains 2. The solution (V, P)T to (2.5)-(2.8) can
be written as y(Vi r, P1.r)T + u(Va,r, Pa.r)".

Lemma 2.1. If R and r are related via (2.1), then

Vir(2) = Vi,r(a(t)), (2.9)
Py (z) = aft)Pr(a(t)z), (2.10)
V(@) = a(t)¥ Vo r(a(t)z), (2.11)
Py, (z) = a(t)N Py p(a(t)z). (2.12)
Proof. Let Vi, (z), Pr(2), Vo, (2) and Py, (x) be the right-hand side of (2.9)-(2.12).

We must prove that Vi, = Vi,, Vo, = Vo,, P, = P, and P», = P,,. Suppressing
the time argument in «(t), we have for z € Q,

— AV (x) + VP () = a® (~AVy g(az) + VP g(az)) = 0.

For ‘727,. and pg,r this can be done in a similar way. Let x € I',., such that ax € T'g. Let
Ky : 'y — R and kg : 'r — R be the mean curvature of these boundaries. We have

(VVM(:C) + vf/fr(x) - Plr(x))n = a(VVLR(ax) + VVER(OAE) — PLR(am))n

= aykgr(az)n = &, (z)n.

For the boundary condition for VQ,T and Pg,r this can be done in a similar way, using the
fact that H(x) = o¥ H(ax). From scaling properties of V® we get

/ Voo () dxz/ NV, plax) dq;:/ a 'V p(z) dx
Q. Q. Qg

:/ a”'Ve(z) dm:/ NIV (ax) dx:/ Vo(z) du.
Qr Qr Qr

Verifying the other conditions is straightforward. O



Introduce
o Z(r,) :SV"L =T, by
Z(r,§) = (1+7(8)¢E,

e n(r,-) by the function that maps an element ¢ € S¥~! to the exterior unit normal
vector on T',. at the point Z(r, £),

e x(r,-) by the function that maps an element ¢ € S¥~! to the mean curvature of T',.
at Z(r,§).

We will often use the notations Z(r), n(r) and k(r) instead of Z(r, ), n(r,-) and s(r,-).

On a neighbourhood U of zero in H*(SN~!) for s > & the mappings n : U —

(Hs_l(SN_l))N and k : U — H*"2(SV~1) are analytic (see [12] Chapter 3 Lemma 16).
From [12] Chapter 3 we have the following evolution equation for R:

OR, . wv(2(R,€)) n(R,€)

L TR
Combining this and (2.4) we get
OR _ (Vigoi(R)-n(R) f(VaroX(R)): n(R) 1
at | n(R)-id n(R) - id on(L+R)N-T )
Because
or 10R _10R 1+r

Z 21 — =t
o adt « (L+7) a Ot MO'NOéN’
we get from Lemma 2.1 and the fact that n(R,z) = n(r, z)

or _ v (Mweo2)on(r) p [ (Varoi(r)-n(r) 1 Cl4r
ot alt) n(r) -id a(t)N n(r) - id on(1+r)N-1 oy |
(2.13)

We see two terms on the right-hand side of this evolution equation. One term describes
the effect of surface tension. Here time dependence occurs as a multiplication by a/(t) 1.
In the other term, describing the effect of injection/suction, time dependence occurs as
a multiplication by a(t)™". Only for N = 1 the two effects scale in the same way. For
Hele-Shaw flow (see [16]) this is the case for N = 3. From the structure of the evolution
equation we expect that the results that we get for Stokes flow in dimension two or higher
are similar to those for Hele-Shaw flow in dimension four or higher (see [15]).

Now we transform our moving boundary problem to the fixed reference domain B
and write the right-hand side of the evolution equation (2.13) as an operator on a function
space on S¥~!. By [13] Theorem 6.108 and interpolation, there exists an extension
operator E € L(H*(SN~1),Hstz (BN)), such that for all r € H*(SN~1)

Er'SN—l =T (214)
. N
Define z : H*(SV~1) — (H5+§(IB§N)) by
z(r,x) = (14 (Er)(x)) =z,
identifying z(r, ) and z(r).



Lemma 2.2. Let s > Y5, There exists a 6 > 0 such that if |r||ls < 6, then 2(r) : BN —
Q, is bijective and z(r)~! € (CQ(KTT))N.
Proof. From the Sobolev imbedding theorem we get H*(SY¥~!) — C3(S¥~1). The bi-

jectivity follows from [16] Lemma 2.1. Using [16] Lemma 2.2, we can prove the other
statement as well. O

N
Introduce the bilinear mapping * : R(Q) x RY — R¥ in the following way:

N 1—1 N
U*xv = E , U (5,i)V5 — E Uw(i,j)Vj | €i-
i=1 \j=1 j=i+1

Here w is the bijection that we introduced to define the operator rot in (1.6).
On a neighbourhood U of zero in H*(SV~1) with s > % we define the following
mappings:

v dsu—c((EiEn)” (oien) ") oiu— £ (B Y, (- te) ).

ot:uU—L ((Hsé(BN))N , (HSS(BN))NXN), bt — L <(HS%(BN))N ,HsS(BN)>

and R : U — L <(Hs—é(BN))N , (Hs—%(BN)) (IZV)) by

= woz(r) H)) oz(r) = ""lri 'k’lra—u
A= (B (w0 o2tr) = 301 (M5,
O(r)u := (V (u o z(r)*l)) oz(r) = ij’i(r)%ei,
ik
Q= (¥ (uo=0)71) 0200 = 40 ey e,
ik,
b(r)u == (div (uwo z(r)™")) o 2(r) = ij’i(r)g—;i,
ik
. _ B daipnOuk g ou; _
R(r)u = (rot (wo z(r)~')) o z(r) = ISKZ,CSN; (]l (r)a—ml GUR () 8x1> oo k)
where j%(r) are the coefficients of the inverse of the matrix
gty =20 ¢ (w-1e)""

The elements j*+(r) are in H¥~2 (BY) for ||r||s small because of continuity of inver-

NXN
sion near the identity, which is equal to J(0), in the Banach algebra (HS’% BY ))
Note that we need assumption (2.2) here to define A.



e S:U — L(Xs,)s), where

X, = (HS—%(BN))N < H 3 (BY) x RY x R,

N

Vs = (HS*%(BN))N X H 3 (BY) x (H2(SV 1) x RY x r()

by
—A(r)v + Q(r)p + M
b(r)v
S(r)(@,p,7,72) = | Te(QF ()0 + QF (r)o" — ph)n(r) + iz xn(r) |. (2.15)
Jgn vdet T (r)dx
Sz~ (R(r)v) det T (r)dx

o h:U— (HS(SN’l))NXN by

h(r,&) = H(Z(r,§)) = (-I+NERY). (2.16)

on(1+r(€)N
We identify h(r,-) and h(r).
e m:U— RN by

m(r) = / Vo dr = _ r(z)z do.
Q, ON JSN-1

If we combine Lemma 2.2 and [12] Chapter 3 Lemma 11, then we see that for small
r € U, the operator S(r) is bijective. In the definition of Xy and ), we use the vectors
71 and 72 because the equation S(r)f = g does not have a solution f € X; of the type
(0,9,0,0) for all g € Y5 and the range of the mapping (9, p) — S(r)(?,p,0,0) depends
on r. It is also known ([12] Chapter 3 Lemma 17) that S is analytic near zero.

In the sequel we use the notation II; f for the i-th component of any f. On a suitable
neighbourhood U of zero in H*(SV~!) we define

E-U—=L ((Hs—2(SN—1))N > RN,HS_l(SN_l)) by

(e (31 )) - LTS )

The evolution equation (2.13) can be written in the following way:

o _ v K
ot aft) a(t)N

where Fy : U — H*~Y(SN1) and Fp : U — H~ (SN 1) are given by

Fi(r) = 5(7’)( wlrin(r) )

Fi(r) + Fa(r), (2.17)



and

e e R

Lemma 2.3. If ¢y = x(r)n(r) or ¢y = 2h(r)n(r) and s is any element of RN, then

771 = HgS(’I’)71 (Oﬂ 07¢17¢270)T = 07 772 = H4S(T)71 (07 037/}13 77[12, O)T =0.

Proof. Let Kk, and n, be the mean curvature and the normal on I';.. From the variational
formulation of (1.1)-(1.3), (1.5) and (1.6) (see [12] (3.24)) we have for all velocity fields
w corresponding to rigid body motions in R

/ ﬁl-w—l—ﬁg-rotwdx:/ (Y10 2(r)™1) - w do.
Q, T,

Therefore, to prove this lemma it is sufficient to show that for all rigid body motions w

we have
/nrnT-wda:/Hnr~de:O.
T, Iy

Let A, be the Laplace-Beltrami operator on I',. and let V,. be defined by
vrf = vf - (Vf : nr)nra

for any differentiable f : 2, — R. From the formula ,n, = A,id and Green’s formula
for closed surfaces we derive

/ Hrnr-wda:/ Arid.de:—/ Zvrxlwvrwida:_/ vai'vrwida
r, r, s L2
/FT (dww;axj (nr.ei)(nr.ej)) Qo = 0.

In the last step we used anti-symmetry of Vw and divw = 0. Because H is symmetric
we get

/Hnr~wd0:/ Hw-n, do
. T,

:/ div(Hw) dx :/ (AV®) - w + tr(HVw) dx
Q. Q.

= / Vi w4+ tr(HVw) dx = 0.
Q.
In the last step we used divw = 0 and the fact that the trace of the product of a
symmetric matrix and an anti-symmetric matrix is always zero. O
We introduce a new time variable 7 = 7(¢) such that 7(0) = 0 and

dr 1
Fri ot (2.18)

10



From this we get for N > 2

() = u(;fN— 3 ((’“gt + 1) . 1) . (2.19)

For the original time variable ¢, the injection problems are defined on an infinite time
interval and the suction problems on a finite interval. For the new time variable 7 this
is still the case, because

tlim T(t) = o0, for >0,
. ON
lim 7(t) = ————, for pp < 0.
ST N )
Regarding r as a function of 7 we get
or 1-N
3= F(r,1) :=~F1(r) + pa(r) ~" Fa(r). (2.20)
For convenience we write here and in the sequel a(7) instead of a(t(7)).
Lemma 2.4. Suppose that s > Y35, The mappings Fi and Fs are both analytic from a

neighbourhood U of zero in H* (SN 1) to HE~1(SN1).

Proof. In [12] Chapter 3 Lemma 19, a proof is given for F;. Analyticity of F5 can be
proven is a similar way. The proof is based on analyticity of S, bijectivity of S(0) : X5 —
Ys and the Implicit Function theorem. O

Now we determine the linearisation of the operators F; and F» around r = 0.

Lemma 2.5. We have

Fo = ( “O).

2N(1—N) 2N
o =e) (v eV )2

m(r)

)

ON
with
Vor := Vi — (V- n(0))n(0),

where T is any smooth extension of r near the unit sphere.

Proof. First we show that
n'(0)[r] = =Vor.

Fréchet differentiation of the expression n(r) - n(r) = 1 around r = 0 leads to
n'(0)[r] - n(0) = 0. (2.21)

Let = = Z(w) be a parametrisation of a part of S¥~1. Note that for i = 1,2,...,N — 1

we have 95(r) oid 5
z(r i r .
0=nmn(r)- Do =n(r) - ((1 +7) D + O 1d> .

11



Taking Fréchet derivatives with respect to r around r = 0 leads to

0=n'(0)[r] gji +n(0) - ( A 'd)

r 1
(90)1' 6wi

o0id or

= O 5+ 5

Here we used the fact that g%i is orthogonal to n(0) = id. The vector fields %

i=1,2,...N — 1, can be chosen pointwise orthogonal and therefore

3

N-1 . L =2 A —1 L 1=2 A
0id \ | 0id 0id or |0id o0id
! — / [ _ _ = — _— _— = =
n'(0)[r] = ; (n (0)[r] ﬁwi> ’8% 9, ; B | O, 9o Vor.

This follows from (2.21) and the fact that %J_n(O).
To shorten notation we introduce

Gr(r)n = S(r) 71 (0,0,41,0,0)", Ga(r)py 1= S(r) 71 (0,0,0,4,0)" .
Define vy : U — (HS—%(BN))N and py : U — H*~%(BN) by

(v1(r),p1(r),0,0)" = Ga(r) (r(r)n(r))

Note that Fi(r) = vlé(rr)ﬁg). It is easy to check that v1(0) = 0 and p;(0) = —«(0) and

therefore
v} (0)[r] = Gy (0)[r] (5(0)n(0)) + I G1(0) (+'(0)[r]n(0) + K(0)n’ (0)[r])

= —ILS(0) 7S (0)[r]G1(0) (5(0)n(0)) + 1 G1 (0) (#'(0) [r]n(0) + £ (0)n’ (0)[r])
= CIL,S(0) 1S (0)[r] (0, —#(0),0,0)7 + TT1G1 (0) (< (0) [} (0) + (0)’ (0)[r])
= —11:G1(0) (£(0)n’ (0)[r]) + M1 G1(0) (" (0) [r]n(0) + (0)n’(0)[r])
= I1,G1(0) (w'(0)[r]n(0)).

Because v1(0) = 0 and n(0) = id we get

F10)[r] = Trvi (0)[r] - n(0)

and the result follows.
Now we calculate F5(0)[r] in a similar way. Define

(vg(r),pg(r),O,O)T =G0 (7“)(2h(7“)n(7“)) + Ga(r)ym(r).

1-N
oN

From a simple calculation we obtain v3(0) = 0 and p3(0) = 2 . Because m is linear

12



we have m(0) = 0 and m’(0)[r] = m(r). Therefore
v5(0)[r] = ~IL:S(0)7'S"(0)[r]G1(0) (2(0)n(0))
+11,G1(0) (2R (0) [r]n(0) 4 2R(0)n/(0)[r]) + I11G2(0)m(r)
1-N

= —IL:8(0)718'(0)[r](0,2——.0,0)"
ON
2N(1—- N 2
+I1,G1(0) (Hrn(O) — n’(O)[T]) + 111 G2 (0)m(r)
ON ON
N-—-1
= —ngl(O) (2 n’(O)[r])
ON
2N(1 - N 2
+11:G1(0) (Hrn(O) - n’(O)[r]) + I1,Go(0)m(r)
ON ON
2N(1-N 2N
= 11,G1(0) (HTTL(O) - n’(O)[r]) + 11 G2 (0)ym(r).
ON ON
Here we also used (2.21). The lemma follows from this and the fact that W —
T = Xy 4+ O(r?) around r = 0. O

Lemma 2.6. We have

£(0) ( m(()r) > = —Uleﬁ:l(Ta $1,j)51,j-

Proof. Let © and p be defined by
(9.5.0,0)" := Ga(0)m(r).

It is easy to check that p is zero and ¢ is constant. Therefore v-n can be written as a linear
combination of spherical harmonics of degree one (s ;) ;. If we choose s1 ; = /2-x;,
W)= > ON

then we get

N N
/ (0-n)s1,; do =4/ — div(z;0) dr = 1/—/ 0 dx
SN-1 ON JBN ON JBN
N 1
= am(r)j = —arlm
This proves the lemma. O

3 Explicit solution for the linearised problem

In this section we describe the linearisations of F; and F5 around r = 0 that we found
in Lemma 2.5 in terms of the Dirichlet-to-Neumann operator N for the Laplacian on
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BY. The spectrum and the eigenfunctions of F{(0) and F5(0) are easily derived from
the spectral properties of N'. We restrict ourselves to the cases N = 2 and N = 3.
We investigate for which f: SV~1 — R¥ the system

~Av+Vp=0, onBY (3.1)

dive =0, onBY (3.2)

(Vo + Vol —pln=f, onSN™! (3.3)
/BN vdr =0, (3.4)

/ rotv dz = 0, (3.5)
BN

has a solution (v,p). This solution will always be unique. For suitable f we solve the
system.

3.1 The two dimensional boundary value problem

For the two-dimensional problem we introduce polar coordinates p and 6 and unit vectors
e, and eq. Define for all k € Z the functions sy, : S' — C by

1 .
sp 1= ——e'*?,

V2r

Complexifying the spaces &% in Section 2, one can identify these functions with the
spherical harmonics s, ; in the following way:

Sk,1 ‘= Sk, Sk,2 1= S—k,

for k > 0 and sg,1 = sop. We have v(2,k) = dim &% = 2, for k # 0 and v(2,0) = dim &3 =
1. We write

f=1re,+ fleq, fP0)= > flsu(0), f000)= > flsn(0),

k=—oc0 k=—o00
v=ve, +ilen, (p.0)= 3 of(sk®), (0.0 = 3 vlp)sk(0).
k=—o00 k=—oc0

for f7,f% :S' = R, vP,0? 1 B2 > R, f£,f0 € C and v}, : [0,1] — C. Because p is
harmonic we have -
p=>_ pp*lsi(0), (3.6)
k=—o0
for certain p € C.

Lemma 3.1. For N = 2, the system (3.1)-(3.5) is solvable if and only if f§ = 0,
P = if? and 1P = —if%,. For the components of the normal velocity on S' we have
fO’f‘ k ¢ {_]woa 1}
k| isgnk
o(1) = — P — . 3.7
vk( ) 2(k271)fk 2(k271)fk: ( )

For k € {—1,0,1} we have v}, = 0.

14



Proof. Parallel to [7], we write (3.1) in polar coordinates and get

w1 K241 2ik Kl
e ;Uz S o I |k |prp™ =1,

" 1, k241 21k . _
ol = el e = e

Any solution for v} and vz in terms of py can be written as

1
o= oo 4 2,

where V/ and V)¢ satisfy

B2 +1 2ik

0
p2 Vkp - pTVk = O,

v+ %v,f’ -

o 1 01_k2+1 o 2ik

Ve +-— Vi + 5 V/ =0
k pk pg k p2 k

For k # 0, the general regular solution to these equations is given by
VP = AppHHt 4 ByplkI =t

Ve = isgnk(— ApplF+t 4 ka“”’l),

for some constants A and Bj. The result is
1 _
v = ipkplklﬂ + ApplFH 4 By plH =1

of = isgnk(— AppFH! 4 Byl
For k =0 we get
V{ = Aop, VY = Bop
and

1
vy = 3Pop + Aop,

vd = Bop.

(3.10)

(3.11)

For each k € Z we have to determine three constants: py, Ar and Bj. These follow from
the boundary conditions (3.3), the incompressibility condition (3.2) and extra conditions

(3.4) and (3.5). In polar coordinates conditions (3.3) and (3.2) are given by

ovP

2 —p= fP 12
0 P=1" (3.12)

n? o, o
87,0 + W —v = f (313)
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and
I Y ST (3.14)

We distinguish between three cases: k=0, k= =+1 and k ¢ {—1,0,1}.

1. For k=0, (3.6), (3.10), (3.11) and (3.12)-(3.14) give the underdetermined system
0 2 0 Do 18
0 0O Ao | =1 f§
1 20 By 0
From this system, By cannot be determined. However, condition (3.5) implies

/ v’ dazi/ rotv dx = 0.
st B2

From (3.11) we get By = 0. We conclude that

1
po=—f, Ao= §f6)v By = 0.

Combining this and (3.10) we get v = 0. There is also a condition on f, namely

f&=o. (3.15)
2. For k = £1, we derive from (3.6), (3.8), (3.9) and (3.12)-(3.14)
1 4 0 P+1 fil
+1 0 0 Ay | = —2if%, |. (3.16)
3 80 By, 0

The first and second equation in the system (3.16) give
) 1 1.
P+1 = :FQZfip Ap = Zfil + izf:?:l'
We cannot determine By from (3.16). However, (3.2) and (3.4) imply

/ ;v -n do = / div(z;v) dx = / z;dive dr + Vz; v dx
st B2

B2 B2
=/ v, dz = 0. (3.17)
B2
This implies
1
v = Wor /Sl (x1 £ix2)v-n do = 0. (3.18)

Combining this and (3.8) gives us
1 1.
By = *ifil + ilfir
From the third equation in (3.16) we derive

iy ==+ifdy. (3.19)

This gives two more conditions on f.
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3. For k ¢ {—1,0,1} we get from (3.6), (3.8), (3.9) and (3.12)-(3.14) the following
system of equations:

k[ 2(lk[+1)  2(]k|=1) Pk b
k 0 4(k — sgnk) A | = —2if? |. (3.20)
k| +2 4(k|+1) 0 By 0

The matrix on the left-hand side is invertible for k£ ¢ {—1,0, 1} and the solution to
(3.20) is given by
pr = —f{ —isgnkfy,
(k] +2)(fi +isgnkfy)
4(lkl + 1) ’
kL ik = )
4(k —sgnk)

Ay =

By,

We are interested in the normal component of the velocity v on S!. For k ¢
{=1,0,1} we get from (3.8)

1
vp(1) = Pkt Ay + By,

and (3.7) follows.

O
We introduce the Dirichlet-to-Neumann operator N : H7(SV=1) — HO~}(SN=1), o > 1,
by the operator that maps a function r to Nr := %’ where u satisfies

Au=0 onBY,

wu=r onSYL

This is a first order pseudodifferential operator on SN =1 with spectrum Ny. It is well
known that for N = 2 the functions s, for k € Z, form a complete orthonormal set of
eigenfunctions in Ly (S!) for NV, with

Nsi = |k|sg. (3.21)

Now we write for N = 2 the linearisations of F; and F» around zero that we found in
Lemma 2.5 in terms of N.

e Consider (3.1)-(3.5) with f = &’(0)[r]n. From [16] we have
K(0)[r] = —N?r +7,

which implies
fk = (7’1{"2 + l)rkv

ff=0,
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with r, = (r,sg)o. Note that (3.15) and (3.19) are satisfied in this case. For
k¢ {-1,0,1} we get from (3.7)

1
of(1) = =3 [kl

and we have v (1) = v/, (1) = 0. Lemma 2.5 and (3.21) imply

1

Fi(O)[r] = —5N P, (3.22)
where P; : L2(S') — La(S') is the orthogonal projection along (s_1,sg,s1) =
CrEENCED

e Consider (3.1)-(3.5) with f = %N_N)rn + %Vor = —2rn + 2Vyr. Because
Vosg = %%fee = iksiep we get
2
p_ _2
fk 7r7"k
and il
i
==

™

We see that (3.15) and (3.19) are satisfied. From (3.7) we get for all k € Z
v (1) = 0.
Lemmas 2.5 and 2.6 give us

FYO)) =~ = o (rasy +r15) (323

3.2 The three dimensional boundary value problem

For the three dimensional problem we introduce the spherical harmonics Y3, : S? — C for
each k € Ng and m € {—k,—k+1,...,0,...,k— 1, k} by means of spherical coordinates
in the following way:

Yim = (—1)’"\/ 2k + D= )l pon o )i

An(k +m)!

where 0 is the polar coordinate, ¢ the azimuthal coordinate and P;* the Legendre poly-

nomial given by

(1 _ x?)m dk:-‘rm
2k k! dzktm

Complexifying the spaces &3 in Section 2, one can identify Yy, with the spherical har-

Py (z) = (2 — 1)

monics S ; with j = m + k 4+ 1. We also introduce the vector spherical harmonics V}mh
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X ks Wi : S2 — C2 conform [6] and [9] in the following way:

- k+1 OYim
Vi : = — m€, +
k o1 kme ,/k+1 E
i Ykme¢7
(k+1)(2k+ 1)sin6
- m { aYkm
D N | VP es,
g Kkt Dsing " Jk(k+r1) 00 7
- k 1 8Ykm m
Wm:: 7Ym + eg + me )
g 2+ 1 T k) 90 Rkt Dsing "

fork € Ngand m € {—k,—k+1,...,0,...,k—1,k}. The functions Yy, form a complete
orthonormal set in Lo(S?) and Vi, Xgm, Wim, excluding Xog = Woo = 0, form a

complete orthonormal set in (Lg (SQ))S. The functions Wl’,l, WI,O and Wl,l are three
independent constant vector fields. Therefore, if we take LLy(S?)-inner products of the
constant vector fields e; = (1,0,0)7, e2 = (0,1,0)” and e3 = (0,0,1)7 with other vector
spherical harmonics we get

Wi do =0, keNo\ {1}, / Wi do £ 0 (3.24)
S2? §2

Viem do = / Xim do =0, keNg. (3.25)
S2 S2

In this paper we use the following identities:

E+1 - P
Yiemey = ] o Ve A 4] e Wi, 3.26
kmCp ok 1 km T\ gk (3.26)

VoYim =k 1 em + (E+1) Qkk;kam’ (3.27)

ot (9(9) Ve (0.00) = iy 51 (52 + 20 Ko, (3.29)
1ot (0(9)Xion 0,0) = 1 21 (42 = 50 ) T iy e (4 5520 Wi,

(3.29)

rot(g (Wi (8,6) = 1 57 (2~ “529) K (3:30)

for any g depending only on p (see [6] or [9]). Introduce functions o, Bkm, Viem © [0, 1] —
C such that

v(p.0,¢) = Zakm Wi (8, 6) + Brm (9) Xm (0: 8) + Yo (0) Wi (0, 6)  (3.31)
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and introduce fY | fiX . fV € C such that

Here and in the sequel summations are over all k € Ny and m € {—k, —k+1,...,0,...,k—
1,k}, excluding terms containing Xgo and Wyo. Because p is harmonic, there exist
prm € C such that

P(p:0,0) = > Prmp" Yim (0, 6). (3.32)

k,m

Lemma 3.2. For N = 3, the system (3.1)-(3.5) is solvable if and only if fi%, = fiv, =0
form € {=1,0,1}. Furthermore

ven = Z

k#1,m

w
fkm

Vi, (3.33)

k k+1fv+ 1 k
2k2 44k +3V 2k +177" T 2k —1) V 2k + 1

Proof. Combining (3.26), (3.27), (3.31) and (3.32) (see also [6] equations (2.16) and (3.5))

we get
Vo= pemp" T VEE+ 1) Wi
k.m
and = . .
Av =" (M10km) Vi + (M Bim) Xiem + (Mk—17m) W,
k,m

where 82 5 Lk

2 +1

p Op p

From (3.1) we get
Apt1akm =0,

AkBrm =0,
Ak—1Vkm = Premp” V(2K + 1).
The general regular solutions to these equations are given by

akm(p) = Akmpk+1
ﬁkm(p) = Bkmpk7

1/ k
m :Cm ot m
Ve (P) kmpP + 2k+1pk p

For each pair (k,m) we have to determine four constants: prm, Agm, Bkm and Cip,.
As in the two dimensional case, these constants follow from the boundary conditions
(3.3), the incompressibility condition (3.2) and extra conditions (3.4) and (3.5). In [6]
equations (4.3)-(4.6), conditions (3.3) and (3.2) are written in terms of agy,, Bkm and
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Ykm- 1f we substitute the expressions above, then we get for k € Ny and m € {—k, —k +
1,...,0,...,k—1,k}

3
k+1 )2 2k 43k +2
(2];:'1) ﬁ 0 0 Pkm flym
k—1 0 Apn 7.8
k_ 2k%—1 VEVEFI(2k+3 = W
\/; 2%F1 2k+(1 ) 0 2(k-1) gkm f;(g)m
k k km
2k+1 —\ a2k +3) 0 0
(3.34)
Only for £ = 1 the matrix on the left-hand side is not invertible. In this case we get
3
®* 5 00 Pim fim
0 0 0 0 A, le
1 5 ™ol = w 3.35
3v3 3v2 00 Bim m ( )
3 —5y/2 00 Cim 0

The rank of the matrix on the left-hand side of (3.35) is two. Therefore we have six
restrictions on f and six degrees of freedom. From the last three equations in the system
(3.35), we obtain the following conditions:

[l = fim =0, (3.36)
for m = —1,0,1. From the first and the fourth equation in (3.35) we derive
1
== fim (3.37)
9
and
5 /2
ENENS (3.39)
The six constants By, and Ci,y,, for m = —1,0, 1, cannot be determined from (3.35). In

order to calculate these constants we consider (3.4) and (3.5). Writing condition (3.4) in
spherical coordinates and substituting (3.31) we get

O:/ v dx
]BS

1
= Z /2 / p2akrm(p)vkm + pQﬁkm(p)Xk:m + p2’y;€m(p)ka dde'
s2 Jo

1
ZZ/ / At 0" Vi + Brmp™ X
e /52 Jo

1 k -
k1, L/ k43
+ (Ok'mp =+ 2V 2k + 1pkmp ) Wim dpdo

Akm" Bkm Ckm 1 k Pkm T
= — X, — Wim do.
Z/Szk—i—zl s km+<k+2+2 Shtlktd)  kmao
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From (3.24) and (3.25) we get

1
7Cm :Oa
341 +

10\/§p1m
for m = —1,0,1. Combining this and (3.38) we get

2

for m = —1,0, 1. .
Now we consider condition (3.5). From (3.28) and (3.30) we see that rot(agm (0)Vim)
and 1ot (Yem (p)Wim) have no Wym-components. Therefore, from (3.25) we see that

integrals of rot(akm(p)vk7,L) and rot(vkm(p)v_f/km) over S? vanish. Using (3.29) as well
we get

O:/ rotv dx
]BS

_Z/SZ/ P? 10tk () Vier) + 07 10t (Brom (9) Xkan) + p° 106 (i (0) Wiem) dpdor

km

= %/82 /01 p? 10t (Bim () X ) dpdo

DN %H(‘”’“m o) P

km

2
e Z\/;< Op ﬁkm) Wim dpdo
B Z /S2 / \/; < ﬂkm) Wkﬂn dde'

Since in the last expression, only terms for k = 1 are unequal to zero (see (3.24)) we get

Bim = 0. (3.40)
For k # 1 the solution to (3.34) is given by

2k +3)/Ch+ )k + 1)

\%
me 2k2 + 4k + 3 Fiems
k
A = == [
k 2k2+4k+3f’m

1
Bknz - mfém

1 VEVE +1(2k +3)(k — 1)

Ck’":2(k—1) - 2k2 + 4k + 3 Jim + Jim
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For the normal component of v on the unit sphere we get

v-n= Z akm Vkm e, + ﬂkm( )ka cep+ 'Ykm(l)wkm *€p

km

2k +1 2k +1

B E+L, .
- Va1 \/2k+1 22k+1p’”” F

g
k\/ 2’2111 1
= Z — v fkm Ykm

+
2 km
o | 2Rk 3 2(k — )2k+1

k+1 k
= Z l_akm + ’Ykm(l)

In the last step we omitted the terms for & = 1. This is possible because from (3.37),
(3.38) and (3.39) it follows that

2 1 1
- 7Am 7Cm ~p1m =0,
\/; ! +\/g tm G

for m = —1,0,1. Note that the fact that the terms for £ = 1 in (3.33) vanish also follows
if we repeat calculations (3.17) and (3.18) for the three dimensional case. O

Consider the Dirichlet-to-Neumann operator N that we introduced earlier. It is known
that the spherical harmonics Yy, form a complete orthonormal set of eigenfunctions of
N in Ly(S?), with

NYim = kYim. (3.41)

Now we write F7(0) and F4(0) in terms of the Dirichlet-to-Neumann operator for the
case N = 3. As for the two dimensional case, we do this by considering two special cases
for f in the system (3.1)-(3.5).

e Let us consider the special case
f=#r(0)[rn,
where n = e,. Write

r= § Tkakma
k,m

with 7k = (7, Yem)o. Since for N = 3 we have from [16]

& (0)[rln = (—N?r — N7 +2r)n = z:(—k2 — k4 2)Tkm Yimn,

k.m

we get from (3.26)

[E+1 - ko
/ _ 1.2 N



We have
k+1

2k +1
fiom =0,

k
44 2
- - - 2 m:+

Note that (3.36) is satisfied. From (3.33) we get

Fim =~ (=K% =k + 2)rim,

Tkm Yk:m .

k(k+2)(k+ 1)
v-n = Z ——

2
eyt 2k +4k+ 3

From Lemma 2.5 and (3.41) we get
FIO)r] = —N N +2T) (N + %z) (2N? + 4N +37) ' Por, (3.42)

where Py : La(S?) — Lo(S?) is the orthogonal projection along &3 & &3 =
<Y0,07Y1,717Y1,07Y1,1>'

e Now we consider the case

2N(1-N 2N 3
f= (7) n + —Vor = —frn—i— —VOT

ON

From formulas (3.26) and (3.27) we get

F+l s ;
Wim
F= Z ”“”l Vg1 1 ’“]
3 k+1 =
2 e ) e Vi + (k + 1) Wm
F o | Ry g Ve + k
k+1 k -
= mViem + —(k —1 oWem-
E 27rk+2 ST Vi +2( ) o1 kW
In this case we have
3 k+1
v /
= — 2 —_—
fkm o’ (k + ) 2% + 1Tkm7
firm =0,
3 k
w
- Z (k-1 .
Tim = o (k= 1\ g™
From (3.33) we get
3 k
= S NE——
ven= ) A7 22 4 4k 4+ 3 Fmik

k#1,m
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Lemmas 2.5 and 2.6 imply

3 -1 3 1
.7:5(0)[7“} = _EN (2N2 + 4./\/ + 3I> ’PlT—ET—E (Tl’_1H7_1 + 7‘170Y1,0 + 7“171}/171) .
(3.43)
From the linearisation (3.22) and (3.23) we see that for N = 2 we have
(s> F5(0)[sk])o = —p; (K]) (3.44)
for j=1,2, k € Z and
k
- k#1
pi(k) =4 2 ?
0 k=1
L
_ )
27 -
For N = 3, we see from (3.42) and (3.43) that
(Yeem, F5(0)[Yem])o = —p;(k), (3.45)

forj=1,2,keZ, me{-k,—k+1,...,0,....,k—1,k} and
k(k+2)(k+ 1)

k+£1

p1(k) = 2k2 + 4k + 3 7

0 k=1

3 k 3

—_——— + — k#1

2
it kE=1.
™

Lemma 3.3. Let N =2 or N = 3. There exists a C; > 0 such that for all v € H*(SN1)

(" F O )1 < ~CillF12,
and
(f’ ‘Fé(o)[f])s—l S 07

where 7 is the La(S™Y~1)-projection of r along &) @ &V.

Proof. Define
Ci:= in L(k)l
keN\{1} (k2 +1)2

All values for p;(k) with k € {2,3,4,...} are positive and limy_, ﬁ is positive.
2
O

Therefore Cy > 0. The lemma follows from this and the inequality pa(k) > 0.
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4 Global Existence results for the injection problems
via energy estimates

In this section we find a global existence result and decay properties for solutions to
(2.20) with g > 0. From the energy estimates for the linearisation of the evolution
operator given in Lemma 3.3 and smoothness properties we get an energy estimate for
the evolution operator itself. Combining this with a local existence result from [12] we get
global existence. To obtain the estimates, we need a chain rule for differential operators

on SV defined by
0 0
D =T — Xy, 1< < N.
w(l,m) i) 81‘7" z aZCZ <m

Here w is the bijection that we introduced to define the operator rot in (1.6). These
differential operators generate one-parameter groups:

hD; ¢ __
€ f - f Ogha
where g5, : S¥~1 — SN~ are rotations.

Lemma 4.1. Let k =1,2. Forr € H**Y(SN=1) with |r||, small and s > ¥F5 we have
the generalised chain rule of differentiation:

D;iFi(r) = Fi(r)[Dir], 1<i<(3). (4.1)

Proof. Because Fj(r) commutes with g, we get

1 , .1
DiF(r) = lim E(eth —I)Fu(r) = lim = (Fi(r) o gn — Fi(r))

1 1
= lim > (Fi(r o gn) — Fi(r)) = lim 5 FL(r)[r o gy — 7

h—0 h
where 7 is the identity. O

= () [ "] = A,

Lemma 4.2. Ifr € G then D;r € GY.

Proof. This follows from the fact that the spaces & C C>(SV~1) are invariant under
rotations. O

Let for o > 1 the norm || - ||,—1,1 on H?(SV~1) be induced by the inner product

(r7)o—11 = (r,7)o—1 + Z(Dﬂ‘, DiF)o-1.
This norm is equivalent to the norm | - ||, that we introduced earlier (see [8] Section 4).

Define
E)JT{V::{TGCO(SN_l):/ dx:a—N,/ xdsz}.
Q. N Ja,

Note that MY is the set of continuous functions on SV~1, for which the corresponding
domains 2, have the same volume as the unit ball and a geometric centre that coincides
with the origin.
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Lemma 4.3. If Qg satisfies (1.1)-(1.6), then

18 constant in t.

Proof. Let M; be the ith component of M. Combining the divergence theorem, (1.2)
and (1.5) we get

Mi(t):/ (v-ng)x; daz/ v; dx—i—/ z;dive dz = 0,
Tre) QRt) QR

where ng is the normal on I'g(y). O

From this lemma we see that if r is a solution to (2.20) with ro € MY, then r(¢) € MY
for all ¢. Introduce the Hilbert spaces H{ (S™V~1) by

H (SN 1) = {r e H (S 1) : (r,5)g =0, Vse &) @al).

Define on a suitable neighbourhood U of zero in H*(S™~1) the operator f; : U — R x RY

by
ON T
fr—(/ dx — —, xdx) .
1(r) Q. N Ja,

Let P; : H5(SV=1) — H3(SM~!) be the orthogonal projection onto H$(SV~—1) with
respect to the Lo(SY~1)-inner product and let ¢ : U — R x RY x H(SV~1) be defined
by

$(r) = (f1(r), Par)".
The vector fi(0)[r] consists of inner products of r with spherical harmonics of order zero
and one. Therefore, by the Implicit function Theorem, ¢ is an analytic bijection between
a neighbourhood of zero in H*(SV~!) and a neighbourhood of zero in R x RY x H§ (SV~1).

This result can be obtained in the same way as in [16] for different function spaces. On
a suitable neighbourhood U of zero in H(SV~!) we define 1 : U — MY by

»(r) = ¢~ (0,7).
Using Lemma 4.3 it is easy to calculate that for a solution r to (2.20) we have

T
R = (58 smpwrmo) = (Vo)

where
(Vo,mo)" = f1(r(0)).

For notational convenience we introduce ¢, := (V;,m,)7.
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Theorem 4.4. Let N =2 or N =3 and p > 0. Suppose that s > w. There exist a
§ >0 and an M > 0 such that if ro € H*(SN=1) with ||ro||s < 0 then the problem

aor

i F(ry7), r(0)=ro, (4.2)
has a solution v € C([0,00),H*(SN=1)) N CL([0, 00), H*~L(SN=1)).  Purthermore, r €
C>®(SN=1 x (0,00)). If we regard r as a function of the original time-variable t, then

M
Il < ger—slirolle (4.3)

ON

Proof. We follow the lines of the proof of a similar theorem for the Hele-Shaw flow in

dimensions higher or equal to four, see [15]. Let Ag € (0, §') and & := St — \o, with C4

as defined in Lemma 3.3.
1. If r satisfies (2.20), then 7 := Pyr satisfies

g =PF (o' (¢r,7), 7). (4.4)

First we prove solvability of this equation. Below, we will find an estimate of the
type
0 (f77)1~7:1 (¢_1 (qT7F)))57171 + Ma(T)l_N (7:7 731]:2 ((b_l (qT7 f)))sfl_’l

< Ao llF 2 C ‘q0|2
< =AollFlls=11 + a(r)2

for some C' > 0, assuming that |qo| is small, 7 € H*+(SV~1) and ||7||, < &', with
0" small enough. From this estimate we derive existence of solutions to (4.4) and
find an estimate for the decay of 7 as a function of time. The symbol C is used for
a constant that may vary throughout the proof.

2. By Lemma 3.3 we have

Y FLO) ) s—1 + pa(r) =V F F0)[)smr < —CUllFIE_y. (45)

3. Because of Lipschitz continuity of P; o Fj 0 ¢!, for k = 1,2, and because 1 =
»~1(0,-) we have

[P Fi (67 (g7, 7)) = PrFi(v(7))][s—1 < Clgr]. (4.6)

From a straightforward calculation we see that ¢’ (0) is the identity on Hi_% (SV-1)
_1
and (0) = 0. Therefore the restriction of F}(0) to H; *(SN¥~1) is the Fréchet

_1
derivative at zero of the mapping P 0Fj01) that is analytic near zero in H; 2 (SN—1).
This gives us

IPLF(v(7)) = FrO)[Fll -2 < ClIFIZ_,. (4.7)
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Note that here the demand s > # is necessary for analyticity (see Lemma 2.4).
Combining (4.6) and (4.7) we get

H{EPF (07 @),y — FF O }
+ua(r) N (7P (67 (47)),, — (7 FHO))s 1 |
< C (lasll7lls—s + 171, ) - (4.8)
Here we used a(7)!~V < 1.
. From the chain rule (4.1) we get
(FPIF (67 (7)) 7))y = 7 (FL+G) + pa(n) N (Fe + Go),  (4.9)
where for k =1,2
By = (F,P1Fi (671 (gr,7))), 5

Gk = Z(Dﬂ:, 7)1]:]/@ (¢_1 (Q‘rﬂ:)) [Di(b_l(q‘r’f)])s*l'

We will estimate the terms Fj and Gy, for k = 1,2, separately.
. From (4.5) and (4.8), we get

s— 1

I+ pa(r) VR < G+ C (laellFllo + 71y )

< (=C1+ COFIE_ 1 + ClaellI7lls-1- (4.10)
. Now we find an estimate for G;. We have
Gy =Y (D, Ii + Ji)sr, (4.11)

where
I :=P1F{ (67" (g7, 7)) [Did ™ (gr, 7)) = PLFL (671 (0, 7)) [Dip™" (0, 7)]
Ji = P1F (Y(F)) [ (7F)[Dit]].

Here we applied the chain rule on 1) = ¢~1(0,-). This is possible because 1) com-
mutes with rotations. For detail we refer to [15]. Because

(qr,7) — P1F{ (¢ (qr,7))[Di¢~*(gr,7)] is Lipschitz continuous on a neighbour-
hood of zero in R x RY x H3(SV~1) we have

[£ills—1 < Clgz|.
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Therefore we get from the Cauchy-Schwarz inequality
(D, 1;)s—1 < Clgz ||| Dif[| s-1- (4.12)

Because of analyticity of P; o F; o9 on a neighbourhood of zero in HT%(SN -1
and the fact that ¢(0) is the identity we have

(Dt Ji)s—1 < (D, FL(O)[Dir]) o1 + CIF |- g | D3y
< =Ci||Ditl3_y + Cllllo—y IDi 2
< (=Cy + 05’)||D1-F||§_%. (4.13)
Combining (4.12) and (4.13) we get from (4.11)

5—3

G1 <) (=Ci+CO)DiFll2_s + Clac ||| DiF|s-1.-

We can estimate G5 in the same way, replacing C; by zero (see Lemma 3.3).
Because a(7)!=N <1 we get

YGy + pa(t) NGy < Z(—C’l + 05’)||Dﬁ\|§7% + Clg- | Dit || s—1- (4.14)

. Adding (4.10) and (4.14), we get from (4.9) and Cauchy’s inequality

(7 PLF (67 (4r,7) 7))y < (Co+ CONFIZ_y 1 + Clar |7l s-10

IN

5—3,

Cy .
(=Cr+CN|F)12 s 7||7’||§71,1 + Clg,?

| /\

G .
SRy +C (SIFIZ gy +larl)
Choose 0’ < &. Then

(f7731f (d)il (q'r; f) 77'))5 1,1 < )\0” || —-1,1 + C’|q7'|2

. |90/
< _)‘OHTH -1,1 +C——G5n ( )21\/‘ (415)
. Define 7y := Piro. From the local existence result in time from [12] Chapter

6 Proposition 9 and 10 we get, diminishing 6’ if necessary, an S > 0 such that if
|qo| is small and ||7]|s—1,1 < &’ then there exists a solution 7 € C([0, S], H*(SY¥~1))n
CY([0,S], H*=1(SV 1)) to (4.4) with #(0) = 7o. We also have 7 € C1((0, S],C>= (SN 1))
and therefore 7 € C>(SV~1x (0, S]). Furthermore, from (4.15) we see that for small
¥ € (0,5) and 7 € (0, 5] we have ||7(7)||?_; ; < y(r) where y : [0, 00) — R satisfies

|qo|?

a(r)*N

dfy = —2>\0 +C
dr
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with y(9) = [|[F(9)[|2_, ,, for some C > 0. For the solution y to this ODE we derive
from the variation of constants formula that

l90/?
aT)2N’

y(r) < e P00 Dy(9) + ¢
For detail, see the proof of Theorem 3.6 in [15]. We get

I7(7)ls—10 < Ce™ T (0) 510 + (4.16)

—C gl
OZ(T)N qol,
where C can be chosen independently of . Letting 1 go to zero we get for 7 € [0, S]

C
F(7) [ s—1,1 < Ce™ 7|7 | s— ——|qol- 4.17
[7(T)ls—1.2 < Ce T |[Fols—11 + o)V |90l (4.17)
This implies that |7(7)||s—1,1 < C(||Folls=1,1 +]|gol|) for 7 € [0,S]. One can show by
induction over k € N that if [|7[[s—1,1 < $C~'6" and |go| < $C '’ then a solution
7 to (4.4) on [0, kS] exists with #(0) = 7p. This solution satisfies (4.17) on [0, k&S]
and it has the desired smoothness properties.

9. If we construct a solution r to the original problem via

r(r) = ¢~ (ar, 7 (7)),

then we find, regarding r and « as functions of the original time variable ¢, that
<C(||r < ¢
[r@®)lls < CUIFOs + |ae]) < WHToHs-

Here, we used the fact that there exists a C' > 0 such that e=?07 < ﬁ for all
72>0.

O

Note that from (4.17) we see that if we start with a domain 2,,, for which the zeroth
and first Richardson moments vanish, i.e. gy = (0,0)”, then convergence will be faster.

In contrast to the problem of Hele-Shaw flow with injection (see [16]), we cannot treat
the case of zero surface tension for Stokes flow by the methods of the proof of Theorem
4.4. The order of F4(0) is lower than the order of F». Therefore, energy estimates of
the linearisation, (r, F4(0)[r])s < —C|r||?, for some C' > 0, can no longer control energy

estimates for the nonlinear part, (r, Fo(r) — F5(0)[r])s < €||’I“H§+l, for some € > 0.
2

5 Almost global existence results for the suction prob-
lems
In this section we use energy estimates to get an existence result for the suction problems

in 2D and 3D. Starting close enough to the unit ball, an arbitrarily large portion of liquid
can be removed.
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Theorem 5.1. Let N=2or N =3, u <0, T} € [0, Iﬂl("ﬁ) and s > %. There ex-

ists a & > 0 such that if ||ro||s < 0, then there exists a solution r € C([0,T4.), H*(SN=1))n
CL([0,T}),Hs=1(SN=1)) to

or =F(r,7), r(0)=ro. (5.1)
or
Furthermore v € C=(SN~1 x (0,T4)).

Proof. We assume that r € H¥"H(SN~1) with ||r||s < ¢’ for § small enough.

1. If u < 0, then a(7)! =" goes to infinity as 7 approaches Wfﬁ Nevertheless, on
the time interval [0, 7], a(7)!~" < A for some A > 0. Choose K € N such that
for k> K

—yp1(k) + |pu[Ap2(k) < 0.
Define C5 > 0 by
Cy = inf 222F) — 1A (k)
k>K (k2 41)2

The positivity of Cy follows from the fact that % converges to 3 as k
+ 2
tends to infinity.

2. Let P : Lo(SN71) — Ly (SV1) be the orthogonal projection with respect to the
Lo (SN ~1)-inner product along @kK:o Sy and define 7y, ; := (1, s5,;)0. We get

Y, FLO)[r])s—1 + pa(r) =N (r, F5(0)[r])s—1

_ Z (k2 + 1)571+% —7p1(k) + |/j,‘a(7—£1_Np2(k) 2

ré .
(k2 +1) i

»J

+ Z (k2 + 1)8—14—% _’Ypl(k) + |/,L|Oz(7’)1_Np2(k‘) 7“]%
o (k2 +1)2

< Clr|l§ - Cz||7DKT||§_%
= C|r||§ + Call(Z — PK)T“?_% - C2||7"||2_%
< Clrll§ = Callrll2_, - (5.2)

Here we used boundedness of Z — P : H5~2 (SN~1) — Ly(SVN-1).

1-N

3. By analyticity of F; and F» and boundedness of a(7) on [0,74] we have

Y, Fi(r) = FLO)[r])s-1 + pa(r) =N (r, Fo(r) — F5(0)[r])s-1 < ClIrlZ_,. (5.3)
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4. By the chain rule (4.1) we get
V(1 Fi(r))s—1,1 + pe(m) N (r, Fa(r))s—1,1
= y(r, F1(r))s—1 + pa(r) N (1, Fa(r))s—1
+7 > (Dir, F{(1)[Dir])s1 + po(r)' N> (Dir, Fo(r)[Dir]) s
As in the previous proof, we distinguish between two parts, that will be estimated
separately.
5. For the first part we have by (5.2) and (5.3)

Y, Fi(r)s—1 + pa(r) N (r, Fa(r)s—1 < (C8 = Co) 2y + Clrl3.

6. For the other part we have
Y(Dyir, FL(r)[Dir])s—1 + pa(r) =N (Dyr, Fy (r)[Dir]) s 1
= Y(Dir, F1(0)[Dir])s—1 + pe(r)' =N (Dyr, F5(0)[Dir])s 1
+y(Dir, { Fi(r) = F1(0) }[Dir])s—1
+ua(r) N (Dir, {Fo(r) — F5(0)}[Dir])s -1

< (C¥ - C’2)||DiTH§7% + C||Dir I3

7. Combining these two results and taking ¢’ < % we get

Y, Fi(r)s—11 + pa(r) =N (r, Fa(r)s—10 < (C8 = Ca)lIrll2_y , + Clirl3
< Olrllga < CllrlZ-y s (5.4)

From [12] Chapter 6 Proposition 9 we get, diminishing ¢’ if necessary, an S > 0
such that if ||rglls_1.1 < &, then there exists a solution r € C([0, S], H;(SN¥~1)) N
C([0, S), H;H(SN 1)) to (5.1), with 7(0) = 7. We also have € C®(SV~1x(0, 57).
Using the same methods as in the previous proof we can show that from (5.4) it
follows that [|r(7)|[s—1.1 < €“||rolls—1.1. Choose § < &§'e~“T+ and suppose that
lrolls < 0. By induction over k& € N, one can show existence of a solution r with
7(0) = 1 on the interval [0, kS] N[0, T ], like in step 9 of the proof of Theorem 3.5
in [15].
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